on-line system manual

U.C.S.B. ONLINE SYSTEM MANUAL

This manual explains the
U.C.S.B. Online System as it
exists January 1, 1971. Please
report any errors to the online
consultant, so that corrections
may be included in the updates
to this manual.

U.C.S.B.

T

INTRODUCTION
THE BASIC SYSTEM

2.1 SYST

ONLINE SYSTEM MANUAL

ABLE OF CONTENTS

2.1.1 ACCESS TO OLS . . . ' .

2.1.2 SIGNING OFF
2.1.3 WARMSTART .o
2.1.4 USER LIBRARY ORGANIZATION e e e
PRESENTLY SUPPORTED SUBFILES
2.1.5 STORING A FILE IN YOUR USER LIBRARY
2.1.6 LOADING A FILE« .« « « « « «
LOADING A SUBFILE .
LOADING FROM ANOTHER USER NUMBER .o
LOADING FROM ANOTHER USER NAME ON YOUR USER
NUMBER . .
2.1.7 DELETING A FILE OR SUBFILE FROM YOUR USER
LIBRARY . . . e e e e

2.1.8 DISPLAYI

2.2 THE TYPE LEVEL
SUMMARY
2.2.1 MESSAGE
MES SAGE
SUMMARY
SYMBOL G

2.3 LEVEL 0 - LO
2.3.1 LO OPERA
2.3.2 SUMMARY

2.4 SPECIAL OPERATO
2.4.1 RESET
2.4.2 ERASE
2.4.3 REPEAT
2.5 USER PROGRAMS -
2.5.1
2.5.2 LIST MOD

2.6 USER PROGRAMS -
2.6.1 ACCESS T

PROCEDURE FOR SYSTEM INITIATION e e e

NG YOUR USER LIBRARY

OF TYPE LEVEL OPERATORS

AND SYMBOL GENERATION

GENERATION

OF OPERATORS FOR MESSAGE GENERATION
ENERATION e e e e e e e

NDS . . . coe e e e
OF OPERATIONS e e e

RS

LIST MODE

STRUCTURE OF THE USER SYSTEM e e e e e

E

EDIT LEVEL
0 THE EDIT LEVEL

PAGE NO.

13

15
15
15
16
17
18
19
21
22
23
23

23

24
25

26
30
30
31
31
31

38

38
39

40

40
40

42
42
43

46
46

NN
[oa3 o)}
w N

NNDNNN
ooy
(e B SV I

TABLE OF CONTENTS CONTINUED

STORING A USER PROGRAM

DISPLAYING OR LOADING A PREVIOUSLY STORED

USER PROGRAM . .
MODIFYING A USER PROGRAM
INSERTION OF KEYS IN A USER PROGRAM
DELETION OF KEYS FROM A USER PROGRAM
BLOCK KEY SEQUENCE EDITING
OPERATOR DEFINITIONS FOR THE EDIT LEVEL

2.7 SPECIAL LIST MODE OPERATORS

2.7.1
2.7.2

NN
N
LA lE =

THE ENTER KEY

THE TEST KEY

BASIC TEST FORMAT Coe

THE TEST OPERATOR RS

" THE TEST OPERATOR NEG

LO OPERANDS WITH TEST .

USE OF PARENTHESES WITH TEST
THE PRED KEY e
REPETITION OF PROGRAMS; LOOPING
NAME PROGRAMS

CARD ORIENTATED LANGUAGE (COL)

3.1 BASIC CONCEPTS

(VAR = N B O R ol

ACCESSING COL

I - A STRING MANIPULATION LEVEL
LEVEL I OPERAND FORMS

DISPLAYING, LGADING, AND STORING OPERANDS

SUBSTRING MANIPUTATION
SEARCHES AND COMPARISONS
TRANSLATING STRINGS

IT - A RECORD MANIPULATION LEVEL

RECORD CREATION .

RECORD MODIFICATION AND MANIPULATION OF
POINTERS e e e e e e e e e e

AUTOMATIC SKIP, DUPLICATE, OR LEFT ZERO
FEATURE

FILE CREATION .

LOADING AND DISPLAYING RECORDS

ITIT - A FILE MANIPULATION LEVEL

MOVING RECORDS FROM THE INACTIVE FILE TO
THE ACTIVE FILE ' e e e e e

ii

47

47
48
S0
53
54
56

59
59
60
61
64
65
66
67
69
71
73

76

77
79

80
80
82
84
84
86

88
88
88
91
93
94
96

96

PAGE

NO.

3.
3.
3.

MATHEMATICALLY ORIENTATED LANGUAGE SINGLE PRECISION FLOATING

8
9

10

3.

[CA O]

3.

L
3
3.
3

4.2
4.3
4.4

EVEL
.5.1
5.2
5.3

5.4

TABLE OF CONTENTS CONTINUED

DISPLAYING BLOCKS OF RECORDS IN THE

ACTIVE FILE . e e
SEARCHING THE ACTIVE FILE ce e
DELETING BLOCKS OF RECORDS

IV - OPERATING SYSTEM INTERFACE LEVEL . .

ACCESSING OPERATING SYSTEM DATA SETS

REMOTE JOB ENTRY

DIRECTING RJE AND BATCH OUTPUT TO THE
REMOTE DATA SET .

PRINTING A MEMBER OF THE RJEOUT DATA SET

DISPLAYING THE STATUS OF SYSTEM DEVICES

DEFINITION OF LI OPERATORS e e e e

3
3

. 6.1
.6.2

LI OPERAND FORMS
DEFINITION OF LI OPERATORS

DEFINITION OF LII OPERATORS

MANIPULATING POINTERS TO A RECORD

MOVING CONTENTS BETWEEN ACTIVE AND SAVE
BUFFERS . coe e

DISPLAYING AND LOADING RECORDS e

INSERTING AND DELETING CHARACTER STRINCS

STORING AND DELETING RECORDS

RECORD LENGTH ..

COLUMN CONTROL OPTIONS

DEFINITION OF LIII OPERATORS

DEFINITION OF LIV OPERATORS

LO EVAL OPERATORS FOR COL

POINT (MOLSF)

4.

4.

1

2

.

NUMBER REPRESENTATION

DATA STRUCTURES AND THE WORKING REGISTERS . . .

MATHEMATICAL OPERANDS

4.
4.
4

L
4.

3.1
3.2
.3.3

0ADI
4

OPERAND FORMS . . . e e e e e e
JUXTAPOSITION OPERANDS e
TRAILING PREDICATES ,

NG OF DATA . . . A .
LOAD FOLLOWED BY A NUMBER (a numeric Operand)

iii

.

PAGE NO.

97
98
99

100
100
102

105
106
107

108
108
108

112
112

113
113
114
115
115
116
117
119

120

121
122
124
132
132
132
133

134
134

.10

.11

.12

TABLE OF CONTENTS CONTINUED

PAGE NO.
4.4.2 LOAD FOLLOWED BY AN ALPHABETIC OPERAND 134
LOADING OF HIGHER LEVEL DATA INTO LOWER

LEVEL REGISTER . 135
LOADING WHEN COMPONENT AND ENTRY SPECIFICA-

TIONS ARE INTEGER VARIABLES 135
MODIFICATION OF VARIABLE SPECIFICATION BY
INCREMENTING LOAD INSTRUCTION 135
GENERAL LOAD FORMAT 137

STORING OF DATA 139
DISPLAY FACILITIES 141
4.6.1 DISPLAY KEY 141
4.6.2 NUMERICAL DISPLAY 142
4.6.3 GRAPHICAL DISPLAY . 144
REPRESENTATION OF SCALE FACTORS FOR LEVEL II 145
DETAILED SCALING ALGORITHMS 146
TECHNIQUES . 148
LEVEL II SCALING OPERATORS 148
LEVEL III DISPLAY 151
4.6.4 DISPLAY FORMATING 152
MATHEMATICAL OPERATORS FOR LEVEL I e 154
4.7.1 OPERATOR DEFINITIONS FOR LEVEL I REAL 154
4.7.2 OPERATOR DEFINITIONS FOR LEVEL I COMPLEX 155
4.7.3 ADDITIONAL COMMENTS ON LEVEL I 157
MATHEMATICAL OPERATORS FOR LEVEL II e e 158
4.8.1 OPERATOR DEFINITIONS FOR LEVEL II REAL 158
4.8.2 OPERATOR DEFINITIONS FOR LEVEL II COMPLEX 165
4.8.3 ADDITIONAL COMMENTS ON LEVEL II . 168
DISPLAY . 168
VARYING CONTEXT 170
MATHEMATICAL OPERATORS FOR LEVEL III 171
4.9.1 OPERATOR DEFINITIONS FOR LEVEL III REAL 171
4.9.2 OPERATOR DEFINITIONS FOR LEVEL III COMPLEX 175
DEFINITIONS OF LO SUB AND EVAL 179
DEFINITION OF LEVEL V OPERATORS 181
USE OF PARENTHESES 184
DISPALY PARENTHESIZED EXPRESSION 186
LOAD TEMP1 187
HIERARCHY OF OPERATORS 187

KEYS NOT ALLOWED IN A PARENTHETICAL EXPRESSION

iv

188

TABLE OF CONTENTS CONTINUED

PAGE NO.

Appendix A

PROCEDURE TO OPEN AN ON-LINE ACCOUNT 189

REQUEST FOR OLS USER NUMBER (OR CHANGE) , . . . 190
Appendix B

OLS USER COMPLAINT« « « « v v « v v« « 192
Appendix C

OLS SOFTWARE STRUCTURE & KEYBOARD DIAGRAMS 193
Appendix D

ON-LINE ERROR AND SYSTEM MESSAGES 212
Appendix E

SAMPLE PROBLEMS « . « « o« v v 222
Appendix F

FORTRAN SUBROUTINE CALLS FOR TRANSFER OF LII VECTORS TO

AND FROM AN ONLINE TERMINAL « 255
Appendix G

REFERENCES RELATED TO ON-LINE SYSTEM APPLICATIONS . . , . 256

INTRODUCTION

The UCSB on-1line system (OLS) provides the capability for
sophisticated mathematical analysis or file and string manipula-
tion for use in solving problems where human interaction is
either necessary or desired.

The primary aspect of modern computer systems is that of
direct user control of computational processes. An on-1line
system (OLS) provides interactive facilities by which a user can
exert deterministic influence over a series of computations. A
time-sharing system provides a means by which partial computations
on several different problems may be interleaved in time and may
share facilities according to predetermined sharing algorithms.
Placing a single user in direct control (i.e., on-line) of a
large scale digital computer is impractical from an ecomnomic
viewpoint, while a small-scale, less expensive computer generally
does not provide the computational power required for significant
scientific applications. Consequently, on-line computing has
come to depend upon time-sharing as its justifiable mode of
implementation. The UCSB OLS described in this manual is a time-
sharing on-line system. The number of users that can be supported
at any one time is limited only by the hardware capabilities of
the given computer. At the present time a limit of sixty-four
users has been set by the Computer Center.

The fact that a user is in direct control of a computational

process, giving commands from his own console, is only superficially

analogous to his being his own operator. The important distinc-
tion lies in the program power for direct control associated

with his console. This interactive capability of OLS is provided
by the unique operator (controlling process) - operand (objects
affected) software structure of the system.

It is the objective of this manual to provide the user with
the fundamentals of the OLS languages and to indicate how these
basics can be used.

The programming capabilities of the software underlying the
OLS are quite extensive. It is important for the user to
recognize that he doesn't have to completely understand all the
system capabilities in order to solve a particular problem. A
good approach is to pay detailed attention to only that part of
the system which is required for the solution of the problem at
hand.

The user of this system must basically provide the mode of
problem solution himself by creating and applying his own user's
language to the problem under consideration. If difficulty is
encountered, the user should insure that he has properly inter-
preted the operators and operands which constitute the user's
language he has constructed. Sample problems are provided in
the appendix to aid the user in the use of his console. These
problems may also assist in clarifying the correct utilization
of a given OLS instruction. If the above approach fails to

remedy the trouble, call upon some other user for assistance.

Any attempt to delineate the limitations of the system's
applicability would be unfair, since such limits are largely
determined by one's ingenuity in using the system. Mathematical
simulation, on-1line control of experimental systems, string and
file manipulation, and data analysis are but four examples of
areas outside that of classical mathematical analysis in which
the system has been applied. In many instances, a problem which
appears to be completely inappropriate for OLS can be resolved
by employing some facet of the OLS structure in a slightly
different fashion.

A simplified block diagram of the interconnections between
an OLS user's console and the IBM 360/75 digital computer is
depicted in Figure 1.1. The console is comprised of the keyboard,
which acts as the input device to the computer, and an output
device. One such output device is the display scope.

During system operation, each time the console operator
depresses a keyboard button a binary number (i.e. a series of
zeroes and ones) uniquely corresponding to that button is trans-
mitted to the 360 and stored in its memory. The program within
the computer analyzes this number, then responds in accordance
with conditions already set up by the antecedents of this key.

Transmission back to the user of the results of his key-
pushes is provided by the output device(s) selected by the user.
The output device can present either alphanumeric display
(numbers and alphabetical characters) or a curvilinear display

(graphical), as controlled by the user.

Display Scope

IBM 360
Digital

Computer

Console

r"

Keyboard

Fig. 1.1 Simplified block diagram of inter-
connections between a user console
and the IBM 360 Digital Computer.

The underlying notion of a time-sharing system is that
several users are on the air simultaneously. The computer
responds to only one user at any given instant, but all active
stations are constantly being monitored and serviced in turn.
This can lead, during times of heavy system usage, to a delayed
response by the computer to a given OLS sfation. During this
delay period every button you push will be recorded by the
computer and, when control is returned to you, all of these
instructions will be performed.

Delayed response time is not only a function of the number
of users, but it is also determined by the length and complexity
of the task given to the computer by the user.

Control of the computer by the user is provided by the
console keyboard (shown in Figure 1.2). One should first observe
that the keyboard is divided into an upper and lower half. The
halves are designated as the operator and operand portions,
respectively.

The operator keys are grouped according to their system
properties and typical uses. The operand keys are also grouped
according to their usage.

In general, the green, black, and red keys provide program
and console control. On the upper keyboard, they furnish
program controls such as a command to stop a program, to store
data, and to repeat an operation. On the lower keyboard, they
provide a miscellany of punctuation marks, the plus and minus

signs for positive or negative numbers, and typewriter controls.

EXP ATAN | ARG

a----wm-w
A‘v —~
ooooasamnmr

LS -- DOWN EVAL MAX -

SYST USER TYPE LIST
PRED TEST

STOR ENTER

CONV ID

DISPLAY

ESCAPE
RESET

RETURN

Figure 1.2

The blue and yellow keys on the upper keyboard permit access
to the various operator levels. The operator levels of OLS are
described in later chapters. On the lower keyboard, the blue
keys provide a means for typing numbers and entering numerical
data.

The white keys labeled A through Z on the lower portion of
the keyboard are used for typing alphabetic and Greek characters
or as storage locations for data: single numbers, vectors (i.e.,
lists of scalars), arrays, or character strings. Whenever a
quantity is stored in a particular location on a particular
level, it replaces the previous contents of that location on
that level. Thus, if the user stores a number under the B key
and wants to retrieve it at a later time, he must not store any-
thing else under B on that level in the interim. Once a quantity
is stored in a given 10cétion, it will be available for use
indefinitely unless it is replaced by another piece of data.

The white keys on the upper half keyboard are used for
mathematical or string operations, depending upon the language
used, or for storage of USER (created) programs. The upper key-
board storage buttons are like those on the lower keyboard in
that storage cell information is replaced when a new quantity
is stored.

The 16 green slashes or scribe marks on the alphabetic
white keys are used for the construction of symbols not appearing
on the keyboard. Symbols are constructed by guiding a dot

around the scope so that it traces out the desired pattern. The

slashes indicate the 16 possible directions in which the dot can
be moved under control of a string of vector instructions. Symbol
generation is discussed in Chapter 2.

The output devices permit visual monitoring of the operations
carried out by the computer. One such device, the display scope,
consists of a storage tube and the appropriate circuitry to
create high-quality alphameric and graphical displays.

The user is supplied two languages to apply to his particular
problem, MOLSF and COL. Underlying these, however, there is a
Basic language common to both.

The Basic System is composed of several levels of operators:

1) System level - SYST

This level provides access to the on-line system,
the ability to load and store files and subfiles,
and billing information.

2) Type level - TYPE

This level provides the ability to generate messages
on the output device(s) and create symbols not
already available on the keyboard.

3) Level 0 - LO

Level 0 provides integer mathematical operations.

4) List mode and Edit level - LIST

LIST mode enables a user to create programs. The
EDIT level enables a user to modify USER programs.

MOLSF (mathematically-oriented language, single-precision
floating point) provides a degree of numerical accuracy suitable
for many scientific computations. Numbers represented in this
system have up to seven decimal digits accuracy (single precision),

with magnitudes ranging from 10_75 to 10+75. The keys on the

upper keyboard, when pressed, will initiate operations. The
lower keyboard provides access to data and storage areas.

MOLSF provides the ability to work with real and complex
scalars, vectors, or arrays. The display can be either numerical
or graphic.

COL (card-oriented language) is a non-mathematical language
for the creation and manipulation of character strings and files.
A file is defined as an ordered set of records or strings; a
record or string, in turn, is defined as an ordered string of
characters (alphameric and special).

Through COL, the user can:

1. access data-sets residing on the installation's
storage devices.

2. submit programs coded in any language supported
by UCSB (Fortran, PL-1, etc.) for batch processing,
and access output generated by them.

3. transfer vectors between an OLS console and a
program submitted for batch processing. (in
conjunction with MOLSF).

4. obtain punched or printed copy of files.

5. manipulate character strings.

Conceptually, COL and MOLSF differ only in the definitions
they assign to the upper keyboard operators.

To produce the desired machine response the user's problem
must be logically and unambiguously defined. Error messages
are generated by the system in response to illogical sequences.
The control emphasis is informal and casual rather than program-

matic. Consequently, the system makes computational meaning

from a great variety of key sequences. By recognizing initiation

operators as operators that override partially completed
sequences, it allows the user to start a new sequence immediately
without producing system error messages.

As mentioned earlier the Basic system provides the ability
to create USER programs. This facility is called LIST mode as
opposed to Manual mode.

In Manual mode, the computer reacts in direct computational
response to each user request (keypush). The display of its
efforts may be requested by the user at any time; the machine
does not automatically display its work.

LIST mode allows the construction and subsequent storage
of a 1list of keypushes, thus providing a procedure for construct-
ing new programs from those operators already defined in the
system. When construction of a USER program is desired, the
user simply enters LIST mode and then pushes any sequence of keys
just as though he were operating the on-line system in Manual
mode. However, instead of responding to these key pushes in
the usual way (i.e., by initiating the corresponding subroutines),
the computer records and displays the list of the keys whigh
have been pressed. After leaving LIST mode it is possible to
alter the list of keys and then to store them under an upper
keyboard white key, for execution at a later time.

These USER programs can be executed at any time. It is
also possible for one USER program to call another creating a
pyramiding feature, which makes it possible to construct progranms

of virtually unlimited complexity.

10

Before and after storing a USER program it can be displayed,
edited, and restored.

Research and developmental work on OLS will continue for
some time to come. This work is usually done on a Developmental
System, as opposed to the Day System on which users generally
operate.

The Developmental System is identified by the message:
"DEVELOPMENTAL SYSTEM"

before the log-in procedure. Depending on the nature of the
development in progress, the operator may allow users to sign
on and use the Developmental OLS; however, user libraries are
not accessible and the system may be cancelled or reloaded at
any time. To offset these liabilities, there is no charge for
using the Developmental System.

When the above message does not appear, the User or Day
System is up. Libraries are accessible and the Computer Center
is endeavoring to maintain the maximum system stability possible.
When the User system is up, user activity is billed.

Regular schedules for the User and Developmental Systems
are posted at the beginning of each quarter.

Users with suggestions for additions and improvements or
who have discovered "bugs'" should contact the Computer Center.

When new facilities are available they will be described

in News and Notes, published bi-monthly by the Computer Center.

When the manual is updated, a notice will appear in News and

11

Notes. It is the user's responsibility to contact the Computer
Center to acquire the latest updates. Updates will be dated,

thus a user will be able to secure all past updates at any time.

12

THE BASIC SYSTEM

The Basic system provides: access to the on-line system
routines, a common interface between the languages, services to
the language processors, and library upkeep. The Basic system
has several special operators and five levels. The svecial
operators are: REPT, SELECT, TEST, LIST, ENTER, and PRED. The
levels are TYPE, LO, USER, SYST, and EDIT. The facilities of
the Basic system are always available when one is signed on
the air. Thus the facilities of the Basic system augment what-
ever language one is working with.

The Basic system has been designed so that languages may
be added or deleted with one small change to the Basic system.
To the user this means that the operator definitions for the
Basic system do not change when one changes languages. NOTE:
L0 SUB and EVAL are not part of the Basic system, but are part
of the individual language processors.

The TYPE level enables the user to type messages on his
output device. Special characters and frequently used sequences
of characters may be generated, stored, and recalled for use in
typing messages.

The SYST level enables the user to alter his library;
display billing charges; load or change language processors;
load, store, display or delete files; and terminate access to
the system.

L0 provides integer arithmetic and indexing facilities.

Simple operators (® , 0O , O , @ , SQ, and DEL) on LO give

13

integer results in the quotient and remainder registers. The
contents of the quotient register may be saved under any of the
letters A through Z and alpha through omega. Operators that
require integer operands on both the Basic system and the lan-
guage processors, will accept a LO operand. LO operands may con-
sist of an integer or a storage location name. Optionally, the
LO operand may specify that the contents of the storage location
be automatically incremented or decremented after execution of
the operator.

The LIST mode, entered by pressing LIST, allows one to

define programs containing any key except LIST or RESET. Every

key pressed while in that mode is displayed and added to the
program definition until the LIST key is pressed the second
time. The user is then placed automatically on the EDIT level,
where he may modify and store his programs.

The USER levels (USER LO through USER LVII) are for user
defined operators. Programs created using LIST mode and the
EDIT level may be associated with a level and an operator or
a name. The CTX key may be used between the level and operator
to add further to the number of user defined operators. The
total number possible at one time is 8 (number of levels) x
2(use of CTX) x 31(number of operators) or 496 programs.

The special operators add flexibility to the system. REPT
allows the user to repetitively execute a series of keys with,
optionally, a control variable. TEST allows for branching in
user programs. The special user program operators PRED and
ENTER control the data upon which a program will operate.

14

2.1 SYST

2.1.1 ACCESS TO OLS

The SYST key notifies OLS that a user wishes to sign-on.
A new user may obtain a user number and an identification code
(ID code) from the UCSB Computer Center Office. The ID code
prevents unauthorized users from using your funds. An optional
user name provides added qualification. The user number and
user name, if selected, identify to OLS which program library
is to be used, how many of the OLS facilities this user may
access, whether a problem name is required, and the funds re-
maining in his account. The procedure for obtaining a user

number is outlined in Appendix A.

PROCEDURE FOR SYSTEM INITIATION

As an illustration of the procedure to activate the system,
assume that a user has been assigned a user number, ID code,
user name, and that a problem name is required for this user
number. After turning on the equipment, if necessary, he

presses the SYST key.

KEYBOARD ENTRY OLS QUERY/RESPONSE

SYST (user number) RETURN ENTER USER NUMBER (user number)

(ID number) ID NUMBER=

(user name) RETURN USER NAME= (user name)

(problem name) RETURN JOB NAME= (problem name)
AUTOSAVE CODE= (integer)

MOLSF RETURN LOAD MOLSF

FILE LOADED

15

The autosave code given after user identification is completed
allows one to restart after a system failure. The autosave
number identifies a user workspace that is preserved after most
system failures. The number should be remembered so that
should OLS fail the user may restart. In this example the user
selected the language MOLSF. MOLSF is the name of a language
and is reserved (one may not store a file with that name).

When a language name is loaded at sign on the user is placed on

that language with no data stored and no programs defined.

2.1.2 SIGNING OFF
If, during your session at the console, you have generated
any programs or data that you wish to save, you must store them

in your user library before you sign off. Library operations

are discussed in the next section.

To sign off and terminate the billing process, the user
must press SYST DOWN; otherwise the next user can accrue his
costs to your account. Pressing the SYST key will cause the
message ''"WORK AREAS UPDATED" to be displayed to indicate to the
user that he is on the SYST level. Pressing the DOWN key causes,
after a pause, the message "WORK AREAS PURGED" to be displayed.
This indicates that the billing process has been terminated and
system facilities are no longer available. User workspace,
identified by the autosave code, is also freed. This means that
restart through the warmstart facilities is not possible.

Your scope should now be turned off.

16

2.1.3 WARMSTART

Although every effort is made to provide uninterrupted
service to users during those hours of the day when service is
promised, occasional interruptions occur. Irrecoverable system
failures do occur; furthermore, since OLS and batch processing
time-share a single computer, additional interruptions are some-
times required to keep the latter "on the air'". Users will be
notified, if possible, of scheduled interruptions before they
occur, by the appearance on the user's display scope of a
message indicating that an interruption is imminent. The user
should then store any material he wishes to save. When service
is restored (i.e. when SYST yields a response), the user must
re-initiate the sign-on procedure.

To minimize the inconvenience of service interruptions,
especially those which are unpredictable, a procedure called
"warmstarting'" is provided. Warmstarting is an option avail-
able at sign-on to the user after an interruption, and is

initiated as follows:

KEYBOARD ENTRY OLS QUERY/RESPONSE
SYST (user number) RETURN ENTER USER NUMBER (user no.)
(ID number) RETURN ID NUMBER =
(name) RETURN USER NAME = (name)
AUTOSAVE CODE = 6 (new autosave
code)
LOAD
RETURN ENTER AUTOSAVE CODE
5 RETURN (o0ld autosave code) RESTART COMPLETE

17

Warmstarting recovers all user programs, special characters, and
data in the condition they were when the user last pressed SYST
or RESET prior to the interruption. The user must warmstart

with the same user number and same autosave code, but not neces-
sarily the same terminal, as he was using when the failure
occurred. When restart is complete the user no longer has his
0ld autosave code; he must use the new one given him during sign-
on. In this example the user would no longer use autosave code

5 - the one he had when the system went down - but must now use

autosave code 6, the one he was just assigned.

2.1.4 USER LIBRARY ORGANIZATION

Every user number has associated with it at least one user
library. If a user number is further qualified by user name,
there is a separate library for each user name; otherwise, all
those who use the same user number share the same user library.
A library contains files, each with one or more subfiles, which
are composed of programs and special characters or a single
data level. A file is associated with the language which the
user was using when he stored his file. All data subfiles must
be of the same language.

A subfile is either a data system or a user system. There
may be only one user system per file because this contains all
basic system data, i.e. user programs, and special characters.
There may be a data subfile for LO and one for every level for

which data may be stored. A subfile may be defined for any of

18

the seven levels LI-LVII and may be REAL or COMPLEX data. A max-

imum of sixteen subfiles may be in a file: a USER subfile, a LO
data subfile, LI-LVII REAL and COMPLEX subfiles. If the language
does not support data system storage of a certain level or a
level is not defined, the system will not allow the user to

storé that type of subfile. The presently supported subfiles

are shown below.

PRESENTLY SUPPORTED SUBFILES
The Basic System subfiles

USER User programs and special char-
acters. Both are contained in
one subfile.

L0 L0 storage locations.

COL subfiles

LT LI strings.
LIII REAL LIITI REAL file.
LIIT CMPLX LITII COMPLEX file.

MOLSF subfiles

LI REAL LI REAL storage locations.

LI CMPLX LI COMPLEX storage locations.
LIT REAL LIT REAL storage locations.
LIT CMPLX LII COMPLEX storage locations.
LITI REAL LIII REAL storage locations.
LITIT CMPLX LITI COMPLEX storage locations.

19

The STORE and LOAD operations both accept predicate lists.
Predicate lists tell the system what kind of subfile is to be

created or loaded.

Predicate List Formats

Specification Subfile to be loaded/stored

USER RETURN All user subfile data (USER
LO-LVII, CASE 3-9).

USER 1v1l RETURN User level specified.

USER lvll—lvl2 RETURN User levels 1v11 through lvl2
inclusive.

USER vl lvl,...RETURN User levels specified.

USER CASE number RETURN Case level specified.

USER CASE numberl—number2 Case levels number1 through

RETURN number2 inclusive.

USER CASE number1 number2 Case levels specified.

RE TURN

USER lvl-number RETURN User levels starting at level
specified to LVII inclusive
and Cases 3 through Cases
specified.

Lo L0 data.

lvl (REAL or CMPLX) Data of level specified.

1yl (REAL or CMPLX) A RETURN Variable A of data level specified.

1vl (REAL or CMPLX) A-H Variables A through H of the data

RETURN level specified.

NOTE: A not sign ("7") after the USER when defining a section
of a subfile tells OLS to create/load everything except the
specification.

vl = [LO,LI,...,LVII] and number = [3,4,...,9]

20

2.1.5 STORING A FILE IN YOUR USER LIBRARY

The procedure for storing a file in your user library is:

KEYBOARD ENTRY 0OLS QUERY/RESPONSE
STORE (predicate list) STORE
RETURN (name) RETURN FILENAME= (name)
(protection code) RETURN PROTECT CODE= (protection
code)
DONE

The first time a user stores a file, he may supply a protection
code consisting of at most twelve alphameric symbols. There-
after, whenever a .subfile is stored under the same name, the
system will ask for the protection code before storing the
working copy over the old file. 1If the user supplies no pro-
tection code when he first stores his file, he need only press
RETURN when the system requests the protect code. In subsequent
stores the system will not ask for a protection code before it
stores the file.

If a file with a user level-case level subfile was previously
stored and a portion of a user subfile was stored now, the new
subfile replaces the entire user subfile. Example: A user wishes
to store his working user system for the first time under the
name VENICE with the protection code GONDOLA. The storing

sequence is as follows:

21

KEYBOARD ENTRY OLS QUERY/RESPONSE

STORE USER RETURN STORE

VENICE RETURN FILENAME=VENICE

GONDOLA RETURN PROTECT CODE=GONDOLA
DONE

2.1.6 LOADING FROM ANOTHER USER NAME ON YOUR USER NUMBER

You may load any file in your library, while you are signed

on, by the procedure:

KEYBOARD ENTRY OLS QUERY/RESPONSE
SYST WORK AREAS UPDATED
LOAD (name) RETURN LOAD (name)

FILE LOADED

The above sequence is also valid during log in, however, the
SYST and LOAD keys are not pressed. The file name supplied may
be the name of a previously stored file or the name of a language.
The load operation is basically a concatenation process; only the
subfiles defined in that file replace previously defined sub-

files. When loading a partial subfile (i.e. LOAD USER LI-LIII

RETURN) it is merged with the current subfile. When loading

the whole subfile (LOAD USER RETURN) it replaces the current

subfile, but does not purge parts of the current subfile not

overstored by corresponding parts of the new subfile.

22

LOADING A SUBFILE
A subfile may be loaded from a file separately, by the

following procedure:

KEYBOARD ENTRY 0OLS QUERY/RESPONSE
SYST WORK AREAS UPDATED
LOAD (predicate 1list) RETIURN LOAD

(name) FILENAME= (name)

FILE LOADED

LOADING FROM ANOTHER USER NUMBER

A file may be loaded from another user number if you know

the ID code. The procedure 1is:
KEYBOARD ENTRY NLS QUERY/RESPONSE
LOAD USER (user number) RETURN LOAD (user number)
(ID no.) RETURN ID NUMBER =

LOAD

You may now load a file or subfile as explained in the above
sections. The file loaded, however, will be from the user
library specified. On user numbers which are subdivided into

user names, OLS will request a user name after entering the ID

code.

LOADING FROM ANOTHER USER NAME ON YOUR USER NUMBER
One may load a file from another user name by the follow-

ing procedure:

23

KEYBOARD ENTRY OLS QUERY/RESPONSE

LOAD USER (name) RETURN LOAD
USER NAME = (name)

LOAD

You may now load a file or subfile from the user library

specified.

2.1.7 DELETING A FILE OR SUBFILE FROM YOUR USER LIBRARY

If you wish to delete a file from your library, the pro-

cedure is as follows:

KEYBOARD ENTRY OLS QUERY/RESPONSE

DEL (name) RETURN DELETE (name)

(protect code) RETURN PROTECT CODE = (protect
code)

FILE PURGED

To delete just one subfile from a file in your library specify

a predicate list as in STORE:

KEYBOARD ENTRY OLS QUERY/RESPONSE

DEL (predicate 1list) DELETE

(filename) RETURN FILENAME= (filename)

(protect code) RETURN PROTECT CODE = (protzc;
code

FILE PURGED

NOTE; OLS will not allow one to delete part of a subfile, i.e.

USER LI only,

24

2.1.8 DISPLAYING YOUR USER LIBRARY

The library which you are using may be displayed by press-
ing the display button. One file is displayed thereafter, as
long as there are files left, every time RETURN is pressed.

Each file is displayed in the form:

filename language subfile-type

The subfile shown is the first subfile stored in that file. To
see succeeding subfiles within that file press comma. The sub-
files displayed (if there are any) avnpear below the first sub-
file. No message is displayed to indicate all subfile or files
are displayed. The first RETURN causes a new file to be dis-
played, the commas all of the subfiles. The example below

shows a typical user library display:

TEST MOLSF LII C
USER
INTEGRAL MOLSF USER
LO
LII R
PUNCH COL LIITI C
PUNCH2 COL USER
LIIT R

If your user number is subdivided into user names the

sequence "DISPLAY USER name RETURN" will display the library

for the user number that you are on, and name that you specified.

Your library is displayed without specifying a user name.

25

2.2 THE TYPE LEVEL
On the TYPE level the lower keyboard keys function like

those on a normal typewriter. The keys RETURN, BACK, and SPACE

provide 'carriage'" control just as on a regular typewriter.

The upper keyboard keys ENL and CON '"roll" the carriage up one
line and down one line respectively. The RS key positions the
display to the upper lefthand corner of the display device. On
the TYPE level, the CASE key operates like its typewriter counter-
part, moving the keys to a different set of characters. 1In the
normal case, which is CASE 1, the lower keyboard buttons type
the symbols appearing on their faces. By pressing either CASE
2 (okb. SHIFT 2) or holding down the SHFT key (nkb. only) the
alphabetic keys type the Greek alphabet and the numeric keys
type superscripts. The punctuation keys type other symbols,
such as "=", as shown in Table 2.1. The remaining shift levels,
CASE 3 through 9, are used for message and symbol generation.

Once a CASE level has been specified the computer remains
at that level until a new level is defined or the TYPE or
DISPLAY key puts the user on CASE 1 for resumption of normal
typing.

The TYPE level enables the user to include messages in a
user program. Suppose, for example, that the user wishes to
evaluate A+B and to display the message "A+B=" followed by the
sum. He would first press TYPE to indicate that this part of
the program is to be typed out as a message, rather than inter-
preted as an operator or operand. Every key pressed on the
lower keyboard, between TYPE and the next level key will be

26

Table 2.1 Symbols Available on the Lower Keyboard

in the TYPE Mode

CASE 1

- n " O v O 2 =2 & RN G o= T oy ™ m U 0O w =

N o< < =E o< O

CASE 2

m o X W Q

o 3 = > A ™M~ @ < H

A Q © @ H

N e oy E < C

27

NAME (CASE 2)

alpha
beta
chi
delta

epsilon

capital pi
gamma
theta
iota

capital sigma

kappa
lambda
mu

eta

omicron

pi
phi
rho
sigma

tau

upsilon
nu
omega
xi

psi

zeta

CASE 1 CASE 2 NAME (CASE 2)

([square bracket
)] square bracket
, underline

uppercase dot

? ! apostrophe

0 0 superscript 0
1 1 superscript 1
2 2 superscript 2
3 3 superscript 3
4 4 superscript 4
5 5 superscript 5
6 6 superscript 6
7 7 superscript 7
8 8 superscript 8
9 9 superscript 9
+ = equality sign
- / division

28

displayed on the output device. Thus the key sequence might be

this (new keyboards):

TYPE RETURN A+B = LO LOAD

A + B DISPLAY SPACE RETURN

The first RETURN after the TYPE moves the 'carriage'" all the
way to the right so that "A+B='" is left-adjusted. These key-
pushes with A=2 and B=-3 will cause the computer to print on

the screen:

A+B=-1

When the right-hand margin of the output device is reached
while the computer is on the TYPE level, a carriage return
occurs automatically. The next symbol appears at the left-
hand margin of the next line. If the user leaves the TYPE level
and returns to it later, typing will begin at the place where
the last typing ended, unless the user positions it otherwise.

The ® and © operators may be used to enable and disable,
respectively, all display (including curvilinear displays).
RESET always enables display. These operators are particularly
useful when one must do SYST level operations in user programs
without display.

Words that appear on operator keys should be spelled out

on the lower keyboard when typing messages referring to them.

29

SUMMARY OF TYPE LEVEL OPERATORS

®
o

CASE

*®
RETURN

*
BACK

DISPLAY

enables display.
disables display.

the current display position is set
to the upper=left=hand corner of
the screen.

the current display position is
raised by one line.

the current display position is
lowered by one line.

a delay of approximately one-half
second is made. This operator is
often used in programs after an
erase so that the characters do
not fade.

(okb SHIFT) followed by a LO operand
changes the case to the L0 operand.
CASE 1 is the regular character set.
CASE 2 is the Greek alphabet. Case
3 through 9 are user defined special
characters and messages.

positions the next character at the
extreme left of the next line.

moves the display position one
position to the left.

places the user on CASE 1.

- 2.2.1 MESSAGE AND SYMBOL GENERATION

The message and symbol generation level is reached by the

sequence '"TYPE MOD".

either message or symbol generation.

Once on that level the user may select

To select symbol generation

*
Theses keys are in reality operands, however on the TYPE
level they act as operators.

30

the user should specify initial coordinates as explained in the
section on symbol generation. If a valid operand is not received

the user is placed on message mode.

MESSAGE GENERATION

When creating large user systems, messages begin to take
large portions of USER programs. Message generation allows the
user to create and store messages that are used frequently.
After entering message generation mode the user may type letters,

numbers, punctuation, and the keys SPACE, BACK, DISPLAY and

RETURN. Finished messages may be stored with the sequence

MOD STORE CASE followed by a number from three through nine

representing the CASE level and a letter (Roman or Greek) where

the meésage will be stored.

SUMMARY OF OPERATORS FOR MESSAGE GENERATION

DISPLAY RETURN displays message generated thus far.

BACK removes last character specified.

SYMBOL GENERATION

When typing messages, the user may often discover he needs
symbols which do not appear on the keyboard (e.g., 93, V, S, etc.).
To meet this requirement, the on-line system provides the user
with SHIFT levels 3 through 9 in the TYPE mode for storage of
manually generated symbols and messages. The user constructs
these symbols by guiding a dot on the display scope to trace

the desired pattern.

31

For purposes of character generation, the display scope is
partitioned into a 4096x4096 grid. The distance between any
two vertical or horizontal lines is called a unit. Standard-
sized keyboard letters are each centered on a grid 160 units
wide by 224 units high. Thus, a page of typing held by the
display scope consists of 18 lines of 25 spaces each as depicted
in Figure 2.2. The current display position is defined as the
lower right-hand corner of the last character typed and is
referred to as the origin (0,0).

Suppose, for example, the user presses "F'" in TYPE mode
and the screen illuminates "F" in line 2, space 2 (Figure 2.3).
He now changes levels by pressing LII CMPLX, performs some com-
putations and graphical display, but does not print any numbers
or letters, and then returns to the TYPE level with TYPE. Since
nothing has been typed after "F'", even though many computations,
level changes, and graphical outputs may have been executed,
the carriage position is still the lower right-hand corner of
space 2 in line 2 and is indicated in Figure 2.3 by the large
dot with (0,0) beside it. The dot does not physically appear
on the screen unless the user executes instructions which
explicitly call for it, as explained in the following paragraphs.

Assume the user is now in TYPE mode and he wants to gener-
ate the symbol "V" and store it in CASE 5 D. He first presses
MOD to get into the message/character generating mode and then
starts symbol generation by positioning the dot at some initial
point on the grid with the instruction:

k k, RETURN

12 72
32

Figure 2.2 Sixteen possible directions
and distances in which the
dot can move.

33

SPACES

1 2 3 25
LINES
1 e o O
) 198 [
[' e 0 o
|
1
' — — —— —
! | o 11 @ [) L |
e 1 ey e c oo °
| o | ® ° e _ ® !
18 o o o
160 UNITS

Observe that there are 4096-18x224 =

(NOT TO SCALE)

on the vertical scale and 4096-160x25
margin on the horizontal scale.

Figure 2.3,

Display Screen's Reference

34

48

224 UNITS

units margin

96 units

Grid Structure

This "dot instruction'" moves the dot k1 units horizontally and
k2 units vertically from the current origin determined by the
carriage position. When RETURN is pressed the dot appears on
the screen and becomes the first point stored in the character
vector. Once the dot is positioned, it may be moved approximately
40 units at a time in one of 16 possible directions. The direc-
tions are marked by slashes on the keys A,Z,X,C,V,B,N,M,K,I,U,
Y,T,R,E and W. Figure 2.2 indicates geometrically the direction
and distance the dot moves for each key. When a direction key
is pushed, the new dot position is connected to the old by a
straight line. A sequence of direction keys pushed by the user
determines the dot's locus. The user's task is to select the
proper direction keys for the sequence to realize the desired
pattern; for "V'" such a sequence is KKKKCCCCRRR.

If the user wants to start a new portion of a symbol which
is not continuous with what he has already generated, he begins

again with a dot instruction:

koL k

3 RETURN

4
This instruction now moves the dot k3 horizontal and k4 vertical
units from the last dot position. If the user wants to return
to the first starting point, he simply presses RETURN.

To complete character generation, the user presses MOD for
the second time and then stores the character in the desired
CASE level and location. For the example, the instruction

sequence would be MOD STORE CASE 5 D.

The entire instruction sequence, for the example, from

start to finish is:

35

TYPE MOD . 16, 192 RETURN

KKKKCCCCRRRR MOD STORE CASE 5 D

After storage, the computer replies:
DONE

After the user has constructed a symbol and stored it, he
may type it at any time on the TYPE level by pressing CASE
followed by the level and the letter under which the symbol is
stored. The starting point of the typed symbol is located at
(kl, k2) relative to the present carriage position. The carriage
automatically '"moves'" one space after a key is typed, even if
the typed key is a created symbol which covers more than one
space. Unless the user spaces the carriage appropriately a
multi-space symbol will be overlapped by succeeding typed keys.
A multi-space character may also extend into lines above and
below the current one.

While the user is in character generation mode (i.e.,
after he pushes MOD the first time on the TYPE level and before
he pushes MOD the second time) the following operations are
available:

kl’ k2 RETURN re19cates the dot to a'point kl
horizontal and k, vertical units
relative to the current terminal
point in the character vector
list, and displays the dot.

ERASE erases the tube.

DISPLAY RETURN displays the character currently
in the character vector 1list.

36

BACK

removes the last point stored in
the character vector list and
repositions the dot on the scope
to the preceeding location. 1In
effect, this erases the last
direction keypush. To see the
change, however, the user must
erase the scope and press DISPLAY

RETURN.

37

2.3 LEVEL 0 - LO

LO (okb. LI SHIFT), is a level for integer arithmetic. The
major purpose of this level is to allow the user to vary operand
values where integers would normally be entered. LO operators
operate on two registers, the remainder and quotient registers.
Most operators operate only on the quotient register, however,
the ® , the @ , INV and the REFL operators modify the remainder

register in addition to the quotient register.

2.3.1 LO OPERANDS
(In the explanation below the following symbols are used:
N - an unsigned integer, L - a storage location referenced by

an alphabetic character.)

A. L Indicates the use of L0 storage location L.
B. L+ Indicates the use of LO storage location L.
L is incremented by one and stored after
the operation. NOTE: This increment/decre-

ment facility is particularly useful when
indexing through arrays, vectors, tables,
files, and strings.

C. L+N The same as above except that the operand
is incremented by N.

D. L- The same as B except that the storage loca-
tion is decremented by one.

E. L-N The same as B except that the storage loca-
tion is decremented by N.

F. N The value N.

G. -N The value minus N.

38

.2 SUMMARY OF OPERATIONS

(A LO operand is represented by a T)

®T,0T

OrT

Qr

SQ

NEG or CONJ

INV
REFL

MOD

DEL

LOAD T

STORE L

DISPLAY L

SUB, EVAL

performs the indicated operation
on the quotient register.

multiplies the quotient register by

the operand. The low-order thirty-

two bits are placed in the quotient

register, and the high-order thirty-
two bits are placed in the remainder
register.

divides the quotient register by T.
The quotient is placed in the quotient
register. The remainder is placed

in the remainder register. Division
by zero results in the error message
"FIXED POINT DIVIDE CHECK'.

squares the quotient register.
negates the quotient register.

inverts the quotient register leaving
the remainder in the remainder register.

interchanges the remainder and
quotient registers.

takes the absolute value of the
quotient register.

places a one in the quotient register
if it was zero, otherwise the register
is set to zero.

loads the operand into the quotient
register.

the contents of the quotient register
areplaced in storage location L.

the contents of storage location L
aredisplayed.

the SUB and EVAL operators are dis-
cussed in the sections pertaining
to the language which one is using
i.e. COL, MOLSF, etc.

39

2.4 SPECIAL OPERATORS

2.4.1 RESET

RESET is a special operator which is available at all times.
RESET purges all keys which have not been processed, and user
workspace in main storage is transferred to auxiliary storage
to allow warmstart. The message "RESET COMPLETED" is displayed
to signal successful completion of the reset operation. The
user is then placed on the TYPE level. RESET is especially use-

ful when a program is in an unintentional loop.

2.4.2 ERASE
The ERASE special operator erases the display screen on
graphical output devices. ERASE does not affect the current oper-

ation and it works on all levels, in all modes except LIST.

2.4.3 REPEAT

The REPT key allows one to repeat nearly any sequence of

keys. A single key, which is not a special operator, may be
repeated by the sequence "REPT key LO operand". A series of

keys, including special operators, may be repeated with the
sequence "REPT (keys) LO operand". 1In both forms the L0 oper-
and specifies the number of repetitions, and is evaluated
before the key or keys are executed.

EXAMPLE :

TYPE REPT (ABC) 5 RETURN
This series of keys will type "ABC" five times.

40

The LO operand may be replaced by another operand of the
form "A=1,J,K RETURN", where A is a L0 storage location and I,
J, and K are L0 operands. Before any keys are processed storage
location A is set to I and the terminating conditions are checked.
The terminating condition used depends on the value of K. Given
K is greater than or equal to zero the key sequence is executed
if A is less than or equal to J. Given K is less than zero,
the key sequence is executed if A is greater than or equal to
J. After the key sequence is executed A is incremented by X
(or one if K is omitted), and the termination conditions are
checked prior to repeating the key sequence.

EXAMPLE:

REPT (LO DISPLAY A) A=1,7,2 RETURN

The numbers 1, 3, 5, and 7 will be displaved.

41

2.5 USER PROGRAMS - LIST MODE

Typically, the OLS user interacts.manually with the primary
operators defined by the on-line system. However, once a user
has found a key sequence that solves all or part of his particu-
lar problem, he would like to make this key sequence a subroutine
which becomes part of the on-line system. Such subroutines are
called USER programs. USER programs are created by using LIST
mode, stored or modified on the EDIT level, and accessed
(executed or recalled for modification) by the USER key. A
collection of USER programs is called a USER system. USER systems
may be stored permanently as described in the subsection on
loading and storing files (subsection 2.1.2). The special LIST

mode operators, TEST, PRED, and ENTER control program flow and

enter data or key sequences into USER programs.

2.5.1 STRUCTURE OF THE USER SYSTEM
The USER system has eight levels which are accessed by the
USER key. The levels are designated as USER L0, USER LI, ...,

USER LVII. The thirty-one operator keyboard keys are available

on each USER level as storage locations for USER programs. Thus

the key sequences USER LI SIN, USER LVII SORT, etc., each identify

the storage location of one USER program. Additional storage is
provided by using the CTX key preceding the operator key. For

example, the key sequences USER LI CTX SIN, USER LVII CTX SORT,

etc., identify the storage locations of unique USER programs.
A maximum of (8 levels) x (31 operator keys) x (2) = 496 USER

programs can be stored on any one USER system. This maximum

42

may be further restricted, however, due to the storage limitations
placed on each of the eight user levels.

Once a USER program is stored, it can be treated like any
other operator in the on-line system. Assuming we have a USER

program stored in storage location USER LI COS, the storage loca-

tion USER LI COS constitutes an operator which is composed of a

key sequence stored at this address. In other words, a USER
program is a user defined operator; and a !ISER system is a set

of user defined operators. Like any of the OLS defined operators,
a USER program is executed by pressing the key(s) which defines
its storage address. The only difference is that a USER program
must be preceded by the USER key and a level designation before
the operator key is pressed. The level designation defaults to

the previous USER level, if it is omitted.

EXAMPLE: To execute the USER program stored at the

storage location LI INV. One would press:

oy

SER LI IN

If one now wished to execute the USER program, USER LI DEL, he

need only press:

USER DEL
2.5.2 LIST MODE

LIST mode is the means for constructing a USER program. A
USER program may contain any key on the keyboard, except RESET
or LIST. This means the user may use any operator he wishes
and may execute other USER programs from a controling USER

program.
43

To construct a USER program, the user presses the LIST key.
The on-line system responds with the message "START LIST" and
places the user in LIST mode. Until the on-line system is re-
moved from LIST mode by pressing the LIST key a second time,
all keys pressed are recorded in the exact order that they are
pressed, but none of the operators are executed. As the user
constructs his program, the keys he presses are displayed on
the output device. This facility allows the user to check for
errors in his program as he types it. When the USER program
is completed, the USER presses the LIST key a second time to
signal the on-line system that his program is completed. This
puts the user on the EDIT level. Once on the EDIT level the
user can store or modify his progran.

Each key pressed in LIST mode becomes part of the USER
program. Any keys pressed in an attempt to correct an error
while in LIST mode will become part of the USER program. A
USER program cannot be edited until the on-line system is on
the EDIT level.

EXAMPLE: Write a USER program which evaluates e‘x2
and displays the function on the output device, for values of
X stored in a REAL vector X.

LIST

LIT REAL LOAD X SQ NEG EXP

DISPLAY RETURN

LIST

STORE USER LII EXP

44

NOTE: Storing a USER program is explained in subsection 2.6.2.

When the keys USER LII EXP are pressed, all keys in the program

are executed as if the user were manually pushing them. This

user program may be included in another user program, such as:

LIST

[l

I1 REAL ID © 5 STORE X USER LII EXP

=

IST

STORE USER LII LOG

When constructing a USER program, some considerations con-
cerning length should be applied. The system programming that
supports the running and embedding of subroutines by and in other
subroutines is designed to allow USER programs to be short and
easily combined for extensive computations. One should tend to
think of a USER progfam as expressing one computational thought
rather than solving a complete mathematical problem. Also, it
is often useful to display a user program; therefore the size
of the program should be limited to that which will fit on the
output device. The system ultimately limits the length of a
program, but that limit is, in most cases, beyond the desirable

user-controlled limits mentioned above.

45

2.6 USER PROGRAMS - EDIT LEVEL

When writing USER programs, the user will occasionally
push the wrong key or desire to alter an existing program. To
avoid the tedious and frustrating job of rewriting an entire
program until it is perfect, an editing level is provided. On

the EDIT level a user can:

1. Store a USER program or name program.
2. Insert keys anywhere in the progran.
3. Delete keys anywhere in the program.
4. Delete a block of keys anywhere in the program.

5. Transfer a block of keys from one part of a
program to another.

6. Insert one USER program into another program.

7. Delete a program.

2.6.1 ACCESS TO THE EDIT LEVEL
The on-1line system automatically enters the EDIT level when
a user:
1. Leaves LIST mode, i.e. when he presses LIST
to signal the on-line system that he has finished
his program and the post list ":" symbol has
appeared.
2. Has stored his progran.

3. Has displayed a progran.

4. Has loaded a program.

Thus errors can be corrected when a program is first written or

a program may be called back later for modification.

46

2.6.2 STORING A USER PROGRAM
Once on the EDIT level a user stores his program by the
sequence:

STORE USER ("level'") ("operator")

The USER key identifies the program as a user defined operator,
the level key indicates which level it is stored on, and the
operator key is the final qualification necessary to locate

the program. As discussed in the section on the "STRUCTURE OF
THE USER SYSTEM" the level may be qualified by the CTX key. In

this case the sequence to store a program is:

STORE USER ("level") CTX ("operator')

EXAMPLE: Assume a user has just finished a program
by pressing a second LIST and wishes to store it on USER level

I under the DIFF key. To accomplish this the user would press:

STORE USER LI DIFF

To store the program on the CTX level of qualification the user

would press:

STORE USER LI CTX DIFF

2.6.3 DISPLAYING OR LOADING A PREVIQUSLY STORED USER PROGRAM

A user program is displayed by the sequence:

USER ("level") DISPLAY ("operator'")

47

or if it is stored on the CTX level of qualification by:

USER ('"level'") DISPLAY CTX ("operator")

NOTE : the USER key and the level designation must be pressed

before the DISPLAY key is pressed.

EXAMPLE: Display the program stored under

<
wn
m
=
[l
—~
<
V2]
o)

The user would press:

USER LIV DISPLAY SQ

EXAMPLE: Display the program stored under USER LIII
CTX INV. A user would press:

USER LIII DISPLAY CTX INV

Displaying a USER program puts the on-line system on the EDIT
level. The user may now modify or store the programs.
One may load a USER program without displaying it by the

sequence:

USER ("level") LOAD ("operator")
or if it is stored on the CTX level of qualification by:
USER ("level'") LOAD CTX ("operator'")

The user may now modify or store the progranm.

2.6.4 MODIFYING A USER PROGRAM
Each editing operation must take place at a specific point
in the program, which must be manually specified by the user.

As the name LIST implies, any on-line program is a list of

48

keypushes. Each key pressed is one item in a list which defines

a program. Thus the USER program "LO LOAD 1 STORE IJ USER LI

DEL'" may be thought of as the list of keys:

LO LOAD 1 STORE 1 J USER LI DEL

where ":" is the post list mark. To modify any program, a user
must position a pointer called the edit pointer to the position
where he wishes to modify the program. All modifications to a
program are entered before the key delineated by the edit pointer.

When the program is written for the first time or a pre-
viously stored program is displayed, the edit pointer is auto-
matically located at the end of the program. The present position
of the edit pointer can be displayed at any time by pressing EVAL.
The location of the edit pointer is indicated by underscoring

the key to the right of the edit pointer.

EXAMPLE: Assume that the program above has just been
entered and the user has pressed LIST the second time to signal
the on-line system that he has finished his program. Pressing
EVAL would underscore the post list marker, because the edit
pointer is automatically positioned to the end of the program.

The following operators move the edit pointer to specified
positions:

® moves the edit pointer one key
towards the end of the program.

® N RETURN moves the edit pointer N keys towards

the end of the program. N must be
an integer.

49

Q) moves the edit pointer one key
towards the beginning of the

program.

® N RETURN moves the edit pointer N keys
towards the beginning of the
program. N must be an integer.

REFL or positions the edit pointer to

UP or the beginning of the program

—_— and underscores the first key.

ENL

CON or positions the edit pointer to the

DOWN end of the program and underscores

—— the post 1ist marker.

At the conclusion of any of these operators the on-line system
is still on the EDIT level.

To locate a key sequence within the program one may use
the MOD operator. MOD is used to search for a unique key
sequence. If a nonexistent key sequence follows the MOD
operator, the diagnostic "NONEXISTENT STRING" is displayed.

MOD must be followed by as many keys as necessary to locate

a unique key sequence. When a unique sequence is found, the
first key in the sequence is underscored and the edit pointer
is positioned before it. If the user wishes to stop the search

before a unique key sequence has been designated, he may press

LIST; LIST aborts the search. The on-line system remains on the

EDIT level.

2.6.5 INSERTION OF KEYS IN A USER PROGRAM
Once a user has properly positioned the edit pointer, he
presses the ENTER key to enter LIST mode to insert new keys.

Each new key is entered before the edit pointer. The edit

50

pointer remains unchanged until the user goes to EDIT level and
manually moves it. NOTE: the ENTER key is the only way to return
to LIST mode and has this effect only on the EDIT level. Press-
ing the LIST key at this point would destroy the current program.
The change to LIST mode is indicated by blotting out the
post list marker. Once this has been done the user may type the
new keys to be inserted. The keys appear on the display scope
at the end of the program, but are inserted before the edit
pointer. After the new keys are entered, the user presses LIST
to return to the EDIT level. He may store his program or re-
position the edit pointer and modify another part of his program.
The user may verify that the keys were properly inserted

by pressing:

DISPLAY RETURN or

ID DISPLAY RETURN

EXAMPLE: Using the USER program of Section 2.6.4,
enter the key "K" between the "J" and the "YSER'" keys. The

editing procedure is:

MOD USER positions the edit pointer between
J and USER.

ENTER enters LIST mode, blots out the
post list marker.

K inserts the key into the program.

LIST changes to the EDIT level.

The user is now ready to store his program or reposition the

edit pointer and modify some other part of his program. The

51

internal list of the program is:

LO LOAD | L | STORE

J K JSER LI DEL

’edit pointer

Note that the edit pointer's position has not changed.

EXAMPLE: suppose the program

LII REAL ID SQ ® -0.5 EXP DISPLAY RETURN

has been incorrectly keyed in as

LIT SQ ® 0.5 EXP DISPLAY RETURN

The editing procedure, as soon as the LIST key has been pushed,

is as follows:

MOD SQ

ENTER

REAL I

LIST

DISPLAY RETURN
(optional)

® 2

EVAL
(optional)

ENTER - LIST

locates the editing point and dis-
plays the pointer between LII
and SQ,

changes to LIST mode, blots out '":'".

inserts these keypushes before SQ,
displays them at end of progran.

changes back to EDIT mode, displays

"o
. .

displays the keypushes in proper
sequence and shows that the inser-
tion has been made.

moves the edit pointer two places
toward the end of the program.

displays the pointer between " . "
and "0" by underlining "O".

inserts "-" at the new editing point,

displays it at the end and displays

1" .
. .

52

STORE USER LI ® stores corrected program, displays
"LI @ UPDATED".

USER LI DISPLAY ® displays correct program, without
editing marks.

2.6.6 DELETION OF KEYS FROM A USER PROGRAM

The SPACE key and the BACK key are used on the EDIT level,
to delete keypushes to the right or left, respectively, of the
edit pointer. Either key, followed by an integer n, deletes n
successive keypushes. If no integer is given, one keypush is

deleted for each depression of SPACE or BACK. The deleted key

is blotted out on the output device.

The the example above, suppose the user had keyed in

LIT REAL CMPLX ID SQ @ -5.0 EXP DISPLAY RETURN

He could correct it as follows:

MOD ID locates the editing point and dis-
plays the pointer between ‘CMPLX"
and ID.

BACK deletes CMPLX.

® 2 locates the edit pointer between
SQ and @ .

EVAL displays the location of the edit

(optional) pointer.

SPACE 5 RETURN deletes 5 keypushes @ , -,5, ., O,
and blots them out on the output
device.

ENTER ® -0.5 LIST inserts correct keypushes, displays

. m"n.n
DISPLAY RETURN displays program in proper sequence.
(optional)

53

STORE USER I ® stores program, displays "LI ®
UPDATED".

USER I DISPLAY ® displays progranm.
(optional)

If the user wishes to delete all keypushes on one side of
the editing point, he may push DEL RS for the right side, DEL
LS for the left side. These operations do not produce any

visual (scratching out) effect.

2.6.7 BLOCK KEY SEQUENCE EDITING

As the preceding text explains, the edit pointer locates
that position in the USER program where keys are to be inserted
or deleted. As well as locating this editing point, the edit
pointer divides the internal key list into two parts: that por-
tion to the left of the pointer, iwe. from the beginning of the
program to but not including the edit pointer; and that portion
to the right of the pointer, i.e., from the edit pointer to the
end of the program. By appropriately positioning the edit
pointer the user can manipulate blocks of keys from the current
program or a previously stored program. As a mnemonic aid,
that portion of the program preceding the edit pointer is called
the left side (LS), and that portion of the program following
the edit pointer is called the right side, (RS). By appropriately
manipulating the edit pointer, and loading and storing the LS or
RS of the program, a long program can be rearranged. This is

best illustrated by the examples which follow.

54

EXAMPLE : Block transfer

Correct Program:

EII CMPLX LOAD A SIN STORE C LOAD B LOG® C

Incorrect Version:

LII CMPLX LOAD B LOG LOAD A SIN STORE C® C

The editor's objective in this problem is to transfer

LOAD A SIN STORE C to its correct position between CMPLX and

LOAD B.

Assume the incorrect program has been stored under USER

LII MAX. The user presses USER LII DISPLAY MAX. The incorrect

program appears on the output device, and the OLS console
enters EDIT level. The block transfer is achieved by the

following set of instructions:

MOD ® pointer placed to left of ® .

STORE RS ® C stored temporarily.

MOD LOAD A pointer placed to the right of LOG.

LOAD RS ® C inserted after LOG.

STORE RS LOAD A SIN STORE C is stored tem-
porarily.

MOD LOAD pointer placed to right of CMPLX.

DISPLAY RETURN displays program in proper sequence.

EXAMPLE: Block Deletion

Correct Program:

LII REAL LOAD F MAX

Incorrect Version:

LII REAL ID @ A © B SQ STORE C LOAD F MAX

55

The editor's aim is to remove ID O A ©® B SQ STORE C.

Method 1: MOD ID pointer placed to left of ID.

SPACE 8 RETURN deletes 8 keys to right of pointer.

Method 2: MOD LOAD pointer to left of LOAD.
STORE RS LOAD F MAX stored temperarily.
MOD ID pointer to left of ID.
DEL RS deletes everything to right of pointer.

LOAD RS appends LOAD F MAX to II REAL.

Observe that Method 1 requires knowledge of the exact number of

keys to be erased, but Method 2 does not.

2.6.8 OPERATOR DEFINITIONS FOR THE EDIT LEVEL

MOD allows the user to specify the edit

- pointer location. The user identi-
fies the key he wants to appear at
the right of the pointer by typing
it after pressing MOD. If that key
appears but once in the program,
typing it is sufficient identifica-
tion, and a pointer will appear on
the output device. If that key
appears more than once, then succeed-
ing keys must be pressed until iden-
tification of the pointer location
is uniquely determined. A pointer
will not be displayed until the
position is uniquely fixed. If a
non-existent sequence is pressed
after MOD, the diagnostic '"NON-
EXISTENT STRING" is displayed.
The search may be aborted by press-
ing LIST before a unique key sequence
has been designated.

BACK deletes the key preceding the edit
pointer.

56

SPACE

BACK n RETURN
SPACE n RETURN

ENTER

®

©

® n RETURN
O n RETURN

EVAL

ERASE

DEL RETURN

deletes the key following the edit
pointer.

repeats the respective operation n
times in succession, n an integer.

puts the OLS console in LIST mode.
Any button (except LIST or RESET)
hit after ENTER is inserted into
the program at the left of the edit
pointer. If LIST is pressed after
ENTER, the console changes to EDIT
mode.

shifts the pointer one key to the
right.

shifts the pointer one key to the
left.

repeats the respective operation n
times in succession, n an integer.

displays the location of the edit
pointer on the output device.

erases the output device.

erases the output device, moves
carriage to upper left-hand corner
of the output device.

moves the edit pointer to the

head of the program, and displays
it.

moves the edit pointer to the end
of the program.

deletes everything to the right of
the edit pointer.

deletes everything to the left of
the edit pointer.

deletes left side and right side.

57

DEL USER (level) (operator)

deletes specified user program.

STORE RS stores everything to the right of
the edit pointer in a temporary
location called the right side
save (RSS) area.

STORE LS stores everything to the left of
the edit pointer in a temporary
location called the left side save
(LSS) area.

STORE RETURN stores left side and right side.

STORE USER (level) (operator)

stores contents of list buffer in
specified storage location.

LOAD RS inserts into the program at the
left of the edit pointer the keys
stored in the right save (RSS) area.

LOAD LS inserts into the program at the left
of the pointer the keys stored in the
left side save (LSS) area.

LOAD USER (level) (operator)

inserts into the program at the pointer's
left the specified user program.

DISPLAY RS displays everything to the right of
the edit pointer.

DISPLAY LS displays everything to the left of
the edit pointer.

DISPLAY RETURN displays entire program in proper
sequence.

DISPLAY USER (level) (operator)

Same as LOAD except program is also
displayed.

58

2.7 SPECIAL LIST MODE OPERATORS

2.7.1 THE ENTER KEY

The ENTER key allows the user to halt a program to enter
data or execute other manual operations. When an ENTER instruc-
tion is encountered in a user program, the program is stopped
and the OLS console is returned to the Manual mode. The user
can then perform any basic operations he wishes. When he is
through with his manual operations, he presses the ENTER key,
which signals the on-line system to resume executing the USER
program where it left off. ENTER can be used to enter data into
a program or to check a recursive program each time before it
cycles. In the latter case the instruction serves effectively
as a program stop or halt command.

In the following example for computing X" for positive X,

the ENTER instruction allows the user to insert the value of n.

LIST

LIT REAL LOAD X LOG @

ENTER EXP DISPLAY RETURN

LIST

STORE USER LII SIN

When the program is run, it will put the OLS console into Manual
mode at the point in the program Where ENTER is located. Now
the user may type a number if n is to be a constant, or an
alphabetic key if the exponent is a stored vector. In any case,

as soon as he presses ENTER, execution of the program will be

59

resumed, and enlnx = x?

will be computed and displayed.

It is usually advisable, especially in a longer problemn,
to include in the program some visual indication that the ENTER
point is about to be reached. NOTE: any keys that are pushed
while the program is executing will be queued until the program
halt is executed, then they will be executed. This timing indi-
cation can often be combined with a display of a parameter value,

which is desirable for checking one's typing and for identifying

a graph. The example above could thus be programmed:

LIST

————

TYPE RETURN

WHAT SPACE N?

LII REAL LOAD ENTER DISPLAY 1 RETURN

® (LOG X) EXP DISPLAY RETURN

LIST

STORE USER LII COS

2.7.2 THE TEST KEY

The TEST operator gives the user branching capability within
a program. The number being tested (henceforth denoted by NT) is
dependent upon the current level as follows:

1) Level 0 - N is the number in the level 0 quotient
register.

2) Level I REAL - Nt is the number in the B; working
register.

3) Level I CMPLX - Nr is the number in the a1
working register.

4) Level II REAL - Npr is the first component of
the BII working register.

60

5) Level ITI CMPLX - Np is the first component of the
Oy working register.
NT is tested for the three conditions positive, negative,
and zero, either separately or in combination. In using TEST,
the user may specify that if a certain condition is satisfied

one of the following events will occur:

1) Execute the prescribed 1list of keypushes.

2) Clear the execution list of all pending keypushes
and execute the following sequence.

3) Suppress execution of a series of keypushes until
a specified subsequence occurs.

4) Skip the number of keypushes specified by the
following integer or level 0 variable.
The several branching possibilities described above are discussed
in the ensuing sections. For purposes of clarification alphabetic
letters will be employed to indicate a sequence of button pushes.

Thus A might imply the sequence USER LI SQ, B the sequence TYPE

ERROR RETURN, etc.

BASIC TEST FORMAT

The use of the TEST operator in its basic form allows a
program to branch to one of several other programs or sequences
depending on whether the TEST parameter NT is positive, negative,
or zero. The basic format of TEST to accomplish this branching

capability is

TEST + (A) - (B) O (C) D

61

Note that all conditional sequences are enclosed in parentheses
and are preceded by the condition (lower keyboard +, -, or 0)
against which NT is to be tested. If a sequence is not enclosed
in parentheses, it will be executed unconditionally. For the

example shown above the following branches occur:

1) If NT > 0, execute A then D.

2) If NT < 0, execute B then D.

3) If NT 0, execute C then D.

The branching facilities are probably best understood by

considering the flow chart or state diagram of Figure 2.7.1

Figure 2.7.1 Flow chart branching for TEST program:
TEST + (A) - (B) 0 (C) D

As indicated in the figure the basic format provides a three-way

branch for the program depending on the test condition. The key-

62

push sequence in these branches are executed and then control is
returned to the main program.
Assume the following keypush sequence for A, B, C, and D

respectively.

A = (TYPE POSITIVE RETURN USER LI ®)

B = (TYPE NEGATIVE RETURN USER LII SIN)
C = (USER LI SQ)

D = (TYPE RETURN END)

The key sequences executed for the various conditions are

as follows:

1) Nt > 0, execute TYPE POSITIVE RETURN USER LL(D
followed by TYPE RETURN END.

2) Np < 0, execute TYPE NEGATIVE RETURN USER LII SIN
followed by TYPE RETURN END.

3) Nt = 0, execute USER LI SQ followed by TYPE RETURN
END.

It is not necessary to specify branches for all three con-
ditions; the first unconditional sequence occurring after the
TEST key signifies the end of the TEST operation. For example,

the instructions
TEST + (A) - (B) D

would result in the branching depicted in Figure 2.7.2. In this
case for the condition NT = 0, control is returned to the main
program without execution of an intermediate instruction set.
Multiple conditions may preceed the key sequence to be
executed. Thus TEST + - (A) 0 (C) D is a valid TEST operand.

63

Figure 2.7.2 Flow chart for: TEST + (A) - (B) D

THE TEST OPERATOR RS

When the upper keyboard button RS is inserted between the
condition (+, -, or 0) and the conditional sequence, it acts as
a RESET operator which clears the execution list of all pending
buttons and causes only the keypushes in the parentheses immedi-
ately following RS to be executed. Typically, RS might be

employed as shown in the following TEST program
TEST + RS (A) - (B) 0 (C) D

and the flow diagram of Figure 2.7.3. For this case the branch-
ing is the same as in Figure 2.5.1, except when NT > 0. Under
this condition all keypushes after A are cleared and only A is
executed.

If the same sequences are used for A, B, C, and D as in

the subsection covering the basic test format the following

64

Figure 2.7.3 Flow Chart for: TEST + RS (A) - (B)
0 (C) D

branches occur:

1) Np > 0, reset the execution list (clear all pend-
ing buttons) and execute

TYPE POSITIVE RETURN USER LI +

2) Np < 0, execute TYPE NEGATIVE RETURN USER LII SIN
followed by TYPE RETURN END.

3) » execute USER LI SQ followed by TYPE RETURN

N. = 0
END.

THE TEST OPERATOR NEG

The TEST operator NEG allows a series of keypushes to be
suppressed until a specified sequence occurs. If the test con-
dition is met, the NEG operator is interpreted as "skip to"
the sequence matching the sequence in parentheses. Consider

the example shown below and flow charted in Figure 2.7.4

X TEST - NEG (Y) WYZ

65

Np > 0

Figure 2.7.4 Flow Chart for: X TEST - NEG (Y) WYZ

As indicated in the figure, if NT > N all sequences X W Y Z

will be executed as if TEST - NEG (Y) did not exist. If NT is

less than 0, keypush sequences XYZ will be executed.

This operator makes it easy to avoid repetition of a se-
quence which is to be executed for two of the three test con-
ditions. The sequence in the example above accomplishes the

same purpose as the longer sequence:

X TEST + (W) O (W) YZ

NOTE: the following sequence is also acceptahle.

X TEST + 0 (W) YZ

*
If, after the TEST NEG operator, there is no keypush sequence in

the execution list to match the sequence in parentheses, the

diagnostic "TEST ERROR" is displaved on the output device.

LO OPERANDS WITH TEST
Integers or level 0 operands can be used with TEST to pro-
vide the capability of skipping a number of keypushes in a pro-

gram. For example, in the program

66

the following will occur depending on the TEST conditions.

1) Np = 0, all keypushes will be executed.

2) Np > 0, the first three keypushes USER LI RS will
be skipped and the sequence USER LI LS USER LI SQ
executed.

3) N.. < 0, the first six keypushes will be skipped
and the series USER LI SQ executed.

Level 0 operands may be used instead of integers, and be
changed, manually or automatically, between executions of the
TEST program, providing a convenient means for changing a com-
putational sequence. NOTE: with this form of TEST the lower

keyboard button 0 is always interpreted as a test condition and

thus may not be used as part of an operand.

USE OF PARENTHESES WITH TEST

The set of possible keypushes within these parentheses in-
cludes all buttons except RESET or LIST, with the requirement
that for every embedded left parenthesis " (", there must be a
closing or right parenthesis ")". This allows one to employ
embedded TESTs in conjunction with the TEST operators to provide
more sophosticated branching capabilities in a program.

As an illustration of the use of parentheses with the TEST
operator, a TEST program is shown below and flow diagrammed in

Figure 2.7.5.
TEST + RS (A TEST - RS (B) C) 0 (D) C

67

Figure 2.7.5 Flow Chart for: TEST + RS (A TEST - RS (B) C)

0 (D) C

As shown in the flow chart the program branches to D and then
executes C if Np = 0. If Np < 0, the program branches directly
to C. When NT > 0 the RS operator suppresses C and the button
sequence to A is executed, followed by a second TEST instruction.
The TEST parameter N% for the second test is determined by the

sequence A. If N+ < 0, the RS operator suppresses C again, and
B is executed. If N% > 0, C is executed. (In this example, even
though the sequence C occurs twice, it cannot be executed more

than once.) Note that in the embedded TEST sequence, execution

is initiated starting from the outer set of parentheses.

68

2.7.3 THE PRED KEY

PRED is a special user program operator which allows argu-
ments to be passed to a user program. The PRED button followed
by a single non-zero digit or LO (index) data location name tells
the system the number of the argument which is to replace PRED
and its operand. Arguments are passed to a user program by
specifying a parenthesized list of the form (argl, arg,, argq,
...) following the user program call. Each argument may consist

of any series of keys except RESET, LIST, '")", or ",". An

argument may be omitted; however, the preceding comma must be
pushed to assure correct numbering of arguments. An omitted
argument which has its preceding comma included will be replaced
with the null string. Before execution of a program containing
PRED the system replaces the PREDs and their operands with the
corresponding buttons passed in the argument list. Since the
replacement proceeds from the end of the user program to the
beginning, PREDs may be nested, for example '"PRED PRED 1". The
sequence '"PRED 1" is replaced first, creating a new operand for
the first PRED. If the argument list is not supplied to a user
program containing PRED, the message '"PARAMETER LIST NOT FOUND"
will be displayed. If an individual argument is not supplied
the message "UNLOCATABLE PARAMETER(S)" will be displayed. The
latter message will also occur if the PRED operand is invalid.
NOTE: a paired set of parentheses may appear in an argument; a

comma may appear in a parenthesized argument.

69

EXAMPLE: The following program computes the indefinite

integral of a real function using the formula:
JEAT = Z(F + AF/2 - AZF/IZ)AT

The function F and independent variable T can be specified at
execution time.

LIST

LII REAL LOAD PRED 1 ®

(© (DIFF Q 6) DIFF @ 2) © (DIFF

PRED 2) RS LI LOAD 0 SUB 1

LII SUM:

STORE USER I SUM.

The button sequence USER LI SUM (F,X) would then compute the

indefinite integral /FdX.

EXAMPLE: This example converts a decimal integer to

any base less than or equal to 16.

USER LI @

TYPE RETURN BASE ? LO LOAD ENTER DISPLAY SPACE

RETURN STORE B TYPE RETURN NUMBER ? L0 LOAD

ENTER DISPLAY SPACE RETURN STORE N TYPE RETURN RETURN

BACK USER LI REPT @ 25 RETURN

USER LI ©

LO LOAD N@ B REFL ® 1 STORE A USER LI ©O

(0,1,2,3,4,5,6,7,8,9A,B,C,D,E,F) L0 REFL STORE N USER

70

USER LI @

.

TYPE PRED A BACK BACK

This program calculates a number base B by printing:

N MOD B24 N MOD 823 ... NMOD 1

USER LI ® has the user enter the base and the number after which
it repeats USER LI ® 25 times. USER LI @ calculates the number
to be printed and then calls USER LI ©@ . USER LI © prints the

Ath argument. The loop is then repeated.

2.7.4 REPETITION OF PROGRAMS; LOOPING

Of particular importance in the use of user programs 1is
looping capability so that a program can be repeated a number
of times, if desired. The simplest method of looping and the
least desirable is to program a user subroutine so that it calls
itself. For example, the following program stored under USER LT
®

TYPE RETURN YEA USER LI ®

references itself. Consequently the program will go into an
infinite loop and continue to type the word "YEA" on the display
scope until the RESET button is pushed. Programs of this form
are to be avoided since they use computer time wastefully. Care
should be taken in the construction of subroutines to insure
that this situation does not occur.

The REPEAT key (REPT) can be employed to cause programs to

be repeated a specific number of times. For example, the following

71

program:

TYPE RETURN BOO USER LI

stored under USER LI COS will type the word "BOO'" on the display

scope five times when the key sequence

USER LI REPT COS 5 RETURN

is typed. This use of the REPT key is completely consistent with
the description in Section 2.4.3. The appropriate level (USER LI)
is made current before the REPT key is pressed, and the operator
is COS. Note that the program ends with USER LI. It is important
to remember than when the operator to be repeated is a user
program the current level is changed during execution and must

be restored at the end of the program. Thus, since

USER LI REPT COS 5 RETURN

is equivalent to

USER LI COS COS COS COS cCOsS,

the second COS will be executed as an operator on the level

current at the end of USER I COS, etc.

The TEST operator can be used very effectively to control
looping, either (a) to repeat a program a specified number of
times, as in the example above, or (b) to iterate a computation
until some value in the computation reaches a particular limit.

a) To have the program in gggg LT COS, above, repeat
itself k times, where k is a non-negative integer

assigned to INDEX level K, the program USER I CoS
would read

72

TYPE RETURN BOO LI SHIFT LOAD K Q1

STORE K TEST + (USER I COS)

b) To iterate a program, say U%ER LIT® , until two
successive values R and R5_1, stored in LI REAL R
and S, differ from each ot er by less than a con-
stant value stored in C, the program would end

LI REAL LOAD R@ S MOD @ C

TEST + (LOAD R STORE S USER LII ®)

2.7.5 NAME PROGRAMS

As a mnemonic aid, the user may give a USER program a
descriptive name. Once a user has named a USER program, he may
refer to the program either by its name, or by the operator key
where it is stored.

To construct a name program the user presses LIST followed
by any of the alphabetic or numeric characters on the TYPE level.
He finishes the program by pressing LIST. He stores the name

program by the sequence:

STORE USER (level) DISPLAY (operator)

EXAMPLE: Assume there is a program which evaluates
integrals stored under USER LV MOD and that we wish to name the
USER program "INTEGRAL". The name program would be constructed

and stored as follows:

LIST INTEGRAL LIST

STORE USER LV DISPLAY MOD

73

The user can now display the name program by the sequence:

USER LV DISPLAY DISPLAY MOD

or equivalently:

USER LV DISPLAY DISPLAY INTEGRAL RETURN

He could now execute the integral program USER LV MOD with the

key sequence:

USER LV INTEGRAL RETURN

The above examples use RETURN to terminate a name; however, any
key which may not be included in a name program will terminate
the call. The name of the USER program may be used anywhere
the operator key may be used. If one makes an error typing in
the program name, he may erase the preceding key by pressing
BACK, or start the name over by pressing SPACE.

When the console is in LIST mode and a reference is made
to a USER program which has a name program associated with it,
the name is displayed instead of the operator key. If this is
the only purpose for which one wishes to use a name program, one
may include special characters in the name program. A name
program used to call a USER program may not contain any special
characters.

Just as a USER program may end with a call to the USER
levels, a name program may end with a call to a USER level. A
name program's call to a USER level is not related to execution;
it is solely for display purposes in LIST mode. When a name

program ends with a call to USER level and one is in LIST mode,

74

the on-line system executes the name program for the following
key if that key is an operator. If a name program exists it
will be displayed on the output device; if not, the operator

will be displayed.

EXAMPLE: Assume the following name programs have

been stored: USER LI DISPLAY LS is "START USER LI" and USER LI

DISPLAY RS is "SEARCH". Then pressing the following keys LIST

USER LI LS RS REFL will cause the following display:

START LIST
USER LI START SEARCH

REFL

75

CARD ORIENTATED LANGUAGE (COL)

COL is a string processing language for the creation and
manipulation of character strings, records and files. COL's
capabilities enable one to:

1. Write a computer program in any language supported
by the Computer Center (i.e., FORTRAN, PL/1, COBOL,
ALGOL, SNOBOL, RPG, ASSEMBLER, etc.).

2. Create a data file.

3. Modify a program or data file.

4. Submit a program and data to the operating system
as a batch job and access its output.

5. Access a data set from the operating system and
create a COL file from it.

6. Scan files for particular characters or character
strings.

7. Translate strings.

8. Create, concatenate, convert, search, compare, and
save strings and substrings.

9. Convert numerical character strings to integers.

NOTE: Someone reading this chapter for the first time is advised
to skip LI as it requires knowledge of the operators on levels

IT and III.

76

3.1 BASIC CONCEPTS
COL has four levels. On each level the operators manipulate
a specific data structure. COL utilizes three data structures:

files, records, and character strings. They can be defined as:

File = ordered set of records
Record = a character string with a declared length
Character string = an ordered set of characters

Valid characters are Latin alphabet, Greek alphabet, digits,

and special characters. Level IV operators provide an interface
with the operating system facilities. Files can be submitted

to the operating system for processing. Files can be created
from operating system data sets. Level III operators are for
manipulating files. Level II operators are for creating and
manipulating records. Level I operators are for creating and
manipulating character strings.

Associated with each data structure are work areas, markers,
and pointers. There are two working files, the REAL file and
the COMPLEX file. When one is using COL one of these files is
active and the other is inactive. The user declares which of
these files he wants to be the active file by pressing either
the REAL key or the CMPLX key. It's important to keep track of
which file is active, because the active file is the destination
for all file manipulation operators, and it is the source and
destination for many record and string manipulation operators.

If the active file is not explicitly declared, it is assumed

77

to be the REAL file. Associated with each file is a marker,
called the active file marker. The active file marker is designed
to aid the user in loading, storing, displaying, and operating

on files and records without having to explicitly declare which
record within a file he wishes to access. Use of the active

file marker will be discussed below.

There are also two record work areas, the active buffer and
the save buffer. As its name implies the active buffer is where
records are created or modified. It is also the source for
storing records in the active file. The save buffer can be thought
of as a holding area. When a record is loaded from the active
file, it is placed in the save buffer. It can then be transferred
in whole or part to the active buffer for modification and storage.
Each buffer has its own pointer, called the active buffer pointer
and the save buffer pointer, respectively. The active buffer
pointer locates the character position where the next character
will be inserted or deleted. The save buffer pointer locates the
first character to be transferred to the active buffer when part
of the save buffer is transferred to the active buffer.

Both level I and level II use the active buffer as their
work area. On level II the active buffer has a declared length,
set by the user. On level I the character string has a varying
length. (NOTE; this is the key distinction between a record and
a character string. A record has a declared length, while a

character string has a varying length, which may be zero.)

78

When a user signs on COL the record length on level II is
set to 80 characters. The user may change the record length for
his own purposes. The record length can be set to any value
between 1 and 254. The length of the character string buffer
varies; however, it may not exceed the maximum declared record

length.

ACCESSING COL
COL is loaded in the same manner as any other language (see
Section 2.1.6). If the user is working on any other language,

loading a previously stored COL file switches him to COL.

79

3.2 LEVEL I - A STRING MANIPULATION LEVEL

Level I is a character string manipulation level. Its opera-
tors manipulate a variable length string buffer. Level I and
level II share the same work area, the active buffer; however,
to avoid confusion when we are discussing level I the active buffer
will be called the string buffer and its contents the active
string. As discussed above the maximum length of the active
string is equal to the maximum record length currently declared
on level II. The shortest string is the null string. On entry
to level I the length of the active string is not changed. In
particular, if the user has added to or changed the active buffer
while on level II and wishes this to become the active string,
he must explicitly recompute the length of the active string.
This is done by the DEL operator. DEL also deletes trailing
blanks.

Intermediate level I storage is provided by the fifty-two
alphabetic storage locations, A-Z and a-w. Each one of the
storage locations is initially set to the null string. When a

string is stored its length as well as its contents are retained.

3.2.1 LEVEL I OPERAND FORMS

Level I operand forms can be grouped into three categories
depending upon the source or destination of the string. A literal
operand is one created by the lower keyboard keys. It is defined
by an apostrophe, followed by a character string followed by

RETURN or any operator key.

80

EXAMPLE: Valid literal operands
'"BROWN,J.C. RETURN

'MY SPACE FAIR SPACE LADY RETURN

The latter operand would be displayed as '""MY FAIR LADY".
NOTE: No closing apostrophe is required; in fact, another
apostrophe would be treated as a valid character and added to
the character string.

Alphabetic operands are used to reference the fifty-two
storage locations defined by the lower keyboard keys. The

standard form for an alphabetic operand is:

alphabetic [,character number] [,number of characters]

(NOTE: brackets indicate optional keys.) The alphabetic key
describes which storage location is to be used. The character
number and number of characters enable one to extract a substring
from the indicated storage location. If the character number is
omitted it is assumed to be one. If the number of characters is
omitted the remainder . .of the string is used.

Interlevel operands are used to reference records stored in

the active file. The standard form for an interlevel operand is:
LIT record number [,column number] [,number of characters]

The record number defines which record in the active file is to
be used. The column number and number of characters enable one
to extract a substring from the indicated record. The record

number, column, number, and number of characters may be integers

81

or level 0 operands. If the column is omitted, it is assumed to
be one. If the number of characters is omitted, the remainder
of the record is used.

Examples of the operand forms are given in the next sub-

section.

3.2.2 DISPLAYING, LOADING, AND STORING OPERANDS

Most operators affect only the contents of the string buffer.
Thus it is necessary to move the appropriate string into the
string buffer before manipulating it. LOAD and DISPLAY enter a
character string into the string buffer. They provide non-
destructive recall from the level I storage locations or the
active file. LOAD moves the indicated operand into the string
buffer; the previous contents of the string buffer are lost.
DISPLAY loads data into the string buffer and displays it. The
following examples all use LOAD, however DISPLAY could be sub-

stituted for LOAD.
LOAD 'BROWN,J.C. RETURN
fhe literal operand '"BROWN,J.C.'" is entered into the string buffer.

LOAD A RETURN

The contents of storage location "AY are entered into the string

buffer. The contents of "A" are not altered.

LOAD A,7,3 RETURN

82

The seventh, eighth, and ninth characters from the string stored
in storage location "A" are entered into the string buffer. The

contents of "A" are not altered.

LOAD LII 77,N,5 RETURN

The Nth thru N plus fourth characters from the seventy-seventh
record in the active file are loaded into the string buffer.

The contents of the active file are not altered.

LOAD RETURN

The string buffer is set to the null string.

DISPLAY RETURN

displays the active string. It does not change the active string.

LOAD also has a fourth operand form. A period followed by
0-9, A,B,C,D,E,F allows one to load a hexadecimal number into
the string buffer.

The STORE key is the converse of LOAD. It transfers the
contents of the string buffer to the indicated storage location.
The string buffer is not altered. The previous contents of the
specified storage location are lost. STORE can be followed by
an alphabetic or an interlevel operand, but may not specify a
substring location.

EXAMPLE:

STORE LII M RETURN

The contents of the string buffer replace the Mth record of the

active file.

83

3.2.3 SUBSTRING MANIPULATION

The ® and © operators enable one to concatenate strings. @
followed by any level I operand concatenates the operand at the
end of the string buffer. (© followed by any level I operand
inserts the entire operand at the start of the string buffer.

The SUB and Q operators enable one to keep or delete any
substring of the active string. SUB preserves the specified
substring, i.e. the specified substring is all that remains in
the string buffer. The Q operator deletes the specified substring
from the string buffer. For a complete list of SUB and @ operand

forms, see the summary at the end of this chapter.

3.2.4 SEARCHES AND COMPARISONS

RS followed by any level I operand will start with the first
character of the string buffer and search right for the specified
operand. LS followed by any level I operand searches the string
buffer starting at the end of the string buffer. MOD followed by
a character string searches for the character string until a
unique character string is found. If MOD cannot find the character
string, then the diagonistic '"NO SUCH OCCURRENCE" is displayed.
For all three operators, if no match is found the level I search
pointer is set to zero. If a match is found the search pointer
is set to the character number of the first character of the
match. If there are multiple occurrences of the string the level
I operand may be followed by a level 0 operand to specify which

occurrence of the string is desired.

84

Comparisons are made with the EVAL operator. EVAL may be
followed by any level I operand. The string buffer is compared
with the operand. The results of the comparison are returned
as an integer which is accessed by : LO EVAL + If the active
string and operand have identical contents and length, then the
integer returned is zero. If the active string and the operand
are not equal, then the integer returned depends on the collating
sequence. COL uses the IBM 360 collating sequence. This sequence

can be viewed by pressing:

ID DISPLAY RETURN

ID loads a string consisting of all valid characters into the
string buffer. The string buffer and operand are compared
character by character from left to right. The comparison pro-
ceeds until non-matching characters are encountered or one of
the strings is exhausted. If unmatching characters terminate
the comparison and if the character in the active string occurs
in the collating sequence before the character in the operand,
then the integer is set to minus one. It is set to plus one if
the opposite occurs. If unequal lengths terminated the compari-
son and if the active string is shorter than the operand, then
the integer is set to minus one. If the operand is shorter,

then the integer is set to plus one.

85

3.2.5 TRANSLATING STRINGS

Level I has two operators for translating strings. The first
translates all occurrences of one operand to another operand.
The second operator translates individual characters. The latter
works much like a translate table.

The SIN operator followed by two operands will search for
all occurrences of the first operand. Whenever it finds the first
operand it will replace it with the second operand. The operands

may be of different length. The format of the SIN operator is:

SIN operand RETURN operand RETURN

EXAMPLE: Assume the following sentence is in the
string buffer: '"TODAY THE DAY RATE IS $5.00." The following

sequence will change '"DAY" to "NIGHT":

SIN 'DAY RETURN 'NIGHT RETURN

The sentence would now read: "TONIGHT THE NIGHT RATE IS $5.00."

The following sequence could be used to delete the word "NIGHT":

SIN 'SPACE NIGHT RETURN RETURN

The string buffer would now contain "TONIGHT THE RATE IS §$5.00."
The null string is a valid second operand.
The COS operator followed by two operands will translate
each character of the first operand to the corresponding character
of the second operand.
EXAMPLE: Suppose the following sentence is in the

string buffer: "IN 1946, CHARLES I WAS BEHEADED: IN 1649, GOERING

86

SHOULD HAVE BEEN." The following key sequence will correct

the active string.
COS '96 RETURN '69 RETURN

The string buffer now properly reads: "IN 1649, CHARLES I WAS

BEHEADED, IN 1946 GEORING SHOULD HAVE BEEN."

87

3.3 LEVEL II-A RECORD MANIPULATION LEVEL

The operators on level II enable the user to create and
modify records, and to store them in the active file, thus
creating a COL file. Level II simulates a keypunch, but has

capabilities a keypunch cannot provide.

3.3.1 RECORD CREATION
As indicated above, records are created in a software work
area called the active buffer. The length of the active buffer

is declared with the key sequence:

CTX N RETURN

where N is an integer between 1 and 254, or a level 0 operand.
The default value is 80. The current buffer length is displayed

with the key sequence:

DISPLAY CTX

A record is created by entering lower keyboard keypushes. Each
key is displayed as it is entered and stored in the active buffer.
Depressing the CASE key signals the system to interpret the next
keypush (and only the next key) as upper case, i.e., alphabetic
keys are interpreted as Greek letters and numeric keys as special

characters.

3.3.2 RECORD MODIFICATION AND MANIPULATION OF POINTERS
Associated with the active buffer is the active buffer pointer.

The value of the active buffer pointer determines the position

88

within the active buffer at which the next character will be

stored. Each time a character is stored the value of the active
buffer pointer is automatically incremented by one. Thus successive
characters are stored in successive locations within the active
buffer.

The user can exercise manual control over the active buffer
pointer, thus facilitating correction of errors, insertion of
characters, and deletion of characters. BACK replaces the
preceding character with a blank and decrements the active buffer
pointer by one. LS sets the active buffer pointer to 1. The

key sequence:

® N RETURN

increments the active buffer pointer by N. The key sequence:
O N RETURN

decrements the active buffer pointer by N. The key sequence:
O N RETURN

sets the active buffer pointer to N. Finally, the operator MOD
followed by a character string will search the active buffer for
that character string. The user must continue pushing characters
until a unique character string is found or no match is found.
When a unique character string is found, the active buffer pointer
is set to that value and the value is displayed. If no match

is found, the diagonistic message '"NO MATCH" is displayed.

89

Once the active buffer pointer is properly positioned,
previous characters can be replaced, new characters can be
inserted, or characters can be deleted. To replace existing
characters enter lower keyboard keys exactly as if one were
creating a record. To insert a string of characters between
existing characters, press ARG followed by the characters to
be inserted. RETURN or any upper keyboard key will terminate
the character string being inserted. The active buffer pointer
is not changed. To delete a character string press DEL followed
by the number of characters to be deleted from the active buffer.
If no number follows DEL the remainder of the active buffer is
set to blanks. DEL also shifts the remaining characters in the
active buffer to the left to fill in for the deleted characters.
DEL is terminated by RETURN or any upper keyboard key. RS sets
the active buffer to blanks; it does not change the active buffer
pointer.

The contents of the active buffer may be displayed at any

time by the key sequence:

DISPLAY RETURN

DISPLAY RETURN also displays the value of the active buffer

pointer, the value of the save buffer pointer, and the number of
records in the active file.
EXAMPLE: Constructing a record destined for inclusion

in a FORTRAN source program. The desired record is:

REAL*8 X,Y,Z(100)

90

Assuming one has signed on COL, he must first access the record
creation level and then start the new record in position 7 (by
convention the first non-blank character in a FORTRAN declara-

tion must appear in or after column 7). One possible sequence:

LII ® 6 RETURN REAL*8 SPACE X,Y,Z(100)

Note, since the default record length is 80, the user did not
have to change it. Secondly, the initial value of the active
buffer pointer is 1, so to set it to 7 one simply adds 6. An

equivalent key sequence is:

LII ®© 7 RETURN REAL*8 SPACE X,Y,Z(100)

To verify the results the user can press DISPLAY RETURN.

3.3.3 AUTOMATIC SKIP, DUPLICATE, OR LEFT ZERO FEATURE.

An automatic numeric entry feature is available on LII which
will help create records. This feature is initiated and termin-
ated by the (Q operator. (This operator corresponds to the
automatic skip-dup switch on a keypunch machine.) It has two
operands.

1) @ + Initiates the automatic entry.
2) @ - Terminates the automatic entry.

When the system is in automatic entry it uses a '"drum card"

to determine if and what automatic service should be accomplished.

There are three possible services:

1) Skipping a particular field of the active buffer.

91

2) Duplicating a particular field from the save buffer
into the active buffer.

3) Allowing a number to be entered that is right

adjusted, padded with zeroes, and placed in a
field of the active buffer.

The "drum card" contains a template that defines each field, Each
field begins in a certain column and continues for a certain length
Whenever the system finds that it is at the beginning of a field
it begins the service. The fields are defined by using the SQ
operator. This operator requires three operands separated by
commas and followed by a RETURN:

1) The column number in which the field is to begin.

2) The length of the field.

3) The type of field abbreviated by its initial: S
for skip, D for duplicate and N for numeric.

The SQRT operator clears the drum card and thus nullifies
any previous SQ operations. When the system encounters the
beginning of a numeric field it requires an entry be specified
in one of the following ways:

1) A series of lower keyboard blue buttons followed
by a RETURN that specifies the number.

2) A lower keyboard letter followed by a RETURN that
specified a LO operand which is to be used as the
entry in that field.

3) A RETURN that specifies that the L0 accumulator
is to be used as the number.

EXAMPLE: Problem - Prepare a file of ten cards. Each
card should contain the word NUMBER in columns one through six.

In columns 10 through 12 put a number padded with zeroes. This

92

number should be 1 on the first card, 2 on the second, etc.

Solution 1: Push the following: (NOTE: STORE is defined in

the next section).

=

II SQRT SQ 1,6,D RETURN

7,3,S RETURN

2 iz |

10,3,N RETURN

-~
[92]

LS NUMBER @ +

1 STORE 2 STORE 3 STORE 4 STORE 5 STORE

6 STORE 7 STORE 8 STORE 9

STORE 10 STORE Q@ -

Solution 2:

II SQRT SQ 1,6,D RETURN
SQ 7,3,S RETURN
SQ 10,3,N RETURN

%

LS NUMBER Q +

REPT (A STORE) A=1,10/ @ -

3.3.4 FILE CREATION

Since every record is created in the active buffer, a finished
record must be removed from the active buffer and stored before
the next record can be created. A finished record is always

stored in the active file. There are three operators for storing

records in the active file: STORE, SUB, and UP. STORE stores
the record in the active buffer at the end of the active file.
SUB replaces the specified record in the active file with the

contents of the active buffer. The record to be replaced can be

93

specified explicitly or implicitly. If SUB is followed by a

level 0 operand, then that value is téken to be the record to be
replaced. If SUB is followed by RETURN or an upper keyboard key,
then the record to be replaced is assumed to be the value of the
active file marker. UP works exactly like SUB except that the
active buffer's contents are placed before the specified record.
Also, all the operators for storing a record copy the active buffer
to the save buffer, set the value of the active buffer pointer and
save buffer pointer to 1, return the display carriage, and set

the active buffer to blanks.

3.3.5 LOADING AND DISPLAYING RECORDS

Normally record modification is a three step procedure.
First, the record must be loaded into the active buffer; second,
the active buffer must be modified; and finally, the record must
be stored. The second and third steps have been discussed in
the preceding sections. This section completes the procedure.
If the record is newly created, then it is already in the active
buffer and ready for modification. Otherwise the record must be
found, loaded into the save buffer, and transferred to the active
buffer. A record may be found manually by displaying the active file,
or automatically by searching the active file for some identifying
field in the record. The latter is accomplished by the level III

EVAL or MOD operators (section 3.4.3). A record in the active file

is displayed by pressing DISPLAY followed by an integer or level
0 operand, followed by RETURN. The specified record is displayed,

the record is copied into the save buffer, and the active file

94

marker is set to the value of the record displayed. Successive
RETURN's display successive records, copy them into the save
buffer, and set the active file marker to the number of the record
displayed. BACK displays the preceding record, copies it into

the save buffer, and sets the active file marker to the number of
the record displayed.

When one has found the record to be modified, the active
file marker will be set to its value and a copy of the record
will be in the save buffer. Thus to complete the first step the
user needs only to transfer the contents of the save buffer to
the active buffer. REFL copies of the save buffer to the

active buffer. INV switches the contents of the active and

save buffers.

95

3.4 LEVEL III - A FILE MANIPULATION LEVEL

The operators on level III enable the user to delete blocks
of records from the active file, to purge the entire active file,
to insert blocks of records from the inactive file into the active

file, and display blocks of records from the active file.

3.4.1 MOVING RECORDS FROM THE INACTIVE FILE TO THE ACTIVE FILE

® concatenates the inactive file onto the active file. The
inactive file is purged.

UP inserts all of the inactive file into the active file.
UP followed by an integer or level O operand followed by an
upper keyboard key or RETURN specifies that the inactive file
is to be inserted before the specified record. If no record
is specified, the inactive file is inserted before the record
defined by the active file marker. The inactive file is not
changed.

ARG inserts a block of records from the inactive file to
the active file. ARG may be followed by three operands:
ARG M,N,P RETURN. The first operand specifies the number of
records to be copied. It is required. The second operand
specifies the destination of the block of records. They will
be inserted before the Nth record in the active file. This
operand may be omitted; when it is omitted, it is assumed to be
the record indicated by the active file marker. The third operand
specifies the source of the block of records. They will be copied

th

from the inactive file beginning with the § record. This

96

operand may be omitted; when it is omitted, it is assumed to be
the value of the inactive file marker. The inactive file is

not changed by this operator.

3.4.2 DISPLAYING BLOCKS OF RECORDS IN THE ACTIVE FILE

The entire active file may be displaved by pressing DISPLAY
RETURN. A subset of the active file may be displayed by press-
ing DISPLAY M,N RETURN. M specifies the number of records to
be displayed. N specifies the first record to be displayed.
Both M and N are optional. If N is omitted its value is assumed
to be the value of the active file marker. If M is omitted, the
remainder of the active file is displayed beginning with the
record indicated by the second operand.

EXAMPLE: The key sequence:

DISPLAY 5,99 RETURN

will display five records from the active file beginning at the

ninety-ninth record.

EXAMPLE: Given that the active file marker has a
value of 12, the key sequence:

DISPLAY 7 RETURN

will display seven records from the active file beginning with
the twelfth record.

EXAMPLE: Given that the active file marker has a
value of twelve, the key sequence:

DISPLAY , RETURN

will display the last part of the active file beginning with the

twelfth record.

97

3.4.3 SEARCHING THE ACTIVE FILE
The EVAL operator enables one to search the active file for
a designated character string. The format of the EVAL operator

is: EVAL N RETURN operand RETURN. N specifies the column number

of the first character of the character string one is searching
for. The second operand, which is the character string one is
searching for, is any valid level I operand (see section 3.2.1).
If the specified character string is found, the record number
of the record is displayed and the active file marker is set to
that number. 1If the specified character string is not found,
the active file marker is set to zero and "0'" is displayed. The
search for the second operand begins with the record after the
record indicated by the value of the active file marker. Thus
it may be necessary to set the active file marker before the
search. The active file marker is set by the © operator.

EXAMPLE: To set the active file marker to 23 one
would press:

® 23 RETURN

EXAMPLE: One wishes to search the active file for
the character string SMITH which should start in column 17.
Assume one is not sure of the value of the active file marker
and wants to start the search with the first record. One possible

sequence is:

© 0 EVAL 17 RETURN 'SMITH RETURN

The EVAL operator requires a column number to search on.
In some cases one will not know the column of the character
string, thus it would be desirable to search the entire file
starting at the first column. This capability is provided by
the operator MOD. MOD followed by a level I operand followed
by RETURN starts at the record after the one indicated by the
active file marker and searches the active file for the designated
character string.

EXAMPLE: Start with the seventh record and search the

active file for the character string JONES,A.C. One would press:
® 6 MOD 'JONES,A.C. RETURN

If the character string is found the record number where it first
occurs is displayed and the active file marker is set to the record
number. If the character string is not found the active file marker

is set to zero and "0" is displayed.

3.4.4 DELETING BLOCKS OF RECORDS
One can delete the entire active file with the operator

DOWN. This purges the entire active file from the system.

To delete a block of records from the active file one uses
the operator DEL. The format of DEL is: DEL M,N RETURN. The
first operand is required; it is the number of records to be
deleted. N is the number of the first record of the block to be
deleted. It may be omitted. If it is, it is assumed to be the
value of the active file marker.

EXAMPLE: To delete the tenth through twentieth records
from the active file, one would press:

DEL 11,10 RETURN
99

3.5 LEVEL IV - OPERATING SYSTEM INTERFACE LEVEL

Level IV operators provide an interface between COL and
the 360 operating system. They allow a user to submit a batch
job for execution, access its output, access any operating system
data set, and display the status of any unit in the operating

system.

3.5.1 ACCESSING OPERATING SYSTEM DATA SETS

Operating system data sets can be loaded into the active
file by the operator LOAD. The data set requested is loaded
into the active file behind the present contents of the active
file. That is, the operating system data set is concatenated
onto the existing records in the active file. If the record
length of the operating system data set is greater than the
declared record length on level II the system keeps the entire
record (up to a maximum of 254 characters); however, the entire
record is not displayed unless the récord length is adjusted.

To load a data set the user must specify the unit type,
volume-serial number, data set name (dsname), and member name
if the data set is a partitioned data set. When the volume-
serial number is entered COL looks to see if the requested
device is mounted on the appropriate drive; if it is then COL
requests the data set name. If the volume is not mounted then
COL issues a request to the operating system (and hence the
Computer Center operator) to mount the requested volume and

displays the message "VOLUME IS BEING MOUNTED". Then follows a

100

delay of perhaps several minutes while the operator physically
mounts the requested volume. During this time the console is
disabled against RESET, so if a typing error has been made the
user must wait while the operator verifies that there is no
such volume. Thus it is a good idea to check the volume name
on the screen before pushing RETURN. When the volume is avail-
able, "DSNAME=" is displayed. If there is no space immediately
available or no such volume COL will return the diagonistic
"VOLUME CANNOT BE MOUNTED'". When this happens and the volume
exists the user is asked to wait five minutes and try to load
his data set again. If this second try is unsuccessful, then
the user should call the operator on duty, and make arrangements
to have the volume mounted. When a volume is mounted for a user
and he expects to access it several times, it is courteous to
the operator to call and tell him, as each access causes his
console alarm to ring unless he changes the status of the volume.
EXAMPLE: Loading a 2314 disk data set called EXDRE.

The data set resides on volume number D999.

User presses System responds

LIV LOAD UNIT =

2314 RETURN VOLUME =

D999 RETURN DSNAME =

EXDRE RETURN (pause) NOW LOADING (pause)

FILE LOADED

101

EXAMPLE: Loading a member of a partitioned data set.
The data set is called RJEOUT. The name of the member we wish
to load is called POLY. The data set resides on a 2314 disk,

volume number MVTI180.

User presses System responds

LIV LOAD UNIT =

2314 RETURN VOLUME =

MVT180 RETURN DSNAME =

RJEOUT RETURN MEMBER =

POLY RETURN (pause) NOW LOADING (pause)

FILE LOADED

If a requested data set or member cannot be found, the
diagnostic '"NOT FOUND ON VOLUME" is displayed. If a number of
users are loading data sets simultaneously, the message "WAITING"
may be displayed indicating the necessity of waiting a few
seconds to use a resource.

Index sequential or direct data sets cannot be loaded, nor
can a data set with variable length spanned record format.

A user wishing to load security protected data sets must
make arrangements with the Computer Center when he acquires his

account number.

3.5.2 REMOTE JOB ENTRY (RJE)

Any job which can be submitted for batch-mode execution at

the Computer Center can be executed through RJE. For job

102

submission, the users active file is considered to be his input
stream to the batch regions which execute jobs. That is, the
active file must contain the job to be executed. The active
file can contain more than one job. Each job must be structured
as if it were being submitted on the card reader. For all
practical purposes, the active file can be visualized as a deck
of cards and the SUB operator as a command to start the user's
card reader into the system. Thus when the active file is sub-
mitted to the operating system it must be a complete job. This
means the job must have a valid JOB card and a valid EXEC card;
as well as any source decks, object decks, data cards, and other
job control language cards necessary to complete the definition
of the job being submitted.

The JOB card supplied by the user is modified by COL
before it is submitted to the operating system. This modifica-
tion applies only to the current job submission, it does not
change the record in the active file. For convenience to the

operators in returning output to the proper output location the

six characters 'RJE---' are inserted into the comment field of
the JOB card. This means the maximum number of characters in a
comment field is limited to fourteen. RJE does not truncate a

comment field that is too long; therefore if the user's comment
field exceeds fourteen characters, he will get a JCL error from
the operating systenmn.

When the user pushes the SUB operator to submit the job he
will see the message "VOLUMES NEEDED". If the user's job

requires a private storage device (i.e., a disk or tape) to be

103

mounted before the job can begin execution, it must be requested

here. If no private volume is required, RETURN will complete

the job submission. If more than one private volume is required,

they can be requested by listing each volume followed by a comma.
Once a user has pushed RETURN, the job is submitted. RESET

will not stop the submission of the job. As long as a user has

not pushed RETURN he can stop the submission of a job by press-

ing RESET or any other upper keyboard key.

EXAMPLE: Submitting a job that does not require any

private volumes:

User presses System responds
LIV SUB VOLUMES NEEDED
RETURN JOB SURMITTED

EXAMPLE: Submitting a job that requires a private

disk. The volume number of the disk is D999,

User presses System responds
LIV SUB VOLUMES NEEDED
D999 RETURN JOB SUBMITTED

COL checks for a valid job card before submitting the active
file to the operating system. If there are no records in the
file, the diagnostic '""NO RECORDS IN FILE" is displayed. If the
first card in the active file is not a JOB card or the job card

is invalid, then the diagnostic "INVALID JOB CARD" is displaved

104

on the display scope and the job is not submitted. If the active
file contains only a JOB card and no other records, the diagnostic
"JOB HAS NO STEPS'" will be displayed on the display scope and the
job is not submitted. If all internal readers are in use the
message "WAITING--RJE BUSY'" is displayed. As soon as one of the
readers is available (a matter of seconds) the submission will

continue.

3.5.3 DIRECTING RJE AND BATCH OUTPUT TO THE REMOTE DATA SET

If a user desires, he can direct the output of any batch
job to a remote data set called RJEOUT. This data set is on a
system direct access disk which is always available when the on-
line system is available, thus it can be loaded as a COL file.
What this means to the OLS user is that he can submit a JOB to
the operating system via level IV SUB, then he can load the job's
output via level IV LOAD and examine it for meaningful output
or errors. This facility is applicable only to system output
devices, private data sets (as defined by DD cards) are not
affected.

A user directs output to the remote data set by inserting
a "T" in the eighth field of a HASP JOB card accounting field.
(for information on the accounting field in a JOB card see the

COMPUTER CENTER GUIDE.)

EXAMPLE: Accessing the remote data set (RJEOUT).
Assume the following JOB card which directs the system output

to go to the printer:

//JOBNAME JOB (ACCT,USERNAME),'GEOLOGY' ,MSGLEVEL=1

105

The following JOB card directs the output of the above job to

RJEOUT.
//JOBNAME JOB (ACCT,USERNAME,,,,,,T),'GEOLOGY' ,MSGLEVEL=1
EXAMPLE: Loading the output of the above job as a
COoL file.
User presses System responds
LIV LOAD UNIT =
2314 RETURN VOLUME =
MVT180 RETURN DSNAME =
RJEOUT RETURN MEMBER NAME =
JOBNAME RETURN (pause) NOW LOADING (pause)

FILE LOADED

If the data set or member cannot be found, the system returns

the diagnostic '"NOT FOUND ON VOLUME'",

PRINTING A MEMBER OF THE RJEOUT DATA SET

Any member of the RJEOUT data set may be printed by simply
executing a procedure called PRJEOUT. This allows a user to
get a hardcopy of his output without having to pay for executing
his program again. The procedure is invoked with an EXEC card

of the following form:

//STEP EXEC PRJEOUT,NAME=jobname

In place of the word jobname, the user inserts the name of his

106

job. The member will be printed and the printed output put in

the output box specified on the users JOB card.

3.5.4 DISPLAYING THE STATUS OF SYSTEM DEVICES

The user can see the status of system devices by pressing
DISPLAY followed by the proper operand followed by RETURN. A
complete list of operands is given in the summary table which

concludes this chapter.

107

3.6 DEFINITION OF LI OPERATORS

3.6.1 LI OPERAND FORMS

(S = Storage location,

FORM

'string

LII N

LII N,C

LII N,C,L

C, N, and L = LO operands)

MEANING

The string "string". NOTE: No
closing apostrophe.

The string stored in storage location
S.

Substring of S starting at the Cth
character and continuing to the end
of the string.

Substring of S starting at the Cth
character continuing for L characters.

LII record N.

Substring of record N starting at the
Cth character and continuing to the
end of the record.

Substring of record N starting at the
Cth character and continuing for L
characters.

3.6.2 DEFINITION OF LI OPERATORS

(# = LI operand,

® 9

Data location, N and M = LO operands)

The operand is concatenated to the
end of the active string. The length
of the active string is incremented
by the length of the operand.

The operand is inserted in front of
the active string. The length of
the active string is incremented by
the length of the operand.

108

SUB N,M or
O N,M

SUB N or
ON

LS # RETURN
RS # RETURN

The character string starting at the
Nth character of the active string
and continuing for M characters re-
places the previous active string.
The length of the buffer is set to M.

The character string starting at the
Nth character and continuing to the
end of the string buffer replaces the
previous string buffer. The length
of the string buffer is decremented
by N-1.

The character string starting at the
LI search pointer and continuing for
M characters replaces the previous
active string. The length of the
active string is set to M.

The character string starting at the
LI search pointer and continuing to
the end of the active string replaces
the previous active string. The
length of the active string is decre-
mented by the search pointer minus
one.

The divided operation deletes a sub-
string from the active string and
leaves the remaining parts in the
buffer. It has the same operands

as SUB.

strips all trailing blanks from the
active string and recalculates the
length of the active string.

The active string is searched for the
indicated LI operand. LS searches to
the left, RS to the right. If it is
found, and is unique, the LI search
pointer is set to the position where
the string was found. If the operand
was not found, the LI search pointer
is set to zero. When the string
occurs in more than one place, a
second operand may be specified after
pushing a RETURN. The second operand
specifies which occurrence of the
operand the search pointer is to be
set. If there is no such occurrence
the search pointer is set to zero.

109

EVAL ¢

MOD STRING

SIN # RETURN

RETURN

NOTE: LI RS is preferred over the
button MOD, as RS does not attempt
to match the operand with the string
buffer until the operand has been
completely specified.

The active string is compared to the
operand. The comparison proceeds
from left to right. When the active
string length is not equal to the
operand length, the shorter is used
to determine how much of the string
should be used for the comparison.
If the first N characters (where N
is the least of the two lengths) are
not equal, a plus or minus one is
returned when the L0 operation EVAL
+ is performed. A minus one indicates
that the character in the active
string occurred earlier in the collat-
ing sequence. A plus one indicates
the inverse. When the first N char-
acters are equal the longer string
is considered to be farther in the
collating sequence. Only when the
length and characters in a string
are equivalent is zero returned by
the LO EVAL + operation.

The string buffer is searched for
"STRING". If it is found, the LI
search pointer is set to that value.
If it is not found, the LI search
pointer is set to zero. If the
string is not unique the sequence
MOD "STRING" may be followed by the
buttons RETURN N RETURN where N, a LO
term, specifies to which occurrence
of string the LI search pointer is
to be set. If there is no such
occurrence the LI search pointer

is set to zero and the message ''NO
SUCH OCCURRENCE" is displayed.

NOTE: LI MOD is identical in opera-
tion to LII MOD except LI MOD changes
the LI search pointer.

All occurrences of the first operand
are replaced by the second operand.
The operation may change the length
of the active string. The null
string is a valid second operand.

110

COS @ RETURN
@ RETURN

LOAD ¢

LOAD RETURN

DISPLAY ¢

DISPLAY SPACE #

STORE D

STORE LII N

In that case all occurrences of the
first operand would be deleted.

EXAMPLE for SIN:

Active string 'ABCCDEABC'
SIN '"AB RETURN 'XY RETURN

Active string = "ABCCDEABC"
SIN 'AB RETURN 'XYZ RETURN

produces: "XYZCCDEXYZC"

The characters specified by the first
operand are translated to the second
operand. All characters that appear
in the string buffer and the first
operand will be translated to the
corresponding characters in the
second operand. All others will not
be changed. Duplicate characters

in the first operand are ignored.

EXAMPLE: Active string = "THIS IS
A MESSAGE" COS 'TIHA RETURN 'XYZ
RETURN. After operation active
string = "TYXS XS Z MESSZGE".

The I was changed to X, the H to
Y and the A to Z.

ID causes all presently supported
characters to be loaded into the
string buffer.

The operand f is loaded into the
string buffer.

The null string is loaded into the
string buffer.

The operand 0 is loaded into the
string buffer and displayed.

The operand 0 is loaded into the
string buffer and displaved without
a carriage return preceding the
display.

The string buffer renlaces the pre-
vious value of data location D.
The string buffer is not altered.

The string buffer replaces LII record
N. LII record N must have been pre-
viously defined. The string buffer
is not altered.

111

3.7 DEFINITION OF LII OPERATORS

In all of the following definitions N may be any LO operand.

MANIPULATING POINTERS TO A RECORD

® N RETURN increments the active buffer pointer
by N. A negative operand implies
the © operator.

® N RETURN decrements the active buffer pointer
by N. A negative operand implies
the ® operator.

O N RETURN sets the active buffer pointer to N.
SIN N RETURN increments the save buffer pointer
by N. A negative operand implies

the COS operator.

COS N RETURN decrements the save buffer pointer
by N. A negative operand implies
the SIN operator.

LOG N RETURN sets the save buffer pointer to N.

BACK replaces the preceding character with
a blank and decrements the active
buffer pointer and the save buffer
pointer by 1.

NOTE: On the screen BACK blots out
the deleted character, thus to see
newly entered characters push return
which returns the carriage to the

next line.

RS fills the active buffer with blanks
(does not change either pointer).

LS sets the active buffer pointer and
the save buffer pointer to 1, and
returns the carriage to left of
display device (does not change
contents of active buffer).

MOD C (where C is a character string)
T searches for a unique character
string. If no match is found a
diagnostic message is displayed.

112

MOD C RETURN N RETURN

If a match is found the column
number of the first character is
displayed and the active buffer
pointer and save buffer pointer
are set to that column.

for multiple occurrences of a
character string, N specifies that
one is searching for the Nth occur-
rence of the specified string.

MOVING CONTENTS BETWEEN ACTIVE AND SAVE BUFFERS

INV

REFL N RETURN

REFL RETURN

switches the active and save buffer.

copies N characters from the save
buffer to the active buffer. The
save buffer pointer locates the
first character of the character
string to be moved. The active
buffer pointer locates the first
character of the destination. The
active buffer pointer and the save
buffer pointer are incremented by
N.

the entire save buffer is copied
to the active buffer. The active
buffer pointer and save buffer
pointer are not changed.

DISPLAYING AND LOADING RECORDS

DISPLAY RETURN

DISPLAY N RETURN

displays the contents of the active
buffer, the value of the active
buffer pointer, the value of the
save buffer pointer, and the number
of records in the active file.

displays the Nth record in the active
file, sets the value of the active
file marker to N, and loads the
record into the save buffer. After
DISPLAY N RETURN:

(1) Each additional RETURN displays
the next record in the active file,
increments the active file marker,
and loads the record into the save
buffer.

113

(2) BACK displays the preceding
record in the active file, decre-
ments the active file marker, and
loads the record into the save buffer.

(3) ? displays the value of the
active file marker, i.e., the number
of the last record displayed.

DISPLAY . RETURN displays the last record in the
active file, sets the value of the
active file marker to the record
number, and loads the record into
the save buffer.

DISPLAY ? displays the record indicated by
the active file marker and loads
the record into the save buffer.

LOAD N RETURN will load the Nth record from the
active file into the save buffer.
If N is omitted, N is assumed to
be the value of the active file
marker.

INSERTING AND DELETING CHARACTER STRINGS

ARG CCC...C RETURN inserts the character string CCC...C
T into the active buffer. The active
buffer pointer defines the location
of the first character to be inserted.
The active buffer pointer and the
save buffer pointer are not changed.

DEL N RETURN deletes N characters from the active
buffer. The active buffer pointer
defines the first character to be
deleted. The remaining characters
in the record are shifted left to
fill the spaces occupied by the de-
leted characters. The active buffer
pointer and the save buffer pointer
are not changed.

DEL RETURN deletes all characters to the right
of the active buffer pointer. The
active buffer pointer and the save
buffer pointer are not changed.

114

STORING AND DELETING

STORE

SUB N RETURN

UP N RETURN

DOWN N RETURN

RECORD LENGTH

DISPLAY CTX

CTX N RETURN

EVAL -

EVAL +

RECORDS

stores the record in the active buffer
at the end of the active file, copies
the record in the active buffer to

the save buffer, clears the active
buffer, returns the carriage, and sets
the active buffer pointer and the save
buffer pointer to 1.

replaces the Nth record in the active
file with the record in the active
buffer, copies the record in the active
buffer to the save buffer, clears the
active buffer, returns the carriage,
and sets the active buffer pointer and
the save buffer pointer to 1. If N is
omitted, N is assumed to be the value
of the active file marker.

inserts the record in the active buffer
before the Nth record in the active
file, copies the record in the active
buffer to the save buffer, clears the
active buffer, returns the carriage,
and sets the active buffer pointer

and the save buffer pointer to 1. 1f

N is omitted, by default N is assumed
to be the value of the active file
marker.

deletes the Nth record from the active
file. If N is omitted, N is assumed

to be the value of the active file
marker.

displays current record length.
sets the record length to N.

suppresses display of buffer pointers
and card count on LII DISPLAY RETURN.

restores display of buffer pointers
and card count on LII DISPLAY RETURN.

EVAL ?

EVAL (

EVAL)

EVAL

EVAL ,

COLUMN CONTROL OPTIONS

QO +

o -

SQ M,L,A RETURN

SQRT

SET TAB or

SUM M,N,...RETURN

SET TAB or
SUM RETURN

CLEAR TAB or
DIFF

TAB or

NEG

displays the value of the active file
marker (i.e. the record number of the
last record displayed).

displays the value of the active
buffer pointer.

displays the value of the save buffer
pointer.

displays the number of records stored
in the active file.

displays the tab (column control)
card.

enables automatic skip-duplicate-
left-zero option.

disables automatic skip-duplicate-
left-zero option.

defines a field L characters long,
starting at character M, A defines
the operation code for this field:

S skip the entire field

D duplicate the entire field

N right adjusts a numeric field
(left zero)

clears all tabs and field definitions.

sets a tab at column M, column N,...

sets a tab at the value of the active
buffer pointer.

clears the tab at the value of the
active buffer pointer.

skips to the next tab setting.

116

3.

8

DEFINITION OF LIII OPERATORS

® concatenates the inactive file onto
the active file. (The inactive file
is purged).

® N RETURN sets the active file marker to N.

INV switches the active file and the
inactive file.

UP N RETURN inserts all of the inactive file

__ before the Nth record in the active
file. If N is omitted, it is assumed
to be the value of the active file
marker. The inactive file is unchanged.

DOWN purges the active file and sets the
active file marker to zero.

EVAL N RETURN operand RETURN

EVAL searches the active file start-
ing at the first record beyond the
active file marker for the designated
character string. N is the column
where one expects to find the first
character of the character string.
The other operand is any valid LI
operand.

MOD operand searches each record (starting with

T the active file marker plus one) for
the specified string. The operand
is any valid LI operand. If the
string is found, the file marker is
set to the record number of the
record containing the string, the
LI search pointer is set to the
column number of the substring, and
the file marker is displayed. If
the string is not found both the
marker and pointer are set to zero.

SORT N,M RETURN or takes the inactive file, sorts it
as specified and concatenates the

SQRT N,M RETURN resultant sorted file onto the active
file. The inactive file is unchanged.

N specifies the first column of the
sort field and M is the length of the
sort field. M may be omitted in
which case it defaults to the record
length minus N plus 1.

117

ARG M,N,

DEL M,N

DISPLAY

DISPLAY

RETURN

RETURN

M,N RETURN

M RETURN

DISPLAY

DISPLAY

, N RETURN

s RETURN

DISPLAY

RETURN

copies M records from the inactive
file and inserts them into the active
file. The block of records will be
inserted before the Nth record in the
active file. @ is the record number
of the first record in the inactive
file to be copied. N and @ may be
omitted, in either case their value
defaults to the respective file
marker. M is required. The inactive
file is not changed by this operation.

deletes M records from the active file,
starting with record number N. N may
be omitted, in which case it defaults
to the active file marker.

displays M records, starting with
record number N.

displays M records, the first record
displayed is indicated by the active
file marker.

displays the remainder of the active
file starting with the Nth record.

displays the remainder of the active
file starting with the record indicated
by the active file marker.

displays all of the active file.

118

3.

9

DEFINITION OF LIV OPERATORS

LOAD

SUB

DISPLAY @# RETURN

concatenates the specified data set
from the operating system with the
contents of the active file. The
entire record of the 0S data set

is kept (up to a maximum of 254
characters).

NOTE: The COL record length is
unchanged; thus DISPLAY will not
display all the record if the 0S
data set record length is greater
than the COL record length.

submits the active file to the operat-
ing system for batch processing.

displays the jobs active in the system
and the status of the indicated de-
vices. f is one or more of the
following operands:

= jobs currently active.

= direct access data devices.

= tapes.

~all unit record equipment.

= graphics devices.

= communication devices (none).

- @ W > BN el B w
i

= all of the above.

119

3.

10

LO EVAL OPERATORS FOR COL

EVAL RETURN

EVAL

EVAL

EVAL

EVAL

EVAL

EVAL

EVAL

EVAL

EVAL

EVAL followed by a return places the

Tength of the LI string buffer in

the LO quotient register.

places the length of LI storage
location D in the LO quotient
register.

The result of the last LI EVAL oper-
ation is loaded into the LO quotient
register.

The current value of the LI search
pointer is loaded into the LO
quotient register.

The current value of the active
buffer pointer is loaded into the
L0 quotient register.

The current value of the save buffer
pointer is loaded into the LO quotient
register.

The number of records in the active
file is loaded into the LO quotient
register.

Loads the value of the active file
marker into the LO quotient register.

Loads the decimal number that the
first nine numbers of the string
buffer represent. If the length of
the string buffer is less than nine,
then convert what is there.

Loads the decimal equivalent of the
first character in the string buffer.
This assumes that the first character
is a hexadecimal number.

120

MATHEMATICALLY ORIENTATED LANGUAGE
SINGLE PRECISION FLOATING POINT (MOLSF)

MOLSF has four levels of mathematical operators and data

structures. Level I operators enable one to perform calculations
on scalars (single numbers). Level I1 operators enable one to
perform calculations on vectors (ordered lists of scalars). Level

III operators enable one to perform calculations on two-dimensional
arravs. Level V is reserved for operators for which there is no
space on existing levels. For example, a user can pass MOLSF
data to a FORTRAN or PL1 batch program and have the results of
these batch programs returned to MOLSF data structures.

The selection of MOLSF operators has been made to provide
a balance between ease of mathematical formula construction and
simplicity of operator definitions. The sections preceding the
definition of the MOLSF operators provide the background
necessary to efficiently use MOLSF. They discuss MOLSF's
internal number representation, MOLSF's data structures, MOLSF's
computational format and the working registers, MOLSF's operand
forms, the explicit loading of data into the working registers,
the storing of data for later use, and finally a detailed descrip-
tion of MOLSF display facilities. (Note: Except for the first
sub-section in the display section, display may be left for a

later reading.)

121

4.1 NUMBER REPRESENTATION

MOLSF uses scientific notation (floating point) to represent
scalars. Each number is defined by a mantissa and an exponent.
For example, the number 4,900,000 may be written as 0.49 x 107,
where 0.49 is the mantissa and 7 is the value of the exponent,
or 0.0023 may be written as 0.23 x 10_2. The actual representa-

tion system may be expressed as
y = M x rP

where y is the number to be represented, M is the mantissa, R

is the radix or base, and p is the integer exponent. Numbers are

stored and manipulated internally in floating point-binary form
(R = 16), but are typed or displayed as decimal numbers (R = 10)
in fixed or floating point form.

Numbers are entered in the form
+ M+ p

where M is the mantissa (which may include the decimal point in
any position) and p is the power to which the base R = 10 is
raised. If p = 0 it may be omitted. The first sign indicates
whether the number itself is positive or negative and may be
omitted if it is +; the second sign shows whether the exponent
is positive or negative, and must be included if p is included.
Thus -0.49 x 10’ would be typed in as -.49+7 and 0.23 x 1072
as .23-2.

To summarize, the rules pertaining to the typing of numbers

122

follow:

a) If no sign precedes a number, it is assumed to be
positive.

b) I1f no decimal point is typed, it is assumed to bhe
at the end of the number.

c) If no exponent or power of ten is indicated, the
power is assumed to be zero.

d) If any key other than +; -; -; ,; 0; 1; 25 3; 4;
5; 6; 7; 8; 9; BACK; or SPACE is pressed, the end of
the number is taken to be the last button just
preceding that key. BACK deletes the preceding
key. SPACE deletes the existing scalar and

enables the user to enter a new scalar.

e) All numbers are entered as decimal expressions.
Numbers like 7 or 1/3 must be converted to decimal
form. For example, 3.14159 is a suitable approxi-
mation of .

Complex numbers a + ib are entered by typing the real number
a, then a comma "," followed by the real number b. Thus

3.14 x 102 - 1.6 x 103i would by typed as 3.14+2, -1.6+3. The

5 4 8.31 x 10721 would be represented

complex number -2.65 x 10
by -2.65-3, 8.31-2 or -.265-2, .831-1 or -.00265, .0831. The
complex number 871i would be entered by 0,871 or ,871.
MOLSF provides single-precision numbers with up to seven
. .o . . . -75 75
significant decimal digits, ranging from 10 to 10" 7,

approximately. MOLSF gives sufficiently accurate results for

most computations.

123

4.2 DATA STRUCTURES AND THE WORKING REGISTERS

Whether the user is working with scalars (LI), vectors (LII),
or arrays (LIII), setting up problems and carrying them through
to solution is greatly simplified if he comprehends the system
software for MOLSF operators. There are two work areas for each
level, called the a and B working registers, respectively. The
working registers are where all computations are executed. A
user has to load a number into the appropriate working register

or registers before he can begin calculations on it.

Table 3.1 Currently Available MOLSF Levels and
Their Data Structures

Name of
Level Data Structure Working Register Length

LI REAL Single real numbers BI 1

LI CMPLX Single complex numbers (aI, BI) 1

LII REAL Real vectors BII 1 <n < 873

LII CMPLX Complex vectors (aII’ BII) 1 <n < 873

LIII REAL Real arrays BIII 1 <n < 873
1 <m < 873

LIII CMPLX Complex arrays (aIII’ BIII) 1 <n < 873
1 <m < 873

124

The data structure employed in MOLSF is selected by the user.
If a user wants to perform calculations on real or complex scalars,
then he uses level I. Once a user has signed on MOLSF explicitly
or implicitly (as described in sections 2.1.1 and 2.1.6), he
accesses level I by pressing the LI key. Once he has done this
all operator keys execute operations on the working registers
dedicated to scalars.

On level I each register is composed of a single scalar,
called ag and BI respectively. On LI REAL the BI working register
contains the real scalar being manipulated. On LI CMPLX the Op
working register contains the real part of the complex scalar and
the BI working register contains the imaginary part of the complex
scalar.

A user accesses the vector operators by pressing the LIT
key. Ordered lists of scalars are called vectors in accordance
with mathematical terminology. A real vector with N components
is a list of N scalars. A complex vector with N components is
a list of N complex scalars, or equivalently two lists of N
real scalars. The number of components of a vector is called
its context. A user specifically declares the length of the
vector he wishes to work with by means of the CTX key.

EXAMPLE: Setting the length of a vector to 25

components.

CTX 25 RETURN

CTX followed by an integer or L0 operand sets the context of the

working register to that value. The number of components of any

vector may vary from one to 873. When a user sets up a user

125

number with the Computer Center he requests a maximum context.
This user requested limit cannot be exceeded unless a systems
programmer changes the user requested limitations. (This limit
is imposed for billing purposes, as cost increases with increased
context.) If a user tries to exceed his maximum context, the
diagonistic "CONTEXT ERROR" is displayed. A user can display

the current working register context by pressing:

DISPLAY CTX RETURN

A user can display the context of a stored vector by pressing:

DISPLAY CTX F RETURN

where F is the storage location for a vector. When a user first
signs on the air the context is automatically set to 51. If he

wishes to use any other context, he must specifically change the

context.
The working registers on level II, called 011 and BII’ are
two ordered lists of scalars. The number of scalars is deter-

mined by the context key as described above. The basic MOLSF
Operators are written so that the Orq and BII working registers
serve a natural purpose. When functions of a real scalar are
constructed on LIT REAL the BII working register contains the
ordinates or Y values which are typically used in mathematical
calculations. In particular, most of the LII REAL operators
transform the data in the BII working register. The components
of the Orq working register are not involved in the computations,
but are used as abscissas, or X coordinates, for graphical
display.

126

As a further illustration, consider the function y = f(x).
The user first must choose a domain for the indevnendent variable,
x, say u < x < v. Once the domain is selected, the number of
points for which f can be evaluated in any one computation is
determined by the length of the o and B registers. This means
that f(x) can be computed at up to 873 points simultaneously.

The selection of points between u and v for which f is to be

calculated constitutes the discrete domain of x. The user
constructs this domain in the BII working register on level II
REAL. He may put these values (or other values) into the Uy

working register. He then computes £. On level II REAL, the

aII working register is not changed by any operator except SUB

or SORT. All other computations are performed on the BII working
register only, and the results of the calculation replace the

previous contents of the B working register.

11
Operations with vectors are performed component by component.

That is, the operation is performed on each component, and the

vector whose components are the results of these calculations

is the resultant vector. For example, if the 011 and BII registers
contain
(al, dys vnes an) (al, Aoy e an)
\ V4 \ 4
N NV
%11 P11

and the user pushes the SIN key on level II REAL, the resulting

contents of the working registers are

127

(al, Ays s an) (sin ays sin a .., sin an)

2,
. / \ w4
A4 N
B

%11 1

The user may now store the entire contents of the BII working
register under one of the white alphabetic keys (A-Z, o-w) on
the lower keyboard. For example, STORE Y would put the contents
of the BII working register in the storage location Y of level
IT REAL.

Now suppose that Orp and BII were initially as shown above,
and one pressed SIN X; then the resulting contents of the work-

ing register would be

(al, Aoy wees an) (sin Xy, sin x,, ..., sin xn)
— ~ / A v ~
a1y Bt
where X = (Xl’ Xoo wees xn) had been previously stored under X.

In this way, the discrete domain of the independent variable
is preserved in the o register, and the current stage of f's
calculations is in the B register. At any time, the curvilinear
display which plots the ordered pairs (ai, b.) (a, the i th

component in the o register and bi the ith component in the

I1
BII working register where i = 1, ..., present CTX) may be
obtained on the output device by pressing the keys DISPLAY
RETURN.

When complex functions are constructed using LII CMPLX, the

mathematical operators operate on the 011 and BII working

128

registers simultaneously, as required by the definition of the
complex operations. The oy working register contains the real
part of the function; the BII working register contains the
imaginary part. The curvilinear display on LII CMPLX is still
a plot of the ordered pairs (ai, bi) as described above, but
the significance and meaning of the graph have changed. The
display is now in the complex plane with the imaginary part
plotted against the real part.

The array manipulation level is accessed by pressing the
LIIT key. A series of M vectors each having N components is
called an (N,M) array, in accordance with mathematical termin-
ology, A real (N,M) array is an array of N x M real scalars.

A comnlex (N,M) array 1is an array of N x M complex scalars,

or equivalently, two arrays of N x M real scalars each. The
size of an array is called its dimension. The dimension of an
array is defined by an ordered pair of integers. The first
integer defines the number of rows in the array; the second,
the number of columns. Thus a five by seven array would have
five rows and seven columns.

The CTX key is used to declare the dimension of an array.
The maximum square dimension (i.e. N=M) dis fixed when a user
number is set up by the computer Center. This maximum may not
be exceeded, unless a systems programmer changes the accounting
data associated with the user number. A user defines the array
dimension he wishes to work with by pressing the CTX key followed
by the number of rows, followed by a comma, followed by the

number of columns, followed by the RETURN key.
129

EXAMPLE: Setting the dimension of an array to 5 by 7.

CTX 5,7 RETURN

The maximum dimension possible is a function of (1) the Maximum
Square Dimension (MSD) mentioned above and (2) the Maximum
Context (MC) mentioned in the previous section. When a user
requests a dimension of (N,M) the MSD and MC limits are utilized
as follows

1. If N=M
then M < MSD

2. If N#£M)
then a. (M) (N) < (MSD)
and b. MAX(N,M) < MC

A user can display the current dimension by pressing:

DISPLAY CTX RETURN

A user can display the dimension of a stored array by pressing:

DISPLAY CTX F RETURN

where F is the storage location of an array. When a user first
signs on the air the array dimension is set to 11 by 11. If a
user wishes to work with any other array size he must specifically
change the dimension.

The working registers on level III are called the 0171 and

B

ITI working registers. The level III operators manipulate the

working registers in the same manner as the level II operators,
except for one difference. Because of the large amount of

storage required for an array there is no a working register

ITI
when one is working on level III REAL. Otherwise the description

of the level II working registers applies here.

130

When a user wants to perform computations on a level other
than the current one, he simply presses the desired level key
and computes. He will stay on this level until he explicitly
changes to another level. Several points about this operation
should be emphasized. First both real and complex modes share
the same working registers on each level; thus if the user is
working on a real vector and then goes to the complex vector
mode, the real vector may be changed by any complex operator.
If one wishes to save the real vector it must be stored for
later use. STORE is discussed in the following pages. Secondly,
if the user is on one level and switches to another level his
working registers on the old level are not changed, unless he
does so explicitly. There are operator keys for interlevel

transfer of data (LOAD, STORE, SUB, and EVAL). These are dis-

cussed in the section on operator definitions.

131

4.3 MATHEMATICAL OPERANDS

4.3.1 OPERAND FORMS

The flexibility of MOLSF allows for many operand forms.
Roughly they can be divided into two groups, numerical operands
and alphabetic operands, which can be used in three ways. The
numerical operands are entered by pressing the lower keyboard
integers. The means for entering real numbers, complex numbers,
and exponents are detailed in the section on number representa-
tion.

Alphabetic operands are of the form:
[level] [alphabetic key] [(component)]

This form allows a user to access data stored on other levels
without having to change levels and transfer data. If a user
wants to access data stored on the level he is working on, then
he need only press the alphabetic key which defines the storage
location where the data is stored. The level and component
entries (which are optional) enable a user to access data on a
different level. Examples of thé use of the standard operand
form are given in section 4.4 (loading of data).

NOTE: 1In many uses one may omit the component entry when
accessing data stored on a higher level., If this is done, MOLSF

always assumes the missing indicies are one.

4.3.2 JUXTAPOSITION OPERANDS
Often in mathematical computations the same binary operator

is used repetitively, such as in the expression:

132

A+ B+ C + D

MOLSF allows the user to simplify this expression by juxtaposing
operands for all binary operators (® ,© , 0O , Q).

EXAMPLE: To add four scalars stored under A, B, C,
and D the following sequences are equivalent.

LOAD A@B@® COE

LOAD A ® BCD

EXAMPLE: To add the scalars 91, 77, A, 173, 71 the
following sequences are equivalent.

LOAD 91 ®@ 77 ® A ® 173 ® 71

LOAD 91 ® 77 A 173 RETURN 71 RETURN

4.3.3 TRAILING PREDICATES

It is often an inconvenience for the user to press LOAD
every time he wishes to work with a new operand. MOLSF allows
the user to implicitly load operands when working with unary
operators.

LOAD A SIN is equivalent to SIN A. This can be helpful

when constructing mathematical expression.
EXAMPLE: sinZ(A) + cosz(A)
Without trailing predicate:

LI REAL LOAD A SIN SQ STORE T LOAD A COS SQ® T

With trailing predicates:

LI REAL SIN A SQ STORE T COS A SQ@® T

With trailing predicates and parenthesis:

LI REAL SIN A SQ ® (COS A SQ)

133

4.4 LOADING OF DATA

The primary function of LOAD is to explicitly enter numbers
or copy data from storage locations (A through Z, a through w,

levels I,II, or III) into the working registers for that level.

4.4.1 LOAD FOLLOWED BY A NUMBER (a numeric operand).

If the LOAD key is followed by a number, then that number
is loaded into every component of the current level's working
register.

EXAMPLES :

1) LI REAL LOAD 13 RETURN enters 13 into B1-

2) LII CMPLX LOAD 3,7 RETURN places 3 + 7i = (3,7)
into every component of the (ary, Brr) registers.

3) LIII REAL LOAD 2 RETURN enters 2 into every
component of the 117 register.

The LOAD key is a provision for explicit data transfer.
In many instances, the LOAD key is unnecessary. For example,

LOAD Z SIN is equivalent to SIN Z. In the latter case, the load-

ing of data is implicit.

4.4.2 LOAD FOLLOWED BY AN ALPHABETIC OPERAND
When the LOAD key is followed by a letter of the alphabet,
the data in that storage location for the current level is copied
into the working register.
EXAMPLES:
1) LI CMPLX LOAD Z - The contents of Z on level I

CMPLX are loaded into the (ap, B1) registers by
the LOAD instruction.

134

2) LII REAL LOAD G - The contents of LII REAL G are
placed into Byy by the LOAD instruction.

LOADING OF HIGHER LEVEL DATA INTO LOWER LEVEL REGISTER

The LOAD button also permits the transfer of a component

from higher level data to the working register of a lower level.
EXAMPLE:

1) LI REAL LOAD LII A(3) - takes the 3rd component of
the LII REAL vector A and loads it into BI.

LOADING WHEN COMPONENT AND ENTRY SPECIFICATIONS ARE INTEGER
VARIABLES

The component specification in the above example is an
integer but it also may be a LO operand.
EXAMPLE :
1) LI REAL LOAD LII A(P) - uses the integer stored in

Tevel 0 P to find the Pth component of the LII REAL
vector A and loads the component into BI'

MODIFICATION OF VARIABLE SPECIFICATION BY INCREMENTING LOAD
INSTRUCTION

The variable specification can be modified by providing an
increment each time the LOAD instruction is executed.
EXAMPLES:

1) LI REAL LOAD LII M(K+) - The variable K is a Level O
operand. The first time the instruction sequence
is executed, M(K) is loaded into B; and K is incre-
mented by 1. The next time the sequence is executed,
the entry M(K) for the new value of K is loaded into
Br. K is incremented again each time the sequence
is repeated. The Level 0 operand can be decremented
instead of incremented if the minus sign is used
instead of the plus sign. These are the lower
keyboard plus and minus signs, not the operator

135

136

keys @ and © . If the desired increment or decrement
is not unity, then the + or - sign should be followed
by the desired integer specification.

2) LI REAL LOAD LII L(N+J) where N and J are Level O
operands. If N = 3 and J = 2, then L(3), L(5),
L(7), L(9), etc., are loaded into B; in turn as the
instruction sequence is repeatedly executed.

NOTE: The preceding two examples have no instruction sequence
which would lead the reader to believe that the examples will be
executed more than once. Their explanations, however, are based
on the assumption that they are embedded in a program which is

repeated a number of times in the course of a problem solution.

GENERAL LOAD FORMAT

The general format for the keys which follow LOAD is:
LOAD [level] [location] [(component)]

The '"level" designation is LO, LI, II, LIII, or omitted; "loca-

tion" ranges over the Latin and Greek alphabets, A through Z
and o through w, or may be a number; "(component)'" may be "(i)",
"(i+j)" or omitted, i and j being integers or level 0 operands.

EXAMPLE :

LITI REAL LOAD LI A - places the scalar stored in
LI REAL A into every component of By;.

In order to load level III data into level I and II registers
it is necessary to specify which component(s) to load.

In the case of loading into level I both a row and a column

must be specified. The form is:

LI REAL LOAD LIIT A(3,2) RETURN

137

To load into level

I either a row or a column may be indi-

LIII A(3,) RETURN

LIII A(3) RETURN

cated.

LII REAL LOAD
or

LII REAL LOAD
and

LII REAL LOAD

for loading a row

LIII A(,2) RETURN

for loading a column.

138

4.5 STORING OF DATA

The instruction STORE is the counterpart of LOAD. It is used
to copy the contents of the working register into a storage loca-
tion. There are fifty-two unique storage locations (A - Z, o -

w) for each mode on each level, i.e. 52 REAL and 52 CMPLX storage

locations. The previous contents of the designated storage loca-
tion are replaced by the quantity which is stored. The level
specification most recently preceding the data designation key
will be the one used to determine which storage location is
desired. On level II and III, the context of the storage location
is automatically set to that of the working register.

The general format for the keys which follow STORE is exactly

the same as that for LOAD:

STORE [level] [location] [(component)]

1) "level" is LI, LII, LIII, or omitted.

2) "location' is one of the letters A through Z, o through w.
3) "(component)'" is (i), or (i+j), or omitted, with i and j
integers or Level 0 variables.
EXAMPLES:

1) LI REAL LOAD 3.2 STORE A - stores the single real
number 3.2 in LI REAL A.

2) LII REAL ID STORE X - stores the uniformly-spaced
discrete domain of the interval -1 < x < 1 into X.

3) LI REAL LOAD B O 5® 3 STORE D - stores the single
Teal number 5B + 3 into LI REAL D.

4) LI REAL LOAD I STORE 1II Q(J) - stores the contents
of LI REAL I in the JTh component of the REAL
vector A. J is an LO operand.

139

5) LI CMPLX LOAD 3,1 STORE T - stores the complex
scalar 3 + i into LI CMPLX T.

6) LII REAL LOAD 1 STORE S - stores 1 into every
component of the vector S.

7) LIT LOAD A STORE LI B - stores the first component
of level II A into Level I B.

8) LIII LOAD A STORE LI B - stores the first (1,1)
element of level III A into Level I B.

9) LIII LOAD A STORE LII C - stores the first column
of Level IIT A into Level II C.

NOTE: When executing LOAD and STORE operations, the absence of
a "location" specification implies loading from/storing into the
working register specified by "level'" "(component)'". For example,

LI REAL STORE LII (K) stores the contents of BI into the Kth

component of BII'
(In the above examples, the repeated use of REAL and CMPLX
is only for illustration and normally is only required to change

from one to the other.)

The execution of STORE does not affect the contents of the

working register. For example, the contents of BI after the end
of the sequence of instructions in Example 1 above will still be

3.2, even though STORE A is executed.

140

4.6 DISPLAY FACILITIES

4.6.1 DISPLAY KEY

The DISPLAY instruction generates numerical or graphical

display on the output device(s). There are five different forms

of the display instruction, as follows:

1)

2)

3)

4)

5)

6)

DISPLAY RETURN - displays the contents of the o and

B registers as appropriate to level I or II. If
the user is on LI REAL the decimal numerical value
in By is written on the scope. On LI CMPLX both
ay and By are displayed numerically. On level II
REAL and CMPLX the (oary, Byy) registers are cross-
plotted and displayed graphically. On level III
REAL, Byy1 is plotted as a surface over a fixed
x-y grid. Scaling is discussed in Section 4.6.3.

On level II the graphical display consists of the
points whose x and y coordinates are the components
of the vectors in the o and 8 registers, with each
successive pair of points aj, aj,; connected by a
straight line segment. On level III the surface
display consists of plotting each column of By

as a level II vector (with hidden lines removed}.

DISPLAY . RETURN - point display same as above on

level II, and III without connecting lines.

DISPLAY .. RETURN - same as (2), except that large

dots or special characters (see section 4.6.4) are

used in the display.

DISPLAY k RETURN (where k is an integer). On level

IT the kth component of the vector in By or (arr,
Bry) 1is displayed.

DISPLAY i,j RETURN (where i and j are integers).

On level III the (i,j) element of By or (aIII’

BIII) is displayed.

DISPLAY A, DISPLAY . A, DISPLAY .. A - automatically

loads A into the appropriate register for the current

level and then generates a display as specified above.

In those cases above which generate numerical displays,

SPACE may be inserted immediately following DISPLAY, and will

141

cause the usual carriage return preceding the display to be
suppressed. This provision facilitates labeling of displays on
the TYPE level. For example, the display "X=3" can be generated

by the instructions:

TYPE RETURN X =

LI LOAD 3 DISPLAY SPACE RETURN

A curvilinear display for complex functions assumes the real
axis (o register) to be horizontal, and the imaginary axis (B
register) to be vertical. In numerical display of complex values,
the left most number is the real part, the right most number 1is

the imaginary part.

4.6.2 NUMERICAL DISPLAY

On the REAL and COMPLEX levels a number is displayed, by
default, with one digit before the decimal point, one to six
digits after the decimal point, and the appropriate decimal

scale (power of 10). Insignificant zeros are suppressed.

EXAMPLES:

.00301 is displayed as 3.01 -03

3.01 is displayed as 3.01 +00
30100 is displayed as 3.01 +04
30 is displayed as 3. +01

This display format can be changed, as will be discussed
in Section 4.6.4.

On LI, DISPLAY A causes the present value in the appropriate
storage location A (REAL, or COMPLEX) to be loaded into the

142

appropriate working register [BI or (uI,BI)] and printed on the

output device on the line immediately below the last printed

information. The sequence DISPLAY RETURN causes the value already
in the register for the current level to be printed.

On level II one must load the vector into the working
register and specify the component to obtain a numerical display.
Thus

LOAD A DISPLAY 6 RETURN

results in a numerical display of the sixth component of A, REAL
or COMPLEX, just as for level I.
To display the "j"th component of a level II vector, where

"j" is the value of a level 0 variable J, one must go to level I:

LI REAL LOAD LITI A(J) DISPLAY RETURN

It frequently happens on level II that one wishes to display
a sequence of components of a vector. This can be accomplished
in a straightforward manner. On level II, after the first
numerical display has occurred, each subsequent depression of
the RETURN key displays the next value. Each depression of
BACK displays the previous value. Pressing the "?" key on the
lower keyboard displays the number of the component just displayed.
Similarly for level III the user must load the array into
the working register and specify the component to obtain a numer-

ical display. Thus

LOAD A DISPLAY 3,5 RETURN

143

results in a numerical display of the sth component in the 3Td

row of A, REAL or COMPLEX.

To display the "i,j”th component of a level III array, where

"i'" and "j" are the values of level 0 variables I and J, one

must go to level I:

LI REAL LOAD LIIT A(I,J) DISPLAY RETURN

Often on level III one wishes to display a series of com-

ponents of an array. This is accomplished easily by pressing:

RETURN - displays the (i+1l,j) component
BACK - displays the (i,j-1) component
SPACE - displays the (i,j+1) component
| (on the lower keyboard, the "or" symbol) - displays
(i-1,j) component.
Pressing *?“ on the lower keyboard will identify the last

element displayed.

4.6.3 GRAPHICAL DISPLAY

One of the most important aspects of MOLSF is its curvilinear
display capability which allows the user to obtain a graphical
representation of the results of his computations. One problen
associated with plotting of level II vectors on an output device(s)
is proper scaling. Unless otherwise instructed, the basic
display program computes the best scale for viewing a single
functional display. But if two or more level II vectors are

being displayed for comparative purposes and their scale factors

144

do not match, then conclusions about intersections, distance
between points, etc., may be erroneous. To aid in these compari-
sons a set of vectors can be displayed on a common scale. Means

for establishing this scale are discussed below.

REPRESENTATION OF SCALE FACTORS FOR LEVEL II

For display purposes, MOLSF uses a floating vector organi-
zation in which a vector with n components is represented by n
numbers (the mantissas), with magnitudes less than or equal to 1,
together with a single binary scale. Thus the vector A, having

mantissas a and the binary scale S, is represented in the form

When a curve is displayed on the scope only the mantissas
are used to form the display points. The binary (i.e., base 2)

exponent S is called the display scale of the curve being dis-

played. If a curve has scale S, then the limits of the display
area on the scope are :ZS. The value S for the function currently

in the BII register (denoted S can be determined, on level II

B)
REAL, by

DISPLAY O RETURN

On level II CMPLX, this sequence of keypushes displays the

and R registers. In effect,
11

binary scales (Su’ SB) of the Oy 1

the display scale may be thought of as the Oth component of the

vector.

145

If no scaling operations are performed, vectors are displayed

in normal form:

1) On level II REAL the apj and By registers are
normalized separately, with the display scale S
chosen so that at least one mantissa is greater
than 1/2 in absolute value; i.e., the display is
as large as possible.

2) On level II CMPLX the ajj and By;; registers are
scaled to a common display scale S, chosen so that
the absolute value of at least one ordinate or
one abscissa is greater than 1/2.

DETAILED SCALING ALGORITHMS
A property of each register (aII and BII) is its display

scale (denoted Sa and SB’ respectively). Sa and S, are defined

B
by the constraint that the distance between left and right, and

S+l Sg+1

upper and lower edges of the scope face, be 2 and 2
respectively.
The display scale is selected by OLS software on the basis
of two additional register properties:
1. Data Scale (denoted Dy and Dg)
D is defined to be the smallest integer greater
than or equal to the log (base 2) of the register
component largest in absolute value.

2. Relative Scale (denoted Ry and Rp)
R is independent of the contents of the register
and is set or modified by various operators.

Given these properties the display routines compute Su and SB
as follows:
1. LIT REAL - S is the algebraic sum of D and R:

S =D + R
o o o

146

2. LII COMPLEX - S is the sum of R and the maximum of

Da and DB:
Su = Ra + max {Du’ DB}
SB = RB + max {Da’ DB}

The sequences LIT REAL DISPLAY 0 RETURN and LO EVAL 0 DISPLAY

RETURN display S, as computed in (1) above. The sequence LII

B8
CMPLX DISPLAY 0 RETURN displays Sa and SB as computed in (2)

above.
Su and SB can be explicitly changed by the user as follows:
1. LO REAL LOAD N SUB 0 RETURN sets Rg such that Sg

will be equal to the current contents of Level 0
N when computed according to (1) above.

2. LO CMPLX LOAD N SUB 0 RETURN sets Ry and Rg such
that both S5 and Sg will be equal to the current
contents of Level 0 N when computed according to
(2) above.

3. LIT REAL ENL (or CON) N RETURN will decrement (or
increment) Rg by the contents of Level 0 N.

4. LII CMPLX ENL (or CON) M,N RETURN will decrement
(or increment) Ry and Rg by the contents of Level
0 M and N, respectively.

In addition, LII REAL and COMPLEX mathematical operators (LII

CMPLX REFL, LS, RS, LII REAL, LS, RS, MOD, REFL, NEG are excep-

tions) set Ra’ and Ra and RB to zero, respectively.
A value of RB is associated with each level II REAL storage

location. This value of R, is that of BII when the vector was

B

last stored. When the vector is reloaded, this value becomes

's RB. Similarly, a value for Ra and a value for R, are

By B

associated with each level II COMPLEX storage location. These

values are those of aII and BII when the vector was last stored.

147

When the vector is reloaded, these values become uII's RB and

BII'S RB’ respectively.
TECHNIQUES

Because the (aII’ BII) registers are used in complex arith-
metic, some caution must be observed when forming level II REAL
displays after performing complex arithmetic. The Oy 1 coordinates
will often need to be restored by proper use of ID X or SUB as
explained in section 4.8.3.

At times it may be desired to place coordinate axes on the
display scope to use as reference axes. Rectangular axes can be
plotted on level II REAL by using the operation ID, which places
the vector consisting of n equally spaced values in the range

[-1,1] in the Ay and BII registers. To obtain an X axis the

key sequence LIT REAL ID LOAD 0 DISPLAY RETURN is pressed. The

Y axis is generated by the instruction set LII REAL ID SUB 0

DISPLAY RETURN or, immediately after displaying the X axis, by

rotating it 90 degrees by CMPLX REFL DISPLAY RETURN. Note that

these axes can be generated and then stored as complex vectors,

for general plotting purposes, by LII REAL ID LOAD 0 CMPLX STORE

X REFL STORE Y. Then, whenever axes are desired, the user simply

pushes LII CMPLX DISPLAY XY or, for dotted axes, LII CMPLX DISPLAY

XY.

LEVEL II REAL SCALING OPERATORS
When two or more level II vectors are displayed on the scope

for comparison, their display scales must be taken into consideration.

148

. X .
For example, the functions e” and sin (10x), for -1 <x <1, are

computed and displayed (Figure 6.3.1) by

LII REAL ID EXP DISPLAY RETURN

ID © 10 SIN DISPLAY RETURN

With no scaling information, it is impossible to determine rela-
tive magnitudes, intersections, etc. In Figure 6.3.2 the display

scales of the two curves are displayed by

LIT REAL ID EXP DISPLAY RETURN DISPLAY 0 RETURN ID

© 10 SIN DISPLAY RETURN DISPLAY 0 RETURN

Now it is apparent that the exponential curve has a display scale
of 2 and the sine curve has a display scale of 0.

With the display scales known, in manual operation, the
contract operator may be used twice to display the sine curve
with a display scale of 2, for valid comparison with the exponen-

tial curve (Figure 6.3.3):

LIT REAL ID EXP DISPLAY RETURN ID

© 10 SIN CON CON DISPLAY RETURN

Previously stored vectors may be displayed with a common
scale automatically. Common scale display is initiated with the
sequence DISPLAY , followed by a list of the vectors to be
displayed and is closed with the RETURN key. When RETURN is
pushed, the maximum scale is found and all curves are displayed

on that scale. On complex, the maximum scale for both o and B

149

No scaling

6.3.3

Proper scaling

Scaling Examples: y
y

150

registers is computed. To display vectors on a common scale in
dot or dot-dot mode, specify the list of vectors to be displayed
in line mode, if any; then push dot or dot-dot followed by a

list of vectors to be displayed in that mode.

LIT DISPLAY , A.BC..D RETURN

The vector A would be displayed normally, B and C in dot
mode, and D in dot-dot mode. The scale used for the display
would be the greatest of the scales of A, B, C, and D. The
dot or dot-dot may be placed anywhere in the sequence and may

be repeated. Therefore, the sequence LII DISPLAY ,A..B.C..D

RETURN is valid. After the comma, a number may be specified
to indicate the scale to be used in displaying a series of
curves.

EXAMPLE :

LIT DISPLAY ,2A RETURN

The vector A is displayed with a scale of two.

LEVEL III DISPLAY

Level III Display is similar to Level II Display. With
very few conceptual changes the same button sequences execute
similar operations in two dimensions instead of one.

One important concept that does differ is scaling. In
level III display the user has no control over the scale as he

does in level II display.

151

It is to the user's advantage to note that for the higher
dimensions displays become cluttered and therefore somewhat

difficult to read.

4.6.4 DISPLAY FORMATING

Numerical and curvilinear dot-dot displays may be formated.
There are three types of formats: Integer display format, float-
ing-point display format, and the character used when a dot-dot

display is made.

INTEGER DISPLAY FORMAT ITEM (LO data, LII and LIII contexts,
display scales) - (n < 25)

In Left justified - leading zeros suppressed
Ln Right justified - leading zeros not suppressed
Sn Right justified - leading zeros suppressed

n specifies the number of places. Overflow is indicated by

an asterisk (*) in the sign position. The default format speci-

fication is I10.

FLOATING-POINT DISPLAY FORMAT ITEM - (n + m < 25)

Dn.m Float - suppress trailing zeros
En.m Float - leave trailing zeros
Fn.m Fixed - no exponent displayed, leading zeros

suppressed.
n specifies the number of places to the left of the decimal
place and m the number to the right. An overflow or underflow
in the "F" format is indicated by an asterisk in the sign position.

The default floating point format is D1.5.

152

DOT-DOT FORMAT ITEM

One lower-keyboard character

When dot-dot display is to be done, the character specified
is used in place of the normal dot. The default dot-dot format
item is the dot specified by a period.

The user may change the format on LO (index), LI, LII, or
LIII with a sequence of the form "DISPLAY (format item, format
item, ...)". Any format item may be changed on any level and
the format items may be specified in any order separated by
commas. Should a format of the same type be repeated, the most
recent specification is used. If a RETURN appears during format
specification, the current format items will be displayed. The
format items just specified are not stored until the right
parenthesis is pressed.

EXAMPLE: Change the dot-dot format item to a question
mark. Press:

DISPLAY (?)

EXAMPLE: Change the dot-dot format item to an asterisk
and the floating point format item to fixed form. Press:

DISPLAY (F10.5,%*)

153

4.7 MATHEMATICAL OPERATORS FOR LEVEL I
The following operand notation is used in describing the

mathematical operators:
1) "A" represents an alphabetic operand.

2) "r", "ri", and "ry,'"" represent real numbers,
as entered on the numeric keys.

3) "ji™, "jp1", and "j," are non-negative integers
or LO operands.

4.7.1 OPERATOR DEFINITIONS FOR LEVEL I REAL

The level I REAL operators are as follows:

®.0,0,0 followed by "A" or "r'" computes the
indicated combination with the number
in the By register and leave the
result in the B register. If these
operators are followed by any other
operator, they have no effect.

SUB'"j" puts the contents of the B register

T into the jth component of the level
IT working register, Byy, where "j"
is a positive integer (1 < "j" < 873)
or a level 0 operand. - -

EVAL "j" puts the jth component of the level
IT working register Bry into the B;
register, where "j" is a positive
integer (1 < "j" < 873) or a level
0 operand. -

(In the following, if the operator key is followed immediately
by "A" or "r'", the operand is the value in the level I REAL
storage location A, or the number r, respectively. If the
operator key is followed by any other keypush, the operand is
the value already in the BI register. The result is always put

into the BI register.)

154

squares the operand.

takes the square root of the operand.
The real square root of a negative
number is defined to be zero.

negates the operand.

takes the reciprocal of the operand.

takes the absolute value of the
operand.

SIN, COS, LOG, EXP, ATAN

4.7.2 OPERATOR DEFINITIONS

On level I CMPLX MOLSF

perform the indicated operation on
the operand. LOG acts on the
absolute value of the operand.

LOG of zero gives -183.8464.

0 if operand > 0; m if operand < 0.

0 if operand # 0; 1 if operand = 0.

FOR LEVEL I COMPLEX

operates on complex scalars. The

operators available for this purpose are listed below:

®,0,0.0
SUB HjH
EVAL "j"

followed by "A" or "r;, rp" computes
the indicated complex combination
with the complex number in the (ay,
BI) register.

puts the contents of the (ay, B7)
register into the jth component of
the level II working register (mII,
B11), where "j" is a positive integer
(1 < "j" < 873) or a level 0 operand.

puts the jth component of the level
IT working register (ayy, Byy) into
the (ay, By) register, where "j" is
a positive integer (1 < "j" < 873)
or a level 0 operand. -

155

(In the following, if the operator key is followed immediately

by "A" or ”rl, rz”, the operand is the value in the level I

COMPLEX storage location A, or the complex number r1 + ir2,

respectively. If the next key pushed after the operator key

is not "A" or "r , r,", the complex number in (a., B.) is the
Lot 1’ 2 p 1° F1

operand. The result is always put into the (aI, BI) register.)
SQ squares the operand.
SQRT takes the complex square root of the

operand, using the branch of the
square root such that the argument
of the answer is half the argument
(defined by ARG) of the original
complex number.

NEG takes the complex conjugate of the
operand.

INV takes the complex reciprocal of the
operand.

REFL interchanges the real and imaginary

components of the operand.

MOD takes the modulus of the operand,
puts it in o7 and puts zero in BI.

SIN, COS, LOG, EXP, ATAN

perform the indicated operation on
the operand; LOG takes the branch
provided by ARG.

ARG or computes the argument in the interval
ARG - [-m, m] of the operand. The argument
— of 0 + 0i is defined to be 0.

ARG + computes the argument in the interval
[0, 27] of the complex number in the
(ar, B7) register. The argument of
0 + 0i is defined to be zero.

DEL 0 if operand # 0 + 0i; 1 if operand =
0 + 0i.

156

4.7.3 ADDITIONAL COMMENTS ON LEVEL I
Data in the working register can also be transferred between

level I REAL and level I CMPLX by simply changing levels. A

real number in BI on level I REAL becomes the imaginary part of

(o BI) on level I CMPLX. Thus if the real number 6 were in BI

1°
on level I REAL and keys LI CMPLX were pushed, the number would
still be in BI on level I CMPLX. If the contents of a; were
initially 0, the complex number in (aI, BI) would now be 0 + 61.
Likewise, when the level is changed from level T CMPLX to level
I REAL, the imaginary part of the complex number becomes the
real number on level I REAL.

Several simple examples of operations on level I are given
below. More detailed examples are presented in Appendix E .
1) LI REAL EXP X DISPLAY RETURN. The number eX, x

the single number contained in X, is calculated
and printed on the display scope.

2) LI REAL LOAD Y REPT SIN 3 RETURN. The single
number sin (sin (sin y)) is computed. The
result is in the BI register.

3) LE_CMPLX LOAD 3,2 LOG DISPLAY RETURN. Calculates
the principal value of log (3 + 21i) and prints it.

4) LI CMPLX MOD Z DISPLAY RETURN. Computes the modulus

of the complex number stored in Z and displays it
on the scope. For example, if the number 3 + 4i
were in Z, the modulus 5, 0 would be printed on
the scope; (i.e., modulus = /32 + 42 = /25 = 5).

The repeated use of level specifications I REAL and I CMPLX
occurs in the above examples for the purpose of illustration.
In general, such specifications are only used when individual

level changes are required.

157

4.8 MATHEMATICAL OPERATORS FOR LEVEL II

4.8.1 OPERATOR DEFINITIONS FOR LEVEL II REAL
Throughout the description of the level II REAL operators
it is assumed that the vectors needed have previously been
defined and are available for use. The general notation adopted
for the description of the level I operators is also employed.
Note that "A", which represents an alphabetic key, now implies
a vector A = (al, Bys s an) and "r", which represents a real
number, now defines a constant vector of n components.
®.0,0.,0 followed by "A" or "r" perform the
indicated operations componentwise
using the vector in the By register
and the real vector in "A" or "r".
Let (B1, B2, ..., Bn) denote the
contents of Byy before any of these

operations. Then the result, in
By, will be as follows:

® A: Brp = (By + a;s By, + a,, ...,
Bn + an)

O A: BII = (61 - a1’ BZ - a-z, “ e sy
Bn - an)

O A: BII = (Blal, 82a2, Bnan)

@ A: Brp = (By/ay, By/a,, ..., B./a)

If zeros occur in some, or all, com-
ponents of the predicate (operand)
vector in division, results for those
components will be zero.

LS shifts each component 8y of the Byg
register into the (k-1)st position
of the By register, placing the
first component in the last position.

158

CON

EVAL

BII = (82’ 63’ A] B 3 Bl)

LS "j" is equivalent to repeating
LS j times.

shifts each component By of the Byg
register into the (k+1)st position,
placing the last component into the
initial position.

BII = (Bn’ 61, 62’ M 6)

n-1

RS '"j" is equivalent to repeating
RS j times.

doubles the mantissa of each component
of the By register, for display pur-
poses, and decrements the binary scale
by 1 so that the magnitude is not
changed. ENL "j" repeats ENL j times.

halves the mantissa of each component
of the By register, for display pur-
poses, and increments the binary scale
by 1, so that the magnitude is not
changed. CON "j'" repeats CON j times.

NOTE: For LS, RS, ENL, and CON a
negative operand implies the inverse
operator. For example, LS -3 is

equivalent to RS 3. T

If X is in ayy and f£(X) is in Byy,
EVAL followed by "A" replaces f(X)
with f£("A"). The process is as
follows: for each component aj of
"A'" the least upper bound, xi, and
the greatest lower bound, Xj s with
respect to the oajj register, are
found. Linear interpolation then
gives the value of f(a;) as

f(x,) - f(x.)
f(a.) = K J (a. - x.) + f£(x.)
i Xy - Xj i j j

If a. is greater than (or less than)
all 6f the oy7 components, the value

of f(aj) is set equal to the BII
correspondent of the maximum (minimum)
B11 component. If the dimension of

"A" is not equal to the dimension of
the B11 register, the o and B registers

159

containing the result, "X" and f("A'"),
will have the dimension of "A'". If
followed by "r', EVAL creates a con-
stant vector proceeding as above.

EVAL + Similar to EVAL except that f(aj) is
replaced by the function of the least
upper bound, f(Xk).

EVAL - Similar to EVAL except that f(aj) is
replaced by the function of the great-
est lower bound, f(Xj).

ID If the working register length is n,
ID places a vector consisting of n
equally spaced values from -1 to +1,
(beginning with -1, ending with +1)
in the ary and 877 registers.

ary = B = (33

ID X places the vector consisting of n

T equally spaced values from -1 to +1
in the ajy register only. Byy is
unchanged.

| kx =1, 2, ..., n)

X in this case is not an operand.

ID Y places the vector consisting of n
equally spaced values from -1 to +1
in the By register only. ogg is
unchanged.

' k=1, 2, ..., n)

Y in this case is not an operand.

ID ? places a vector consisting of n
uniformly distributed random values
in the interval [-1, +1] in Byg

ID RETURN Similar to ID ?, except that the
contents of By; are used to compute
the random numbers.

160

SUB When followed by "A", SUB loads
contents of "A" into ajy working
register. When followed by "r",
SUB loads "r" into the ayy working
register.

[In the following, if the operator key is followed immediately
by '"A" or "r", the operand is the vector in the level II REAL
storage location A, or the constant vector r, respectively. If
the next key is not one of these, the operand is the real vector

in BII' We will call the operand (al, a,, . an) A. The

result is always put into the BII register.]

SQ squares each component of the operand.
2 2 2
Br1 (a;7s a,™s «vns a)
SQRT takes the square root of each com-

ponent of the operand, assigning
the value of zero to each negative
component.

By = (/ZE, /Z;, ce /E;)

NEG negates each component of the operand.
BII = (-al, LR —an)

INV takes the reciprocal of each com-

ponent of the operand.

Bip = (l/al, Va,, ««., l/an)

DIFF forms the forward difference of the
components of the operand, performing
a second-order extrapolation to supply
the last component in the result.

BII = (a2~a1, az-a,, ..., a_ -a

n n-1°
Zan—San_1+an_2)
SUM forms the running summation of the
components of the operand.
n
BII = (al, aj*a,, a1+a2+a3 e § ak)

k=1

l61l

PROD

forms the running product of the
components of the operand

n
BII = (al, alaz, alazas, cees, T ak)
k=1
REFL reverses the order of the n com-
ponents of the operand.
Brr = (3 259 oo 3p)
MOD takes the absolute value of each
component of the operand.
BII = (lall’ 132': e se s lan')
MAX sets each component of the g
register equal to the maximum
component of the operand.
BII = (max a,, max a;, ..., max ak)
SIN, ATAN
perform the indicated operation
componentwise on the operand vector.
SIN: BII = (sin a;, sin az, C e
sin an)
(a's in
CO0S: BII = (cos ays COS @5, ..., radians)
cos a_)
n
LOG: BII = (1n ags In dos vee 1n an)
a a a
E—‘Z(-];D: BII = (e 1} e 23 ¢ e n)
. _ -1 -1
ATAN.BII = (tan a;, tan “a,, ..., (results
-1 in
tan an) radians)
SORT

rearranges the components of the By
working register in numerically in-

creasing order. At the same time the

integer representing the original
position of the component is placed
in the oj7 working register.

162

SORT A,B

ARG

CONV

rearranges A using each component
of B as an index to designate which
component of A will be loaded into
ar7. The components of B are trun-
cated to integers. So that

Brr (1)
By (2)

A(B(1))

A(B(2)) etc.

If the value of any component of B
is less than or equal to zero, then
the first component of A is loaded
into the indicated component of By7.
If the value of any component of B
is greater than the context of A,
then the last component of A is
loaded into the indicated component
in Byy. The o771 working register is
not changed.

assigns the value zero to all non-
negative components, the value 7 =
3.14159 to all negative components
of the operand.

identifies zeros and sign changes in
the operand vector as follows:

If a, = 0, Bk = 1

1f (a,)(ap,;) < 0, B, =1 if [a [<|a +1]
Brog = 1 if [a jl<la |

All other Bk =0

provide a means for obtaining a dis-
crete approximation to the integrals.

f?mK(t - 1) F(1) drt

t
SoK(t - 1) F(1) dt

and

2T
Jo K(t -T) F(1) dt K period = 2

by pressing: LII REAL LOAD F CONV K,j.

163

The nature of this discrete approximation is such that the user
is expected to reform the kernel to be a distributed kernel
(i.e., the weighting factors resulting from the user-selected
integral formula are included in the representation of the kernel).

In the simplest situation, these weights may all be equal to the

step selected for the independent variable. In this case, K
would be replaced by K - AT before the convolution operator is
used.

In the following discussion, these weights will be presumed
to be included and K represented by a vector LII REAL K = (kl,
k2, e km). The easiest way to describe the convolution compu-
tation is by explaining the matrix multiplier derived from K by
CONV K,j (j is a positive integer which must be less than or equal
to m). j defines the matrix extension of K by specifying the

upper left hand entry as shown below. The first step of the cal-

culation extends K to the matrix

K K. ; oo, K 0 0
] j+1 m
K K. K
j-1 3 j+1 ... Km 0 0
K1 K2 Km
0 K1 K2 Km—l
0 e 0 K1 KJ

This matrix then becomes the multiplier for the column vector F.

164

To use the convolution operator one must first select the
kernal as a vector with a context less than or equal to F and

then reflect it by LII REAL REFL. The convolution operator does

not reflect K. Given the reordered kernal, geometrically, one

may picture a fixed graph for the function F and a graph for K
being translated to the right one position. K is then multiplied
with a dot product with the graph of F. This operator is then

repeated a number of times equal to the context of F.

4,.8.2 OPERATOR DEFINITIONS FOR LEVEL II COMPLEX

The operands for the level II CMPLX operators are previously

defined complex vectors "A', complex constant vectors ”rl, r2",
(representing L irz), or the contents of the (aII, BII)
register. The results of the operations are always complex
vectors put into the (aII’ BII) working register.
®.,.0,0.,0 followed by "a" or '"rjy, r," perform

the indicated comnlex combination
of the operand vector with the com-
plex vector in the (ayy, Byy) register.
In division, if any or all components
of the operand vector are 0 + 0i, the
quotient will be set to 0 + 0i for
those components.

LS shifts each component (ox, Bgk) of
the (apy, Byr)registers into the
(k-1)st position, placing the first
component into the last position.

CaII, SII) = [(u'z, 82)’ («d’z’ 63), AL]

n

LS "j" left shifts the ajy register
j times. LS "jj1, j2'" shifts the oyg
and By1 registers separately, the ajyg
register j] times and the Byj register
jp times. LS , j left shifts the By
register j times.

165

CON

shifts each component (og, By) of
the (ary, Byy) registers into the

(k+1)st position, placing the last
component into the first position.

Capps Bpp) = [las B) (o), B),
(012, 82)> LR

(o 1> B _7)]

n-

RS "j"™ right shifts the opp register

J times. RS "jjp, j2" shifts the oagg
and By registers separately, the agg
register j; times and the By; register
jp times. RS , j right shifts the

By register j times.

doubles the mantissa of each component
of the oyy and By registers, for
display purposes, and decrements the
binary scale of each register by 1.

ENL "j'" enlarges the ayy register j
times. ENL "j;, j,'" enlarges the agg
and f11 Tegisters separately, the ajg
register jj times and the B;y register
j, times. ENL , j enlarges the B1g
register j times.

halves the mantissa of each component
of the ayy and By7 registers, for
display purposes, and increments the
binary scale of each register by 1.

CON "j'" contracts the Byp register j
times. CON "j;, j2" contracts the
a1 and By7 registers separately, the
ary register jq times and the By
register jo times. CON , j contracts
the B11 register j times.

NOTE : For LS, RS, ENL, and CON a
negative operand implies the inverse
operator. For example, RS , -7 is
equivalent to LS , 7. T

places a unit square centered at the
origin with vertices at (1, 1), (-1, 1),
(-1, -1), (1, -1) in the (oayy, Byy)
registers.

166

[In the following,

by lIAH or

places a unit circle centered at the
origin in the (oyy, Byy) registers.

if the operator key is followed immediately

”rl, r,'", the operand is the vector in the level II

2

CMPLX storage location A, or the constant complex vector Ty + irz,

respectively.

is the complex vector a

the (aII’

NEG

INV

DIFF

SUM

PROD

REFL

IT
BII) registers.]

If the next key is not one of these, the operand

+ iBII. The result is always put into

squares each component of the operand.

takes the square root of each com-
ponent of the operand, using the
branch of square root such that the
argument of the answer is half the
argument (defined by ARG) of the
original function.

takes the complex conjugate of each
component of the operand.

takes the complex reciprocal of each
component of the operand.

forms the complex forward difference
of the operand, extrapolating to get
the final component of the result.

forms the running sum of the complex
values in the operand, storing the
subtotals in the corresponding
components of the result.

forms the running product of the
complex values in the operand,
storing the subtotals in the
corresponding components of the
result. The operator is performed
in accordance with the rule for
complex multiplication.

reflects the operand vector about the
45° line; thus, it interchanges the
real and imaginary parts of the operand.

167

MAX

MOD

SIN,

CoS,

makes a constant complex vector whose
real part is the maximum of the real
parts of the operand and whose imagi-
nary part is the maximum of the
imaginary parts of the operand.

evaluates the modulus of each component
of the operand vector, stores the
answer in the o017 register, places
zeros in the By7 register.

ATAN

ARG
ARG

or

perform the indicated operation com-
ponentwise, using the values obtained
from ARG whenever a function has
branches (i.e. LOG and ATAN). If the
lower keyboard + follows an operation
using ARG then the branch is obtained
from ARG +.

executes LII REAL DEL on the real and
imaginary parts of the operand sep-
arately, then puts their product into
the ayy register and sets the By
register to zero.

computes the argument of each component
in the (ogys BII) register, assuming
that the argument of the first point
lies in the interval (-7, m). The
following values are true arguments
based on that branch cut.

same as ARG except that the interval
for the first component is (0, 2mw).

ADDITIONAL COMMENTS ON LEVEL II

DISPLAY

In order to generate a display on level II REAL the o

on level II REAL affect only the BII register and leave a

unchanged.

II

register must contain the desired set of X coordinates in the

form of the ID vector or some similar function. Most operations

I1

An important exception to this is SUB which operates

168

identically to LOAD except that the vector is loaded into the O g
register instead of the BII register. Therefore, any set of X
coordinates desired may be computed and substituted into o by

use of the SUB key. On LII REAL for example, the button sequence
ID® 6.28 SIN STORE S SUB 'S

would generate sin X, where X is a set of values equally spaced
in (-2m, 2m), and substitute it into the Opq register. (1f

there is no need to save the vector SIN x for other computations,
or if the rg register will not be disturbed before the level II
REAL display occurs then another method of accomplishing the

above 1is:

LII REAL . . . ID © 6.28 SIN COMPLX REFL REAL . . .).

If one wishes to insert the ID vector into the 011 register
for display abscissas with ordinates already computed and currently
in the BII register, ID X on II REAL will do so without altering
the BII register.

The general definition of curvilinear display is that
corresponding components of O and BII are cross-plotted (i.e.,
BII versus aII) and displayed with a scale computed by the display
program. On LII REAL this scaling does not affect o5 but results
in the binary scale presenting the largest possible display of
the BII coordinates. On LII CMPLX, unless the user specified
otherwise, the binary scales of the (uII, BII) register are taken

to be common (i.e., the vertical and horizontal scales are the

same) such that the resulting display is of maximum size.

169

VARYING CONTEXT

Varying the context is helpful when the user wants to
replace the first k components of a vector of dimension n
(k < n). The procedure is as follows: Suppose a vector of
dimension n,(al,az,...,an), is contained in the level II work-
ing register and the user wishes to change the first k components.
He changes the working register length to k by pressing CTX K,
constructs the k-length vector (f(al),f(az),...,f(ak)), and
restores the context to its original value by pressing CTX N.
The working register now contains (f(al),...,f(ak),ak+1,...,an).
It is particularly important to note that reducing the context
does not alter the physical length of the working register, but
rather redefines the number of components to be involved in
computations. Reducing the context causes the residual data to
be unaltered in all subsequent operations until the context is
again increased. This philosophy has also been extended to
level III, thereby facilitating the manipulation of sub-arrays

contained in larger level III arrays.

170

4.9 MATHEMATICAL OPERATORS FOR LEVEL III

Level III operators provide the ability for a user to mani-
pulate arrays. The number of elements or dimension of an array
is restricted by the arrangements made with the Computer Center
when the user number is set up.

Arrays are stored on level III under the alphabetic keys,
A through Z, and o through w. As discussed earlier the dimensions
can be changed by the use of the CTX key.

Level III operators and data are column oriented. Therefore,
level III overhead is minimized when the number of rows is

greater than the number of columns [i.e., n > m in an (n,m) array].

4.9.1 OPERATOR DEFINITIONS FOR LEVEL ITII REAL
Throughout the description of the level III REAL and CMPLX

operators it is assumed that the arrays needed have previously

been defined and are available for use. The general notation
applied to the description of Level I is again used. Note
the "A", which represents an alphabetic key, now implies an array
211 %12 ¢ ®Im
Bog seeeeeenn a5
A =
B e a

171

and "r", which represents a real number, now defines a constant

array of n,m components.

@’e’o’@

ATAN, LOG, EXP, SIN,

followed by "A" or "r" perform the
indicated operations component by
component using the array in the
BI;I register and the array "A" or
"r, Let

denote the contents of BII before
any of these operators. Then the
result, in BIII’ will be as follows:

® A

B1,1%%1,1° Bio*2r) By m*21,n
By,1%%2 .1

Brrr =
Bn,1+an’1 Bn,m+an,m

The results are formed in a similar
fashion for ©@ , ® , @O .

COosS

perform the indicated operation com-
ponent by component on the operand
array.

squares each component of the specified
array.

takes the square root of each component
of the specified array.

transposes the By11 array, i.e.,
Bij=6
reverses the order of the components
in each of the columns of the By
accumulator.

ji’

172

REFL R reverses the order of the components
in each of the rows of the Byyg
accumulator.

INV takes the reciprocal of each component
of the operand.

NEG negates each component of the operand.

MOD takes the absolute value of each
component of the operand.

ARG assigns the value zero to all non-

T negative components, the value m =
3.14159 to all negative components
of the operand.

The following operators work strictly on columns just as if they

were level II variables.

LS shifts each column By of the Byrg
register into the (k-1)st column of
the Byyy register, placing the Ist
column in the last position.

B1,2’ B1,3 Bl,m’ 81,1

B2,2 B2,1
Brir

Bn,2 Bn,m 6n,l

LS "j'" repeats LS j times.

RS shifts each column By of the BiT11
register into the (k+1jth column,
placing the last column into the
initial column.

Bl,m’ 81,1’ B1,2’ B1,m—1

Bz,m’ B2,1 .
Brrr .
Bn,m’ Bn,l’ Bn,m—l

RS "j'" repeats RS j times.

173

DOWN

MAX

DEL

shifts each element of each column
B{i,j) into the [B(i-l,j]]th position,
placing the 1st component of each
column in the last position.

Bo1 By B m
Bz, 1

B

111 Bo 1 eeee- B m
Bi,1 B1,2 Bl m

UP "j" repeats UP j times.

shifts each element of each column
3(i,j) into the [B(j+1,5)]th position,
placing the last component of each
cblumn in the initial position.

n,l n,?2 n,m

B1,1 B1,2 Bl,m
Brrr = BZ,l

B reeeeen- Bn-l,m

DOWN "j" repeats DOWN j times.

NOTE: For LS, RS, UP, and DOWN a
negative operand implies the inverse
operator. For example, UP -7 is
equivalent to DOWN 7. T

sets each column equal to the maximum
component in each column.

identifies zero and sign changes in
each column of the operand array as
follows:

£ a1 (i,k) = 1

if[a(i,k)][a(i,k+l)] < 0 then

= 0 then B

Blai = 1A lag g l<lag oyl

1 if |a

Bli,k+1) (1,1 <12 1]

174

all other B(i K)

i=1, ..., n
k=1, ..., m

DIFF computes the forward difference of
each column of the operand array,
performing a second order extrapola-
tion to supply the last component
in the result.

SUM computes the running summation of
each column of the operand.
PROD computes the running product of each
column of the operand.
ID or If the working register is of dimension
n,m ID places m vectors consisting of
ID C —
— n equally spaced values from - 1 to
+1, (beginning with -1, ending with
+1) in the columns of the Bjyy register.
ID R is the same as ID C except ID R places

the vectors in rows rather than columns.

4.9.2 OPERATOR DEFINITIONS FOR LEVEL III COMPLEX

The operands for the level III CMPLX operators are previously
defined complex arrays '"A'", complex constant arrays '"R" [repre-
senting (ri+ir2)j,k where j is the row number and k is the column

number], or the contents of the (aIII’ BIII) registers. The results

of the operations are always complex arrays put into the (aIII’

B

III) registers.

®,0,0,0 followed by '"a" or "R" perform the
indicated complex computation com-
ponent by component on the operand
array with the complex array in the
(drrrs Bypp) registers. 1In division,
if any or all components of the
operand array are 0 + 0i, the quotient
will be set to 0 + 0i for those com-
ponents.

175

ATAN, SIN, COS, LOG, EXP

SQRT

ARG or
ARG -

ARG +

The following operators are

previously listed component

LS

performs the indicated operation
component by component using the
values obtained from ARG whenever
a function has branches. 1If the
lower keyboard + follows an opera-
tion using ARG then the branch is
obtained from ARG +.

squares each component of the operand.

takes the square root of each com-
ponent of the operand, using the
branch of square root such that the
argument of the answer is half the
argument (defined by ARG) of the
original function.

Takes the complex conjugate of each
component of the operand.

takes the complex reciprocal of each
component of the operand.

evaluates the modulus of each com-
ponent of the operand array, stores
the answer in the ayyy register,
places zeros in the Bypyy register.

computes the argument of each com-
ponent in the (ayyr, Byyy) register,
assuming that the argument of the 1st
point lies in the interval (-7,).

The following values are true arguments
based on that branch cut.

same as ARG except that the interval
for the first component is (0, 2m).

column operations as opposed to the

operations.

shifts each column [d(l,), 8(1’)] of
the (arrr, Brir) registers into the
(i-1)th position, placing the 1st
column into the last position.

LS "j'" repeats LS j times. LS "j1,
jo" shifts the ayyy and Byy; registers
separately, the ayyy register jj times
and the Byyp register jp, times. LS ,
"j" shifts the Byyy register j times.

176

DOWN

MAX

REFL

shifts each column (a(l,)’ 8(1)) of
the (apyr, Byyp) registers into’the
(i+1)th position, placing the last
column into the 1lst position.

RS "j" repeats RS j times. RS "jl,
jo" shifts the oapyy and Birr regisSters
separately, the ajyp register j; times
and the Byyy register j, times. RS ,
"j" shifts the Bryp register j times.

shifts each component of each column
(0(i,5)> B(i,jy) of the (agyy, Brrp)
registers into the (i-1)th position,
placing the 1lst component into the
last position of the column.

Up "j" repeats UP j times. UP "j;,
jo" shifts the ayyp and Byyy registers
separately, the ajyy register j1 times
and the Byyp register j, times. UP ,
""" shifts the BIII register j times.

shifts each component of each column
(a(i i), Bei,3)) of the (oarrr, Brrr)
reé%é%%rs gnf%)the (i+1)th position,
placing the last component into the

l1st position in the column.

DOWN '"j" repeats DOWN j times. DOWN
"j1, J2'" shifts the ayry and Byyg
registers separately, the ajyy register
j1 times and the Byyy register j) times.
DOWN , "j" shifts the Byry register j
times.

NOTE: For RS, LS, UP, and DOWN a
negative operand implies the inverse
operator. For eaample, DOWN , -11
is equivalent to UP , 11.

sets each column equal to the maximum
value in each column separately for
both the real and complex components.

interchanges the agyy and By1717
working registers.

177

DEL

DIFF

executes LII REAL DEL on the real and
imaginary parts of each column of the
operand separately, then puts the
product of the corresponding parts
into the ayyy register and sets the
Bryr register to zero.

forms the complex forward difference
of each column of the operand, extra-
polating to get the final component
of each result.

forms the running sum of the complex
values of each column in the operand,
storing the subtotals in the corres-
ponding components of the result.

forms the running product of the

comnlex values of each column in the
operand storing the subtotals in the
corresponding components of the result.

If the (ayyr, Bryr) registers are
dimensioned (n,m), ID places m complex
vectors which each form a unit square
at the origin with vertices at (1,1)
(-1,1), (-1,-1), (1,-1) in the (o117>

BIII) registers.
If the (appy, Byyr) registers are
dimensioned (n,m) ID . places m

complex vectors which each form a
unit circle centered at the origin
in the (aIII’ BIII) registers.

178

4.10 DEFINITIONS OF LO SUB AND EVAL

The level 0 EVAL key is useful for extracting integer data

from data structures on levels I, II, and III. The SUB key is

used to insert integer data in data structures on levels I, II,

and III. (Note: these definitions of SUB and EVAL are exclusive

to MOLSF.)

EVAL "j"

EVAL O

CMPLX EVAL 0

EVAL "A"

EVAL

EVAL +

EVAL -

EVAL CTX

EVAL CTX "A"“

SUB "A"

takes the nearest integer to the jth
component of the Byy working register
and places it in the LO quotient
register.

loads the value of the Bjyy working
register display scale into the LO
quotient register.

loads the common scale of opp and
Brr into the LO quotient register.

takes the nearest integer to the value
in LI REAL "A'" and places it in the
L0 quotient register.

takes the nearest integer to the value
in the By working register and places
it in the L0 quotient register.

takes the least integer greater than
or equal to the value in the B
working register and places it in
the LO quotient register.

takes the greatest integer less than
or equal to the value in the B
working register and places it in
the L0 quotient register.

loads the current LII context into
the LO quotient register.

loads the context of the LII vector
"A" into the L0 quotient register.

takes the integer in the L0 quotient

register and stores it in the LI
storage location "A'".

179

SUB llj”

REAL SUB 0

CMPLX SUB 0

SUB (anything else)

takes the integer in the LO quotient
register and stores it in the '"j'"th
component of the By working register.

modifies the LIT REAL relative display
scale so that the actual display scale
will be equal to the integer in the
quotient register.

modifies the LII CMPLX relative

display scale so that the actual dis-
play scale will be equal to the integer
in the quotient register.

takes the integer in the LO quotient

register and stores it in the B1
working register.

180

4.11 DEFINITION OF LEVEL V

OPERATORS

LV REAL is a level reserved for operators which are not

appropriate to any other MOLSF level and as a means whereby a

user with an old keyboard may perform operations such as SORT

and CONV. The operators LOAD, STORE, DISPLAY, and DEL interact

with a FORTRAN program thru

are explained in Appendix F.

SQRT

DISPLAY jobname RETURN

DISPLAY jobname ?

FORTRAN subroutine calls. The calls

Equivalent in operation to
LII SORT.

Equivalent in operation to
LIT CONV.

Displays the status of a background
job. Possible responses:

A. "jobname NOT FOUND" if the job
is not in execution.

o~}

""jobname STEP stepname'" if the
job is in execution but is not
currently executing the FORTRAN
subroutine FOLS or TOLS.

C. '"jobname ASK INPUT n" if the job
is executing a "CALL FOLS" for
input from the on-line terminal.
"n" is the number of the compo-
nents requested of the terminal.

D. "jobname HAS OUTPUT n" if the job
is executing a "CALL TOLS" to
send output to the on-line
terminal. '"n'" is the number of
components made available to the
terminal.

A1l activity at the terminal is sus-
pended until "jobname'" executes a
CALL FOLS or TOLS. LV LOAD and

STORE operators can be preceded by

the sequence, thus providing syn-
chronization with the batch job.

When the job requests a transfer

the succeeding keys are executed.

If the job is ready when the sequence
is executed, execution of keys pro-
ceeds immediately.

181

LOAD p jobname RETURN

STORE p jobname RETURN

Fetches data from a background job.
"p'" is a level 0 operand. Possible
responses:

A.
B.

A and B as described under DISPLAY.

""jobname ASKS INPUT (m) n" if the
job has requested data from the
terminal. 'n'" components are
requested; '"p-m'" components were
successfully transferred in this
LOAD operation before the request
was made.

No response if the transfer opera-
tion was completed successfully.
Data received from the background
job was stored as the first '"p"
components of the B11 working
register. '"p" may be either a
positive integer; a level 0 storage
location; or the key CTX, in which
case the value of "p" is taken to
be equal to the current context

on level II. If an integer was
specified to be transferred in the
FORTRAN program it will become the
new contents of the level 0 quotient
register.

This key sequence transfers data to a

background job. '"p'" is a level 0

operand. Possible responses:

A. A and B as described under DISPLAY.

B. '"jobname HAS OUTPUT (m) n" if the
job has data to transfer to the
terminal. '"'n'"" components are
offered; "p-m" components were
successfully transferred in this
STORE operation before the offer
was made.

C. No response if the operation was

completed successfully. The first
"p'"" components of the By working
register were transferred to the
background job. '"p" may be either
a positive integer; a level O
storage location; or the key CTX,
in which case the value of "p™ is

182

taken to be equal to the current
context on level II. The level

0 quotient register is transferred
to the background job if requested
by that job.

DEL jobname RETURN Terminates the background job. Possible
responses:

A. A as described under DISPLAY.

B. '"jobname STEP stepname" the job is

currently in execution and has not
issued a CALL FOLS or CALL TOLS.
A job cannot be cancelled until
it has executed a subroutine call
to FOLS or TOLS.

C. No response if the operation was

completed successfully. The job
is cancelled immediately, termi-
nating with a system completion
code of 222,

183

4.12 USE OF PARENTHESES

An additional facility which exists on levels I, II, and III
is the use of parentheses to specify as an operand an expression
which must be computed, thus bringing the programming language
much closer to the user's '"pencil-and-paper'" language. For
example, to compute sin X (-2mw < X < 2m), one could use, on

LII REAL,
SIN (ID @ 6.28)
to effect the same computation as

ID O 6.28 SIN

Parentheses are extremely useful in both the MANUAL mode
of system operation and the construction of user subroutines.
For example, if the user desired to evaluate the expression
(2X + 1) / (3X + 1) over the range -1 < X < 1 without using

parentheses, the required series of button pushes would be

LIT REAL ID O 3® 1 STORE A

IDO 2® 1 Q@ A DISPLAY RETURN

The instructions ID ® 3 @® 1 STORE A generate the denominator
term (3X + 1) and store it under A. The remaining instructions
generate the numerator term (2X + 1), divide it by (3X + 1),
and display the result.

The same program using parentheses would be

184

LIT REAL IDOQ 2® 10Q (IDO® 3® 1)
DISPLAY RETURN

A comparison of the parenthetical and nonparenthetical
programs for evaluating (2X + 1) / (3X + 1) indicates two dis-
tinct advantages for the parenthetical format:

1) Temporary storage (e.g., STORE A) is allocated
by the system when parentheses are used.

2) Utilization of parentheses allows arithmetic
expressions to be entered in a format which
is familiar to the casual user. This is of
particular value to the new user who has a

FORTRAN IV or similar programming language
background.

Nesting of parentheses in the usual manner is perfectly
acceptable. It is helpful to remember that parentheses are

needed to make an operand of an operator key, as in

SIN A® (COS A) O3

to compute 3(sin A + cos A). Here the expression (cos A) is
the operand for the operator ® . If the parentheses around
COS A were omitted, in this example, the addition operator
would be lost, for want of an operand, the value cos A would
replace the value sin A in the BII working register, and the

result would be simply 3 cos A.

EXAMPLES:

1) LII REAL SIN (S5Q Y ® (COS Y © (COS (Y ® LI T))))

leaves the function sin (Y2 ® cos Y cos (Y ® T)
in the By register. (Y is a real vector and T
is a level I constant.)

185

2) LII REAL EXP (NEG (SQ (ID © 5))) DISPLAY RETURN

generates the function e‘xz, for -5 < X < 5, and
displays it on the scope. Note that, since this
computation includes mostly operators that can
operate directly on the By register, it is more
straightforward to program it.

LIT REAL ID ® 5 SQ NEG EXP DISPLAY RETURN

Care must be exercised in constructing parenthetical
expressions to insure that there are the same number of right
parentheses as left. When computations are performed manually,
if there are too few right parentheses, the console will wait
until the ")'" key (or RESET) is pushed. If a console program
has open parenthetical expressions, its execution will stop

until the ")" is pushed manually.

DISPLAY PARENTHESIZED EXPRESSION

When the user constructs a parenthetical expression, a
false TEST key may be inserted anywhere after the outermost left
parenthesis and before any right parenthesis. After the system
has been given all of the expression (the same number of left
and right parentheses), it will cause the coding, generated by
the system to evaluate the expression, to be displayed, as

illustrated below:

KEYBOARD ENTRY CRT RESPONSE

LI REAL LOAD 1 ®
(TEST 2 SIN + (
1 ® (2 COS))) STORE TEMP1 LOAD 2
SIN STORE TEMP2 LOAD
2 COS® 1 ® TEMP2 STORE
TEMP2 LOAD TEMP1
DISPLAY RETURN 2.49315+00

186

TEMP1, etc. are temporary storage locations on MOLSF which are
inaccessible to the user. The first thing MOLSF does is to
store the working register under TEMP1l. This is done so that
the first operator, ® , which has the parenthesized operand
will operate on the correct contents of the working register.
In the evaluation of the expression the system used the storage
location TEMP2 and put the final result of the parenthesized

expression in TEMP2 for the use of that first operator.

LOAD TEMP1

In most instances, if a user wants to use the contents
of the working register later, he must explicitly store it for
later recall. In a parenthesized expression, a matched pair
of parentheses, '"()'", with no intervening keys instructs the
on-line system to use TEMP1 as the specified operand. As its
name implies, TEMP1 is a temporary storage location which holds
the contents of the working register before the parenthesized
expression is executed.

If an operand is omitted in a parenthesized expression,
the on-line system assumes that TEMP1l is the proper operand.
Thus SIN A® (SQ () ®) is a valid expression. It would be

executed as SIN A + sin3 A

HIERARCHY OF OPERATORS
In addition to the normal MOLSF computation a user may

specify that a parenthesized expression be executed using

187

FORTRAN's hierarchy of operators.

the lower keyboard keys *, /, and ** as if they were the FORTRAN

operators.

computation is performed left to right according to the following

hierarchy:

1)
2)
3)

4)

When these keys appear in a parenthesized expression

Evaluation of functions
Exponentiation '"**"
Multiplication "*" and division "/"

Addition "@'", subtraction '"Q', multiplication
"®'", and division 'Q'.

KEYS NOT ALLOWED IN A PARENTHETICAL EXPRESSION

The keys RESET, LIST, TYPE, USER, SYST, REPT, L0, SEL,

ENL, CON, and CASE are not allowed in a parenthetical expression.

Attempts to use the above keys will produce the error message

"PAREN ERROR_ INVALID EXPR'".

188

This is accomplished by using

Appendix A

PROCEDURE TO OPEN AN ON-LINE ACCOUNT

A considerable amount of information is necessary for the
Computer Center to set up a user number. To provide the staff
with this information a new user must fill out the form:

"REQUEST FOR OLS USER NUMBER (OR CHANGE)'", (see figure A.1).

This form may be picked up at the Computer Center office.

Note: to open an on-line account, one must have a valid Computer
Center account number.

Complete the application form and return it to the Computer
Center office. You will be contacted when an on-line user number

has been assigned to you.

189

REQUEST FOR OLS USER NUMBER (OR CHANGE)

IF A CHANGE IS REQUESTED, ENTER USER NO.
INDICATE REQUESTED CHANGES ONLY., AND SIGN,

ACCOUNT CONTROLLER PHONE
PRINCIPAL USER PHONE
COMPUTER CENTER ACCOUNT NUMBER
FUNDS ALLOCATED TO THIS USER NO,
TERMINATION DATE FOR THIS USER NO,
ID NUMBER (UP TO 8 HEX DIGITS)

AUTHORIZED NAMES ON THIS USER NUMBER (THESE WILL BE CHECKED AT
SIGN ON, YOU MAY ALSO SPECIFY INDIVIDUAL LIMITS ON FUNDS AND

LIBRARY STORAGE),
NAME (16 CHARACTER MAX.) FUNDS (SPECIFY AMT.) LIBRARY STORAGE

DO YOU WISH TO ENTER A PROBLEM NAME? YES NO

MAXIMUM LIBRARY STORAGE IN BYTES (DEFAULT=150K)

MAXIMUM VECTOR LENGTH (DEFAULT=101)

MAXIMUM ARRAY DIMENSION (DEFAULT=20)

DO YOU PLAN TO USE PRIVATE DISK PACKS? YES NO

FOR COMPUTER CENTER USE ONLY

DATE RECEIVED

SIGNATURE APPROVED

DATE COMPLETED

REPLY

Figure A.1
190

Appendix B

The implementation of new features may occasionally intro-
duce errors into the existing system. Consequently, if you
encounter problems which in your judgement can be attributed to
software or hardware failures, please notify the Computer Center
at (805) 961-2274. If on-line personnel are available, your
call will be routed to the appropriate person. If no one is
available, the dispatcher will take down a message to be forwarded
to the appropriate person.

Figure B.1l, "OLS USER COMPLAINT," supplies the information
that Computer Center personnel need to solve your problem.
Particularly important is the key sequence which gave you the
error. Once you have notified the Computer Center of your
suspected problem, we shall attempt to solve the problem as

soon as possible.

191

OLS USER COMPLAINT

USER'S NAME PHONE NUMBER
LOCATION DATE TIME
USER# USER SYSTEM NAME

DESCRIPTION OF PROBLEM (INCLUDE SEQUENCE OF BUTTONS CAUSING TROUBLE):

REFERRED TO

DISPOSITION:

USER'S CALL RETURNED BY DATE

Figure B.1
192

Appendix C

@PLS SOFTWARE STRUCTURE & KEYBOARD DIAGRAMS

193

Vel

PLS

Region
_/1
SYST LOAD
—P+ Basic
LO

SYST STORE LO

SYST LOAD

—-

SYST STORE...

—

Active

PLS User
Permanent SYST LOAD Programs
Library - Cazgggt21

g
SYST STORE USER Genration
S
V

Active

Col
SYST LOAD >

- = - Files

SYST .SIQB_.lJJ;.. p

L1V

PRIMARY (LS DATA TRANSFERS

; Select
<4 A

Back
ground
regions

v

Batch
direct
access

storage

)

Other
QLS
Stations

Computer
Center
Printer

Computer
Center
Plotter

Chemistry
Plotter

(Chemistry
Card Reader

Punch

*
' > Printer
*Not implemented at
publication

Chemistry

I REAL

—— Semem—

Real
Scalars

S61

T1 CMPLX |

MOLSF sign on

RETURN |
YST LOAD COL -
—

omplex
Scalars

LII REAL

eal
ectors

LII CMPLX

Complex
Vectors

LIII REAL

eal
rTrays

LIII CMPLX

ﬁomp lex
rTays

LV REAL

Special
perators

Integers
L F T
TYPE

SYST LOAD MOLSF RETURN
AEERsERES SmtteEmE—— Ssease——

Ly

|
isplaﬂ
essagds

s

c—

—

' [Symbol
) lMessag€
uild Gener-
peciaﬂation
ymbolg

i YST
ibrary]
unctions

l

COL

L1

String
Manipulation

11

Record
Manipulation

LIII

File
Manipulation

—
[
—

LIV
Operating
Systems
Interface

| USER
I
t

ser

T

I
BASIC

@PLS SOFTWARE CONFIGURATION

BASIC SYSTEM: SYST KEYBOARD

I I1 REAL JCMPLX | SYST| USER TYPE | LIST
jLog in
.ﬂia. SQRT CONJ . B PROD SORT TEST
REFL DOWNJEVAL REPT
Log ouf
- SHIFT EXP ATAN CONYV LOAD JSTOR ENTER
3 Load Store
subfilelsubfile

DISPLAY < ESCAPE
SEL RESET

9

Display user library

, (after display): Displays all subfiles with common names

BASIC SYSTEM: TYPE KEYBOARD

.'.l... REAL |CMPLX | SYST} USER | TYPE |} LIST
SQRT |CONJ DIFF] SUM PROD SORT PRED TEST
Select
REFL
Line
feed
page
g SHIFT LOG ATAN CONV LOAD
Pause

DOWNJEVAL

DISPLAY < ESCAPE
SEL RESET
VL

Return: Carriage return.
Space : Advance to the right.
Back : Backspace to the left.

BASIC SYSTEM: MESSAGE/CHARACTER GENERATION KEYBOARD

i..' .. REAL [CMPLX | SYST| USER| TYPE] LIST
.aii. } . 3 SORT n

.. REFL 'm EVAL ... REPT

; SHIFT ATAN CONV LOAD |]STOR ENTER
Save
speciall
char.

DISPLAY < ESCAPE
SEL RESET

-

8

Display special character/message

Back : Delete last direction keypush.
Decimal point: Reposition the dot.

BASIC SYSTEM:

LO KEYBOARD

. REAL |CMPLX | SYST| USER| TYPE | LIST

Q@ SQRT JCONJ
Subt. | Mult. Pivide [Square *

REFL
Inter-
change
regist

rs

SHIFT ATAN DEL
0> 1
£0 0

DISPLAY

Display quotient reg. or storage

- .

LOAD

Declare
quotnt.

reg.

STOR

Save
quotnt
reg.

<&
SEL

—

DIFF . pRODISORT 1 TEST
NEG REPT
Negate

ENTER

ESCAPE
RESET

BASIC SYSTEM: EDIT LEVEL KEYBOARD

[Il .. REAL |CMPLX | SYST| USER| TYPE
4 in. e l DIFF pRODPRED -

RS

Left JRight
side side

Enter list
mode to
insert keys

ESCAPE
RESET

DISPLAY

Display user program

Back : Delete one key to left of pointer.
Space: Delete one key to right of pointer.
List : Leave EDIT level, enter LIST mode.

COL: LI KEYBOARD

i '.'.. REAL Jempix | sysT| user | Tvpe | LisT
- . SQRT Tond . DIFF . PROD|SORT pRED |TEST
l... 3

LOAD |JSTOR ENTER

Load Store
string String

DISPLAY < ESCAPE
SEL RESET

Display string

c0¢

Display active buffer and pointers, specified
record, or record length.,

OL:

.. REAL |CMPLX | SYST]| USER| TYPE| LIST
TEST
REPT

LII KEYBOARD (KEYPUNCH)

DEL JCONV LOAD]STOR
L.oad A
Delete record rggord
har. into to end
.ave Jof filg

DISPLAY <
SEL

—

Back:

Tab :
Set::
Clr :

Display preceeding record or
move active buffer pointer left.
Tab.

Set tabs.

Clear tabs.

ENTER

ESCAPE
RESET

LIIT KEYBOARD

'.'i.... REAL |CMPLX | SYST] USER| TYPE | LIST
VSQRT DIFF PROD SORT PRED JTEST
¢KB Sort
: ‘ _ .
RS REFL§ UP REPT
Insert Pelete
file i
SHIFT COS LOG ATAN CONYV LOAD }STOR ENTER
f
-

DISPLAY < ESCAPE
SEL RESET

¢c0¢

Display file or portion of file

COL: LIV KEYBOARD

I 11 | 11 REAL fcMpLx | sysT] user| Type | L1sT
.iiﬂ. SQRT JCONJ . DIFF T proo[sort [prep [rest
REFL EVAL | sus REPT
Submit
JOb
SHIFT| ATAN CONV LoaD [sTOR | ENTER
Load
@S datd
set

DISPLAY < ESCAPE
SEL RESET

Display status of jobs or devices

MOLSF: L1 REAL KEYBOARD

... REAL |CMPLX | SYST] USER| TYPE | LIST

CONJ DIFF PROD SORT PRED TEST
Invert

NEG REPT

Negate

DISPLAY <& ESCAPE
SEL RESET

oot

Display SI or storage location

MOLSF: L1 COMPLEX KEYBOARD

". .. REAL [CMPLX | SYST| USER| TYPE| LIST
SQRT CONJ INV DIFF PROD SORT TEST
Subt. | Mult. JDivideJSquare |Square fConju- [Invert
gate
VAV/A — -~ —
REPT
Switch fodulugConju-
o &BI :
HIFT ATAN CONYV ID JLOAD }STOR ENTER
D Save
Sine osine Natural{ Expon. Atan Omplex 20031 ,0 I’B) eclare
log 0,0 =1,0 (OLI,B) (OLI,BI)

DISPLAY < ESCAPE
SEL RESET

90¢

Display (aI,BI) or storage

MOLSF: LII REAL KEYBOARD

|||I|||||i||||)
CONJ
Invert ¥

SYST] USER
SORT
ingd Sort
) II

STOR

Save

contnts|
BII

DISPLAY < ESCAPE
SEL RESET

Cross-plot a;; and B11

MOLSF: LII COMPLEX KEYBOARD

i .. REAL [CMPLX | SYST] USER| TYPE] LIST
C) QD CONJ PROD SORT PRED |TEST
Subt. | Mult. gDivide |Square |Square Invert lorward unningRunning
sum
VAVA, g ~—
EVAL CTX REPT
Left i
hift odulugConju-
gate | § 7
N SHIFT ATAN DEL JCONV
(o]
Sine |JCosine] Log [Expon. Atan [omplexfreal
del on
B Gl TN

DISPLAY < ESCAPE
SEL RESET

Plot (a) in complex plane

II’BII

* (0ppsByg)

MOLSF: LIIT REAL KEYBOARD

'.... REAL |CMPLX | SYST|] USER| TYPE | LIST

CONJ SORT PRED TEST
Invert Jforwardrunning

: -

—

ENL CON |REPT

LOAD]STOR ENTER

BIII BIII
DISPLAY <& ESCAPE
SEL RESET

Plots BIII as a surface over a fixed X-Y grid

MOLSF: LIII COMPLEX KEYBOARD

I Il .. REAL [CMPLX | SYST] USER| TYPE] LIST
O @ [sqrT Jcong 1 proo SORT TEST

1

Subt. [Mult. [Divide |Square [Square Invert {Forward i u;ﬁng?ﬁ-

root i ff, ” i

EVAL REPT

fodulug ConJu_
gate

ENTER
DISPLAY ESCAPE
RESET
Plots BIII as a surface over a fixed X-Y grid

*
©r118517)

MOLSF: LV REAL KEYBOARD

CMPLX | SYST] USER]| TYPE

. DIFF . pronlsorT Ipren |TeEST
.. 3

<& ESCAPE
SEL RESET

DISPLAY

Display status of job

—

Appendix D

ON-LINE ERROR AND SYSTEM MESSAGES

The on-Line System displays various system and error
messages. The following list explains some of the more common
messages. The format for error messages is:

THE ERROR MESSAGE

Key or keys which usually cause the message to be displayed.

An explaination of the message.

Suggested user response.

System messages are followed by a page number in the text
which points to the explanation of the message.
AUTOSAVE CODE = number See page 15
CONTEXT ERROR
CTX level 0 operand RETURN (on MOLSF)
You have requested a vector or array dimension (s) that
is too large, zero, or negative.
Request a context within the allowed range. If the context
is less than 873, then your user number may have a
lower context limit and attempts to exceed that limit
will result in an error message.
ENTER USER NUMBER See page 15
EXPONENT OVERFLOW
Any sequence of keys on the mathematical levels (on MOLSF).
An operation has caused the exponent of a number to exceed

the hardware limitations of the computer.

212

Check your data and the order of your operators (for example,

the division of a very large number by a very small

value) and try again.
FILE LOADED See page 23
FILE NAME = See page 21

FIXED POINT DIVIDE CHECK

QD or INV with zero operand.

Division by zero on level 0 has been attempted.

Check your operand.
FORMAT IS Format See page 153
ID NUMBER = See page 15

INSUFFICIENT STORAGE

STORE USER level operator.

There is no more room for storing USER programs on the

specified USER level.

Store your USER program on another level or delete unwanted
programs and try to store again.

INVALID FILE TYPE

SYST STORE level mode

You have specified an invalid subfile type.

Try again, specifying what type of subfile you wish to store.

INVALID ID NUMBER
RETURN (after entering an invalid ID number)
Your entered values are not in accordance with the accounting

codes stored in the computer.

Inadvertantly, you probably pressed the wrong key, try again.

213

INVALID JOB CARD
LIV SUB (on COL)
You have attempted to submit through remote job entry a COL
file which contains a bad JOB card.
Go to level II and correct the JOB card, then resubmit your
file; or, make sure you submitted the proper file.
INVALID PARAMETER
Various key sequences.
A parameter list has been specified that is clearly invalid.
Try again.
INVALID USER NO.
RETURN (after entering an invalid user number)
Your entered values are not in accordance with the accounting
codes stored in the computer.
Try again.
JOB HAS NO STEPS

LIV SUB . . . RETURN (on COL)

You have attempted to submit through remote job entry a COL
file which contains only a JOB card.

JOB NAME

1]

See page 15
level mode operator UNDEFINED

level mode operator

The operator is not defined.

Use a different operator.

level operator UPDATED See page 46

214

LOAD See page 22
MEMBER LIST FULL
LII STORE or UP (on coL)
You have attempted to store more records in the active file
than the on-line system can handle.
Divide your file into smaller files and store them in the
library.
MODULE SECURITY CHECK

SYST LOAD . . . RETURN

You have attempted to load a language which is reserved or
restricted to Computer Center personnel.
Load another file name.
NO MATCH
MOD . . . (on COL)
The character string you were searching for does not exist
in the active buffer or active string.
Display the active buffer or active string to make sure the
character string exists, if it does, repeat the search.
NONEXISTENT STRING
MOD on the EDIT level specified a nonexistent string of keys.
The EDIT pointer remains unchanged. The user program is not
affected.
Respecify if desired.
NO RECORDS IN FILE
LIV SUB
You have attempted to submit through remote job entry a COL
file which has no records.

Check to make sure you have submitted the proper file,

215

NO SUCH OCCURRENCE
MOD . . . RETURN integer RETURN (on COL)
The multiple occurrence of the character string you were
searching for does not exist.
Check the second operand of MOD to make sure the occurrence
of the first operand you requested does exist.
NOT FOUND ON VOLUME
LIV LOAD unit RETURN volume RETURN dsname RETURN (on COL)
The data set name or member name requested can not be found
on the specified volume.
Check the data set name or member name and volume name.
If they are correct then the data set does not exist.

NO TEXT

STORE USER level operator

You have tried to store a program which has no keys.
Build a proper list and then store it. Note: to delete a
program use: DEL on the EDIT level.
NO TEXT IN PARAMETER LIST
USER level operator ()
A null parameter list was passed to a program containing

PRED.

Re-execute the program, entering a parameter list,
Note: A null argument may be specified by inserting
a comma between the parentheses.
OPERATION ABORTED

An invalid operand

216

The operand contained a key that was not valid for the re-
quested operator.
Check youe key sequence and re-enter it.
PARAMETER LIST NOT FOUND
USER level operator
A required data list for a program containing PRED (called
by the above keys) has not been passed to that program.
Re-execute the program, entering the parenthesized list
required.
PAREN ERROR INVALID EXPR

()

You have a key which is not allowed in a parenthesized
expression, or an invalid operand.

First check the list of invalid keys on page 188. Secondly,
check the operands in your expression.

PAREN ERROR NO TEMPS

c. .)

Your parenthesized expression has requested more temporary
storage space than is available.

Check to see if you have failed to press the closing right
parenthesis. Otherwise, you will have to simplify or

break down your expression into several expressions.

PAREN ERROR STACK OVRFLO
(---)

Your parenthesized expression is longer than the on line

217

system can handle.

Check to see if you have failed to press the closing right
parenthesis. Otherwise you will have to break down your
expression.

RECORD NOT FOUND

DISPLAY, LOAD, SUB, or DEL (on COL)

The requested record of a file cannot be located.
Check the number of the record and try again,
RESERVED NAME---RESPECIFY

RETURN (after entering a file name during a SYST STORE

operation).
The name used is already defined as a language.
Use a new name.
RESET COMPLETED See page 40
RESTART COMPLETED See page 17
SEARCH ERROR

LIIT DEL, ARG, or UP (on COL)

An operand referenced nonexistent records.
Manually check to see if the operation succeeded. If it
failed repeat it with a smaller operand. Please call the
Computer Center to report this error.
START LIST See page 44
STORE See page 21
SUBSCRIPT OVERFLOW
Interlevel operands (on MOLSF)

A component of a vector or array requested is outside the

218

bounds of that vector or array.
Check your subscript values.
SUBSCRIPT UNDERFLOW
Interlevel operands (on MOLSF)
A component of avector or array requested is negative or
Zero.
Check your subscript values.
TAB ERROR

LITI CONJ or TAB (on COL)

The "drum card" is invalid.
Recreate the drum card with SQ, try again, and please call
the Computer Center to report this error.
UNDEFINED FILE
RETURN (after entering a file name).
The computer cannot find the requested file or language.
Re-enter the file name being careful to make sure that it
is spelled properly.
UNLOCATABLE PARAMETERS

USER level operator (argument, argument,...)

The value of the PRED operand is negative, zero, or greater

than the number of parameters supplied in a PRED para-
meter list.
Correct the program and/or the 1list of parameters.
USER level operator UNDEFINED

USER level operator

The program requested has not been defined. Note: programs

219

have been stored under other operators on this user
level.
Create a new program and store it, or perform some other
operation.
USER level UNDEFINED

USER level operator

The particular program requested has never been defined:
i.e., no program has been stored under any operator
key on that level.

Create a new program and store it, or perform some other
operation.

USER NAME = See page 15
VOLUME IS BEING MOUNTED See page 100
VOLUME CANNOT BE MOUNTED

LIV LOAD unit RETURN volume RETURN

Either all the units of the type you specified are in use,
or the volume you have requested does not exist.

Check the spelling of the volume-serial number; if it was
correct wait five minutes and try again, or call the
Computer Center and make arrangements for the volume

to be mounted.

VOLUMES NEEDED = See page 103
WAITING See page 102
WAITING--RJE BUSY See page 105

WAITING TO PURGE
SYST DEL

Some other user is signed on your user number and is execut-

220

ing some operations which uses the user number library.

Patience, the operation should be completed in less than a

minute.
WORK AREAS PURGED See page 16
WORK AREAS UPDATED See page 16
(Post List Marker) See page 46

221

APPENDIX E

SAMPLE PROBLEMS

Appendix E consists of sample programs and sample problem
solutions using OLS. The problems are divided into five cate-

gories as follows:

A. Level I REAL

B. Level I CMPLX
C. Level il REAL
D. Level II CMPLX

E. Inter-level and miscellaneous examples

Most of the examples require the generation of a user
program or programs to solve the given problem. This approach
has been adopted since this is the normal mode of solving complex
problems on OLS. It is possible that some of the user programs
given in the examples can be adapted with minor changes to the

solution of your own problems.

A. LEVEL I REAL EXAMPLES
A.1 Write a user program to compute the square root of
a number N using the Newton-Raphson iteration procedure
x, +N/x
X :L—_—.—_l.(_

k+1 5

where Xy and X ,.q are the kth and (k+1)St approximations to the

square root of N.

222

Assume that both Xy and Xy, are to be stored in X, in turn,
and the number N, whose square root is to be taken, is stored in
N. The user program is to be stored under USER LI SORT. The

user program is constructed as follows:

LIST LI REAL LOAD NQ@ X @® X @ 2 STORE X DISPLAY

RETURN USER LI LIST

STORE USER LI SQRT

Note that the LIST key is pressed to place the system in the

LIST mode, the program is constructed, and LIST is pressed a

second time when the program is completed. The sequence STORE
USER LI SQRT stores the USER program under USER LI SQRT. To

display the user program, the keys:

USER LI DISPLAY SQRT

are pressed.
N and the first guess X, to the square root of N are now
manually loaded and stored under N and X respectively. Assuming

N = 3 and X, = 1, the key sequence:

LI REAL LOAD 3 STORE N LOAD 1 STORE X

accomplishes the storage.

To execute the square root program Hress

USER LI SQRT

The computer responds with the first guess at V3 by printing

2 on the output device. Successive depressions of SQRT yield

223

the following displays on the output device. NOTE: Only the
numerical values of the square root are displayed on the output
device. However, a user program could be written to generate

the column headings and the iteration number.

Iteration No. Square Root
2 1.75 + 00
3 1.73214 + 00
4 1.73205 + 00
5 1.73205 + 00

After the fifth iteration the square root is determined within
the accuracy of MOLSF. It should be noted that the program ends
on level USER LI so that, once the user level has been specified,
the user program can be executed by simply pressing the key
under which it has been stored (in this case SORT).

If it is desired to repeat the program ten times the

sequence :

USER LI REPT SQRT 10 RETURN

accomplishes this function. Alternately one could press:

REPT (USER LI SQRT) 10 RETURN

A.2 Write a subroutine to solve the following system of

simultaneous algebraic equations:

X + 0.20y + 0.50z = 2.00
0.20x + y + 0.30z = 1.00
0.50x + 0.30y + z = 3.00

224

A variety of methods are available for solving sets of algebraic
equations. The Gauss-Seidel iteration method will be used for
this example. To use this approach the above equations are re-
arranged by solving for x, y, and z in the first, second and

third equations to vield

>
1

2.00 - 0.20y - 0.50z (1)

<
1]

1.00 - 0.20x - 0.30z (2)

8]
]

3.00 - 0.50x - 0.30y (3)

The Gauss-Seidel method involves assuming values Yo and Zg for

v and z and solving for x in Equation (1) to yield X135 X and
z, are then used in Equation (2) to find Vs Equation (3) is

solved for z., using X

1 1 and Yy- The values Yy and z. are sub-

1

stituted back into Equation (1) to determine X, and the itera-
tion is repeated until some convergence criterion is satisfied.

A user program to implement the Gauss-Seidel solution for

equations is as follows:

LIST LI REAL

LOAD 2@ (.20 Y) O (.50 2Z) STORE X DISPLAY RETURN

LOAD 1 © (.20 X) © (.30 Z) STORE Y DISPLAY RETURN

LOAD 3 QO (.50 X) © (.30 Y) STORE Z DISPLAY RETURN

USER LI

o

IST

STORE USER LI ®

Assume that Yo = 2 1 are the initial approximations for

0
y and z and that these values have been stored in Y and Z respec-

tively. The results of the first 9 iterations of the above

225

program are listed below:

Iteration No. X,Y,Z Iteration No. X,Y,Z
1 1.3 +00 6 6.62036 -01
4.4 -01 7.378 -02
2.218 +00 2.64685 +00
2 8§.03 -01 7 6.6182 -01
1.74 -01 7.3582 -02
2.5463+00 2.64701 +00
3 6.9205-01 8 6.61776 -01
9.77 -02 7.3541 -02
2.62466 2.64705 +00
4 6.68127-01 9 6.61767 -01
7.8975 -02 7.3532 -02
2.64224+00 2.64706 +00
5 | 6.63083-01
7.4711 -02
2.64604+00

As indicated by the outputs, the program has for all intents
and purposes converged to a solution after 9 iterations. A con-

vergence test and driving program could be added to this program.

A.3 Use the Newton-Raphson method to obtain one root of

the polynomial equation:

F(x) = x4 - x3 - 8x2 - 4x - 48 = 0

The Newton-Raphson approach employs the iterative equation

f(xn)
n+1 n frx))

226

where

1 - — =
f (xn) Ix X X
. 3 2 . .

Since f'(x_) = 4x - 3x - 16x_-4, the previous equation be-

n n n n v '
comes

(x. Yo x P Cosx P o oax - as)
N - x - n n n n
n+1 n (4x 2 - 3x % - 16x_ - 4)
n n n

A user program which will solve the above equation is as follows:

LIST LI REAL

LOAD XOQ 1O XO8O0XO 40X 480
(XOQ4030XO16OX0O 4) NEGO® X
STORE X DISPLAY RETURN USER LI LIST

STORE USER LI SIN

Assume that the initial approximation for x is 5 and store

this value under LI REAL X. The program will converge to X = 4.0

after 4 iterations as indicated by the output shown below.

Iteration No. Value of Root X
1 4.31965 +00
2 4.0454 +00
3 4.00108 +00
4 4. +00
5 4. +00

227

B. LEVEL I CMPLX EXAMPLES

B.1 Write a user program which will accept a complex
number a + ib and convert it to polar form AZ@_where A =
a2 + b? and 6 = arctan (b/a). The program should display both
A and 9.

The user program for this example would be as follows:

LIST LI CMPLX MOD Q DISPLAY RETURN ARG Q © 57.2958

DISPLAY RETURN USER LI LIST

STORE USER LI LS

The program assumes the number a + ib has been stored in Q.
The instruction MOD determines the magnitude A and the ARG
instruction determines the angle 6 in radians. If the complex

number 1 + i were stored in Q the output on the display scope

would be
1.41421 +00, 0. +00
4.5 +01, 0. +00
after execution of the program. The first number represents A

and the second is the angle 6 in degrees.
It is often desirable to store the magnitude and the angle
of the polar form of a complex number in a single complex storage

location. This can be accomplished by:

LIST LI CMPLX ARG Q REFL REAL STORE P CMPLX MOD Q

REAL LOAD P CMPLX STORE Z DISPLAY RETURN USER LI LIST

STORE USER LI RS

228

Here the angle is left in radian measure. For Q = 1 + i the

result would be displayed as:

1.41421 +00, 7.85398 -01

Alternatively, one might use the complex natural log opera-

log (a + ib) = logVa2 + b2 , arctan (b/a)

as follows:

tion:

LIST LI CMPLX LOG O REFL REAL EXP CMPLX REFL STORE Z

DISPLAY RETURN USER LI LIST

STORE USER LI REFL

B.2 Write a user program which will accept the polar form

A 6 of a complex number, stored as two complex numbers A = A + 0i
and W = 6 + 0i, and convert it to the form a + ib. The angle @
is to be in degrees. Note that:

AJB = A ele = A(cos B8 + i sin 8)
The user program to accomplish the conversion is as follows:

LIST LI CMPLX LOAD W @ 57.2958 REFL EXP O A DISPLAY

RETURN USER LI LIST

STORE USER LI MAX

The program initially converts the angle 6 to radians. The

instruction REFL interchanges the contents of the (aI, BI) register,

229

so that 6 is now in the imaginary portion &, and the BI contents

I
are zero. The key EXP forms e16 which is then multiplied by A
to yield a + ib.

If A Z@ were 1.41421 {4 °, i.e. A = 1.41421,0 and W = 45,0

then a + ib would be computed and displayed as:
9.99997-01, 9.99997-01

on the display scope.
If the polar form is stored as a single complex number
Z = A, & (0 in radians, or readily convertible to radians by

REAL @ 57.2958), the program is:

LIST LI CMPLX LOAD Z REFL REAL LOG CMPLX REFL EXP

STORE Q DISPLAY RETURN USER LI LIST

STORE USER LI MOD

Here the magnitude A is replaced by log A before the exponenti-

ation, so the computation is:
elog A+ 16 _ A e16

C. LEVEL II REAL EXAMPLES
C.1 Write a user program which will generate the family
of Hermite orthogonal polynomials on the domain lx’ < 1.

We use the recursive relation:

Hn+1(x) = 2[an(x) - an_l(x)]

230

which together with Ho(x) = 1 and Hl(x) = 2x completely charac-
terizes the functions.

The program for computing the Hermite polynomials consists
of a preparation program stored under USER LII ® , which loads
and stores the initial values of n, x, Ho(x) and Hl(x) and then
initiates USER LIT @ , which constructs and displavs Hn+1(x),

given Hn(x) and Hn_l(x).

Preparation Program USER LITI ®

LIST LT REAL ID STORE N LIT REAL CTX 101 ID STORE X

© 2 STORE H LOAD 1 STORE J USER LII © LIST

STORE USER LII ®

Principle Program USER LIT (©®

LIST LII REAL LOAD J C)LEAN STORE W LOAD H STORE J

O XOWQE 2 STORE H DISPLAY RETURN LI REAL LOAD N® 1

STORE N USER LIT LIST STORE USER LII @

Note the program USER LII @ also increments n and advances
Hn and Hn—l’ so that, if repeated, it will generate a continuing
sequence of the polynomials. The instruction @ LI N means
"multiply the entire level II vector by the number stored in
level T N." The Hermite polynomials H2, H3, and H4 on the domain
|x| < 1 as obtained from the above program are depicted in Figure

E-1. Note that no consideration has been given to scaling of

these curves.

231

Figure E-1. Hermite polynomials H,, Hz, and Hy
on the domain |x| < 1.
(Not scaled)

C.2 Write a user program which will plot t sin wt versus
t cos wt. The program is to crossplot these functions for some

initial value of w, say wo. Then wo is to be incremented to a
new value Wy the wg plot erased, and a new plot using Wy displayed.
The program is to continue in this fashion until it terminates

at w

w .
max

A user program which accomplishes the above functions, with
w = 2w_ and w = 300, is shown below and is assumed to be
n+1 n m
stored under USER LII REFL. The parameter w is stored under

LI REAL W.

232

LII REAL ERASE ID STORE TQ® LI W STORE P COS @ T

STORE C SIN P O T SUB C DISPLAY RETURN LI LOAD wWQo 2

STORE W © 300 TEST + RS (TYPE RETURN DONE) USER LITI

REFL

To execute this program with Wy = 6.28, push

LI REAL LOAD 6.28 STORE W USER REFL

Figures E-2 and E-3 show the plotted output for w = 12.56

and 50.24, respectivelv.

Figure E-2. Displav of t sin wt versus t
cos wt for w = 12.56

233

Figure E-3. Display of t sin wt versus t
cos wt for w = 50.24

D. LEVEL II COMPLEX EXAMPLES

D.1 Write a user program to determine the number of roots

of the polynomial 23+ 322+ 7+ 2 enclosed in the circle |[Z]| < 2.
The technique used is to map the circle in the Z-plane to
3 2

the Z° + 3Z" + Z + 2 plane and note the number of times the trans-

formed figure encloses the origin.

LIST LII CMPLX ID . @ 2 STORE Z@®@30z010z®2

ARG REFL LI REAL LOAD LII (1) STORE B LOAD LII (124)

© B O 6.28 DISPLAY RETURN LIST

STORE USER LII UP

LI REAL LOAD L (n) will load the nth component of the level II

working register BII into the level I working register BI.

234

D.2 Given that a particle in a stream flows unobstructed

for 5 units as shown below in the w-plane,

Flow w-plane
B
. 0,.5 >
-2.5,.5 2,5,.5

compute the flow of the particle if a cylindrical piling is

placed as shown.

Flow Z-plane
/’—- TN
’
I/ \\\
! 1 \
! 1
1
\ 0,0 /
\ /
\ y
N o
Piling
The transform is w = Z + % or, inversely, Z = 9—:§~2—;i
w -Vw?-4
. To find which of these is applicable, com-

or Z = 5

pute both and display them.

235

LIST LII REAL ID CMPLX ® 2.5 REAL LOAD .5 CMPLX STORE

W SQ O 4 SQRT STORE R® W@ 2 STORE Y DISPLAY RETURN

LOAD W(® R @ 2 STORE Z DISPLAY RETURN LIST

STORE USER LII DOWN

Inspection of the curves indicates that the second one is
correct. To duplicate Figure E-4, where the unobstructed path
(W) and the path Z around the piling are shown to scale, with

the piling, constuct a unit circle to represent the piling by:

LIT CMPLX ID . STORE P

Determine the scales of W, Z, and P:

LTI CMPLX LOAD W DISPLAY O RETURN LOAD Z DISPLAY

0 RETURN LOAD P DISPLAY 0 RETURN

They are, respectively, 2, 1, and 0, so all three curves should

be displaved to a scale of 2. To accomplish this, push:

LIT CMPLX DISPLAY W LOAD Z CON DISPLAY RETURN

LOAD P CON CON DISPLAY RETURN

Alternately one could press:

LIT CMPLX DISPLAY , 2 W Z P RETURN

The 2 may be omitted. If it is omitted MOLSF will compute the

maximum display scale possible.

236

E. INTER-LEVEL AND MISCELLANEOUS OPERATIONS

E.1 This sample program allows for manual creation of

level II vectors.

LIST LII REAL CTX PRED 1 ID X LOAD 0

LI REPT (LOAD ENTER DISPLAY RETURN

STORE LII (N)) N=1, PRED 1 LII LIST

STORE USER LI ©

To create a vector with three components i.e. (1.6, 0, 29.9),

one would manually press:

USER LI @ (3) 1.6 ENTER 0 ENTER 29.9 ENTER

237

E.2 A simple example using the convolution integral program

on LII REAL is the convolution of two rectangular pulses. Assume
that the rectangular pulse f(x) = f(xl, X5 c ey xn) defined by
f(x47, Xygs +ovs x51) =1
f(xl, cees Xyqs XSZ’ c ey x101) 0
is to be convolved with itself. The kernel k(x) for this case

is the same as f(x) and the desired weighting in the integration
is 1.

Convolution can be thought of as being obtained by trans-
lating the kernel k(x) to a particular alignment with f(x) and
then determining the area under their product as the folded
function is slid along the horizontal axis to the right.

The actual computations effected by the convolution integral
program can be easily interpreted in terms of Figures E-5 through

E-7. Initially £(x) is generated and displayed by the sequence

LIT REAL ID LOAD 0 LI LOAD 1 SUB 47 NEG SUB 52

LIT SUM DISPLAY RETURN

and is shown in Figure E-5.

Assume that the function f(x) and kernel k(x) are stored
under F and K, respectively. The instructions STORE F K accomplish
this operation. The convolution of the two functions is now

accomplished by pressing

LOAD F CONV K, 49 DISPLAY RETURN

238

The first thing the convolution program does is to translate
k(x) and align it with respect to f(x). For this example, the
49th component of k(x) is aligned with the first component of
f(x), as shown in Figure E-6. The area of the product (zero
in this case) is determined and saved in the first component
of BII' The function k(x) is now slid to the right, one step
at a time; the area of the product is determined at each step,
and stored in successive components of BII' Figure E-7 shows
the case where k(x) and f(x) are coincident. The area for
this case is 5.

At the end of the operation the BII register contains the
convolved function, which is depicted in Figure E-8, and is a

triangular function with a maximum value of 5 occurring at X 9

e - - - -

1 45 47 49 51 53 ‘ 101
x —p»

Figure E-5. f(x)

239

1 47 49 51 101

k (x)

T%

=

47 49 51 53 101

Figure E-6. k(x) translated and aligned with f(x)

f(x)

(c

L/

=
~
~
S
(o)

51 101

k (x)

s - - - - - -

¥

1 47

¥

51 101

~
©

Figure E-8. Convolution integral f(x) * k(x)

240

Convolution integral
> bo F(x) * K(X)mmmmmmo-
0 2 r

1 43 45 47 49 51 53 55 101

Figure E-8. Convolution integral f(x) * k(x)

E.3 From the data

P(atm) V(liters/mole)

50 0.4634
100 0.2386
200 0.1271
300 0.09004

calculate the second virial coefficient, B, for H2 at 0°C (273°K).

The virial equation is

PV B C
—_ =] + = + = +
RT Vo2
so plot
{](..PL_/. - 1) = B + E‘_ +
RT =
Vv
Vs 1 d extrapolate to L. 0
vs ¢ an D v
On-line solution
First it is necessary to enter the data. This may be done

by loading the numbers into the level I B working register and

241

substituting them into consecutive points of a level II vector

of the appropriate context.

LIT REAL CTX 4

ID X

Changing contexts often makes displays look strange - the ID in
the sequence simply is there to adjust the system to displays
of 4 points from what ever it might have been before.

So to load the data for P:

LI LOAD 50 SUB 1

LOAD 100 SUB 2 LOAD 200

SUB 3 LOAD 300 SUB 4

This sequence takes the level I data as it is loaded into the
level T B register and substitutes it into the 1st, 2nd,

points of the level II B register.
LIT STORE P

stores is away in P. A display of P would look like (roughly)

24 2

The same procedure could be followed for 9; however, it's simpler
to use sample program E.l1 which does essentially the same thing

as was done for P except it is more automatic,

USER LI ©

calls the program;

(4)

tells it that 4 data points are to be entered;

0.4634 ENTER 0.2386 ENTER
0.1271 ENTER 0.09004 ENTER
STORE V

loads the data and stores it in V. A display of V would look

like (again roughly)

now make the function

PV

VigT

-1

243

and store it someplace - say F

LII LOAD POV @ 0.0821 O 273

© 1OV STORE F

1
also make v

LOAD V INV STORE X

At this point, one can look at all of the functions, i.e.
P, V, F and 1/V, but what you really want is to plot F vs 1/V.
A1l displays so far on level II have been relative to an ID
(-1 ... +1) vector stored in what is called the level II a
register, hence to see F plotted vs 1/V it is necessary to
substitute 1/V into the level II a register. To do this you

push the keys:
SUB X

SUB X takes what is stored in X and puts it into the level II «
register; from now until ID is pushed again, all displays will
be relative to the vector stored in X rather than to an ID
function.

Now

DISPLAY F

will give you the plot you want, i.e.:

244

b wm e o — - s - - - - — - - -]

Since 1/V and F are both positive the entire display is in the

first quadrant of the screen. A

DISPLAY ... RETURN

will give you the points, i,e:

Now seeing that the last three points all lie roughly on a
straight line, extrapolate to 1/V = 0 to get B (the intercept)

i.e.

245

<|=

There are 1lots of ways to do this; one way is to use the DIFF

operator. DIFF operates on the level II B register to give a

vector of first differences, i.e. suppose we say:

DIFF F

F F -F

10 Fz7Fp Fy-Fg,
FS-F4). Notice that the vector of first differences has an F

What happens 1is (Fl, FZ’ FS’ F4) becomes (F2-F

5

in it - it is not really FS but an extrapolation which is done
so that the difference vector will also have 4 points (instead

of 3). Anyway store it somewhere say D, i.e:

STORE D

Now load X(= %) and Diff it, invert, and multiply by D to get

246

the slope:

To get a normal looking display of S push:

which should look roughly 1like:

with the

that the

then the

displays

on level

DIFF X INV O D

STORE S

10

DISPLAY S

—— g - —— — w— oy > = e wm -

last 3 points approximately constant.

slope is given by:

third point of S is this number,

DISPLAY 3 RETURN

SO :

its numerical value on the screen.

I;

to do this push:

247

If we assume

Now lets store it

I LOAD LI (3) STORE S

which takes the 3rd point out of the level II B register and
stores it in the level I storage location S (note that S on

level IT and S on level I are completely independent of each

other) .

Now finally to get B calculate

[Vir - 1) - =1%2] - 5
\%

where the slope = C in our original equation. So

LOAD X @ LI S NEG ®

F DISPLAY 3 RETURN

gives the value of B which is what we were looking for in the

first place.
A few comments:
The operation ... @ LI S ... is

1) '"multiply the entire level II vector by the
number stored in level I S"

2) ... LI LOAD LII (3)
is the exact opposite of the level I SUB
operator used to get the data in; that is,
it takes a single number out of the level

ITI B register and copies it into the level
I B register.

E.4 Calculate the work involved in expanding 1 mole of
802 isomthermally and reversibly from a volume of 2.46 liters

to 24.6 liters at 27°C (300°K) using

248

a) 1ideal gas law; PV = RT (for one mole)
b) Van der Waals' equation:

(P + 32)(v - b) = RT
v

where a = 6.714 and b = 0.05636 for SO

2
The work is given by
V2
W = [npdv
Vl
now since it is an isothermal process, so for part a) P = RT/V
hence
2
W = RT S dv
%
1
\Y
W = RT In o=
v
1
where R = 1.987 calories/deg mole. First lets do it on level I
LI REAL LOAD 24.6
Q 2.46 L0G © 300 O
1.987 DISPLAY RETURN
The answer should be 1372.56 calories. However, lets also do
the problem by carrying out directly the integration. First go

to level Il and set up V (with a range of 24.60-2.46 = 22.14)

LIT REAL CTX 124 RETURN _I_B@ 10 2

O 22.14® 2.46 STPRE V

We will assume an integration routine (LII REAL STORE I

249

DIFF Q-6 ® I DIFFQ 2@® I ® D RS LI LOAD O SUB 1 LII SUM)

has been stored under USER LIII SUM - part of its usage

is that we are required to store in D a vector representing the
differential of the independent variable; i.e. in this case AV.

So (since V is still in the B register)

DIFF STORE D

now make P = RT/V

LOAD 1.987 © 300 @Q V
and integrate it

USER LIITI SUM

and display it

DISPLAY RETURN

which will look like

Vv
s RT gy
— 2.46 V'
v T 2 |
v -
for 2.46 <V The last point is the
definite integral
< 24.6 24.6 oo
/ 7 4V
2.46

This point is zero as it should be since it is

f2.46 RT
2.46 V. ©

250

DISPLAY 124 RETURN

displays the value of the integral f24'6 PdVv. From this display

2.46
one could say a number of things about the nature of the work one
gets in expanding a gas, for example.

Most of the work is obtained early in the process - if we

look at the integrated equation (solved earlier)

W = RT 1In

<‘<
N

1
we see that one gets RT 1In 2 each time the volume doubles during

the expansion - so in going from:

2.46 1 - 4.92 1 =>RT 1n 2 worth of work
4.92 1 > 9.84 1 =>RT 1n 2 worth of work more

9.84 1 »19.68 1=>RT 1In 2 worth of work more

Lets store the integral representing the work and see if this

is true by using the EVAL operator. First, however, a descrip-
tion of EVAL; suppose you have one vector stored in the level

IT B register and another in the level II o register. This then
defines a function, i.e. a one-to one correspondence between 2

sets of numbers, schematically we have

LTI register

3
\
£

X)

LITI o register

X

251

Now suppose you have a third vector stored somewhere else - say
under K. Pushing EVAL K then does the following: it takes the
first point of K and searches the level II o register until it
finds a number which is equal to K(1); it then takes the corres-
ponding point in the level II B register and stores it as the
first point of a new vector; it goes to the second point of K,
searches the level II o for its equal, takes the corresponding
point of the level II B and stores it as the 2nd point of the
new vector and so on until it runs all the way through K. Gen-
erally, however, it won't find an exact equivalence between the

points of K and the level II o so it interpolates, i.e.

//,——ib

point in level II B
corresponding to
G.L.B. in level II
() i.e. £{G.L.B.)

point in level I B corresponding
to L.U.B. in level II a, i.e.
f(L.U.B.)

*

lowest upper bound (L.U.B.) in

greatest lower level ITI relative to K(n)

bound (G.L.B.)
in level II o

relative to K(n) linearly interpolated

value of nth point in
new vector correspond-
K(n) ing to K(n)

When it is all done the level II o contains K, and the level ITI
B register has the new vector made according to the process
just described. Given X and f(x), we take a K and make f(K)
with f(K) having the same functional relationship to K that f(x)
had to X. Anyway it is a nice thing which has far more powerful

uses then what we will do with it here.

252

Okay - so back to finding the work corresponding to the incre-
mental doubling of the volume - we have a V and £(V) = work for
the range of 2.46 < V < 24.6 hence we can take a V = 4.96 and

find £(4.96) etc. First store the integral = work

£(V) in W

and proceed:

STORE W LOAD 4.96

STORE K LOAD W SUB

V EVAL K DISPLAY

1 RETURN

which will give the work corresponding to the expansion from

2.46 »~ 4.96 liters:

LOAD 9.84 STORE K

LOAD W SUB V

EVAL K DISPLAY 1 RETURN

which will give the work corresponding to the expansion from
2.46 » 9.84 which should be just double the work from 2.46 -
4.96 -- anyway continue for the others in the same way.

The second part of the problem was to do the calculation
for the Van der Waals' equation. The integration can be done
in closed form, however, we will proceed with the numerical

integration.

First evaluate P = RT/(V-b) - a/V2. Then integrate it and

display the last point:

253

SQ V INV O

6.714 NEG STORE A LOAD

VO 0.05636

INVE 1.987 © 300 ® A

This evaluates P:

USER LIII SUM

This integrates it:

DISPLAY RETURN 124 RETURN

and this displays the whole integral and the last point on it.

254

Appendix F

FORTRAN SUBROUTINE CALLS FOR TRANSFER OF LII VECTORS
TO AND FROM AN ONLINE TERMINAL

The following subroutines are available to a FORTRAN program
(G or H level).
(1) Fetch data from an online terminal:

Calling sequence: CALL FOLS(argl,argz,argS)

Arguments:

arg,: A positive integer constant
or variable indicating the
number of components to be
fetched from the online
terminal.

arg,: A real scalar variable, a
real array name, or an ele-
ment denoting the receiving
field for the transfer.

argq: An optional integer variable
which will contain the contents
of the LO quotient register.

(2) Transfer data to an online terminal:
Calling sequence: CALL TOLS (argl, arg,, arg3)
Arguments:

arg,: A positive integer, constant or
variable indicating the number
of components to be transferred
to the online terminal.

arg,: A real scalar variable, a real
array name, or an element de-
noting the source field for the
transfer.

argq: An optional integer constant or
variable specifying the new
contents of the LO quotient
register.

255

Appendix G
REFERENCES RELATED TO ON-LINE SYSTEM APPLICATIONS

This appendix contains a list of references concerning various
applications and problems which have been solved using earlier forms
of the system described in this manual. Simply referring to this
appendix will illustrate something of the variety of capabilities
available with the system.

Bruch, J. C., Jr: "Free Streamline Theory and Computer

Generated Displays.'" Article submitted for review and pub-

lication in the ASCE Journal of Engineering Mechanics Division,
August, 1970.

s "Hydrodynamics Through On-Line Computer
Generated Displays.'" Handbook, College of Engineering, Univer-
sity of California, Santa Barbara. (Xeroxed.)

, "Two Dimensional Flow Visualization Using
Computer Generated Displays.'" Article submitted for review
and publication in the ASCE Journal of the Hydraulics Division,
August, 1970. l16mm educational/demonstration movie, Learn-
ing Resources Motion Picture Production Section, University
of California, Santa Barbara, California, 1970.

Bruch, J. C., Jr. and J. A. Howard: "Flow Visualization in
Hydrodynamics Using On-Line Generated Displays.' Paper
presented at the Pacific Southwest ASEE Annual Meeting,
University of California, Davis, December 29-30, 1969. 16mm

movie, Learning Resources Motdion Picture Production Section,
University of California, Santa Barbara, California, 1969.

Bruch, J. C.,Jr. and R. C. Wood: '"The Teaching of Hydrodynamics
Using Computer Generated Displays.' Bull. Mech. Engng. Educ.,
Vol. 9 (May, 1970). 105-115.

Economics lLaboratory (Innovative Project in University Instruc-

tion), University of California, Santa Barbara: '"Economics
Data Bank Handbook." November, 19609.
, '"Economic Statistics: Handbook for the On-Line
System.'" December, 1969.
s ""Macro-and-Micro Economic Models." Handbook, October,
1969.
, ""Purpose and Functions." Report, September, 1969.

256

, '""Sample Instructional Materials." November, 1969.

» "Teleputer Handbook, Revised Edition.'" December,
1969.

Bullock, D. L.: "Exchange Ratios in CuF2 2H20.” TRW/STL
Report 9891-6001-RU-000, April 1965.

Cheng, Hung, and David Sharp: "Formulation and Numerical
Solution of Sets of Dynamical Equations for Regge Pole
Parameters.'" Phys. Rev. Letters, Vol. 132, p. 1854, 1963.

Collins, L: '"The Calculation of Unpaired Electron Density
on the Nucleus of Many-Electrons with a Thomas-Fermi-Dirac
Potential." Ph. D. Dissertation Dept. of Physics, Univ. of
Calif., Santa Barbara, Calif., October, 1966.

Cooperstein, B. D: '"OGO-F Electromagnetic Compatibility
Analysis (Final Report).'" TRW IOC 8212.1-021, January 26,
1968.

Cooperstein, B. D. and W. R. Johnson: '"1967 Plant Methods
and Processes Studies in: Electrical Bonding and Computer
Applications." TRW Report No. 8212-94, November 1967.

Corwin, C. W.: "Computer Aided Design of Torsion Wire
Suspension for a Satellite Stabilization Boom." TRW I0C
56-3340.6-28, August 12, 1966.

Coward, D. J.: '"On-Line Computer Test Cases for Computer
Aided Design: Structural Design of Cylindrical Shells."
TRW IOC 65-9715.9-110, Aug. 24, 1965; "Design of Helical

Springs.'" TRW JOC 65-9715.4-104, Dec. 3, 1965; "Flexure
Design Problem." TRW IOC 65-9715.6-22, Dec. 9, 1965;
"Structural Design of a Beam with Varying Loads.'" TRW I0C

66-9713.1-14, Jan. 12, 1966.

Culler, G. J., B. D. Fried, R. W. Huff, and J. R. Schrieffer:
"Solution of the Gap Equation for a Superconductor." Phys.
Rev. Letters, Vol. 8, p. 399, 1962.

Culler, G. J. and R. W. Huff: "Solution of Nonlinear Integral
Equations Using On-Line Computer Control." Proc. AFIPS Spring
Joint Computer Conference, National Press, Palo Alto, Calif.,
Vol. 29, p. 126, 1962.

Deland, R. W.: "On-Line Computer Program Gas Pressure Mass
Accelerator.'" TRW IOC 66-4722.5-2, August 9, 1966¢.
DeNuzzo, J.: "On-Line Solution of 2-D Trajectory Equations."

TRW/STL Report 9801-6013-TU-000, May 1965.

257

Dixon, W. J.: ""AV to Enter Orbit About Mars.'" TRW I0C
VM-2, April 1965.

Emmerling, R. C.: "On-Line Computer Programs: Toroidal
Diaphragm Analysis.'" TRW IOC 66-3520.4-26, September 27, 1966.
Ewig, C. S., J. T. Gerig, and D. O. Harris: '"An Interactive

On-Line Computing System and its Use in Chemistry Education."
Department of Chemistry, University of California, Santa Barbara.
(Xeroxed)

Field, E. C., and B. D. Fried: "Solution of Kinetic Equation
for an Unstable Plasma in an Electric Field." Phys. Fluids,
Vol. 7, p. 1937, 1964.

Fried, B. D.: "On-Line Root Finding in the Complex Plane."
TRY Report No. 9990-7308-RU-000, July 1966.

Fried, B. D.: "Solving Mathematical Problems.'" Chapter VI
of On-Line Computing, edited by W. J. Karplus, pp. 131-178,
McGraw-Hi1ll, 1967

Fried, B. D., and A. Y. Wong: "Stability Limits for Long-
itudinal Waves in Ion Beam-Plasma Interaction.'" Phys. Fluids,
Vol. 9, p. 1084, 1966.

Fried, B. D. and C. L. Hedrick: '"Two-Pole Approximation for
the Plasma Dispersion Function." Phys. Fluids, Vol. 11, p.
249, 1968

Fried B. D., and L. O. Heflinger: '"Scaling Law for MHD
Acceleration.” TRW Systems Report 9801-6014-RU-000, July

1965.

Fried, B. D., and G. J. Culler: ' Plasma Oscillations in an
External Electric Field." Phys. Fluids, Vol. 6, p. 1128, 1963.
Fried, B. D., and S. L. Ossakow: "The Kinetic Equation for

an Unstable Plasma in Parallel Electric and Magnetic Fields."
Phys. Fluids, Vol. 9, p. 2428, 1966.

Heflinger, L.: "On-Line Console Program of General Interest:
Generation of Random Numbers.' TRW Report No. 9863-6004-RU-
000, Feb. 1, 1966.

Howard, J. A. and R. C. Wood: '"Computer-Assisted Instruction
in Engineering Using On-Line Computation.'" J. Of Engineering
Education (in press).

Hrzina, J.: "Application of Mathematical Optimization Theory
in Structural Design." AIAA Paper No. 68-174, New York, New
York, January 22-24, 1968.

Hrzina, J.: "The TRW On-Line Computer as a Labor-Saving
Device for the Expansion of Functions in Fourier Series."
EM18-2, TRW/TR 99900-6544-T000, March 11, 1968.

258

Hrzina, Joseph: "Structural Optimization - A Utilization of
the TRW On-Line Computer." EM 17016, TRW/TR 99900-6332-R000,
September 15, 1967.

Hutton, R. E.: "An Investigation of Soil Erosion and Diffused
Gas Blow-off Caused by the Surveyor Vernier Engine.'" Prepared
for Jet Propulsion Laboratory, California Institute of Tech-
nology, Pa adena, Calif., by TRW, December 1, 1966.

Hutton, R. E.: "An Investigation of Soil Erosion and Its
Potential Hazard to LM Lunar Landing.'" NASA MSC Project
Technical Report 05952-6056-R000, Task ASPA 47, (TRW EM
17-11),May 1967.

Hutton, R. E.: "An Investigation of Soil Erosion During LM
Lunar Landing.'" NASA MSC Project Technical Report 05952-
H210-R0O-00, Task ASPA 47, (TRW EM 17-11), May 1967.
Ishimoto, T.: "FACT-CAD Program." TRW IOC 683346.6-10, May
20, 1968.

Johnson, Kenneth, and Marshall Baker: "Quantum Electrody-
namics." Phys. Letters, Vol. 11, p. 518, 1963.

King, J. R.: '"Computer Aided Design [Diffusion Bonding and

Effective Stress vs. Strain for an Orthotropic Materiall."
TRW I0C 4812-94, December 9, 1966.

Kinsey, P., C. S. Ewig, and D. 0. Harris: "Introduction to
the UCSB On-Line Computing System.'" Department of Chemistry
University of California, Santa Barbara, 1970.

Margulies, R. S§.: '"Response of a Peak-Reading Instrument

to a Contaminated Signal." TRW/STL Report 9990-6963-TU-000,
June, 1965.

McCune, J.: "Exact Inversion of Dispersion Relations."

Phys. Fluids, Vol. 9, pp. 2082-84, 1966.

Newhall, D. H.: "Monte Carlo Simulation of a Fixed Attitude
Orbit Control Scheme." TRW IOC 9883.6-68, July 15, 1965.
Nishinago, R. G.: "Preliminary Design Considerations for a
Gyro-damped Gravity Gradient Satellite." TRW/STL Report
8427-6005-RU-000, May 1965.

Pate, N. C., and S. N. Zivi: ™"An Analysis of the Efficiency
of Elliots Liquid Metal MHD Energy Conversion Cycle and Its
Applicability to the Power Range of 3 to 30 KWE." TRW Systems
Report 9806-6002-MU-000, July 1965.

Rampton, C. C.: "On-Line Computer Program for Computing
Buckling Loads on Pin Ended Columns with Variable Moment of
Inertia.”"™ TRW I0C 66-3342.1-155, September 26, 1966.

259

Ridgway, R. I.: "Phase-Lock Loop Analysis-Interim Report."
TRW I0C 7323.2-88, August 30, 1966. :

Sandusky, A.: '""Handbook for the Computer Laboratory: Analysis
of Data in Psychology." Department of Psychology, University
of California, Santa Barbara, July 1, 1970.

,: '""Undergraduate Researcher's Manual: Analysis
of Data in Psychology.'" Department of Psychology, University
of California, Santa Barbara.

Schreiner, R. N.: "On-Line Computer Linear Grid Routine."
TRW I0C 66-3340.6-21, November 4, 1966.

Schreiner, R. N.: '"On-Line Computer Log-Log Routine.'" TRW
I0C 66-3340.5-19, October 25, 1966.

Schreiner, R. N.: "On-Line Computer Program: Shock Spectrum
Analysis." TRW I10C 66-3340.6-26, December 28, 1966.

Schreiner, R. N.: '"On-Line Computer Routine: Bessel Functions
Jn(x) and Yn(x).” TRW I0C 66-3340.6-24, November 29, 1966.
*Schreiner, R. N.: "TRW and Computer Aided Design: The Form-
ative Years - 1965-1967." TRW Systems Report No. 67-3340.6-5,

Feb. 6, 1967.

Schrieffer, J. R., D. J. Scalapino, and J. W. Wilkins:
"Effective Tunneling Density of States in Superconductors."
Phys. Rev. Letters, Vol. 10, p. 336, 1963.

Sullivan, J. J.: '"Computer Based Instruction in Economics:
A Report on Facilities and Applications at UCSB.'" Paper
presented at a conference on Computers in Undergraduate
Curricula, University of Iowa, Iowa City, Iowa, 16, 17, 18,
1970.

, ¢ "The Ecomomics Laboratory at UCSB." Simu-
lation and Games: an International Journal of Theory, Design,
and Research, Vol. 1 No. 1 (March 1970), 81-91.

*von Waldburg, A. R.: "TRW On-Line ERS Balance Program G
5468800." TRW IOC 68-3343.2-104, May 21, 1968.

*Schreiner's report is concerned with TRW's computer aided
design activities utilizing an on-line system similar to

that described in this manual. The report contains a list

of TRW reports (including abstracts) related to this computer-
aided design effort.

*On-line program developed as a tool to assist in balancing

satellites by addition or deletion of suitably distributed
balancing weights.

260

Wood, R. C. and J. C. Bruch, Jr.: '"Teaching Complex Variables
with an Interactive Computer System.'" Article Submitted for
review and publication in the IEEE Transactions on Education,
July, 1970.

Wood, R. C. and J. A. Howard: '"An Interactive Computer
Classroom." Educational Research and Methods Journal, Vol. 2,
No. 4 (June, 1970), 29-31.

Yu, S. Y.: "On-Line Computer Program for Magnetic Hysteresis
Loop Characteristics of Permeable Rods." TRW IOC 3343.3-165,
November 7, 1966.

Yu, S. Y.: "On-Line Computer Program for Solving up tp
Five Simultaneous Equations.' TRW IOC 66-3343.3-197,
December 6, 1966.

261

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261

