NEW SUBSCRIBERS See Section A for details of. hrﬁnging vp -
UCSD Pascal on your. machxne

DISCLAIMER: These documents abd/6r the softiare. they- des:fibe"
are subject to chamq@ ‘aRd/oT cof [
notice. ‘The UCS D Pascal ProJe:t (anno 3
rezponsible for. xmplemeﬂtations on.. pro:cssors whore
the implementatxon WOTY was Not done at ucSD - Users’
with systems obtaimed -from” ‘sources Other’ thqn UCSD
must contact their: 1sUpp lier for ;upport

ACKNOULEDGEHENTS

The work descr:bed in these riptes. has been sypported j”
significantly by the tallowinp organizatxons)

United States Nawvy Permonnel Research and Development
Center, Sperry Univac Minicomputer Operations, EDUCOM,
Digital Equipiment Corporation, Processor Technology
Inc. Springer-Verlag..: Terak"Corpofatian. Ceneral
Automat:on Corporation.. The UCSD Computer Center,
grants from the Unxversxtq ‘of California Instructional
Improvement Program. Tektronix Corporation, Micropolis
Inc. ., Computer Power and Light, Phillips Rese th’Lbbs;‘
Lawrence Livermore Labs, Pascal Computing. :
" o
The work described tn these notes has bgen mad! possihlc
by the drive and dire:tion of the Director of the 1187

Kenneth L. Bouwles

Documentation Authors;J

Gillian M. Ackiand, S. Dale Ander;:Luc ‘A, Bennett,
Raymond S. Causey, Charles. "Chip" Chap 2

Gary J. Dismukaes, Julie E:. Efwif, - Shawn M. -Fanning,
Mary K. Landauer, J. Raoul Ludijig, ‘Joel J. McCormack,
Ma=k D. Overgaard, Keith A. Shillington, .
David A. Smith, Roger T. Sumner, Dennis J. Volper.

Software Authors:

WChip* Chapini

S. Dale Ander, Har:'Bernardak"“ Ry
' '“'am F. Franks,

J. Greg Davidson. .

C. Richard Grunsky : Hofkin. Albert A. Hoffman,
Richard S. Kavufmanay: f“Lawreﬂ&¥. Joel J. McCormack,
Mark D. qurgaard, Davmd A. Reisner, Keith A. Shillington.

David M. Stezngre,,ﬁogvr 7. Sumner, Steven S. Thompson,
David B. Nollner

Collected and Edited by:

Keith Allsn Shillington and Gillian M. Ackland.

This is a scan from an nth generation copy that has had
parts of the text obscured by highlighter which was then
photocopied.

SECTION

LA L L L X3 L LT TR Ay gy

TABLE OF CONTENTS
LA AT 2L L LY L 2 R Ay

Version I. S September 1978

1 THE UCSD PASCAL SYSTEM

1 INTRODUCTION AND OVERVIEW
2 FILE HANDLER . . S,
3 SCREEN ORIENTED EDITOR

1 INTRODUCTION . . S

2 GETTING STARTED . . .o

3 DETAILED DESCRIPTION OF COMMANDS .o

4 REFERENCE . .

5 EXPERIMENTAL LARGE FILE VERSION (L2) ..
4 YET ANOTHER LINE ORIENTED EDITOR — YALOE ..
S DEBUGGER
& PASCAL COMPILER . .
7 BASIC COMPILER .
B LINKER . .
9 ASSEMBLER)

2 THE UCSD PASCAL LANGUAGE

1 INTRINSICS e e e e
1 STRING
2 INPUT/OUTPUT oot
3
4 LOW LEVEL GRAPHICS e e e
5 CHARACTER ARRAY MANIPULATION '

6 MISCELLANEDUS . . . ‘ .

2 DIFFERENCES BETWEEN UCSD’S PASCAL AND STANDARD PASCAL .
1 CASE STATEMENTS
2 COMMENTS . . e e e e e e
3 DYNAMIC MEMORY ALLOCATION
4 EOF . . L
S EOLN L.
6 FILES . . e e e e e e e
7 GOTO AND EXIT STATEMENTS

8 PACKED VARIABLES . . e e e e
9 PARAMETRIC PROCEDURES AND FUNCTIONS
10 PROGRAM HEADINGS >—°
11 READ AND READLN~
12 RESETy
13 REWRITE . . e e e e e e e e e
14 SEGMENT PROCEDURES 7"
15 SETS . . e e e e e e e, ..
16 STRINGS . . e e e ..
17 WRITE AND HRITELN . « e e e .

18 IMPLEMENTATION SIZE LIMITATIONS . | .o

19 EXTENDED COMPARISONS~
20 LONG INTEGERS C e e
21 UNITS . . B, .
22 TABLE OF UCSD INTRINSICS ° .

« e

e o s+ e o * & @

PAGE

117
119
123

129
131

135
135
136
136
138
138
14%
142
144
147
147
148
150
150
150
151
152
156
156
156
156 -
1546
156

3 IMPLEMENTORS' GUIDES

1 DRAWLINE, . ., . . e e e e s e e e e e s e e e . 139
2 FILE FORMATS . . e ¥ <]
3 SPECIAL UCSD FASCAL SYNTAX (USE DF) .
1 SEGMENT PROCEDURES v v v v v o v .. 165
2 UNITS . . . T 1Y 4
3 LONG INTEGERS D T ¥ 4/
4 INTERPRETER NOTES . . . © 4+ e+« + .« . . 183
S INTRODUCTION TO THE PASCAL PSEUDO—HACHINE ¢ } §
& BYTE SWAPPING e e e . T - § < |
4 UTILITY PROGRAMS
1 CALCULATOR , - e e .« . . 215
2 LIBRARIAN . . . e e . .« . -2 ¥4
3 SETUP - SYSTEM RECDNFIGURATIDN . e e . e e e e el . . =21
4 BOOTSTRAP COPIER N . e 227
S PATCH/DUMP | | - e e e e .« e . . 229
6 RT11 TO PASCAL tONVERSIUN KIT . e e e e e 233
7 COTOXY PROCEDURE BINDER “ s e e e s239
8 DUPLICATE DIRECTORY v v v v v v v v s v o . 237
9 P—CODE DISASSEMBLER 4 v 4 ¢ o v « . . . - 239
10 LIBRARY MAPo e e e e . . 2485
S TABLES
1 EXECUTION ERRORS v v v v v v v v v v . . 289
2 IORESULTS s e e e e e e e . . 2918
3 UNITNUMBERS ¢ v v v v v v e e e u . . a&353
4 PENSTATES« v . .+ . © e + « « « . . =55
9 SYNTAX ERRORS . . . o e e e . - ¥4
6 ASSEMBLER SYNTAX ERRORS .o e e e e . . 261
7 AMERICAN STANDARD CODE For INFDRMATIDN INTERCHANOE « e . . . R85
8 P-MACHINE OP-CODES . . © e e v e e e -1 Y 4
9 UCSD PASCAL SYNTAX DIAGRA”S s e et s e e e e e e e e e 4 . . 268BA
A ADDENDA, ERRATA AND NOTES
1 NOTES ON OTHER MATERIALS AVAILABLE269
2 BRINGING UP THE PASCAL SYSTEM
1 ON PDP-11 - Y 4 §
. 2 ON 8080/280 SYSTEH HITH CP/H AND 3740 DISKS . e . 273
3 DIFFERENCES AMCONG IMPLEMENTATIONS FOR DIFFERENT PROCESSORS . =277
4 CHANGES MADE IN I. 5 FROM.(I. 4, I.4b) SYSTEMS 279

B INDEX . e e e e e ... a2BS

A AR R S I R A R T R L L IR T Y T D R NTE)

* INTRODUCTICN AND CUERVIEW # # Section 1.1 #
RARLIR ARG RARBUN TR UDARAA A N R S BN EBH XA RS TR

Version 1.5 September 1978

The UCSD Pascal system described in.the following document is a
system intendecd to tTun on stand slone micro- and mini-computers. This
system is hiahly machine independent since it runs on a psevdo—machine
interpreter commenly referred to atg the "P—machine®”. All the system
softisare 15 written in Pascal. @éxcept for the P-machina interproter and
4 few Tun-time suppourt routines written in assemhler for efficiency,

Tesvlting in Teolatively straightforward softuare maintenance and
enkancement.

The system is designed to be used primarily with a8 CRT terminal
acting as the CONSOLE device; however, the system is flexible enough to
be reronfigured for slownr tard—copy terminals. For further
information rzjarding compatability between various types of equipment
and this system see the "SETUF"™ document in Section 4. 3. This document
is intended for programmers who are familiar with the Pascal

programming lenguage and have some experience in writing computer
programs.

The following is @& tutorial book on PASCAL:

Kennéth L. Bouwles., :
(Microcomputer) Problem Solving Using PASCAL
Springer-Verlag, New York, (c)1977

We suggest the following book as a PASCAL reference guide:

Kathleen Jensen and Niklaus Witth,
PASCAL User Manual and Report
Springer-Verlag, New York:. (c)l97S

For cocumentutisn cecncerning the differences betwaen UCSD
Pascal arnd S:ondard Pascal see Szction 2. 2.

Page |

1.1.1 THE UCSD PASCAL SYSTEM: AN OVERVIEW

The structure of the UCSD Pascal system is best
conceptualized in termu of the “tree~like” structure diagram figure 0.1
at the end of this sub- section. :

The diagram in figure 0.1 depicts the outermost level of the
system. In terms of a "tree" or structure diagram, the "vroot"
‘corresponds to the outermost level, while the “leaves” (l.e. the boxes
with no branches to lower levels) correspond to the lower levels of the
system. While a user is in a particular level, the system displays a
list of available commands called the “prompt—=line*. If the system is
running on a CRT screen type terminal, then the prompt—-line will
usually appear at the top of the screen. Commands are usvally invoked
by typing a single character from the CONSOLE device. For example, the
prompt-line for the ogutermost level of the system is;

Command: E(dit, R(un., F(ile. Clomp, L(ink, X(ecute, A(ssem D(ebug, ? [I. 5]

By typing "F" the vuser will "descend*” a level within the
structure diagram into a level called the “Filer™. Upon entering the
Filer, another prompt-line detailing the set of commands available at
the Filer level of the system is displayed. The G(uit command causes
the user to exit from the Filer and “ascend™ back to the outermast
command level of the system. Now the user is back at the level in the
system from which he started after bootstrapping the machine. Some
commands within the system prompt the user for the name of some disk
file. In these cases, the user enters the name of the file followed by
& carriage return. If an error is made in typing & portion of the file
name, the backspace key (or equivalent key depending upon the system
configuration) may be used to “back over" and eTase the erroneous
part. The line delete key (rubout key) may be used to erase the entire
file name, thereby allowing the user to completely start over. I# the
user decides not to accept any file name whatsoever, “escape“ from this
command is by entering a file name of zero characters, i.e. type <crd.

Note that due to a limited amount of room on the prompt—line,
some of the infrequently used commands may not appear on the prompt—-
line. .

A concept central to the design of the entire UCSD Pascal
system command structure is the concept of the “workfile". A warkdile
can be thought of as a "scratch—-pad” area used for development o+t
proegrams and only one workfile is allowed at any one time. If a user
wishes to begin a new workfile, the contents of the old one can be
saved, under a separate file name, for later reference by using the
S(ave command in the Filer level of the system, When that file is
later retrieved for further work on the contents, it is possible that a
number of files (usually source and code) will be retrieved together
and in total they comprise the work—file.

Page 2

1.1.2 OUTERMOST LEVEL COMMANDS: AN OVERVIEW

A. E(dit

Typing "E" while at the outermost command level of the system
causes the editor program to be brought into memory from disk. The
vser may, while in the editor, insert or delete text inside his
workfile or any textfile, along with many other powerful commands. See
Bection 1.3 for details. The workfile text (if present) is read into
the editor buffer, otherwise the Editor prompts for a file.

B. F(iler

"F" places the user in a level of the system called the Filer.
This section of the system contains commands used primarily for
maintenance of the files stored on the disk. The L(dir command allows
the user to list the titles and the last modification date, as well as
determine the number of blocks occupied by each file on the disk. The
T(ransfer command is used to copy from either one disk to another, or
from one area on a particular disk to anocther area on the same disk.
For more documentation on the Filer level including commands associated
with the "getting", "saving"”, and “clearing” of the user’s workfile see
Section 1.2,

C. C(omp
This command initiates the system compiler to compile the users
work=—file. If there is no work—file currently the user is asked for a
source text file name. If a syntax error within the source is

detected, the compiler will stop and display the error number and the
surrounding text of the program. By typing a space, the user can cauvse
the compiler to continue the compilation. Typing an <escD> causes the
compiler to abort & return to Command level. Typing ‘E’ will, i¢ the
system editor is the scrcen editor, call the editor placing the cursor
near the offending symbol. If the compilation is successful, (i.e. neo
. syntax errors were encountered) a codefile called *SYSTEM. WRK. CODE is
written out onto the user’s disk and becomes part of the workfile. For
more documentation on the use of the UCSD Pascal compiler see Section
1.6, i

D. R(un

This command causes the codefile associated with the current
workfile to be executed. If no such code file currently crists, the
compiler is called in the same manner as described in C above. If the
compilation requires linkage to separately compiled code the linket
will automatically be invoked and will assume the use of the file
#*SYSTEM. LIBRARY. After a successful compilation, the program is
executed.

Page 3

E. X(ecute

This command prompts the user for the filename of a previously
compiled codetile. If the file exists, the codefile is executed:
otherwise the message “"can’t find file” is returned. (Note: the
“.CODE" suffix on such a file is implicit.) I1¢ all code necessary to
execute the codefile has not been linked in, the message "file <fileid>
not linked in is returned. It is convenient to X(ecute other programs
which have already been compiled because otherwise the user would have
to enter the Filer, G(et the file, G(uit the Filer, and then R(un the
program.

F. A(ssem

Just like CComp except the system assembler is invoked rather
than the system compiler.

G. D(ebug

This command causes the current workfile to be executed. Is
the program in the workfile has not been compiled, the compiler will be
called as in the case of the R(un command. However if a run—-time error
occurs, or a user— defined break-point or halt is encountered., the
Debugger program is called. The Debugger is a program which allows the
user to examine the contents of variables within the program. See
section 1.5 Debugger for more details.

H. Llink

This command starts the system linker program explicitly to
allow users to link routines from libraries other than
#SYSTEM. LIBRARY. $See section 1.8 for more information on the Linker.

1.1.3 VUTILITY PROGRAMS

There are many functions needed dby users of any operating
system. To attempt to make all these functions system functions would
Tesult in a terrible proliferation of command letters as the base node
level. In order to keep the COMMAND line simple. we have restricted
the functions available on it to what we feel is the bare minimum for
program and text develogment. The other useful, but much less often
used functions are available through the X(ecute command. The sort of
functions which are available are the desk calculator, the patch/dump
utility, the terminal configuration setup program. a bootstrap mover, a
librarian and many others. For a complete list of the vtility programs
Now available with the UCSD Pascal system, reference Section 4 in the
Table of Contents. Any programs which you write and feel would be a
vuseful addition to our library of utilities will be welcome
contributions. '

Page 4

1.1.4 AN INTRODUCTION TO THE UCSD PASCAL SYSTEM

1.5 is the first release which contains the fully intergrated
and implemented concept of separate compilation and assembly. I.4b was
the first to support multiple types of processors.

The great bulk of the system software is written in Pascal and
rTuns on a relatively simple pseudo-machine. If this psevdo-machine is
emulated by a machine language program on a new real machine, the
Pascal software will also run on that new real machine.

One class of differences among versions of the system is due to
aspects of ‘the pseudp-machine that are not identicaly emulated by the
implementations for different types of processors. A subsection in
section A contains a chart of differences between processors the system
currently runs on.

Another class of differences stems from variations in the
system 1/D environments rather than in the host processor. Included
here are difference in system console terminal types (n.e. hard—copy vs
CRT vs storage tube) or command conventions and Capabilities (eg.
“intelligent” vs "dumb” CRT‘s). The system is intended to be able to
cope with this sort of varjation. Version 1.4 had some troubles with
terminals that generate/requite two-character sequences for some
controls, and single-character sequences for others. The utility

program "SETUP" has been completely Tegenerated for 1.9 (see section
4. 3).

In the PDP-1! world these mass storage variations are not too
serious, primarily because there is considerable motivation to be
compatible with DEC devices and media. We have written and support
8rivers for & few DEC incompatible devices but make no'claim to
support users who want to develop their own such drivers. See section
A for warnings about problems you might encounter.

The situation in the B808B0/Z80 world is much more chaotic.
Bince is would not be practical for the Project to write and support
drivers for the vast multitude of BOBO/ZBO 1/0 environments that exist,
we have chosen to take advantage of the widespread implementation of
Digital Research’s CP/M operating system by structuring the pseudo-
machine’s I/0 operations as calls on CP/M’s Basic 1/0 Subsystem (BIDS)
primitives. Therefore, any I/0 configuration on which CP/M has been
implemented should also be able to support the Pascal system. We do
not guarantee this. For example, Intel MDS disk controllers cannot
read disks generated here and some BEICS’'s we have encountered do not
completely meet all the requirements specified for CP/M. UCSD plans to
support some of the larger distribution 80BO-based machines directly.

Our dominant mode of distribution for 8080/280 systems will be
on 3740 compatible diskettes One of the distribution diskettes will
be CP/M oriented. This disk will be used, via a somewhat awkward two~-
step process, to bring up UCSD Pascal on a particuvlar CP/M
configuration. Look to section A for details on this process. It also
describes the configuration of a modified BIDS, which will better
support the needs of the Pascal system. Finally, directions are given
for making it possible to boot directly to Pascal rather than
indirectly through a CP/M program.

Page 5

A number of files on the disk start with ‘EYSTEM. specifically:

SYSTEM. POP-11
SYSTEM. MICRO .
SYSTEM. PASCAL
SYSTEM. FILER
SYSTEM. COMP ILER
SYSTEM. SYNTAX
SYSTEM. EDITOR
SYSTEM. LINKER
SYSTEM. ASSMBIL.ER
SYSTEM. SWAPDISK
B8YSTEM. CHARSET
SYSTEM. LIBRARY
SYSTEM. WRK. TEXT
SYSTEM. WRK. CODE
SYSTEM. STARTUP

In most cases these files. contain the system segment of the
name they carry, That is to say that the EDITOR., FILER, LINKER,
COMPILER, ASSEMBLER are the files that are invoked by the text editor
when ‘E‘’, 'F’, ate. is typed. Some of the files are machine specific.
INTERP and MICRO are the files which contain the interpreters for the
_particular machine being used. CHARSET is a file which appears on
disks meant for TERAK computers only and contains the definition for
the soft character set, and the data for the Triton logo prompt.
LIBRARY is a file containing separately assembled or compiled routines
for use by the Linker in producing executable Ccode files. PASCAL
contains the operating system, and the Debugger. SWAPDISK is a file
used by some of the system segmants during compilation of “"include*
files if a memory shortage exists. It is a 2048 byte fila which gets a
- partion of memary Swapped to it when a directory neecds to be rTead into
core. When the directory work is complete, the memory is restored to
its original state. STARTUP is a file which can be created at the
user’s option. If it exists on a disk, the aperating system considers
it a runnabdle code—~file, and executes it at initialize tima. This
Allows the user to have 4 program that runs before the main command
prompt comes up. and will Tun anytime the I(nitialize command is
typed. WRK. TEXT and WRK. CODE are the current work-file after some
action has occurred to the work—file. They appear after having done
some text editing on a work—file (SYSTEM. WRK. TEXT) or compiling a work-
file (SYSTEM. WRK. CODE). .

All other files on the disk are user generated (in one fashion
or another). The othar important parts of a disk are relatively
invisible to the user. The diractaory resides at block 2 on the digk
and extends for 4 hlocks ji¢ it is a single directory, 8 blocks if it is
a duplicated (backed=-up) directory. The bontstrap can reside at any of
4 number of places on the disk, depending on the host machine. In most
cases, blocks O and 1 are Teéeserved for the bootstrap.

Page &

a2 X2 2L 22l N T LT T LY TR YTy

FILEHANDLER % % Section 1.2 =
L2222 1T I TTTT LI AR TE T TET LY EE TS

Version 1. S September 1978
1.2.1 FILES

A file is & discrete ‘chunk’ of information which is stored on
the disk and referenced by a filename. Each disk has a directory
which contains the filenames and locations of each file on the disk.
The Filehandler, or Filer, uses the information contained in the disk
directory to manipulate files.

One of the attributes of a file is its type. The type of the
file determines the way in which it can be used. File types are
assigned based on the file name.

Reserved type suffixes for filenames are:

. TEXT Human readable text.

. CODE A Machine executable code.

. DATA Data file.

.FOTO A file containing one TERAK screen—image.
. GRAF Intended to be a file containing a vector

list of & graphic image. Currently unused.

. BAD An unmovable file covering a physically
damaged area of a disk.

1.2.2 VOLUMES

A volume is any I/0 device, such as the printer, the kegboard,
or a disk. A "block-structured" device is one that can have a
directory and files, usuvally & disk of some sort. A non-
block-structured device does not have internal structure; it simply
produces or consumes a stream of characters. The printer and the
keyboard, for example, are non-block-structured. The table below
illustrates the reserved volume names used to Tefer to non-block-
structured devices, the ‘unit number’ associated with each device, and
the unit numbers associated with the system (booted) disk and any
alternate disks.

Page 7

Unit Number Volume ID Description

{

)

$

i : .

H 1 CUNGOLE: screen and keyboard with echo

{ 2 SYSTERM: SCTeeENn and keyboard without echo
! 3 CRAPHIC: the graphkic ‘side’ of the screen
! 4 <velume named: the system disk

H S <volume named: the alternate disk

H & PRINTER. the line printer

{ - 8 REMOTE: additional peripherals

t 9-12 <volume name>: additional disk drives

{

FIGURE 1 .

1.2.3 THE ‘WORKFILE’

The workfile is a temporary copy of the file being modified.
It is used by the Filer, in the Editor, and by the Compiler. -When the
text part of a workfile is changed, the system stores it on disk under
the name ’“#SYSTEM. WRK. TEXT’, and when a code version is first created,
it is named ‘%SYSTEM. WRK. CODE"’. :

1.2.4 FILE SPECIFICATION

HMany Filer commands require the user to respond with at least
one file specification. The diagram below illustrates the syntax af
file specification.

<File speclficatlon

™

ring j

N
v

positive®
integer -df

FIGURE 2

Page B

Volume i.d. syntax csn be expanded thusly:

{volume ID>,

1 .
L‘@‘@mmberé

volname

FIGURE 3

Volume names for block-structured volumes can be arbitrarily
assigned by the user. A volume name must be 7 or less characters long
and miy not contain ‘=‘, ‘%', *'?’ or ‘y’. Reserved volume names for
non— block—ctructured devices are given in Figure 1. The character ‘%7
is the volume ID of the ‘system disk’, the disk upon which the system
was booted. The character ‘:’, when used alone, is the volume ID of the
‘default disk’. The system disk and defavlt disk are equivalent unless
the default prefix (see material on P(refix) has been changed. ‘#<unit

Page 9

number>’ is equivalent to the name of the volume in the drive at that
time. ‘

" A legal filename can consist of up to 15 characters. In order
for the file to be run the last S characters must be . TEXT, .CODE, OR
. DATA. Without these suffixes the file may be executed but not put in
the workfile tn be run. Lower—case letters will be translated
. to upper-case, and blanks and non—-printing characters will be removed
from the filename. Legal characters for filenames are the
alphanumerics and %he special characters ‘—/, ¢, o\, ‘.’ and ‘, ‘.,

These special characters may be used to indicate hierarchic

relationships amang files and/or to distinguish several related files
of different types. ’

WARNING: The I.5 Filer will not be able to access filenames containing
the characters ‘s7, ¢.¢, 'ms, 19, and “, ‘. If files from previous
versions of the system contain these characters, then they should be
Temoved before attempting to use those files with the I.5 System.

The wildcard characters, 'm-’ and ‘?’, are used to specify
subsets of the directory. The Filer performs the requested action on
all files meeting the specifications. A file specification containing
the subset-specifying string ‘DOC=TEXT®’ notifies the Filer to perfarm
the requested action on all files whose names begin with the string
‘DOC’ and end with the string ‘TEXT"'. If a *?’ is used in place of an
‘m’, the Filer requests verification before affecting each file meeting
the specified criteria. Either or both. strings may be empty. For
example, & subset specification of the form ‘=<string>‘ or ‘<Cstringdm=s’
or eaven ‘=’ {g valid, This last case, whéere both subset— specifying
‘strings are empty, is interpreted by the Filer to specify every file on
the volume, so typing ‘=’ or ‘?’ alone causes the Filer to perform the
appropriate action on every file in the directory. :

Given an example directory for volume MYDISK:

NAUGHTYBITS é 23-Jun-54
MOLD. TEXT 4 29-Jun-54
USELESS. CODE 10 19-May-54
MOLD. CODE 4 29-Jun-54
NEVERMORE. TEXT 12 S-Apr-54
COONS 9 10-Sep-52

Page 10

EXAMPLE:

Prompt. Remove what file?

Response: Typing ‘N=’ generates.the message:
MYDISK: NAUGHTYRITS removed
MYDISK: NEVERMORE. TEXT removed
Update directory?
(At this point the user can type ‘Y’ to remove or
type ‘N’, in which case the files will not be
removed. The Filer always requests verification
on any wildcard removes.) :
Typing ‘N?’ geonerates the message:
Remove NAUGHTYBITS: <%
After the user types & Tesponse, the Filer asks:
Remove NEVERMORE. TEXT: <7

EXAMPLE:
Prompt: Dir listing of what vol ?
Response: Typing ‘s=TEXT’ causes the Filer to list

MOLD. TEXT 4 29-Jun-Sa
NEVERMGRE. TEXT 12 S-Apr-S4

The subset-spocifying strihgs may not ‘overlap’. For example,

GOON=NS wculd not specify the file GOONS, whereas GOON=S would
be a valid (although pointless) specification,

The size zpecification information is predominantly useful in
the commande T(ransfer section 1.2.5 11 and M(ake section 1.2.5.17.

Page 1i

1.2.5 COMMANDS AND USE

Type "F" at the Command level to enter the Filer and the
following prompt is tlisplayed:

Filer: G(et, S(ave, W(hat, N(ew, L(dir, Rtem Cthng, T(rans, D(ate, Q(uit
Typing ’72’ in Tesponse to this prompt displays more Filer commands:

Filer: B(ad-blks, E(xt-dir, K{rnch. M(ake, P(refix, V(ols. X(amine, Z(ero

The individual Filer commands are invoked by typing the
letter found to the left of the parenthesis. For example,
‘S8’ would invoke the Save command.

In the Filer, answering a Yes/No question with any character
other than ‘Y’ constitutes a ‘No’ answer. Typing an <esc> will return
the user to the outer lavel of the Filer. ,

For each command Tequiring a file specification, refer to the
file specification diagram (Figure 2). In many cases, the entire file
specification is not necessary, and in some cases, certain parts of the
file specification are not valid. See the required command in the
following section.

. Whenever a Filer command Tequests a file specification., the
user may specify as many files as desired, by separating the file
specifications with commas, and terminating this ‘file list’ with a
carriage return. Commands operating on single filenames will keep
Teading filenames from the file list and operating on them until there
aTe none left. Commands operating on two filenames (such as C(hange
and T(rans) will take file names in pairs and operate on each pair
‘until only one or none remains. If one filename remains, the Filer
will prompt for the second member of the pair. If an errvor {s detected
in the ligt, the rest of the list will be flushed.

Page 12

Loads the designated file into the workfile.

The entire file specification is not necessary. I1f the volume ID is
not given, the default disk is assumed. Wildcards are not allowed,
and the size specification option is ignored. .

Given the example difectorq:

FILERDOC2. TEXT
A. OUT. CODE
. FO. TEXT

ABSURD. TEXT
HYTYPER. CODE
STASIS. TEXT
LETTERL. TEXT
ASSEM. DOC. TEXT
FILER. DOC. TEXT
STASIS. CODE

EXAMPLE:
Prompt: Get what file?
Response: STASIS
The Filer responds with the message ‘
‘Text and Code file loaded’

since btoth text and code file exist. Had the user typed
‘STASIS. TEXT’ or ‘STASIS.CODE’, the result would have been the
same — both text and code versions would have been loaded. In
the event that only one of the versions exists, as in the case
of A.OUT, then that version would be loaded, regardless of
whether taxt or code was requested. Typing ‘A . OUT. TEXT’ in
response to the prompt would generate the message: ‘Code file
loaded’.

Page 13

RIS

Saves the workfile under the filename specified by the user.

The entire file specification is not necessary. If the volume iD is
not given, the default disk is assumed. Wildcards are not allowed.
and the size specification option is ignored. :

EXAMPLE:

Prompt: Save as what file?

Response: Type a filename of 10 or less characters, observing
the filename conventions in section 1.2. 4 ‘FILES’ . This
causes the FILER to auvtomatically remove any old file having
the given name. and to save the workfile under that name. For
example, typing "X"in response .to the prompt causes the
workfile to be saved on the default disk as X. TEXT. If a
codefile has been compiled since the last update of the
workfile, that codefile will be saved as X. CODE. :

"The FILER avtomatically appends the suffixes . TEXT and . CODE to

Page 14

files of the appropriate type. Explicitly typing AFILE. TEXT in
response to the prompt will cause the FILER to save this file
as AFILE. TEXT. TEXT . Any illegal characters in the filename
will be ignored. with the exception of “: *. If the file
specification includes volume id, the Filer assumes that the
vser wishes to save the workfile on another volume. For
example, typing:

RED: EYE
in response to ‘Save as what file?’ will generate
Prompt: Would you like EYE. TEXT written to RED: 7
RED:EYE constitutes a file specification, and a ‘Y’ answer to
this prompt will cause the Filer to attempt a transfer of the

workfile to the specified volume and file. (see section
1.2.3.11 T(ransfer.)

<R taa

AN RS S

Clears the workspace (workfile).

No file specifications allowed.

If there is already a workfile present, the user is prompted:
Prompt: Throw away current workfile?

Response: ‘Y’ will clear the workfile while ‘N’ returns the
vser to the outer level of the FILER.

I1f <workfile name>. BACK exists, then the user is prompted:

Prompt: Remove <workfile name>. BACK ?

LA

Returns the user to the outermost command level.

No file specification allowed.

SERRIRTR

Identifies the name and state (saved or not) of the workfile.

No file specification allowed.

Lists volumes currently on-line, with their associated unit
(device) numbers,

Page 15

No file specification allowed.

A typical display would be:

Volumes an-line:
 § CONSOLE:
2 SYSTERM:
b GRAPHIC:
4 » MYDISK:
&6 PRINTER:
a8 REMOTE:
9 # BIG:
Prefix is - MYDISK:

The system or "boot—disk” volume’s name is preceeded by a ‘»’,
The system volume is the default volume unless the prefix (see

P(refix) has been changed. Block-structured devices are indicated
by ‘®’ aor ‘#°.

i S
. S ———

Lists a disk directory, or some subset thereof, to the volume and
file specified (default is CONSOLE:).

The user may list any subset of the directory, using the ‘wildcard’
option, and may also write the directory, or any subset thereot, to
a volume or filename other than CONSOLE. File specification will

. therefore be discussed in terms of source file specification and
destination file specification.

Source file specification consists of a mandatory volume 1D, and
optional subset-specifying strings, which may be empty. If subset-
specifying strings are used, then one of the wildcard characters
must be used. A string (for example, the full Ffilename

STASIS. TEXT) may not be used as part of the source file
specification unless a wildcard character is used!

Source tile information is separated from destination file
information by a comma (*, *).

Destination file specification consists of a volume ID, and, if the
volume is a block-structured device, a filenama. File size
specifications will be ignored.

The most frequent use of this command is to list the entire directory
of a volume. The following display, which represents a complete
-directory listing for the example disk MYDISK, would be generated

by typing any valid volume 1D for MYDISK (see Figure 2) in response
to the prompt,

Page 14

Dir licting of what vol?

MYDICK:
FILERDOC2. TEXT
A. OUT CIDE

FS. TEXT

AESURT
HYTYPER. CODE
STASIS TEXT
LETTERL. TEXT
ASSEMDGC. TEXT
FILERDDCL. TEXT
STASIS. COZE

23
10
e
4
12
8
18
20
24
&

1-Sep-78
1-Sep-78
1-Cup-78
1-Sap-78
1-Sep~-78
1-Cep~78
1-Cep-76
1-Sep-78
1-Sep~-78
1-Cep-75
10710 files <listed/in-dirD>, 130 blocks used,

364 vnused

(The bottem line of the display informs the vser that 10 files out

of 10 files

have

EXAMPLE:

E?AHPLE:

been vused,

on the disk have been listed,
and that 364 disk blocks remain unused.)

L(dir treansaction involving wildcards:

Prompt:

User response: #4:.FIL=TEXT

Dir listing of what wvol ?

generates the following display:

MYDISK:
FILERDOC2. TEXT
FILERDDC1. TEXT

28
24

1-Sep-78
1-Sep-78
2/10 files <listed/in—-dir>,

92 blocks used,

that 130 disk blocks

B

364 unused

Ledir transaction involving writing the directory subset to a

device other than CONSOLE:

Prompt: Dir listing of what vel ?

User response: #FIL=TEXT, PRINTER: cavuses

MYDISK:
FILERLIC2 TEXT
FILERCOC1. TEXT

2710 files <listed/in-dir>,
1o be wiitten Lo the Printenr.

28 -

24

1~-Sep-78
1-Sep-78B

52 blocks used.

364 unused

Page 17

EXAMPLE:

L{dir transacticn invoiving writing the ditectory subset to a
block-~structured device:

Prompt: Dir listing of what val ?

User response: #4:FIL=TEXT.#5:TRASH creates the file TRASH agn
the volume associated with vnit S. TRASH would contain:

MYDISK: :

FILERDOC2. TEXT 28 1-Sep-78

FILERDOC1. TEXT 24 1-Sep-78

2/10 files <listed/in-dird>, 52 blocks used, 364 unused

Lists the directory in more detail than the L(dir.command.

All files and unused areas are listed along with (in this order)
their block length, last modification date, the starting bdlock
address, the number of bytes in the last block of the file, and the
filekind. All wildcard options and prompts are as in the L(dir
command. An example display is shown below.

MYDISK:

"FILERDOC2. TEXT . a8 1-Sep-78 & o912 Textfile
A. OUT. CODE 10 1-Sep~78 c4 512 Codefile
F3. TEXT 8 1-Sep-78 44 312 Textfile
<UNUSED> i0 S2 .

ABSURD 4 {-Sep-78 62 312 Datafile
HYTYPER. COCE 12 1-Sep~-78 b8 S12 Codefile
STASIS. TEXT 8 1-Cep-78 78 S12 Textfile
LETTERL. TEXT i8 1-Sep=-78 84 - 912 Textfile
ASSEMDOC. TEXT 20 1-Sep-78 104 S12 Textfile
FILERDOCL. TEXT 24 1-Sep-78 124 S12 Textfile
" STASIS. CODE () 1-Sep-78 148 512 Codefile
<UNUSED> 354 154

10/10 files <listed/in-~dir> 130 blocks used, 344.unused, 354 in largest area

. |

q(Changes file ar volume name.
S ghanges

e~

This command requires two file specifications. The first of these
specifies the file to be changed, the sacand., to what it will be
changed. The first specification is separated from the second
specification by either a <retd> or a comma (‘, /). Any volume ID
information in the second file specification is ignored, since
abviously the ‘ald file’ and the ’‘new file' are on the same volume!
Size specification information is ignored.)

Page 8B

Civen the example file F3. TEXT:, residing on the volume occupying unit 9:

Prompt : Change what £ile?
User Response: #5:F5 TEXT, HOOHAH

changes the name in the directory from ‘F5. TEXT’ to ‘HOOHAM’.
Although filekinds are originally determined by the filename,
the C(hange command does not affect the filekind. In the above
case, HDOOHAH would s$till be a text file. However, since the
G(et command searches for the suffix ‘. TEXT’ in order to load a
text file into the workfile, HOOHAH would need to be Tenamed
HOOHAH. TEXT in order to be loaded into the workfile.

Wildcard specifications are legal in the C(hange command. I1¢ &
wildcerd character is used in the first file specification. then &
wildcard must be used in the second file specification. The subset—
specifying strings in the first file specification are replaced by
the enalogous strings (henceforward called replacement strings)
given in the cecond file specification. The Filer will not change
the filename if the change would have the effect of making the
filename too long (>15 characters). Given a directory of example disk
NOTSANE: containing the files:

POEMS. TEXT

MAUNDER. TEXT

MALPRACTICE

MAKELISTS. TEXT

EXAMPLE:

Prompt : Change what file?

User response: NOTSANE: MA=TEXT, XX=GAACK
causes the Filer to report

NOTSANE: MAUNDER. TEXT changed to XXUNDER. GAACK
NOTSANE: MAKEL ISTS. TEXT changed to XXKELISTS. GAACK

Page 19

The subset-specifying strings may be empty, as may the replacement
strings. The Filer considers the tile specification ‘=’ (where both
subset—specifying strings are empty) to specify every file on the
disk. Responding to the Clhange prompt with ‘=, Z=Z’ would cause svery
filename on the disk to have a ‘Z° added at front and back.
Responding to the prompt with ‘ZmZ, m’ would replace each terminal

and initial ‘Z’ with nothing. Given the filenames:

THIS. TEXT
THAT. TEXT

EXAMPLE:

Prompt : Change what #ile?

User Response: T-'l'.i.l

The result would be to change ‘THIS. TEXT’ to ‘HIS. TEX’,
and ‘THAT. TEXT’ to ‘HAT. TEX°.

i Y

The volume name may also be changed by specifying a volume ID
to be changed. and a volume ID to change to. '

EXAMPLE:

Prompt : Change what filc?
User Response: NOTSANE:, WRKDISK:

generates the message, NOTSANE: cthanged to WRKDISK:

ey

e e

Removes file entries from the directory.

This command requires one file specification for each #ile the user
wishes to remove. Wildcards are legal. Size specification
information is ignored. Given the example files (assuming that they
are on the default volume):

AARDVARK. TEXT
ANDROID. CODE
QUINT. TEXT
AMAZING. CODE

EXAMPLE:

Prompt: Remove what file?
User Response: AMAZING, CODE
Temoves the file AMAZING. CODE from the volume directory. Note:

To remove SYSTEM. WRK. TEXT and/or SYSTEM. HRK. CODE the N(ew
command should be used, or the system may get confused.

Page 20

As noted before, wildcard removes are legal.

EXAMPLE:
Prompt: Remove whpt file?
User Response: A=CODE

causes the Filer to remove AMAZING. CODE and ANDROID. CODE.
WARNING: Remember that the Filer considers the file
specification ‘=’ (where both subset— specifying strings are
empty) to specify every file on the volume. Typing an ‘=’ alone
will cause the Filer to remove every file on your directory!!
Fortunately:, before finalizing any wildcard removes, the Filer
prompts the user with

Prompt: Update directory?
Response: Y’ cavses all specified files to be Temoved. ‘N’

returns the user to the outer level of the Filer without any
removes having occurred,

Copies the specified file to the given destination.

This command requires the user to type two file specifications. one
for the source file, .and one for the destination file, separated
with either a comma or <retd>. Wildcards are permitted, and size
specification information is recognited for the destination file.

Assume that the user wishes to transfer the file FARKLE. TEXT
from the disk MYDISK to the disk BACKUP. :

EXAMPLE:
Prompt: Transfer what file ?

User Response: MYDISK: FARKLE. TEXT

Page 21

Prompt: To where?

(Note: On a one-drive machine, do NOT remove your source disk
until you are prompted to insert the destination disk)

User Response: BACKUP: NAME. TEXT

Prompt: Put in BACKUP:
. Type <space> to continue

The user should remgve the source disk, insert the destination
disk and type a Cspace>. The Filer then notifies the user:

MYDISK: FARKLE. TEXT transferred to BACKUP: NAME, TEXT

The Filer has made a copy of FARKLE and has written it to the
disk BACKUP giving it the name NAME. TEXT. If the specified
file is large, the user may be prompted to alternately insert
the source and destination disks until the transfer is

1 completed.

It is often canvenient to transfer a file without changing the name.
and without retyping the file name. The Filer enables the user to
do this by allowing the character ‘s’ to replace the filename in the
destination file specificatian. In the abave example, had the user
wished to save the file FARKLE. TEXT on BACKUP under the name

FARKLE. TEXT, she could have typed:

MYDISK: FARKLE. TEXT, BACKUP: $
WARNING: Please try to avoid typing the second #ile specitication
with the filename completely omitted! For example, a response to the
Transfer prompt of the form:

MYDISK: FARKLE. TEXT, BACKUP:

generates the messagof

Possibly destroy directory of BACKUP: %

‘Y’ answer causes the directory of BACKUP to be wiped out!
Files may bobtransferred to volumes that are not block structured,
such as CONSOLE: and PRINTER:, by specifying the apprupriate volume
ID (see Figure 1) in the destination file specification. A file

name on a non— block-structured device is ignored. It is generally
4 good idea to make certain that the destination volumeis on-line.

Page 22

EXAMPLE:
Prompt: Transfer what file?
User Response: FARKLE. TEXT
Prompt: To where?
Osor Response: PRINTER:
causes FARKLLE. TEXT to be written to the printer.

The uvser may also transfer from non-block—-structured devices.
providing they are input devices. Filenames accompanying a non-
block—structured device ID are ignored

The wildcard capability is allowed for T(ransfer. If the source
file specification contains a wildcard character, and the
destination file specification involves @ block—structured device,
then the destination file specification must alsoc contain a wildcard
character. The subset-specifying strings in the source file
specification will be replaced by the analogous strings in the
destination file specification (henceforward known as Teplacement
strings). Any of the subset-specifying or replacement strings may
be empty. Remember that the Filer considers the file specification
‘=’ to specify every file on the volume.

EXAMPLE:

Civen the volume MYDISK containing the files PAUCITY, PARITY and
PENALTY, and the destination ODDNAMZ:

Prompt: Transfer what file?
User Response: PaTY, ODDNAMZ: V=S

would cause the Filer to reply:

MYDISK: PAUCITY transferred to ODDNAMZ: VAUCIS
MYDISK: PARITY transferred to ODDNAMZ:VARIS
MYDISK: PENALTY . transferred to ODDNAMZ: VENALS

Using ‘=’ as the source filename specification will cause the Filer
to attempt to transfer every file on the disk. This will probably
overflow the output pbuffer. (There are easier ways to transfer
whole disks. If you wish to do this, please refer to the material
in this section on volume- to- volume transfers.)

Page 23

Using ‘=’ as the destination filename specification will have the
effect of replacing the subset-specifying strings in the source
specification with nothing. A briaf reminder: ‘?‘ may be used in
place af ‘=’ The only difference is that ‘?‘ causes the user to be
asked for verification before the operation {s performed.

A file can be transferred from a volume to the same volume by
specifying the same valume ID for both source and destination file
specifications, This is frequently useful when the user wishes to
relocate a file on the disk. Specifying the number of blocks
desired will cause the Filer to copy the file in the first- it

area of at least that size. If no size specifiéation is
given, the file is written in the largest unused area.

If the user specifies the same filename for both source and
destination on a sameo-disk transfer, then the Filer rewrites the
file to the size-specified area, and Temoves the older caopy.

" EXAMPLE:
Promﬁt: Transfer what file?
User Response; #4: QUL ZZES. TEXT, #4: QUIZZES. TEXTL203]
causes the Filer to rewrite QUIZZES. TEXT in the first 20-block
area encountered (counting up from block O) and to remove the
previous version of .QUIZZES. TEXT.
WARNING: Wildcard—-type specifications do not always work very well
on same—~disk transfers. The resvults tend to be unpredictable, so
these operations are not recommanded.
It is also possible to do entire volume-to-volume transfers. The.
file specifications for both source and destination should consist
of volume ID only. Transferring a block~structured volume to
another block- structured volume causes the destination volume to be
‘wiped out’ so that it becomes an exact copy of the source volume.

Assume that the user desires an extra copy of the disk MYDISK: and
is willing to sacrifice disk EXTRA: ‘

EXAMPLE:
Prompt: Transfer what file?
Uﬁor Response: MYDISK:, EXTRA:

Prompt: Possibly destroy directory of EXTRA: ?

Page 24

WARNING: There’s no ‘possibly’ abput this! If the user types
‘Y’ the directory of EXTRA: will be destroyed! An ‘N’
Tesponse will return the user to the outer level of the Filer,
and a 'Y’ will cause EXTRA to become an exact copy of MYDISK.
Often this is desirable for backup purposes, since it is
relatively easy to copy a disk this way, and the volume name
can be changed (see C(hng) if desired.

Although it is certainly possible to transfer a volume (disk) to
another vsing & single disk—drive, it is a fairly tedious process,
since the in-core transfer reads up the information in rather small

chunks, and a great deal of disk Juggling is necessary for the
complete transfer to take place.

Lists current system date, and enables the user to change the date.

Prompt: Date Set: <1..31>-<JAN..DEC>-<00..99> OR <CR>
Today is 19-Aug-78
New date?

The user may enter the correct date in the farmat given. After
typing <retd>, the new date will be displayed. Typing only a return
does not affect the current date. The hyphens are delimiters for
the day. month and year fields, and it is possible to affect only
one or two of these fields. For example, the year could be changed
by typing ‘—-79‘, the month by typing ‘~Sep’, etc. The entire month-
name can be entered, but will be truncated by the Filer. Slash
(‘/’) is also acceptable as a delimiter. The most common input will
be a single number:, which will be interpreted as & new gay. For
example, if yesterday was the 19th of August, the user would want to
type D20<retd>, which would have the desired effect of changing the

date to the 20th Df August. The day—month—year order is inviolate,
however. .

This date will be associated with any files saved during the current
session and will be the date displayed for those files when the
directory is listed.

Changes the current default to the volume specified.
This command requires the user to type a volume ID. An entire ;ilo

specification may be entered, but only the volume ID will be used.
It is not necessary for the specified volume to be on-line.

Page 25

To determine the current default volume, the user may Tespond to the
prompt with ;-

Scans the disk and detects bad Qlocks.

This

command requires the user to type a volume ID. The specified

volume must bHe on-line.

Prompt: Bad blocks scan of what val?
Response: <volume ID>
Checks sach block on the indicated volume for eTTOTS and lists

the number of each bad block. Bad blocks can often be fixed or
marked (see eX(amine).

lur---n-unq-

Attempts to physically recaver suspectad bad blocks.

This

command requires the user to type a volume ID. The volume must

be on- line.

EXAMPLE:

Page 26

Prompt : Examine blocks on what volume?
Respohsc : <volume ID> generatas the
Prompt: Block number-range ?
The user should have Just done a bad block scan, and should
anter the block number(s) Teturned by the bad black scan. If
any files are endangered. the following prompt should appear;
Prompt: File(s) endangered:

<filenamed>

Try to fix them?

Response: ‘Y’ will cause the FILER to examine the blocks and
Teturn either of the messages:

Block <block-number> may be ok

in which case the bad block has probably been fixed, or

Block <block—-numberd> is bad

in which case the FILER will offer the user the option of
marking the block(s) BAD. Blocks which are marked BAD will
not be shifted during a K(runch, and will be rendered
effectively harmless.

An ‘N’ tesponse to the ‘fix them?’ prompt returns the user to
the outer level of the FILER.

WARNING: A block which is ‘fixed’ may contain garbage. ‘May be
ok’ should be translated as ‘is probably physically ok~

Fixing @ block means that the block is read, is written back
out to the block and is read again. If the two rTeads are the
same, the message is ‘may be ok’. In the event that the reads
are different, the block is declared bad and may be marked as
such if so desired.

Moves the files on the specified volume so that unused blocks ara
combined at the ‘end’ of the disk.

This command requires the user to type a volume ID. The specified
volume must be on-line. It is strongly recommended that the user
perform a bad block scan of the volume before K(runching in order to
avoid writing files over bad areas of the disk. If bad blocks are

encountered, they must be either fixed or marked before the K{runch
(see eX{(amine).

As each file is moved, its name is reported to the console. I¢
SYSTEM. PASCAL is moved, the system must be vreinitialized by

bootstrapping. Do not touch the disk, the boot—switch or the disk-
drive door until K(runch tells you it has completed its task.

EXAMPLE:
Prompt : Crunch what vol?
Response : <volume ID>
causes Filer to prompt with:

Prompt : Are you sure you want to crunch <volume ID>?

Page 27

Response: ‘Y’ initiates the K{runch. Typing an ‘N’ will return
the user to the outer level of the FILER.

Creates a directory entry with the specified filename.

This command requires the user to type a file specitication.
Wildcard characters are not allowed. The file size specification
option is extremely helpful, since, if it is omitted, the Filer
creates the specified file by consuming the largest unused area of
the disk. The file size is determined by following the filename
with the desired number of blocks. enclosed in square brackets

‘C’ and ’}’. Some special cases are: »

C0] -~ equivalent to omitting the size specification. The file is
created in the largest unused area.

C#] - the file is created in the second largest area; or half the
largest area. whichever is larger.

EXAMPLE:
Prompt : Make what file?
Response : MYDISK: FARKLE. TEXTC28]

Creates the file FARKLE. TEXT on the volume MYDISK: in the first
unused 2B-block area encountered.

Reformats the specified volume. The previous directory is rendered
irretrievable.

EXAMPLE:
Pfompt: Zero dit of what vol ?
Response: <volume ID>
Prompt: Destroy <volume name> ?

Response: A ‘Y’ response generates

Page 28

Prompt: Duplicate dir ?
Responsn: If a ‘Y’ is tuped, then a duplicate directory will be
maintained. This is advisable because, in the event that the
disk directery is destroyed. a utility program called
COPYDUFDIR can use the duplicate ditectory to restore the disk.
Prompt: {evrrent number of blocks on disk> blocks ?
Response: ‘N’ generates

e
Prompt. # of blocks 7
Response: Usoer will type number of blocks desired. The table
following this section gives the correct number of blocks for
several types of disks.
‘Y’ generates
Prompt: New vol name 7?7
Regponse: User types any valid volume name.
Prompt: <new volume name> correct ?

Response: ‘Y’ causes the Filer to respond with the message:

<new volume name> zeroed

MACHINE DISK TYPE ' # OF BLOCKS
H 1
Terak ! Single—~density soft-sectored 8" floppy H 494
H : H
H . H
.Northuest ! Double~density soft-sactored 8" floppy 1 1102
Micro : . !
' !

byt 6oo

' ! (7
SA-Loo | .) block
; : 59y for duwchry
———— P
! :)
! :
Zilog H Single-desrcsity hard-sectored 8" floppy H &08
North Ztar H Double-density hard-sectored 5 1/4" floppy! 167
(] : -
i - {
DEC ! RKO5 - per platten ¢+ ag72

Page 29

—Notas — , ,
Te f;f;.,«rJ Xeooke PRINT b leee Al Fornr

Ca:‘\--— S G, /if

Page 30

EREHANAARSEREXL S AR REREREER BB TR AR N BN RN
* SCREEN ORIENTED TUDITCR # # Section 1.3.1 #
FRESEULFRERRER TR ERE TN SN GRR T N E TR IYEEN N

Version 1.5 September 1978

This introduction, which describes the idea behind the Editor,
is the first of four sections. The secoend scction is a tutorial for
the novice. While the Editor is designed to handle any files, the
tutorial secticn uses a sample program to dencnstrate how to use the
most basic commands to modify & file. The third section contains a
detailed descripticn of each command, with exsmples, and the fourth is
for quick reference. -

THE CONCEPT OF A ‘WINDOW‘ INTD THE FILE

The Screen Driented Editor is specifically designed for use
with Video Display Terminals. On entering any file, the Editor
displays the start of the file in the upper left hand corner of the
scCreen. If the file is too long for the screen, only the first portion
is displayed. This is the concept of a ‘window”’. The whole file is
there ond is accessible by Editor commands, but only @ portion pof it
can be seen through the ‘window’ of the screen. When any Editor
command takes the user to a position in the file which is not
displayed, the "window" is updated to show that portion of the file .

THE CONCEPT OF A CURSCR

. The cursor represents the exact position in the file and can be
used to move to any position. The windecw shows that portien of the
file near the cursor. To see another portion of the file, move the
cursor. Action always takes place at the cursor. Some of the commands
permit sdditions, changes or deletions of such length that the screen
cannot hold the whole portion of the text that has been changed. In
those cases, the portion of the screen where tha cursor stopped is
displayed. In no case is it necessary for the user to operate on
portions of the text rnot seen on the screen, but in scme cases it is
optional.

THE CONCEFT OF A PROMPT LINE

The Editor displays @ prompt lime as the top line of the screen
in order to remind the user of the current mode and the options
availetles for that mcde. Only the most commenly used cptions appear on
the prompt line as the following display shouws:

PEdit: A(djust Ci{py D(lete F(ind I(nsrt J(mp Rplace G(uit X(chng Z(ap [E 6 1]

NOTATION

The notation used in this section corresponds to the notation
used to prompt the user 3n the editor. Any input that is enclosed
between a < and > is requesting that a particular key be used: not that
the particular vord be %typed out. For example., <RETD> means that the
return key shouldYtupca at that ssint. When a particular sequence of
key strckes is required they will be contained within quotes. For
example, “FILENAME", CRET> refers to the typed sequence “"FILENAME"
follouwad by typifig thoe return key. Lower or upper case may be used
when typing Edi¥or commsnds

Page 31

*'i*iii#&ili’i***i' AL 22 2T 222 2T Y

* GETTING STARTED # * Section 1.3.2 #
falafelab at b L8 2 T L I,

ENTERING THE WORKFILE AND GETTING A PROGRAM.

On entering the Editor :
No workfile is present. File? (<retd> for no file) appears.
There are tuwo ways to answer this question :

. 1) With a name, for example “STRING1 <retd". The file named
STRING1 will now be retrieved. The file STRING1 could contain a
program, also callsd STRING1, as in Fig. 2.1. After typing the name. a

copy of the text of the first part of the file appears on the screen.
Figure 2. 1 .

PROGRAM STRINGI;
BECIN
WRITE('TOO WISE’);
WRITE('YOU ARE’);
WRITELN(’,),
WRITELN('TOO WISE‘);
. WRITELN(‘YDU BE’)"
END.

N

2) Hith a <return>. This implies that a new file is to be
started. The only thing visible on the screen after doing this is the
editor prompt line. A new worktile is opened and currently has nothing
in it. Type “I* %a begin inserting a program or text.

Horkfiles: No questions are asked i+ a workfile already
exists., The workiile is displayed and can be modified or can be
cleared, in order to start a file, by using the N)ew command in the
Filer. :

Page 32

In order to edit, it ts necessary to move the cursor. On the
keyboard are four keys with arrows, (which may look like triangles),
which move the cursor. The <up-aTrouw> moves the CuTsOor up one lines, the
<right-arrow> moves the cursor Tright one space and so forth.

The cursor does not like to be outside of the text of the
program. For example, after the "N" in "BEGIN® in Fig. 2.2 , push
the <right-arrou> and the cursor moves to the "W*" in "WRITE".
Similarly at the "W" in “WRITE(‘TOO WISE ‘)i ", use Cleft-arrowd> to move
to after the "N“ in "BEGIN".

Figure 2.2

BEGIN_
WRITE(‘TOO WISE),

BEGIN
WwRITE(‘TOD WISE ‘)

If it is necessary to change the "WRITE(’TOOD WISE ’); " found in
the third line to a2 "WRITE('TOO SMART ‘)i %, the cursor must first be
moved to the right spot.

For example: if the cursor is at the "P" in "PROGRAM STRINGI; *,
go doun two lines by pressing the down arrow 2 times. To mark the
positions the cursor occupies, labels a,b,c are used in Fig. 2.3. “a“
is the initial position of the cursor; “b” is where the cursor is after
the first <down—arrowd>; “c", after the second <down—arrowd.

Figure 2.3

aROGRAM STRING1
bEGIN
€ WRITE(‘TOD WISE ');

Now, using the Tight arrow, move until the cursor sits on the
"W" of "WISE". Note that with the use of <down-arrowd> the cursor
appears to be outside the text. Actually it is at the "W" in "WRITE", -
$0 do not be surprised when on typing the first Cleft-arrouwd> the cursor
Jumps to the "R" in "WRITE".

i e sl v i

The Edit level prompt line shows that to I(nsrt (insert) an

item, type “I". The cursor must be in the correct position before
typing "I". Earlier, the cursor was moved to the "W" in “TOD WISE™;
now, on typing "I", &an insertion will be made before the “W". The rest

of the line from the point of insertion will be moved to the right hang
side of the screen. In the event that the insertion is lengthy., that

Page 33

part aof the liga/will be moved down to allow room on the screen. After
typing =1I* the/ following prompt line should appear on the screen:

/
>Insert: text/ (<bs> a char, a line) [<etx> accepts, <escd> excapesl]

It that prompt line 4id not appear at the tap of the screen it
is NOT insert maode and f/yrong key may have been typed. .

It the cursor is at the "W, anJ on fqﬁing 'x"th 1ns¢rt“
prompt line appeared, "SMART™ may be inserted by typing those five
letters. They will appear on the screen as they are typed.

There Temains aone more important step. The choice at the end
of the prompt line indicates that pushing the <etxD> key accepts the
insertion, while pushing the <esc> key rejects the insertion and the
text remains as it was before typing "1I".

Figure 2.4 (Screen after typing “SMART")

BEGIN WRITE(‘TO0 SMART WISE ‘),

Figure 2.3 (Screen atter <etxd)

BECIN
WRITE(‘TOO SMARTWISE);

Figure 2.4 (Screen after <escd>)

BEGIN
WRITE('TOO WISE *);

It is legal to insert a carriage return. This is done by
typing <returnd while in the INSERT mode and causes the Editor to start
a4 new line.

The DELETE mode works like the INSERT mode. Having inserted
the ‘SMART’ into the STRING1 program and having pushed <etx>, ‘WISE’
must be deleted. Move the cursor to the first of the items to delete
and type "D" to put the Editor into DELETE mode. The following prompt
line should appear:

>Delete: < > <Moving commands> {Cetx> to delete, <escd> to abort)

Each time <space> is typed a Jetter disappears. In ¢this
example typing 4 spaces will cause "WISE" to disappear. Now the same
chofce must be made as in insert. Type <etx> and the proposed deletion
is made or type <escd> and the proposed deletion reappears and remains
part of the text.

Page 34

It is legal to delete a carriage return. At the end of the
line, enter DELETE mode, and <space> until the cursor moves to the
beginning of the next line.

These are sufficient commands to edit any file desired. The
next section describes many more commands in the Editor which make

editing easier.

Editor and “"save" a copy of the modified program.’ This is done by
typing "Q@" which will cause the prompting display shown in Fig, 2. 7.

PEPR g e O
««i‘l'_:éfi I

Figure 2.7

>Quit:
U(pdate the workfile and leave
E(xit without updating '
R(eturn to the editor without updating
W(rite to a file name and return

The most elementary way to save @ copy of the modified file on
disk is to type "U" for U(pdate which causes the workfile to be saved
as SYSTEM. WRK. TEXT. With the waorkfile thus saved, it is possible to
use the R(un command, provided of course the file is & program. It is
also possible to use the S(ave option in the Filer to save the modified
file in the library before using the Editor to modify or create another
file.)

Miscellaneous commands, in the next sectioﬁ, explains in'
greater detail the options available at DQuit.

Page 35

"’ﬁl‘li’*-l'l*ql‘l-iili*l**.*#i’l"**i*ﬂ’*il e gl dl Y 22 L)

DETAILED DESCRIPTION OF COMMANDS # # Section 1.3.3
hadalaieladeief AR AR AL S 2 L L L2 22 2 T2 2 T T X g ppepery

At the Edit level there are many options, some of which are
referred to as commands and some as modes depending upon the appearance
of the prompt . If an option executes a task and returns control to the
Edit level, that option is called a command. If an option issues a
prompt and gives the user another level of options, it is called a

mode. On entering or returning to the Edit level, the Editor redisplays
the "Edit: ™ prompt line.

Many of the commands allow repeat—-factors. A repeat—-factor is
applied to a command by typing a number immediately before issuing the
command which is then repeated for the number of times indicated by the
Tepeat—factor. For example: typing "2 <down-arrowd® will cause the
<down—arrow> commmand to be executed twice. moving the cursor dawn two
lines. Commands which allow a repeat—factor assume the repeat-factor
to be 1 if no number is typed before the command. A /' typed before
the command implies an infinite number.

It should be pointed out that the cursor is never Teally "at" a
charvacter. The cursor is only allowed to be "betwesn® characters. For
instance, if the cursor looks as though it is at the letter “R", it is
actuvally between the letter "R* and the letter in front of it. This is
noticed most clearly on the insert command as it inserts in front of
the character the cursor was “at". On the screen the cursor is placed
Mat" "R" to make it easier to display.

e e s i

- Certain commands are affected by direction. If the direction is
forward, then they operate forward through the file, that being the
standard direction of reading English. Backwards is the reverse

direction. When direction affects the command it is specifically
noted.

<down-arrowd Moves down

<up—arrowd Moves up

<right-arrouw> Moves right

Cleft-arrow Moves left

"C* or ", " or " Changes the direction to backward

">" or “." or “e* Changes the direction to forward

<spaced> Moves direction

<back-spaced> Moves left

Ctab> Moves direction to the next position which is a aultiple
of 8 spaces from the left side of the screen

<returnd> Moves to the beginning of the next line

Page 36

The arrow, “<" or "2>", in front of the prompt line aluays
indicates direction; "<" for backward and “>" for forward. On entering
the Editor, the direction is forward. The direction can be changed
by typing the appropriaste command whenever the "Edit:” prompt line is
present. The period and the commé can also be used because on many
standard keyboards, “.* is lower—case for ">" and *,™ is the lower-
case for “C",

Repeat-~factors can be used with any of the above commands.

For user convenience, the Editor maintains the column position
of the cursor when using <up-arrouw> and <down-arrcw>. When the cursor
is outside the text, the Editor treats the cursor as though it were
immediately after the last character, or before the first, in the line.

JUMF mode is reached by typing "J" for J(mp while &t the Edit
level. On entering JUMP mode the following prompt line appears:

$JUM§: B(eginning E(nd M(arker <escd
et
Typing "B" (or "E”) moves the cursor to the beginning (or the
end) of the file, displays the edit prompt line and the first (or last)
page of the file. Typing "M" causes the Editor to display the prompt
line:
Jump to what marker?
The name of the marker must be entered followed by a <returnd.
The Editor will then move the cursor to the place in the file with that
name. If the marker is not in the file the Editor will display:
ERROR: Marker not there. Please press <{space bar> to continue.

The instructions for setting & marker are detailed in SET under
Miscellaneous commands.

PAGE command is executed by typing “P* while at the Edit

level. Depending on the direction of the arrow at the beginning of the
prompt line, PAGE command moves the cursor one whole screenful up or
down. The cursor always moves to the start of the line. @A <repeat-
tactor> may be used before this command for moving several pages.

EQUALS command is executed by typing “=" wyhile at the Edit
level. It causes the cursor to yump to the beginning of the last
section of text which was inserted, found or replaced from anywhere in
the file. Equals works from anywhere in the file and is not direction
sensitive.. An INSERT., FIND or REPLACE cause the absolute position of
the beginning of the insertion., find or replacement to be saved.
Typing “=" causes the cursor to jump to that position. 1f a copy or a
deletion has been made between the beginning of the file and that
absolute position, the cursor will not jJump to the start of the
insertion as that absolute position will no longer be correct.

Page 37

TEXT CHANGING COMMANDS

-

INSERT mode is reached by typing "I for *I(nsrt” while at the
Edit level. oOn entering INSERT mode the following prompt line appears:

>Insert: Text {<bs> 8 char, & line} (C<etxd accepts, <escd escapes]

One of the options here is to type in text followed by <escd> or
<atyd. It is possible to delete a character without leaving the INSERT

uﬁ mode by back—tpacing over it. To delete the entire line just typed.
~)»2 type . The INSERT prompt line indicates thesa by “<bs> a char”
har ¢ and " a linev, :

Typing <returnd> INSERT starts a new line a4t the level ot
indentation specified by the options turned on in Environment section

of the SET mode. See the section on the SET mode in order to set these
options.)

‘%Qébq? T, ’ If(Auto-lndent is True.)c <returnd causes the cursor to start
‘tgfn %Q,thc next line with an indentation equal ta the indentation of the line
u;//'abovo. If Auto—indent is False, a <return> returns the cursor to the
Gft

% first position in the next line. Note: it Filling is True, the first
position is the Left-margin.

If F is Trué) the Editor forces all insertions to be
between the Tight and left margins by automatically inserting
<returnd‘s between "words” whenever the Tight margin would have been
exceeded and by indenting to the Left-margin whenever a new line is

started. The Editor considers anything between two spaces or between a
Space and a hyphen to be a word.

It both Auto-indent and Filling are True, Auto-indent controls
the Left-margin while Filling controls the Right-margin, The level of
indentation may be changed by using the <spaced> and <backspaced> keys
immediately after a <return>. Important: This can only be dane
immediately after a <returnd.

Example 1: With Auto-indent true, the following sequence
creates the indentation shown in Figure 3. 1.

'DNE“.(rcturn).<spac¢>.€space>."TND“. N
<r¢turn>."THREE".Creturn).{backspace>.“FDUR".

Figure 3.1
ONE Original indentation)

TWO Indentation changed by <space> <spaced

THREE <returnd causes auto-indentation to level of line above
FOUR Cbackspace> changes indentation from level of line above

Page 38

Example 2: With Filling True (and Auto-indent False) the
following sequence creates the indentation shown in Figure 3.2:

+ “ONCE UPON A TIME THERE- WERE". ?

-
(Vur@ narrow margins have been used for simplicity.)

Figure 2.2 %>
ONCE UPON A Avto-returned when next word would exceed margin
TIME THERE- Auto-returned at hyphen

WERE

-~

Level of left margin

Filling also causes the Editor to ad just the margins on the
portion of the paragraph following the insertion. Any line beginning
with the Command character (see SET mode) is not touched when filling

does this adjustment and that line is considered to terminate the
paragraph. ‘

The direction does not affect the INSERT mode, but is indicated
~by the direction of the arrow on the prompt line.

If an insertion is made and accepted, that insertion 1£
fvailable for use in the COPY mode. However, if <esc> is used: there
is no string available for COPY.

DELETE mode is reached by typing “D" for "D(lete” while at the
Edit level. On entering DELETE mode the following prompt line appears:

>Delete: < > <Moving commands> {Cetx> to deletes, 1<escO> to abort)

In order to delete, the cursor must be in position at the first
character to be deleted. On typing "D" and entering DELETE, the
Editor remembers where the cursor is. That position is called the
anchor. As the cursor is moved from the anchor position using the
normal moving commands. text in its path will disappear, To accept
the deletion, type <etx>; to escape, type <esco.

When <etx> is typed, the Editor saves everything which was

deleted for COPY to use; but if Cescd> is typed, the copy buffer is
empty..

Example:

In Figure 3. 3:

1) Move the cursor to the "E* in END.

2) Type"<" (This changes the direction to backward)

3) Type "D* to enter DELETE mode.

4) Type <ret> <retd>. After the first return the cursor moves to
before the “W" in WRITELN and "WRITELN(’TO BE. ‘)i “disappears. After
the second return the cursor is before the "W* in WRITE and that
line has disappeared.

3) Now press <etx>. The program after deletion appears as is shown in
Figure 3. 4. :

Page 39

The two deleted lines have been stored in the copy buffer and
the cursor has returned to the anchor position. Now use the COPY
Toutine to copy the two deleted lines at any place to which the cursor
is moved. -

Figure 3.3

PROGRAM STRING2;
BEGIN
WRITE(’TOO WISE ‘);
WRITELN(‘TO BE.)
END.

Figure 3.4

PROGRAM STRING2:
BEGIN
END.

The <repeat-factor> may also be used to delete several lines as
once by prefacing a <return> or any other of the moving commands with a
<repeat-factor> while in delete mode.

The ZAP command is executed hy typing "z for Z(ap while at the
Edit level. This command deletes all text between the start of what
was previously found, replaced or inserted and the current position ot
the cursor. Thie cammand is designed to be used immediately after one
of the FIND, REPLACE or INSERT commands. If more than 80 charactesrs
are being zapped the editor will ask for verification, EEERRAR

Repeat-factors and Zap: If a FIND or 4 REPLACE is made with a

Tepesat factor and then ZAP, only the last find or replacement will be
ztapped. All others will be left as found or replacad.

Whatever was deleted by using the ZAP command is available for
use with the COPY command.

The COPY command is executed by typing “C* for Clpy while at
the Edit level.

On entering the Copy mode the following prompt line is
displayed:) T

2COPY: B(uffer F(ile <escd

To copy text from another file, type “F" and another prompt

will appcnf:. P

Page 40

‘ >COPY: FROM WHAT FILELMARKER, MARKER1?

Any file may now be specified, .text is assumed. In order to copy part
of a file, two markers can be set to bracket the desired text. 1¢

{ ,markerl or [marker, J is used, the file will be copied from the

start toc the marker or from the marker to the end. On completion of

the copy command (from file), the cursor returns to the beginning of the
text just copied from the file. Use of the copy command does not

change the contents of the file being copied from.

To copy the text in the copy buffer, type“B* and the Editor
immediately copies the contents of the copy buffer into the file at the
locetion of the cursor when “C* was typed. On the completion of the
€opy command the cursor returns to immediately before the text which
was copied. Use of the copy command does not change the contents of
the copy buffer.

The copy buffer is affected by the following commands:

1)DELETE: On accepting a deletion, the buffer is loaded with
the deletion:; on escaping from o deletion the buffer is loaded with
what would have been deleted.

2)INSERT: On accepting an insertion the buffer is loaded with
the insertion; on escaping from an insertion the copy buffer is empty.

3)ZAP: 1If the ZAP command is used the buffer is loaded with
the deletion. .

The copy buffer is of limited size. Whenever the deletion is greater
than the buffer available, the Editor will issuve a warning upon typing
<etx> with the line:

There is no room to copy the deletion. Do you wish to delete anyway? (y/n)

EXCHANGE mode is reached by typing "X" while at the Edit level.
On entering EXCHANGE mode the following prompt line appears:

>eXchange: TEXT {<bs> a chary C(<esc> escapes; <etxd> acceptsl

EXCHANGE mode replaces one character in the file for eacth
character of text typed. For example in the file in Figure 3.5 with,
the cursor at the "W" in WISE, typing "X" , followed by typing *SM“
will replace the “W" with the “S" and then the “1%® with the "M*™ leaving
the line a3 shown in Figure 3.6 with the cursor before the second "S”,

Figure 3.5 Figure 3.6

WRITE('TOO WISE °); WRITE(’TOD SMSE ‘),

Page 41

Typing a Cback-space> (<bsd>) will back the cursor one character
and cause the original character in that position to reappear. As with
most other commands. when in EXCHANGE made, <escD> leaves the mode
without making any of the changes indicated since entaring the mode,
‘while Cetx> makes the changes part of the file. R

Note: Exchange dnes not allow typing ga;t the end of the line

Or tuping in a carrjage return.

In both modes the use of a <repeat-factord is valid and must be
typed befaore typing "F" ar “R". The <repeat~factor> appears in
brackets on the prompt line.

Strings: Both modes operate on delimited strings. The Editar
has two string storage variables. One, called <targd> by the prompt
lines, is the target string and is referred to by both commands while
the other, called <sub> by the prompt line, is the svbstitute and is
used only by REPLACE. The following rules apply to both these strings.

Delimiters: Both delimiters of the string will be the same.
For example: When in REPLACE mode the following command is valid and
will replace the first occurrence of the character "C" with the
character "J“: “<L[<)1)". Here “C* and ")" are the delimiters.

The Editor considers any character which {s not a
letter or a number to be a delimiter. <space> is a particularly common
delimiter. '

Direction: Both modes operate from the position of the cursor
to scan the text in the direction indicted by the arrow on the prompt
line. The target pattern can only be found if it appears in that
section of the text. See the section on direction on order to change
the arrow.

Literal and Token mode: In Literal mode, the Editor will look
for any occurrences af the target string. If you are in Token mode the
Editor will look for ispolated occurrences of the target string. The
Editor considers a string isolated if it is surrounded by any
combination of delimiters. Faor example, in the sentence "Put the book
in the bookcase. ", using the target string “book", literal mode will
find two occurrences of "book" while token mode will find only one, the
word "book" isolated by the delimiters <spaced> <spaceD.

To use token mode, type "T" after the prompt line and before
the target string; to use literal mode, type “L*“. The default value
found in the Environment may be over-ridden by typing “L" or “T* as
dppropriate. TJoken mode gnores spaces within strings so that both
"C %)" and “(’,)" are considered to be the same string.

Page 42

The Same option: In both commands typing “S" indicates to the
Editor that it is to use the same string as used previously. For .
example, typing "RS/<any-stringd>/“ causes the REPLACE mode to use the
previous target string, while typing “R/<any-string>/S" causes the
previous substitute string to be used.

FIND mode is reached by typing "F" while at the Edit level. On
entering Find mode one of the prompt lines in Figure 3.7 appears.

Figure 3.7

>Findl1l: L(it <targetd> =>

>Findl11: T(ok <target> =>

The FIND mode finds the n—-th occurrence of the Ctargetd> string
starting with the current position and moving in the direction shown by
the arrow at the beginning of the prompt line. The number “n” is the
<repeat-factor> and is shown on the prompt line in the brackets *[J".

Example 1: In the STRING1 program with the cursor at the first
"P" in PROGRAM STRING1 type "F". When the prompt appears type .
"‘WRITE"’". The single quote marks MUST be typed. The prompt line
should now appear as:
OFindli1]: L)it <targetd> =>'NRITEf

After typing the last quote mark the CUPSOP‘JUNPI to immediately atter
the "E" in the first WRITE.

Example 2: In the STRINGI program with the cursor at the YE" of
“END. * type: “<" "3" "F¥ This will find the 3rd (*3%) pattern in the
Teverse ("<”) direction. When the prompt line appears type /WRITELN/.
The prompt line should read:
<Find[3]): L)it <targetd =>/WRITELN/

The cursor will move to immediately after the “N" in WRITELN.

Page 43

Figure 3.8

PROGRAM STRING1,;
BEGIN
WRITE(TOO WISE *);
WRITE(‘YOU ARE ‘); . :
WRITELNC, 7); (#CURSOR FINISHES IN THIS LINE=®)
WRITELN(‘TOO WISE ‘); .
WRITELN(‘YQU BE. ")
END. - (#CURSOR STARTS IN THIS LINE#*)

Example 3: On the first find we type “F/WRITE/". This locates
the first “"WRITE™. Now typing "FS" will make the prompt line flash:

SFindl1]: L)it <targetd> =OS
and the cursor will appear at the second WRITE.
REPLACE mode is reached by typing "R" while at the Edit level.
On entering REPLACE mode one of the two prompt lines in Figure 3.9

sppears. In this example, a <repeat—factord> of four is assumed.

Figure 3.9

JReplaceld]: L(it V(fy <targd <subd> =>

>Replacel4]: T(ok V(#y <targd> <subd> =>

Example 1: Type “RL/GX//YZ/" which make the prompt line appear as:
>Replacel1l: L)it V)fy <targd> <subd> =DL/GX//YZ/
This command will change: "VAR SIZEGX: INTEGER; * to “VAR

SIZEYZ: INTEGER; . Literal mode is necessary because the string QX is
not & token but is part of the token SIZEGX.

Example 2: In Token mode REPLACE ignores spacey between tokens
when looking for patterns to replace. For example, using the lines on
the left hand side of Figure 3. 10 and typing: “2RT/(’, ")/.LN. " The
prompt line should appear as:

SReplace: L)it VIey <targd> <Csubd> =>/(’, *)/.LN.

Immediately after the last period was typed those two lines
would change to those on the right hand side.

Page 44

Figure 3.10

WRITEC(’, 7)3 WRITELN; .
WRITE(“, %); WRITELN;

Vify: The verify option permits examination of the Ctargd
string (up to the limit set by the Tepeat factor) and deciding if
it is to be replaced. The following prompt line appears whenever
REPLACE mode has found the Ctarg> pattern in the file and verification
has been requested:

>Replace: <esc> aborts, ‘R’ replaces, ’ ’ doesn’t

Typing an "R" at this point will cause a replacement while
typing & space will cause the REPLACE mode to search for the next
occurrence provided the <repeat—factor> hes not been reached. The
<repeat-factor> counts the number of times an occurrence is found, not
the number of times you actually type "R". Use "/* asg a <repeat-factor>
in order to replace every occurrence of the target string. Once the
Editer can no longer find the target string, the prompt:

ERROR: Pattern not in the file Please press <spacebard> toc continue.

appears.

ADJUST mode is reached by typing "A” while at the Edit level of
Command. On entering ADJUST mode the following prompt line appears:

>hdgust: L(just R(just C(enter <left,right, up, down—arrows> {<etx> to leavel

The ADJUST mode is designed to make it easy to adjust the
indentation. On any line the <right—-arrow> and <left—-arrow> commands
mocve the whole line. Each time a <right—arrouwd> is typed the whole line
moves one space to the right. Each <left—arrowd> moves it one to the
left. When the line is adjyusted to the desired indentation press <etxd.
After pressing <etx>, <est> cannot be used.

In order to adjust a whole sequence of lines, adgjust one line,
then use <up-arrow> ({down-arrowd>) commands and the line above (below)
will be avutomatically adjusted by the same amount.

Repeat-factors are valid when used before any of the <arrowd
commands while in ADJUUST mode. :

Page 45

ADJUST mode can also center or Justify text. Typing "LY while
in ADJUUST mode will cause the line to be left—justified to the margin
set in the Environment. Similarly typing "R” vright—-justifies to the set
margin and typing “C" will couse the line to be centercd between the
set margins. Typing <up-arrow’> (or Z<down—arrow>) will cauvse the line
above (belcow) to be adjusted to the same specification (left—justified,
righthustified or centered) as the previously adjusted line.

MARGIN commard is executed by typing "M" while at the Edit
level., MARGIN is an Envivonment dependent command, that is, it may only
be executed when Filling is set to True and Auto—indent is set to
False. The prompt for the MARGIN command does not appear on the
"DEdit: " line.

. There are three parameters used by the command: Right-margin,
l.eft-margin and Paregraph-margin. MASGIN deals with one paragraph and
realigns the text to compress it as amuch as possible without violating
the above three margins., See the Environment cption under -the SET mode
for how to set the margin values. T T -

Example: The paragraph in Figure 3.13 has been MARGINed with
the parameters on the left while the same paragraph in Figure 3. 14 has
been MARGINed with the parameters on the right,

Left-margin Q Left—-margin 10
Right-margin 72 Right—-margin 70
Paragraph-margin 3 Paragraph—margin 0O

Figure 3.13

This qiarter, the equipment is different, the course materials
dre substantially different, and the course organization is different
¥rom previous quarters. You will be misled if you depend upon a friend
who took the course previously to orient you to the course.

Figure 3. 14

D - " 2 T - = o ———

This quarter., the equipment is different, the course materials are
substantially different, and the course organization is
different frum previous quarters. VYou will bhe misled if
you depend upon a friend who tcok the course previously to
orient you to the course.

L L R L R R i R L L L e T Y L T P L

Page 44

A paragraph {5 dafined ¢¢c be something eccurring between two
blank lines To MARGIN a paragransh meove the cursor to anywherpe in that

paragraph and type “M". Khen doing an exceptionally long paragraph it
may take several scconds before the routine is ready to redisplay the
screen.

Portions of the text can be protected from being MARGINed by
the use of the Comuand cheracter. If the Command character appears as
the first non-blonk character i1n & line then that line is protected
from the MARGIN command. Tha MARGIN command treats & line beginning
with the command character as though it were a blank line, that is. it
will consider that line to terminate (begin) the paragraph.

Warning: Do not usn the MARGIN command when in a line beginning with
the Command character.

SET mode is entered by typing "S" while at the Edit level.

The prompt for the SET command does not appear on the “>Edit: " prompt
line due to space limitations. On entering the SET mode the following
prompt line appears: : ' '

>Set: M{arker E(nvironment <escd>

M(arker:

When editing, it is particularly convenient to be able to Jump
directly to certain places in a long file by using markers set in the
desired places., Once set, it is possible to Jump to these markers
using the M(arker optien in the JUMP mode. When in the SET mode, type
“M" for M(arker and the following prompt line appears: '

Name of marker?

The neme may be up to B8 characturs followed by a <returnd.
Morker names &re case sensative 90 thaet lower oand upper cases of the
same letter are considered to be different characters. The marker will
be entercd at th: position of tne curscr in the tert: therefore, first
move the cursor to the dersired position before setting the marker. (If
the marker already existed, it will be recet.)

Only 10 markers are allowed in a file at any one time. I1¢ on typing
"SM", the prompt: ,

Page 47

Figure 3. 15

Marker ovflw.

Which one to replace.
0) namel

1) nama2

. LY

9 name10

dappears, it is necessarq'to eliminate one in order to replace it.
Choose a numher 0O thru 9, type that numher and that space will now be
available for use in setting the desired marker.

If & copy or deletijon is made batween the beginning of the file
and the position of the marker, the marker will not subsequently rTeturn
to the desired place as the absolute position has changed. .. :

The Editor enables the user tc set the environment which the
user determines to be most convenient for the editing being done. When
in the SET mode type "E" for E(nvironment, the screen display is
replaced with the following prompt shown in Figure 3. 14.

Figure 3. 16

DEnvironment: {options) <etx> or Csp> to leave
A{uto indent True
F(illing False
L¢eft margin O
R(ight margin 79
P(ara margin S
Cl(ammand ch -~
"T(oken def True

7435 bytes wsed, 12020 available

Patterns:
<target> = ‘xyz’, <subst>= ‘abc’

- - e

Page 48

By typing the appropriate letter, any or all of the options may
be changed. The options shouwn are the default options for the Editor

on the Terak 8510A. Implementations for other machines may have
different defaults. ' ‘

Auto-indent affects only the INSERT mnde of the Editor. Auto-

indent is set tn True (turned on?) by typing "AT" and to False (turned
off) by typing "AF".)

»

Filling affects the INSERT mode and allows the MARGIN command
to function. Filling is set to True (turned on) by typing “FT” and to
False by typing “FF".)

L(eft margin
R(ight margin
P(ara margin:

When Filling is True the margins set in the Environment are the
margins which affect the INSERT mode and the MARGIN command. They also
affect the Center and justifying commands in the ADJUST mode. To set
the Left-margin., type “L* followed by a positive integer and a <spaced.
The positive integer typed should replace the old value for the L(eft
margin in the prompt shown in Figure 3. 16. All positive integers with
less than four digits are valid margin values.

The Command character affects the MARGIN command and the
Filling option in the INSERT mode as described in those sections.
Change Command characters by typing "C" followed by any character. For
example typing "C","+" will change the Command character to *#". This
change will be reflected in the prompt.

This option affects FIND ard REPLACE. Token is set to True by
typing "TT" and to False by typing “TF". If Token is True, Token is
the default and if Token is False, Literal is the default.

Page 49

The VERIFY command is executed by typing “V* while at the
Edit level. The status of the Editor is verified by displaying the

updated screen. The Editor attempts to adjust the window so that the
Cursor is at the center of the screan. : -

QUIT mode is reached by typing "G" while at the Edit level. On
entering QUIT made the screen display is replaced by the following
prompt: :

Figure 3. 17

2Quit:
Ulpdate the workfile and leave
E(xit without updating i
R(eturn to the editor without updating
W(rite to a file name and return

One of the four options must be selected by typing U,E.R or W.

This causes the Editor to write the file Just modified
into the workfile and store it as SYSTEM. WRK. TEXT. It is available
for either the Compile or Run options or for the Save option in the
.Filer. The Filer treats SYSTEM. WRK. TEXT as text file.

g

This causes the Editor to leave without making any changes in
SYSTEM. WRK. TEXT. This means that any modifications made since entering
the Editor are not recorded in the permanent workfile.

U

A o A b g L s

P

This option returns to the Editor without updating. The cursear
is returned to the exact place in the file it occupied when "GQG" was
typed. Usually this command is used after unintentionally typing "G».

This option puts up a further prompt:
Figure 3. 18

>Guit: : .
Name of output file (<crd> to return) —=>

- - -

Page S50

The modified fila may now be written to any file name. 1f {¢
is written to the name of an existing file, the modified file will
replace the old file. This command can be aborted by typing <returnd
instead of a file name and return will be to the Editor. After the
file has been written to disk, the Editor will prompt with the
following: -

Writing.....)
Your file is 1978 bytas long.
‘Do you want to E(x{t from or R(eturn to the Editor?

I T M S G > 0 ot . Yy D Y S o . S o - o 2 —

Typing "E" exits from the Editor and returns ta the Command
level while typing "R" returns the cursor to the exact position in the
file as when "Q" was typed. '

LD 2 X 22 T T D BT TR Y R T O A U A 3 2

* REFERENCE SECTION * * Section 1.3.4 #
bbbt DL 22 T T e Y A vy

<down-srrouwl> moves <repeat—factord> lines down
"

<uvp-arrowd " lines up

<right-arrouw> " " spaces right

<left-arrouw> o v spaces left

<space> " " . spaces in direction

<back—-spared ” " spaces left

<tabd> moves <repest—factor> tab positions in direction .
<return> moves to the beginning of line irepeat—factor> lines in directio
neh o H,m w_m thange direction to backward

AL E chanpe direction to forward

" it

moves to the beginning of what was Just found/replaced/inserted/
exchanged

‘iiﬁuJust: Adjusts the indentation of the line that the curser is on. Use
the arrow keys to move. Moving up (down) adjust line above
(below) by sam2 amount of adjuctment on the line you were on.
Repeat—-factors are valid. :
"npy: Copies what was last inserted/deleted/zapped into the file at
i the position of the cursor.

&%lete: Treats the starting position of the cursor as the anchor, Use

any moving commands to move the cursor. Cet:> deletes
everything between the cursor and the anchor.

Page 5!

ind: Operates in L)iteral or T)aken mode. Finds the <targ> string.
Repeat—factors are valid, direction is applied. “S" = yse same
string as before.

(nsert: Inserts text. Can use <backspace> and to reject part of
your insertion.

ump: Jumps to the beginning, end or previously set marker.

argin: Adjusts anything between two blank lines to the margins which
have been set. Command characters protect text from being
margined. Invalidates the copy buffer.

%

age: Moves the cursor one page in direction. Repeat-factors are
valid, direction is applied.

uit: Leaves the editor. You may U)pdate, E)xit, Wirite, or R)eturn.

eplace: Operates in L(iteral or T(oken mode. Replaces the <targd>
string with the <subs> string. V(erify option asks you to
verify before it replaces. =g option uses the Same string as
before. Repeat—-factors Teplace the target several times.
Direction is valid.

L o F

et: Sets M(arkers by assigning a string name ta them. Sets
E(nvironment for A(uto-indent, F¢illing, margins, T(oken. and
C{ommand characters.

crifgi Redisplays the screen with the cursor centered.

change: Exchanges the current text for the text typed while in this
mode. Each line must be done separately. <back-spaced> causes the
original character to re-appear.

ap: Treats the starting position of the last thing
found/replaced/inserted as an anchor and deletes everything
between the anchor and the current cursor pasition.

<repeat-factord> is any number typed before a command. Typing a / is the
infinite number. :

Page - 52

SRR ERR TR RRRLERRERR SRR
L2 EDITOR # # Section 1.3.5 »
AR R LIS ST BE ST TTIE T T TN

Version 1.8 September 1978

The L2 Editor is being released on an experimental basis. Not
all options are yet fully implemented so this section may not be
complete. The main advantage of this version is that it is able to
handle files larger than can fit into the main memory buffer at one
time; the upper limit being determined by the space available on disk.
It also automatically makes & backup copy of the file being edited. In
many respects this Editor works exactly as this release and displays
the same prompt lines. Where the versions are the same, the user is
directed to read the main Editor section.

Entering the Workfile and éetting a Program
If, on typing E, there is not enough room on the disk;
ERROR: Not enough room for baﬁkup! |
will be displayed. This disk must then be Ki(runched in order to
::o::::.room if that is possible, a file removed or another disk must

The same prompt line is displayed; see section 1.3.2.

1) With a name. If a file is chosen, a backup cepy will be
made before the file is available for editing.

Figure 5.1

Copying to filename. back.
DEdit . :
Reading. ...

Affpr this series of prompt lines, the first part of the text
will appear on the screen.

2) With a return. A new file is created in the same manner ai
in section 1.3. 2. P

The paragraphs on moving the cursor, Insert and Delete in
section 1.3.2. should be read and are applicable heres.

Leaving the Editor and Updating the workfile

When a1l changes and additions have been made, the Editor is
exited by typing "G" and the following prompt is displayed.

Figpure 5.2

>Quit:
U(pdate the workfile and leave
E(xit (but workfile not updated)
R{eturn to the Editor without doing anything.

Page 33

Notice that the Write cption is no longer availablae. One ot
these thres options must be chosen. See also Miscellaneous commands
in section 1.3. 3

U(pdate:

This works in the same manner, however additional information
is supplied indicating the name of file vpdated and the length,

When a new file is created, the following appears:

Figure 5.3

Writing. »
The workfile, #*SYSTEM. WRK. TEXT, is n blocks long,

When an existing file has been used, this example shows the extra
infarmation now given:

Figure 5.4

Writing. # .
The workfile, #X:F1. TEXT, is 44 blocks long.
The backup file is X:F1. BACK. :

The newly edited file is referred to as .TEXT, while the .BACK file
contains the original file with no modifications.

E(xit:

This causes the Editor to return to the command level without
making any changes in the warkfile. No .BACK file is made and the
existing .BACK is removed. For example, if F1.TEXT is the file being
used:, then a copy F1.BACK will be made on entering the editor and an
leaving by using the E option, F1.BACK will be removed and only F1i. TEXT
will remain. However, since F1. TEXT is a copy of the original, it
will be in different Place in the directory.

R(eturn:

This {s the same. See section 1.3.3.

MOVING COMMANDS
JUMP

Jump mode displays the same prompt line as before. In this
tase "B" and “E" refer to the beginning(end) of the buffer not the
beginning(end) of the file.

Typing "M" causes the Editor to display:

Page 54

Jump to what marker?

It is now possible to use 20 markers and these will be set in
the same way as in section §.3. 3. To jump to the desirved marker, type
in the name. 1f the marker is present, the Editor will Jump to that
position, otherwise, the Editor will jump to the last position of the
Cursor in the file. If Find needs to search a section of the file,
other than the buffer, Leaping...... will be displayed.

BANISH

This is a new command and is reached by typing "B" at the Edit
level. This is the prompt that will appear:

2Banish: To the L(eft or R(ight <esc>

Prior to doing a large insertion or copy. in order to provide
more room in the buffer and avoid buffer overflow, it is possible to
wmove characters from the buffer into the stack. There is a left and a
right stacki left being ahead of the cursor and right, behind the
cursor. The user can make the choice according to the current
situation. In general, the screen is the boundary for the operation.
NEXT

In order to move beyond the bounds of the buffer, type “N*.
The following prompt will then be displayed:

Next: F(orwards, B(ackwards in the file; S(tart. E(nd of the file. <escd

Choose one uf the five options available. When using "F" or
"B", an implicit banich occurs using the cursor as the point of
reference. For example, when "F" is typed, everything above the top of
the screen is banished to the left stack. More characters are added to
the bottom of the screen to extend the buffer in the forward
direction, When "B" is used the characters below the cursor are
banished to the right stack and part of the screen will become blank.
tMore characters are added above the ‘window’ of the screen.

Figure 8.3 SYMBOLIC FILE

! left stack H H right stack !
! Backwards i BUFFER ! Forward H
! Etart ! ! End 1

Page SS

PACE
See section 1.3. 3.

EQUALS

See section 1.3.3.

TEXT CHANGING COMMANDS
INSERT

See section 1.3.3.
DELETE

See section 1.3, 3.
ZAP

See section 1.3.3.
copy

See section 1.3. 3.
EXCHANGE

See section 1.3.3,
FIND

Read section 1.3.3. The Editor will display: Finding.......
and {f the pattern is not in the buffer:

End of buffer encountered. Cet more from disk? (Y/N)

) On fuping "Y", the Editor will move another section of the file
‘inta the buffer to continue searching. Find is still directional.

REPLACE

Scp section 1.3.3.

FORMATTING COMMANDS
ADJUST
See section 1.3.3.

Page 56

MARGIN

See section 1.3.3.

MISCELLANEDUS COMMANDS
SET . ’ . : - :

See section 1.3.3. The same prompt¢ iine is displayed.

M(arker:

Read section 1.3.3. The names of the markers can be seen by
typing "SE” for Set Environment while at thefEdit level. To set the
marker, type “SMv. In the event that 20 markers have already been set,
this will be indicated by:

Marker overflow. Which one to replace? (qu& in fhe letter or <sp>

E(nvironment:

To set the environment, type "SE". The following is an example
of the prompt displayed:

Figure 5.5
>Environment: options <etxd> or <sp> to leave;
A(uto Indent False
F(illing True
L(eft margin 4
R(ight margin 70
P(ara margin 1
C(ommand ch ~
E(et tabstops
T(oken def True

11582 bytes used. 2754 available. ‘

There are O pages in the left stack, and 10 pages in the right stack.
You have BS pages of room. and at most 13 pages worth in the buffer.

Markers:
<Pt P2 >P3

Created Augus€ 15, 1978: Last updated Auiust 15, 1978 (Revision 1).

By typing the appropriate letter, any ar all of the options can
changed. See section 1.3.3. . The arrow before the marker name
indicates the relative position of the marker in the file to the
buffer. No arrow indicates that the marker is in the current butfer.

Page %7

It is now possible to vary the tabstops.j Type “S" while in the
environment and the following prompt will appear: .

Set tabs: <right.left vectorsd> C(ol# u(gigg;ghg L(eft DC(ecimal stop <atxd>

At present, these are not yet fully implémentod 30 that the effect of
using any of them is to have a variabdle tabstop instead of being set at
eight characters apart.

VERIFY

See section 1.3.3.

Page 58

ﬂl**ﬁ-}'l*{'l**il-il-l--l-*lil-l-*i*****l***!*li*iiG{ F 0 I 0 BB B0 %

* YET ANOTHER LINE ORIENTED EDITOR - YALOE # # Section 1.4 #
halaab b AR L a Al L 2 T T Y Ve opu o,

Vergion 1.5 Septamber 1978

This text editor is intended for use on systems that do not
have powerful screen terminals. It is designed to be very similar to
the text-editor which eccompanies DEC‘s RT-11 system.

The editor assumes, but is not dependent on, the existence of
the workfile text. Upon Teading it YALOE will proclaim ‘workfile STUFF
read in‘. If it does not find such a file, it will proclaim ‘No work
file read in’. This means that you entered YALOE with an empty
workfile. From this point you may create & file in YALDE; and when you
exit by typing ‘QU’, your workfile will mno longer be empty.

The editor operates in one of two modes: Command Mode or Text
Mode. In command mode all keyboard input is interpreted as commands
instructing the editor to perform some operation. When you first enter
the editor you will be in the Command Mode. The Text Mode is entered
whenever the user types a.command which must be followed by & text
string. After the command F(ind, G(et, I(nsert, M(acro define, R(ead
file, W(rite to file, or eX(change has been typed, all succeeding
characters are considered part of the text string until an <escd> is
typed. Note: when typed <escd> echoes a “$°. The <esc> terminates the
text string and causes the editor to re—enter the Command Mode., at
which point all characters are again considered commands.

NOTE: Follow command strings in YALOE with <Cesc>Cesc> to
execute them. (This is unlike the rvest of the systems ‘immediate’
commands.)

1.4.1 SPECIAL KEY COMMANDS

Various characters have special meanings, as described below.
Some of these apply only in YALOE. Many have similar effects in the
Test of the system; for these the ASCII code to which the system
Tesponds as indicated can be changed using the program SETUP, described
in Section 4.3. (<esc> is the most particular anomaly to YALOE.)
<escd Echoes a ’s$°’. A single <escd terminates a text string.
' A double <esc> executes the command string.

RUBOUT Deletes current line. On hard-copy terminals echoes
€linedel> ‘CZIAP’ and a carriage return. On others, it clears
. the current line on the screen. In both cases the
contents of that line are discarded by the editor.

Page 59

CTRL H
Cchardeld>

CTRL X

CTRL O

CTRL F
<flusho>
CTRL S
Cstopd>

Deletes character from the current line. On hard-
copy terminals it echoes a percent sign followed by
the character deleted. Each succeeding CTRL H the

by the user deletes and echoes another character.

An enclosing percent sign is printed when a key other
than CTRL H is typed. This erasure is done right to
left up to the beginning of the command string.

CTRL H may be used in both Command and Text mode.

Causes the editor to ignore the entire command
string currently being entered. The editor
Tesponds with a <cr> and an asterisk to
indicate that the user may enter another
command. For example:

#IDALE AND -
KEITHSCTRL X>
*

A <chardeld> would cause deletion of only KEITH; CTRL X
would erase the entire command.

Will switch you to the optional character set
(i.e. bit 7 turned on). This works only on the
TERAK B510A. The CTRL O is used as a toggle
between the character sets. NOTE: You may find
while in the editor that weird characters are
showing up on the tarminal instead of normal
ones. It could be because you accidentally
typed CTRL O. To get back Just type CTRL O
again, e

All oufput to the terminal is discarded by the system
until the next CTRL F is typed.

All oufput to the terminal is held until another
CTRL S is typed.)

All other control characters are ignored and discarded by YALOE.

1.4.2 COMMAND ARGUMENTS

A commmand argument precedes a command letter and is used
either to indicate the number of times the command should be perfarmed
or %o specify the particular portion of text to be affected by the
command. With some commands this specification is implicit and ne
argument is needed; other commands, however. require an argument.

Cdmmand arguments are as follows:

Page &0

n n stands for any integer. It may be preceded by a + or -.
If no sign precedes n, it is assumed to be a positive number.
Whenever an argument is acceptable in a command, its absence
implies an argument of 1 (or -1 if only the - is present).

m is a number 0..9.

o ‘O’ refers to the beginning of the current line.

/ ‘7’ means 32700. ‘=/' means =-32700. It is used for a large
Tepeat factor.

= ‘m’ {s used only with the J, D and C commands and
Tepresents —-n, where n is equal to the length of the
last tert argument used. for example #GTHISS=Dss$
finds and removes THIS.

1.4. 3 COMMAND STRINGS

All EDIT command strings are terminated by two successive <escds.
Spaces, carriage returns and tabs (CTRL I) within a command string are ignored
unless they appear in a text string.

Several commands can be strung together and executed in
sequence. For example:

=B CTHE INSERTEDS ~3CINGS SK CSTRINCSS

As a rule, commands are separated from one another by & single
<esc>. This separating <esc)> i{s not needed, however, if the command
requires no text. Commands are terminated by & single <esc>i a second
<esc> signals the end of @ command string, which will then be
executed. When the execution of the command string is complete, the
editor prompts for the next command with ‘=’

I at any point in exécuting the command, an error is

encountered, the command will be terminated, leaving the command
executed only up to that point.

1.4. 4 THE TEXT BUFFER
The current version of your text is stored in the Text Buffer.

This buffer’s area is dynamically allocated; its size and the room left
for expansion may be ascertained by using the ? command.

Page 61

The editor can only work on files that fit entirely within the
Text Buffer. The Screen Oriented Editor in the next major release will
not have this limitation.

1.4 4 THE CURSOR

The “cursor" is the position in your text where the next
command will be executed. In other words it is the current
“pointer” into the Text Buffer. Most edit commands function with
Tedpect to the cursor:

A B, F, G: J: Moves it.

D/K: Remove text from where i¢ is.

UrI,R: Add text to where it 1is.

C:X: Remove and then add text at it.

LeV: Print the text on the terminal from it.

1.4, 9 INPUT/0QUTPUT COMMANDS

Liist, V(erify, W(rite, R(ead: G(uit, E(rase, and O

The Liist command prints the specified number of lines on -the
console terminal without moving the cursor.

#2086 Prints all characters starting at the second
preceding line and ending at the CUTSOT.

L2 1% 13 Prints all Eharacters beginning at the cursar
and terminating at the 4th <cr>.

#0LSS Prints from the beginning of the current line up
to the cursor. :

The V(erity command prints the current text line on the
tarminal. The position of the cursor within the line has no effect and
the cursor is not moved. No arguments are used. The Vierify command
1s esquivalent to a OLL (list) command.

The W(rite command is of the form
#WCPile titleds

File title is any legal file title as decribed in Section 1.2
less the file type. The editor will avtomatically append & ‘. TEXT'
suffix to the file title given unless the file title ends with . 7,
‘I’ or ‘. TEXT'. I# the filename ends in a ’. ‘s the dot will be
stripped from the filename.

Page 62

The W(rite command will write the entire Text Buffer to a file
with the given file title. It will not move the cursor nor alter the
contents of the Text Buffer.

I¢ there is no room for the Text Buffer on the volume specified
in the file title given, the message:

OUTPUT ERROR. HELP!

will be printed. It is still possible to write the Text Buffer out by writing
it to another volume.

The R(ead command is of the form
#R<file titleds

The editor will attempt to read the file title as given. In
the event no file with that title is present, a ‘. TEXT’ is appended and
8 new search is made.

The R(ead command inserts the specified file into the Text
Buffer at the cursor. The cursor remains in the Text Buffer before the
text inserted. If the file read in does not £it into core buffer, the
entire Text Buffer will be undefined in content, §.e. this is an
unrecoverable error.

The Q(uit command has several forms

QU Quit and update by writing out a new SYSTEM. WRK. TEXT
QE Quit and escape session; do not alter SYSTEM. WRK. TEXT
GR . Don‘’t quit; return to the editor

a A prompt will be sent to the terminal giving all the

above choices; enter option mnemonic (U, E, or R) only.

Executing the GU command is a special case of the write
command, and the attempt to write out SYSTEM, WRK. TEXT may tail. In
this case use the W command to write out your file and then GE to ezit

. the editor.

The QR command is used on the occasions when a @ is accidentally
typed, and you wish to rTeturn to the editor rather than leave it.

The E(rase command (intended for CRT terminals) erases the
screen.

The O command (also intended for CRT terminals) can be used to
have the context around the cursor displayed on the screen each time
the cursor is moved. The argument of the O command determines the size
(# of lines) in that context. This option is initially disabled when
the editor is entered and can be enabled by issuing an O command. A
second O command disables the option; succeeding ‘O‘s successively
enable, disable etc. The cursor is denoted as a split in the line..

Page &3

1. 4. 6 CURSOR RELOCATION COMMANDS

Jlump, A(dvance, Bteginning, Q(et, F(ind

When using character and line oriented commands., a positive (n
Or +n) argument specifies the number of ctharacters or lines in a
forward direction, and a negative argument the number of characters or
lines in a backward direction. The editor Tecognizes a line of text as
@ unit when it detects a <cr> in the text.

Carriage return tharacters are treatad the same as any other
character. For example assume the cursor js positioned as indicated in
the following text (~ Tepresents the current position of the cursor and
does not appear in actual use. It is present here only for
clarification):

THERE WAS A CRDOKED MAN~CCR>
AND HUMPTY DUMPTY FELL ON HIMCCRD>

- The J(ump command moves the cursor over the specified number of
characters in the Text Buffer. The edit command -4J moves the cursor
back 4 characters.

THERE WAS A CROOKED~ MANCCRD
AND HUMPTY DUMPTY FELL ON MIMCCR>

The command 10J moves the cursor forward 10 characters and
"places it between the ‘H’ and the ‘U-,

THERE WAS A CROOKED MANCCR>
AND HAUMPTY DUMPTY FELL ON HIMCCR>

The A(dvance command moves the cursor a specified number of
lines. The cursor is left positioned at the beginning of the line.

Hence the command OA moves the cursor to the beginning of the
current line.

THERE WAS A CROOKED MANCCRY>
“AND HUMPTY DUMPTY FELL ON HIMSCR>

The command -1A (or -A) moves the cursor back one line.

“THERE WAS A CROOKED MANCCRY>
AND HUMPTY DUMPTY FELL ON HIM<CCRD>

Page &4

The B(eginning command moves the cursor to the beginning of the
Text Buffer. -

Search commands are used to locate specific characters or
strings of characters within the Text Buffer.

The Clet and F(ind commands are synonymous. Starting at the
position of the cursor, the current Text Buffer is searched for the nth
occurrence of a specified text string. A successful search leaves the
cursor immediately after the nth occurrence of the text string {# n is
positive and immediately before the text string if n is negative. An
unsuccessful search generates an error message and leaves the cursor at
the end of the Text Buffer for n positive and at the beginning for n
negative.

#BCSTRINGS$=J$$ Thic command string will look for the string
ETRING starting at the beginning of the Terxt
Buffer; and if found it will leave the cursor
immediately before it.

1.4.7 TEXT MODIFICATION COMMANDS

I(nsert: D(elete, K(ill, Clhange, eX(change

The I(nsert command causes the editor to enter the TEXT mode.
Characters are inserted immediately following the cursor until an <escd
is typed. The cursor is positioned immediately after the last
character of the insert. Occasionally with large insertions the
temporary insert buffer becomes full. Before this happens & message
will be printed on the console terminal, ‘Please ¢inish’. In response
type two successive <esc>s. To continue, type I to return to the Text
mode. }

NOTE: Forgetting to type the I command will cause the text
entered to be executed as commands.

The D(elete command removes a specified number of characters
from the Text Buffer, starting at the position of the cursor. Upon
completion of the command, the cursor’s position is at the first
character following the deleted text,

Page 65

+-2Dss Deletes the two characters immediately preceding
the cursor,

#BSFHOSE $=D$$ Deletes the first string ’‘HOSE ’ in the Text
Buffer, since =D ysed in combination with
a4 search command will delete the indicated
text string.

The K(ill command deletes n lines from the Text Buffer,
starting at the position of the cursor. Upon completion of the
command, the cursor’s position is the beginning of the line following
the deleted text.

2K S Deletes characters starting at the current
cursor position and ending at (and including)
the second <CR>.

#/KS$ Deletes all lines in the Text Buffer after the
cursor.
The C(hange command replaces'n characters, starting at the
cursor, with the specified text string. Upon completion of the
command, the cursor immediately follows the changed text,

*OCAPPLESSS Replaces the characters from the beginning of
the line up to the cursor with ‘APPLES’,
(equivalent to using OX).

#BGHOSE$=CLIZARDSS Searches for the first occurrence of ‘HOSE’ in
the Text Buffer and replace it with ‘LIZARD’.

The eX(change command exchanges n lines, starting at the
cursov, with the indicated text string. The cursor remains at the end
of the changed text. '

#=3XTEXTSS Exchanges all characters beginning with the
first character on the Sth line back and ending
at the cursor with the string ‘TEXT’.

+0XTEXTSS Exchanges the current line from the beginning to
the cursor with the string ‘TEXT’, (equivalent
to using OC).

#/XTEXTSS Exchanges the lines from the cursor to the end

of the Text Buffer with the text ‘TEXT',
(equivalent to using /C).

Page &6

1.4.8 OTHER COMMANDS

E(ave, U(nsave, M(acro, N (macro execution) and ’?’

The S(ave command copies the specified number of lines into the
Save Buffer starting at the cursor. The cursor position does not ’
change, and the contents of the Text Buffer are not altered. Each time
a4 S(ave is executed, the previous contents of the Save Buffer, if any,
are destroyed. If executing the S(ave command would have overflowed

the Text Buffer, the editor will generate a message to this effect and
not perform the save.

The U(nsave command inserts the entire contents of the Save
Buffer into the Text Buffer at the cursor. The cursor remains before
the inserted text. If there is not enough room in Text Buffer for the

Eave Buffer, the editor will generate a message to this effect and not
execute the unsave.

The Save Buffer may be removed with the command OU.

The M(acro command is used to define macros. A maximum of ten
macros, jdentified by the integer (0..9) preceding the ‘M’, are
allowed. The defauvlt number is 1. The M(acro command is of the form:

mMicommand stringZ

This says to store the command string into Macro Buffer number
M, where m is the optional integer O0..9. The delimiter, ‘%’ in this
example, is always the first character following the M command and may
be any character which does not appear in the macro command string
itself. The second occurrence of the delimiter terminates the macra.

All characters except the delimiter are legal Macro command
string characters, intluding single <escds. All commands are legal in
4 macro command string. Example of a macro definition:

#S5MAGBEGINS=CEND BEGINSVSLSS
This defines macro number 3. When macro number S is executed,

it will look for the string ‘BEGIN‘, change it to ‘END BECIN'i, and
then display the change.

If an error occurs when defining a macro, the message

‘Ervor in macro definition’

Page &7

‘will be printed, and the macro will have to be redefined.

The execute macro command, N.'oxetbtcs @ specfied macro command
string. The form of the command is:

"nNmS

Here n is simply any command argument as previously defined:; m
is the macro number (an integer 0..9) to bhe executed. I# m is omittaed,
1 is assumed. Because the digit m is technically a command text
string, the N command must be terminated by an <escd.

‘Attempts to execute undefined macros cause the error message
‘Unhappy macnum’. Errors encountered during macro execution cause the
message ‘Error in macro’. Errors encountered in macrae command syntax
cause the message ‘Error in macro definition”. : ’

" The ? command prints a list of all the commands and the sizes
of the Text Buffer, Save Buffer, and available memory left for
expansion. : ’

Page 68

i.4.9 SUMIARY OF ALL COFMANDS

n - an argument m - macro number
nA: Advance the cursor to the beginning of the n th line from the
current position. i
B: . Go ¢to the DBeginning of the file. |
nC: Change by deleting n characters and inserting the following
text. Terminate text with <escd. :
nD: Delete n.characters.
E: Erase the screen.
nF: Find the n th octcurrence from the current cursor position of
the following string. Terminate target string with <escd.
nG: Get - ditto ~ !
H: - inwvalid - ‘
I: Insert the following text. Terminate text with <escd.
nJ: Jump cursor n characters.
nk: Kill n lines of text. If current curpor position is not
at the start of the line, the firct part of the line remains.
- nbl: List n lines of text
mie: Define macro number m.
nNm: Perform macro number m:, n times.) .
n0: On, off toggle. I+ on, n linec of text wxll be displayed

above and below the cursor each time the cursor is moved.

If the cursor is in the middle of alline then the line will
be split into two parts.

The defauvlt is whatever fills the imreen Type O to turn off.

P - invalid -~

qQ: Guit this session, followed by:
U: (pdate Write out a new SYSTEM. WRK. TEXT
E: (scape Escape from session
R: (eturn Return to editor ‘

R: Read this file into buffer (insert at cursor);

‘R’ must be followed by <file named Cescdi
WARNING: If the file will not fit into the buffer, the
content of the buffer becomes undeﬂined'
nS: Put the next n lines of text from the cursor pasitxon into the
Save Euffer.

T: .= invalid =

v: Insert (Unsawve) the contents of the, save Buffer into the text
at the cursor; does not destroy the Save Buffer.

v: Verify: display the current line

W: Write this file (from start of buffer);
‘W’ must be followed by <filenamed <escO.

nX: Delete n lines of text, and incert the following text;

terminate with <esc?.
Y: - invalid =
. . - invalid -

Page &9

= Notes =~

Page 70

DUE TO THE LARGE NUMBER OF BUGS IN THE DEBUGGER, WE HAVE OMITTED THE
DEBUGGER, AND 1TS CORRESPONDING DOCUMENTATION FROM THE SYSTEM RELEASE.

THE DEBUGGER WILL BE AVAILABLE AT SOME TIME IN THE FUTURE, AND YOU WILL
BE NOTIFIED OF THIS FACT. PLEASE DO NOT ASK US ABOUT THE DEBUGGER, AS
THE REPLY YOU GET WILL BE THE SAME AS THE MESSAGE ON THIS PAGE.

Thank you for your patience &n this matter. ed.

Pages 74 through 80 have been omiitied.

Pages

] L 5
70..7%

- notes -

Pages 72..80

LA 2221 T TSN RN L2 el a2 2212222

* PASCAL COMPILER # » Section 1.6 #
el AR S A 28 ST 2 T T T YRR T ¥ N Py

Version 1.9 September 1978

The UCSD Pascal compiler, a one-pass recursive descent based on
the P2 portable compiler from Zurich, {s invoked by using the C(ompile
or R(un command of the outermost level of the UCSD Pascal system. If a
workfile exists, it compiles that. Otherwise, it prompts the user for
& source file name. It generates codefiles to run directly on the
Pascal interpretive machine.

Unless the HAS SLOW TERMINAL boolean inside the system .
tommunication area (see section 4. 3) is true, the compiler, during the
course of compilation, will display on the CONSOLE device ouvtput
detailing the progress of the compilation. This output can be
suppressed with the G+ compiler option (see section on compiler

options below). Below is an example of the output which appears on the
CONSOLE device:

PASCAL compiler [1.9 unit compiler)

< O ..,

P1 {70501

C 19 ..., e et et ettt

P2 [30401]

< BI>., ceesa Sttt ettt et e et et e
TEST [30031

C119>. ..., R T

The identifiers appearing on the screen are the identifiers of
the program and its procedures. The identifier for a procedure is
displayed at the moment when compilation of the procedure body s
started. The numbers within [31 indicate the number of (16 bit) words
available for symbol table storage at that point in the compilation.
The numbers enclosed within < > are the current line numbers. Each dot
on the screen represents 1 source line compiled.

I# the compilation is successful, that is, no syntax errors
detected, the compiler writes a codefile to the disk called
#SYSTEM. WRK. CODE. This is tie codefile which is executed if the user
had typed the R(un command. See Section 1.1 INTRODUCTION AND OVERVIEW
for further details on the system commands.

Should the compiler detect a syntax error, the text surrounding
the error and an error number together with the marker ‘<CCCC ¢ will
point to the symbol in the source where the error was detected. In the
event that both the G and L options are set, the compilation will
continuve, with the syntax error going to the listing file, and the
console remaining undisturbed. The compiler will the give the user the
option of typing a space, an <esc> or ‘E’. Typing & space instructs
the compiler to attempt to continue the compilation, while escape
Cauges the termination of the compilation, and "E® results in a call to
the editor, which auvtomatically places the cursor at the symbol where
the error was detected.

‘Page Bl

Most of the syntax erroré'detectﬁd by the UCSD Pascal compiler
are the standard ones listed in Jensen % Wirth. A complete list of all

UCSD syntax errors can be found in Table |5, All error numhers will be

accompanied by a textual message upon en Ty to the editor if the file
#SYSTEM. SYNTAX is available..

1.6.1 COMPILE TIME OFPTICNS

‘ Compile time options in the UCSD Pascal compiler ‘are set
according to a convepntion described on pages 100-102 of Jensen and
Wirth, where compile time ocptions are set by means of special "dollar
sign" comments inside the Pascal program text. The syntax used in
UCSD’s compiler control comments is essentially as described in Jensen
and Wirth. The actual options and the letters associated with those
options bear only little resemblance to the options listed on pages 101
and 102 of Jensen and Wirth. If a 7 or ‘- * is not specified after
an option letter, ‘+’ is assumed. The following sections describe the
various options currently available to the user of the UCSD Pascal

compiler,
D:

This option causes the compiler to issue breakpoint
instructions into the codefile during the course of the compilation in
order that the interactive Debugger can be used more effectively. See
Section 3.2 “DEBUGGER" for details

Default value: D-

D-: causes the compiler to omit breakpoint instructions
during the course of the compilation, :

D+:'causos the compiler to emit breakpoint instructions.

Affects the boolean variable GOTOOK in the compiler. This
boolean is used by the compiler to determint whether {¢ should allow
" the use of the Pascal GOTD statement within the program.

Default value: G-
G+: allows the use of the GOTO statement.

G-: causes the compiler to generate a syntazx error upon
encountering a GOTO statem=nt.

C:. The [*$C conment®) places the comment, (80 character maximum®) in the code

§ile generated. This option is used at UCSD o place copyright information
4in the codefdile.

Page B2

The G-optiocn has bean uscd at U.C.S.D to restrict novice
programmers frem eica2s3:ve uses of the COTO statement in situations
where more structured constructs such as FDR, WHILE, or REPEAT
statements would be more appropriate.

When an ‘I’ is followed immediately by a '+’ or ‘=‘, the
control comment will affect the boolean variable IOCHECK within the
ccmpiler. An altornative use of ‘I’ in a compiler control comment
causes the compiler to include a different source file into the

compilation 8¢t that point. See section INCLUDE-FILE MECHANISM for
syntax. :

IOCHECK OPTIODN
Default value: I+

I+: instructs the compiler to generate code after each statement
which performs any I/0, in order ¢o check to see if the 1/0
operation was accomplished successfully. In the case of an
unsuccessful I/0 operation the program will be terminated
with a Trun time error.

I~: instructs the compiler not to generate any I/0 checking
code. In the case of an unsuccessful 1/0 operation the
program is not terminated with a run time error.

The I-option is useful $or system level programs which do many
1/0 operations and also checks the IORESULT function after each 1/0
operation. The system program can then detect and Teport the 1/0
errors, without being terminated ebnormally with a run time error,
However this option is set at the expense of the increased pessibility
that I/0 errors, (and possibly severe program bugs), will go
undetected,

INCLUDE FILE MECHANISM
.The syntax for instructing the compiler to include another

source file into the compilation is as follows:

(#$IFILENAME®)

Page B3

The characters between ‘I’ and ‘#)’ are taken as the filename of the

source file to be included. The comment must be closed at the end of the
filename, therefore no other options, such as O+, or L+, etc. can follow the
filename. Note that 1f a file name starts with ‘+‘ or ‘=’ as the first
character of the filename, a blank must be inserted between ‘(#81‘’ and
‘FILENAME’. For example, the comment:

(#SITURTLE. TEXT#*)

would cause the file TURTLE. TEXT to be compiled into the program at
that point 1in the compilation.

(#$1 +FARKLE. STUFF#)

would cause the source file +FARKLE. STUFF. to be included into the
compilation.

If the initial attempt to open the include Pfile fails, the
compiler concatenates a “. TEXT*" to the.f11e~namc and tries again. I¢
this second attempt fails, or ‘some I/0 arror occurs at some point while
reading the include file, the compiler Tesponds with a fatal syntax
errTor.

The compiler accepts include files which contain CONST, TYPE,
VAR, PROCEDURE, and FUNCTION declarations even though the original
program has previously completed its declarations. To do so. the
include compiler control comment must appear between the original
program’s last VAR declaration and the first of the original program’s
PROCEDURE or FUNCTION declaratiaons. Note that an include file may be
inserted into the original program at any point desired. provided the
Tules governing the normal ordering of Pascal declarations will not be
violated. Only when these rules are violated does the above procedure

apply.

The compiler cannot keep track of nested include comments, i.e.
an include file may not have an include file control comment. This
results in a fatal syntax error.

The include flle option was added to the compiler at U.C.8.D in
order to make it easior to compile large programs without having to
have the entire source in one very large file which in many casas would
be too large to edit in the existing editors’ buffer.

L:

Controls whether the compiler will generate a program listing
of the source text to a given file. The default value of this option is
L=, which implies that no compiled listing will be made. If the
character following "L*" is "+, then the compiled listing will be sent
to & diskfile with the title '*SYSTEM.LST.FEXT'. The vser may override
this default destination for the compiled listing by specifying a
filename fallowing "L". For example the following control comment will
cause the compiled listing to be sent to a diskfile called
“"DEMO1. TEXT":

Page 84

(»sL DEIO1. TEXT#)

To specify a file-name inside a kontrol comment, see the
section describing the include file mechanism.

MNote that listing files which are sent to the disk may be
edited as any other text file provided the filerame which is specified
tontains the suffix " TEXT". Without the *. TEXT” suffix the file will
be treated by the system as a datafile rather than as a text file.

The compiler outputs next to each source line the line nuader.
segment procedure number, procedure number. and ths number of bytes or
words (bytes for code, words for data) rpquired by that procedure’s
declarations or code to thast point. The compiler alsp indicates
whether the line lies within the actual code to be executed or is a
part of the declarations for that procedure by outputing a “D™ for
declaration and an integper O..9 to designote the lexical level of
statement nesting within the code part. If the D+ option is set then
the listing file will include an asterisk an each line where it {s
appropriate for & user to specify a breakpoint while in the interactive
Debugger. This information can be very valuable for debugging a large
program since & run time error message will indicete the procedure
number, and the offset where the error "occurred.

Q:

The G compiler option is the “quiet compile® option which can
be used to suppress the output to the CONSOLE device of procedure names
and line numbers detailing the progress of the compilation.

Default value: is set equal to curtent value of the SLOWTERM
attribute of the system communication record
sYSCOM~. (actually SYSCOM~. MISCINFD. SLOWTERM)

G+. causes the compiler to suppress output to CONSOLE device.

G-: causes the compiler to send procedure name and line number
output to the CONSOLE device.

R:

This option affects the value 0f the boolean variable
RANGECHECK in the compiler. I1f RANGECHECK is true:, the compiler will
output additional code to.perform checking on array subscripts and
assignments to variables of subrange types.

P: y . . .
This opidion causes the &iating to continue grom top-of~fonm. AL.e. the compilen
does:

PAGE(LISTFILE)

Page B5

Default value: R+
R+: turns range checking on,
R-: turns range checking off.

Note that programs compiled with the R-option set will run
slightly faster; however if an invalid ibdez occurs or a invalid
#ssignment is made, the program will not be terminated with a vun time
error. Until a program has been completely tested and known to be
correct, it is usually best to compile with the R+ option left on.

S:

This option determines whether thk compiler operates in
“swapping"” mode. Thare are two main parts of the compiler: one
processes declarations; the other handles statements. In swapping
mode, only one of these parts is in main memory at a time. This makes
about 2500 additional words available farisqmbol table storage at the
cost of slower compilation speed due to the overhead of swapping the
‘compiler segment in from disk. On fullsize, single density floppy
disks this amounts to a factor of two reduction in compile speed. This
option must occur priar the the compiler encountering any Pascal
syntax.

Default value: S-

S+: puts compiler in swapping mode.

8-: puts compiler in non—-swapping mode.
U:
USER PROGRAM OPTION:

This option sets the boolean variable SYSCOMP in the compiler
which is used by the compiler to determine whether this compilation is
@ user program compilation, or a compilation of a system program.

Dgfault valuve: U+

U+: informs the compiler that this compilation is to take place
on the user program lex level,

U=-: informs the compiler to compile the program at the system lex

level. This setting of the U compile time aption;glso'causes
the following optiaons to be set: R-, G+, I-.

Page B6

NOTE: This option will generate pfograms that Qill not behave
as expected. Not recommended for non-systems work without knowing its
method of operation.

USE LIBRARY OPTION:

In this version of the ‘U’ aption, the U is followed by a file
name. The named #ilp becomes the library file in which subsequent
USEed UNITs are saught. The default file for the library is
#SYSTEM. LIBRARY. (see section 3.3.2 for more details on UNITs)

Following is an example of a valid USES clause using the ‘U’
option:

USES UNIT1,UNIT2, £Foyund in *SYST RARYD
{s_A CODE)
UNIT3,

{8V _B. LIBRARY)
UNIT4, UNITS:

“Page 87

b ALl ARSI TT 2T E ST AR T Y TR R
* UCSD BASIC COMPILER # # Scction 1.7 «
LALR S LSRRI ST TT T T B T

Version 1.5 September 1978

This section has teen designed for programmers who are already
familiar with Basic. Its intent is to describe to those experienced
users the detsils of UCSD Bactic in & manner sufficiently detailed so as
to enatle the writing or modification of programs in a manner
Compatible with the UCSD Basic Compiler.

The first section contains & brief description of the features
included in UCED Basic: the second, the descriptions of the features
unique to UCSD Dasic, and the third a list of those features which we
intend UCSD Besic to allow, but which are not yet implamented.

The UCSD Basic Compiler has been written in the Pascal
language. Some of the intrinsics of the Pascal language, which are not
found in stsndsrd Basit, are faund within the UCSD version .of Basic.
Many of these are noted in the first section, all of them are noted or
Tecapped in the second.

The UCED DASIC Compiler is invoked Just like the Pascal
compiler, provided the compiler code is named ﬂSYSTEH.CDHPILER.
Originally it will be named BASIC. COMPILER. If you want & disk to be
BASIC oriented, you must change the name of, or rTemove, the Pascal
compiler, and change the rame of BASIC.CDMPILE@ to *SYSTEM. COMPILER.
That disk, and any copies of it, will now compile BASIC programs as a
Tesult of the C(ompile or R(un command.

The Basic compiler has only real and string variables. When
applying a real to indexing or other integer purposes the rounded value
of the number is used. In the Functions below x .and y can be real
variables or expressions which evaluate to real valves. Similarly si
and s2 can be string veriables or expressions which evaluate to a
string.

Real variables: letter(digit). :
String var:iables: letter(digit)$. The digit is optional.

Page B9

INT(x)

LOG(x)
LN(x)

Returns the angle in radians whose tangent is x.

Returns the base of the natural logarithms raised to the power x.
Returns the value of «x roundud.to the nearest integer.

Returns the log (base 10) of «x.

Returns the natural log ot «x.

MOD{(x,y) Returns x'modulo v.

SIN(x)

CoOs(x)

‘ 3% FERPE

Re#urns the sine of the angle x. Where x is in radians.

Returns the cosine of an angle x. Where x is in radians.

I Lo e e
R R L ORI Ra
. V. gt ! =)i_ LT

CATS$(s1,32,...) Returns a string which is equal to the concatenation of

all the strinps in the parameter list.

COPs(s1,x,y) Returns a copy of the portion of the string si, y

consecutive characters, starting with the character at position x.

DEL%(s1,x,4y) Returns the contents of the itring sl with y consecutive

characters deleted. The deletion starts with the charvacter at
position x.

INB$(s1, 32, x) Returns the contents of str%hg s2 with string s1 inserted

immediately before the character which is at position x.

LEN(s1) Returns the length of the string si.

POS(s1,

$2) Returns an integer which is equal to the position ot the
~first character in the first occurrence of the string sl in the
string s2. :

OTHER FUNCTIONS

ORD(s)

ETR$(x) Returns the string containing the character associated with the ASCII

Returns the ASCII value of the Ffirst character of the string s.

value x.

Page 90

CETS Reads a single character from the teqboard without prompt or echoing,
and returns it as a string. GETs requircs neo arguments.

OLD(c, s)

NEWic,$) ¢ is @ numeric constant without a fra:txon part, which becomes
associsted with the disk file whose name is in s. OLD expects that
file to already exist, NEW creates a Aew one with the name s, removing
any previous file of that name. Those functions must occur before
associated print or input statements. The numbers may not be
reassigned and must be in the range 1..1&6. For best results, use only
at the top of a program. In order that a file created by NEW be
editable with either of the system editors, ‘. text’ must be appended to
the file title.

These functions return IORESULT as described in section 2. 1.

Arithmetic statements and operations

- + subtract, add
VANER divide,multiply
o wE exponentiation

Relational coperators

= . equals

<O, XK not equals

> greater than

< less than

or , m> greater than or equal
= , =l less than or equal

INPUT list
or
INPUT #c list

Inputs from the main system device, vusually the keyboard. If the
optional #c is present, INPUT inputs from the disk #ile number

¢c. The input list may contain any combination of real variables and
string variables. When a program expects input the prompt “?" is
printed. Input of# real numbers may be terminated with any non—-numeric
character. Input of strings must be terminated with a return.

PRINT list .
or
PRINT #c list

Writes to the main output device the list following the PRINT command.
I¢# the optional #c is present, PRINT outputs to the diskfile number c.
The output list may contain any variable, subscripted array variable,
any arithmetic or string expression, or any literal text. The list may
be separated by commas or semi-colons. If the list ends in a semi-colon
the carriage rTeturn is suppressed. Literals may be enclosed in either
type of quotation marks. Double quotation marks prints a single
quotation mark.

Page 91

FOR var = expl TO exp2 STEP exp3
ﬁEXT var

Each execution of the loop increments the loop counter “var” by the
amount of expression 3. If the STEP is omitted it is assumed to be 1.
Only increasing STEP values are 3llowed. Evaluation of limits and
increments is done at the beginning of the loop. Note that RETURN‘s inta
or GOTO’s into & FOR loop may cause the loop to be undefined. :

IF exp1l (relation operator) #xp2 THEN (line number)
,) GOTO

Either the reserved word THEN or GOTO:can be used in this statement. I¢
the relation between the expl and exp2 is found to be true the branch

occurs. A string is considered to be less than another string if 1t is
lexicographically smaller. '

- ON exp GOTO(1Ini, In2..)

I# the expression, when rounded, evaluates to 1 it goes to the first
line number (1n1) if it evaluates to 2 it goes to ln2, etc. This is the
only form of the computed GOTO which is available. It the expression is
out of range an error occurs. :

DEF FNname(list)=expression or DEF FNname(list)
FNEND

Single line and multi-line functions are allowable. The function name
must be a legal variable name for the type of value returned. Functions
may be defined recursively. The parameter list is called by value, that
is, changes inside the function don’t affect the value of the external
parameters.

LET var=exp
ar
var=gxp

This command assigns a new value to the variable. If the variable is a
string, the expression must evaluate to a string, and if a real,
evaluation must be to a real.

DIM var (ni,n2....)

A single or multidimensional array may be declared with this command.
The variable name determines the type of the array. The array indices

are 0..n1,0..n2,... Both real and string multidimensional arrays can be
used. If no dimensions are declared the dimensions are assumed to be
0..10, 0..10, 0..1, 0..1 ... The number of dimensions automatically

declared depends on the number of dimensions which are used in the
program: but must be consistant over all uses of any given array.

Page 92

GOSUB linenumber

Executes a subroutine call. The calling address is placed on the
subroutine stack. Subroutine calls may be recursive,

RETURN

Returns to the line after the last cDSOB which is still pending. It pops
the top address off the stack and uses it as the return address. A
return when no GOSUB’s are pending is an errvor.

€0TO linenumber

Program execution jumps to the given line number,

REM text

This line is a remark.

Arithmetic

For loops: Note that var=expl is done before exp2 or exp3 are evaluated.

Continuation of statements is allowed. Any line not beginning with a
line number is assumed to be the continuation of the line above.

Functions: All parameters of functions are call by value. You are not
allowed to use the parameters to return values from a function.
Function calls are allowed to be recursive.

Etrings: The string functions and procedures are those found in the
UCED Pascal language.

Arrays: Arrays of more than two dimensions are allowed.

Print: Tab stops are not allowed. All list elements are printed without
spaces between them. The carriage return can be suppressed by "
as the last symbol in the line.

Bubrecutines: Subroutines may be recursive.

Comments: In line comments may be inserted. The portion of any line
following the @ symbol is ignored.bq the compiler.

Page 93

PASCAL FUNCTIONs: The code of PASCAL FUNCTIONSs may be added to the
BASIC compiler as new standard BASIC functions. This is
accomplished by a straight-forward addition to the BASIC compiler.

Certain features of the UCSD Basic compiler are 4till in the
process of being implemented. The most important of these are listed
below.

Data and Read: The standard initialization statements.
Matrix statement for standard matrix operations.

Inﬁéger variables.

More standard functians

Create the BASIC program using one of the system text sditors.
Once you have ensured that the BASIC compiler has been named
S8YSTEM. COMPILER, you can use the commands C(ompile and R(un at the
COMMAND level, Just as if you were using Pascal on a disk which has the
Pascal compiler as its SYSTEM. COMPILER. For a more detailed ’
description of COMMAND see Section 1.1.

Page 94

La s 2 2 X TR T ¥ ey L 22 X1 XY R TN RGN
THE LINKER # # Section 1.8
LA e g g 2 2 2 1 T TR R G R enpepegegege

Version 1.8 September 1978

The UCSD LINKER allows the user to combine pre-compiled files,
which may have been written either in PASCAL or in assembly language,
into the system workfile. The user may wish to incorporate certain
useful routines into programs without having to reuwrite or even
Tecompile these routines. For example, one might wish to use a fast
4ssembly language routine for some "real-time" application. This
Toutine could be assembled separately, stored in a library, and
eventually accessed via the LINKER.

To link in routines (either procedures or functions), the
calling progrem declares those routines to be EXTERNAL:, much as
PROCEDURES or FUNCTIONS may be declared FORWARD (see Section 3.3.1).
This notifies the compiler that the routines may be called, but are not
provided yet, The compiler will then inform the system that linking is
required before execution.

The LINKER can also be used to link in UNITs. A UNIT is a
group of related routines which will be used together to perform a
common task. UCSD TURTLEGRAPHICS is an example of a UNIT containing
procedures and functions with which a “turtle” can be moved on the
scTeen. A UNIT can be used by typing the command USES <unitnamed
directly after the PROGRAM <identifierD, For more information on
UNITs, see Section 3.3. 2.

Any files which reference UNITs or EXTERNAL routines and have
not yet been linked may be compiled and saved, but will need to be
linked before they can be executed.

1.8.1 USING THE LINKER

I# the program in the workfile contains EXTERNAL, declarations.
or uses UNITs, typing R(un will auvtomatically invoke the LINKER after
the compiler. The LIMKER will search the file #SYSTEM. LIBRARY for the
Toutines or UNITs specified, and will attempt to link them into the
workfile, If the UNIT or EXTERNALly declared routine is not present in
#SYSTEM. LIBRARY, the LINKER will respond with an appropriate message:

Unit,
Proc.,
Func.,
Clobal,
or Public <Cidentifier> undefined

‘Page 95

The LINKER may also be invoked explicitly, and, in fact, must
be invoked explicitly in cases where

1) the file into which UNITs or EXTERNAL routines are to be
linked is not the workfile, oar

(2) the external routines to‘be linked reside in library files
other than #SYSTEM. LIBRARY. ‘

(Note: In the current implementation UNITs must reside in
#SYSTEM. LIBRARY at the time of compilation in order to be USED by a
.PASCAL program.)

In order to explicitly invoke the LINKER, the user types ‘L’ at
Command level and receives the prompt:

Host 61;.?

The hostfile is the file into which the routines or UNITs are to be
linked. The LINKER appends .CODE ot all file names typed in except for
#Cretd. Typing a <ret> in response to the prompt causes the LINKER to
use the workfile as the hostfile. The LINKER then asks far the name(s)
of the library files in which the UNITs or EXTERNAL Toutines are to be
- found: o

Lib file? <{codefile identifier>

Up to eight library files may be referenced. Typing ‘%’ in
Tesponse to a request for a libfile name will cause the LINKER to
rTeference *SYSTEM. LIBRARY. The user will be notified about each
library file that is successfully opened.

Example: Lib file? % <{retd
Opening #SYSTEM. LIBRARY

For information on LIBRARIES and the LIBRARIAN see Section 4.2.

When all relevant libfile names have been entered the user
must type <retd to proceed. The LINKER will now prompt with:

Map file? <file identifierd> <retd>

The LINKER writes the map file to the file requested by the
vser. The map file contains relevant LINKER info regarding the linking
process. Responding with <retd> to this prompt will suspend this option.
Note that . TEXT is appended unless a ’. ' is the last letter af the
filename.

The LINKER now reads up all segments required ta enable the
linking process. The user is now prompted to enter the destination
file for the linked code output (this will often be the same file name
as that of the host file). Linking will commence after the {retd
following the output file name has been typed. An empty line, <{retd
only, causes the output file to be placed in the workfile e.g.
#SYSTEM. WRK. CODE.

During the linking process the linker will report on all

Pag; 96

segments being linked as well as all external routines being copied
into the output codefile. The linking process will be aborted if any
required segments or Toutines are missing or undefined. The user will
be informed of their absence with messages as described at the
beginning of this section.

1.8.2 NOTES ON LINKER CONVENTIDNS AND IMPLEMENTATION

Codefiles may contain up to 16 segments. Block O of a codefile
contains information regarding name, kind, relatfive address and length
of each code segment. This information is called the segtable, and
is represented as a record: ‘

RECORD
DISKINFO: ARRAYLO..15] OF
RECORD
CODELENG, CODEADDR: INTEGER
END

SEGNAME: ARRAYL[O..153] OF PACKED ARRAYLO..73 OF CHAR:

SEGKIND: ARRAYLO.. 13] OF (LINKED, HOSTSEG, SEGPROC. UNITSES,
SEPRTSEG);

TEXTADDR: ARRAYLO.. 151 OF INTEGERI
END

CODELENG and CODEADDR give: respectively., the length of the
code segment in bytes, and the block address of the code segment. A
description of SEGKINDs follows:

LINKED: The codesegment is fully executable. Either all external
references (UNITs or EXTERNALS) have been resclved, or
none were present,

HOSTSEG: the segkind assigned to the outer block of a PASCAL
program if the program has external references.

EEGPROC: the segkind assigned to a PASCAL segment procedure.

UNITSEG: the segkind assigned to &« compiled SEGMENT. (see EBection
3.3.1)

SEPRTSEG: This segkind is assigned to a separately compiled
procedure or function. Assembly language codefiles are
always of this type:, as well as Pascal UNITs which are
not SEGMENT UNITs.

Page 97

For an unlinked code segment (that is, & segment containing
unresolved external references) the compiler generates linker
infarmation. This information is a series of variable-length records,
one for each UNIT, routine or variable which is referenced in, but not
defined in the source. The first 8 words of each record contain the
following information:

LIENTRY=RECORD
NAME: ALPHA;
CASE LITYPE: LITYPES OF
UNITREF,
GLOBREF,
PUBLREF,
PRIVREF,
SEPPREF,
SEPFREF,
CONSTREF: { A
(FORMAT: OPFORMAT) (farmat of lientry. name can be
any of BIG, BYTE or WORD.)
NREFS: INTEGER; (% 0f references to lientry.name in
compiled code segment)
NWORDS: LCRANGE): (size of privates in words)
QLOBDEF: a
(HOMEPROC: PROCRANGE; (which procedure it occurs in)
ICOFFSET: ICRANGE); (byte offset in p-code)
PUBLDEF: ‘
(BASEOFFSET: LCRANGE); (compiler assigned word offset)
CONSTDEF: '
(CONSTVAL: INTEGER): (users defined value)
EXTPROC, EXTFUNC,
SEPPROC, SEPFUNC:
(SRCPROC: PROCRANGE: (procedure number in source segment)
NPARAMS: INTEGER); (number of parameters expected)
EOFMARK:
(NEXTBASELC: LCRANGE) (private var allocation info)
END(lientry); :

If the LITYPE is one of the first case variant, then following
this portion of the record is a list of pdinters into the code
segment. Each of these pointers is the alisolute byte address within
the code segment of a reference to the vadiable, UNIT or routine named
in the lientry. These are B word records, but only the first NREFs of
them are valid.

Page 98

LA 2222222 LI TSR TN Y) ' LT 22 TR R TTT NN

* ADAPTABLE ASSEMBLER *2* Section 1.9 #
AL SIS 22T LTSS BETSSTLE 2L T NN YT

Version 1.5 September 1978

Users of UCSD Pascal occasionall ;need ta write and execute
small assembly routines written in the 1 snguage of the host machine.
These routines would be used within a Pascal program to provide low—
level or time criticml facilities. The UCSD Adaptable Assembler (in
congunction with the UCSD Linker) has be n designed to meet those
needs. The UCSD Pascal Project will te aintaxntng all our Pascal
interpreters using this assembler in the near future. By this process
the users of the UCSD Pascal system will | becom: essentially independent
of any manufacturer’s system software. ‘

] This assembler was modelled aften The Last Assembler (TLA)
developed at the University of Waterloo. | The basic concept behind .both
the TLA and the UCSD Adaptable Assemblerg is the use of a central
machine independent core that is common to all versions of the
assembler. This central core is avgmented with machine specific code
to handle the peculiarities of each individual machine.

For the 1.3 release PDP-11 and 2 z assemblers will be
available. Neither Df these adoptations% ook longer than one person-
week of effort. i

This document is intended for a teader who is already fluent in
at least one assembly language.

1.9.1 USACE

Before attempting to execute the assembler program for a
specific machine, an opcodes file (Z80. ORCODES or 11.OPCODES) must be
located on the system disk. The errors file (2ZB80. ERRORS or 11. ERRORS)
contains the error messages that are used for error flagging during the
assembly. This file is optional; if used, it must also appear on the
system disk. ?

To use the UCSD assembler, type Al{ssem from the Command line.
This will execute SYSTEM. ASSEMBLER. (The user should arrange that the
right version of the assembler (PDP-11 on Z80) have that title.)

|

The program displays, the version of the asssembler being
executed and assumes that the current wo kfile is the one to be
assembled. If there is no current workfi then the program asks which
file is to be assembled. i

Page 99

The next prompt line is:
Output file for the assembled listing (<CR> for none):

As usval for a console or printer output the words CONSOLE or
PRINTER must be followed by a colon, i.e. CONSOLE:. If the colon is
neglected the output is sent to a #ile of the name given. At this
paint, the program reports whether or nat the output device (i any) is
on line. The assembled code is written out to & file called
*SYSTEM. WRK. CODE which cannot be executed by itself but must be changed
to link in with a host file.

The program then starts assembling the workfile, flagging
errors as they are found. If an a error, other than an 1/0
error, is found, a general message indicates the nature of the error
and also gives the option to continue or exit. The error message will
be taken from the ERRORS file i¢ possible., If that is not possible, due
to space limitations or the absence of the errors file, the error
message number is given. The assembly is aborted if the I/0 error
encountered is not due to data typed in by the user, otherwise the vuser
is prompted to try again. {See the complete list of Assembler syntax
errTors and machine specific errors in Tabl% &)

: J
The console displays, on the left hand side of the scrTeen, one
dot for each line of code assembled and & line counter every 50 lines.
When an include file is started, the console displays:

. INCLUDE <FILE ID>
indicating which file has been included.

At the end of the assembly the assémbler program indicates that
it is tinished and tells the user how many errors were found. In
addition an alphabetic symbol table is gon{raced.

: The reference symbol table consists of three parts. The first
column represents the symbol identifier, the second, the symbol type,
and the third, the location that it is defined or the value it has.
Actual values are given for the symbols representing absolutes and
definition locations are given for the symbols representing labels.

The location number is given as a hi-byte first number and corresponds
to the index numbers on the left hand side of the listing. Only symbols
which have definition locations or absolute values have numbers in the
third column: other types have dashes.

Below is an example of an assembled listing with symbol table.

Page 100

PAGE - 1

0000t

Memory after initialization:

0000
0000
00001
t

- 00001}
00001
P

00001
00001}
00001}
0000}

10001
1000}
1004}
1007}
100B!
100E}
1012
1015
1018}
1002%
1018!
1018!
1019!
101A!

101C1
101€!
10201
10221
1023¢
1025
1009+
1025¢
10251
10261
10271
1029
102B!
10204
102F
1030¢
10321
1010+
10321
10321
10331
10341

103461
1038!
10341

FD
CD
FD
cD
FD
CD
c3

21 #¥a%
FDOB

21 wx*®
FDOB

21 #Eux
FDOB
0090

1810

00
oA
0090

0002
0000
0010
00

0817

2510

00
oA
0093 -
0002
0000
0010
00
1017

3210

00
0A
0093

0002
0000
0010

FLOPPY
SECMEM

SECENT
SECDSH

B1DSK
B2DSK

PRIMARY

SECREAD

B1READ

B2READ

. PROC

PRIMARYZ FILE: #5: PRIMARY, Z

PRIMARYZ

6048

. EQU
. EQU

. EQU
. EQU

. EQU
.EQU

. ORG

LD
CALL
LD
CaLL
LD
CALL
JP

. BYTE
. BYTE
. WORD

. WORD
. WORD
. WORD
. BYTE
. WORD

. BYTE
. BYTE
. WORD
. WORD
. WORD
. WORD
. BYTE
. WORD

. BYTE
. BYTE
. WORD

. WORD
. WORD
. WORD

OBFDH
?000H

OOOH

BH + 1700H

10H + 1700H
18H + 1700H

1000H

1Y, SECREAD
FLOPPY

1Y, B1READ
FLOPPY

IY. B2READ
FLOPPY
SECENT

$—%
OAH
EECMEN

200H

L Lad 2
PRIMARY
$-8
SECDSK

s$-%

CAH '
SECMEN+300H
200H

-3

PRIMARY

-3

D1DSK

$-%
OAH
SECMEN+300H

200H
$-$
PRIMARY

iRom~based floopy driver

JFirst location in memory of bo

1Entry point of bootstrap

;i Sector start of second bootstr

i Sector start of BIDS part 1
iBector start of BIDS part 2

iPrimary bootstrap for ZILOC DO

i Get block for second bootstrap

i Get block for part 1 of BIOS

iGet block for part 2 of BIOS

1Jump into second bootstrap

» Unused
i Read command
i Memory location for second boo

1 Number of bytes in boot
;Completion return address
JError in return address
iCompletion result code
iDisk block of second boot

iUnused

i Read command

iMemory location or BIOS part 1
iNumber of bytes in BIOS part 1
iCompletion return address
iError return address
iCompletion result code

iDisk block of BIOS part 1

iUnused
i Read command
iMemory location ofd BIOS part

i Number of bytes in BIDS part 2

iCompletion return address
iError return address

Page 101

103C! 00 .BYTE $-$;Completion result code

103D¢ 1817 . WORD B2DSK sDisk block of BIOS part 2
103F!
103F! . END

PAGE-~ 2 PRIMARYZ FILE: #5: PRIMARY.Z SYMBOLTABLE DUMP

AB - Absolute LB - Label UD - Undefined MC - MacrTo
RF - Ref DFF - Def PR - Proc FC - Func
PB - Public PY - Private CS - Constant
B1DSK AB 1710! BIREAD LB 1028S! B2DSK AB 1718! B2READ LB 1032¢

FLOPPY AB OBFD! PRIMARY LB 1000¢! PRIMARYZ PR ———i SECDSK AB 17081
SECENT AB 9000! SECMEM AB 9000! SECREAD LB 1018!

NOTES:

The location values in the symbol table dump refer to the
locations in the listing.

The #%%%’g in the listing call attention to the use of a label
naot yet defined. i

I+ a star (%) appears after the location number at the left of
the listing, it indicates that a forward reference occurring earlier in
the assembly has been resolved. The numbher to the left of the “»’ is
the location where the reference occurred while the number to the right
is the new contents of that location.

1.9.2 HIGH-LEVEL SYNTAX

All objects declared before the first .PROC or .FUNC are
available for use throughout the assembly. No code is allowed to be
generated before the first .PROC or .FUNC. The symbol table is reduced
at the beginning of each .PROC or .FUNC 'to the point where it was at
the start of the first .PROC or . FUNC.

Only labels may begin in the first column and may optionally
be followed by a colon., Local labels myst have ‘$’ in the first
column and may be up to B digits long. !If the statement has no label.,
the first column must contain a space.

All assemblies must end with a. . END. However each .PROC or

.FUNC need not because they are ended by the occurrence of the next
.PROC or .FUNC. Only the last one needs a .END.

Page 102

A general

Toailraan diagram feor all

-

arny non-code
denercting
operations

assdmhly files looks like:

«PROC

.FUNC

code deneratin
operations an
directives

L] END

Page 17°

The non-code generating operaticns are:

-EQU, .DEF, .REF, .PAGE, .TITLE, .LIST, .MACRO, .IF

The code generating operations are any ather pseudo—cps and all
assembly code for the program.

1.9.3 EXPRESSIONS (one-pass restrictions)

Since the Adaptable Assembler makes only one pass through the
source code, something must be assumed (upon encountering an undefined
identifier in an expression) about the nature of the identifier in
order for the assembly to continue. It is therefore assumed that the

-undefined identifier will eventually be defined as a label, which is

the most probable case. Any identifier which is not a label must be
defined before it is used.

Labels may be equated to an expression containingeither labels
and/or absolutes. One must define a label before it is used unless it
will simply be equated toc another label. Local labels may not occur on
the left hand side of an equate (.EQU).

Local labels are mainly used to jump around within a small
‘segment of code without having to use up storage area needed by regular
labels. The local label stack may hold up to 21 labels. These are cut
back every time upon encountering a regular label and are thus rendered

invalid. An example of the use of local labels is shown below, the
Jump to label $04 bring illegal.

$03 STA 4 1 LEGAL USE OF LOCAL LABEL
Jé NZ. $03
Jé NZ, 404 i ILLEGAL USE OF LOCAL LABEL

REALLAB .EQU s
$04 .EQU %

Page 104

Identifiers are character strings starting with an alpha
character. Dther characters must be alphanumeric or the ASCII
underline (‘_‘). Only the first 8 characters are used by the assembler
even though more may be entered.

The following operators can be used in expressions processed
by this assembler.

For unary operations:

i plus
el minus
o~ ones complement

For binary operations:

‘4 plus

- minus

s exclusive or

‘at multiplication

A truncating division

' remainder division

e bit wise

' bit wise

‘=’ equal (valid only in .1IF)

™ a4 not equal (valid only in .1IF)

All constants must start with an integer 0-9.
All operations are applied to whole words.

The default radix is Hex for the Z80 version and Octal for the PDP-11.

1.9. 4 ASSEMBLER DIRECTIVES: OVERVIEW

Assembler directives (also referred to as “pseudo-ops") allow
the programmer to instruct the assembler to do various functions other
than provide direct erecutadle code. The following directives are
common to all UCSD versions but may differ from manufacturer’s standard

syntax.

In the following pseudo—op descriptions square brackets, [3J,
are used to denote optional elements. If an element type is not listed
it cannot be used in that situation. As vuvsual, angle brackets, <,
denote meta symbols.

For example: [labell] . ASCI1 "Lcharcater stringd>"
indicates that @ label may be given but is not necessary
and that between the double quotes must go the character
string to be converted (not necessarily the words
“character string®). .

Page 105

The following terms represent general concepts in the
explanation of each directive: |

value = any numerical value, label, constant, expression.
valuelist = js a list of one or more values separated by commas.
idlist = a list of one or mare 1d£ntifiers separated by commas.
expression = any legal expression as defined in Section 1.9.3.

identifier: integer list = a list of one or more identifier—integer
pairs seperated by commas. The
colon—integer is optional in each pair
and the default is 1.
Small examples are included after each pseudo-op definition to
supply the user with a reference to the specific syntax and form of
that directive. The larger example, included in section 3.3.2, is used
to show the combined use and detailed examples of directive operations.

1;9.4.1 ROUTINE DELLIMITING DIRECTIVES

Every assembly must include at least one .PROC or .FUNC., and
one .END, even in the case of stand-alone code which will not be linked
into a Pascal host(i.e. an interpreter). The most frequent use of the
assembler, however, will be small routines intended to be linked with a
Pascal host. In this case, .PROCs and .FUNCs are used to identify and
delimit the assembly code to be accessed by a Pascal external procedure
or function. The .END appears at the end of the last routine and
serves as the ¢tinal delimiter.

References to a .PROC or .FUNC are made in the Pascal host by
use of EXTERNAL declarations. At the time of this declaration the
actval parameter names must be given. For example, if the Pascal
declaration is: :

PROCEDURE FARKLE(X.Y:REAL):EXTERNAL:
the associated declaration for the .PROC would be
. PROC FARKLE, 4

A .PROC, .FUNC, or any assembly routine should be inserted into
the #SYSTEM. LIBRARY (execute LIBRARIAN) so that it can be referenced by
the #SYSTEM. LINKER and linked in at run time. An altsrnate method would
be to execute the LINKER and tell it what files to link in. Either
method works. However., if the Pascal host is updated and the assembly
routines aren’t in the #SYSTEM. LIBRARY, the linker will have to be
executed after each update. Therefore, we suggest that the routines be
inserted into the *SYSTEM. LIBRARY to avoid this repetition. If the

Page 104

linker is called automatically using the Run command, it will search
the *SYSTEM. LIBRARY far the appropriate definition of the assembly
routine and link the two together.

. PROC Identifies a procedure that returns no value. A .PROC s
ended by the occurrence of a new .PROC,.FUNC, or .END.

FORM: .PROC <identifier>[,expressionl

Cexpressionl indicates the number of words
of parameters expected by this routine.
The default is O.

EXAMPLE: . PROC DLDRIVE, 2

-« FUNC Identifies a function that returns a valvue,
Two words of space to be used for the function value
will be placed on the stack before any parameters .
A .FUNC is ended the same way as the . PROC.

FORM: .FUNC <Cidentifier>l,expressionl

[expression] indicates the number of words
of parameters expected by this routine.
The defauvlt is O. ’

EXAMPLE: .FUNC RANDOM, 4
. END Used to denote the physicel end of an assembly.
1.9.4.2 LABEL DEFINITIONS AND SPACE ALLOCATION DIRECTIVES

.ASCII Converts character values to ASCII equivalent byte constants
and places the equivalents into the code streaom

FORM: Llabell .ASC11 "{character string>"

: where <character string> is any string of printable
ASCII characters: including a space. The length
of the string must less than BO characters. The
double quotes are used as delimeters for the
characters to be converted. 1€ a double quote is
desired in the string., it must be specifically
inserted using a .BYTE.

Page 107

. BYTE

. BLOCK

Page 108

EXAMPLE: .ASCI1 “HELLQO"

for the insertion gf AB"CD the code must be
constructed as:

.ASCI1 "AB"
. BYTE 34
.ASCII “cD"

Note: The 34 is the ASCII number for a double quote in hex.
The representation actually used will depend on the
default radix of the particular machine in use.

Allocates a byte of space into the code stream for each value
listed. Assigns the associated label, if any., to the address
at which the byte was stored. Expression must have a value
between —-128 and +2535. I# the value is outside of this range
an error will be flagged.)

FORM: Clabell .BYTE [valuelistl
the defauvlt for no seatod value is O.
EXAMPLE: TEMP . BYTE 4
the associatod output would be: 04
Allocates a block of space into code stream for each.valuo
listed. Amount allocated is in bytes. Associates the label
(if present) with the starting address of the block allocated.
FORM: Clabell .BLOCK <length>C.valuel
<lengthd> is the the number of bytes to hold the <valued
-specified. The default for no stated value is 0.
EXAMPLE: TEMP .BLOCK 4,4
the associated output would be:
gz (four bytes with the value 046)

04
04

. WORD Aliorates A ward of space in the code stream for each value
in the voluelist, As50ciates the declaration label with the
word space allocation.

FOR™: Llabel) . WORD <valuelistd
EXAMPLE: TEMP . WORD 0.2.4,...
the associated output would be:
- [elelele}
0002
0C04 (words with these values in them)
EXAMPLE: L1 .WORD L2
L2 . EGU $ _%$ represents the LC on the ZBO
. WORD 5. '

if I.LC was 50 at the .EQU
the associated output woyld be:

00350 (# agsignment due to the L2 value #)
0005 (# assignment due toc the .WORD B =)
. EGQU Assigné d value to a label. Labels may be equated to an

expression containing either lables and/or absnlutes. One
must define @ label before it is vsed unless it will simply
be equated to another label. A local label may hot appear
an the le+t hand side of an eguate (.EGU).

FORM: <label> . EGU <valued>
EXAMPLE: RASE . EGU Ré&
. ORG Euts the current locaticn counter (LC) to the value of the .DRC.

It would normally be used in a stand-alone program. For example,
ther~ is onz .CRHZ wn the &L8E0/Z83 interpreoter.

JORG 48 cunnently Aimplemented only fon advancing the focation counter. It 4s
not cuwnentldy possible to set the Location counter back.

Page 109

1.9.4.3 . MACRO FACILITY DIRECTIVES

A macto is @ named section of text that can be defined once and
Tepeated in other places simply by using its name. The text of the
macro may be parameterized, so that each invacation results in a
different version of the macro contents.

At the invocation point, the macro name is followed by a list
of parameters which are delimited by commas (except for the
last one, which is terminated by end of line or the comment indication
(/5 7)). At invocation time, the text of the macro is inserted
(conceptually speaiking) by the assembler after being madified by
parameter substitution. Whenever %n (where n is a single decimal digit
greater that zero) accurs in the macro definition, the text of the nth
parameter is substituted. Leading and trailing blanks are stripped
from the parameter before the substitution. If a Teference occurs in
the macro definition to a parameter not provided in a particular
invocation. a null string is substituted. '

A macro definition may not contain another macro definition. A
definition can certainly, however, include macro invocations. This
“nesting” of macro invocations is limited to five levels deep.

The expanded macro is always included in the listing #ile (if¢
listing is enabled at the paint of invocation). Macro expansion text
is flagged, in the listing, by a ‘#’ just left of each expanded line.
Comments occurring in the macro definition are not repeated in the
expansion.

. MACRQO Indicates the start of a macro and gives it an identifier.

. ENDM . Indicates the end point of a MACRO.
FORM: .MACRO <identifier>
. (macro body)
. ENDM
EXAMPLE: . MACRO HELP :)
STA %1 i < comment >
LDA Ye i € comment >
. ENDM

Theblisting where the macro call is made may look like:

Page 110

HELP FIRST, SECOND
* BTA FIRST
4 I.DA SECOND

The statement HELP, calls the macro and sends it two
parameters:, FIRST and SECOND. These parameters are in turn
referenced inside the macro using the identifiers %1 for the
variable FIRST, and %2 for the variable SECOND.

1.9.4.4 CONDITIONAL ASSEMBLY DIREGCTIVES

Conditionals are used to selectively exclude or include
sections of code at assembly time. When the assembler encounters an
- IF directive, it evaluates the associated ¢xpression. In the simplest
case, if the expression is false, the assembler simply discards the
text until a _ENDCis reached. If there is &4n .ELSE directive betuween
the . IF and .ENDCdirectives, the text before the .ELSE i{s selected i¢
the expression is true, and the text after the .ELSE i{f the condition
is false. The unassembled part of the conditional will not be included
in any listing. Conditionals may be nested,

The conditional expression takes one of two forms. The first
is the normal arithmetic/logical expression used elsewhere in the
assembler. This type of expression is considered false if it
evaluates to zeroi true otheruwise. The second form of conditional
expression is comparison for equality or inequality (indicated by ‘=~
and ‘<>‘, respectively). One may compare strings. characters. or
arithmetic/logical expressions.

. IF Identifies the beginning of the conditional.
. ENDC Identifies the end of a conditional .IF
. ELSE Identifies the alternate to the .1IF. If the conditional

expression is egual to O then the else is vsed.

FORM: rn.qua .IF <expressiond>

.éLSE (# only 1¢ there is an.cisc «)

. ENDC

Page 111

where the expression is the conditional expression to be met.

EXAMPLE: . IF LABEL1-LABEL2 iarithmetic expression
- 3 This text assembled only if subtraction
i result ig now zero

LIF “41Y ="STUFF™ icomparison expression

+ This text assembled if subtraction above

i was trve and if text of first parameter

i (assume we are in macro) is equal to “STUFF"
. ENDC ' iterminate nested cond.

.ELSE
i This text assembled if subtraction result
i was iero

. ENDC iterminate outer level
. tconditional

1.9.4. 5 PASCAL HOST COMMUNICATION DIRECTIVES

The directives . CONST, .PUBLIC, and .PRIVATE allow the sharing
of fnformation and data space between an assembly routine and a Pascal
host. These external references must eventually be resolved by the
Linker. Refer to Section 1.8 Linker, for further details.

. CONST Allows access of globally declared constants in the PASCAL host
by the assembly routine. .CONST can only be used in a program
to replace 14 bit relocatable abjects.

FORM: . CONST Cidlistd>

EXAMPLE: (# see example after .PRIVATE #)

. PUBLIC Allows a variable declared in the global data segment of
the PASCAL host to be used by an assembly language routine
and the host program.

Page 112

FORM: .PUBLIC <idlist>

EXAMPLE: (# see exampdle after .PRIVATE #)

-PRIVATE Allows variables of the assembly routine to be stored in the
global data segment and yet be inaccessable to the Pascal host
These variables retain their values for the entire execution of
the program. : g

FORM: . PRIVATE <aidentifier:integer listd

the integer is used %to communicate the numBer of
words to be allocated to the identifier.

EXAMPLE: (% for .CONST, .PRIVATE, .PUBLIC #)
-Given the fcllowing Patcal host program:

PROGRAM EXAMPLE;
CONST SETSIZE=50; LENGTH=80;

VAR 1. J.F, HDLD, COUNTER, LDC: INTEGER:
LST1: ARRAYLO.. 9] OF CHAR;

BEGIN

PRI

END.
and the following section of an assembly routine:

. CONST LENGTH
. PRIVATE PRT, LST2: 9
. PUBL.IC LbC. 1, v

This will allow the const LENATH to be used in the assembly
routine almost &s if the line LENGTH . EGU 80 had been
written. (Recall the limitation mentioned above for the use

. CONST identifiers.) The variables I.DC,I.J to be used by both
the Pascal host and the assemhly routine, and the variables
PRT, LST2 to be used only by the assembly routine. Further,
the LSTR.9 cavses the variable LST2 to correspond with the
beginning of a 9 word block of space in the global data
segment. :

Page 113

1.9.4. 6 EXTERNAL REFERENCE DIRECTIVES

The use of .DEF and .REF is similar to that of .PUBLIC. .DEFs
and .RiFs associate lahels betuaen assemhly language rautxnes rather
than betweozn an assembly routine and a Pascal host program. Just as
with . PRIVATE and .PUBLIC, these external references must eventually be
rtsolved by the Linker. If such resalution cannat be accomplished. the
Linker will indicate tha ofFendxng label. Naturally, the assembler
cannot be expected to flag these errors, since it has no knowledge of
other assemblies.

. DEF Identifies @ label that is defined in the :urrent routine
and available to be used in other .PROCs or .FUNCs,

FORM: . DEF (identifierlist)
EXAMPLE: (# see listing in section 3.3.2.3 for example #)
. REF Identifies a label used in this routine which has been

declared in an external .PROC or .FUNC with & .DEF.
During the linking process. correspanding . DEFs and . REFs
are matched. :

FORM: .REF <identifierlist>

EXAMPLE: ~ (% see listing in section 3.3.2.3 for example #)

Note: The .PROC and the FuNC directive also generates
a DEF with the same name. This allows assembly
procedures to call .. PROC and .FUNCs if they have
been defined in a .RéF.

1.9.4.7 LISTING CONTRCL DIRECTIVES

LLIST Allows selective listing of assambly routines.
& If no output file is declared then the default is CONSOLE:

. NOLIST when a .LIST is encountered. The .NGLIST is used to turn off
. the .LIST option. Listing may be turned an and off
repeatedly within an assemhly.

FORM: .LIST or .NOLIST

. PAGE Allows the programmer to explicitly ask for top of form
page breaks in the listing,

i no Listing output {ile 48 specified then all .LIST and NOLIST
directives are simply Lgnoned.

Page 114

FORM: . PAGE

. TITLE Allows the titling of each page if desired. The title may be up
to BD characters in length. At the start of each procedure the

title is set to blanks and must be reset if title is desired.
The title,

INTERP SYMEOLTABLE DUMP

shown in Scction 1. 9.1 was caused by a . TITLE directive. =s

FORM .TITLE <Ctitled
where <titled> is a@ string

EXAMPLE .TITLE GRC12 interpreter

1.9.4.8 FILE DIRECTIVES
. INCLUDE Causes the indicated source file to be included at that point.

FORM: . INCLUDE <file identifier. TEXTD where the file
identifier is any file to be included. Only spaces
are allowed betwzen the end of the file name and the
end of the Include line.

CDR§SCT EXAMPLE: . INCLUDE SHORTSTART. TEXT

CORRECT EXAMPLE: . INCLUDE SHORTSTART. TEXT
i calls starter

IN-CORRECT EXAMPLE: . INCLUDE SHORTSTART. TEXT i calls starter

For a list of general errors and also notes on the 280 and PDP-11 based
machines see Table 6.

** Note: The title 48 only cleared at the stant of the {ile. 1In section 1.9.1 the title
SYMBOLTABLE DUMP was not set by a .TITLE dinective. That heading Ls afways
used on pages containing symboftable dumps. Upon assembling a further
procedure Zae heading pninted retunns to what Lt was set 2o before the
symboftable dump.

Page 115

- Notes -

Page 116

LA AR RS A LSS S SRS TT R NI TTTT SN T

* SYSTEM INTRINSICS # = Secﬁion 2.1 =

FHERERTERTHE Y FRNERS E R R TR RS
1

|

Version I. 5 Scptembtrll??B

WARNING

Most of the UCSD intrinsics assume that users are fluent in the
use of PASCAL and are experienced in the use qf the system. Any
necessary vange or validity checks are the responsibility of the user.
Since some of these intrinsics do no checkinglfor range validity. they
may easily cause the system to die a horrible death. Those intrinsics
which are particularily dangerous are noted 04 such in their
descriptions.

PARAMETERS

Required parameters are listed along qith the function/procedure
identifier. .Optional parameters are in [square brackets]. The default

values for these are in {metabrackets) on the hine below them.

NOTE

Following are some definitions aof termF used in these
documents. They tend to take the place of formal parameters in the

dummy declaration headers that preface each description of a particular
routine, or set of routines.
ARRAY . a PACKED ARRAY OF CHARacters
BLOCK : one disk block, {512 bytes} |
BLOCKS : an INTEGER number of blocks
BLOCKNUMBER . an absolute disk block address
BOOLEAN : any BDOLEAN value
CHARACTER : any expression which evalvates to a character
DESTINATION : & PACRED ARRAY OF CHARacters to write into or
a STRING, context dependent
EXPRESSION . part or all of an expression} to be specified
FILEID i & file identifier, must be
’ VAR fileid: FILE OF <typed:
or TEXT:)
or INTERACTIVE;
or FILE;
INDEX : an index into a STRING or PACKED ARRAY OF CHARacters.
context dependent or as specified.
NUMBER : & literal or identifier whose type is either INTEGER
or REAL. |
RELBLOCK : @ relative disk block address, relative to the start

of the file in context, the first block being

: block zero.
SIMPLVARIABLE : any declared PASCAL variable which is of one of the
following TYPEs:

Page 117

SIZE
SOURCE
SCREEM
STRING
TITLE
UNXTNUMBER

VoL ID

DOCLEAN CHAR REAL STRING
or PACKED ARRAYC..31 OF CHAR

an INTEGER number af bqte% ar characters: any integer

value
a STRING or PACKED ARRAY OF CHARacters to be used as a
read-only array, contert dependant or as specified. **
an array 9400 bytes long; or as needed.
any STRING, call-by-value unless otherwise specified,
i.e. may be a quotad string, or string variable
. ar function which evaluates to a STRING
: a BTRING cansisting of a file name -
¢ physical device number used to determine device handler
used by the interpreter . i
4 volume identifier, STRINGC71 .

** d.e. dn string intninsics, SOURCE i going to have o be a stning, in intrinsics that

Pqne 118

deal with packed amnays of characters, it may be either. A wond of caution
about us.ing STRINGS in intainsics that expect charwcter arays, the zeroeth
element of the striing 43 the Length byte, which may cause the programmen
dome unexpected problems. (Were he not aware of that fact!) ed.

B33 3 U R *ii*lliil&li&ii*l

*# STRING INTRINSICS # # Section 2.1.1 #

B33 3k o4t & 3E 4t 3 3 9 46 936 9% X B ***#ﬁl*l*&*iii#{i
|

Version I.5 September 1978

FUNCTION LENGTH (STRING) : INTEGER

Returns the integer value of the léngth of the STRING.
Example:

GEESTRING := ‘1234567) |
WRITELN(LENGTH(GEESTRING), © * LENGTHC('’));

Will print:
7 0

FUNCTION POS (STRING , SOURCE) : INTEGER

This function returns the position?of the first occurrence of

the pattern in SBURCE to be scanned. The INTEGER value of the position
of the first character in the matched pattern will be returned; or 1f
the pattern was not found., zero will be returned. Example:

STUFF := ‘TAKE THE BOTTLE JITH A METAL CAP’;
PATTERN := ‘TAL‘;
HRITELN(PDS(PATTERN.STUFF)%

Will print:

26

FUNCTION CONCAT (SOURCEs) : STRING

all the

There may be any number of source'ﬁtrings separated by commas.

This function returns & string whidh is the concatenation of
strings passed to it. Example: 1

SHORTSTRING := ‘THIS IS A STRING': !

LONGSTRING := ‘THIS IS A VERY LDNG STRING.

LONGSTRING := CONCAT('START aSHDRTSTRING-’-':LDNGSTRING);
WRITELN(LONGSTRING):

Will print:

ETART THIS 18 A ST#ING~THIS 1S A VERY LONC STRINQ.
. |

Page 119

FUNCTION COPY (SOURCE , INDEX , SIZE) S+RING

This function returns a string cont#ining SIZE characters
copied from SOURCE starting at the INDEXth position in SOURCE.
Example:

TL := ‘KEEP SOMETHING HERE’; KEPT ‘= COPY(TL.POS(’S’,TL),9);
WRITELN(KEPT);

HWill print:
SOMETHING
PROCEDURE DELETE (DESTINATION , INDEX . SIZE)

This procedure removes SIZE characters from DESTINATION
starting at the INDEX specified. Example:

OVERSTUFFED := ‘THIS STRING HAS FAR TOO MANY CHARACTERS IN IT. “;
DELETE (QVERSTUFFED. POS(‘HAS *, OVERSTUFFED)+3, 8);
WRITELN(OQVERSTUFFED);

Will print:

THIS STRING HAS MANY CHARACTERS IN IT.

PROCEDURE INSERT (SOURCE , DESTINATION , INDEX)

This inserts SOURCE into DESTINATION at the INDEXth position in
DESTINATION.

Example:
ID := ‘INSERTIONS’;
MORE := ‘ DEMONSTRATE‘;
DELETE (MORE, LENGTH(MORE), 1);

INSERT(MORE, ID. POS(’10’, ID));
WRITELN(ID);

Will print:

. INSERT DEMONSTRATIONS
PROCEDURE STR (LONG , DESTINATION)

Page 120

This converts the long integer LONG into a string. The
resulting string is placed in DESTINATION. Eee section 3.3.3 for more
about the use of long integers.

Exa&plc:
INTLONG := 102039503; ‘
STROINTLONG, INTSTRING); L
INSERT(‘. /, INTSTRING, PRED(LENGTH(INTSTRING)));
WRITELN(‘S, INTSTRING);
Will print:

$1020395. 03

Note about using strings and string functions:

In order to maintain the integrity of the LENGTH of a string,
only string functions or full string assignments should be used to
alter strings. Moves and/or single character assignments do not attect
the length of a string which means it grobablg becomes wrongq. The
individual elements of STRING are of type CHAR and may be indexed
1..LENGTH(STRING). Accessing the string outside this range will have

unpredictable results if range-~checking is off or cause a Trun—time
error (1) if range checking is on.

Page 121

- ﬁotes -

Page 122

AREEAR FRESHERRY SR TOERB LN RN EEREARERLETRE ISR
INPUT &) DUTPUT THTRINGICD = ® Soction 2.1.2
HHERRUARE AL AR A R SARABRDD D el BRALETRANGERE NS

Version 1.5 September 1978

PROCEDURE RESET ¢ FILEID, C[TITLEI s
_PROCEDURE REWRITE (FILEID, TITLE)i

Thesos procedures open files for reading and writing and mark
the file a3 open. The FILEID may be any PASCAL structured file, and
the TITLE is a string ctontaining any legal File title.

The difference between them is that REWRITE creates a new file
on disk for output files; RESET simply marks #n already existing file
open for 1/0. {Note: if the device specified in the title is a non—
directory structured device, e.g. PRINTER: , then the file is opened
for input, output, or both in either case.) If the file was already
open, and annther RESET or REWRITE is attempted to it, an error will be
returned in ICRESULT. The file‘s state will remain unchanged.

RESET (FILEID) without optional string parameter "rewinds” the
file by setting the file pointers back to the beginning (zero th
record) of the file. The boolean functions éDF and EOLN will now be
se% by the implied GET in RESET.

) These procedures behave differently with files of type
INTERACTIVE. RESET cn files of types other than INTERACTIVE will do an
initial GET to the file, setting the window variable to the first
record in the file (as described in Jensen & Wirth). RESET on a file
of type INTERACTIVE will not do an initial GET.)

| |
PROCEDURE UNITREAD (UNITWUMBER, ARRAY, LEMGTH, [BLOCKNUMBERI, CINTEGER]
PROCEDURE UNITWRITE (UNITNUMBER., ARRAY, LENGTH, CBLOCKNUMIERI, CINTEGER)]

{ sequential » { 0 2

THESE APE DANGERDUS INTRINSICS

|

These procedutes are the low-level procedures which do 1/0s to
various devices. The UNITNUMEBER is the integer name of an 1/0 device.
The ARRAY ias any declared packed array, which may be subscripted to
indicate a starting position. This is used as the starting address to
do the transfers from/to, The LENGTH is an $nteger value designating
the numher of tytes tu fransfeor. The SLOCKNUMBER is required only when
using @ block-~ctructured device (i..e. @ disk;} end is the atsolute
blocknumber at which the trancfer will stars fram/to. I1f the
BLOCKNUMDER is left out, O is assumed. The JWNTERGOR wvalue is optional
(asaumed O) and indicates (if 1) that the trsnsfer is to be done
asynchronously. The blocknumber is not necessary. A ', n" witl be
sufficient. (See UNITBUSY and UNITWAIT.) (*when usding the asynchronous 1/0
facilitics®) : '

Page 123

)i
)i

FUNCTION UNITBUSY (UNITNUMBER) : BOOLEAN;

This function returns a BOOLEAN value. indicating if TRUE that
the device specified is waiting for an 1/0 transfer to complete.

Example:
UNITREAD (2{non~echoing keyboard}, CHLOJ.
‘1{for one character), {no block no.) 1{asynchraonous));
WHILE UNITBUSY(2){While the READ has not been completed) DO
WRITELN(QUTPUT, ‘I am waiting for you to type something’);
WRITELN(QUTPUT, ‘Thank you for typing a ‘,CHLOl);

Execution of this example will con&inuouslq type out the line
‘I am waiting for you to type something’ until a character is struck on
the keyboard. Suppose a ‘!’ were typed. The message ‘Thank you for
typing a !’ will then appear, and program execution will proceed
normally.

PROCEDURE UNITWAIT (UNITNUMBER);

This waits for the specified devich to complete the I/0 in
progress. It can be simulated by:

WHILE UNITBUSY(n) DO {waste a small amaunt of time):

PROCEDURE UNITCLEAR (UNITNUMBER);

UNITCLEAR cancels all I/0s to the specified unit and resets the
hardware to its pouwer—up state.

FUNCTION BLOCKREAD (FILEID, ARRAY, BLOCKS, CRELBLOCK]) : INTEGER:
FUNCTION BLOCKWRITE (FILEID, ARRAY, BLOCKS, C[RELBLDOCK]) : INTEGER;
{ sequential 2} .

These functions return an INTEGER value equal to the number of
blocks of data actually transferred. The FILE must be an untyped file
(i.e. F: FILE;). The length of ARRAY should be an intager multiple of
bytes-per—disk—-block. BLOCKS is the number of blacks you want
transferred. RELBLOCK is the blocknumber relative to the start of the
file, the reroeth block being the first block in the file. If no
RELBLOCK is specified, the reads/writes will be done sequentially. A
random access I/0 moves the file pointers. CAUTION should be exercised
when using these, as the array bounds are not heeded. EOF(FILEID)
becomes true when the last block in a file is read.

Page 124

PROCEDURE CLOSE (FILEID OPTION);

OPTION may be null or ‘, LOCK’, or ‘., NORMAL’, or ‘. PURGE’, or
‘s CRUNCH’. (Note the commas!) :

If OPTION is null then a NORMAL close is done. i.e. CLOSE
simply sets the file state to closed. 1f the file was opened using
REWRITE and is a disk file, it is deleted from the directory.

The LOCK option will cause the disk file associated with the
FILEID to be made permanent in the directorq 1f the file is on a
directory-structured device and the fila was opened with a REWRITE;
otherwise & NORMAL close is done.

The PURGE option will delete the TITLE associated with the
FILEID from the divectory. The unit will go off-line if the device is
not block structured.

The CRUNCH option is as yet undefined in what it will do.....
The intent is to lock a file with the min;mum number of blocks of
useful information.

All CLOSEs regardless of the option will mark the file closed
and will make the implicit wvariable FILEID* undefined. CLOSE on a
CLOSEed file causes no action.

FUNCTION EOF (FILEID) : BOOLEAN;
FUNCTION EOLN (FILEID) : BOOLEAN;

If (FILEID) is not present, the fileid INPUT is assumed (e.g.
IF EOF THEN...). EOLN and EOF return false after the file specified is
REBET. Thcq both return true on a closed file. When EOF (FILEID) is
true, FILEID™ is undefined. When GET (FILEID) sets FILEID~ to the EOLN
character or the EOF character, EDLN (FILEID) will vreturn true, and
FILEID™ (in a FILE OF CHAR) will be set to a blank. 1#, while doing
puts or writes at the end of a file, the file cannot be expanded to
accommodate the PUT or WRITE, EQF(FILEID) will return true.

FUNCTION IORESULT : INTEGER:

After any I/0 operation, IDRESULT contains an INTEGER vclue
corresponding to the values given in Table 2.

Page 125

PROCEDURE GET (FILEID);
PROCEDURE PUT (FILEID);

These procedures are used for operations on typed files. A
typed file is any file for which a type is specified in the variable
declaration, ie. ‘FILEID : FILE OF <type>’. This is as opposed to
untyped files which are simply declared as: ‘ FILEID: FILE; ‘. ‘F: FILE
OF CHAR’ is equivalent to ‘F: TEXT’. 1In a typed file each logical

record is a memory image fitting the description of a variable of the
associated <typed.

GET (FILEID) will leave the contents of the current logical
vrecord pointed at by the file pointers in the implicitly declared
*window" variable FILEID” and increment the file pointers.

PUT (FILEID) puts the contents of FILEID™ into the file at the
location of the current file pointers and then updates those pointers.

PROCEDURE READ{LN) (¢ FILEID, SOURCE);
PROCEDURE WRITE{LN} (FILEID., SOURCE)i

These procedures may be used anly on TEXT (FILE OF CHAR) or
INTERACTIVE files for I/0. If ‘FILEID, ’ is omitted, INPUT or OUTPUT
(whichever is appropriate) is qssumed.f A READ(STRING) will read up to
and not including the end-of-line character (<a carriage returnd>) and
leave EOLN(FILEID) true. This means that any subsequent READs of
STRING variables will return the null ptr;ng until a READLN or
READ(chararacter) is exescuted.

There are three files of tqpe INTERACTIVE which are
predeclared: INPUT., OUTPUT, and KEYBOARD INPUT results in echoing ot
characters typed to the console device. KEYBOARD does no echoing and
allows the programmer complete control of the response to user typing.
QUTPUT allows the user ta halt or flush the output.

PROCEDURE PAGE (FILEID)i

This procedure, as described ip Jensen & Wirth (ibid.), sands a
top-of-form (ASCII FF) to the file.

PROCEDURE SEEK (FILEID, INTEGER)i

This procedure changes the file pointers so that the next GET
or PUT from/to the file uses the INTEGERth record of FILEID. Records in
#iles are numbered from O. A GET or PUT must be executed between
SEEK calls since two SEEKs in a row may cause unexpected, unpredictable
Junk to be held in the window and associated buffers.

Page 126

W HEREER LR RERE RN R RRRFEERERE ERRAEXREEREREERD
% LCH LEVEL GRAPHICS INTRINSICS * # Section 2.1.4 #
LR R Al Ry L A Iy I Ty,

Version I.5 September 1978

cauTiOoN (“used only with the TERAK 8510a microcomputen®)

These routines do no range checking of the parameters they are
passed. If any of the paramters are “out of range”, these routines
will happily move bit patterns throughout main memory, much to the
dismay of the operating system and your program.

See Table 4 for modes and penstates for these intrinsics.

The DRAW intrinsics are available only for the Terak 8310a in
this release. Additional display units will be supported in later
Teleases, but no detatls are currently available. Probable implementa-
tion(s): Tektronix 40064. .

PROCEDURE DRAWBLOCK{VAR SOURCE; SRCROW,SRCX,SRCY: INTEGER; VAR DEST; DSTROW, DSTX, DSTY : INTEGER;
CNTX, CNTY,MODE: INTEGER],

(# none of these are optional #)

This procedure is written for the Terak 8%10a graphic display
mode. The TERAK screen displays words consecutively with the most
significant bit of the word on the right. DRAWBLOCK will work only on
screens whose graphics operates in this manner. WARNING: No range
checking is performed.

DRAWBLOCK transfers a bit matrix SOURCE. which starts on an
word boundary, to a specified point (STARTY, STARTX) in the bit matrix
SCREEN. All parameters are integers except SCREEN, which 1is a bit
matrix of width ROWSIZE (i.e. BITMAP: PACKED ARRAYLO..MAXROW] DF PACKED
ARRAYLO. . ROWSIZE-11 OF BOOLEAN;). The SOURCE is SIZEX bits wide by
SIZEY bits high. The first COPYX bits of each row are copied into the
destination. MODE is defined in TABLE 4.

VAR
PROCEDURE DRAWLINE (RANGE: INTEGER; VAR SCREEN; ROWWIDTH, XSTART, YSTART, DELTAX,
DELTAY, PENSTATE: INTEGER);
(# none of these are optional #)

In order the parameters are: INTEGER IDENTIFIER, ARRAY
IDENTIFIER. and the remaining six, INTECER EXPRESSION. RANGE will
contain the results of a Radar scan. This parameter is untouched
unless PENSTATE is sent as 4. The value returned is the number of dots
that would have bern drawn before encounfering an obstacle. SCREEN may
be subscripted to determine a starting position in the array. ROWWIDTH
is the width of SCREEN in number of words; this determines how DRAWLINE
will consider the rectangularity of the array. XSTART {s the starting
horizontal coordinate; YSTART is the starting vertical coordinate.
DELTAX is the distance to move in the horiiontal plane. DELTAY is the
distance to move in the vertical plane. PENSTATE controls the action
taken; see TAULE 4. :
"SNote: An onden to use these noutines, the user must add
the declanations as above, and the nescrved wond EXTERNAL;

Page 129

ERERRRRERERARRERS SR REERBERBXREEREEREERRERRRD RRFERFRR R FRESER
* CHARACTER ARRAY MANIPULATIONS INTRINSICS # # Section 2.1.5 #
FRERHBE R BRI N ERAEREERRERRRRTRRE TR ERNBE R EREERRE LR EREFRREN

Version 1.5 September 1978

CAUTION

These intrinsics are all byte oriented. Use them with care.
Read the descriptions carefully before trying them out as no range
checking of any sort is performed on the parameters passed to these
routines. The programmer should know exactly what he is doing before

he does it since the system does not protect itself from these
operations. ‘

FUNCTION SCAN (LENGTH. PARTIAL EXPRESSION, ARRAY) : INTEGER:

This function returns the number of characters from the
starting position to where it terminated. It terminates on either
matching the specified LLENGTH or satisfying the EXPRESSION. The ARRAY
should be a PACKED ARRAY OF CHARACTERS and may be subscripted to denote
the® starting point. If the expression is satisfied on the character at
which ARRAY is pointed., the value returned will be zero. If the length
passed wes negative, the number teturned will also be negative, and the

function will have scanned backward. The PARTIAL EXPRESSION must be of
the form:

" er "=" followed by <character expressiond

Examples:
Using the array:
DEM := ‘ _...THE TERAK 15 A MEMBER OF THE PTERODACTYL FAMILY. ’

8CAN(-264, =': 7, DEML301);

will return -26
SCAN(100, <>, W DEM)Y;

will return S
BCAN(1S5,=* /,DEM[OI);

will return 8

PROCEDURE MOVELEFT (SOURCE., DESTINATION, LENGTH);
PRDCEDURE MOVERIGHT (SOURCE, DESTINATION, LENGTH);

Page 131

These functions do mass moves of bytes for the length
specified. MOVELEFT starts from the left end of the specified source
and moves bytes to the left end of the destination. MOVERIGHT starts
from the Tright ends of both arrays and also moves byte by byte.

These procedures will optimize to word moves (in the 11
version) if at all possible. MOVERIGHT never attempts this
optimization: MOVELEFT will optimize only if the destination is at an
address below the I/0 page. (The reason for not doing word moves to
the I/0 page is that some hardware relies on byte addressing in this
dddress space.)

In short: MOVELEFT starts at the left end of both arrays and
copies bytes traveling right. MOVERIGHT starts at the Tight end of
"hath arrays and copies bytes traveling left. The reason for having
both of these is if you are working in a single array and the order in
which characters are moved is critical. The following chart is an
attempt to show what happens if you use the procedure which maves in
%he wrong direction for your purposes.

VAR ARAY: PACKED ARRAY [1..30] OF CHAR;

(#12345678%9a123456789012343478%c*)

" ARAY: I1THIS IS THE TEXT IN THIS ARRAY!

MOVER IGHT (ARAY[101, ARAYL 11, 10);

ARAY: INE TEXT INE TEXT IN THIS ARRAY!
MOVELEFT(ARAYL11, ARAYL31, 10?

ARAY: INENENENENENETEXT IN THIS ARRAY!
MOVELEFT(ARAYL231, ARAYL2], 8);

ARAY: INIS ARRAYENETEXT IN THIS ARRAY!

PROCEDURE FILLCHAR (DESTINATION, LENGTH. CHARACTER)i

This procedure takes a (subscripted) PACKED ARRAY OF CHARACTERS
and fills it with the number (LENGTH) of CHARACTERs specified. This
can be done by:

ACO0J := <character expressiondi
MOVELEFT(ALO0J. AC1)s n—-1):

but FILLCHAR is twice as fast, as no memory reference is needed for a
saurce.

: See the note about word move optimization in the section on
MOVELEFT. The notes about MOVELEFT also apply to FILLCHAR.

The intrinsic SIZEDF (Section 2. 1. &) is meant for use with

these intrinsics; it is canvenient not to have to figure out or
remember the number of bytes in a particular data structure.

Page 132

b sl 22 LRIl TSI ARSI LY TR

* MISCELLANEDUS ROUTINES # # Section 2.1.6 #
B ST RIS I T I I AT O

 Version 1.5 September 1978

FUNCTION SIZEOF (VARIABLE OR TYPE IDENTIFIER) : INTEGER:

This function returns the number of bytes that the "item”
passed as a parameter occupies in the stack. SIZEOF is particularly
useful for FILLCHAR and MOVExxxx intrinsics.

FUNCTION LDOG ¢ NUMBER) : REAL;

‘This function returns the log base ten of the NUMBER passed as
a4 parameter.

PROCEDURE TIME (VAR HIWORD, LOWORD: INTEGER);

This procedure returns the current value of the system clock.
It is in &40ths of a second. (This is somewhat hardware—dependent; we
assume a 1&6-bit integer size and 32-bit clock word. The HIWORD
contains the most significant portion. WARNING! The sign of the LOWORD
may be negative since the time is represented as a 32-bit unsigned
number.) Both HIWORD and LOWORD must be VARiables of type INTEGER.

FUNCTION PWROFTEN (EXPONENT: INTEGER) : REAL:

This function returns the value of 10 to the EXPONENT power.
EXPONENT must be an integer in the range 0..37.

PROCEDURE MARK (VAR HEAPPTR: “~INTEGER)
PROCEDURE RELEASE (VAR HEAPPTR: ~INTEGER);

These procedures are vsed for rveturning dynamic memory
allocations to the system. HEAPPTR is of type ~INTEGER. MARK sets
HEAPPTR to the current top-of-~heap. RELEASE sets top-of-heap pointer
to HEAPPTR.

PROCEDURE HALT:

This procedure generates a HALT opcode that, when executed,
causes a non-fatal run—-time ervor to occur. At this point in
execution, the Debugger is invaked, therefore., if the Debugger is not
in core when this occurs, a fatal run—time error, %14, will occur.

PROCEDURE GOTOXY(XCOORD , YCOORD);

This procedure sends the cursor to the coordinates specified by
(XCOORD, YCOORD). The uvpper left corner of the screen is assumed to be
(0,0). This procedure is wraitten to default to a Datamedia-type
terminal. If your system uses other than a Datamedia or Terak 8510a,
you will need to bind in a new GOTOXY using the GOTOXY package
described in Section 4.10.

Page 133

(gl S 2222 S22 SIS TSI TS 2SS ILILLSRTTTILTZZEIFETE THTERYEIFE LT FRELTES Y EREY

* DIFFERENCES BETWEEN U.C.S.D. PASCAL AND STANDARD PASCAL® # Section 2.2 #
BRI U I ISR RIS B RERRER L RRE AR

Version I.5 September 1978

. This section is a4 summary and quick referrence guide which
notes the areas in which U . C.S.D. Pascal differs from the Standard
Fascal, and refers the user to the appropriate documents which explain
various aspects of U.C.S5.D. Pascal. The Standard Pascal referred to by
this section is defined in PASCAL USER MANUAL AND REPORT (2nd edition)
by Kathleen Jensen and Niklaus Wirth (Springer—Verlag. 1975).

Many of the differences lie in the area of FILES and 1/0 {n
general. It is recommended that the reader first concentrate upon the
sections which describe the differences associated with the standard
procedures EOF, EOLN, READ, WRITE. RESET, and REWRITE.

2.2.1 CASE STATEMENTS

Jensen and Wirth on page 31, state that i{f there is no labdel
equal to the value of the case statement selector, the result of the
case statement is undefined. U.C.S.D. Pascal defines that if there is
no label matching the value of the case selector then the next
statement executed is the statement following the case statement. For
example, the following sample program will only output the line "THAT’S
ALL FOLKE" since the case statement will "fall through® to the WRITELN
statement following the case statement:

PROGRAM FALLTHROUGH:
VAR CH: CHAR:;
BEGIN

CH:=’A’;

CASE CH OF

‘B’: WRITELN(OUTPUT, ‘HI THERE’);

‘C’: WRITELN(OUTPUT, ‘THE CHARACTER IS A “‘C‘'*")
END; .
WRITELN(OUTPUT, ‘THAT ‘S ALL FOLKS’);

END.

Contrary to the syntax diagrams for <Cfield listd> on pages 116~
118 of Jensen and Witth, the U.C.S.D. Pascal ¢ompiler will not permit a
semicolon before the “END" of a case variant field declaration within a
RECDRD declaration. See Table & for revised syntax diagrams for <tield
- listd,

Page 135

2.2.2 COMMENTS

The U.C.S.0. Pascal compiler re
between either the symbols "(#" and “»)
& comment. Text appearing between thes
compiler unless the first character of

which case the comment is interpreted a

See section 1.6 "Pascal Compiler* ¢for d
comments.

cognizes any text appearing

* or the symbols "{" and “}* as
e symbols is ignored by the
khn comment is a dollarsign,
s a compiler control comment.
ntails on compiler control

in

Note that if the beginning of tpe comment is delimited by the

*(#" symbol,
“#)" symbol,

appears, This feature allows a user ¢to
program which itself contains comments.
< XCP := XCP + 1; (# ADJUS
Note that the compiler does not
When a comment symbol is encountered,
matching comment symbol. The following
error:

(# THIS IS A COMMENT
2.2.3 DYNAMIC MEMORY ALLOCATION

The standard procedure DISPOSE

and Wirth i{s not implemented in U.C.S. D

the end of the comment must
rather than the ">" symbol!
the "{" symbol) the comment continues u

£

be delimited by the matching
When the comment begins with
ntil the matching “>" symbol
“comment out" a section of a
For example:
T FOR SPECIAL CASE... #®) >
keep track of nested comments.
he text is scanned for the
text will result in a syntax

(% NESTED COMMENT #)

END OF FIRST COMMENT =)
“srror here.

defined on page 158 of Jensen
Pascal. However, the function

of DISPOSE can be approximated by o combined use of the U.C.S.D.

intrinsics MARK and RELEASE. The proces

s of Trecovering memory space

described below is only an approximation to the function of DISPOSE as
one cannot explicitly ask that the storlage occupied by one particular

. variable be released by the system for

The current U.C.S.D.

implementi

gother uses.

tion allocates storage for

variables created by use of the standard procedure NEW in a stack-like

structure called the "heap”

The following program is a simple

demonstration of how MARK and RELEASE chn be used to change in the size

of the heap.
PROGRAM SMALLHEAP;

TYPE PERSON=

RECORD
NAME: PACKED ARRAYEO
ID: INTEGER

END;

Page 136

. 151 OF CHAR;

VAR P: ~PERSON; (# "~" means 'po!ntér to” as defined in J&W &)
HEAP: ~INTEGER;

BEGIN
MARK (HEAP);
NEW(P); .
P~. NAME: = ‘FARKLE, HENRY J. *;
P~ ID:= 999;
RELEASE(HEAP);
END.

The above program first calls MARK to place the address of the
current top of heap into the variable HEAP. HEAP being declared to be
® pointer to an INTEGER is not really important, as HEAP could have
been declared as pointing to almost anything. The parameter supplied
to MARK must be a pointer varjable, but need not be a pointer that is
declared to be a pointer to an INTEGER. This is a particularly handy
tonstruct for deliberately accessing the caontents of memorTy which is
otherwise inaccessable. Below is & pictorial description of the heap
at this point in the program‘s execution:

TOP OF HEAP ~-->

contents of heap at
start of program

Next the program calls the standard procedure NEW and this
results in & new variable P~ which is located in the heap as shown in
the diagram below:

TOP OF HEAP =——-D>

pr
€-—— HEAP

contents of heap at
start of program

Page 137

Once the program no longer needs the variable P~ and wishes to
“release™ this memory space to the system for other uses, it calls
RELEASE which resets the top of heap to the address contained in the
variable HEAP,

If the above sample program had made a series of calls to the
standard procedure NEW between the calls to MARK and RELEASE, the
storage occupied by several variables woulld have been released at
once. Note that due to the stack nature df the heap it is not possible
to release the memory space used by a single item in the middle of the
heap. It is for this reason the use of MARK and RELEASE can only
approximate the function of DISPOSE as described in Jensen and Wirth.

Furthermore, it should be noted that careless use of the
intrinsics MARK and RELEASE can lead to "dangling pointers", pointing
to areas of memory which are no longer parit of the defined heap space.

2.2. 4 EOF(F)

To set EOF to TRUE for a textfile F being used as an input file
from the CONSOLE device, the user must typle the EDOF character. The
system default EOF character is the control—=C character. The EOF
character can be altered by a suitable reconfiguration of the system
variable SYSCOM~. CRTINFOD. EOF using SETUP. ' For further information
concerning system configuration and the SETUP program see Section 4. 3.

I# F is closed, for any FILE F, EOQF(F) will return the value
TRUE. If EOF(F) is TRUE , and F i a FILE jof type TEXT, EOLN(F) is
also TRUE. After a RESET(F), EOF(F) is FALSE.. 1f EOF(F) becomes TRUE
during a GET(F) or a READ(F,...) the data ‘obtained thereby is not
valid. .

When a user program starts execution, the system performs a
RESET on the predeclared files INPUT, OUTRUT, and KEYBOARD. See
section 2.2.11 READ for further details cancerning the predeclared file

KEYBOARD.

As dofined in Jensen and Wirth, EﬂF and EOLN by default will
refer to the file INPUT if no file identifier is specified.

2.2.9 EOLN(F)

EOLN(F) is defined only if F is a textfile. F is a textfile (¢
the <type> of the window variable, F~, is of type CHAR. EOLN becomes
TRUE only after reading the end of line character. The end of line
character is a carriage return. In the example program below, care
must be taken as regards when the carriage return is typed while
inputing data:

Page 138

PROGRAM ADDL INES:
VAR K, SUM: INTEGER;

BEGIN
WHILE NOT EOF(INPUT) DO
BEGIN
SUM: =0;
READ (INPUT, K);
WHILE NOT EOLN(INPUT) DO
BEGIN
SUM: =SUM+K;
READ (INPUT., K};
END;
WRITELN(DUTPUT);
WRITELN(DUTPUT, ‘THE SUM FOR THIS LINE IS ‘, SUM);
END;
END.

In order for EOLN(F) to be TRUE in the above program, the
carriage return must be typed immediately after the last digit of the
last integer on that line. 1f instead a space is typed followed by the

carriage return, EDLN will remain FALSE and another READ will take
place.

2.2.6 FILES

Changes were made in order to bring U.C.S.D. Pascal closer to
the standard definition of the language.

A. INTERACTIVE FILES

Files of <typed> INTERACTIVE behave exactly as files of <typed>
TEXT. The standard predeclared files INPUT and OUTPUT will always be
defined to be of <type> INTERACTIVE. All files of any <type> other
then INTERACTIVE, are defined to operate exactly as described in Jensen
and Wirth., For files which are not of <typed> INTERACTIVE, the
definitions of EDF(F), EOLN(F), and RESET(F) are exactly as presented
in Jensen and Wirth. For more details conicerning files of C{typed>

INTERACTIVE see section 2.2.11 “READ AND READLN" and section 2.2.12
"RESET" &nd section 2.1.2..

B. UNTYPED FILES

U.C.S5.D. Pastal has one type of tile declaration which in mnot
found in the syntax of Jensen and Wirth. This type and its use is
demonstrated in the sample program belouw: :

Page 139

(#$I—%)
PROGRAM FILEDEMO.

VAR G.F: FILE;
BUFFER: . PACKED ARRAY[O.. 3113 0F CHAR;
BLOCKNUMBER, BLOCKSTRANSFERRED:; INTEGER:
BADIO: BOOLEAN;

(% This program reads a diskfile called ‘SOURCE. DATA’ and
copies the file into another dtskFile called ‘DESTINATION’
using untyped files and the intrinsics BLOCKREAD and
BLOCKWRITE *)

BEGIN
BADID: =FALSE;
RESET(G, ‘SOURCE. DATA’);
REWRITE(F, ‘DESTINATION’):
BLOCKNUMBER: =0
BLOCKSTRANSFERRED: -BLOCKREAD(G-$UFFER.1 BLOCKNUMBER);
WHILE (NOT EOQOF(G)) AND (IORESULT=0) AND (NOT BADIO) AND
(BLOCKSTRANSFERRED=1) DO !
BEGIN ;
BLOCKSTRANSFERRED: -BLOCKHRITE(F.BUFFER:I BLOCKNUMBER);
BADIO: = ({ BLOCKSTRANSFERRED<1) OR (IDRESULT<>0));
BLOCKNUMBER: =BLOCKNUMBER+1; |
BLOCKSTRANSFERRED: =BLOCKREAD (G, BUFFER, 1, BLOCKNUMBER)}
END;
CLOSE(F, LOCK);
END.

The two files which are declared and used in the above sample
program are both untyped files. An untyped file F can be thought of as
a file without a window variable F~ to which all 1/0 must be
accomplished by using the functions BLOCKREAD and BLOCKWRITE. Note
that any number of blocks can be transferked using either BLOCKREAD or
BLOCKWRITE. The functions return the actual number of blocks read. A
somewhat sneaky approach to doing a quick! transfer would be:

WHILE BLOCKWRITE(F, BUFFER., BLDCKREAD(G, BUFFER, BUFBLOCKS))2>0 DO (#IT#);

This is. however considered unclean. The program above has
been compiled using the I-Compile Time Option, thereby requiring that
the function IGRESULT and the number of blocks transferred be checked
after each BLOCKREAD or BLOCKWRITE in order to detect any 1/0 errors
that might have occurred.

Page 140

C. RANDOM ACCESS OF FILES

The U.C.5.D. implementation of structured files supports the
ability to randomly access individual records within a file by means o#f
the iIntrinsic SEEK. SEEK expects two parameters, the first being the
#ile identifier, and the second, an integer specifying the record
number to which the window should be moved. The first record of a
structured file is numbered record O. The following sample program

demonstrates the use of SEEK to randomly access and uvpdate records in a
file:

PROGRAM RANDDMACCESS:;
VAR DISK: FILE OF
RECORD
NAME: STRINGL201:
DAY, MONTH, YEAR: INTEGER;
ADDRESS: PACKED ARRAY[O.. 491 OF CHAR;
ALIVE: BOOLEAN

END;
RECNUMBER: INTEGER;
CH: CHAR;

BEGIN ‘
RESET(DISK, ‘RECORDS. DATA’);
WHILE NOT EOF(INPUT) DO
BEGIN
WRITE(OQUTPUT, ‘Enter record number ——=2>');
READ (INPUT, RECNUMBER)
SEEK(DISK, RECNUMBER):

CET(DISK);
WITH DISK~ DD
BEGIN
WRITELN(OQUTPUT, NAME, DAY, MONTH, YEAR, ADDRESS);
WRITE(DUTPUT, ‘Enter correct name ——=>’);

READLN (INPUT, NAME)

END;

SEEK(DISK, RECNUMBER); (# Must point the window
back to the record since
GCET(DISK) advances the
window to the next record
after loading DISK™ #)

PUT(DISK);
END;
END.

Page 141

Attempts to PUT records beyond the physical end of file will
set EDF to the value TRUE. (The physical end of file is the point
where the next record in the file will overwrite another file on the
disk.) SEEK always sets EDF and EOLN to FALSE. The subsequent GET or
PUT will set these conditions as is appropriate.

D. READ AND WRITE FROM ARBITRARILY TYPED FILES

It is not currently possible to READ or WRITE to files of type
other than TEXT or FILE OF CHAR.

2.2.7 COTO AND EXIT STATEMENTS

U.C.S.D. has a more limited form of GOTO statement than is
defined as the standard in Jensen and Wirth. U.C.S.D. ‘s GOTO statement
prohibits a CGOTO statement to a label which is not within the same
block as the GOTO statement itself. The examples presented on pages 31—

32 of Jensen and Wirth are not legal in U.C.S.D. Pascal.

EXIT is a U.C.S.D. extension which accepts as its single
parameter the identifier of & pracedure to be exited. Note that the
use of an EXIT statement to exit a FUNCTION can result in the FUNCTION
returning undefined values if no assignment to the FUNCTION identifier
is made prior to the execution of the EXIT statement. Below is an
example of the use of the EXIT statement:

PROGRAM EXITDEMO;
VAR T: STRING;
CN: INTEGER;

PROCEDURE Qi FORWARD;

PROCEDURE Pi
BEGIN
READLN(T);
WRITELN(T);
IF TC1l='#' THEN EXIT(Q):
WRITELNC'LEAVE P‘);
END;

PROCEDURE Q;
BEGIN

Pi :
WRITELNC(‘LEAVE Q’);
END;

Page 142

PROCEDURE R:
BEGIN
IF CN <= 10 THEN Q;
WRITELN(’LEAVE R’):
END;

BEGIN
CN: =0;
WHILE NOT EOF DO
BEGIN
CN: =CN+1;
Ri
WRITELN;
END;
END.

If the above program were supplied the following input

THIS 15 THE FIRST STRING
*
LAST STRING

the following output will result:

THIE IS5 THE FIRST STRING
LEAVE P
LEAVE G
LEAVE R

L
LEAVE R

LAST STRING
LEAVE P
LEAVE G
LEAVE R

~The EXIT(G) statement causes the PROCEDURE P to be terminated
followed by the PROCEDURE Q. Processing continues following the call
to G inside PROCEDURE R. Thus the only line of output following “#" is
“LEAVE R" at the end of PROCEDURE R. . In the two cases where the
EXIT(G) statement is not executed, processing proceeds normally through
the terminations of procedures P and Q.

1¢f the procedure identifier passed to EXIT is a recursive
procedure, the most recent invocation of that procedure will be
exited. If, in the adbove example, one or both of the procedures P and
G declared and opened some local files, an implicit CLOSE(F) is done
when the EXIT(Q) statement is executed, as if the procedures P and G
terminated normally.

Page 143

The creation of the EXIT statement at U.C.S.D. was inspired by
the occasional need for a straightforward means to abort a complicated
and possibly deeply nested series of procedure calls upon encountering
4N erToT. An example of such a use of the EXIT statement can be found
in the recursive descent U.C.S5.D. Pascal compiler. The routine use of
the EXIT statement ls, nevertheless, discouraged.

2.2.8 PACKED VARIABLES
A. PACKED ARRAYS

: The U.C.S.D. compiler will perform packing of arrays and
records if the ARRAY or RECORD declaration is preceded by the word
PACKED. For example, consider the following declarations:

A: ARRAYILO..91] OF CHAR;
B: PACKED ARRAYLO.. 9] OF CHAR:

The array A will occupy ten 16 bit words of memory, with each
element of the array occupying ! word. The PACKED ARRAY B on the other
hand will occupy & total of only 5 words, since each 16 bit word
contains two 8 bit characters. In this manner each element of the
PACKED ARRAY B is B bits long.

PACKED ARRAYs need not be restricted to arrays of type CHAR,
for example: .

C: PACKED ARRAY[O..13 OF O0.. 3

D: PACKED ARRAY[1..9] OF SET OF O..135;

D2: PACKED ARRAY[O..23%,0..3191 OF BOOLEAN;

Each element of the PACKED ARRAY C is only 2 bits long, since
only 2 bits are needed to represent the values in the range 0..3.
Therefore C occupies only one 16 bit word of memory, and 12 of the bits
in that word are unused. The PACKED ARRAY D is a 9 word array, since
each element of D is a SET which can be represented in a minimum of 16
bits. Each element of a8 PACKED ARRAY OF BOOLEAN, as in the case of D2
in the above example, occupies only one bit.

The follouwing 2 declarations are not equivalent due to the
recursive nature of the compiler:

E: PACKED ARRAY[O..91 OF ARRAYLO..3] OF CHAR:'

F: PACKED ARRAY[O..9,0..3] OF CHAR;

Page 144

|
The second occurrence of the Teserved word ARRAY in the
declaration of E causes the packing option in the compiler to be turned
off E becomes an unpacked array of 40 words. | On the otherhand, the
PACKED ARRAY F occupies 20 total words because the Teserved word ARRAY

occurs only once in the declaration. I E h#d been declared as

E: PACKED ARRAY[OQ..91 OF PACKED ARRA¢[O..33 OF CHAR;

or as]

E: ARRAY[O.. 9] OF PACKED ARRAY[O..SJlDF CHAR;

|

F and E would have had identical configurati%ni
The reserved word PACKED only has true significance before the

last appearance of the reserved word ARRAY 1% 8 declaration of a PACKED
ARRAY. When in doubt a good Tule of thumb when declaring a
multidimensional PACKED ARRAY is to place the reserved word PACKED
before every appearance of the reserved uord#ARRAY to insure that the
resultant array will be PACKED. j

The resultant array will only be pac&ed if the final type of
the array i{s scalar, or subrange:, or & set which can be represented in
B8 bits or less. The final type can also be BOOLEAN or CHAR. The
following declaration will result in no packing whatsoever because the
final type of the array cannot be represente% in a field of 8 bits:

G: PACKED ARRAYLO..3) OF 0O.. 1000; !
G will be an array which occupies 4 16 bit words.

Packing never occurs across word boundaries. This means that
if the type of the element to be packed requires & number of bits which
does not divide evenly into 16, there will be some unused bits at
the high order end of each of the words which comprise the array.

Note that a string constant may be assigned to a PACKED ARRAY
OF CHAR but not to an unpacked ARRAY OF CHAR. Likewise, comparisons
between an ARRAY OF CHAR and & string constant are illegal. (These are
temporary implementation restrictions which will be removed in the next
ma jor release.) Because of their different sizes, PACKED ARRAYs cannot
be compared to ordinary unpacked ARRAYs. For further information
regarding PACKED ARRAYs OF CHARacters see section 2.2.16 “STRINGS".

A PACKED ARRAY (QF CHAR may be output with & single write statement:

PROGRAM VERYSLICK:
VAR T: PACKED ARRAYLO.. 103 OF CHAR;
BEGIN
T:='HELLO THERE’:
WRITELN(T);
END.

Page 145

Initialiration of a PACKED AR#AY OF CHAR can be accomplished
very sfficiently by using the U.C.S.D. intrinsics FILLCHAR and SIZEOF:

PROGRAM FILLFAST;
VAR A: PACKED ARRAY(O.. 103 OF CHAR;
BEGIN

FILLCHAR(ACLO1, SIZEQGF(A), * *);
END.

The above sample pragram #11ls the entire PACKED ARRAY A with
blanks. For further documentation on FILLCHAR, SIZEOF, and the other
U.C.S.D. intrinsics see section 2. 1.3 "CHARACTER ARRAY MANIPULATION
INTRINSICS™. :

B. PACKED RECORDS

The following RECORD declaration declares a RECORD with 4
fields. The entire RECORD occupies one 16 dit word as a result of
declaring it to be a PACKED RECORD. -

VAR R: PACKED RECORD
I.J,K: 0..31;
B: BOOLEAN
END;

The variables I, U, K each take up 3 bits in the word. The
boolean variable B is allocated to the 1&6°th bit of the same word.

In much the same manner that PACKED ARRAYs can be
multidimensional PACKED ARRAYs, PACKED RECORDS may contain fields which
themselves are PACKED RECORDS or PACKED ARRAYS. Again. slight
differences in the way in which declarations are made will affect the
degree of packing achieved. For example, note that the following two
declarations are not equivalent:

VAR A: PACKED RECORD VAR B: PACKED RECORD

€: INTEGER; C: INTEQER;

F: PACKED RECORD F:RECORD
R: CHAR; R: CHAR:
K: BOOLEAN K: BOOLEAN

END; ‘ END;
H: PACKED ARRAYLO..31 OF CHAR H: PACKED ARRAYLO. .31 OF CHAR
END; ' END;

As with the reserved word ARRAY, the Treserved word PACKED must
appear with every accurrence of the reserved word RECORD in order for
the PACKED RECORD to retain its packed qualities throughout all tields
of the RECORD. In the above example. anly RECORD A has all of its
fields packed into one woard. In B, the F field is not packed and
therefore occupies two 16 bit words. It is important to note that a
packed or unpacked ARRAY or RECORD which is a field of a PACKED RECORD
will always start at the beginning of the next word boundary. This
means that in the case of A, even though the F field does not
completely fill one word. the H field starts at the beginning of the

Page 144

next word boundary.

A case variant may be used as the last field of a PACKED
RECORD, and the amount of space allocated to it will be the size of the
largest variant amoung the various cases. The actual nature of the
packing is far beyond the scope of this document.

VAR K: PACKED RECORD
B: BOOLEAN;
CASE F: BOOLEAN OF
TRUE: (Z: INTEGER):
FALSE: (M. PACKED ARRAYLO.. 3] OF CHAR)
END
END;

In the above example the B and F fields are stored in two bits
of the first 16 bit word of the record. The remaining 14 bits are not
used. The size of the case variant field is always the size of the
largest variant, so in the above example, the case variant field will
occupy two words. Thus the entire PACKED RECORD will occupy 3 words.

C. USING PACKED VARIABLES AS PARAMETERS

No element of & PACKED ARRAY or field of a PACKED RECORD may be
passed as a variable (call-by-reference? pareameter to & PROCEDURE or
FUNCTION. Packed variables may, however, be passed as call by valvue
parameters, as stated in Jensen and Wirth.

'D. PACK AND UNPACK STANDARD PROCEDURES

U.C.S.D. Pascal does not support the standard procedurss PACK
and UNPACK as defined in Jensen and Wirth on page 106.
2.2.9 PARAMETRIC PROCEDURES AND FUNCTIONS

U.C.S5.D. Pascal does not support the construct in which
PROCEDURES and FUNCTIONS may be declared as formal parameters in the
parameter list of a PROCEDURE or FUNCTION.

See Section &.6 for a revised syntax diagram of <parameter—
listd, ‘ k

2.2.10 PROGRAM HEADINGS

Although the U.C.S.D. Pascal compiler will permit a list of
£ile parameters to be present following the program identifier, these
parameters are ignored by the compiler and will have no affect on the
program being compiled. As a result the following two program headings
are egquivalent:

Page 147

PROGRAM DEMO(INPUT, OUTPUT); and PROGRAM DEMO:

With either of the above program headings, a user program will
have three files predeclared and ocpened by the system. These are:
INPUT, OUTPUT, and KEYBOARD and are defined to be of <typed>
INTERACTIVE. If the program wishes to declare any additional files,
these file declarations must be declared together with the program’s
other VAR declarations.

2. 2. 11 READ AND READLN
Civen the following dc&laratiohs:

VAR CH: CHAR; |
F: TEXT: (% TYPE TEXT = FILE OF CHAR #)

the statement READ(F,CH) is defined bqjdonson and Hirth on page 8% to
be equivalent to the two statement sequence:

CH: =F~;
CET(F)Y

In other words, the standard definition of the standard
procedure READ requires that the process of opening a file load the
“window variable" F~ with the first character of the file. 1In an
interactive programming environment, it is not convenient to require a
user to type in the first character of the input file at the time when
the file is opened. If this were the case, every program would "hang"
until a character was typed, whether or not the program performed any
input operations at all. In order to overcome this problem, U.C.S.D.
Pascal defines an ‘additional file <type> called INTERACTIVE. Declaring
@& file F to be of <type> INTERACTIVE is equivalent to declaring F to be
of type TEXT, the difference being that the definition of the statement
READ(F,CH) is the reverse of the sequence specified by the standard
definition for files of Ctype> TEXT: i.a.

CET(F);
CHi: mF~;

This difference affects the way in which EOLN must be used
within a program whenreading from a textfile of type INTERACTIVE. As
in section 5 , EOLN becomes true only after reading the end of line
character, a carriage return. When this is read, EOLN is set to true
and the character returned as a result of the READ will be & blank. In
the following example , the left fragment is taken from Jensen and
Wirthi only the RESET and REWRITE statements have been altered. The
program on the left will correctly copy the textfile represented by the
file X to the file Y. The program fragment on the right performs a
similiar task, except that the source fﬁxe being copied is declared to
be a file of <typed> INTERACTIVE, thereby forcing a slight change in the
program in order to produce the desired result.

Page 148

PROGRAM JANDW;
VAR X, Y:TEXT;
CH: CHAR;
BEGIN
RESET(X, ‘SOURCE. TEXT *);
REWRITE(Y, ‘SOMETHING. TEXT’);
WHILE NOT EOF(X) DO
BEGIN
WHILE NOT EOLN(X) DD
BEGQIN
READ(X. CH);
WRITECY,CH);

END;
READLN(X?);
WRITELN(Y);

END;
CLOSE(Y, LOCK);
END.

-

PROGRAM UCSDVERSION;
VAR X,Y: INTERACTIVE;
' CH: CHAR;

_BEGIN

RESET (X, ‘CONSOLE: *);
REWRITE(Y, '‘SOMETHING. TEXT)i
WHILE NOT EOF(X) DO
. BEGIN
WHILE NOT EOLN(X) DO
BEGCIN
READ(X, CH);
IF NOT EOLN(X) THEN
WRITE(Y,CH);
END;
READLN(X):
WRITELN(Y);
- ENDi
CLOSE(Y, LOCK);
END.

Note that the textfiles X and Y in hhe above two programs had

to be opened by using the U.C.S.D.

procedures RESET and REWRITE.

extended form of the standard

The IF statement in the 1nteractive;version'of the program
fragment on the left is needed in order for the file Y to become an

exact copy of the textfile X.

Without the IF statement, an extra blank

character is appended to the end of each line of the file V. This
extra blank corresponds to the end of line character according to the

standard definition in Jensen and Wirth.

Note that the CLDSE intrinsic

was applied to the file Y in both versions of the program in order to

make it a permanent file in the disk directprq called

"SOMETHING. TEXT”. Likewise, the textfile X could have been a diskfile
instead of coming from the CONSOLE device in the right hand version o#

the program.

There are threr predeclared textfiles which are automatically
opened by the system for a user program. These files are INPUT,
OUTPUT, and KEYBOARD. The file INPUT deFau;ts to the CONSOLE device
and is aluways defined to be of <type> INTERACTIVE. The statement
READ(INPUT, CH) where CH is & character variable, will echo the
character typed from the CONSOLE back to the CONSOLE device. WRITE
statements to the file OUTPUT will, by default, cause the output to
appear on the CONEOLE device. The #file KEYPDARD is the non—-echoing
equivalent to INPUT. For example, the two statements

READ (KEYBOARD, CH);
NRITE(DUTPUT.CH){

are equivalent to the single statement READ(INPUT, CH).

Page 149

For more documentation redarying the use of files see sections
- 2/2.6 “FILES", 2 2.4 “ECF", 2.2.5 "EOLN", 2.2.'17 ‘WRITE AND WRITELN®,
" and 2.2.12 "RESET". Sce section 2.1.2 “INPUT/GUTPUT INTRINSICS" for
more details on the U.C.S. D. intrinsics.

2.2.12 RESET(F)

. The standard procedure RESET.7as;deFined on page 9 of Jensen
and Wirth, resets the file window to the beginning of the file F. The
next GET(F) or PUT(F) will affect record number O of the file. In
addition, the standard definition of RESET(F) states that the window
variable F~ be loaded with the first record in the file. The U.C.S.D.
implementation of RESET(F) operates exactly as the standard definition.
unless the file F is declared to be of <type> INTERACTIVE in which case
the statement RESET(F) points the #ile window to the start of the file,
but does not load the window variable F~. Thus, for files of <typed>
INTERACTIVE, the U.C.S.D. equivalent of the standard definition of
RESET(F) is the two statement sequence:

RESET(F),
. GET(F);

U.C.S.D. Pascal defines an alternative form of the standard
procedure RESET which is used to open a pre—-existing file. In i¢,
RESET has two parameters, the first being the file identifier; the
second., either a STRIMG constant or variable which corresponds to the
directory filename of the file being opened. See section 2.1.2
"INPUT/OUTPUT INTRINSICS"for more infromation. on this use of RESET.

2.2.13 REWRITE(F)

The standard procedure REWRITE is used to open and create a new
file. REWRITE has two parameters., the first, being the file .
identifier, the second corresponds to the directory filename of the -
file being opered, and must be erther a STRING constant or variable.
For example, the statement REWRITE(F, "SOMEINFO. TEXT’) causes the tile F
to be opened for output, and, if the file is locked onto the disk, the
filename of the file in the directory will be “SOMEINFO. TEXT". REWRITE
performs exactly as the U.C.S5.D. OPENNEW intrinsic and will eventually
replace OPENNEW . . See section 2.1.7 "INPUT/QUTPUT INTRINSICS® ¢or
further documentation regarding the use of REWRITE to open a file.

2.2 14 SEGMENT PROCEDURES

The concept of the SEGHMENT PROCEDURE is a U.C.S.D. extension to
Pascal:, the primary purpose of which is t¢ allow a programmer the
ability to explicitly partition a large program into segments, of which
only a few need be resident in memory at any one time. The U.C.S.D.
Pascal system is necessarily partitionsd in this manner because it is

" too large to Fit into the mcmary of maost frall interactive computers

at one time,

Page 120

The following is an example of the use of SEGMENT PRDOCEDURES:
PROGRAM SEGMENTDEMO;
(= GLODBAL DECLARATIONS GO HERE)
PROCEDURE PRINT(T:STRING); EDRNARDJ

SEGMENT PROCEDURE ONE;
BEGIN ‘
PRINT('SEGMENT NUMBER ONE‘);
END;

SEGMENT PROCEDURE TWO:
SEGMIENT PROCEDURE THREE;
BEGIN
ONE;
PRINT('SEGMENT NUMBER THREE’);
END;
BEGIN (% SESMENT NUMBER TWO #)
THREE;
PRINT(“SEGMENT NUMBER TW0O'’);
END;

PROCEDURE PRINT;
BEGIN

WRITELNC(DUTPUT, T):
END;

BEGIN

TWO;

WRITELN(’I’’M DONE’);
END.

The above program will give the following output:

SEGMENT NUMBER ONE
SEGMENT NUMBER THREE
SEGMENT NUNDER TWO
I‘M DONE

For further documentation on SEGMENTY PROCEDURES: their use and
the syntax governing their declaration see Section 3.3 “SEGMENT PROCEDURES®”.

2 .2.19 EETS

U.C.S.D. Pascal supports all of the constructs defined for sets
on pages 50-51 of Jensen and Wirth. Sets (of enumeration values) are
limited to positive integers only. Space is assigned. rounding up to
word boundaries, in & bitwise fashion, starting at zero. up to 4079,
inclusive. Therefor @ set can be at most 299 words in size, and have
at most 4080 elements.

Page 151

Comparisons and operations .on ietslaro allowed only betwaen
sets which are ei1ther of the same base type or subranges of the same
underlying type For example, in the sampfa program below, the base
fype of the set S is the subrange type 0..49. while the base type of
the set R is the subrange type 1.. 100. The underlying type of both
sets is the type INTEGER, which by the above definition of
compatability, implies that the comparisons and operations on the sets
§ and R in the following program are legal:

PROGRAM SETCOMPARE;
VAR S: SET OF 0.. 49,
R: SET OF 1..100;

BECIN |
S:= [0, 5/ 10, 18, 20, 25, 30, 3%, 40, 451;
R:= [10, 20, 30, 40, 50, 60, 70, 80, 901;
IF 8§ = R THEN

WRITELN(’... oops ...)
ELSE

WRITELN('sets work’);
S :=§ + R;

END.

\
In the following example, the construct I L J is not legal since the
two sets are of two distinct underlying types. :

|

PROGRAM ILLEGALSETS;
TYPE STUFF=(ZERO, ONE, TWO);
VAR 1: BET OF STUFF;

J: SET OF 0..2;

BEGIN

I:= [ZEROJ;

Jem= [1,21; i

IF I = J THEN .., <<<< error here
END. !

2.2.16 STRINGS

|

U.C.S.D. Fascal has an additional p+odeclared type STRING.
Variables of type STRING are essentially PAéKED ARRAYs OF CHAR that
have a dynamic LENGTH attribute, the value of which is returned by the
STRING intrinsic LENGTH. The default maximum LENGTH of a STRING
variable is B0 characters but can be overridden in the declaration of a
ETRING variable by appending the desired LENGTH of the STRING variable
within € J after the reserved type identif!#r STRING. Examples of
declarations of STRING variables are: ‘

Page 152

TITLE: STRING (#* defaults to & mcxi*um length of BO characters =)

NAME: STRING[Z0J: (% allows the STRING to be a maximum of 20
characters#) |

Note that a STRING variable has an absolute maximum length of
255 characters. Assignments to string variables can be performed using
the @assignment statement, the U.C.S.D. STRING intrinsics, or by means
of & READ statement:

TITLE:=* THIS IS8 A TITLE %
or

READLN(TITLE);
or

NAME: = COPY(TITLE. 1, 20);

The individual characters within a STRING are indexed from I to
the LENGTH of the STRING, for example:

TITLEC11:= ‘A‘;
TITLED LENGTH(TITLE) J:= ‘Z7;

A variable of type STRING may not be indexed beyond its current
dynamic LENGTH. The following sequence will result in an invalid index
run time error: !

TITLE:= "1234°/;
TITLELSl: = *57;

A variable of type STRING may be compared to any other variable
of type STRING or a string constant no matter what its current dynamic
LENGTH. Unlike comparisons involving variables of other types, STRING
variables may be compared to items of a diffe ent LENGTH. The
resulting comparison is lexicographical. The following program s a
demonstration of legal comparisons involving Yariablos of type STRING:

PROGRAM COMPARESTRINGS:
VAR S: STRING;
T: STRINGLA40I,

BEGIN
S:= ‘SOMETHING *;
T:= ‘SOMETHING BIGGER’;
IF S = T THEN
WRITELN(‘Strings do not work very well’)
ELSE
"IF 8 > T THEN ;
WRITELN(S, * is greater than ‘, T)
ELSE

Page 153

IF 8§ < T THEN ‘
WRITELN(S: * is less than *, T);

IF 8 = ‘SOMETHING’ THEN

WRITELN(S, * equals “,8)
IF 8 > ‘SAMETHING‘’ THEN L

WRITELN(S, * is greater than SAMETHING');
IF 8 = ‘SOMETHING ‘ THEN

WRITELN(‘BLANKS DON‘’T CODUNT’)
ELSE

WRITELN(‘BLANKS APPEAR TO| MAKE A DIFFERENCE‘):
S:= XXX’
T:=’ABCDEF /;
IF 8 > T THEN

WRITELN(S, * is greater than *, T)
ELSE
WRITELN(S, ’ is less than ', T);
..END.

The above program should produce the ollowing autput:

SOMETHING is less than SOMETHING BIGGER
SOMETHING equals SOMETHING

SOMETHING is greater than SAMETHING
BLANKS APPEAR TO MAKE A DIFFERENCE

XXX is greater than ABCDEF

One of the most common uses af STRING vnfiables in the U.C.8.D.
Pascal system is reading file names from the CONSOLE device:

PROGRAM ILISTER;

VAR BUFFEER: PACKED ARRAYLO.. 5111 OF CHAR:
FILENAME: STRING;
F: FILE,

BEGIN {
WRITE(‘Enter filename of the file to be listed ——D>‘);
READLN(FILENAME); ?
RESET(F, FILENAME);
WHILE NOT EOF(F) DO
BEGIN

. e

END;
END.

|
When a variable of type STRING is a parameter to the standard
procedure READ and READLN, all characters up to the end of line
character (a carriage return) in the source f@lo will be assigned to
the STRING variable. Note that care must be taken when reading STRING
variables:. for example, the single statement READLN(S1.S2) is
equivalent to the two statement sequence READ(S1); READLN(S2). In both
cases the STRING variable S2 will be assignedlthe empty string.
i

!
|

Page 154

For further information concerning the1prcdec1arod type STRING
see Section 2.1.1 “STRING INTRINSICS". |

1
oo . 1
2.2.17 WRITE AND WRITELN }

The standard procedures WRITE and WRITELN are compatible with
Standard Pascal, except with respect to 8 WRITE or a WRITELN of a
variable of type BOOLEAN. U.C.S.D. Pascal does not support the output

of the words TRUE or FALSE when writing out the value of a BOOLEAN

variable. 1

For a description of WRITE statements

of variables of type
STRING see Section 2.1.1 "STRING INTRINSICS".

U.C.8.D. “s WRITE and WRITELN do suppth the writing of entire

PACKED ARRAYs OF CHAR in a single WRITE statement:

VAR BUFFER: PACWKED ARRAYLO.. 101 COF CH*R:
BEGIN
BUFFER: = ‘HELLO THERE';: (# containsiexacth 11 characters #)
WRITELN(OUTPUT, BUFFER)I ;
END. i
The above construct will work only if |the ARRAY is a PACKED
ARRAY OF CHAR. See section 2. 2. 8 PACKED VARIABLES for further
information. ,
|
The following program demonstrates the effects of a field width
specification within a WRITE statement for a ariable of type STRING:

PROCRAM WRITESTRINGS; ‘
VAR S:STRING:

BEGIN
S:='THE BIG BROWN FOX JUMPED... ‘;
WRITELN(S);
WRITELN(S: 30);
WRITELN(S: 10);

END.

The above program will produce the following output:
THE BIC BROWN FOX JUMPED...

THE BIG BROWN FOX JUMPED..
THE BICG BR

|
Note that when a string variable is written without specifying
a field width, the actual number of characters written is equal to the
dynamic length of the string. If the field width specified is longer
than the dynamic length of the string. leadinp blanks are incerted and
written. If the field width is smaller than &he dynamic length of the
string, the excess characters will be truncated on the right.

Page 155

2.2.18 IMPLERENTATION SIZE LIMITS

The following is a list oF'maxim

in size limitations impasad
upon the user by the current implementat

on of U.C.S.D. Pascal:

1. Maximum number of bytes of ob
FURNCTION is 1200. Local varia
can occupy a maximun of 15H°2C

ect code in a PROCEDURE or
les in a PRCCEDURE or FUNCTION
weords of memoTy.

2. Maximum number of characters In a STRING variable is 299.

T

3. Maximum number of slements in a SET is 255 # 1&4=4080.

4. Maximum number of SEGMENT PROtEDUREs and SEGMENT FUNCTIONSs
. is 146, (@ are reserved fcr the Pascal system, 7 are
available for use by the usar‘program)

3. Maximum number of PROCEDURES #r FUNCTIONs within a segment
is 127.

2.2.19 EXTENRDED COMPARISONS.

U.C.S5.D. Pascal allouws = and <> #omparisons of any array or

record structure. |
° |

2.2.20 LONG INTEGERS.

. \ .
UCSD Pascal allows integers of up to 35 digits. See section
3.3.3 for details regarding long tntnger

2. 2.1 UNITS

UCSD Pascal now supparts. the mod
section 3.3. 2 for details regarding UNIT

laritq concept of UNITs., See

|

|

|

|
2. 2. 22 SUMMARY OF U.C.S.D. INTRINSI C
INTRINSIC SECTION # DESCR#PTIDN

1

BLOCKREAD 2.1.2 Function which reads a variable number of blocks
from en untyped 1!9

BLOCKWRITE 2.1.2 Function uhich.w ites a variable number of blocks
fraom an untyped 11e

CLOSE
CONCAT

DELETE

DRAWLINE
DRAWBLOCK
EXIT

coTOXY
FILLCHAR
HALT
IDSEARCH
INSERT

_TDRESULT
LENGTH
MARK

MOVELEFT
MOVERIGHT
REWRITE
RESET

POS

PWROFTEN

2.1.2
2.1.1
.1
2.1.4
2.1.4
2.1.7
2.1.6
2.1.5
2.1.6
2.1.1
2.1.2
2.1.1
2.1.3
2.1.5
2.1.%
2.1.2
2.1.2
2.1.1
2.1.6

STRING intrinsic used

\
Procedurs to close ft
ETRING intrinsic use

STRING intrinsic used
STRING variables.

Graphics intrinsic ¢
Graphics intrinsic ¢
Intrinéic used to ex
Procedure used for ¢
parameters X and Y a
on the screen where

Fast procedure for i

Halts a user program |
the interactive Debuq

Routine used by the P
assembler,
variables.

Function returning th
operation. (See Tabl

STRING intrinsic whic
of a STRING variable.

Used to mark the curn
memory allocation.

Low level intrinsic £
Low level intrinsic ¢
Procedure for opening
Procedure for opening

STRING intrinsic retu
pattern in & STRING v

Function which return
10 raised to the powe
supplied.

les,
to concatenate strings together.

to delete characters from

T use on the Terak 83510a.

T use on the Terak 8510a.

t PROCEDURES cleanly.

Tsor addressing whose two

e the column and line numbers
he cursor is to be placed.

itializing PACKED ARRAYs DOF CHAR.

which may result in a call to
ger.

ascal compiler, and the PDP-11
to insert characters in STRING
e result of the previous 1/0

e 2 for a list of values)

h returns the dynamic length
ent top of the heap in dynamic

or moving mass amounts of bytes.
or moving mass amounts of bytes.
a new file.

an existing file.

Tning the position of a
@ariable.

s as & REAL result the number
T of the integer parameter

Page 157

RELEASE

SEEK

SIIEQF

STR

TIME

TREESEARCH

UNITBUSY

UNITCLEAR

UNITREAD

UNITWAIT

UNITWRITE

Page 138

2.1.2

2.1.6

2.1.1
2.1.6

Intrinsic used to r'ienso memory occupied by
variables dynamically allocated in the heap.
i

Used for random acclTsing of records withing a file.

Function returning the number of bytes allocated
to a variable.

Procedure to convort‘long integer into string.

Function returning the time since last bootstrap
of system. (returns z1ero if microcomputer has
no real time clock) |

Routine used solely by the Pascal compiler.

Low level intrinsic for determining the status of
a peripheral device.

Low level intrinsic to cancel 1/0 from a peripheral
device. .

Low level intrinsic for.reading from a paeripheral
device.

Low level intrinsic |for waiting until a peripheral
device has completed an 1/0 operation.

Low level intrinsic jused for writing to a peripheral

device.

/

i*iii**&amiq-nb*i*fu*»;vr&&;«.u—*n—**«l#f LI Z TR Y S TN
% DRAWLINE AN IMPLEMENTOR'S GUIDE}* # Section 3.1 #

LA R e T L o YR T T T ¥ yravpepeapgupyory
Version I. 5 September 1978
|

The DRAWLINE intrinsic uses an incremental technique to plot
line segments on a point-addressable matrix. [The algorithm guarantees a
best (least squares) approximation to the desired line. In general this
approximation 1s not unique. DRAWLIME may pick different
representations 7or a line depending on the starting point. (This could
be corrected by always starting at the same end of the line.) No range
checking is performed on parameters passed tq this intrinsic.

|
The algorithm is essentially the nneidescribed in Newman and
Sproul, Principles of Interactive Computer Graphics as the Digital
Differential Analyzer. It has been modified to perform only integer
arithmetic. Pascal source code is included below. The procedure first
determined whether the line will be mcre horizontal or vertical. In the
discussion below, we assume the horizontal case; vertical is similar.

There will be DELTAX points plotted Qith horizontal increment
of 1 each. The vertical increment will be ABS (DELTAY / DELTAX) <= 1.
The Y coordinate arithmetic is scaled by DELTAX to eliminate fractions.
An additional savings in execution time has deen gained by maintaining
the address of the previous point, and doing only addition and
subtraction to reach the next point ta be plotted.

The RADAR function is complicated as two intersecting lines may
have no plotted points in common. The detectﬁon condition is either (1)
the computed point is TRUE, or (2) both the mext horizontal and the
next vertical points are TRUE. Condition (2) could be weakened: when
the line is more horizontal, only the next vertical point need be
checked. ,

Refer to Section 2.1.4 for & description of the parameter calling sequence.

A PAGSCAL implementation follows:

Page 159

i
PROCEDURE DRAWLINE (VAR RANGE: INTEGER; VAR SCREEN: SCREENTYPE;
ROWWIDTH, XSTART, YSTART., DELTAX. DELTAY, INK: INTEGER);

VAR X. ¥, XINC, YINC, COUNT: INTECER;

PROCEDURE DRAWDOT:

PROCEDURE RADAR:
VAR GOTIT: DOOLEAN;
BEGIN
COTIT := FALSE; :
COUNT := COUNT + 1; |
IF SCREEN LY, XJ THEN GOTIT := TRUE J*LANDED ON THE POINT#)
ELSE (#WE MIGHT GO THROUGH A LINE#) |
IF SCREEN [Y+1, XJ THEN
COTIT := SCREEN LY, X+11);
IF GOTIT THEN

BEGIN
RANGE := COUNT;
EXIT{(DRAWL INE)
END;

END (#RADAR%);

BECIN (#DRAWDOT#H)

CASE INK OF
"0 (#NONE#*): EXIT (DRAWLINE):; (#THEY HAD NO BUSINESS HERE#)
1 (*WHITE®): SCREEN (Y, X1 := TRUE;
2 (#BLACK#*): SCREEN [Y, XJ := FALSE; . :
3 (#REVERSE#*): SCREEN [Y, X1 := NOT SCREEN LY., XJ;
4 (%RADAR#%): RADAR ’

END (#CASE%*)
END (#DRAWDOT*);

PROCEDURE DOFORX; (#MORE HORIZONTAL#)
VAR ERROR, I: INTEGER:
BEGIN

IF DELTAX = O THEN EXIT (DRAWLINE); (#THEY’RE GOING NOWHERE®#)
ERROR := DELTAX DIV ; :
I := DELTAX:
REPEAT
ERROR := ERROR + DELTAY;
IF ERROR >= DELTAX
THEN BEGIN ERROR := ERROR - DELTAX; Y := Y 4+ YINC END;
X := X + XINC: -
DRAWDOT;
Il :=1-+-1;
UNTIL I = O;
END (#DOFORX¥»);

Page 1&0

PROCEDURE DOFORY: (#MORE VERTICAL#*)
VAR ERROR. 1: INTEGER;
BEGIN
ERROR := DELTAY DIV 2;
I := DELTAY;
REPEAT
ERROR := ERROR + DELTAX;
IF ERROR >= DELTAY _
THEN BEGIN ERROR := ERROR — DELTAY; X := X + XINC
Y := Y 4 YINC; i
DRAWDOT;
1 :=1 - 1;
UNTIL I = O;
END (%DOFORY#*);

BEGIN (#DRAWLINE#)

X := XSTART;

IF DELTAX € 0O
THEN BEGIN XINC := =1, DELTAX := —=DELTAX END
ELSE XINC := {; ;

Y := YSTART:

IF DELTAY < O
THEN BEGIN YINC := =1; DELTAY := =DELTAY END
ELSE YINC = 1, .

COUNT := Qi v
IF DELTAX = DELTAY THEN DDFORX ELSE DOFDRY;

END;

IF INKA = 4 (#RADAR¥*) THEN RANGE := COUNT; (#HIT THE LIMIT GIVENH)

END (#DRAWLINE*);

Page 161

SN AU RN AW NN RNERREY
FILE FORMATS # # Section 3.2 »
URRERREREHARARES KRR ERRBRERRNN

Version 1.5 September 1978
Text files are nf the format:

<1024 bytesd> header page, information for editors. This space
is reserved for use by the text editors, and is respected by all
portions of the system. When a userprogram opens a TEXT file, and
REWRITEs or RESETs it with a title ending in ‘. TEXT’, the 1/0
subsystem will create and skip over the initial page. This is done to
faciljitste uses editing their input and/or output data. The file-
handler will transfer the header page only on & disk-disk transfer, and
will omit it on a transfer to a serial device. (i.e. transfers to
PRINTER:., and CONSOLE: will omit the header page)

<1024 byte pagesd> where a page is defined:’
<LDLEJCindentlltextILCRILDLEILindentJCtext3L{CRI... [nullsl>

Data Link Escapes are followed by an indent-code, which is a
byte containing the value 32+4(#% to indent). The nulls at the end of
the page follow a [CRJ in all cases, they are a pad to the end of a
page. The reason for the nulls is that the compiler wants integral
numbers of lines on a page. The Data Link Escape and corresponding
indentation code are optional. In a given text file some lines will
have the codes, and some won’t. ‘ .

Foto files are declared in PASCAL as follows:

TYPE SCREEN = PACKED ARRAY[O..239,0..319] DF BOOLEAN:
VAR FOTOFILE: PACKED FILE OF SCREEN;

or something similar, which takes up the same dimensional
space. ‘

Data files are up to the user.

Code files Wave one block of information which describes the
code kept in the file. First is an array of 16 word pairs, the first
word in the pair describes the block which starts the code of the
segment which is numbered as the position in the array. The second
word is the number of bytes in that segment. For example if the third
word in the first block of a code file is an B, and the fourth work is
1084, you now know that segment 1 of this code file starts on block 8
of the file, and has 1084 bytes of code.

Following this array is an array of arrays of characters. The
array is an array of B8 character arrays which describe the segments by
name, These 8B cQaracters are those which identify the segment at
compile time. Here again, the position in this array corresponds to
the segment number. '

Page 163

Following the array of namek is an array, again 14 words long,
of state descriptors. The values in this array indicate -what kind of
segment i3 at the described lncatiob. The values for this array, at
present, arae: LINKED.HDSTSEG.SEGPRO#.UNITSEG.SEPRTSEG.

{

|

1

The remainder of the bloct.;l44 words, is reserved for future
use by later versions of the system, The format of the first block

will most probably change completelb for version II1.0.

Page 164

LA A A XA NSRS L2222 ST TR TSI L Y 2

SEGMENT PROCEDURE NOTES # # Section 3.3.1
E e e R e Y Yy A R LI T T Ty

Version 1.5 September 1978
Declarations cf SEGMENT preocedures and functions are identical
to standard Pascal protedures and functions except they are preceded by
the reserved word ‘SEGMENT’, for example:

SEGMENT PROCEDURE INITIALIZE;
BEGIN

(# PASCAL cade #)
END;

Program behavior differs, however, gs code and data for a
SEGMENT procedure (function) are in memory pnlu while there is an
active invocation of that procedure.

Advantages and benefits:

The user may now put large pieces o# one—time code., eg.
initielization code., into a SEGMENT procedure After performing the
initialization, for example, the now-useless code is taken out of
memory thus increasing the available memorqlspaca.

Furthermore the user may now compilh his/her program in chunks,
specifically in SEGMENTS. The LINKER program (described in Section
1.8) can be used to link together the separate segments to produce one
large code file.

Requirements and limitations:

The disk which holds the codefile ﬂor the program must be on—
line (and in the same drive as when the program was started) whenever
one of SEGMENT procedures it to be called, | Otherwise the system will
attempt to retrieve and execute whatever 1nFormatzon now occupies that
particular location on the disk, usvally with very displeasing and
certainly unexpected results.

A maximum of six (6) SEGMENT procedures are ordinarily
nvailable to the user.

|
i

SEGMENT procedures must be the Firét procedure declarations
containing code—generating statements. ?

For further details and examples see Section 3.9, INTRODUCTION
TO THE PASCAL PSEUDD MACHINE.

Page 165

R T N T T T N SN
* LINKAGE TO EXTERNALLY COMPILED # # Section 3.3.2 #
* AND ASSEMBLED ROUTINES * * *

g2l 2 22Tt tsas Ty Y &***E**i‘li ok B3 2t B A 2 B

Version 1.5 Septembkr 1978
EXTERNAL COMPILATION UNITS o

The UCSD Pascal 1.5 system supports a facility for integrating
externally compiled and assembled routines and data structures. Use of
separately compiled structures allows the user to create files of
frequently vused routines. After a structure is compiled, the user adds
it to a library, using the library maintainer. Files that reference
that structure need not compile it directly into their code file,
rather, the linker copies the existing code&into the host code file.
Separate compilation or assembly is supported in these areas: between
portions of programs written in Pascal; between assembly language
Toutines and Pascal hosts: and finally, between assembly language

routines. Each of these areas is discussedﬁin turn by the following
sections. -

3.3.2.1 PASCAL TO PASCAL LINKAGES —-- UNITS

A UNIT is a group of 1nterdependent”procedures. functions, and
associated data structures which perform a\specxalized task. Whenever
this task is needed within a program, the program indicates that it
USES the UNIT. A UNIT consists of two parts, the INTERFACE part, which
declares constants, types, varisbles, procedures and functions that are
public and can be used by the host program, and the IMPLEMENTATION
part, which declares constants, types, varﬁables. procedures and
functions that are private. These are not available to the host program
#nd are vsed by the UNIT. The INTERFACE paﬂt declares how the program
will communicate with the UNIT while the lmPLENENTATION part defines
how the UNIT will accomplish its task.

TURTLEGRAPHICSE (example B) is a UNIT which enables the user
to draw pictures using a graphics turtle. The INTERFACE consists of
procedures like MOVE, TURN, and PENCOLOR, which allow the user to move
the turtle and change colors. TURTLEGRAPHﬁCS also employs DRAWLINE, an
externally assembled procedure., to draw thd lines and the turtle.

A program that uses TURTLEGRAFPHICS has no need for DRAWLINE,
- and, consequently, DRAWLINE is private to that UNIT.

Page 147

PROGRAM DRAWPOLYGON:
USES TURTLEGRAPHICS:
VAR 1: INTEGER;
SIZE, NUMSIDES: INTEGER; .

BEGIN
INITTURTLE: (# Initialize the UNIT’s variables #)
WRITE(‘What size polygon?’);
READLN(SIZE);
WRITE(‘How many sides?’);
READLN(NUMSIDES):
FOR I:=1 TO NUMSIDES DO
BEGINM
MOVE(SIZE): o
TURN(3460 DIV NUMSIDES):
END;
END.

EXAMPLE A

|

A program must indicate the UNITs that it USES before the LABEL
declaration part of the program. At the occurrence aof a USES
statement, the compiler references the INTERFACE part of the UNIT as
though it were part of the host text itsel®. Therefore all public
constants, types. variables: functions: and procedures are global. Name
conflicts may arise if the user defines an identifier that has already
been defined by the UNIT. Procedures and functions may not USE UNITs
locally. : ‘

UNIT TURTLEGRAPHICS:
INTERFACE
TYPE '
TGCOLOR= (NONE, WHITE., BLACK, REVERSE)i

PROCEDURE INITTURTLE; ‘

PROCEDURE TURN(RELANGLE:. Integer)i
PROCEDURE MDVE(RELDISTANCE: Integer)i
PROCEDURE MOVETO(X, Y: Integer)
PROCEDURE TURNTO(ANGLE: Integer)i
PROCEDURE PENCOLOR(PCOLOR: TGCOLOR);

IMPLEMENTATION
CONST
TERXSIZE = 319;

TERYSIZE = 239;
RADCONST = 57, 29378:

Page 148

TYPE

SCREEN = Packed :
Array [O..TERXSIZE, O..TERYSIZE) of Boolean;

VAR
(# Private variasbles %)
TCXPOS: Integer:
TGYPOS: Integer:
TGHEADING: Integer;
TGPEN: TCCOLOR:

I, J: Integer;
S: SCREEN;

(# Externally assembled procedure #) 5
PROCEDURE DRAWLINE(Var RADAR: Integer; Var S: SCREEN;
ROW, X0, YO, DX, DY, PEN: Integer);

EXTERNAL; (% External declaration %)

PROCEDURE INITTURTLE:
BEGIN
Fillchar(SCREEN. Sizeof(SCREEN), 0)i
Unituwurite(3, SCREEN, &3):
HEADING := O,
TGXPOS := O;
TGYPOS := O;
END;

PROCEDURE MOVE: (% Public procedure, paraheters declared above #)
BEGIN . ;
MOVETO(Round (TURTLEX + DIST#Cos(TURTLEANGLE/RADCONST),
Round (TURTLEY + DIST%#Sin(TURTL ANGLE/RADCONST))
END;

PROCEDURE MOVETO:

VAR R: Integeri
BEGIN

DRAWLINE(R, S, &0, 160+TURTLEX, 120-TURTLEY,
X=TURTLEX, TURTLEY-Y, DRD(TQRTLEPEN))i
END; :

PROCEDURE TURN; (# Public proceduvre, parémeters declared above #)
BEGIN . : .

HEADING := (HEADING+RELANGLE) mod 3&0;

END:; ' :

Page 169

PROCEDURE TURNTO:
BEGIN)

HEADING := ANGLE;
END;

PROCEDURE PENCOLOR;
BEGIN

TGPEN := PCOLOR;
END;

END. (# End of unit #)

EXAMPLE B

Example B is a skeleton faor a TURTLEGRAPHICS UNIT. Note that
the procedures MOVE, TURN, and INITTURTLE, and the TYPE TGCOLOR, are
declared in the INTERFACE part and are available for use by the host
program. Since the procedure DRAWLINE is not part aof the INTERFACE, it
is private, and may not be used by the host. The syntax for a UNIT
definition is shown below. The declarations of routine headings in the
INTERFACE part are similar to forward declarations; therefore, when the
corresponding bodies are defined in the IMPLEMENTATION part., formal

parameter specifications are not repeated.!

|

A UNIT may also USE another UNIT, En which case the USES
declaration must appear at the beginning of the INTERFACE part. In
example C, PICTUREGRAPHICS indicates in the INTERFACE part that it
USES TURTLEGRAPHICS. Nnte that the program USEGRAPHICS. which USES
PICTUREGRAPHICS, indicates that it USES TURTLEGRAPHICS before using
PICTUREGRAPHICS. It is important that the| INTERFACE part of
TURTLEGRAPHICS be defined before PICTUREGRAPHICS makes references to
it, therefore this ordering is required.

NOTE: Variables of type FILE must Lo declared in the INTERFACE
part of a UNIT. A FILE declared in the IHPLENENTATIDN part will cause
a syntax error upon compilation.

“UNIT PICTUREGRAPHICS: ;
INTERFACE i

USES TURTLEGRAPHICS: (# TURTLEGRAPHICS is defined in the
TYPE (# =wsystem. library see section III below
PVECTOR=~VECTOR: |

VECTOR=RECORD
: DELHEADING: INTEGER)
DELDISTANCE: INTEGER:;
PENDOWN: BOOLEAN:
NEXTVEC: PVECTOR
END; (» recoaord =)

Page 170

*)
*)

VAR |
START:PVECTOR; (# Head of list of lines #)
HEAP: ~INTEGER; !

PROCEDURE MAKESUBPICTURE;

PROCEDURE DRAWSUBPICTURE;

IMPLEMENTATION
PROCEDURE MAKESUBPICTURE;
BEGIN |
(# Calculates next subpicture and storqs on heap #)
END;
PROCEDURE DRAWSUBPICTURE;
BEGIN
LPVEC: =S5TART; (# Start at begxnwxng of list «)

WHILE LPVEC<>NIL DD (¥ and draw each that's there #)
WITH LPVEC~ DO

BEGIN
TURN(DELHEADING):
MOVE(DELDISTANCE):
IF PENDOWN THEN TGPEN: =WHITE

ELSE TGPEN:=NDNE;

LPVEC: =NEXTVEC,

END;

END; (* drawsubpicture =)

[ENDe

PROGRAM USEGRAPHICS, .
USES TURTLEGRAPHICS, PICTUREGRAPHICS: (# picturegraphics uses
BEGIN (% turtlegraphics
INITTURTLE: :
REPEAT
MARK (HEAP);
MAKESUBPICTURE;
DRAWSUBPICTURE;
RELEASE (HEAP);
UNTIL START=NIL;
{END.

EXAMPLE C

Page 171

®)
)

Compilation unit > = Program heading > ;5 _< Unit definition >

< <

< Uses part > < Block > !

< Unit definition > _; ¢ Unit definition > .
< Unit definition > ::m < unit heading >

< Interface part >

< Implementation part >

End
€ Unit heading > = Unit < Unit identifier D> !

Separate unit < Unit identifier >
Unit identifier > ::m & Identifier >

A A

Interface part > = Interface
< Uses part >
<€ Constant definition part >
< Type definitian part >
< Variable declaration part >
< Procedure heading > | < Function heading >

A

Implementation partd ::= Implementation
< Label declaration part >
< Constant definition part >
< Type definition part >
< Variable declaration part >
< Procedure and Function declaration part >

< Uses part > = Uses €< Unit identifier >
' Unit identifie 4 § < Empty >

DIAGRAM D

The user may define a UNIT in—line, after the heading of the
host program. In this case the user compiles bath the UNIT, and the
host program together. Any subsequent changes in the UNIT or host
pragram require the user to recompile both. The user may also define
and compile a UNIT (or a group of UNITs) separately, and use the
library manager to store it (or them) in a library. "After compiling
a host program that uses such a UNIT, the user must link that UNIT inta
the code file by executing the LINKER. Trying to R(un an unlinked code
file will cause the LINKER to run automatically, trying to X(ecute an
uniinked file causes the system to remind you to link the file .
Changes in a host program require only that the user recompile the
program and link in the UNIT. Changes in the IMPLEMENTATION part of a
UNIT only require the user to compile the UNIT, and then to relink all
compilation units that use that UNIT. Changes in the INTERFACE part ot
& UNIT require that the user recompile both the UNIT and all
compilation units that use that UNIT. In this case all these
caompilation units must Jsgain be linked. For mare information see
section 1.8 LINKER or section 4.2 LIBRARIAN.

Page 172

The compiler generates LINKER information in the contiguous
blocks that follow & program that uses UNITs. This information
contains locations of references to externally defined identifiers.
The LINKER document explains the format of this information,

: »
3. 3. 3.2 PASCAL TO ASSEMBLY LANGUAGE L!NKACESE—- EXTERNAL PROCEDURES

External procedures are primarily separately assembled assembly
language procedures. stored in a LIBRARY on disk. Host programs that
reQquite external procedures must have them linked into the compiled
code file. Typically the user wrjtes externai procedures in assembly
language, to handle low-level operations that Pascal is not designed to
provide. External assembly language procedures are alsoc used for their

comparative speed in ‘real time’ applications.

A host program declares that a procedure is external in much
the same way as a procedure jis declared FORWARD. A standard heading is
provided, followed by the keyword EXTERNAL. " Calls to the external
procedure use standard Pascal syntax: and the compiler checks that
calls to the external agree in type and number of parameters with the
external declaration. It is the vuvser’s responsibility to assure that
the assembly language procedure Tespects the Pascal external
declaration, The linker checks only that the number of words of
parameters agree between the Pascal and assembly language declarations.
For more information ses¢ section 1.8 Linker and 1.9 Assembler(s).

The conventions of the surrounding sytem concerning register
use and calling sequences must be restricted by writers of assembly
language routines. These conventions for the PDP-11 and 280/8080
implementations are given here.

First, for the PDP-11, registers RO and Ri are available for
use; any others affected by a Troutine must be saved on entry and
restored on exit. The following call and return sequence is
recommended for procedures. It has the advantage that calls can be
made directly from assembly language as well as from Pascal.

. PROC ENTRY, 2

PARAMI | EGU é iDffset for first parameter
PARAM2 | EGU 4 iOffset for second paramter
RETADDR . EGU 2 iOffset for return address
OLDRS . EQU o) 10ffset for original value of RS
LOCALLI . EQU -2 10ffset for first local
LOCALR .EGU -4 10ffset for second local
MOV RS, =(SP) i Save contents of RS
MoV SP, RS iUse RS ta get at locals and parameters
CLR -(SP) iReserve and Initialize
CLR =-({SP) i Two local variables

1Inside routine
MoV PARAM(RD3), LOCALL(RS) iSample statement

Page 173

EXIT: MOV RS, 8P 1Cut back to entry SP

MoV (SP)+,R5 s Restore previous RS
mav (SP)+,RO iGet return address’
ADD #NPARAMS, SP iDiscard parameters

JMpP @RO iReturn to caller

In Z80 assembly language routines, all registers are available
for use, and the recommended interface sequence follows: (This code
would wark for both BOSBO‘s and 280‘s. Dptimizations are passible it
the ZI80 instructions are available.)

. PROC ENTRY, 2 ‘

. PRIVATE RETADDR, LOCAL.1, LOCAL2, PARAM1, PARAM2
iReserve static storage for this routine. Much easier to
ireference objects like this rather than relative to
iregister as on PDP-11)

POP HL iCet return address
LD (RETADDR), HL iand save it
POP HL 1 Gat and save PARAM2
LD . {PARAM2)., HL]
POP HL i Get and save PARAMI
LD (PARAML), HL
LD HL, (PARAM2) i Move PARAMR
LD (LOCAL1), HL 1 to LOCALL

EXIT: LD HL., (RETADDR) iGet Teturn address
JP (HL) :
. END

For assembly language functions (.FUNC’s) the sequence is
essentially the same. except that:

1) Two words of zeros are pushed by the compiler before any
parameters are put on the stack. ’ ‘

2) After the stack has been completely cleaned up at the
routine exit time, the .FUNC must push the function result on the
stack.

Here is an example of an external assembly language procedure,
and a program that uses it. This example takes a very primitive
approach to interrupt handling (which might still be useful in some
applications). There is no provision for handling interrupts from the
device whare a collected buffer is being written to disk. Support for
continuous interupts would be more complex, involving multiple buffers
and exclusion mechanisims to assure that buffer switching would occur
reliably. The Project intends eventually to provide synchronization

Page 174

capabilities at the Pascal level, sc that 1ntgrrupt handling can be
accomplished with greater convenience and safety.

. PROC DRCOLLECT. O i Name of routine for use by linker.
. CONST DRBUFLENG i Public constant.
. PUBLIC DRBUFFER 3 Public variable.
DRADDR . EQU 167770
DRVECT . EGU 140
MoV #HANDLR, @#DRVECT ;Lopd address of interrupt
MOV #340, @#DRVECT+2 :hapdler and set priority.
mMov #DRBUFLENG.: RO iLoad RO with size of buffer.
MoV #DRBUFFER, R1 lLOld Rl with address of buffer.
BIS #100, @4DRADDR jEnable interrupts on DR interface.
LOOP: TST RO 1Exiit loop when buffer full.
BNE LOOP
BIC #100, @4#DRADDR iDisable intevrupts.
RTS PC iReturn to PASCAL host program.
HANDLR: Mov e%XDRADDR+2, (R1)+ ilLoad buffer with next word.,
DEC RO iincrement R1, decrement RO.
RTI IReturn from interrupt.

PROGRAM COLLECTDATA:
CONST
DRBUFLENG = 256&;

TYPE
DATABUFFER = Array [1..DRBUFLENG] of ihtheri

VAR |
I: Integer:
DRBUFFER: DATABUFFER;
DATAFILE: File of DATABUFFER;

PROCEDURE DRCOLLECT:
External;

BEGIN (#0f Collect Dataw)
Rewrite(DATAFILE, ‘SAMPLE.DATA’);
For I:=1 to 10 do
BEGIN
DRCOLLECT:
DATAFILE": =DRBUFFER:
Put(DATAFILE)
END;
Close(DATAFILE, Lock)
END. -

Page 175

3.3.2. 3 ASSEMBLY LANGUACE TO ASSEMBLY LANGUAGE LINKAGES

The third way in which separate réutines may share data
structures and subroutines i{s by linkage from assembly language to
assembly language. This is made possible through the use of the .DEF
and .REF pseudo—-ops provided in the UCSD ﬁssomblurs. These generate
link information that allows two separately assembled procedures to be
L(inked together. One possible use for this will be the linking of

separate routines and drivers in construcﬁing new UCSD interpreters.

The following are very abhreviated versions of two assembly
language routines which make separate references. They are used
externally by the UNIT PSGRAPHICS:

The #irst routine declares three pubiic variables and declares
& .DEF for a label to be referenced by thé second routine (Note that
this is only a skeleton of the actual MOVETO routine):

. PROC MOVETO, & i THE 3 REAL PARANETQRS QCCUPY & WORDS
PROCEDURE MOVETO(X. Y., Z: REAL):

i
i | :
+ COMPUTES A NEW PSXPOS & PSYPOS FROM PSMATP AND
i AN ASSUMED 1.0 AS THE INPUT VECTOR HOMOGENOUS

3 COORDINATE... C
)
i
i
;

(X Y Z 1) dot PSMATP~ = (X’ Y’ I’ W’)
PSXPOS := X’'/W'i :
PSYPOS := Y’/W*)

i THESE ARE GLOBALE IN THE PASCAL HOST
.PUBLIC PSXPOS
. PUBLIC PSYPOS
.PUBLIC PSMATP

i+ MOVETO ENTRY POINT

MOV RS, -(SP) ; RS USED AS FRAME POINTER
MOV SP, RS i
MoV e#PSMATP, RO i RO IS TOS MATRIX POINTER
i PARAMETER DISPLACEMENTS FROM RS FRAME POINTER
X .EQU 14
'2 . EQU 10
z .EQU 4
Y .EGU -4

COMPUTE W’, HOMOGENEOUS COORD
AND LEAVE IT ON STACK

. e w W W

Page 176

- ®e W W e me

COMPUTE PSXPOS

NOW COMPUTE PSYPOS

CLEAN UP STACK AND RETURN

ROUND: ; RDUND REAL ON STACK TO INTEGER
i IF < O THEN SUBTRACT 0.5 ELSE
i ADD 0.5, THEN TRUCATE.

. END

The second routine references the first routine as well as the
separately assembled DRAWLINE routine. MOVETO must be linked into
LINETO before the routine tan be linked in |as an external procedure to
& PASCAL UNIT or PROGRAM.

.PROC LINETO, &

GIVEN BY X,

e S G B e e W W W e

. PUBLIC PSXPOS
. PUBLIC PSYPOS
. PUBLIC PSBUFP
. PRIVATE RANGE

. REF MOVETO
. REF DRAWLINE

PSXPOS & PSYPOS TO THE NEW TRANSFORMED

PARAMETERS OCCUPY & WORDS

PROCEDURE LINETO(X. Y, Z: REAL);

OINT

DRAWS A LINE FROM THE LAST PODINT commqsn IN
Y. & Z... :
SAVEX := PSXPOS; SAVEY := PSYPOS;

MOVETO(X., Y.
DRAHLINE(JUNK. PSBUFP~, 20, 160+SAVEX, j20-SAVEYn

2

PSXPOS-SAVEX, SAVEY-PSYPOS. 1)

i LINETO ENTRY POINT

MoV

MoV
EAVEX . . EQU
SAVEY . EQU
b S . EQU
Y . EQU
Z . EQU

H
i
H
1

RS, =(SP)

SP, RS i USE RS A# STACK FRAME PODINTER
-2

-4

14

10

4

SAVEX = PSXPOS; SAVEY := PSYPD%J

MOVETO(X, Y, Z);

Page 177

n
a

PC, @#MOVETO
DRAWL.INE(. ..)
PC, @#DRAWLINE

ALL DONE... RETURN

C-~-g--~-c~
3

X
o

@RO
. END

For examples and more information soﬂ section 1.9 ASSEM

Page 178

LA 2 L2 2 2T a LIl el Tl L2

Version 1. $ September 1578
A new addition to U . C. 5. D. Pascal pre
the optional use of a length attribute (avai
11 based micros). This essentially constitu
in the remainder of this document, be referr
The LONG INTEGER is suitable for business, s
applications in which the need for extended
complete accuracy is felt. This extension s
standard INTEGER arithmetic operations (addi
division and multiplication) es well as rout
conversion to strings and standard INTEGERS.
enforced throughout to reduce potential erro
declaration of constants and inclusion in st
fully supported and are analogous to the usa

eclared type INTECER is
able only on LSI 11/PDP
*s a new type and will,
d to as LONG INTEGER.
ientific or other

umber length with
pports the four basic
ion, subtraction.

nes facilitating

Strong type checking is
€. Input/Output, in line
vctured types are all

e of standard INTEGERSs.

LONG INTEGERs are declared using the
INTECER followed by a length attribute in sq
length is an unsigned number, not larger tha
number of decimal digits representable by th
example, & variable called ‘X’ capable of st
decimal digit signed number would be created

L2222 2T LR L T2 LR LYY 2 2
LONG INTEGERS # # SECTION 3.3.3
tandard identifier
are brackets. This
36, denoting the minimum
LONG INTEGER. For
Ting at least an eight
by:

VAR X: INTEGERLB
Constants are defined in the normal m{nnor:
CONST RYDBERG = 10973731;

In the above example RYDBERG would be |by default a8 LONG INTECER
and could be used anywhere a LONG INTECGER coIld be used.

In general LONG INTEGERs may be used
syntactically correct to use REALs (not #full
for now LONG INTEGERs are limited to aritmet
statements (but not assignment to a REAL),
care must be taken to ensure that suFf:cient
by the declared length attribute for storage
assignment or arithmetic expression statemen
subsection for complete details). INTEGER e
converted as required upon assignment to,
with, a LONG INTEGER. The reverse is not tr
correctly handled. Examples:

nywhere it is

implemented until I1.0:
¢ operations: assignment
UNC, and STR); however
words have been allocated
of the result of
s (see note in next
pessions are implicitly
arithmetic operations

e. Unary plus/minus is

Page 179

INTECER:
INTEGERINI,
REAL;

VAR I:
' L:
8:

I.=
L:==;
L:= I,
L:= S,
S:= L

ompil

correct, wi
always cory
never_acceg
will be jmg

Arithmetic operations which may he
LONG INTEGERs are any or all from the set
plus/minus. ©On assignment the length of t
(during execution) to the declared length
therefore an interrupt (overflow) may TSy
occurs only when the intermediate result
Tequired to store (as a minimum) thirty—s
the final result is assigned to a variabl
attribute. (On the matter of the length a
defines: a length attribute of S thru 9 ma
2147483647, length attributes of 10 thru 1
140737488355327, 13 thru 18 .. 9223372036
interested reader to compute any larger 1}
capacities. Thus it would be unwise to at
as & subrange. This range of length attri
upper bound is a result of the allocation
amount of additional storage, i.e. 5 thru
INTEGER.) All of the standard relational g
mixed LONG INTEGER and INTEGER.

The function TRUNC(L):, where ‘L’ is
convert ‘L’ to an INTEGER (i.e. TRUNC will
well as a REAL as an argument). Interrupt

is greater than MAXINT.

The procedure STR(L,S) canverts the
‘L’ into a string (complete with minus si
in the STRING “S’. The following program
suitable dollar and cent routine:

STR(L.S)i INSERT(’. ’, S, LENGTH(S)-1)

Where ‘L’ and ‘S’ are appropriately
are the only two routines which currently
parameters. An attempt to declare a LONG
will result in @ compile time error, which
creating a type which is a LONG INTEGER.

Page 180

ime e

th the usual exceptign

wher ta

o ee TRUNC

ect
ted

emented wit

used in conjunction with

+, =, #, DIV, unary

he LONG INTEGER 1is adjusted
attribute of the variabdle,
1t. An interrupt (overflow)
xceeds the number of words
ven decimal digits, or when
with insufficient length

itribute and what it

y store up to and including
4 may store thru
54775807. It is left to the

ngth attribute storage

tempt to use a LONG INTEGER
butes all having the same
of @ full word as the least
9 represent a two word
perators may be used with

a LONC INTEGER., will
accept a LONG INTEGER as
(overflow) will result if L

INTEGER or LONG INTEGER
gn if needed) and places it
segment will provide a

i WRITELN(S);

declared. TRUNC and STR
will accept LONG INTEGERS as
INTEGER in a parameter 1list
may be circumvented by

For example:

TYPE LONG = INTEGER[IBI;
PROCEDURE BIGNUMBER (BANKACCT: LONG);

The LONG INTEGER is stored as a multi-word, twos complement
binary number. System and interpreter routiines do the 1/0 conversions

as required. Maximum storage efficiency is

achieved by dynamic

expansion and contraction of word allocation as required. During
LONG INTEGER operations the length is placed on the stack above the
number itself, the declared length attributie need not be the same and

can be less than this length.

Page 181

o
(e

L 2 2 2 3 L2 222222223 2X T2 RLEY
“ P D-MACHINE ARCHITECTURE #
LR 2L 2T 22T LT LT R T L T RN LN AN R

Version I. 8 September

The UCSD Pascal P-machine, designed s
execution of Pascal programs on small machine
modified descendant of the P-2 pseudo-machine
variable addressing, including strings, byte
dynamic variables; logical, integer, real, an
arithmetic and comparisons; multi—element str
several types of branches; protcedure/function
including overlaysble procedures; miscellaneo
systems programs; and an I/0 system.

This Section, to be used in conjuncti

[T TN ey
#* Section 3.4
W A0 3 3 I OO 3

[1978

%ecificallu for the

s, is an extensively

’from Zurich. It supports
rrays, packed fields, and
d set top—~of-stack

Fcture comparisons;
calls and returns,

@s procedures used by

on with Section 3.5,

describes the P-machine “"hardware, * communication with the operating
system, exceptional condition handling, the instruction set, the /0
system, and the bootloading process.

NOTE: mnot all of the above will] be jncluded §n the 1.9 Telease
and nl be available sometime later.
3.4.1 HARDWARE

There exists no physical P-machine (ye

exists only as interpreters written in assemb
computers. However: this can and will be igno
description.

The P-machine uses 16-bit words, with
word. It has several registers and a vuser me
stack and a heap. All registers are pointers
structures, except IPC,
instructions. The registers arve:

Stack Pointer is a pointer to the top o
stack starts in high memory and grows tow
contains code segments and activation rec
parameters, vreturn function values, and a
many instructions. The stack is extended
calls, and is cut back by stores,
aperations.

8P:

NP: New Pointer is a pointer to the top of

starts in low memory and grows uvpward tow;

contains all dynamic variables (see Jense

It is extended by the standard procedure
the standard procedure ‘release’.

which is a pointer to

procedu

t!). The P-machine
ly languages of actual
red in the following

two 8-bit bytes per
moTy, in which are kept a
to word-aligned
byte-aligned

f the execution stack. The

ard low memory. It

rds, and is used to pass
an operand source for

y loads and procedure

e returns, and arithmetic

the dynamic heap.
rd the stack.
and Wirth,

fnew'.

The heap
It
Chapter 10).
and is cut back by

Page 183

JTAB:

of the currently executing procedure.
SEG: Segment Pointer points to the proc
to which the currently executing proc
3.5 +figure 6.)

Most recent Procedure is a pointer
currently executing procedure. (See
Variables local to the current proced
off MP.

BASE: BASE Procedure is a pointer to the
recently invoked base procedure (lex
level O) variables are accessed by in

3.4.2 OPERATING SYSTEM/P-MACHINE COMMUN
It is sometimes necessary for the
machine to exchange information. Hence ¢t
in the outer block of the operating syste
memory known to the hardware. The fields

to this communication are:

IORSLT: contains the error code return
terminated I/0 cperations. (See 1/0
system read and write procedures.)

XEQERR:
exception handling below.)

SYSUNIT: contains the unit number of th
was booted from (usually 4 or 3).
BUGSTATE: contains the current bugstate.
GDIRP; contains a pointer to the most
unless dynamic allocation or dealloca
(See MRK, RLS, and NEW instructions b

STKBASE., LASTMP,
registers.

SEG, JTAB: copies of th

BOMBP: contains a pointer to the acti
system routine EXECERROR when a runti
exception handling.)

Page 184

Jump TABle pointer is a painter J

contains the error code of thﬂ

0 the procedure attribute table
(See Section 3.5, figure 3.)

edure dictionary of the segment
edure belangs. (See Section

to the activation record at the
Section 3.3, figure 7.)
uUre are accessed by indexing

activation record of the most
level 0). Global (lex
dexing off BASE.

ICATION -~ SyscoM

n

operating system and the P-
ere exists a variable SYSCDM
+ and a corresponding area in
in SYSCOM actually relevant

ed by the last activated or
section below, and operating

last run—time error. (See

e device the operating system

(See BPT instruction below.)

recent disk directory read in,
tion has taken place since then.
elow.)
e BASE,

MP, SEC and JTAB

vation record of the operating
me eTTOT OCCUTS. (See

|
|

BOMIPC: contains the value of IPC when a run—-time error occurs.

HI_TLINE: contains the line number of the last conditional halt executed.
(See BPT instruction.) .

BRKPTS: contains up to four line numbers of breakpointed statements.
(See BPT instruction.)

CRTINFO. EOF: containg the end—of—-file c?cractcr (see console input
driver).

CRTINFO. FLUSH: ~ contains the flush-output Lharactcr (see console input,
ovtput drivers).

CRTINFO. STOP: contains the stop-output cLaractcr (see console output
and input drivers),

CRTINFO. BREAK: contains the brcak-executi#n character (see console
input driver), t

SECGTABLE: contains the segment dictionary for the pascal systenm.

3.4.3 EXCEPTION HANDLING - XEGERR

Whenever a run—time error occurs, the PLmachtno stops executing the
current instruction (ideally leaving the evaluation stack in as nice a
condition as possible) and transfers contro]l] to the XEGERR routine.

This routine X
1) enters the error code into SYSCOM™, XEGERR. .
2) calculates what MP will be after step 4. and sets SYSCOM~. BOMBP to
that. (The size of EXECERROR's activation record must be known
by the P-machine.)
3) stores the current value ot IPC into|SYSCDH“ BOMIPC.
4) points IPC to a CXP 0,2 (call opera%ing system procedure
EXECERROR) instruction.
9 resumes execution of interpreter codb. starting with the CXP.

3.4.4 OPERAND FORMATS

Although an element of a structure may bccupq as little as one bit,
as in a PACKED ARRAY OF boolean, variables in the P-machine are
aluvays aligned on word boundaries. All toprof-stack operations expect
their operands to occupy at least one word, even if not all the
information in a word is valid. The least signl#lcant bit of a word is
bit O, the most signiftcant is bit 195

Page 185

BOOLEAN: One word. Bit O indicates the value (false=0, true=1), and
this is the only information used by boolean comparisans., However,
the boolean operators LAND, LOR, and LNOT operate on all 16 bits.

INTEGER: One word, two’s complement, capaéle of roprcscntiny values in
the range -32748..32767. ' :

B8CALAR (user—defined): One word, in rangeéo..32767.

CHAR: One word, with low byte containingichara:tcr. The internal
character set is "extended” ASCII, witﬂ 0..127 representing the
standard ASCII set, and 128..255 as a q:er—definod character set.

REAL: Two words, with format implementation dependent. The system
is arranged so that only the interpreter needs to know the detailed
internal format of REALs (beyond the fact that they occupy two
words) Following are the two dotailed'formats for the CPUs we now
(as of I.4) support.

PDP11:

19 (o)

word 1: ! low mantissa H

1% 14 7 & o

word O: ‘s ! exponent ! high mantissa !

280/8080:

15 8 7 ()

word 1: ! low mantissa ! middle mantissa H

15 14 8 7 0

, uqfd 0: s ! high mantissa ! .exponent '

Both representations have an exces —128 exponent, a fractional
mantissa that is always normalized, exponent base 2. an implicit
24th mantissa bit, and iero represented by a 2ero exponent. . (See
PDP11 processor manual or Z80/8080 1ntdrprctor listing for greater
detail.) .

POINTER: - One or three words, depending on [type of pointer,
Pascal pointers, internal word potnterﬁ: one word, containing a word
address.
Internal byte pointers: one word, cont{ining a byte address.
Internal packed field pointers: three words

word 2: ward pointer to word field !is in.

word 1: field width (in bits).

word O: right bit_number of field. |

8ET: 0.. 255 words in data segment, 1..236 words on stack. Sets are

Page 186

implemented as bit vectors, always with a lower index of zevo. A
set variable declared as set of m..n is allocated (n+13) div 14
words. When & set is in the data segment, all words allocated
contatin valid information.

When a set is on the stack, it is represented by a word
containing the length, and then that numbe+ of words, all of which
contain valid information. All elements past the last word of a
set are assumed not to be elements of the set. Before being stored
back in the data segment: a set must be forced back to the size
allocated to it, and so an ADJ instruction must be issved.

RECORDS and ARRAYS: any number of words (up to 16384 words in one
dimension). ArtTays are stored in row—-major order, and always have
a lower index of zero. Only fields or elements are loaded onto the
stack — never the structure itself. Packep arvays must have an
integral number of elements in each word, as there is no packing
across word boundaries (it is acceptable tp have unused bits in
each word). The first element in each word has bit O as its low—
order bit.

STRINGS: 1..128 words. Strings are a flexible version of packed
arrays of char. A stringlnl occupies (n div 2)+1 words. Byte O
of a string is the current length of the string, and bytes
1..1length(string) contain valid characters,

CONSTANTS: constant scalars, sets; and strings may be imbedded in
the instruction stream, in which case they have special formats.
All scalars (excluding reals) not in the range O..127: two bytes,
low byte first. ;
Strings: all string literals take length(literal)+l bytes, and
are byte aligned. The first dbyte is the length, the rest are the
actual characters. This format applies even if the literal should
be interpreted as a packed grray of char (see SIP and S2P
below). ;
Reals and sets: word aligned, and in reverse word order.

3.4.5 INSTRUCTION SET FORMAT

Instructions on the P-machine are one or two bytes long, followed
by 2ero to four parameters. Most parameters specify one word of
information. and are one of five basic types.

UB wunsigned byte: high order byte of parameter is implicitly zero.

EB signed byte: high order byte is sign extension of bit 7.

DB don‘’t care byte: can be treated as SB or UB, as value is always in
the range 0..127. ’ _

B big: this parameter is one byte long when used to represent values in
the range 0..127, and is two bytes long when representing
values in the range 128..32767. If the first byte is in
0..327, the high byte of the parameter is implicitly zero.
Otherwise, bit 7 of the first byte is cleared and it is used as the
high order byte of the parameter. The second byte is used

Page 187

as the low order byte.
the next two bytes, low bqtl firs

»

] word:

Any esceptions to these formats are not
they occur,

3.4.6 ENCLISH INSTRUCTION SET DESCRIPTION

In the following section, references to
context-dependent,. and can mean anywhere fr
Also, unless specifically noted to the coant
the stack — they are not left around.

Abbreviations are used widely, but use
Farameters are written as X or X_n, where X
n is an integer indicating the parameter po
Tos means the operand on the top of stack,
etc. Mark Stack Control Word is abbreviate

Many instructions Tefer to the activati
this document assumes the reader has a gene

%. is the parameter value.
I

pd in the instructions where

an element on the stack are
om one word to 2546 words.
rary, operands are popped off

fairly simple conventions.
is UB, SB, DB, B., or W, and
sxtxon in the instruction.
tos-l the next operand,

d to MSCW.

on record o@ a procedure, and
ral knowledge of procedure

calling in stack machines, and the concept of stack frames. An
activation Tecord as defined in this document specifically consists oéf:
and

1) the local data segment of the procedure,

2) the MSCW., containing addressing info
information on the calling procedure
was called.

(See Section 3.9, figure 7.)
The dynamic chain refers to the callinh

MSCW. MSDYN links. The static chain refers!

chain, traversed using the MSCW. MSSTAT link

MNEMONIC OP-CODE PARAMETERS FULL

.
o

VARIABLE FETCHING., INDEXING.
ONE WORD LOADS AND STORES

A STORING,
A1l

U.A.1.a CONSTANT ONE WORD LOADS

§LDC Short load

opcode, with hi

0..127

Fage 188

rmation (static links), and ‘
s environment when the procedure

chain, ¢traversed using the
to the lexical or ancestor
5.

NAME AND OPERATION

. AND TRANSFERING

Pushes the
onto stack.

word constant.
gh byte z2evo0,

LDCN
LeCI

S.A. 1.0
SLDL1
SLDL16
LDL

LLA

STL

9. A.1. ¢ GLOBAL ONE WORD LDOADS AND STORE

SLDO1
SLDO16
LDO

LAD

ERO

S.A.1.d INTERMEDIATE ONE-WORD LOADS AND ST%RE

LOD

LDA

STR

159

%G . Load constant nil.

Pushes the

implementation—dependent value of nil.

199 W

LOCAL ONE WORD LOADS AND STORE

Load constant word.

Pushes W.

216 . Short load local word. SLDLx fetches

. . the word with ofifset x {n MP activation

231 record and pushes i¢.

202 B Loud local uord. Fetches the word with

offset B in MP

]ctivatian Trecord and pushes it.

address. Fetches addrecs of

the word with offset B in MP activation record

188 B Load lortal
and pushes it.
204 B Store local

with offset B in

word. Stores tos into word
MP activation record.

232 Short load global word. SLDOx fetches

. . the word with ofifset x in BASE activation

247 record and pushes it.

167 B Load globel lword. Fetches the word with
offset B in BASE activation record and pushes
it.

169 B Load global address. Pushes the word
address of the word with offset B in BASE
activation record.

171 B Store global word. Stores tos into the

" word with offset B in BASE activation record.

182 DB.D

: |
Load intermediate word.

DB indicates the
links to traverse to find the
B is the offset

within the actiyation record.

number of statﬂ
activation recond to use.
178 DB, B
184 DB, B

Load intermediate address.

. Store intermediate word.

Pane 16°

5.A. 1. e INDIRECT ONE-WORD LOADS AND STORé

BTO 154 Store 1ndﬂroct. Tos is stored into the
word pointed to by tos-—1.

SINDO 248 ’ Load indirect.

¥.A.2 MULTIPLE WORD I.OADS AND STORES (SETT AND REALS)

LDC 179 UB,<block> Load multiéle word constant. UB is the
: number of words to load, and <block> is a
word aligned block of UB words, in reverse

word order. Load the block onto the stack.

LDM 188 uB Load multiéle words., Tos {s a painter
. to the beginning of a block of UB words.
Push the block| jento the stack.

ST 189 uB Store mblt ple words. Tos is a block of

: UB words., tos—-1 is a word pointer to a
similiar block Transfer the block from the
stack to the d*stination block.

S.A.3 BYTE ARRAYS) w

BYT 210 Byte convé sion. Convert word pointer
. tos to a byte pointer. (NOP on the PDP11 and
280/8080 implementations.)

LDB 190 Load bqte‘ Push the byte (after zeroing
high byte) poi ted to by byte pointer tos.

STB 191) Store byte
: location speci

Store byte tos into the
ied by byte pointer tos-1.

MVB 1469 B Move bqtosT Tos is a byte source
pointer to a bBlock of B bytes, tos-1 is a
byte destination pointer to a similiar
block. Transfer the source block to the
destination bl (This instruction is
redundant due | Fo word alignment, and will
be replaced bq|n0V in the future.)

1X8 =209 Index byte array. Push a byte pointer

formed from the| integer index tos and the byte
pointer tos-1{.

S5.A.4 ETRINGS

Page 190

LCA

g1pP

IXS

S5.A. S
Moy

SINDO
SIND7
IND

INGC

IXA

166

170

208

137

1395

UB.<chars>

UB

‘Load constant
byte pointer to t
in, and skip IPC

String assighn.

byte pointer or a
.always have a hig
pointer never do.
byte pointer. UB
the destination s
size is less than
source string, a
otherwise all byt
valid information
destination strin

String to pac
is a byte pointenr
incremented by on
the first charact

String to pac
Tos and tos—1 are |
incremented by one

Index string !
operation as IXB,
index is checked

string address. Push a

the location UB is contained

past <charsd>.

Tos is either a source
character. (Characters
h byte of zero, while
) Tos-1 is a destination

is the declared size of
tring. I¢ the declared
the current size of the

run—time error occurs;

es of source containing
are transferred to the

ked conversion on tos. Tos
to a string, and is

e byte in order to point te
er of the string.

ked conversion on tos-1.
byte pointers, and tos~1 is
byte.

array. Ferforms the same
except before indexing the
to see if it is in the range

1..current length.

oCCcuUTrs.

I1¢# not; a run—time error

RECORD AND ARRAY INDEXING AND ASSICNMENT

168

248
258
163

162

1464

Move words.
a block of B word
pointer to a s!mﬂ
block from the so

Short index and load word.

the word pointer
the word pointed

Static index
word pointer tos
word pointed to.

Increment field pointer. |

pointer tos is in
resvltant pointer

Index array.

Tos is a source pointer to
s, tos—-1 is a destination
liar block. Transfer the
urce to the destination.

SINDx indexes
tos by x words, and pushes
to by the result.

and load word. Indexes the
by B words, and pushes the

The word
dexed by B words and the
is pushed.

Tos is an integer index,

tos—1 is the array base word pointer., and B
is the size (in words) of an array element.

A word poainter to

pushed.

the indexed element is

Page 191

IXP 192 UB_1,UB_2 Index packed array. Tos is an integer
index, tos-1 :s the array base word pointer.
DB_1 is the number of element_per_word, and
DB_2 is the field _width (in bits). Compute
and push a packed field pointer.

LDP 186 , Load & packed field. Push the field
described by the packed field pointer tos.

STP 187 " Store 1htg a4 packed field. Tos is the
data, tos—-1 is a packed ¢ield pointer. Store
tos into the field described by tos—1.

5.A. & DYNAMIC VARIABLE ALLOCATION AND DE—-ALLOCATION

NEW 158 1 New variable allocation. Tos is the size
(in words) to allocate the variable, and
tos-2 is & word pointer to a dynamic
variable. If GDIRP is non—-pnjil, cut NP
back to GDIRP and set GDIRP to nj}]. Store
NP into word pointed to by tos—-1, and
increment NP by tos words.

MRK 158 31 Mark heap. Release GDIRP and set to njl
if necessary, then store NP into word pointed
to by tos.

RLS 158 32 Release heap. Set CDIRP to nil. then
. store word pointed to by tos into NP.

8.B TOP OF STACK ARITHMETIC AND COMPARISONS
5.B.1 LOGICAL

LAND 132 Logical and. And tos into tos-l.

LOR 141 Logical or. Qr tos into tos-i.
LNOT 147 Logical not. Take ane‘s complement ot tos.

EGUBOOL 178
NEGBOOL 183
LEGBOOL 180
LESBOOL 181
CEGBOOL 176
GTRBOOL 177

Boolean =,
<Oy
<-_n
<
D=,

o000

and > comparisons.
Compare bit O of tos—1 to bit_O of tos and push
true or false.

Page 192

3.B. & INTEGER

ABI 128 Absolute value of integer. Take absolute
value of integer tos. Result is undefined §f
tos is initially -32748.

ADI{ . 130 Add integers, ?Add tos and tos-—-1.
NCI 143 Negate integer. Take the two’s
complement of tos.
SBI 149 Subtract integers. Subtract tos from tos-i.
MP1 143 Multiply intcgers Multiply tos and tos-1.

This instruction may cause overflow if result
is larger than 16 bits.

8alI 152 Square integer. Square tos. May cause
overflouw.
DVI 134 - Divide {ntegert. Divide tos-1 by tos and

push quotient. (PDP11 quotient defined as in
Jensen and Wirth; ZI80/8080 quotient defined
by floor(tos—-1/%tos).)

MODI 142 Modulo integers. Divide tos-1 by tos and
push the remainder (as defined in Jensen and
HWirth).

CHK 136 Check against subrange bounds. Insure

that tos-1 <= tos-2 <= tos, leaving tos-2 on
the stack. If conditions are not satisfied
a run—time error occurs.

EQUI 193 Integer =,

NEG!I 203 <y

LEQI - 200 =,

LESI 201 <

CEQI 196 . D=,

CTRI 197 _ i and >

comparisons. Compare tos—-1 to tos and push
true or false.

5.B.3 REALS
All over/underflows cauvse a run-time error.

FLT 138 Float top—of-stack. The integer tos is
-converted to a floating point number.

Page 193

TNC

RND

BIN
€os
ATAN
EXP
LN
Loe
B8aT

EQUREAL
NEGREAL
LEGREAL
LESREAL
QEQREAL
GTRREAL

Page 194

137

198

158

129

131
148
150
144
133
139
158

198
158
158
158
1358
158
158

179
183
180
181
176
177

22

23

33

Float next to top-of-stack. Tos is a real,

tos-1 is an integer. Convert tos—-1 to a real
number.

(as

Truncate teal. The real tos is truncated
defined in Jensen and Wirth) and -

converted to an integer.

Round real. The real tos is rounded (as

defined in Jensen and Wirth), then truncated

and

the

tar

converted to an integer.

Add reals. Take the absolute value of
rTeal tos.

Add Teals. Add tos and tos-1.
Negate real. Negate the real tos.
Subtract reals. Subtract tos from tos-1.

Multiply reals. Multiply tos and tos-1.

.SBquare real.

Divide reals. Divide tos-1 by tos.

Power of ten. The integer tos is check
O <= tos <= 38, a run-time error

occurring if the conditions aren‘t satisfied.

The

implementation dependent value 10 ~ tos

is pushed. This facility allows the rest of

the

system to be independent of floating

point format.

Sine. Takg the sine of the real tos.

~Cosine.

Arctangent.
Exponential. e ~ tos.
Natural logarithm.

Log base 10,

Square Toot.

Real =,
<O
=,
<
o=,
" and > comparisons.
Push TRUE or FALSE.

S5.B.4 SETS

ADJ 160 uB Adjust set. The set tos is forced to
occupy UB words, either by expansion (putting
zevroes “between” tos and tos-1) or
compression (chopping of high words of set),
and its length word is discarded.

868 151 Build a singleton set. The integer tos
is checked to insure that O <= tos <= 4079, a
run—time error occurring if not. The set
Ctosl is pushed.

SRS 148 Build a subrange set. The integers tos
and tos-1 are checked as in SGS, and the set
Ctos—-1.. tos) is pushed. (The set L[] is
pushed if tos—1 > tos.)

INN 139 Set membership. See if integer tos_1 is
in set»tos. pushing TRUE or FALSE.

UNI 156 Set union. The union of sets tos and
tos—~1 is pushed. (Tos or tos-1.)

INT 140 Set intersection. The intersection of
sets tos and tos-1 is pushed.
(Tos and tos-1.)

DIF 133 Eet difference. The difference of sets
tos~1 and tos is pushed.
(tos—1 and not tos.)

EQUPOWR 173 Set =,
NEGPOUWR 183

LEGPOWR 180

<O,
<= (subset of),

GEGPOWR 176 ‘ and O>=
: (superset of) comparisons.

S5.B. 5 BTRINGS

EQUSTR 175 4 String =,

NEGSTR 183 4 <,

LEGSTR 180 4 <=,

LESSTR i81 4 <

CEGSTR 176 4 o=,

CTRSTR 177 4 and >

comparisons. The string pointed to by word
pointer tos—1 is lexicogrephically compared
to the string pointed at by tos.

Page 195

S.B. & BYTE ARRAYS

EQUBYT
NEGBYT
LEGBYT
LESBYT
GEQGBYT
CTRBYT

1795
183
180
181
176
177

Byte arrvay =,
<>
' <=,
<
o=,
‘ and >
comparisons. <=, <, O>=, and > are only

emitted for packed arrays of char.

S. B. 7 ARRAY AND RECORD COMPARISONS

EQUWORD 173
NEQWORD 183
5.C JUMPS

12
12

Word or multiword structure =
o and O
comparisaons.

Simple (non—-case statement) jumps are all two bytes long. The

first byte is the op-—code.,
offset is non—-negative,

the second is @ SB jump offset. If this
it is simply added to IPC. (A value of zero

for the jump offset will make any jump a two—byte nop.) If SB is
then SB div 2 is used as @ word offset into JTAB, and IPC
is set to the hHyte address(JTAB~I(SB div 2]1) - JTABISB div 21].

negative,

uup

Fup
EFJ

NFJ

XJpP

Page 196

189

161
211

212

172

SB

Unconditional jump. Jump as described
above.

False jump. Jump i¢# tos is false.

Equal false jump. Jump i€ integer tos <>
tos-1. Not implemented in I. 4.

Not equal false jump. Jump i# integer
tos = tos—1. Not implemented in I. 4.

W_1,4W_2, W _3: <case tabled>

Case jump. W_1 is word—aligned, and is
the minimum index of the table. W_2 is the
maximum index. W_3 is an unconditional
Jump instruction past the table. The case
table is W_2-W_1+1 words long, and contains
self-relative locations.

I¢# tos, the actual index, is not in the
range W_1..W_2., then IPC is pointed at
W_3. Otherwise, tos-W_1 is uvsed as an
index into the table, and IPC is set to
byte_address(casetablelindex-min_indexl)-
casetablelindex—~min_indexl,

3.0 PROCEDURE AND FUMCTION CALLS AND RETURNS
The general scheme used in procedure/function invocation is

1) Calculate the data_size and parameter_size of the called
procedure by using the infnrmation in the current procedure
dictionaty (pointed to by SEG).

' 2) Extend stack by data_size bytes.

3) Copy parameter_size bytes from the uld top-of- stack to the
beginning of the space Jjust allocated.

4) Build a MSCUW, saving SP, IPC, SEG, JTAB, MP, and a pointer
to the most recent activation record of the called procedure’s
immediate parent

3) Calculate new values for SP, IPC, JUTAB, MP, and {f necessary.
SEG. Check for stack overflow. ‘

&) If the called procedure has a lex level of -1 or O save BASE
and calculate a new BASE.

CLP 206 UB Call local procedure. Call procedure UB,
-which is an immediate child of the corrently
executing procedure .and in the same segment.
‘Static link of MSCW is set to old MP.

CGP 207 uUB Call global procedure. Call procedure
. UB. which is at lex level 1 and in same

segment. The static link of the MSCW is set
to DASE.

CIP 174 UB Call intermediate procedure. Call
procedure UB in same segment as the
currently executing procedure. The static
link of the MSCW is set by looking up the
call chain until an activation record is
found whose caller had & lex level one 1
less then the procedure being called. Use
that activation record’‘s static link as the
static link of the new MSCW.

CBP . 194 UB Call base procedure. Call procedure UB,
which i{s at lex level -1 or O. The static
link of the MECW is set to the static link
in BASE ‘s activation record. The BASE is
saved, after which it is pointed at the
activation record Jjust created.

CXpP 209 DB_1,UB_2 ‘Call external procedure. Used to tall
any procedure not in the same segment as
the calling procedure, including procedures
at lex level -1 or 0. It works as follows:

,1) Is desired segment in memory? This
is deztermined by traversing up the call
chain vuntil an activation record of a
procedure in the desired segment is found.
or the onerating system’s wesident

CSP -- eds note: 4t was pointed out that op-cede 158 &s CSP, and {s scattered throughout
this decument. This wifl be cleared up Ln the next mafjon documentation
ejgont.

Page 197

RNP

RBP

EXIT

173

193

158 4

DB

DB

activation recprd is encountered.

2a) no: read in segment from disk using
the information in the segment dictionary,
then build an activation record. However,

. extend stack by data_size+paramsize in step

2. .
@b) yes: build activation record normally.
3) calculate the dynamic link for the
MSCW: If the called procedure has a lex
level of -1 or O, set as in CBP, otherwise
set as in CIP.

Return from non-base procedure. DB is
the number of words that should be returned
as a function value (0 for procedures, 1 for
non-real functions, and 2 for real functions).
DB words are copied from the bottom of the
data segment and "pushed” onto the caller’s
top-of—-stack. The information in the MSCW
is then used to restore the caller’s
correct environment.

Return froﬁ base procedure. The saved
base is moved into BASE, after which things
proceed as in the RNP instruction.

.Exit from procedure. Tos is the
procedure number, tos—1 is the segment
number. This operator sets IPC to point to
the exit code of the currently executing
procedure, then sees if the current
procedure is the one to exit from. Ie it
is, control returns to the instruction
fetch loop.

Otherwise, each MSCW has its saved IPC
changed to point to the exit code of the
procedure that invoked it. until the

desired procedure is found.

I# at any time the saved IPC of main body
of the operatiny system is about to be
changed, a run—time errvor occurs.

S.E SYSTEMS PROGRAMS SUPPORT PROCEDURES

See Section 2.1 for description of these procedures.

BYTE ARRAY PROCEDURES

FLC

Page 198

158 10

Fillchar(dst. len, char).

&CH 158 1] "Bcant(maxdisp, start, forpast, char,
MV 158 92 Moveleft(src, dst: numbytes).

MVR 158 03 Moveright(srec, dst, numbytes).

COMPILER FROCEDURES {still undocumented)

TRS 158 0§ Treescarch.

1Ds 158 07 Idsearch.
DEBUGSER

BPT 213 Breakpoint (conditional HALT)
MISCELLANEDOUS

TiM : 158 09 Time.

XIT 214

mask).

Page 199

LA S e g e e e e R I eI T YRR R YRR Y Y 2y
* INTRODUCTION TO THE PASCAL PSEUDD-MACHINE # # Section 3.5
RN TIW T AW NN T NSRRI RTINS 00T ISR

Version 1.9 September 1978

UCSD uses an interpreter based implementation of Pascal. This
implementation is interpreter based. This means that the compiler emits
code for & pseuvdo—-machine which is emulated at run time by a program
written in the machine language of the host. The compiler, program
editor., small stand—-alone opetrating system, and various utilities are
themselves uwritten in Pascal and run on the same interpreter, Thus the
entire system can be moved to a new host machine by rewriting the
interpreter for the new host.

Figure 3.9.10 (the last page of this document) is a skeleton version
of a large Pascal program, here—in—after referred to as "The Program”.
This document is a top—down description of the realization of that
program on the UCSD Pascal system. We will make occasional use of a
helpful coincidence: The Program is the framework of the portion of
the UCSD Pascal environment that’‘s written in Pascal.

I The Program were expanded to & complete Pascal system, it
would consist of at least 6000 lines of Pascal and compile to more than
30,000 bytes of code-~too big to fit all at once into the memory of &
small machine (by our current definition of small), We have therefore
sxtended Pascal so that a programmer can explicitly partition a program
into seaqments; only some of which need be resident in main memory at
a time. The syntax of this extension is shown in figure 3.5.1. (Any
syntactic objects not defined explicitly there Tetain their standard

interpretation as defined by Jensen & Wirth: Pasceal User Manual snd
Report.?

<program> ::= (progrém headingd> <segment blockd .

<Csegment blockd> ::= {label declaration partd ;
<ctonstant declaration partd> <{type definition partd
<variable declaration partd> <segment declaration partd
<segment bodyd>

<segment declaration partd> ::= SEGMENT <{procedure heading>
<Csegment block>: \ SEGMENT <function heading>
<segment blockD:

<segment bodyd::= <{procedure and function declaration partd>
{statement partd>

FIGURE 3.5.1. SEGMENT DECLARATION SYNTAX.

Page 201

Segment declaration syntax (figure 3.5. 1) requires that all nested
segments be declared before the ordinary procedures or functions of
the segment body. Thus, a code segment can be completely generated
before processing of code for the next segment starts. This is not a
functional limitation, since forward décl@rations can be used to allow
nested segments (COMPILER in The Program) to reference procedures in
an ouvter segment body (CLEARSCREEN). Similarly, segment procedures
and functions can themselves be declared forward.

Segmenting a program does not change its meaning in any
fundamental sense. When a segment is called (e.g. the COMPILER
segment in line A), the interpreter checks to see if {t is present in
memory due to a previous invocation. I# it is, control is transferred
and execution proceeds: if not, the appropriate code segment must be
loaded from disk before the transfer of control takes place. When no
more active invocations of the segment exist, its code is removed from
memory. For instance, in The Pragram, the code for the COMPINIT
segment is not present in memory either before or after the execution
of line A, Clearly, a program should be segmented in such a way that
(non—recursive) segment calls are infrequent; otherwise, much time
could be lost in unproductive thrashing (particularly on a system with
low performance disk). ‘

high address

I=—=> 1. DEBUGGER 10 !

not ¢
1—> | FILER 17 1

shown ! :
H { EDITOR 12 §
in ! . -

! ! . COMPINIT 7 !

the 1
{ $ COMPILER 41 H

program | <

j—2> 1 INITIALIZE 3 !
t '~ USER PROGRAM 1 !
{ PASCALSYSTEM 17 !
! SEGMENT DICITONARY 1 !

) low address

FIGURE 3. 95.2. PASCAL SYSTEM CODE FILE.

Page 202

The code file Tesulting from compilntion;of The Program is

dingrammed in figure 3. 3. 2%,

preceded by a segment dictionary.

The file is a sequence of code segments
The size of each segment is noted

in plocks, the 512-byte disk allocation quantum used on most PDP-11
operating systems. The sizes indicated are ﬁepresentativo of a full
Pascal system. Each code segment begins on & block boundary. The
ordering (from low address to high address) is determined by the order
that ona encounters segment procedure bodies in passing through The

Program,

* An overview of the relationship between figures 3.35.2 through
3.%9.8 (to be discussed in the following pages) is given in figure 3.35.9

at the end of this section.

It is helpful to study figure 3.35. 9 at this

point for a better understanding of the section.

The segment dictionary in the first hloék of a code £ile contains

an entry for each code segment in the file.

The entry includes the

disk location and size(in bytes) for the segment. The disk location
is given as relative to the beginning of the segment dictionary (which
is also the beginning of the code file) and is given in number of
blocks. This information is kept in the system communications area
(also called SYSCOM) during the execution of the code file, and is
used in the loading of non—present segments when they are needed.
Figure 3.9.3 details the layout of the table and shows representative
contents for the Pascal system code file,

location 1}

size i

~ = = = PASCALSYSTEM

16

j= = = USERPROGRAM

- - = - COMPILER

- = = = COMPINIT

- = = - DEBUGGER

FIGURE 3. 3. 3.

THE SEGMENT

DICTIONARY

Page 203

A code segment contains the code for the body of each of its
procedures, including the segment procedure,itself. Figure 3.5 4 is a
detailed diagram of the code segment of The Program (Pascalsystem).
Each of a code segment’s procedures are assigned a procedure number,
starting at 1 for the seqment procedure, and ranging as high as 255
(current temporary limit af 127). All references to a procedure are
made via its number. Translation from procedure number to location in
the code segment is accomplished with the procedure dictiocnary at the
end of the segment. This dictionary is an array indexed by the
procedure number, Each array element is a self-relative pointer to the
code for the corresponding procedure. Since 1ero is not a valid
procedure number, the zero‘th entry of the dictionary is used to store
the segment number (even byte) and number of procedures (odd byte).
Observe that CLEARSCREEN is the first procedure for which code is
generated and that it appears at the beginning of the segment. The
outer block code is generated and appears last.

high addrﬁsses
odd : even

Number of procedures
in dictionary

Segment Number

Frocedure #1 PASCALSYSTEM -
{—=—=={ Procedure #2 _ CLEARSCREEN
} == === == rest of = - = - - = - -

= = = = procedure dictionary = - = « =

e ce we 0o 2u me on ee

A
]

PASCALSYSTEM’s outer block code

other procedures of the Pascal system

PROCEDURE 43 T code

PROCEDURE #2 (clearscreen) code

e 5 Gh Ee B CE WO RGO A S BE GG WE o Gn GO S8 e B 0o oo B

low addresses

FIGURE 3.5. 4. A CODE SEGMENT

Page 204

A more detailed diagram of a single procedure code section is
sern in figure 3. 5. 5. It consists of two parts: the procedure code
itself in the lower portion of the section) and a table of attributes
of the procedure. These attributes are:

LEX LEVEL: This odd byte is the depth of absolute lexical nesting
for the procedure. (i.e. Lex Level (LL) Fascalsqstum--t, LL COMPILER
or CLEARSCREEN=0, LL COMPINIT=1, etc.).

PROCEDURE NUMBER: This even byte refers to the number given in the
procedure dictionary of the parent segment procedure. For example,
the Procnum of CLEARSCREEN is 2. (see figure 3.9.4).

ENTER IC:This is a self-relative pointer to the first instruction
to be executed for this procedure.

EXIT IC:This is a self-relative pointer to the beginning of the
block of procedure instructions which must be executed to terminate
procedure properly.

PARAMETER SIZE: The param size is the number of bytes of
parameters passed to a procedure from its caller.

and DATA SEGMENT SIZE:The data size is the size of the data
segment (See below) in bytes, excluding the markstack and PARAM SIZE.

Betuween these attributes and the procedure code there may be an
opticnal section of memory called the "Jyump table®. Its entries are
addresses within the procedure code. JTAB is & term commonly applied
to the six attributes just discussed and the Jump table jtself.

high addresses

odd even
! H
t Lex Level { Procedure # < H H
i ! ! PASCALSYSTEM‘’s !
1 Enter IC t—1 ! Procedure 1
! H ! { Dictionary H
f—=1 " Exit IC ! H ! Pointer H
1t i 1- H
I | Parameter Size { 1
| it
L Data Segment Size !
{ H {]
] == = - - Jump Table = = = = = =} |}
(I |
{=>1 i !
| | I |
! i 1
H CLEARSCREEN
H CODE
{ 1<~}
H i

low addresses

FIGURE 3.935.9%. PROCEDURE CODE SECTION (OF CLEARSCREEN)

Page 209

high addresses

System Resident Segment

System Data Segment

= = - - - - - — e - - = -

mark stack

Compiler Data Segment

Compinit Code Segment

$

H

H

!

!

{

H

Compiler Code Segment !
. !
]

H

H

!

H

H

H

Compinit Data Segment

- - - — - . - - - = - - =]

mark stack H
H

!
! mark stack {

! {

H temporaries {

= = = - = - - - -—— - - -}

H !

H $

H H

! H

{ !

H H

! H

! H E A P !

{ ' !

H H

! Interpreter !
i R T S |

H syscom 1<~ <segment dictionary>
{

!

low addresses

FIGQURE 3.5.5.' SYSTEM MEMORY DURING CLEARSCREEN EXECUTIUN

the execution of a
Figure 3.5.6 is a snapshot of system memory during
call,togprocedure CLEARSCREEN from lina C in COMPINIT. The Pascal

Page 206

interpreter occupies the lowest ares in memory. In it is the system
communications area(also called SYSCOM),which is accessible both to
assembly language routines in the interpreter and (as if it were part
of the hesp) to system routines coded in Pascal. It serves as an
important communication link between these two levels of the system.
The Pascal heap 1s next in the memory layout: it grows toward high
memory. The single stack growing down from high memory is used for 3
types of items: 1) temporary storage needed during expression
evaluation: 2) a data segment containing local variables and
parameters for each procedure activation; and 3) a code segment for
each active segment procedure. (See figure 3.9.6)

Consider the status of operations Just before COMPINIT is called
in line B. Conceptually, there are six pseuvdo—variables which point
to locations in memory:

a STACK POINTER(SP):which points to the current top of the stack,

a4 MARK STACK POINTER(MP):which points to the “topmost” markstack
in the stack, (remember that the the stack grows down!),

4 BEGMENT(SEG) veriable:which points to the base of the procedure
dictionary for the currently active segment procedure. For example,
Just before COMPINIT is called, SEG points to the COMPILER segment’s
procedure dictionary,

an INTERPRETER PROGRAM COUNTER(IPC):which contains the address of
the next instruction to be executed in the code segment of the current
procedure,

a JTAB pointer:which pdints to the collection of procedure
attributes and jump table entries in the body of the current pro:edure
code section,

and a NEW POINTER(NP):which points to the current top of the
heap.

When segment procedure COMPINIT is called in line B, its code
segment (including all compiler initialization procedures) is loaded
on the stack. The COMPINIT data sepgment is built on top of the stack.
Figure 3.5 7 is a diagram of the data segment for COMPINIT.

Page 207

high addresses

Other COMPINIT variables

BOOL

I

J

C—
MSSP

e - Gsus s e e enas e

MSIPC

- emew e s e s -

MSSEG

MSJTAB

- e wman wmer e wewn .-

MSDYN

-~ cmmm wras apem | ww e -

MSSTAT H

PMP =Dimm = oo = mm e e o em o o

- B Be w0 e e e e e 0 W e on Ce e

!
|
|
i
!
-

.n on Cn Pr 40 Co G o NE Bo Ge SE 4GS *e e S* e e on o=

{
§
!
H
H
H
1=-=> markstack
!
{
1
{

low addresses

FIGURE 3.5.7. A DATA SEGMENT

In the upper portion of the data segment, space is allocated for
variables local to the new procedure. For example.COMPINIT’s data
segment allocates space for integer variables I and J, as well as
boolean BOOL.

In the lower portion of the data segment is a "markstack”. When
& call to any procedure is made, the current values of the
pseudo-variabdbles, which characterize the operating environment of the
calling procedure, are stored in the markstack of the called
procedure. This is so that the pseudo-variables may be restored to
pre—call conditions when contral is returned to the calling procedure.

For example, the call to COMPINIT causes conditions {n COMPILER
Just before the call to be stored in COMPINIT’s markstack in the
following manner:

MarkStack DYNamic link (MSDYN) <-- MP

" - IPC(MSIPC) <~- 1IC ‘
SEGment Pointer(MSSEG) <—— SEG
Jump TABle (MSUTAB) <-- JTAB
Stack Pointer (SP) <-- SP

"Page 208

In addition @ Static Link field becomes & pointer to the data
segment of the lexicel parent of the called procedure. In particular,
it points to the Static Link field of parent’s markstack. After the
building of the data segment new values for IC, SEG, SP, MP, JTAB:, and
NP are established for the new procedure. ‘

When the call to CLEARSCREEN is made on line C, another data
segment is added to the stack and again the pseudo-variables are
stored in the new markstack, as well as the appropriate Static Link,
and updated. Note that now the SEG no longer points to the COMPINIT
procedure dictionary, but to the Pascalsystem dictionary.

No code segment for CLEARSCREEN is added to the stack before the
data sepment since the code for CLEARSCREEN is already present in
segment Pascalsystem. Its invocation causes only a data segment to
be added to the stack. When CLEARSCREEN and INIT are completed, the
COMPILER data segment will again be the top element on the stack.

Figure 3.5.8B is a detailed diagram of the stack during execution of
an instruction in CLEARSCREEN, including appropriate pointers for
static, dynamic., etc. links of CLEARSCREEN‘s markstack. Note where
the psevdo-~variables point in the stack. In particular, JTAB points
inside CLEARSCREEN code section which is in ¢the Pascalsystem code
segment, IC points inside that CLEARSCREEN code. and SEG points to the
base of the Pascalsystem code segment.

Page 209

to PASCALSYSTEM resident code segment
to PASCALSYSTEM resident data segment i ~

~ | SEC 1<~ in
{ JTAB {<—-PASCALSYSTEM
! IPC {<-code sagment

e

—=——==== high addresses ——————o -

CDﬁPXLER code segment

-

- mw sa ow o

COMPILER data segment

TR Em an Em e A T R W @ @ e E as W e e

{
H !
! }
H i
H !
H {
{ L) markstack i
' t t
{ | m————— >1! 20 H L4 ! ————ne |
¢ ! H . t H
H H t Pointer to COMPINIT code {—1 H
$ § { - (I
{ H H Pointer to Procedure #2 | ==t code
H H H ‘ LI A | segment
t 1=+ >! ' - H 1! of
{1 m——=D COMPINIT code 1<~-1 | COMP INIT
t ! t H e o e o e
I T H Procedures of COMPINIT | {—==1 i
I T T H ? H B
(I T H COMPINIT variables H H
I I H H H
LI I T { MSSP H {
I I I H H {
I T T { MSIPC H
2 T | H H data
I T T | H MSSEG ! segment
I S I t H ot
by H MSJUTAB H COMPINIT
L I T T | H { ———————
| T | t MSDYN t i
Tt { H {
I T A | ! MSSTAT {1 1
- T T | H H H - !
I T R H evaluation stack H !
N T T I o 3 : ! { - t
| S T T] H CLEARSCREEN variables ! ! H
N T B B { H 1 }
| T R T R MSSP { { !
t ot t t ! H
I T N Rt | MSIPC H i e e
t 4t { ! H data
i - H - . MSSEG } { segment
I { H ! of
| (e -1 MSJUTAB H H CLEARSCREEN
i H ! H ——————————
§ 1 MSDYN {1 L
{ ! { H
e MSSTAT 1 C=——={ MP | {
t { esccee H
L evaluation stack {
1 v { top of stack
o = = e == == .- - - - - = - - }{~—=—=]| SP |
! {
e = = = - == - - - - A 1<=——=1 NP |
! HE AP ‘ | $oo of heap

! = !
low addresses

Page 210 ,
FIGURE 3.95.B. THE STACK DURING CLEARSCREEN

Figure 3.5. 9 illustrates a top—down p}ocess by showing the
relationships among diagrams 2 through 7. ‘

code file
figure 3.5.2

H
! PASCALSYSTEM {-—=>! figure 3. 5. 4!
! { { E H
' { { CLEARSCREEN !——=D>! figure 3. 5. 5!
H H { code detail | ! proc. code !
! { { detail {
! segment {
{ dicticnary !
! d

el figure 3.5.3 !
{ segment dictionary detail 1

system memory

figure 3. 5.8

code segment {———>! figure 3.%5.4 !

COMP INIT -
data segment {~-->! figure 3.5.7 !

{ data segment detail |

FIGURE 3.9.9. RELATIONSHIP OF DOCUMENT FIGURES

Page 211

Page 212

PROGRAM PASCALSYSTEM;
VAR
SYSCOM: SYSCOMREC:
CH: CHAR:

PROCEDURE CLEARSCREEN: FORWARD:

SEGMENT PROCEDURE USERPROGRAM;
BEGIN
END;
SEGMENT PROCEDURE COMP ILER;
VAR

SY, OP: INTEGER:
SYMCURSOR: INTEGER:

PROCEDURE INSYMBOL; FORWARD;

SEGCMENT PROCEDURE COMPINIT:
VAR

I, J: INTEGER;

BOOL: BOOLEANM;
BEGIN

I =1;

CLEARSCREEN;
INSYMBOL;

END;

PROCEDURE INSYMBOL;
BEGIN ... END;:

PROCEDURE BLOCK:
BEGIN ... END;
BEGIN (#COMPILER®%)

COMP INIT:

—~LINE C

INSYMBOL;
END; (#COMP ILER®)

SEGMENT PROCEDURE EDITOR:
BEGIN END;

PROCEDURE CLEARSCREEN
BEGIN

" WRITE()i

END;

BEGIN (#PASCALSYSTEM=*)
REPEAT
READ(CH)
CASE CH OF

LINE B

C:COMPILER: -
E.EDITOR;
N~ U: USERPROGRAM

END(®CASE#) FIGURE 3. 5. 10. THE
UNTIL CH = ‘H’

END.

LINE A

PROGRAM

L2222 22T ETLR LT LT IR TT R RPN ey
BYTE-SWAPPING # % Section 3.6 &
L2 2 2 2 X T TR R S R ey ey

Version 1.5 September 1978

Byte-swapping problems occur when code generated on one machine
is transferred to another or programs which directly interface with
memory (e.g. the Patch utility) are written on or for one machine and
transferred to another which has a different ordering for its memoTy.

There are two different ways to order bytes in a given memory:

A) Byte Zero is the byte containing the least éigngfzcang

half of the word. Byte QOne contains the most significant
half.

B) Byte Zero is the byte containing the most signifijcant

half of the word. Byte Dne contains the least sjgnificant
hal#f.

The difference between these is the way Byte quantities are
read and stored in memory. Word quantities, such as integers, will be
read and looked at in the same way on both types of machines. Houwever,
byte gquantities such as P—-code or characters will be reversed.

An example:

DEFINITION CA) (B)

. is® ms» ms* ' ls#
VALUE(Hex) ! 04 ' 07 ! v 07 f 04 H
BYTE o] 1 o] 1

(least/most significent bit, thereby least/most significant byte)

If both of the bytes shown above were read as an integer , a
word quantity, they would give the value 3, 588B. However, if the value
of byte Zero was wanted (as in: C: PACKED ARRAYLO..1) OF CHAR:) then
Definition A would show & valuve of 0O4H and Definition B would show a
value of O7H. Both definitions would show the value O7H if the most
significant byte were specified.

Byte—swapping is not a hard problem to solve, it just requires
8 little thought. The Patch utility has type declarations for both
types of machines and a study of it should suffice to show how to
satisfy your programming needs.

Page 213

LA 22T 22T TS T 2T T a2l 22 T2y Ty

THE CALCULATOR % # Section 4.1 #»
At S22 LTSI T TR LT L IR S 2R ¥ ¥ Sy

Yersion 1.9 September 1978

The prompt, ‘=2’ , expects a one line expression in algebraic
form. Up to 25 different variables are available, each with different
values assigned using the syntax of the given grammer. Only the first B
letters are used to distinguish between variables. Variables having a
value may be used as constants. There are two built-in variables: PI
{3.141393) and E (2.718282). These values may be changed by the user.

No distinction is made between upper and lower case letters.

The MOD function is the backslash “\’: the PASCAL MOD function
is used and the operands are rounded to be integers. WARNING: Since
this uses the PASCAL defn. of MDD (see Jensen & Wirths’ Pascal User
Manval and Report Second Edition page 108) the results obtained may not
be as expected. o

The operand of the factorial function ‘FAC’ is also rounded to
be an integer which must be between zero and thirty-three inclusive or
the expression will be rejected.

The uvparrow ‘~’ is used for exponéntiation. The operand must
be positive or the expression will be Tegjected as e ~ Y LN (X) is
used to calculate the answer. ' ’

'‘LASTX’ is a constant which is assigned the value of the
previous correct expression by the calculator and may be used in the
following expression instead of inserting the same expression again.

Angles for the TRIG functions must?be in RADIANS. Degree to
Radiean conversion is accomplished by RADANGLE = (P1 / 18O) # DEGANGLE.

This program will bombd on an execukion error if an over or
underflow occurs. If this happens all user assigned variables and their
values will be lost. ‘ '

. To leave the calculator mode iimply type <RET> immediately
following the prompt.

EXAMPLE OF CALCULATOR SESSION:

-> Pl
3. 141592
=2 LASTX
3. 141592
=> HALFPI = P1 7 2
1. 570796
=> SIN (HALFPI)
1.0
~>A=B=C=eD=F=(FAC (3)/ 2)

Page 215

3.0
->a
3.0
->c
3.0
> 1+2
3.0
>3+77a4
4.7
-> SGRT(2#2+3#3)
3. 605551

Page 216

A d s ad R S LI LTI TE ST IR T T TN YRRy

* LIBRARIAN UTILITY # & Section 4.2 #
LA R LIS L TS LT T TR R Y Y T T ey

Version 1.5 September 1978

LIBRARY. CODE is a utility program that allows the user to link
separately compiled PASCAL units and separately assembled subroutines
into a LIBRARY file, It is based vpon the original pre-I1.95 utility
LINKER. CODE and operstes in basically the same way.

To add a segment to *SYSTEM. LIDRARY it is necessary to create a
new file into which each segment that is wanted from the original
*SYSTEM. LIBRARY is first linked. It is then possible to add segments
by linking from another code file into the new file being created.

EXAMPLE

Consider the case of adding a segment called TURTLE to the
already existing file *SYSTEM. LIBRARY which is assumed to contain the
segments PSGCRAPHICS and MOVETO.

On executing LIBRARY. CODE, the user is prompted for the name o#f
the output codefile. For this example, Tespond with the name
NEW. LIBRARY. The program now asks for a ‘Link Code File’. The
Tesponse here is *SYSTEM. LIBRARY. The names of all segments currently
linked into the input library, i.e. #SYSTEM LIBRARY, as well as their
length in bytes is now displayed. Currently there are a maximum of 1&
segments in any PASCAL program or LIBRARY. :

O- MDVETO 2398 4- 0o 8- 0o 10~ o]
1- PSGRAPHI 864 o= (o] P- o 11- 0
a2~ o] &= 0o 10- 0 14- o
3= o 7= o 11~ 0o 15- o

The following promptline appears:
Eegment & to link and <space>, N(ew file, G(uit, A(bort

The user now enters the number of a segment within the link
code file that is to be linked into the new library file, followed by
<spaceD. Next, the number of the segment in the output file to be
linked into (i.e. NEW.LIBRARY) is typed followed by <space>. For each
segment linked the librarian reads that segment from the input £ile and
writes it to the output file at the segment requested. It then
displays the segment table for the current state of the output library
file. In this example, respond with the following:

Page 217

O<space> '
Seg to link into? O<Cspace
i<spaced>

Seg to link into? I<space>

When all needed segments have ﬁeen linked a new input file is
requested by typing ‘N’ for N(ew file. | In this example, a separately
compiled PASCAL UNIT called TURTLE is dssumed to exist in a codefile
called TGRAPHICS. CODE. See section 3.2, UNITS. O0On entering the name
of this file the following display appears:

o- g- o 10-

o 4~] 0
1- o S5- 0 - o 11~ o
2= 0 &- 0 10~ TURTLE 230 14- (o)
3- 0 7= o 11- o 15- 0

The Unit TURTLE occurs in segment 10 and is to be linked into
segment 2 within MEW. LIBRARY. The user responds:

10<space>
Seg to link into? 2<space>

The final display of the output library segment table is thus:

O~ MOVETO 2398 4~ - Q e~ o 10~ o
1- PSGRAPHI 844 5= Q 9- c 11— o
2= TURTLE 230 b&— o 10- 0 14- 0

0 15-- (o]

3- o 7- 0 11-

The ocutput library codefile lon;th is displayed and in this
example is 16 (blocks lang). i

Once the needed segments from all input files have been linked
in the user locks the output file by typing ‘G’ followed by a return,
(unless a copyright notice is desired within the codefile). Type ‘A’
to abort the linking process. The old #SYSTEM. LIBRARY should either be
Temoved or its name changed if it resides upon the same disk and the
name NEW. LIBRARY must be changed to #SYSTEM. LIBRARY in order to be
used.

NOTE _
In response to the initial prompt “Output Code File =D>" we
could have just as easily said #SYSTEM. LIBRARY followed by another
#SYSTEM. LIDBRARY in response to the prompt “Link Code File ->".
However, in this case the original #SYSTEM. LIBRARY will be removed
automatically upon caompletion of the linking process.

Page 218

LA AR X2 2L ST D2 XL TR L LR TR YN N TR grpoggy LA 2222 L]

* SETUP - SYSTEM RECONFIGURATION # # Section 4.3 #
LA S LAl ST ST TSI TR T T T LT T LW E IR Prp g

Version I.S September 1978

The UCSD Pascal Operating System keeps certain information
about the user in a file called SYSTEM. MISCINFO. During each system
initialization this file Ls read into memoTy, and from there it is
accessed by many parts of the system, particularly (if the user has a
terminal suitable for it) by the screen oriented editor.

Much of this information needs to be initially set up by the
user to conform to his particular hardware configuration or his taste
or convenience. Most of this information concerns the nature of his
terminal and keyboard, although there are a few miscellaneous fields.

SETUP is Tun like #sny other compiled Pascal program, by
entering the Command level of the system typing X for eXecute and
typing the filename SETUP followed by & carriage return.

SETUP: C(HANGE) T(EACH) H(ELP) G(UIT)

If this does not happen it may be because the setup program is
not on the disk. If so, the system will display the message

no file setup. CODE

If neither of the above happens, something is drastically. wrong.
Contact UCSD. Assuming all is well, continue.

All commands to the SETUP program are invoked by typing a
single letter chosen from the promptline.

SETUP:. C(HANGE) T(EACH) H{ELP) GIUIT)

Type ‘H’ to find out what the commands at this level do. The
program is self teaching. so the Test of this document explains the.
information SETUP was designed to change.

SETUP does not tell the system how to do random access cursor
addressing on the user’s terminal (for those terminals which have this
capability). To allow the system to use that feature, please refer to
Section 4.7 of this document package.

4.3. 1 MISCELLANEQUS INFORMATION

HAS CLOCK -

Values: TRUE, FALSE

A real time clock is available. A real time clock module, such
as the DEC KW1l, may be found on many processors. It is assumed to be a
line frequency (&0 cycle) clock. If available it is used by the PASCAL
system to optimize disk directory updates. See section 2.1.6 TIME intrinsic.

Page 221

HAS 8510A
Values: TRUE, FALSE
The system is running on a Terak 8510a hardware configuration.

4. 3.2 GENERAL TERMINAL INFORMATION

HAS 5L0W TERMINAL

Values: TRUE, FALSE.

When this field is true, the system issues abbreviated
praoamptlines and messages.

Suggested setting: 400 baud. and under —— True, otherwise False.

HAS RANDOM CURSOR ADDRESSING

Values: TRUE, FALSE

Only applies to video terminals. See Section 4.7 in order to
allow the system to make use of this feature.

HAS LOWER CASE
Values: TRUE., FALSE

SCREEN WIDTH
The number of characters per line of a terminal.

SCREEN HEIGHT :

The number of lines per display screen of a video terminal.
Set to O for a hard copy terminal or other terminal in which paging is
not appropriate.

NON-PRINTING CHARACTER -

Values: Any printing character.)

What should be displayed by the terminal to indicate the
presence of a non-printing character,

Recommended setting: ASCII "7?¥.

VERTICAL MOVE DELAY _

. The number of nulls to send after a vertical cursor move. Many
types of terminals require a delay after certain cursor movements which
enables the terminal to complete the movement before the next character
is sent. This number of nulls will be sent after carriage returns,
ERASE TO END OF LINE, ERASE TO END OF SCREEN and MOVE CURSOR UP.

4.3.3 CONTROL KEY INFORMATION

The user may choose which control keys suit his particular
keyboard arrangement and his taste.

Some keyboards generate two codes when some single key is
pressed. If that is the case for any of the keys mentioned here, it
myust be noted in the field PREFIXED L fieldname>]) which has either the
value TRUE or the value FALSE. The prefix for all such keys must be
the same and must be noted in the field LEAD-IN FROM KEYBOARD. This
teature may also be used to access control functions with two-
character sequences if a user’s keyboard is unable to generate many
control characters. As an example, suppose the user’s keyboard had a
vectaor pad which generated the value pairs ESC "U", ESC "D". ESC "L"
and ESC "R” for the keys for Uparrow, Downarrouw. Leftarrow and

Page 222

Rightarrow, respectively. Assume also that all other keys on the
keyboard generate only single codes, Then the user would give the
following fields the following values:

KEY FOR MDVING CURSOR UP ASCII *yu~
KEY FOR MOVING CURSOR DOWN AECI1 *D*
KEY FOR MOVING CURSOR LEFT ASCII "L"
KEY FOR MOVING CURSOR RIGHT AECII “R"™
LEAD-IN KEY FOR KEYEDARD ESC
PREFIXEDLKEY FCR MOVING CURSOR UPJ TRUE
PREFIXEDLKEY FDR MQVING CURSOR DODWNI TRUE
PREFIXEDLKEY FOR MOVING CURSOR LEFT) TRUE
PREFIXEDLKEY FOR MOVING CURSOR RIGHT] TRUE

KEY FOR STOP

Console output stop character. The STOP character is a toggle;
when pressed, the key will cause output to the file ‘OUTPUT’ to cease.
When the key is depressed again, the write to file ‘OUTPUT’ will resume
where it left off. This function is very useful for reading data which
is being displayed faster ‘than one can Tead.

Suggested setting: ASCII DC3

KEY FOR FLUSH

Console output cancel character. Similar in concept and usage
to the STOP key, the FLUSH key will cause autput to the file ‘OUTPUT’
to go undisplayed until FLUSH is pressed again or the system writes to
file ‘KEYBDARD'. Note that, unlike the STOP key. processing continues
uninterrupted while output goes undisplayed.

Suggested setting: ASCII ACK

KEY FOR BREAK
Typing the character BREAK will cause the program currently
executing to be terminated with a run—time error immediately.
Suggested setting: Something difficult to hit accidentally.

KEY TOD END FILE ‘

Console end of file character. When reading from the files
KEYBOARD or INPUT or the unit ‘CONSOLE: /, this key sets the Boolean
function EOF to TRUE. See section 2.2 4 EDF intrinsic.

Suggested setting: ASCII ETX

KEY TO DELETE CHARACTER .

Each time you press this key one character is removed from the
current line. until nothing is left on that line.

Suggested setting: ASCII BS

KEY TD DELETE LINE

Depressing LINE DELETE will cause the current line of input to
be erased.

Buggested setting: ASCII DEL

Pabe 223

The rest of this section contains information
only of interest to users who are using video
display terminals with a selective erase
Capability and may be safely ignored by users
having any other kind of terminal. such as
hardcopy terminals or storage tube terminals.

KEY TO MOVE CURSOR UP
KEY TO MOVE CURSOR DOWN
KEY TO MOVE CURSOR LEFT
KEY TO MOVE CURSOR RIGHT

These keys are used by the screen oriented editor to control
the basic motions of the cursor. 1If the keyboard has a vector pad, set
these fields to the values it generates, otherwise, we suggest
choosing 4 keys in the pattern of a vector pad and use the control
codes which correspond to them. for example the keys ‘0, ‘. ’, ‘K’ and
‘s’ on most keyboards encircle an imaginary vector pad. You may wish
to use a prefix character before such keys as described above.

EDITOR “ESCAPE"“ KEY .

The key which, in the system screen oriented editor, is to be
used to escape from commands., Teversing any action taken.

Suggested setting: ASCII ESC

EDITOR “ACCEPT" KEY

The key which, in the system screen oriented editor, is to be
used to accept commands, making permanent any action taken.

Suggested setting: ASCII ETX

4.3.4 VIDED SCREEN CONTROL CHARACTERS

This section describes the characters which, went sent to the
terminal by the computer, controls the terminals actions. Yoou should
consult the manual for your terminal to find the appropriate values.
If a terminal does naot have one of these characters, the ¢field should
be set to O unless otherwise directed.

Some screens require a two character sequence to exercisa some
of their functions. I# the first character in all of these sequences
is the same, it can be set as the value of the field LEAD-IN TO SCREEN
and for each <fieldname> which requires that prefix, the user must set
the field PREFIX[<fieldnamed>] to TRUE. For example, suppose ERASE TO
END OF LINE and ERASE TO END OF SCREEN were respeactively performed by
the sequences ESC "L" and ESC "S" but all the other screen controls
were single characters. The user would then set the following fields
to the following values:

LEAD-IN TO SCREEN ASCI1 ESC
ERASE TO END OF LINE ' ASCII L~
ERASE TO END OF SCREEN ASCI1 =s*
PREFIXEDLERASE TO END OF SCREENJ TRUE

PREFIXEDCERASE TO END OF LINE] . TRUE.

Page 224

ERASE TO END OF SCREEN
The character which erases the screen from the current cursor
position to the end of the screen.

ERASE TO END OF LINE

The character which: when sent to the screen, erases all
characters from the current cursor position to the end of the line the
cursor is on.

ERASE LINE
The character which, when sent to the screen, erases all the
characters on the line the cursor is currently on.

ERASE SCREEN
The character which, when sent to the screen, erases the entire
screen.

BACKSPACE
The character which, when sent to the screen, causes the cursor
to move space to the left

MOVE CURSDR HOME

The character which moves your cursor to the upper left of the
current page. IMPORTANT: If your terminal does not have such a
character, set this field to CARRIAGE RETURN, ASCII mnemonic CR.

MOVE CURSOR UP
MOVE CURSOR LEFT

The characters which move your cursor non—destructively one
space in those directions. ’

Page 225

LA A S s s 2SSl XTI ST I T2 T T TY T v
BODTSTRAP COPIER + Section 4.4 «
bt At S A 2 LRI 2T T2 2 T R Y Y Ry

Version 1.8 September 1978

The bootstrap copier BOOTER, CODE iasks for the unitnumber of the
velume on which to write the bootstrap. ‘Refer to Table % for a list ot
volume numbers. It will then ask for 2 file name to write as the
bootstrap. It writes the first two blocks of that file, so in order to
copy the bootstrap from an existing disk, give it the disktname, and it
will copy the bootstrap from the disk named to the unit numbered.

To execute the BROTER program, type X BOOTER to Command level
(assuming that there a copy of BOOTER. CODE on the disk).

Page 227

L2212 TR T I TREE YRy

* PATCH * # Section 4. % »
Ll S ZE I R R TR Y T

Version 1.5 September 1978

On X(ecuting PATCH, the promptline is
Clonsole, P(atchwrite, W(holewrite, G(uit

The options available are:
Working with, and altering the file in the]C(onsoll mode.
Dumping the file in a Hex, Decimal, Octal. or ASCII! format, in the
P(atchwrite mode.
Dumping/concatensting and/or moving blocks in files with the
H(holewrite mode.
L.eaving PATCH with the G(uit command.

) In the Ctonsole mode, the promptline changes with each command.
The promptline always reflects the commands available at any given
time, and no more. The #full promptline is:

Patch: R(ead, Stave, H(ex, M({(ixed, CG(et, QCuit Cnnl

The number in square brackets at the end o??the prompt is the current
block being patched. The firet command to use is G(et. Clet will
prompt :

Filename: <cr for vunit i/0>

Respond to this prompt with the name of the file to be
patched. If the disk/device has no directory, or has some problem with
the directory, reference it by its Pascal unitnumber. Type a carriage
Teturn to this prompt, and the prompt is:

Unitnum to patch [4,5.9. .123 (0 will Guit)

Having typed a successful entry to one of the two above prompts, the
prompt will now be extended by the R(ead tommand. R(ead will read up a
block from the files/unit. The prompt on entering R(ead command is

BLOCK:

Respond with & block number in the file/unit specified. There
is no range checking provided on this read: so exercise care in the
number typed. The promptline 1snow5extendeb with H(ex, M(ixed and
the block number in square brackets. Hiex and M(ixed display the
block read. Using the H(ex command displays the block entirely in
hexadecimal characters:, using the M(ixed command will display printing
ASCII characters where possible, and hexadecimal values elsewhere. The
promptline is: '

Page 229

Alter: pad vector 1,5.3.0 0..F hex characters. S(tuff, Q(uit

The vector keys on the terminal causes the cursor to move
around in the data, notice that there the cursor will remain only on
the data, and will not move oft the data, Typing a hexadecimal
character changes the character the cursor is over provided that only
one or more of the data positions is chanped. when G(uitting from Alter
mode, the Patch promptline will be extended with the S(ave command.
Typing S(ave writes the changed data back to from where it was read.

In the Alter mode, there is one optional command: S(tuff. Typing the
8(tuff command displays the promptline:

Stuff for how many bytes:

Key a number from O to 512. Type carriage return to cause
patch to accept the number., the promptline changes to:

Fill with what hex pair:

Key & byte value in hexadecimal. The data reappears on the
screen, with the number of bytes specified, from the position of the
cursor filled with the data value specified, ta the hex pair prompt.

Using the Patchwrite command caus@s a4 full screen prompt to
appear: : :

This procedure writes out sequential blacks to any file as a patch
dump. Type the prefix character 0f the option to be changed. Type ‘P’
to PRINT., ‘Q’ to GUIT.

A(Input File
B{ Begin Block #
C¢ Num. of Blocks

E{ Output File

¢(Hexadecimal
H(ASCI1I

I(Decimal

J(Octal

K(Decimal Bytes
L(Octal Bytes
M(Krunch

NC(Double Space

Page 230

Following each of the fields is the current value of that
field. Typing the character in front of the field places the cursor
after the field, and removes the ¢turrent value. Typing ‘Y’ or ‘T’ sets
4 boolean value to True, any othet character sets the field to False.
The Input File and Dutput File fields require 3 filename to be typed
followed by carriage return. The integer fields (Begin Block, and Num.
of Blocks) require & number to be typed followed by carriage return or
space. Any other character sets the value of the field to some
unspecified value.

The other options at the Patchwrite level are Print and Quit.
Both cause Patch to return to the outer level. Quit does it straight
away, Print dumps out the file in the requested format on the way. The
options available for the dump need to be selected, the default is
none. The options Krunch and Double Space affect the formatting of the
output. Krunch, when true, removes blank lines between logical output
lines. Double Space when true, double spaces all output.

Using the W(holewrite command causes the full page prompt:

-

This procedure writes any number QF blockﬁ from an existing file
to a new file, uncharnged. Simply specify the necessary parameters
Type ‘P’ to PUT, ‘@’ to QUIT

I(nput File
S(tart Block
N(umber of Blcks

O(utput File

The protocol for changing the fields at this level is the same
as that for the Patchurite level., The Wholewrite level is that which
allows one to mix/match and mingle files. Put and Quit both cause
Patch to return to the outer level, Put writes to the file on its way,
Quit does not.

: Notice that the Patchwrite and Wholewrite levels remember their
vital parameters across sessions (while remaining in Patch). The
Console level will clear all memory of the session. The Patchurite
level paginates its output, after each block written, a form—feed is
generated. (Specifically PAGE(DUTPUTFILE)).

Page 231

Q!ii**lili!***Gl&l**&*l*i*?*i**ii HERERRRREARE RN

RT11 to PASCAL coNVERsrop KIT # # Section 4.6 =
ﬁi*******li****iil&i?*ﬂ**** S 3 -3¢ 3 2 08 3o 3% B

Version 1.5 September 1978

|

The utility file labeled RT11TDEDIT is intended for use with
RT-11 disks. It assumes the presence bf‘an RT-11 directory spanning
blocks 6-7. When the file is executed it asks the user to specify the
Pascal system unitnumber of the Jolumeioﬁ which the user wants to view
the directory. Once a legal on-line unit has been specified.
RT11TOEDIT reads each entry on blocks 6-7. The program uses the
UNITREAD intrinsic to read the directory and does not open the file in
the usual manner. It lists on the screen the entire contents of the
directory. For each entry it specifies the file title, file kind, the
size of the file in blocks, and the starting block location of the file
(in base 10). All unused portions are%ldentified as such. The user
will be prompted for an RT—-11 file namp,}a Pascal system file name, and
finally a mode of transfer. i ’

Page 233

| i

iiik*i*it*}:i}li * 4% Q#*ii#i**ii“ii

* GOTOXY BINDER # # Section 4.7 #

L L2 T Y Y R L Z T 22T 2Ty
|

| :
Versjon 1.9 September 1978

This program alter$ the SYSTEM. PASCAL on the default P(refix
disk. It prompts for ‘local GOTOXY', a!prpcedure which must be
treated and bound into thel system (onlg;on;e) in order to make the
system communicate correct#q with the screen.

Look at the file GDTOXY. TEXT on the release disk. This file
contains & few procedures ?or doing GOTQXY cursor addressing on a few
tifferent CRT-type terminals. If the priocedure needed is one of those.
remove it from comments, comment out any others, recompile it, and run
BINDER on it. BINDER 1is alselF—instruc@ing program.

If the GOTOXY cursér-nddressingéscheme for the terminal is not
there, create one. The procedure may nqt be named GOTOXY because

this identifier is predeclared at the “gU-* level of compilation.
Possible error: Fix:
Nil memory referente at - Remove the program heading
compile time and try again
Value range error when executing (#8U~%) should be the first
BINDER .

thing in the GOTOXY #ile

Assumptions:
1.) A screen terminal
2.) A PASCAL system

3.) The upper left-hand corner of the screen is X=0, Y=O.

Page 235

- Notes -

P;$U-‘)

OCEDURE FGOTOX

s v(X,V: INTEGER),
IF X < 0 THEN X := 0;

- IF X>79 THEN X := 79;
IFY< 0 THEN Y := 0;
IF ¥Y>23 THEN ¥ := 23;

write (CHR(27),'Y',CHR(Y+32), CHR(X*BZH
END;

EES(.;IN (* Dummy main bLock *)

(*This noutine should work for the DEC VT-52%)

(*$U-*)
PROGRAM PASCALSYSTEM;
(Y¥GOTOXY for SCRCC IQ12C¥)
PRCCEDURE 1C120XY(X,Y:INTEGER);
VAR P: PACKED ARRAY(O..3] CF CHAR;
BEGIN -
IF Y»23 THEN Y:=23;
IF X>76 THEW X:=79;
IF Y<O THEN Y:=0;
Ié x<c THEN X:=0;
PL0O1:=CHR{(27);
P 1] '-'.
Pl21:=CHR(Y+37);
P{3]): =CHR(X+32);
UHITWRITE(? P,0);
ENC;
BEG'N sno. .

LT TR R
* DUFLICATE LR
LA L LR T T R SR

Versio
COPYDIPDIR

This program will cq
directory location 1I¢f the
directory the program will

COPYDUPDIR. The program wil
take place (4 or 5). I+ no ¢
Yyou after you indicate the ¢
it will ask you if Yyour sure
blocks 2-5. A ‘Y’ will exect
the program.

L

MARKDUPDIR
This prograr will ma
& duplicate directory so tha
sure that blocks 4-9 are fre
arrainge the files as to mak
availahle by getting an E)xt
see where the first f1lec ot
the first file starts at blj
at the top, then the disk ha
file starts at block 10 and
of the directory then the di

SYSTEM. PAST

<unuscd>

(3

h

tell you co.

R RLLRIE R R X ‘}-’*%#% LA R L X T T2 T T 2NN

FCTORY UTILITIES # # Section 4 8 #
FALTRERRL R Nd R AT HEE RN ERED RS AT

I.5 September 1978

apﬁ the duplicate diréctory inta the primary
1isk is nct curre

ntly maintaining a current

To use this program e(x)ecute
ask for the drive in which the copy is to
Uplicate directory is found it will tell
rive unit. If the duplicate is found then

* Yyou want to distroy the directory in
jte the copy any other character will abort

Tk o0 disk thst is currentl
t it will. Caution must be exersiced to be
e for use. If they are not one must re-

e them free. DOne can tell if there

ended listing in the Filer and checking to
Tts. If the first file starts at block & or
ctk 10 but there is a 4 block unused section
§ not becn marked. 1f however. the first
there i{s no unused blocks at the beginning
sk has been marked.

V not maintaining

aL

SYSTEM. PASC

31 30-Aug-78 6 Codetile
OR
4 é& B
AL 31 30-Aug-78 10 Codefile

Both of the;above cases indicate disks that have not been
marked. Uelow is the directory of a preoperly marked disk.

SYSTEM. PASCAL 31 30-Aug-78 10 Codetile

Page 237

To execute this program e(X)ocutg MARKDUPDIR. The program will
ask you which unit contains the disk to be marked (4 or %). The
program will check to see if it thinks that the blocks 6-9 are free. If
the program doesn’t think so it will ask you {f you are sure they are
free ? Typing ‘Y’ will execute the mark, any other character will abort
the program. Be sure that the space is free before marking it as a
duplicate directory.

Page 238

HUESELEREF BRI R R RERRSE EREBRREREEEBERN
* P-CODE DISASSEMBLER # # Bection 4.9 »
laeb b S gl 2 2 L L T N

Version 1.5 September 1978
The disassembler inputs a standard UCSD code file and outputs

symbolic psuvedo-assembly (P-Code) along with various statistics
concerning opcode frequency, procedure calls, and data segment

references. The disassembler was originally written to collect
statistics on opcode frequency., etc. as an 4id in making architecture
improvements. It has since been foungd helpful in debugging

interpreters, optimizing programs, and provides a source of further
information regarding some of subtleties of our implementation o¢
Pascel. All statistics gathered are “"static” as opposed to “dynamic®.
In other words the statistics are collected by making a pass through
the code file instead of collecting them while the code file 1is
actually running. . .

4.9.1 DISASSEMBLY

The Disassembler inputs a code file that has been generated by
the UCSD Pascal Compiler. If a program USES a UNIT the disassembly
will include the UNIT only if the code file has been linked. Assembly
routines linked into a Pascal host will never be included in the
disassembly.

The Disassembler is invoked by eXecuting DISASM. I5 and Tequires
the file 'OPCODES. I5 to be on the system disk. The Disassembler will
first prompt for an input code file, the suffix .CODE being assumed and
thus not required. The next question refers to the byte sex of the
®achine the code file is intended to run on. that is whether the first
physical byte (byte O) of a machine word is the most significant byte
of the word. For more information. see section 3.6 BYTE-SWAPPING. For
both currently supported CPU’s, the PDP-11 and the 8080 families.
physical byte O 1s the least significant byte. Next the prompt will be
for an output file for the disassembled output. Since the output ¢ile
is untyped, CONSOLE: or the PRINTER: (if it is on-line) may be used in
preference to any other file. The final question at this stage is
whether the user wishes to take control of the disassembly, i.e. decide
which procedures are disassembled as opposed to all the procedures in
the file. ’

The following question Tegards the collection of statistics on
references to a particular Procedure’s data segment. Should you
decide to control the disassembly Yyou will be warned that all
statistics gathered are only gathered on those procedures which are
disassembled. Next you will be taken into the Segment Guide,. This
level displays the segments you have by name and lets you decide on
which one you are interested in. The Procedure Guide follows to let
you decide on the particular procedure(s) that you wish to
disassemble. Typing an “L" at this point will list the procedure(s)
contained in this segment. A more complete description of this step

Pape 239

occurs in the next section. The Segment Guide may be re—entered by
typing "G" in the Procedure Quide. Thpg in this manner you may
disassemble several procedures in several different segments without
disassembling the entire file. The Segment Guide is exited by typing
nGn.

O (#SL CONSOLE: %)

i1 1 1:D
i 2 1 1:D 1 PROGRAM DISASMDEMO;
{ 3 1 1:D 3 VAR I: INTEGER;
| 4 1 1:D 4 TOMORROW: BOOLEAN;
18 1 1:D S COMMENT: STRING:
i & 1 1:C 0 BEGIN
i 7 1 1:C o I:=0;
i 8 1 1:C S TOMORROW: =FALSE;
{9 1 1:C 8 REPEAT - ’
{10 1 1:C 8 I:mI+1;
11 1 1:C 13 WRITELN(’Disassembly — a step backwards...),
112 1 1:C 74 UNTIL TOMORROW:
113 1 1:C 77 END.
!
FIGURE 1 SAMPLE PASCAL PROGRAM
! BLOCK # 1 OFFSET IN BLOCK= 0 .
1SEGMENT PROC OFFSET# HEX CODE
! 1 1 0(000): BPT .7 D307
t 1 1 2(002): SLDC 0 00
{ 1 1 3(003): SRO -3 ABO3 -
{ 1 1 $(005): sLDC . 0 00
1 1 1 6(006): SRO 4 ABOA
¢ 1 1 8(008): sLDO 3 EA
! 1 1 9¢(009): sLDC 1 01
{ 1 1 10(00A): ADI | 82
! 1 1 11(00B): SRO . 3 ABO3
! 1 1 13(00D): LOD 1 3 - B60103
H 1 1 16(010): LCA ' 42 ‘Disassembly — , step backwards. .
H 1 1 60(03C): SLDC (o) 00
{ 1 1 61(03D): cxp WRITESTR CDO013
t 1 1 641(040): csP IOCHECK SEQO
H 1 1 661042): LoD 1 3 B&0103
! 1 1 &9(045); cxp WRITELN CDOO014
! 1 1 72(048): cse I0CHECK 9EO0O
H 1 1 74(04A): sLDO 4 EB
! 1 1 73(04B): FuP 8 AlLFé
! 1 1

77(04D): RBP o c100

FIGURE 2 SAMPLE PROGRAM DfSASSEMBLED

" Page 240

Figure 1 displays a sample Pascal program that has been listed
during compilation. Figure 2 displays the disassembled code of the
file generated by the compiler. The left 3 columns in figure 2
correspond to the 3 columns to the Tight of the line number in tigure
1. They are segment number, procedure number, and offset within
procedure, respectively. The offset is alsn given in hex in
parentheses. A complete description of UCSD P-Code mneumonics is given
in section 3. 4, The actval code that exists in the file is given in
hex in the rightmost column. The parameters to CXP‘s and CSP‘s are -
converted to the procedure name 1f it is a known system procedure or
function. WRITESTR, WRITELN: and IDCHECK are some examples. The
string operand for LCA is printed as & string as evidenced by the line
with offset 16. Jumps have their operand(s) converted to an offset
from the start of the procedure so that the offset may act as a label.
Thus the B.displayed in the operand field of the FUP at offset 73
Teally means a jump to the SLDO at offset 8. This is also true of case
Jumps (XJP‘s). The block number and byte offset of the start of the
procedure are given relative to the start of the code file. Thus this
procedure starts at block 1, offset O of the code file. The segment
dictionary resides in block O for all code files.

4.9.2 DATA SEGMENT REFERENCE STATISTICS

The fourth prompt the Disassembler ﬁrovides is a question
asking i€ you would like to keep track of a}l references to a
particular procedure’s data segment, The most common use of these
statistics is in optimization of a given procedure’s code file. By
Te—arranging the order of declaration of variables one may change the
offset within a data segment that applies to a given variable, For
p—-machine asrchitecture reasons the first 16 words offset into the data
segment are the fastest and have optimized 1 byte instructions. Offsets
from 17 to 127 resuvlt in instructions as least 2 bytes long, while
Teferences to greater than 127 Tequire at least 3 bytes. By making the
most frequently used variables have the smaller offsets one may save
considerable code file space and possibly time during execution.

iData Segment size: 45 Data references:) Lex level
l .

1 ‘

IFor segment DISASMDE Procedure # i

iCffset(word) Total %
! 3 3 60. 00
4 2 40. 00

FIGURE 3 SAMPLE PROGRAM’S DATA SECMENT STATISTICS

Page 241

Figure 3 shows the data segment statistics for our sample
program. Clearly there is little to be gained from optimizing such a
small program but the general idea can still be presented. By using

the compiled listing shown in figure 1 one can match offsats to
variables as such:

variable offset
I) 3
TOMORROW 4
COMMENT)

Now by using the figures in figure 3 one can see that offset 3
or the variable I occurs most frequently and thus deserves it‘s
position. This same idea carried out on 8 large program may result in
substancial size savings. Notice that offset & nevers occurs and thus
is not included in the statistics in figure 3.

The prompt for the output file for these statistics occurs
after the disassembly has been completed. If you elect to collect
these statistics you will be taken into the Segment and Pracedure
Cuides as described in the previous section except that the prompt
requests the selection of a data segment on which to collect
statistics. In the Procedure Guide, "L* gives a listing of all the
procedures in the selected segment by number, lex level, and data
segment size. After the selection of a data segment, processing
continues, as described in the provious section, from the point after
the data segment question,

4.9.3 OPCODE, PROCEDURE CALL, AND JUMP STATISTICS

These statistics are collected 4s an aid in optimizing the
architecture of P-Code and although they are interesting to look at
they are of no real use to the typical user. For this reason they will
be described only suparficially.

Each opcode is given with a complete breakdown of which bit was
most significant for each aperand on any given occurrence of the
opcode. These are praesented in terms of totals and percentages of the
number of occurrences of the opcode. In addition a histogream of the
opcode occurrence as a percentage of the tétal number of opcades
disassembled runs along the righthand margin. There is also a table ot
Jumps in terms of the number of bits required to represent the distance
of the jump for both positive and negative jumps. Finally there are
tounts of all procedure calls listed by segment and procedure number.

Page 242

L g 2 2 L 12 2 X T AR R ey f**!éi*****i#'*i

#+ LIBRARY MAP UTILITY + % Section 4. 10 #
i{**l**#lii*******i**** ****&i***i*ii&‘i

Version 1.5 September 1978

The program LIBMAP produces a map of a library (or code) file
and lists the linker information maintained for each segment of the
file.

The program first prompts for a library f#ile name. As in the
linker, this may be an asterisk to indicate ﬁiSYSTEﬂ.LIBRARY“. Unlike
the linker, however, the *, CODE" suffix may be supressed by appending
a period to the full file name.

Example
typing ' references file
- : '#SYSTEM. LIBRARY
FARKLE :FARKLE. CODE
OLD. LIBRARY. : OLD, LIBRARY

Typically, the map vtility will be used to list library
definitions but the option is available to include intra-library symbol
references. Should this feature be desired, type a “Y" when queried

for a reference list. A space (or carriage return) is considered a
ﬂNﬂl. .

The user is now prompted for an output file name. (*. TEXT"
will be appended unless an extra period is used.) Several libraries
may be mapped at the same time. To quit, type & carriage return when
prompted for any file name. .

A sample map +ollouws
LIBRARY MAP FOR #SYSTEM. LIBRARY

€ # 0: MDVETO separate procedure segment
PSMATP public ret
PSYPOS public vref
MOVETD separate proc P #1
PSXPOS public re¢
CMOVETO global addr P #1, I %0
PSBUFP public ref :
JUNK private ref
DRUWLIN global ref
PSYPDS public ref (2 times)
LINETO separate proc P #2
PSXPOS public ref (2 times)
GMOVETO global ref
GLINETO global addr P %2, 1 &0

Page 245

Page 244

DRAWLINE
DRWLIN
PSMATP
CONCAT

PSGRAPHI
XROT
MAXSTK
MATSTK
MOVETO
LINETO
CONCAT
YROT
ZROT
PSXPOS
PSMATP

..PSYPOS

PSBUFP
STKINX
BUF1
BUF2

VPGRAPHI
NONE
REVERSE
SCREEN
SCALE
XCENTER
YCENTER
XCURR
YCURR
WHITE
BLACK
XHIVALUE
YHIVALUE
XLOVALUE
YLOVALUE
DRAW
POINT
ERASE
DRAWL INE
XSCREEN
XSCALE
XSHIFT
YSCREEN
YSCALE
YSHIFT

TURTLE
NONE
WHITE
REVERSE

" HEADING

separate proc
global addr

public ref (2
separate proc

library unit
constant value
constant value

private ref (10 times)

external proc
external proc
external proc
constant value
constant valve
public ret¢
public vre¢ (7
public ref
public red (7
private ret (8
private ret (4
private ref (2

library unit

constant value
constant value
private ref (3
private ref (8
private ref (2
private ref (2
private re¢ (7
private re# (7
constant value
constant value
private ref (4
private ref (4
private ref (5
private ref (3
constant value
constant value
constant value
external proc

constant value
private ref (3
private ret (2
constant value
private ref (3
private ref (2

library unit
constant value
constant value
constant value

private ref (15 timesg)
HANTCURS private ref (13 times)

P #3
P %3,
times)
P %4

ot O
of 7

P 48
P %9
P #12
of 1
of 2

times)

times)
times)
times)
times)

of O
of 3
times)
times)
times)
times)
times)
times)
of S
of &
times)
times)
times)
times)
of 1
of 4
of 2
P #8
of 320
times)
times)
of 240
times)
times)

of O
af 1
of 3

1

*0

SCALE
SCREEN
XCENTER
YCENTER
XCURR
YCURR
TGPEN
BLACK
XHIVALUE
YHIVALUE
XLOVALUE
YLOVALUE
XSCREEN
XSCALE
DRAWI_INE
XSHIFT
YSCREEN
YSCALE
YSHIFT

S # 4; to S #15;

private ref (B
private ref (3
private ref (2
private ref (2
private vef (&
private ref (&6
private ref (4
constant value
private ref (4
private ref (4
private ref (S
private ref (5
constant value
private ref (3
external proc

private ref (2
constant value
private ref (3
private ref (2

are unused

times)
times)
times)
times)
times)
times)
times)
of 2

times)
times)
times)
times)
of 320
times)
P #10
times)
of 240
times)
times)

Page 247

B3 3 3 U ******************l&

TABLE 1 # # EXECUTION ERRORS
LAl i e e T

Version I. 9 Soptémbtr 1978

d System e?rov ‘ FATAL
1. Invalid index, value out of rangi (XINVNDX)

2 No segment, bad code file (XNOPR@C)

3 Procedure not present at exit time (XNOEXIT)

4 Qtack overflow (XSTKOVR)

? Integer overflow (XINTOVR)

6 Divide by zero (XDIVZER)

7 Invalid memory reference <bus tided out> (XBADMEM)

'B ?ser break (XUBREAK)

e qustém I/0 e¢rror (XSYIDER) FATAL
10 User I/0 ervor (XUIDERR)
11 Unimplemented instruction (XNOTIMP)
12 Floating point math error (xFPIE#R)

13 ‘8tring too long (XS2LONG) :

14 Halt, Breakpoint (without debugg?r in core) (XHLTBPT)
15 Bad Block ‘

All fatal errors either cause thqisystem to rebootstrap., or ¢
the error was totally lethal to the system, the user will have to
reboot. All errors cause the system to re—initialize itself (call
system procedure INITIALIZE).

Page 24%

9 0 N O 0 »2 W N

e e
N = O

13
14
15

- Lost unit, Unit is no longer

A3 A 2 ‘l*lﬂl}l‘l‘l‘***ﬁ
% TABLE 2 # # IORESULTS #
a2 XTI T 2R *i**ii***ﬂ'**‘

Version I.5 Septembé}

No error

Bad Block, Parity error (Cdé)
Bad Unit Number

Bad Mode, Illegal operation

Undefined hardware error

Lost file, File is no longe¥
Bad Title, Illegal file name

No room, insufficlent space

1978

on—=1line

in directory

Ne unit, No such volume on itnu

No file, No such file on volume

Duplicate f#ile

Not closed, attempt to open an open ¢ile

Not open, attempt to access a

Bad format., error in reading

Ring buffer overflow

tlosed file

real or integer

Page 251

L2 s X212 BRI I T 2T N 2

TABLE 3 # # UNITNUMBERS
LR DX 22T T M TR RNy

Version 1.9 September 1978

NUMBER

0
1

2

B
9
10
11

12

VOLUME NAME

<empty>

CONSOLE

SYSTERM

GRAPHIC

floppyO

floppyl

PRINTER

available -~ (Qnimplement|d>
REMOTE <reserved for future used>
blocki

block?2

block3

block4

‘ .
Devices 9 — 12 are block-structured devices, in most cases (RK-05).

|
'

Page 253

DRAWLINE:
(o)

d W N

DRAUWBLOCK:

L L I e T2l 2
TABLE 4 % » PENSTATES %
WA AR F e AN B NN

Version 1.3 September 1?73

PENUP (picture will no% change)
PENDOWN- (force bits on%
ERASER (force bits off%
COMPLEMENT (XOR bits)

.
RADAR (scan for obstacle)

OR <paint source onto d*stination)

COPY <source goes to de%tination)

COMPLEMENT <inverted so#rce goes to destinationd>
EXCLOSIVE-DR <source ex%lustvn-or destination goes

to desinationd>

Page 255

do.

compiler is going to be seriously re-vam

g vl i ol 44

104;
105:
106:
107:

i
(ZZITIT T2 XT S (22X 232 2IXIT LIS I LTSI S22 T3 23

% TABILE 3 « % SYNTAX ERRORS IN UCSD PASCAL +
ERERHRERER RRRFRE RN EH BT RERBEDRERRRRRRDRRRE

l
Version 1.5 Sept?mber 1978

When time comes available to do so.

the error generation of the

The syntax errors this compiler tives are not the best it can

ed.

Error in simple type
Identifier expected
‘PROGRAM’ expected

‘)’ expected

‘: !’ expected

Illegal symbol

Error in parameter list
‘OF ’ expected

‘¢’ expected

Error in type

‘{’ expected

‘)’ expected

‘END’ expected

‘i’ expected

Integer expected

‘m’ expected

‘BEGIN’ expected

Error in declaration part
error in <field-listd
‘. * axpected

‘%’ expected
‘Interface’ expected
‘Implementation’ expected
‘Unit’ expected

Error in constant

‘: =’ expected

‘THEN’ expected

‘UNTIL’ expected

‘DO’ expected |

‘TO’ or ’‘DOWNTO’ expected in for st%tement
‘IF’ expected

‘FILE’ expected

Error in <{factor> (bad expression)

Error in variable

Identifier declared twice

Low bound exceeds high bound

Identifier is not of the appropriate class
Undeclared identifier i

sign not allowed

Number expected

Incompatible subrange types

Page 257

Page

File not allowed here’

Type must not be real |

Ctagfield> type must be scalhr or subrange

Incompatible with <tagfield>[part

Index type must not be real

Index type must be a scalar br a subrange

Base type must not be real

Base type must be a scalar or a subrange

Error in type of standard prtcedure parameter

Unsatisified forward reference

Forward reference type identifier in variable declaration
Re-specified params not OK for a forward declared procedure
Function result type must be scalar, subrange or pointer
File value parameter not allowed
A forward declared function’ﬁ result type can’t be Te-specified
Missing result type in function declaration

F—-format for reals only l

Error in type of standard prp:edure parameter

Number of parameters does not agree with declaration

Illegal parameter substitution

Result type does not agree u?th declaration

Type conflict of operands 5 :

Expression is not of set tupg

Tests on equality allowed onhq

Strict inclusion not allowed

File comparison not allowed

Illegal type of operand(s).

Type of operand must be boolean

Set element type must be scalar or subrange

Set element types must be cohpatible

Type of variable is not afrau

Index type is not compatible[with the declaration

Type aof variable is not record

Type of variable must be Filn or pointer

Illegal parameter solution
Illegal type of loap contral variable
Illegal type of expression
Type conflict

Assignment of files not allawed

Label type incompatible mithlselecting sexpression
Subrange bounds must be scalar

Index type must be integer
Assignment to standard function is not allowed

Assignment to formal function is not allowed
No such field in this record
Type error in read -
Actual parameter must be a variable

Control variable cannot be formal or nan-local
Multidefined case label [

Too many cases in case statement

No such variant in this record

Real or string tagfields not allowed

Previous declaration was not forward

258

161:
162:
163:

164:
165:
166:
167:
168:
16%9:
170:
171:
172:
174:
182:
183:
184
185:
1864:
187:
188:
189:
190:
191:
192:
193:
194:;
195:

201:
202:
203:
204
250:
251:
252:
233:
254:
256
257:
258:
259

300:
301:
302:
J03:
304
398:
399

Again forward declared |
Parameter size must be constant
Missing variant in declaratipn
Substition of standard proc/func not allowed
Multidefined label
Multideclared label f
Undeclared label f
Undefinrd label |
Error in base set ;
Value parameter expected
Standard file was re—declarek
Undeclared external file
Pascal function or procedurekexpected
Nested units not allowed E
External declaration not allowed at this nesting level
External declaration not a110wed in interface section
Segment declaration not allowed in unit
Labels not allowed in interface section
Attempt to open library unsué:essful
Unit not declared in previous uses declaration
‘Uses’ not allowed at this nisting level
Unit not in library » {
No private files {
‘Uses’ must be in interface kectton
Not enowgh room for this operatlun
Comment must appear at top oF program
Unit not importable ;
!
Error in real number - digit{expected
String constant must not e:ceed source line
Integer constant exceeds range
8 or 9 in octal number \
Too many scopes of nested 1dontifiers
Too many nested procedures of functions
Too many forward Teferences of procedure entries
Procedure too long
Too many long conatants in this procedure
Too many external referenceS'
Too many externals ;
Too many local files !
Expression too complicated
Division by zero ‘
No caese provided for this value
Index expression out of bounds
Value to be assinged is out of bounds
Element expression out of range
Implementation restriction
Implementation restriction

Page 254

400: Illegal character in tFxt
401: Unexpected end of input

402: Error in writing code file, not enough room
403: Error in reading include file

404: Errvor in writing list file, not enough room
403: Call not allowed in serarat- procedure

406: Include file not logag

Page 260

tile,

LoNDOMDNE

|

(A2 122122 i*l#*I*i**ﬂil%*l*****&**iii

* TABLE & # % ASSEMBLER SYNTAX ERRORS #

(21222 22T ***i******J*I**}*!*&**i%i**

Version I. 5 Seﬁt.mbcr 1978
This section lists all the general errors found in the ERRORS

specific machine errors are founq in the sections below
dealing with machine specifics.

Undefined label

Operand out of range

Must have procedure name

Number of parameters expected

Extra garbage on line

Imput line over BO characters

Not enough ifs

Must be declared in ASECT before use
Identifier previously declared |
Improper format

EQU expected

Must EQU before use if not to a label
Macro identifier expected ’
Word addressed machine
Backward DORG not allowed
Indentifier expected
Constant expected
Invalid structure

Extra special symbol
Branch too far

Variable not PC relative
Illegal mat:ro parameter index

Not enough macro parameters

Operand not absolute

Illegal use of special symbols

Il1l1-formed exprecsion

Not enough operands

Cannot handle this relative

Constant overflow

Illegal decimal constant

Illegal octal constant

Illegal binary constant

Invalid key word

Unexpected end of input — after macro
Include files must not be necte

Unexpected end of input

Bad place for an include file l

Only labels & comments may occupy column one
Expected local label

Local label stack overflow

String constant must be on 1 line

String constant exceeds B8O charf

Illegal use of macro parameter

No local labels in ASECT

Expected key word

Page 261

44: String expected i
47: Bad block. parity error *crc)
48: Bad unit number
49: LBad mode., illegal operat*on
S0: Und¢afined hardware error
31: Loao3st unit, - no longer on-line
82: Lost file, no longer in directory
93: Bad title, illegal file name
"84, No raom: insufficient fpé :
33::Ne wnit, no such volumn on-line
86: No file, no such file on|/volumn
57: Duplicate file |
58: Not closed., attempt to open an open ¢file
S59: Not open. attempt to access a closed ¢file
&0: Bad format: error in rea?ing real or integer
61 Nested macro definitions <2
62 "e" on "#" expected
63 May not EQU 2o undedined LabeCA
280 Based machines

For constants, Hex is the deLault type,
. a ‘B’ defines |binary ex. 10010B .,
a ‘.’ defines | decimal ex. 3674. .

Location Counter (LC) = ¢ !
All reserved words may not be used for any other purpose
such as an identifier. For example, the reserved word "C*
currently is being used as a|register and in a condition
code, therefore it may not be used for any other purpose
(this is contrary to usual Zilog assembly language, but is
restricted in the UCED assembler).

Specific error messages: T

7&6: Incorrect operand format
77: Close paren ™))" expected|
78: Comma ", " expected

7%9: Plus "+“ expeacted

80: Open paren "(" expected

B1: Stack painter “SP" expected
82: "KHL" eispected

83: Illegal “"CC" condition c%de
84: Register "C" expected |
85: Register "R“ axpectad !
86: Register "A" expected

PDP11 Based machines:

Page 262

|
For constants, Octal is the def.u1t|tup| for both input
and output,)
a ‘H’ defines hexadecimal ex. O5&M,
a ‘.’ defines decimal ex. 546, ,
a4 ‘B’ defines binary ex. 100iB .

Location Counter (LC) = »
Specific error messages:

76: Closing paren ")" expected

77: Register expected

78: Too many special symbols

7%9. Unrecognizable operand

80: Register reference only L
B81: First operand must be a Tegiste
82: Comma expected !
83: Unimplimented instructipn

84: Must branch backwards to label

‘Page 2463

LA Al X L2 22 T ST YR RN R R Aoy

TABLE 7 % # American Standard Code f
L2 2222 T2 RY A 24222 T2 2L 2L R ERT Y

000
001
oo2
003
004
003
006
007
010
011
10 012
11 013
12 014
13 015
14 016
13 017
16 00
17 oO21
18 O22
19 023
20 024
21 025
22 026
23 027
24 030
25 031
26 032
&7 033
28 034
29 035
30 036
31 037

DONCOPMPWIN~O

NUL

CAN

Version 1.5 Septe

040
041
042
Q43
044
043
046
047
0350
051
os2
033
054
053
056
057
060
061
062
063
064
0635
0&6
067
o070
071
o072
073
074
073
076
077

20
21
22
=23
24
25

v

s O RAR =)

COONOCOUDWUWN-ON" |~ ¢+ %

NV RA

[¥1
&5
66
&7
&8
&9
70
71
72
73

74

75

76

77
78
89
80
81
82
83
84
85
86
87
88
89
90
91
92

93
%
95

100
101
102
103
104
103
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
123
126
127
130
131
132
133
134
133
136
137

40
41
42
43
44
43
46
47
ag
49
aA
4B
4c
4D

hber 1978

=~ITOoOMTMoUow>»®

LU/ PNLKXECC-HNDRVODZINrRC

96
97

9
100
101
102
103
104
109

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

140

141 61
142 62
143 63
144 &4
143 63
146 66
147 &7
150 &8
131 &9

152
183
154
1335
156
157
160
161
162
163
164
163
164
167
170
171
172
173
174
173
176
177

s YTy ey

or Information Interchange #
IS TITI T LTTIZ SR T LT LT 2

o
o

-ra s oanoch

N
»
U‘v«ancns<cnoqpuo:5nwg

EL

Page 265

- O

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
144
147
148

150
151
152
153
154
135

157
158
159
160
161
162
163
164
165
166
167
168

169
170

000
001

176
177
200
201
202
203
204
2095
206
207
210
211
212
213
214
215
216
217
220
221

223
224
225
226
227
230
231
232
233
234
235
236
237
240
241
242
243
244
245
246
247
250
251

as2

o0
01

SLDC
sLDC

SLDC
SLDC
ABI
ABR
ADI
ADR
AND
DIF
Dvi1
DVR
CHK
FLO
FLT
INN
INT
I0R
(8}
MPI
MPR
NGI
NGR
NOT
SRS
€B1
SEBR
565
SG1
SGR
STO
I1XS

UNI |

s2P
CSP
LDCN
ADY

INC
IND
IXA
LAao
LCA
LDO
MOV

MVB
8AS

A S A S -

% TABLE B #
A3

0

126
127

171
172
173
174
175
176

177

178
179
180
181
182
183
184
183
186
187
188
189
190
191
192
193
194
193
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

212
213

Version I.

253
254
255
236
237
260
261

202

263
264
265
266
267
270
271
272
273
274
275
276
277
300
301
302
303
304
305

306

307
310
311
312
313
314
315
316
317
320
321
322
323

324
329

LTI I IL SIS LT T TS

* P-MACHINE OP~CODES #
Ladad g e R LY 22

S

Sepéemb!r 1978

SRO

RNP
CIP
EQU
GEG
GRT
LDA
L.DC
LEG
LES
LOD
NEG
STR

LDP
STP
LDM-
STM
LDB
STB
IXP
RBP
CBP
EGQUI
GEQI
GRTI
LLA
LbCI
LEGI
LESI
LDL
NEGI
STL
CXpP
CLP
CGP
S1P
IXB
BYT
EFJ

NFJ

BPT

214
215
216
217
218
219
220
221
222
223
224
225
2246
227
228

230
231
232

234
235
236
237
238
239
240
241
2482
243
244
2495
246
247
248
249
250
351
252
253
254

2595

326
327
330
331

333
334
335
336
337
340
341
342
343
344
345
346
347
350
3351
e k14
393
354
3355
356
357
360
361
362
363
364
365
366
367
370
371
372
373
374
373
376

377

XIT
NOP

SLDL
SLDL
SLDL
SLDL
SLDL
SLDL
SLDL
SLDL
SLDL
SLDL
sLDL
SLDL
SLDL
SLDL
SLDL
SLDL
SLDD
SLDD
SLDO
sLDO
SLDO
SLDO
SLDO
SLDO
SLDO
SLDOD
SLDO
SLDO
SLDO
SLDO
SLDO
SLDO
SIND
SIND
SIND
SIND
SIND
SIND
SIND

SIND

CONTCADLDWN-

NoCcudbIN~O

Page 267

{compilation>

,J‘ PRDERAt'Dﬁ Ldenttifler

———! unit declaration -@j

»

uses clause (————

block

'

untt declaration t——

(e
o/

268

{ldentifier)

»Mlett

N\

{unsigned integer>

)

v

C »digit }

{unsigned number)

-— unsigned inteder |

©

Uhstgned Lnteger

]

s’

268k

{constant)

[*(::}~} [:: constant tdentifler
l*(::}- unsigned number

{simple type>

R—

1 o)
AN
type tdentifler
tdentifier - %:E}

constant |

N\
/)
———G——' constcmt —

2¢

<type>

simple type ' ?”

7(3;}» type tdentifler é —

Qrered o
L—* A

o simple type |

type -1
ILE -
SET %@E} E simple type —7

‘ unslgnea ‘]i A
TEXT 3 . -
. . ~N ,
INTERACTIVE 1 ~
(J

46eC

{flald lst)

e
2/
\.
/) . .
Ldentifler| : type fr ;r'

CASE M- Ldentifier -—@jL- type Ldentlfler

constant f— (1) fleld st

6 ¢

{variable>

vartable Ldentifler gy 2

fleld ldentifler ‘ @—Texpr‘esslon‘

field ldentifier

v z6t

{factor>

unslgned constunt

varlable

function tdentifier |

expression

#@-——' axpr‘ossior? ———*@

Lterrmo

*%:EEEi:}————'ﬁactof

—

expresston-lﬁz:%*exDressLon-ll4

factor

0

I11)

{simple expression>

term

» 0 ®

term

{expresslond

—— slmple expression

IIXILX

ol

5 2

| simple expression |

{parameter ist>

(o \e
NS N

identiftier 7(2)*

type lLdentlfler

@»—a

e

— unsigned lntegwef —‘Q {stntenent)

v

variable— expres-
sLon JI
L function [x

tdentifier
rocedure
Lpdent ifter| expression|
- | S —
BEGIN — statement | @
(e

¢
b

{ |(> expres— state—-] J, state-
sion _I'G.HEN> ment (ELSE} ment
expnres—| const—
(CA@* sion . %’ ant

state-|,
ment

expresston : st.atenem. —

statement | UNT19° expresston 7|
OWNTO

varitable .
(FUR)—‘ Ldentlfler -'@-' expression
L—o expresslon statement

%Latenent-

- : r\\-JG!JB——f unstgned Lnteger

LLL&.S

unslgngd integer

S

 Ldentifler -——'@——* constant ————:]

Ldentisiar (= F—itype

(X

L

tdentifier =®———' type
: (e
p

o
-~
a
a
X

Ldentifler

» parameter llst

N

FUNCTI&E}—*

| Ldentifler

3

e

parameter Itst~—jj]

statement |

type ldentlfler —

A

-'“

FRRMA T RS SRR NNA N BTN B SRR
* MATERIALS AVAILABLE # # Section A. 1 *
LE 2 a d s S S S S RIS AR XY ST YT L 2

As the UCSD Pascal system has grown, we have found that to
distribute all of the software which is useful to all users for all
systems, has become an unbearable task. To attempt to alleviate the
large number of diskettes the release software requires, and to
alleviate the number of pages of documentatipn sent to each subscriber,
we have started to split the system into a number of seperately
available sections. ;

The major section is the section which contains the operating
system and all the support routines that go with it. We include a
number of useful utilities which should enable the subscriber to do all
types of developmental work. The master rel%ase {(as from herein it
shall be named) contains the interpreter for the initial system
ordered, the UCSD Pascal operating system, the Pascal compiler, two
text editors (one for screen devices, one for general purpose):, a
BASIC compiler, the Linker, the Assembler Fo% the appropriate machine
(at least). Other vtilities include: a generalized file utility (the
File handler), a generalize patch and dump routine, a set of programs
to enable the subscriber to configure the system to Tun most
intelligently with any terminal, a desk calculator, and a librarian.

Software which is not included in thk master release is
generally available from the I]IS as a supplemental package at a nominal
handling tharge (dependent on the amount of material involved with the
package). The sorts of software available a#e: interpreters for
machines other than the machine the master release was ordered for,
which will be accompanied by the assembler Fkr that machine, in some
cases we have assemblers for machines for whpch we do not yet have
interpreters, program and data management esystems, specifically a tross—
referencer, and a pretty—-printer. Also avadlablc. although not until
some indeterminite time after the 1.3 releaﬁel a Computer Aided
Instruction packet. This may be available ﬁhrough the IIS, however it
may be available only through the University of California Extension
Studies DOffice. The CAI package consists of knowledge quizzes, and
programming quizzes: and a record keeping sﬁstem. all based on Kenneth

L. Bowles book: (Micro)Computer Problem Sglving Using Pascal.

Page 269

AL A ST 2T TR TR T T TS TR T R *i*'?i# 0 A B %

THE FIRST TIME THROUGH # # Section A.2.1
LA st Xl S L e e L I R eI YT Y Yy

Version 1.5 September§197a

Welcome to UCSD PASCAL. If you put the disk labelled "PASCAL:"
in your booting drive, went through your normal boot—strapping

procedure, and were greeted in a similar fashion, you do not need to
Tead this section. ;

If this is not the case then here are & few of the problems we
have encountered with 1.4 coming up in strangle and foreign lands:

1.) Some revisions of the LSI-11 refuse to boot with the clock
running. If you have a switchable clock, turn it off to
bootstrap; if and when the system greets you with the welcome
message and the date, turn the clock back on.

2.) You have Andromeda floppy—disk drives. Currently you will be
able to use only drive %0 unless the other drives have disks in
them at bootstrap time. Drives that do not meet this condition
will appear permanently off-line.

3.) You do not have enough memory. The minimum requirement tor
memory is 24K 16-bit words.

4.) You have a system configured for RK-0O35 hard-disk and you have
an unformatted disk on line. The system will hang waiting for
@ reply from the disk which cannot be generated if the disk is
unformatted. Take the disk off—line and try again.

5.) You have a system configured for RK and RX and the RX is not
present. RX must be present.

6.) He haven’t encountered your problem before. Call:

The number listed on the front page of this document.

Page 271

AR A2 R L L2 L TR TR TRy *********#*# Le g2 222 T2l 22222t

* BOBO/ZBO WITH CP/M & 3740 DISKS # # Section A. 2.2 &
bl e R LTy

Version 1;5 Septembir 1976

. THE CP/M INPLEHENTATION OF UCSD PASCAL
BOOTING PASCAL

To get Pascal running under your version of CP/M, a two-disk
bootstrap is used. First, boot CP/M in the psual manner. On the CP/M
disk distributed with the Pascal system is a file called PASCAL. COM.
PIP this file over to the booted disk, then execute it.

| |

When the program asks for a Pascal disk, put the disk labeled
PASCAL: in drive A and any disk in drive B. The system may not boot if
there is no disk in drive B, or i{f you have a 1-drive system and your

CP/M drivers wait on a request to drive B. '?hen hit Lreturnl. In
about 15 seconds the Pascal welcoming message should appear. (Note: we
have discovered that some drives, possibly as a result of being double-
buffered, cannot keep up with a 2 to 1 interleaving and hence are

extremely slow. The bootstrap then may take about 30 or 40 seconds.
We intend to alleviate this problem in the next release, but persons

with such drives will have to bear with slow disk accesses for the
present.)

I¥ all has gone well, &elcom: to the Wonderful World of Pascal.
If not, please call to notify us of your problem.

MODIFICATIONS TO CP/M

The Pascal system williopefate under an unmodified CP/M system,
but it is advisable to create a special CP/M for use with Pascal in

order to have Pascal tunning in the environment for which it was
designed. : b

1. If there is no disk in a drive and an access is made from
that disk, the driver should not wait to perkorm that access until a
disk is inserted, as the Pascal system often attempts to read from
empty drives when searching for a particulaf;disk. Instead, simply
refurn @ 1 to indicate @ bad I/0 operation.

2. If you have a keyboard interrupt handler, it should
recognize the character fentrl=¢] as a “flush~output® toggle and signal
the character—out routine to gobble any characters until signaled
again. When it receives another lcntrl-f1 the keyboard handler should
signal the output handler causing the output;handler to resume
outputting characters sent to it

Page 273

The keyboard interrupt handler sh
character [cntrl—- s] as a "stop output” ¢t
receives another [cntrl-sl beforn allouin
continve.

If your keyboard has no alphalock,
character not used for same other purpose
Cntrl-pl, L[returnl, Ccntrl-il, Lcntrl-sl,
character in SYSCOM™. CRTINFQ should be exc
suggest [cntrl-al.

Pascal expects the tab character ¢
terminal cursor to advance to the nearest
terminal does not do this itself, then the

CREATING A BOOTSTRAP ON A PASCAL DISK

Note: These instructions are for J
blocks. For instructions for a non-standa
READ.ME on the CP/M disk in the distributi

On the CP/M disk are two programs.
program PGEN.COM is a program used to writ
#illed by boot code and B10S) to track O.
that reads SYSTEM. MICRO from a Pascal disk
correct place, and starts the interpreter’

You must create a file PBOOT. HEX,
modification of your current BOOT grogram.
0, sector 1 and: when executed, will load
into memory starting at locatxon (MSIZE-48
that location.

You then need to odit PINIT. ASM, €
system. Assemble the file, creating PINIT.

is to stitch togeth
Pascal interpreter lcoader, BIOS, and the p
information out to sector O. The followi
performs all this. This session was used
input is in Jlowercase, and comments are o

The next step

load PGEN. COM mj
and BIODS will
data aresa, afté

A>ddt pgen. com

i
i
[}
3

. be saved.
DDT VERS 1.3
NEXT PC
0400 0100

Page 274

ir the one-sector boot,

e

quld also recognize the

ggle and wait until it
program execution to

the input driver can use any
as an alphalock toggle.

Lcntrl-£1, Ccntrl=-cl or any
luded from consideration. We

Lentrl-1)) to cause the
eight column, If the
driver in the BIOS should.

standard BIOS with S12-byte
vd BIOS: reference file
on packet. '

PGEN. COM and PINIT. ASM. The
@ out a buffer (which will be
PINIT.ASM is the boot code

loads the BIOS into the
s boot routine.

’

which will require a slight
‘PBOOT will reside on track

track O, sectaors 2 thru 13

I#1024 + OBAOOH, and Jjump to

hanging MSIZE to match your
HEX.

the
raogram to write this

g is a session with DDT that
to create a 4BK system. User
to the right.

Q
e
r

memory. PBOOT, PINIT,
overlayed into PGEN’s
which & memory image will

~ipboota8. hex } set PBODOT4B8. HEX as input file

-h%00 © } PBOOT starts at location O, and we want to
i read it in at lokation FO0H

0300 0900 i ‘

-r200 } read in PBOOT

NEXT PC i

0780 0000

set ‘PINIT48.HEX'’ as input file

PINIT starts at location BAOOH in a 4BK system
(in general (MSIZE-4B8)#1024 + BAOOH), and we
want it at location 980H

-=ipinit4B. hex
-h780 BAOO

L

C38B0 4FBO
-r4£80 i read it in
NEXT PC

0A7d BAOO

~ibios4B. hex 5 and lastly read BIDS into location DBOH
~hdBO be0O ;

€380 4FBO

-r4£80

NEXT PC

OF7&4 0000

=fentrl=-c) i leave DDT...

Ad>save 16 pgendB. com i ...and save the prhgram.

Ad>pgenas } sample ex;cutinn o? the program...

PGEN VI.O ;

PUT BOOTER?(Y/N)y j _

WRITING BOOTER TO DRIVE A, TY%E RETURN pbt a Pascal disk (preferably a

3} i copy of the master) in drive A
5 before hitting Lreturnl.

AGAIN?(Y/N)n ‘

CET BOOTER?(Y/N)n : .

REBOOTING CP/M, TYPE RETURN i put the CP/M disk back in drive A
i : before hitting [returnl.

A>

Page 275

ey L T T I
#+ DIFFERENCES AMDNG IMPLEMENTATIONS # % Section A.3 #
L R Y R AR Ty ey a2y

Version 1.$ September 1978

i
The following is a list mP différences between PDP11 Pascal and
B0BO/ZB0 Pascal, the items describe the way it is on the
808B0/Z80, and how that ?iffars from the documented system.

1. The definition of div is diffcrunt (therebq changing the valvues
returned by mod): i
]
a div b = floortasb)
a mod b = a = bx(a div b)

2. The 1/0 drivers are all written for synchronous operation. This
means that [breakl] haes no effect. [Cnptrl-s) and [cntrl-f] will
not perform as described unless you h#ve a keyboard interrupt
handler, and this handler is madxfiedlas specified below in
Modifications to CPM.

1 !

This also means that UNITBUSY, UNITCLEAR.| and UNITWAIT are
meaningless. (In the future 1t may be possible to use the
UNITBUSY and UNITCLEAR ppefations on the keyboard, but this is
currently infeasible) i

3. The interpreter is called SYSTEH MICRO inptead of SYSTEM. INTERP.

4. The CP/M implementations haye bootstraps that are not a:cessible to
Pascal, hence the program BOOTER. CODE will not work. See the
appropriate section of this document for instructions on
copying and/or creating a bootstrap.‘

1

5. There are no turtle graphic% procedures ;P the interpreter. Users
) with bit—-mapped graphics devices are advised to see section 3.1
of the documentation FQr a Pascal veqsxon of DRAWLINE.

&, There are no long integer {uﬁ:tions availhble with the Z8B0/8080
system. They will be available in later releases.

Page 277

- - 1

bk AR A S AL S 2L SRR T LT T Y T IR BN R RSN NP Fvepegegepeppepepp
* CHANGES MADE IN RECENT RELEASES # # Section A.4 +
bl R A S SR A S LEL LTSS S S 2T T TR 2T 2 T TN LRI Py

Version I.9 September 1978

SUMMARY OF DIFFERENCES BETWEEN UCSD PASCAL RELEASES 1.4 AND_ 1.9

The following additions, improvements and/or corrections apply
to Version I.3. Reference the (section #) prﬂceding each entry for a
more deteailed description. For information Tegarding differences be-
tween previous rTeleases refer to the system documentation for those
releases. |

(1. 1)
OPERATING SYSTEM

(=) All fields of SYSCOM (sgstemggommunication area) that
can be set in the utility SETUP are initializred at
boot time using #SYSTEM. MISCINFD (if present).

|

(2.1. 1) The bug in the string 1ntrink1c POS has been fixed.

(1. 1) Clompile will now prompt thoéuser for the file to
compile if the workfile is obptm
|

(1. 8) There now exists a new commabd called L(ink at the
command level of the system that divectly invokes
the new vuvtility *SYSTEM.LINKFR.

(1. 9) There now exists 2 new commabd called A(ssem at the
ctommand level of the system that directly invokes
the new assembler. ;

i
|

(1. 1) If a2 file SYSTEM. STARTUP exists on a given disk, that

file will be rpn as a user program at initialize time.
(1. 1) R(un directly invokes #SYSTEM. LINKER if it is

needed by the user program. It assume use of
#SYSTEM. LIBRARY for external linkage.

(1. 1) X(ecute will not run code files which need to be
L{inked. An error message will appear.

(1. 2) The file handler is nouw a seblrato file called
*#SYSTEM. FILER. ;

Page 279

(=) Backspacing and are
from Unit #1 (CONSOLE:).
if any, is not permitted.

(1.2) FEILE HANDLER

ﬂow allowed when reading integers
qucverc

backspacing over the sign,

Substantial modifications have been made in the syntax of user

responses tao filer prompts.
option of using either of two wildcard symbol
control over activity within the ¢ilar.
will allow selective control over files withi
R(emove, and T(ransfer commands. The “?" symb
the addition that {t will cause the filer to
task to be performed.

C(et command now allows use of
“.CODE" suffixes in file names

S(ave command will now allow th
be saved on a disk other than t

E(and L({dir now require an app
volume I.D. ‘s, Selective 1listi
is allowed through use of the
Junction with file prefix and
Directory listings may be sent
CONSOLE: by following the sourc
‘s <volume id>’.

C(hange command will now allow
selected tile prefix and suftix
groups of filenames containing

For nearly all ¢

In general,

ommands there exists the

s enabling extended

the symbol "=~

n the L(dir, C(hange,

ol is similar to “=" with
prompt the user for each

appended “. TEXT® and
and ignores them.

e current workfile to
he system volume.

ended “:* after literal
ng of directory subsets
ildcard symbol = in con-
uffix string patterns.
to a volume other than

e volume name with

the user to change
string patterns within
the chosen patterns

through use of the wildcard symbols = or 2.

R(emove command allows selectiv
files using the = or ? symbaol 1
C(hange command. To selectively
the files on a given volume tne

<vol.prefis> ? and will be pro

the disk. Typing R(emave) (VOIW
no action. R(emove) <vol.prefix
on the disk. All commands resul
remaoval of more than one file w
*Update directory?" following ¥

T({ransfer command functions in
the C(hange command. When perfo
transfer using one drive it wil
the file name to be transferred
disk is removed. It is now poss
transfer any or all of the File

Page 280

e removal of groups of
n a manner similar to the
remove any or all of

user may type

ptld for sach file on
prefix> now will result in
> = will remove ALL files
ting in the potential

ill prompt the user with
removal” of file names.

a manner similar ¢to
rming & disk to disk
1 now ask for the

to before the source
ible to selectively
s on a disk by typing

Cvol.prefix> followed by “?" or "=*

?1n a manner simi-~

lar to the R(emove command. The user will be prompted
for each file and is given the optiob of transferring.

t

Z(erao command will now prompt the user with the present
number of blocks allocated the the disk in the directory.
if a valid number exists, and will ask if the same number
of blocks is wanted. If the responseiis No (or there was
no previous “# of blocks") then the user may enter the
appropriate number of blocks. The Z(ero will be aborted

if a bad # of blocks is specified,

N(ew command will now check for a “.$ACK" file corresponding
to the current workfile and will ask| if the user wishes

this file to be removed. (This is fo& use in conjunction
with the new L. 2 (large file) EDITOM. '

The new command ? will result in disblay of the prompt-

lxne extension:

Filer:B(ad-blks, E(xt- dir:K(runch.N(ake.P(reFix:N(olum::X(am;nc.l(ero

|
Typing any non-command key will redikplaq main promptline.

EDITORS (Sections 1.3 and 1.4)

|
Three different editors are currenth provided with the UCSD

PASCAL system: YALOE, "EDITOR"(E. &), ‘and the new L.2 EDITOR. EDITOR is a
substantially more powerful (and even easier to Jse) editor than YALOE,
tenvironment

The L. 2 EDITOR (eventually to become the standar%

but it makes some assumptions about the Tun—time

handle files of arbitrary size, however it is in
and recommended for brave users only.

EDITOR requires a reasonably powerful CRT
features:

XYADRESSING - go directly to a given row
NDFS - non~destructive forward spd
space!
LF - down one line (and if at th
. scrolls up)
RLF - rev;rﬁé line feed (up one 1

reverse scroll)

i

Telease editor) will
its experimental form

terminal with the following

and column on the screen

ce (the inverse of back-
e bottom of the screen

ine; not required to

Page 281

(EDITOR no longer requires Er]se—to-%nd-of—s:rcon.
Erase—to—-end-of—-1line, or Home facilities.)

Typing

SYSTEM. EDITOR.

“E" at the main command level will execute the file
Selection of either YALOE or EDITOR(E. & or L.2) as

the system editor is made in the Filer bu C(hanging the selected file’s

name to SYSTEM. EDITOR.

Proper use of EDITOR requires tha% the system disk be left

on—-line while

editing.

The E. 4 EDITOR has the following differences from the previously

released E. 4 EDITOR:

(1. 3. 3)

(1.3.3)

(===)

The C(opy command now requires the user to specify whether
the copy is to be made from the B(uffer (as in the old

C(opy command) or from a other F(ile. Copying from a file
allows the option of copy np subsets of the file by speci-
fying markers.

|

|

A(dJust now enables L(eft abd R(ight justification as well
as C(entering of text lin s,

Automatic date-stamping o f!les. The first date the file
was created and the last date that it was updated are dis-
played in the E(nvironment.

The following is a brief summar bﬁ the differences between.
the E. & editor and the L. 2 (large #ile) eﬁitor (for more information

see section 1.

(1.3. 3

(1.3. 3)

(1.3. 3

(1.3. %)

Page 282

3. 5):

The L. 2 EDITOR does not ul %e to SYSTEM. WRK. TEXT unless
a4 new workfile has been c*pttcd Instead: upon entering
the editor the file to be rmad from is rTenamed with

& .BACK suffix and a work il! is created with the

old file’s name. ‘

New commands to be used in konJunctioh with large file
capability are B(anish L(eft or R(ight, and N(ext B(ack
or F(orward or S(tart or (nd.

I
F(ind and R(eplace will pr nhpt user i+ target not found
and the file extends beqo d the editor buffer(i.e..ift it
is & "large file"). i

Changes within E(nvironment:
Ability to set tab stop*.
Lists names of markers.
- Lists number of pages in Lef#t and Right
stacks of large files, in buffer and
- number of pages available on disk.

(1. 3)
DEBUGGER

(1.5) The debugger now works as claimédlin the system documentation. -

PASCAL. _COMPILER

(2. 2) Lowercase characters are now aﬂlbwed within all
identifiers and reserved wurdsﬂ but are converted to
upper case(i.e.,Hello is equiv lént to hE1LO). The break
character ‘_’ is also allowed (anywhere a digit is
allowed in an identifier) and #s:ignored.

(3.3.3) There now exists the facility for using "Long Integers" for
business applications. The standard type INTEGER has been
extended and the standard arithmetic operators +,-, %, DIV,
and unary plus and minus are aﬁlowed for uvse with long
integers (as well as the TRUNC and STR intrinsics).

(3.3.2) A substantial new addition to 4apahilit1es of programming
in UCSD PASCAL is the facility for linkage to separately
compiled "UNIT’s" and external assembly language routines.
A UNIT is a library module which may be imported for use
by PASCAL programs. I¢ incorpo ates the use of public and
‘private declarstions and deFinitaons The introduction of
UNITS to UCSD PASCAL introduce new syntax for the language
including the new Teserved words:

UNIT ‘

INTERFACE

IMPLEMENTATION
and USES,

(3.3.2) PASCAL programs may now access external assembly language
routines through the use of an EXTERNAL declaration which
resembles the FORWARD declaration.

(1. 9) LINKER

SYSTEM. LINKER is & new system utility made available to allow
the linkage of separately compiled PASCAL UNITS as well as access in

PASCAL to assembly lsnguage routines, and lznlqge from assembly language
to assembly language.

(4. 2) LIBRARIES
The file SYSTEM. LIBRARY is avasilable for use in conjunction

with SYSTEM..LINKER. The o0ld LINKER.CODE has been replaced by LIBRARY.CODE
which allows the user top build libraries containing utility routines.

Page 283

2.1. 1)
INTRINSICS

The procedure STR has been added anﬂ is used to convert integers
or long integers to their character string representation.

UTILITY PROGRAMS

Several new UTILITY PROGRAMS have b#en added. Reference
also the TABLE OF CONTENTS and the UTILITY DOCUMENT(Section 4).

(4.3) NEW SETUP.

(4. 3) REVISED PATCH.

(4.8) COPYDUPDIR.

(4. 8) MARKDUPDIR.

(1. 9) ASSEMBLERS. (LSI-11,8080, 7180)
(4. 9) DISASSEMBLER.

Page 284

Lol L2l 2 2 L R XLyl iy gty

INDEX # # Section B
P NN AT eI 0 I3 B3 B

version 1.5 September 1978

ARRAY, 117

ASSEMBLER, 4, 99, 100, 114, 284
BAD BLOCK SCAN., 26
BANISH, 3%

BLOCK, 117

BLOCKNUMBER, 117
BLOCKREAD, 124, 140, 136
BLOCKWRITE, 124, 140, 1356
BOOTSTRAP, 45, 227
BREAKPOINT, 77

CASE STATEMENTS., 1395
CHANGE, 18

CHARACTER, 117

CLOSE, 124, 149, 156
COMPILED LISTING, 84
COMPILER, 3. B1, 283
CONCAT, 119, 1357
CONDITIONAL ASSEMBLY, 111
CONTROL CHARACTERS, 59
CORY, 51, 120

CP/M, 5, 273

CRAWL, 72

CURSODOR, 31, 36, &2

DATE, 25

DEBUGGER., 4, 71, B2, 2B3
DELETE., 34, 39, 40, 51, 32, 120, 157
DESTINATION, 117
DIRECTIVES, 10%5
DIRECTORY, 1é&, 18, 264
DIBK ERROR, 26

DISK SIZE., 29

DISK BPACE, 27

DLE, 143

DRAWBLOCK, 129, 157
DRAWLINE, 129, 157, 13%
EDITOR, 3., 31, 281

EOF, 125, 138, 141

EOLN, 125, 138, 141, 148
EXAMINE, 26, 72, 74
EXECUTE, 4

EXIT, 142, 157
EXPRESSION, 117

EXTENDED LIST, 1B
EXTERNAL, 95, 102, 173
FILE, 123. 125, 148 ‘
FILEID. 117

FILENAMES, 7. 11, 31
FILER, 2, 3., 7, 280

Page 285

FILES, 139
FILLCHAR, 132, 146, 157
FIND, 42, 43, 51
FORWARD, 173

FUNCTION, 107

GENERAL ERRORS, 241
SET, 13, 12%

C0TO, 82, 142

C€0TOXY, 133, 157, 222, 23S, 281
GRAPHICS, 129, 139
HALT, 133, 187

HEAP, 136

IDSEARCH, 157
IMPLEMENTATION, 167
INCLUDE, 83, 100, 115
INDENTATION CCDE, 163
INDEX, 117

INITIALIZE DISKS, 28
INPUT, 138, 149

INSERT, 33, 37, 52, 120, 157
INTERACTIVE, 148
INTERFACE, 147
INTRINSICS, 156
IO-ERROR, 125, 249, 251
IORESULT, 83, 125, 157, 184
JUMP, 52

KEYBODARD, 138, 149
KRUNCH, 27

L2 EDITOR, %52

LENGTH., 119, 153, 157
LIBRARIAN, 283

LIBRARY, 173

LINKER, 4, 95, 172, 283
LIST DIRECTORY, 164, 18
LOCK, 124

LoG, 133

LONG INTEGERS. 120, 179, 283
LsIt1, 1

MACRO, 104

"MACROS, 109

MAKE, 28

MARK, 133, 157

MARKERS, 3&, 47, %52
MEMORY ALLOCATICN, 136
MEMORY MANAGEMENT. 133
MOVELEFT, 131, 157
MOVERIGHT, 131, 157
NEW., 15. 138

NEXT, 85

NORMAL, 124

NUMBER, 117

OUTPUT, 138, 149

PACK, 147

PACKED ARRAYS, 144

Page 286

PACKED RECORDS, 146

PACKED VARIABLES, 144

PAGE, 126

PASCAL, 1

PATCH, 284

PDP-11, 99

PDP11, 1, S, 18Bb

PENSTATES, 2%5

POS., 119, 157

PREFIX., 25

PROCEDURE., 107

PROGRAM HEADINGS, 147

PSEUDD COMMENT, 71, 82
PSEUDDO-DPS, 105 :

PURGE, 124

PUT, 125

PWROFTEN, 133, 157

QUIET, 85 _

QUIT, 15, S0, 52, &2

RADAR, 159

RANGECHECK, 85

READ, 126, 148, 154

READLN., 148

RELBLOCK, 117

RELEASE, 133, 1%7

REMOVE, 20

RESET. 123, 148, 149, 15%0, 1%7
RESTRICTIONS, 156 :
REWRITE, 123, 148, 149, 1%0, 157
RT-11, 233

RUN, 3

BAVE, 14

SCAN, 131

SCREEN, 118 S
SCREEN CONTROL, S, 85, 133, 221, 235, 284
BEEK, 126, 140, 158 . ’
SEGMENT PROCEDURE, 150, 165
SETS, 151 .

SETUP, 284

SIMPLVARIABLE, 117 .

SIZE, 118

SIZEOF, 133, 146, 158

"SOURCE. 118

STR, 120, 158, 180

STRING, 118, 119, 283

STRINGS, 152

SWAPPING, B6

‘SYNTAX ERRORS., 257

sYScoOM, B1

SYSTEM COMPILATION, Bb Ao
SYSTEM. LIBRARY, 4, 71, B4, 87, 95, 106
SYSTEM. WRK. CODE, 3. 35, 81, 96, 100
TEXT. 148, 163 \

Page 287

TIME, 133. 138
TITLE, 118
TRANSFER, 21
TREESEARCH, 138

TRUNC, 180
UNIT, 87, 97. 147
UNITBUSY, 123, 138
UNITCLEAR., 124
UNITNUMDER. 118. 233
UNITREAD, 123, 158
UNITWALIT, 124, 138
UNITWRITE. 123, 158
UNPACK, 147
UNTCLEAR., 1358
USE LIBRARY, 87
USES, 148
vaoLiD, 118
VOLUME, 25

VOLUME NAMES, 7. 293
VOLUMES., 18
WALK, 72
WHAT, 15 ‘
WILDCARDS, 11 o
WORD PROCESSING, 38, 44, 47, 32
WORKFILE, 3. 8, 32, 33, %9 71, 81, 96, 100, 279
WRITE, 126, 138 S
WRITELN., 1353

280, 1, 5., 99, 186

ZER0O, 28

I

Page 288

	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	081
	082
	083
	084
	085
	086
	087
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	163
	164
	165
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	215
	216
	217
	218
	221
	222
	223
	224
	225
	227
	229
	230
	231
	233
	235
	236
	237
	238
	239
	240
	241
	242
	245
	246
	247
	249
	251
	253
	255
	257
	258
	259
	260
	261
	262
	263
	265
	267
	268
	268A
	268B
	268C
	268D
	268E
	268F
	268G
	268H
	269
	271
	273
	274
	275
	277
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288

