ec

- O

VENRUUPRIPEEEPELUE NNNNNNNROR

WNNNNNNNNNR e reeO BUWWNRM=O0 OO

A b
R v

B0 R e

MR-

(ARSI

U.C.S.D. PASCAL SYSTEM

INPUT/0OUTPUT SUBSYSTEM

(Release Level 2.0, Preliminary)

IMPLEMENTATION GUIDE

Revision: 4 December 1978

[V

(AR S

TABLE OF CONTENTS

Sub ject

Purpose of This Document . .
Introduction to the I/0 Subsgstem

The Pascal Level: Unit I/0 Procedures
Calling the Next Level Down: RSP/IO
Units and UNITNUMBERSs Co.
The CONTROL Parameter . .
IORESULT and Completion Codes
Logical Disk Structure . .
Physical Sector Addrass:ng Mode
Physical Sector Numbers
Physical Sector Size .

The Interpreter Level: RSP/IO
Calling Mechanisms . . .o
UNITREAD and UNITNRITE .
Parameter Description

Parameter Stack Faormat .
UNITBUSY .
UNITWAIT .
UNITCLEAR
Semantics

Special Character Handling on Output .

Blank Compression Code (DLE’s)

Carriage Return - Line Feed

NOSPEC Bit in CONTROL .

Special Character Handling on Input

Console EOF Character

BIOS Functions

NOSPEC Bit in CONTROL .
Modelling RSP/IO Using Pascal

£

[Ty

SOUN>CUU S

P N N S N T F P P LTS S A
COrCPAUNUAUUUUY UUUUUGAURUUUUUUUUBPULLLWRS=O

H WA~

K] »

SPAPPUNUWHE QENRNRAMmEE e

WN -

[y

WK e

e Y L

NhWN -~

DLW

The Machine Level: BIOS
Design Goals . .
Completion Codes .
Calling Mechanisms .

Consale

Printer

Disk .

Remote . .
Character Codes
Semantics

Consale

Output éequiremants

Output Options .

Input Requirements .

Input Options
START/STOP .
FLUSH . .
ALPHALOCK
BREAK .
Type—Ahead .

Initialization .

Printer

Qutput Requ:remonts.
Input Requirements .

Initialization .
Pisk .

Interleaving .

Bootstrap Location .

Qutput Requirements

Input Requirements .

Initialization .

Physical Sector Mode .

Remote .
OQutput Raquirements

Input Requirements .

Initialization .
Special BIOS Calls .
Memory Sizing
System Halt
Start Clock

Mapping Logical Blocks onto
Physical Sectors .

20
20
21
21
21
22

22
22
24
24
24
25
26
26
26

27
27
27
28
28
29
29
30
30

30
30
31
31
32
32
33
a3
33
33

33
34
34
34

E

coo owd

WA=

3

Pascal Realization of RSP/IOC .
Summary of BIOS Calling Sequences
Examples of Current Processor—-Specific
BIOS Calling Sequencas .
Z-80/8080
63900 sevries
6800 .

as
a9

40
40
41
a2

0.0 Purpose oF.This Document

This document is intended to provide a detailed description
of the [SYNCHRONGQUS] 1/0 Subsystem of the UCSD Pascal System (An
asynchronous I/0 Subsystem has yet to be fully defined at this
writing.). The document is intended primarily for use by persons
implementing or maintaining the I/0 Subsystem. It is NOT intended
to serve as a user’‘s manual for Pascal pragrammers.

Please note that this is only a preliminary description of
the level 2.0 1/0 Subsystem.

1.0 Introduction to the 1/0 Subsystem

The UCSD Pascal System is constructed in a hierarchical
fashion (see Figure 1.0). Most of the system is written and
maintained in the Pascal language and is described as the “Pascal
Level®. As is discussed elsewhere, the UCSD Pascal caoampiler
generates code for an idealized processor known as the pseudo—
machine. This code (known as pseudo—code or p—code) is
interpreted at runtime by an assembly language program (known as
the Interpreter) which emulates the pseudo—machine. Due to the
processor—independent nature of the p-code, it is possible to
port the entire UCSD Pascal System to a new host machine by
rewriting only the Interpreter. Besides emulating the pseudo-
machine, native code is also used for some time—critical functions
and for dealing with such machine dependencies as input/output
devices. The body of code which implements these non—-emulatory
functions is called the Runtime Support Package (RSP). The
portion of RSP responsible for communicating with I/0 devices is
known as RSP/I0.

Due to limited resources, it is our desire to maintain no
more than one version of the interpreter for each processor. At
the same time we face wide variations in the peripherals which may
be encountered. Therefore, we at UCSD sought a scheme by which
the code in RSP could be frozen while still allowing for different
peripgherals. The strycture which we have devised is conceptually
similar to that vsed by Digital Research in their CP/M operating
system for 8080's and Z-80’s. That is, a standard interface has
been defined between the configuration- independent RSP/IO code
- and a configuration~ specific Basic Input/Qutput Subsystem
(called BIOS) which performs the actual I/0. The semantics of a
call to BIOS have been clearly defined as far as what the Pascal
-1evel needs to see, but BIDS is allowed to keep all sorts of hairy
details (eg. track and sector numbers, sector interleaving) to
itsel#f.

Page 1

Thus we have the UCSD Pascal 1/0 Hiervarchy shown in
figure 1.0: The Pascal user’s I/0 calls (eg. WRITELN, READLN, GET
and PUT) are mapped by the Pascal compiler and operating system
irmto calls on RSP (ie. UNITREAD, UNITWRITE). RSP/IO itself calls
BIOS which controls the actual device operations. It is important
for the reader to recagnize that we are here discussing a
SYNCHRONOUS 1/0 system. In other words, when an I/0 request has
been initiated by a Pascal pragram, control does nat return to
that program until the I/0 operation is completed. It is
anticipated that, eventually., a similar 1/0 system will be
specified with asynchronous or "“immediate return"” capabilities,
probably based on the asynchronous system now in use with UCSD
Pascal on the PDP-11.

Page 2

"Pagcal level" PASCAL USER
}
v
PASCAL SYSTEM
[
]
"Interpreter Level" H
(Run—time Support Package) tunit no., data area address,

ibyte count

{€, block no., control wordl]
v
UNIT 1/0
(param checking)
]
v
{ H H H
{Console iPrinter iDisk {Remate
) v v H v
- SPECIAL CHAR SPECIAL CHAR H SPECIAL CHAR
HANDL ING HANDL ING idrive no.., HANDL. ING
write! iread H idata area H
H H ‘ iaddress, H
single! isingle isingle tbyte count, tsingle
‘datal idata idata {logical idata
bgte! ibyte ibyte iblock no.., ibyte
H { H icontrol wovrd H
"BI10S H i ! H i
Level"® H H v v v
H | FRINTER DISK SERIAL LINE
! H PRIMITIVES FORMATTER PRIMITIVES
: i (Map logical
4 H blocks into
H v track & sectar)
-4 TYPE-AHEAD !
H QUEUE v
H H DISK
i v PRIMITIVES
H SPECIAL CHAR
H HANDL ING
1 (start/stop, alpha lock, flush, break)
H H
v v
SCREEN KEYBOARD
PRIMITIVES PRIMITIVES

Figure 1.0 —— Pascal

1/0 System Hierarchy

Page 3

2.0 The Pascal Level: Unit I/0 Procedures

As mentioned above, all Pascal level 1/0 requests are
eventually mapped by the compiler and operating system into calls
on a group of UCSD pre—declared procedures known as the uynit
1/0 progcedures. The Fascal programmer may call the Unit I/0
procedures directly or he may use standard Pascal 1/0 procedures
. gucth as READ, WRITE., GET and PUT. The exact details of how this
mapping is accomplished do not concern us here. The Unit I/0
procedures are not written in Pascal but, in fact, are the native
code procedures comprising the I/0 section of the Run-Time Support
Package. The mechanism by which they are called is described
next.

2.1 Calling the Next Level Down: RSP/IO

All native code Toutines in RSP are called using the CSP
(Call Standard Procedure) opcode, followed imn the P-code stream by
an unsigned byte containing the procedure number. To the Pascal
user making direct calls to Unit I1/0 routines, they look like any
other pre-declared procedure. If they actually were declared in
Pascal, the declarations would have the following format (allowing
a few illegitimate constructs such as optional parameters and
variable length arrays).

PROCEDURE UNITREAD(UNITNUMBER : INTEGER:
VAR DATAAREA : PACKED ARRAY [O..BYTESTOTRANSFER-11
OF 0..235;
BYTESTOTRANSFER : INTEGER;
CLOGICALBLOCK : INTEGER;]
CCONTROL : INTEGER i

PROCEDURE UNITWRITE(<same>);
FUNCTION UNITBUSY(UNITNUMBER : INTEGER) : BOOLEAN;
PROCEDURE UNITWAIT(UNITNUMBER : INTEGER);

PROCEDURE[UNITCLEAR(UNITNUMBER : INTEGER; UINITPTR : ~UIR)i
(Note that UINITPTR is being introduced for the level 2 release.)

Page 4

Remember that no such declarations actually exist in the
system.. They are intended to model the parameters passed and
returned by the native code RSP/ID routines. Some of these
routines are useful only in an asynchronous environment; under the
synchronous system described here they are mere dummies.

2.1.1 Units and UNITNUMBERs

The various physical devices of the UCSD Pascal System are
numbered, a fixed number being assigned to each device which the
system is designed to handle. The formal parameter UNITNUMBER in
the declarations above determines which of the Pascal physical
units the operation is intended far. Thus the Unit I/0 procedures
are device-transparent to the Pascal programmer —— the same
procedure will deal with any of the physical units. Figure 2.0 is
a list of the unit numbers associated with each physical unit.

The meaning of the other parameters is discussed in section 3 of
this document, the section dealing specifically with RSP/IO.

£ ar Vglume name
<must not be used>
CONSOLE
SYSTERM
<no current assignment>
diskQ
diskl
PRINTER
<no current assignment>
REMOTE
disk2
10 disk3
11 disk4
12 disk3

omslo-uahmn'aonv

Figure 2.0 —— Unitnumbers

2.1.2 CONTROL Parameter

The CONTROL parameter to UNITREAD and UNITWRITE is a word
used to pass special information to RSP/I0 and BIOS regarding
the handling of the I/0 request. The format of the CONTROL word
is shown in Figure 2. 1.

Page S

MSB _15 3 2 1 0_ LSB
PHYSSECT
NOSPEE

(un—-assigned) ASYNC

e wew =
N

jon e on
e we -

The contents of bits 3-13 is ignored.
PHYSSECT (bit|®) = 1 implies "Physical Sectar Mode" for disk I/0.
NOSPEC (hit &) = 1 implies "no special character handling”.

~ ie. no DLE expansion or LFs appended to CRs.
ASYNC (bit O) is ignored in this implementation.

Figure 2.1 —— CONTROL word format

2.2 IORESULT and Completion Codes

At times, an I/0 request will terminate abnormally. To
detect such occurences: UCSD Pascal offers the predefined function
IORESULT. IORESULT returns an integer value describing the status
of the last I/0 request. The value of IORESULT is set as follows:

Each call to UNITREAD, UNITWRITE or UNITCLEAR will cause a
“completion code” to be set in the SYSCOM data area [SYSCOM (for
SYStem COMmunication area) is the one and only data space directly
accessible by both the Pascal Operating System and the
Interpreter.]. Programmers may test the completion code by using
IORESULT.

The standard comﬁletion codes for release level 2.0 of the
UCSD Pascal System are given in figure 2. 2.

Page &

Code Meaning

O ..., No error

b CRC error

2 .. Illegal unit number

3 ..., Il1legal operation on unit

4 <nao langer used>

- J Lost unit; unit no longer on line

&, Lost file; file name no longer in directory
7 e Illegal file name

8 No room; insufficient space on disk

P e Unit not on line; no such volume on line

10 No file; no such file name in directory

11 Duplicate file

12 Naot closed; attempt to open an open file

13 Not open; attempt to access a closed file

14 Bad format; ervor reading real or integer

1%, Ring Buffer Overflouw

16 Write protect; write attempt to protected disk
17 Illpgal block number

18 Nan-zero byte count (in physical sector mode)
19 Invalid UIR settings

Codes 100 through 199 are reserved for non-predefined, device-
dependent errors. .

Figure 2.2 — 1/0 Completion Codes (Level 2.0}

2.3 Logical Diék Structure

The UCSD Pascal system views the disk as a zero-based linear
array of 512 byte logical blocks. All UCSD Pascal disks have
this logical structure, regardless of their physical format. The
physical allocation units of a disk are commonly known as
sectors and vary widely in size depending on the hardware. The
BIOS is responsible for mapping the logical structure of a Pascal
disk onto the physical structure of the device, i.e. mapping
logical blocks onto physical sectors (see section 4.3 3.1).

Page 7

2.3.1 Physical Sector Mode

To provide enhanced #lexibility for systems programming at a
machine—specific level, a mechanism has been providews for
directly accessing the physical sectors of the disk. When the
PHYSSECT bit of the CONTROL word is set on a call to UNITREAD or
UNITWRITE involving a disk unit, the I/0 is performed in
physical sector made. This has the following effects:

(1) The parameter LOGICALBLOCK is interpreted by the BI1OS as
physical sector number (PSN).

(2) The parameter'BYTESTOTRANSFER must be zero or an error
will be flagged. The actual number of bytes transferred
is equal to the physical sector size.

2.3.1.1 Physical Sector Numbers

. Typically, thé bhgsical sectors of a disk are addressed by
specifying both track and sector numbers. That is, the disk is
viewed as an array 9f tracks where each track is an arrvay

aof gectors. I1f this data structure were declared in Pascal,
it would look like this:

type
BYTE = 0. .2%935;

SECTOR = array ([O.. (BYTES_PER_SECTOR-1)1 of BYTE;
TRACK = array C[1..SECTORS_PER_TRACK] of SECTOR;
DISK = array [0.. (TRACKS_PER_DISK~-1)1 of TRACK;

(Note that ue‘are using the convention that track numbers arve
zero-based but sector numbers start from one.)

We can cbnvérfytho type DISK into a linear array of SECTOR as
tollouws:

type , '
DISK = array IO..(TRACKS_FER_DISK*SECTDRS_PER_IRACK)-1J of
SECTOR:

Page 8

We use this linear representation for addressing the disk by
physical sector number (PSN). The relations between the PSN and
track and sector numbers are:

PSN = (TRACK_NUM#sectors_per_track)+SECTOR_NUM-1;
TRACK_NUM = PSN div sectors_per_tracki
SECTOR_NUM = (PSN mod sectors_per_track)+1;

2.3.1.2 Physical Sector Size

~ Any physical sector size may be accomodated. An I/0 request
in physical sector mode simply causes a full sector to be
transferred. The Pascal programmer is responsible for ensuring
that the data area is at least large enough for one physical
sector.

Programs written using physical sector mode are not expected

to be portable to different disk hardware without some
modification.

Page 9

3.0 The Interpreter Level: RSP/IO

This section provides details of the design and operation o#f
the Input/Output division of the Runtime Support Package (RSP/IO0).
While the design itself is processor and hardware independent, it
is intended to be realized in native code. Thus the final product
will be processor—specific but still independent of the exact
peripherals used. '

3.1 Calling Mechanisms

Here are the details of how each rvoutine in RSP/IO is called
by the Pascal level. The level of detail is intended to be such
that an implementor aof RSP will know how to get parameters off the
stack when RSP is called and how the stack should look when RSP

returns. The detailed semantics of each routine are discussed in
section 3. 2.

3.1.1 UNITREAD and UNITWRITE

PROCEDURE UNITREAD(UNITNUMBER : INTEGER;
VAR DATAAREA : PACKED ARRAY [O..BYTESTOTRANSFER-11

oF O..2959;
BYTESTOTRANSFER : INTEGER:;
[LOGICALBLOCK : INTEGER:; 1
CCONTROL. : INTEGER1]

)i

PROCEDURE UNITWRITE(<same>)i

3.1.1.1 Pérameter Description

e UNITNUMEER hés been discussed in section 2. 1.1. DATAAREA is

S

the user’s huffer to or from which the data will be transferved.
Describing it as a VAR parameter signifies that UNITREAD and

UNTITWRITE are passed a pointer ta the start of the data area. The

Pastal programmer will call. say, UNITWRITE with an array

ant, eg AL21, as the actual parameter. Thus the procedure is
provided with the starting address for the transfer. For byte—-
oriented units, the address of the start of the data area may or
may not be on a word (16 bit) boundary. In the case of block-
structured (disk) units, however, it is only defined in the case
that it is on a word boundary;, that is, a Pascal programmer must
not allow actual parameters which reference non word—-aligned
bytes to occur when transferring to/from the disk. This is to
avoid restricting block-structured units to byte—-by—bdyte
transfers.

Page 10

Starting with the 2.0 release level, byte addresses such as
that described above are represented as an address couple,
consisting of a word base address and a byte oftfset. On
processors which use byte addressing, the effective address is
computed by simply adding the base and offset, since both
quantities are in bytes. For processors using ward addressing,
the effective address is computed by indexing byte-wise from the
base address (always toward higher locations).

NOTE: Far release level I systems, the data area address is
represented by a single word, i.e. by a simple byte address rather
than an address couple.

The third item in the READ or WRITE parameter list,
BYTESTOTRANSFER contains the number of bytes to move between the
user ‘s data area and the physical unit.

Two optional parameters follow for UNITREAD and UNITWRITE:
LOGICALBLOCK and CONTROL. If not specified by the Pascal
programmer, the compiler will assign them both the default value
zero. LOGICALBLOCK is only relevant for block structured units;
as discussed in section 2.3, it specifies the Pascal logical Block
to be accessed. The CONTROL word has been discussed in section
2.1. 2.

Page 11

3.1.1.2 Parameter Stack Format

UNITREAD and UNITWRITE receive their parameters on the
evalvation stack in the following order (each box represents a 16—
bit quantity):

v+t QLIS LN - - = - - (when finished, SP
: { points here)
Unit Mumber

Word Base

Byte Offset

Byte Count

Block Number (The stack shown here

grows down)

Coantrol < sP

s o

- me A MR WG WE RE @GR e Ge @e @e SR @8 A a9 oo oo

(]
1]
{
!
s
t
|
]
1
1
1
1
L]
t
1
]
.
!
]
]
[
¢
]
]
[}
1
t
H
t

Figure 3.0 —— Stack state on entering UNITREAD or UNITWRITE

Like ordinarg Pascal procedures, these RSP routines pop
their parameters from the stack when they are finished.

3. 1. 2 UNITBUSY

FUNCTION UNITBUSY(UNITNUMBER : INTEGER) : BOOLEAN

On implementations supporting asynchronous I/0, this function
tests whether the specified unit is husy or not and returns the
boolean result as the function value. “"On the totally synchronous
system that we are describing, UNITBUSY should always return
false. Figure 3.1 illustrates the stack states before and after
calling UNITBUSY: notice that the stack pointer does not change.

Page 12

+h++ 1117040000000 07100 V2274210402000 0010%0

[}
]

{ : H
! Unit Number [==== SP —-——==>{ false (O)
i i !

.o mn ==

—————

before after

Figure 3.1 —— Stack state before and after UNITBUSY

3.1.3 UNITWAIT

PROCEDURE UNITWAIT(UNITNUMBER : INTEGER)i

Like UNITBUSY, UNITWAIT is only useful in an asynchranous
environment. It is intended to kill time until the designated
unit becomes nat busy. In a synchronous system: UNITWAIT is
essentially a no—op since no unit should be busy unless a read or
write request is pending. The single parameter is on top of stack
when the procedure is called and is popped off before the
procedure returns. The use of the stack is illustrated in Figure
3. 2.

e+t VLLLL0L00200200200 8P ———=D VLIS LLLIL00LILL

1] [}] [

. L L 1]

{ Unit Number |(<———— SP § <empty> i

——— { H t
before atter

FigureAS.z — Stack state before and after UNITWAIT

3. 1.4 UNITCLEAR

PRDCEDURé UNITCLEAR(UNITNUMBER : INTEGER: UINITPTR : ~UIR)i

The purpose of UNITCLEAR is implied by its name: it restores
the specified unit to its *initial" state. In an asynchronous
system, this implies cancelling any pending I/0 operations. In the
synchronous environment with which we are concerned here, it is
useful for initializing the RSP and BIOS routines concerned with
that unit. The two parameters, UNITNUMBER and UINITPTR are,
respectively, the number of the unit to be initialized and a
pointer to a Ynit lnitialization Record (UIR) containing
unit—-specific initialization values. The structure of the UIR may
vary depending on the type of unit.

Page 13

If the value of UINITPTR is nil then RSP/IO must provide a
pointer to a default UIR. The paointer is then passed to the BIOS.
A Pascal representation of the UIR structure is shouwn in Figure
3.3. This corresponds to a 2B-byte physical structure. The
structures of the various cases are diagrammed in Figure 3.4. An
area of six bytes has been reserved for future use. Note that
RSP/I0 must set UBREAKVECTOR (in the case UNITKIND = UCONSOLE),
regardless of the contents o#f that field assigned by the Pascal
system. In practice, the Pascal programmer will leave
UBREAKVECTOR uninitialized, knowing that only the interpreter
knows the address of the BREAK-handling subroutine.

Correct interpretation of this Pascal representation requires
the knowledge that, in UCSD’s implementation, the values
used to represent the values of variables of scalar types such as
unit_types are zero-based starting #rom the left. Thus a variable
of type unit_types having the value uconsole actually has the
value zero, one means uprinter, two means uremote and three means
ublocked. The implementation is similar for all other ecalar
types.

type
unit_types = (uconsole, uprinter, uremote, ublocked);
baud_types = (b_110, b_300, b_&00, b_1200, b_2400.
b_4800, b_9400, b_19200, b_autosense, b_other);
parity_types = (p_even, p_odd, p_none);
stp_bit_types = (s_one, s_oneandhalf, s_two);

uir = record
case UNITKIND : unit_types of
ucaonsole,
uprinter,
uremote
(UDATABITS : integeri
USTOPBITS : stp_bit_types;
UBAUDRATE : baud_types;
UPARITY : parity_types;
USPECIAL : integer; (# Used with b_other ¥*)
(# Future use area %)
UFUTURE : array [0..2]1 of integer;

Page 14

28
26
24

. 22

20
18
16
14

10

oONsEOC M@

case UNITKIND of

)i

uconsole:
(USTARTSTOP : char;
UFLUSH chavr;
UBREAK . chavrs
UALPHALOCK : chari
UBREAKVECTOR : “~integer;
Yi

uprinter:
(USTARTSTOP : chari
UFLUSH : char;
UPAGELINES : integer!

(# ublocked needs none *)

end; (* case record tuype uir #*)

Figure 3.3 —— Sample UIR Declaration

. AKVECTOR

-

{ __UALPHALOCK H I

{ __UBREAK t 1 . H
1 ___UFLUSH] F u) i H
H T T0 {1 _USTARTSTOP HE H
H (reserveaed I (reserved I (reserved H
H for future L for future t for future {
: yse) L use) R use) i
{__USPECIAL HI VL _USPECIAL i
{__UPARITY VL _UPARITY tL_UPARITY H
! __UBAUDRATE I AUDRATE ! | _UBAUDRATE !
{___USTOPRITS {1 _USTOPRITS ! 1 _USTOPBITS b
{__UDATARBITS i __UDATABITS } 1 _UDATABITS H
P UNITKRIND & N N i 1 _UNITKIND H

uconsole uprinter uremote

Figure 3.4 —— UIR Physical Structure

When RSP/IO is bassed a nil UVINITPTR, it should provide the
BIOS with default UIR‘s having the values shown in Table 3.0.

Page 15

console UNITKIND = O (# uconsole #)
UDATABITS = 8 (# eight #)
USTOPBITS = 1 (# one and a half »)
UBAUDRATE = 6 (# b_9600 #)
UPARITY = 2 (# p_none #*)
USPECIAL = O (# not needed *)
USTARTSTOP = 19 (3 DC3 #*)
UFLUSH = & (% ACK %)
UBREAK = O (# NUL *)
UALPHALOCK = 18 (% DC2 #)
UBREAKVECTOR = Address of Break Subroutine

printer UNITKIND = 1 (# uprinter *)
UDATABITS = 8
USTOPBITS = 1
UBAUDRATE = 1 (% b_300 %)
UPARITY = 2

USPECIAL = O (# not needed *)
USTARTSTOP = 19 (% DC3 %)
UFLUSH = &6 (# ACK 3#)

UPAGELINES = 98 (# 11 in., & lpi, 4~line margins #*)

remote UNITKIND = 2 (# uremote *)
UDATABITS = 8
USTOPBITS = 1
UBAUDRATE = &
- UPARITY = 2
USPECIAL = O (# not needed ¥*)

disk UNITKIND = 3 (# ublocked %)

Table 3.0 -—~ Default UIR Values

3.2 ngantics

— This section will detail the processing to be performed by
RSP/I0O. The primary function of RSP/IO is to manage calls to
BIOS. In the case aof disk I/0, for example, RSP does little
except call BIOS te do all the work. Secondarily, RSP/IO is
-responsible for handling certain special functions which shail
pe described here. Appendix A contains a Pascal realization of
RSP/I0 which should be considered the most precise reference for
the semantics.

Page 16

3.2.1 Special Character Handling an Qutput

Output to the printer, consale or remote units must be
massaged to properly handle Blank Compression Codes and CR’s.

2.2.1.1 Blank Compression Code (DLE‘s)

The UCSD Pascal System supports text files containing a tuwo-—
byte blank compression code. It is the responsibility of RSP/IO
4to decade the blank campression code and send an appraopriate
number of blanks. The first byte is an ASCII DLE (decimal 16)
which signals that the next byte should be interpreted as being
the <number of blanks to be sent>+32. Thus the next byte
following the DLE should be processed by subtracting 32 from its
value and sending that number of blanks.

3.2 1.2 Carriage Return - Line Feed

Text files contain ASCII CR’s (decimal 13) at the end of
iines. We define this character as meaning “New Line", ie. a
carriage return followed by a line feed. Thus it is the
responsibility of RSP/IO to send an ASCII LF (decimal 10) after
sending each CR.

3.2.1.3 NOSPEC Bit in CONTROL Parameter

When this bit is set, the special handling accorded DLE’s and
CR'’s is shut off and they are sent out like other characters.

3.2.2 Special Charvacter Handling on Input

There are several characters which will receive special
treatment coming from the console in a complete implementation of
this I/0 system. All but one of them, however, are handled by the

BIOS. The one which is handled in RSP/IO0 is the unit EOF
chharacter.

Page 17

3.2.2.1 Unit EOF Character

The console EOF character, when received from the keyboard,
printer or remote ports, signals that “and—of—-+file" has been
reached on that particular unit. Rather than being a fixed ASCII
code, this is a "saft character“. That is, the exact character
code which will be intarpreted as “Console End-Of- File" may be
changed during system exscution by the Pascal user. Further
discussion of the soft characters used by the 1/0 Subsystem may be
found in section 4.4. The EOF character is in the SYSCOM data
area and must be accessed by RSP/ID to determine what character to
look for. When the EOF character is found in the input stream
the action to be taken depends somewhat upon which unit was
referenced. If we are reading frem unit 1 (CONSOLE), then a null
¢(character code O) is returned to the user’s bdbuffer instead of
the EOF character. For all other units, the EOF character is put
in the user’s buffer. In either case, no further characters are
transferred to the buffer; control immediatly returns to the
Pascal level. Further details are in Appendix A (procedure
READBYTES).

3.2.2.2 BIOS Functions

Of the remaining special input characters, START/STGP,
FLUSH, ALPHALOCK and BREAK, two (ALPHALOCK and BREAK) are used
only for input from the console, not from the printer or remote
ports. The other two (START/STOP and FLUSH) may be handled from
both console and printer, but not from remote. They are handled
by the BIDS and are described in section 4.35.1.4.

3. 2. 2.3 NOSPEC Bit in CONTROL Parameter

As in 3.2.1.3 above, when this bit is on, the special
character handling performed by RSP/IO is turned off. This
includes the EOF sensing function described above. It does not
atfect the BIOS functions.

3.3 Modelling RSP/I0 Using Pascal

-As the reader will notice in Appendix A, a Pascal program has
been written which performs all special character handling
regquired and calls BIOS with the specified parameters. While no
version of the UCSD Pascal System has been implemented using this
Pascal code for RSP/I0., it could be done.

Page 18

Our real intention in providing this program is to provide a
precise specification of the RSP/10 requirements to those who must
implement it in native code. It is possible to translate the
Pascal into assembly language and produce an implementation that
is quite efficient if the implementor is not too literal-minded.

Page 19

4.0 The Machine Level: BIOS

As explained in section 1.0, the Basic Input/Output Subsystem
is responsible for providing the actual access to I/0 devices.
Both the design and implementatiaon of the BIOS is specific to a
given processor and I/0 configuration. In this section we will
attempt to specify the nature of BIOS in sufficient detail for an
experienced programmer., in cooperation with I.I. 5 personnel, to
write the code for a given processor and set of peripherals.

The general scheme discussed below uses vectars from RSP/I0
to BIOS subroutines for reading, writing and initializing. The
exact vector scheme and means of passing parameters must be worked
out separately for each processor. Arrangements that have already
been warked out for certain processors are given in Appendix C.

\

4.1 Design Goals

The speed of the BIOS code is generally of small significance
compared to the speed of the 1/0 devices which it serves. When
peripherals are changed, which may occur frequently, it will often
- prove that only minor changes need be made in an existing BIOS to
service the new hardware. Also, since BIOS is core-resident, each
byte it occupies is one less available to the Pascal user. For
these Teasons, we suggest that major design goals be (1) compactness
and (2) clarity.

Like the rest of the Interpreter, the BIOS should be ROM-
able. Obviously it will also require access to some RAM. It
should be possible to easily change the addresses involved using
some equates and thus reassemble the BIOS for a given memory
configuration.

Page 20

4.2 Completion Codes

All read, write or initialization calls to BIOS must return a
byte to RSP containing status information on the 1/0 request just
serviced. The value of this byte is the “completion code"
discussed in section 2.2. Most of the standard completion condes
listed in 2.2 are not relevant to BIDS -- they are returned by the
Pascal Operating System for file errors and the like. The '
following errors can be returned by BIOS:

0O No error

5 CRC error

3 ... Illegal operation on unit

P e Unit not on line

16 Write attempt to write-protected disk

17 Illegal Block or Sector number

18 Non—-zera byte count (physical sector mode)
19 Error in UIR

All other errors are considered hardware—dependent. For
these BIOS should return codes in the range 100..199. The
selection of appropriate codes is left to the BIOS writer.

Note that any UNITS NOT IMPLEMENTED must arrange to return a
completion code of 9 ("Unit not on line”) when an attempt is made
to initialize or use them.

4.3 Calling Mechanisms

In this section we discuss the parameters required in the
BIOS calls for each unit. Each unit has three BIOS calls
assocciated with it: READ, WRITE and INIT. Each unit has varying
needs for information associated with these functions. Remember
that ALL calls must return the completion code byte. For a
summary of the BIOS calling requirements, see Appendix B.

4.3.1 Console

Only one parameter is needed for reading and writing,
‘containing the data hyte to be transferred. Initialization of the
console BIDS requires that the identity of a number of special
control characters be provided in the UIR, as well as serial line
interface sattings and a BREAK vector. The details of handling
these special characters are discussed in section 4.3.1.3.

Page 2t

4.3.2 Printer

A single parameter is passed: a byte containing the data read
or written, Initializing the printer requires the serial line
interface settings in the UIR. Optional use may be made of the
UIR field UPAGELINES which specities the number of lines to be
printed per page. If UPAGELINES = O then no page breaks shaould be
made by BIOS.

4.3.3 Disk

The calling mechanism for disk units requires five parameters
for reading and writing: (1) a starting logical block number as
described above, (2) a count of the number of bytes to transfer
(unsigned 16 bits, ie. O to &4K), (3) the address of the data area
to transfer to or froms (4) a drive number (O..n-1, given n
drives. Currently n=4 is assumed) and (3) the CONTROL word. It
strould be notad that. in the case of disk I/0., the data area
address is guaranteed to be on a word boundary (even byte address)
and the number of bytes ta transfer will always be even. On
initialization, the UIR is empty.

4. 3. 4 Remote

The remote unit requires a single parameter for reading and
writing: a byte containing the data being transferred. When
initializing the remote unit, the UIR contains serial line
interface settings.

4.4 Character Codes

The U.C.S.D. Pascal system assumes that the printer and
console units will support the use of ASCII printable characters
and a few standard cantrol codes (CR, LF, SP, NUL and BEL). The
remaining control codes which may be useful (eg. cursor
positioning and screen erasure) are "soft"® characters which may be
changed by the Pascal user (by running the SETUP utility) te suit
the requirements of his current hardware. The reason for
inflicting these hardware dependencies upon the Pascal level is
the simple fact of life that terminals use control codes which
vary widely and we want te be able to change terminals without
installing a new BIOS. The basic issuve is one of mapping logical
control symbols into the control codes recognized by the hardware.

Page 22

Suppose, for example, that there is pre~declared pracedure
CURSORBACK which causes the cursor on a screen terminal to move
left one column. Somewhere in the system, CURSORBACK must cause a
control code to be sent to the terminal which will cavuse the
desired response, whether it’‘s control-U, control-H or an escape
sequence. One way to do this would be for the Pascal level to
emit @ standard code which the BIOS then translates into whatever
is correct for the current terminal. This has the disadvantage of
requiring a new BIOS for every slightly different terminal. The
approach which we have taken sees to it that the correct code is
sent to BIOS for the current terminal on line. The details of houw
this is done are irrelevant to the I/0 Subsystem and are elsewhere
in the UCSD Pascal System documentation.

Due to the capability of many devices to make use of eight-
bit control codes, the Pascal system makes no assumptions as to
the relevance of the high—order bit and transfers the whole byte
faithfully. When using Csaven-bitl ASCII, the value of the high-
order bit is defined to be zero. In other words, the code far the
character ‘A’ must be &5 (decimal) rather than 193 (or 41 hex
rather than Cl, if you prefer). This has the effect of requiring
BIOS to return ASCII codes with the high-order bit off for all the
standard characters.

‘RSP will be sending both upper and lower case characters to
BIOS. Thus for upper-case—-only display devices that do not
display lower case codes as upper case, BIOS must map lower case
into upper case.

Page 23

4.5 Samantics

4.5.1 Console

Here we discuss the required and optional features of the
console device. The console device is assumed to be a CRT
terminal in the following discussion, although a typewriter device
may also be used.

4.5.1.1 Output Requirements

As noted in Qe:tion 4.4, we depend on the action of certain
ASCII control codes. These are the minimum requirements for a
console device:

CR <carriage refurn) (hex OD) -— Mave cursor to the beginning
of the current line (column O).

LF <line feed> (hex 0OA) —-Mave cursor to the next line dauwn
while the column position remains the same. Starting from any
but the last line on the screen, the contents of the screen should
vemain the same while the cursor moves downward. If the cursor is
on the last line when the LF is issued, it should remain in the
same position while the rest of the display scrolls upward one
1ine and the bottom line clears.

BEL <bell> (hex 07) ——If an audio signal is available, it
should be sounded. 1¢# one is not available, the terminal should
do nothing. The delay time required while doing nothing is not
significant.

SP <space> (hex 20Q) —-Write a space at the current cursor
position (erasing whatevar is there) and advance the cursor
position by one column. If the cursor is already at the last
position in a line, the position of the cursor after the 8P is
undefined. We prefer that the cursor remain in its prior position
-imm~"this case. If the cursor is in the last column of the last
time on the screen, not only is the position of the cursor
yndefined after the SP, but so is the state of the screen: maybe
it scrolled and maybe it didn’t. As above, we would prefer that
the cursor remain where it was and that the screen not scroll.

Page 24

NUL <null> (00) —— Delay for the time required %o write one
character. The state of the console should not change.

T r --Same as the discussion for SP,
except, of course, write the character and not SP!

Note that the effect of sending non—printable characters
other than those described above to the screen BIOS is not defined
since it is known to vary from terminal to terminal.

4.5.1.2 Qutput Options

The following set of cursor and screen functions should be
provided if possible, however they are optional in the sense that
almost all major functions of the UCSD Pascal System will still be
available if they are not provided. The control characters or
sequences of characters wkich provide these functions are left
unspecified for the reasons described in section 4. 4.

Reverse Line Feed: Move the cursor to the next line higher
on the screen without changing column or the other contents of the
stréen. If the cursor is already on the top line, the result is
undefined. If possible, the screen should reverse-scroll in such
a case, or if that is not feasible, the cursor and screen should
just remain as they were.

Non—-destructive Forward and Backward Space: Move the cursor
in the direction indicated without changing the contents of the
screen (ie. move it non~destructively). The position of the
cursor is undefined if an attempt is made to move it beyond the
end of a line. The preferred result is that cursor and screen
remain unchanged in such a case.

H . Move the cursor to the upper left—hand corner
of the screen without changing the other contents of the screen.

o : Move the cursor to some absolutely
determined row and column without disturbing the contents of the
screen. The result is undefined if an attempt is made to move the
cursor to a non—existent position.

Page 25

ERASE_TQ END OF SCREEN: Erase #rom the cursor position to
the end of the screen, leaving the cursor where it started and the
other contents of the screen undisturbed.

T NE: Erase from the cursor position to the
end of the current line, leaving the cursor where it started and
the rest of the screen undisturbed.

4.5 1.3 Input Requirements

Input from the keyboard should NOT be echoed to the screen by
BIOS:; this function will be handled by RSP/I0. Keys which
represent ASCII characters should generate eight bit codes between
O and 127. Problems were encountered with an implementation in
which an early form of BIOS returned ASCII with the high bit set
(ie. bhetween 128 and 239). In that instance, the high bit had to
be turned off by RSP/IO before the character was used. Other [non-
ASC11, eg. special functionl keys can generate codes between 128
and 29335 if desired.

4.5 1.4 Input Options

I# possible:; we recommend that, the console input BIOS be
responsible for the following special functions:

4.5 1.4.1 START/STOP

- “The START/STOP character is used to control console output,
wWhern START/STOP (a soft character) is received, console output is
suspended until (a) another START/STOP character is received or
(b) the BREAK character is received. Action to take in the latter
case is discussed below. Should the former case occur, the
suspended activities should resume exactly as they left off. The
chief benefit gained through this arrangement is to enable
the user to suspend console output processes which are proceeding
faster than he would like, e.g. a text file scrolling across the
screen at 9600 baud. The suspension process takes pltace wholly
within BIOS and requires no communication to RSP. Note that the
queueing of keyboard input should continue during the suspension.

Page 26

4.5.1.4.2 FLUSH

FLUSH is another soft control character; when FLUSH is typed,
the console output BIOS throws away all output characters (ie.
does not display them now or ever) until FLUSH is typed again,
input is requested from the console BIOS or the console BIOS is
reinitialized. This feature is useful when a long textfile is
being displayed on the console and you‘re tirvred of loaking at it.
Push FLUSH and it terminates rather quickly. It is also useful
when a process is generating console autput which significantly
slows the rate at which the process proceeds.

4.3 1.4 3 ALPHALOCK

Keyboards supporting both upper and lower case characters
should have an alpha-lock facility, something which causes all
alphabetic keys to generate upper case without shifting the other
keys. If the hardware does not support such a feature (ie. an
alphalock key), it should be done by BIOS. It should be
implemented as a “toggle” cantrolled by the ALPHALOCK soft
character.

' 4.5.1. 4. 4 BREAK

The remaining special character to watch for is BREAK, also a
soft character. When BREAK is typed. the console input BIOS
‘should immediately give control to a special RSP routine. The
vector to this special routine will be passed at console
initialization time. Note that receipt of BREAK shaould terminate
any START/STOP suspension pending.

4.%5.1.4.5 Type—Ahead

When non-special (ie. not described in the section above)
characters are received from the keyboard with no read request
pending, they should be queued until the next read request, which
should be serviced from the queue. When characters in excess of
the maximum queue size are received, they should be ignored and
+the queue remain intact. While a type—ahead of even one
chardcter is better than none at all, we recommend a minimum queue
capacity of about 20 characters, up to a maximum of about 80. I¢
possible the bell should be sounded for each character entered
from the keyboard after no room remains in the queuve.

Page 27

When operating with a keyboard that is not interrupt—-driven,
it is possible to provide type—ahead by polling the console status
at strategic locations elsewhere in the BI10S. This will work
fairly well if the current process is spending a lot of time doing
I/0, however characters may well get lost. For this reason we
suggest that only the BREAK character he sensed in this manner.
Complete type—ahead may be done this way at the user’s own rTisk.

4,.5.1.9% Initialization

Initializatidn of the console BIOS will make use of the
information in the UIR for several purposes:

(1) Serjal Line Interface Settings -— If the serial
line interface hardware provides software-selection of any of its

parameters, they should be set in accordance with the UIR.

(2) Soft Control Character Recognition —— The BIOS

should use the character codes in the UIR to set the control
characters it is sensitive to.

(3} §3§55>ygg§gnl—— The UIR contains the address of the
Interpreter subroutine which will recover from user BREAK
requests.

The structure of the console UIR is shown in figure 3. 4.
Initialization should also cause any START/STOP and FLUSH f£lags to
be cleared and any characters currently in the type—ahead queuve to
be discarded. :

NOTE that the console display should remain unchanged after
console initialization. Specifically., the BIOS should NOT issue a
clearscreen during initialization. The Pascal system is
responsible for issuing clearscreens when needed.

o s - B

4.5.2 Printer
The Printer uniflis conceived of as being a line printer or

other hardcopy device. Any ASCII display device may be vused in
actuality.

Page 28

4.%. 2.1 Output Requirements

In order to serve the widest variety of hardcopy devices,
RSP/10 does not buffer a line of text and send it all at once.
Rather it sends the printer BIOS a single character at a time.

Since some line printers must buffer a line and then print it all at
once, this becomes a BIOS requirement if such a device is to be
served. Thus, in order to determine when a line is finished, the
BIOS must recognize certain line delimiter characters. These
characters may have additional meaning besides Jjust being line
delimiters. They are summarized:

g;gg Delimiters

Lo tyrn> (hex OD) —— Print the line. An
avtomatic line feed should NOT be done. If the harduware requires
that a line feed be performed, then if the next character is a
line feed it must be ignored.

LF <line feed> (hex OA) -— In normal operation, RSP/IO will
only send LF‘s to BIOS immediatly after a CR. Shaould a LF be sent
which is NOT preceded by a CR, it must be interpreted as a line
delimiter. If the hardware allows a simple line feed ta be
performed (without a return) then this should be done. If, as
would be the case with a line printer, a complete "new
line" operation (return and line feed) is all that can be done,
then this may be allowed.

EE_<form fead> (hex 0OC) -— The printer should advance the
paper to top—of-form if possible and perform a carriage return.
I# no such feature is available., the printer may execute a "new
line" operation, ie. a return followed by a line feed.

4.5 2.2 Input Requirements
The printer'is allowed to talk back to the Pascal system in
much the same way as the consale or remote units. The printer

BIOS may watch for START/STOP or FLUSH control characters coming
#rom the printer if desired.

Page 29

4.5.2.3 Initialization

Initialization of the printer should make sure that it is
ready to print at the beginning of a blank line, thus a "new line"
(return and line feed) operation may be in order. ANy
characters which have bheen buffered but not printed are last. It

is not desired that the printer perform a form—feed each time it
ig initialized.

4. 5.3 Disk

4.5.3.1 Mapping Logical Blocks onto Physical Sectors

4.5.3.1.1 Interleaving

A primary function of the disk BIOS is mapping the 3512 byte
Pascal logical blocks ento one or more physical sectors of some
arbitrary size (See section 2. 3). In the simplest possibdle
scheme, the disk has 512 byte sectors and logical block numbers
are identical to physical sector numbers. The most common
situation (IBM format €laoppy disks) finds us with 128 byte
physical sectors. Here, the simplest mapping would establish the
carrespandence betyween a logical block and four consecutive
gectors. Due to limitations in disk hardware, however, it is
quite common to jipnterleave “logical sectors" on the disk.

wWhen Interleaving is used, the disk driver, when asked for,
say eight consecutive sectors, may actually transfer sectors
1,3,5,....15. Gince the same interleaving algorithm is used for
both reading and writing, the interleaving is transparent to the
user (until he tries to use his disk on a system using different
interleaving!). The advantage in using interleaving is that the
hardware may not be fast enaough to pick up physically contiguous
sectors on @ single disk revolutien, but, with an appropriate
interleaving algorithm, will be able to pick up gsectors that are

contiguous, though not physically contiguous. on a
single revolution.

The UCSD Pascal system makes no assumptions about the
interleaving method used by the BIOS, except that it works.

Page 30

4.5.3.1.2 Bootstrap Location

While bootstrap schemes vary, typical UCSD Pascal
implementations make use of a hardware (usually ROM) bootstrap to
load and execute a primary software bootstrap which, in turn,
loads and executes a secaondary software bootstrap. The secondary
bootstrap then loads the Pascal interpreter and operating system.
performs required initialization and starts UCSD Pascal. To be
accessible to the hardware bootstrap, the primary software
bootstrap must reside at a location on the disk which is
predetermined by the hardware vendor. Since thase locations can
vary widely, it is necessary for UCSD’s physical disk format
requirements to be flexible in this regard.

There are two primary requirements which must be met: (1) The
primary bootstrap area must not overlap disk data structures
maintained by the Pascal system and (2) The primary bootstrap area
must be accessible to the Pascal system to facilitate maintenence
of the bootstrap cade.

The Pascal system reserves logical blocks O and 1 for
bootstrap code, thus allowing 1024 bytes in the interleaving
format used on the rest of the disk. Thus the simplest solution
is ta map the Pascal logical blecks onto the disk so that the
primary and secondary bootstraps are together in blocks O and 1.

If 1024 bytes is not enough, or if the interleaving format is
unacceptable to the hardware bootstrap, then the primary bootstrap
area must be outside of the “"Pascal disk". The Pascal logical
blocks must be mapped onto the disk in such a way that the
hardware-defined bootstrap area is jnagcessible to the Pascal
system as a logical block (It will still be accessible in
physical sector mode).

The details o@ﬁthe bootstrap procedure are not discussed in
this dacument.

4.95. 3.2 Output Requirements

Nothing fancy here, simply transfer however many physical
sectors are needed to accomodate the data. To make it simple,
after a disk-write in which (BYTESTOTRANSFER) mod 512 is not equal
to zero (ie. the last block is partially written to)., the
remaining contents of the last block are undefined. This makes it
possible to write whatever garbage remains in a buffer if that is
convenient to €#ill up a whale sector. Figure 4.0 illustrates this
situation. The Pascal level is responsible for keeping track {in
lagical block numbers and byte counts) of where the good data is.

Page 31

EXAMPLE: Write to disk.

Number of bytes to transfer = 1174
Starting logical block number = 72
Data area address = (irrelevant)

- me

Biock 74

i H H
H Block 72 { Block 73 '
{ (312 bytes) ! (8512 bytes) { 1350 : (362 bytes)!
H H ibytes: i
1< data >: Cundefined>!
i H 1 : H
! H b
gstart of data area end of data area H
1]
4

end of last block

Figure 4.0 —— State of Blocks on Disk After Being Written To

4.%5.3.3 Input Requirements

On input from the disk, it is certainly not permissible to
overwrite the end of the assigned data area! Therefore, BIOS is
responsible for transferring exactly the number of bytes
requested. This can probably best be accomplished by buffering
the last sector and then transferring that part of it which was
requested.

4.%. 3.4 Initialization

Initializing a disk unit should bring it to a state in which
it is ready to read or write from/to any given track or sector.
For some drives with simple controllers, the head should be
stepped to track O to facilitate the BIOS disk driver’s
remembering the current track.

Page 32

4.5%5.3.5 Physical Sector Mode

When the PHYSSECT bit of the CONTROL word is set, disk access
should be performed in the manner described in section 2.3.1. The
BIOS is responsible for returning a completion code of 18 if the
byte count is not zero.

4.5 4 Remote

This unit is intindod to be an RS-232 serial line for
supporting various types of communication.

4.5.4.1 OQutput Requirements

Qutput is made a single byte at a time.

4.5%.4.2 Input Requirements

If interrupt-driven, input shauld be captured in a “"type-—
ahead"” buffer similar to that used for the console unit. The
buffer should be 80 or more hytes long.

4.8 4.3 Initialization

On initialization, the remote BIOS is passed a pointer to a
UIR. The structure of the UIR for the remote unit is shouwn in
figure 3. 4. I# software selection of any of these serial
interface settings is possible then it should be done.

4.4 Special BIOS Calls

These functions are provided by the BIOS to make
configuration-specific functions accessible to the Interpreter.
Although these functions are not related to Input/Output, they are
put in the BIOS as the repository for configuration—specific code.

4. 6.1 Memory Sizing

Since the Interpreter is designed to run in various sizes of
memory, it must know the address of the last accessible word. A
call to the memory sizing function of BIOS should return this
address. NMNote that a "word" address should be returned, i.e. on
an 8080 system with &4k bytes of RAM the last byte address is
'FFFF’, but the last word address is ‘FFFE’.

Page 33

In many BIOS implementations, it will be possible to return a
simple assembly—time constant. I#, however, dynamic memory sizing
must be performed, the sampling routine should restore the
contents of memory sampled.

4. 6. 2 System Halt
The system halt routine in BIOS should perform whatever is
necessary to terminate Pascal execution in an orderly fashion,

e.g. eject disks. Note that the Pascal system itself will already
have taken care of Pascal-ish details such as closing files.

4. 6.3 Start Clock

I# the system is equipped with a real—-time clock it should be
started: otherwise this call may be ignored.

Page 34

NOTE: APPENDIX A has been temporarily deleted

Page 35

Appendix B

Suymmary of BIOS Calling Sequences

Following in Figure B.O is a summary of what has been
described in section 4.3. Processor—specific protocols for
certain machines are provided in Appendix C. All calls to BIOS
return a completion code.

Entry Point

Parameters

CONSOLEREAD single data byte
CONSOLEWRITE single data byte
CONSOLEINIT UIR pointer
PRINTERREAD single data byte
PRINTERWRITE single data byte
PRINTERINIT UIR pointer
DISKREAD black no.

byte count

data area address

drive no.

CONTROL ward
DISKWRITE (same)
DISKINIT drive no.

UIR painter
REMOTEREAD single data byte
REMOTEWRITE single data byte
REMOTEINIT UIR pointer

Page 3&

MEMSIZE Address of last RAM word

SYSHALT {(none)

CLOCKSTART (none)

Page 37

C.1 8080/7-90

All BIOS entry points are given as offsets
from the beginning of the BIOS code space. These locations should
contain a JMP instruction to the appropriate address in BIOS.

Parameters: When parameters are not being passed in a
specified register, they are pushed on the stack. Offsets from
top—oft—-stack are given. recaognizing that the stack grows down.

Completion Code: Return in register C.

Calling Seguence: RSP will use the CALL instruction to call
BIOS. Thus the return address is at (SP), (SP)+1. All registers
are available for use by BIOS. BIOS should clean off the stack
before returning to RSP.

Entry Point ££ {hex) Parameters

CONSOLEREAD ——-=-——-— 00 return data byte in Reg C
CONSOLEWRITE ————— 03 write data byte in Reg C
CONSOLEINIT ——=—== Q& UIR pointer at (SP)+2, (SP)+3
PRINTERREAD ——=——-—— 09 return data byte in Reg C
PRINTERWRITE ————— ocC write data byte in Reg C
PRINTERINIT —————— OF UIR pointer at (SP)+2, (SP)+3
DISKREAD —=—————=— 12 block no. at (SP)+2, (SP)+3

byte count at (SP)+4, (8P)+5

data area addr. at (SP)+é, (SP)+7
drive no. at (SP)+8

CONTROL byte at (SP)+%

DISKWRITE ————==—=— 15 (same)
DISKINIT —=—===—=—- 18 drive no. in Reg C

UIR pointer at (SP)+2, (SP)+3
REMOTEREAD ——w=——— iB return data byte in Reg C
REMOTEWRITE —————— 1E write data byte in Reg C
REMOTEINIT —————— 21 UIR pointer at (SP)+2, (SP)+3

Page 38

C.2 6300 Series

Entry Pgigfg: All BIOS entry points are given as offsets

from the beginning of the BIOS code space.

These locations should

contain a JMP instruction to the appropriate address in BIOS.

Parameters: When parameters are not being passed in a

specified register, they arve pushed on the stack.

Offsaets from

the address pointed to by S (described as (8)) are given,
recognizing that the stack grows down and that S normally points
to the first available address below valid data.

Completion Code: Return in register X.
Calling Segquence: RSP will use the JSR instruction to call

BIOS. Thus the return address is at (S)+1, (S)+2.
The stack should be cleaned off by BIOS

are available for use.
before returning to RSP.

Entry Point QffsetChex)
CONSOLEREAD . 00
CONSOLEWRITE 03

CONSOLEINIT ———==— 06

PRINTERREAD —~————-— Q%
PRINTERWRITE —-——=-— OC
PRINTERINIT ———=—- oF
DISKREAD ————w——== 12
DISKWRITE ————===— 15

DISKINIT —————=——- 18

REMOTEREAD ——————— 1B

REMOTEWRITE —————= 1E

REMOTEINIT —=——=—-— 21

All registers

Parameters

return data byte in Reg A
write data byte in Reg A
UIR pointer at (5)+3, (85)+4

return data byte in Reg A
write data byte in Reg A
VIR pointer at (S5)+3, (85)+4

biaock no. at (S)+3,; (8)+4

byte count at (S)+3, (S)+4

data area addr. at (S)+7, (S5)+8
drive no. at (S)+9, (S)+A
CONTROL word at (S)+B, (§)+C
(same)

drive no. in Reg A

UIR pointer at (S)+3, (8)+4

return data byte in Reg A.

write data byte in Reg A.
UIR painter at (S)+3, (8)+4

Page 39

C.3 6800

P ts: All BIOS entry points are given as offsets
from the beginning of the BIOS code space. These locations should
contain a JMP (extended) instruction to the apprapriate address in
B10OS.

Parameters: When parameters are not being passed in a
specified register, they are pushed on the stack. Offsets from
the address pointed to by SP (described as (SP)) are given,
recognizing that the stack grows down and that SP normally points
to the first available address below valid data.

Completion Code: Return in register B.

Calling Seguence: RSP will use the JSR instruction to call
BIOS. Thus the Teturn address will be at (SP)+1, (SP)+2. All
registers are available for use. The stack should be cleaned off
by BINS befone returning to RSP.

Entry Point Offset(hex) Parvameters

CONSOLEREAD oo return data byte in Reg A
CONSOLEWRITE ———=-— 03 write data byte in Reg A
CONSOLEINIT —————— 06 UIR pointer at (SP)+3, (SP)+4
PRINTERREAD —————— 09 return data byte in Reg A
PRINTERWRITE ~—--- 0OC write data byte in Reg A
PRINTERINIT ———=—— OF UIR pointer at (SP)+3, (SP)+4
DISKREAD =====e==- 12 block no. at (SP)+3, (SP)+4

byte count at (SP)+5, (SP)+6

data area addr. at (SP)+7, (SP)+8
drive no. at (SP)+%, (SP)+A
CONTROL word at (SP)+B, (SP)+C

DISKWRITE ==——=w=w= 13 (same?
DISKINIT =———=—=—=- 18 drive no. in Reg A

UIR pointer at (SP)+3, (SP)+4
REMOTEREAD ———--—— 1B return data byte in Reg A
REMOTEWRITE =————— 1E write data byte in Reg A
REMOTEINIT —-——==——— 21 UIR pointer at (SP)+3, (8P)+4

Page 40

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

