
U.C.S.B. ONLINE SYSTEM MANUAL

This update documents the
modifications to the UCSB
Online System as of September
1, 1971. A correct list of
pages is on the reverse of
this page. Please report any
errors to the online consultant,
so that corrections may be in­
cluded in subsequent updates
to this manual.

7970

The following list of page numbers indicates the correct

order of the pages in the UCSB ONLINE SYSTEM MANUAL. Pages

revised in the September 1 • 1971 update are indicated by s.

i-vi s 112-116 s
1-14 116.1 s
15-16 s 117-118 s
17-18 118.1 s
19-22 s 119-120 s
23-24 120.1 s
25 s 121-122 s
2 5. 1 s 123-132
25.2 s 133-140 s
26 s 141-150
27-36 151-164 s
37-41 s 164.1 s
41. 1 s 164.2 s
41. 2 s 164.3 s
42 s 164.4 s
43-50 164.5 s
51-60 s 164.6 s
6 0. 1 s 165-168 s
61-62 s 169-170
63-74 171-174 s
75-76 s 174.1 s
77-78 175-180 s
79-80 s 180.1 s
81-82 180.2 s
83-88 s 181-184 s
89-106 185-194
107-1115 195-212 s
111 .1 s 213-261
111. 2 s 262-274 s

Corrections and new text documenting additions to the

online system are indicated by a verticle bar in the left margin

next to the changed text. Changes which improve grammar, readability,

or notation are not marked.

Rev is e d Sept . 1 , 1 9 7 1

U.C.S.B. ONLINE SYSTEM MANUAL

TABLE OF CONTENTS

PAGE NO.

INTRODUCTION ...

THE BASIC SYSTEM.

1

13

2. 1

2. 2

2.3

2.4

2. 5

2.6

SYST -
2 .1. 1

2 .1. 2
2. 1. 3
2. 1. 4

2. 1. 5
2 .1. 6

2. 1. 7

SYSTEM LEVEL.
ACCESS TO THE ONLINE SYSTEM - LOGIN
PROCEDURE FOR SYSTEM INITIATION
SIGNING OFF - LOGOUT ...
WARMSTART
USER LIBRARY ORGANIZATION ..
PRESENTLY SUPPORTED SUBFILES.
STORING A SUBFILE IN YOUR USER LIBRARY.
LOADING A FILE
LOADING A SUBFILE
LOADING FROM ANOTHER USER NUMBER. . . .
LOADING FROM ANOTHER USER NAME ON YOUR USER

NUMBER
DELETING A FILE OR SUBFILE FROM YOUR USER

15
15
15
16
17
18
19
21
22
23
23

23

LIBRARY. 24
2. 1. 8
2 .1. 9

DISPLAYING YOUR USER LIBRARY. 25
OPERATOR DEFINITIONS FOR THE SYSTEM (SYST) LEVEL.25.1

THE TYPE LEVEL
SUMMARY OF TYPE LEVEL OPERATORS

2.2.1 MESSAGE AND SYMBOL GENERATION .
MESSAGE GENERATION
SUMMARY OF OPERATORS FOR MESSAGE GENERATION
SYMBOL GENERATION . .

LEVEL 0 - LO - INDEX LEVEL
2.3.1 LEVEL 0 OPERAND FORMS
2.3.2 OPERATOR DEFINITIONS FOR LEVEL 0.

SPECIAL OPERATORS.
2 . 4 . 1
2. 4. 2
2.4.3
2.4.4
2. 4. 5

RESET
ERASE
REPEAT - REPT
SELECT - SEL.
HARDCOPY. -. -.

USER PROGRAMS - LIST MODE.
2.5.1 STRUCTURE OF THE USER SYSTEM.
2.5.2 LIST MODE

USER PROGRAMS - EDIT LEVEL .
2.6.1 ACCESS TO THE EDIT LEVEL.

i Revised Sept. 1, 1971

26
30
30
31
31
31

38
38
39

40
40
40
40
41

. 41. 1

42
42
43

46
46

2. 7

2. 6. 2
2. 6. 3

2.6.4
2.6.5
2.6.6
2. 6. 7
2. 6. 8

TABLE OF CONTENTS CONTINUED

STORING A USER PROGRAM
DISPLAYING OR LOADING A PREVIOUSLY STORED

USER PROGRAM
MODIFYING A USER PROGRAM
INSERTION OF KEYS IN A USER PROGRAM
DELETION OF KEYS FROM A USER PROGRAM
BLOCK KEY SEQUENCE EDITING
OPERATOR DEFINITIONS FOR THE EDIT LEVEL

SPECIAL LIST MODE OPERATORS
2. 7.1 THE ENTER KEY
2.7.2 THE TEST KEY

2. 7. 3
2.7.4
2. 7. 5

BASIC TEST FORMAT
THE TEST OPERATOR RS
THE TEST OPERATOR NEG
LO OPERANDS WITH TEST
USE OF PARENTHESES WITH TEST
THE PRED KEY
REPETITION OF PROGRAMS; LOOPING
NAME PROGRAMS

CARD ORIENTED LANGUAGE (COL)

3. 1

3.2

3.3

3.4

BASIC CONCEPTS
ACCESSING COL

LEVEL I - A STRING MANIPULATION LEVEL
3. 2. 1 LEVEL I OPERAND FORMS
3. 2. 2 DISPLAYING, LOADING, AND STORING
3.2.3 SUBSTRING MANIPUTATION
3.2.4 SEARCHES AND COMPARISONS
3. 2. 5 TRANSLATING STRINGS

LEVEL II - A RECORD MANIPULATION LEVEL
3.3.1 RECORD CREATION

OPERANDS

3.3.2 RECORD MODIFICATION AND MANIPULATION OF
POINTERS

3.3.3 AUTOMATIC SKIP, DUPLICATE, OR LEFT ZERO
FEATURE

3.3.4 FILE CREATION
3.3.5 LOADING AND DISPLAYING RECORDS

LEVEL III - A FILE MANIPULATION LEVEL
3.4.1 MOVING RECORDS FROM THE INACTIVE FILE TO

THE ACTIVE FILE

ii Revised Sept. 1,1971

PAGE NO.

47

47
48
50
53
54
56

59
59
60
61
64
65
66
67
69
71
73

76

77
79

80
80
82
84
84
86

88
88

88

91
93
94

96

96

3.5

3.4.2

3.4.3
3.4.4

LEVEL
3. 5. 1
3 . 5 . 2
3.5.3

3.5.4

TABLE OF CONTENTS CONTINUED

DISPLAYING BLOCKS OF RECORDS IN THE
ACTIVE FILE ..

SEARCHING THE ACTIVE FILE ..
DELETING BLOCKS OF RECORDS .

IV - OPERATING SYSTEM INTERFACE LEVEL
ACCESSING OPERATING SYSTEM DATA SETS
REMOTE JOB ENTRY (RJE)
DIRECTING RJE AND BATCH OUTPUT TO THE REMOTE

DATA SET.
PRINTING A MEMBER OF THE RJEOUT DATA SET
DISPLAYING THE STATUS OF SYSTEM DEVICES.

3.6 OPERATOR DEFINITIONS FOR LEVEL I (COL).

3.7

3.8

3.9

3.6.1 LEVEL I OPERAND FORMS
3.6.2 LEVEL I OPERATORS

OPERATOR DEFINITIONS FOR LEVEL II (COL)
MANIPULATING POINTERS TO A RECORD.
MOVING CONTENTS BETWEEN ACTIVE AND SAVE BUFFERS.
DISPLAYING AND LOADING RECORDS .
INSERTING AND DELETING CHARACTER STRINGS
STORING AND DELETING RECORDS
RECORD LENGTH
COLUMN CONTROL OPTIONS

OPERATOR DEFINITIONS FOR LEVEL III (COL).

OPERATOR DEFINITIONS FOR LEVEL IV (COL) .

3.10 OPERATOR DEFINITIONS FOR LEVEL 0 EVAL (COL)

MATHEMATICALLY ORIENTED LANGUAGE SINGLE PRECISION FLOATING
POINT (MOLSF)

4. 1

4.2

4.3

4.4

NUMBER REPRESENTATION .

DATA STRUCTURES AND THE WORKING REGISTERS

MATHEMATICAL OPERANDS
4.3.1 OPERAND FORMS
4.3.2 JUXTAPOSITION OF OPERANDS.
4.3.3 TRAILING PREDICATES

LOADING OF DATA
4.4.1 LOAD FOLLOWED BY A NUMBER (a numeric operand) .

iii Revised Sept. 1, 1971

PAGE NO.

97
98
99

100
100
102

105
106
107

108
108
109

112
112
113
113
114
115
116
116

117

119

120

121

122

124

132
132
132
133

134
134

4.5

4.6

4.7

4.8

4.9

TABLE OF CONTENTS CONTINUED

4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7

GENERAL MOLSF LOAD FORMAT
LOADING DATA WHILE ON LEVEL I .. .
LOADING DATA WHILE ON LEVEL II .
LOADING DATA WHILE ON LEVEL III.
INCREMENTING THE COMPONENT IN LOAD
LOADING VECTORS AND ARRAYS WITH VARYING

DIMENSIONS.

STORING OF DATA . . .

DISPLAY FACILITIES .. .
4.6.1 DISPLAY KEY .. .
4.6.2 NUMERICAL DISPLAY.
4.6.3 GRAPHICAL DISPLAY.

REPRESENTATION OF SCALE FACTORS FOR LEVEL II
DETAILED SCALING ALGORITHMS.
TECHNIQUES
LEVEL II SCALING OPERATORS
LEVEL III DISPLAY

4. 6. 4 DISPLAY FORMATTING

MATHEMATICAL OPERATORS FOR LEVEL I.
4.7.1 OPERATOR DEFINITIONS FOR LEVEL
4.7.2 OPERATOR DEFINITIONS FOR LEVEL
4.7.3 ADDITIONAL COMMENTS ON LEVEL I

MATHEMATICAL OPERATORS FOR LEVEL II .

I REAL (MOLSF).
I COMPLEX (MOLSF)

4.8.1 OPERATOR DEFINITIONS FOR LEVEL II REAL (MOLSF)
CONVOLUTION

4.8.2 OPERATOR DEFINITIONS FOR LEVEL II COMPLEX
(MOLSF)

4.8.3 ADDITIONAL COMMENTS ON LEVEL II.
DISPLAY
VARYING CONTEXT

MATHEMATICAL OPERATORS FOR LEVEL III.
4.9.1 OPERATOR DEFINITIONS FOR LEVEL
4.9.2 OPERATOR DEFINITIONS FOR LEVEL

(MOLSF)

III REAL (MOLSF).
III COMPLEX

PAGE NO.

134
135
136
137
137

138

139

141
141
142
144
145
146
148
148
151
152

154
154
155
157

158
158
164

165
168
168
170

171
171

175

4.10 OPERATOR DEFINITIONS FOR LEVEL 0 SUB AND EVAL (MOLSF) 179

4.11 OPERATOR DEFINITIONS FOR LEVEL V (MOLSF). . 181

4.12 USE OF PARENTHESES. 184
DISPLAY PARENTHESIZED EXPRESSION . 186
LOAD TEMPI 187
HIERARCHY OF OPERATORS 187
KEYS NOT ALLOWED IN A PARENTHETICAL EXPRESSION 188

iv Revised Sept. 1, 1971

TABLE OF CONTENTS CONTINUED

PAGE NO.

Appendix A
PROCEDURE TO OPEN AN ON-LINE ACCOUNT . . 189
REQUEST FOR OLS USER NUMBER (OR CHANGE) 190

Appendix B
OLS USER COMPLAINT . 191

Appendix C
OLS SOFTWARE STRUCTURE & KEYBOARD DIAGRAMS 193

Appendix D
ON-LINE ERROR AND SYSTEM MESSAGES 21 2

Appendix E
SAMPLE PROBLEMS 222

Appendix F
FORTRAN SUBROUTINE CALLS FOR TRANSFER OF LII VECTORS TO
AND FROM AN ONLINE TERMINAL 255

Appendix G
REFERENCES RELATED TO ON-LINE SYSTEM APPLICATIONS 256

v Revised Sept. 1, 1971

This manual is written under the assumption the reader is using

a new (NSF) keyboard. For users of old keyboards the following

differences should be noted.

1. There is no SHFT key (not to be confused with SHIFT) on the

lower keyboard, this means that the storage locations a-w

are not accessable.

2. There is no LVII key. --
3. There is no PWR key.

4. There is no PROD key.

There is no SORT key. --5. For MOLSF LII SORT, one may use MOLSF

LV SQRT.

6. There is no CONV key. For MOLSF LII CONV, one may use MOLSF

LV NEG.

7. A complete set of punctuation keys is not accessable. In

particular "-," and "=" are not accessable. This means that

REPT (...) I=l,7 ... is not accessable. Any search on a not

equal condition is not accessable.

8. For the LO key use LI INDEX or LI SHIFT.

9. For the CASE key use INDEX or SHIFT.

10. For the SEL key use TYPE DIFF.

vi Revised Sept. 1, 1971

2.1 SYST SYSTEM LEVEL

2.1.l ACCESS TO THE ONLINE SYSTEM LOGIN

The SYST key notifies the online system that a user wishes

to login. A new user may obtain a user number and an identifi-

cation code (ID code) from the UCSB Computer Center Office. The

ID code prevents unauthorized users from using your funds. An

optional user name provides added qualification. The user number

and user name, if selected, identify which program library is to

be used, which facilities this user may access, whether a job

name is required, and the funds remaining in this account. The

procedure for obtaining a user number is outlined in Appendix A.

PROCEDURE FOR SYSTEM INITIATION

To login to the online system and explicitly load the

mathematical language, a user would first make sure the equipment

is turned on; then progress through the following sequence:

KEYBOARD ENTRY

SYST

(user number) RETURN

(ID number) RETURN

(user name) RETURN

(job name) RETURN

MOLSF RETURN

OLS QUERY/RESPONSE

ENTER USER NUMBER (user number)

ID NUMBER =
USER NAME = (user name)

JOB NAME = (job name)

AUTOSAVE CODE = (integer)

LOAD MOLSF

FILE LOADED

If any of the above information is not required on your user number,

the online system will not ask for it. If you make an invalid

entry, the online system will repeat its query.

15 Revised Sept. 1, 1971

The autosave code given after user identification is completed

allows one to restart after a system failure. The autos ave

number identifies a user workspace that is preserved after most

system failures. The number should be remembered so that if the

online system fails, the user may restart. In this example the user

selected the language MOLSF. MOLSF is the name of a language

and is reserved (one may not store a file with that name).

When a language name is loaded at sign on the user is placed on

that language with no data stored and no programs defined.

2.1.2 SIGNING OFF - LOGOUT

If, during your session at the console, you have generated

any programs or data that you wish to save, you must store them

in your user library before you sign off.

are discussed in sections 2.1.S to 2.1.8.

Library operations

To sign off and terminate the billing process, the user

must press SYST DOWN; otherwise the next user can accrue his

costs to your account. Pressing the SYST key causes the

message "WORK AREAS UPDATED" to be displayed to indicate to the

user that he is on the SYST level. Pressing the DOWN key causes,

after a pause, the message "WORK AREAS PURGED" to be displayed.

This indicates that the billing process has been terminated and

system facilities are no longer available. User workspace,

identified by the autosave code, is also freed. This means that

restart through the warmstart facilities is not possible.

Your scope should now be turned off.

16 Revised Sept. 1, 1971

the seven levels LI-LVII and may be REAL or COMPLEX data. A max-

imum of sixteen subfiles may be in a file: a USER subfile, a LO

data subfile, LI-LVII REAL and COMPLEX subfiles. If the language

does not support data system storage of a certain level or a

level is not defined, the system will not allow the user to

store that type of subfile. The subfiles which may be stored in

the permanent library are shown below.

PRESENTLY SUPPORTED SUBFILES

Keys pressed Subfile loaded, stored, or deleted

Basic System subfiles

USER

LO

LI REAL

LI CMPLX

LIII REAL

LIII CMPLX

User programs and special
characters. Both are contained
in one subfile.

LO storage locations.

COL subfiles

LI REAL strings.

LI COMPLEX strings.

LIII REAL FILE.

LIII COMPLEX file.

MOLSF subfiles

LI REAL LI REAL storage locations.

LI CMPLX LI COMPLEX storage locations.

LII REAL LII REAL storage locations.

LII CMPLX LII COMPLEX storage locations.

LIII REAL LIII REAL storage locations.

LIII CMPLX LIII COMPLEX storage locations.

19 Revised Sept. 1, 1971

When loading from or storing into the permanent library,

the user may specify that only selected parts of a subfile be

transferred. He does this by supplying a predicate list

immediately after the subfile specification. The following are

valid predicate lists:

Keys pressed Segment of Subfile Loaded or Stored

User Subfile Predicate Lists

USER lvl RETURN

USER lvl 1-lvl 2 RETURN

USER lvl 1 lvl 2 ... RETURN

USER CASE number RETURN

USER CASE number1-number2 RETUR_N __

USER CASE number1 number2 RETUR_N __

USER lvl-number RETURN

User level specified.

User levels lvl1 through lvl 2
inclusive.

User levels specified.

Case level specified.

Case levels number 1 through
number 2 inclusive.

Case levels specified.

User levels starting at level
specified to LVII inclusive
and case 3 through the case
specified.

Data Subfile Predicate Lists

LO A RETURN

LO D-F RETURN

lvl (REAL or CMPLX) A
RETUR_N __

lvl (REAL or CMPLX) A-H
RETUR_N __

Variable A of level O.

Variables D through F of level 0.

Variable A of data level specified.

Variables A through H of the data
level specified.

A not sign("..,") after the subfile when defining a segment of a

subfile tells the online system to load/store everything except

the segment or segments specified.

20 Revised Sept. 1, 1971

NOTE: In the LOAD operation, specifying a predicate list causes

the selected segment of the subfile to be merged with whatever

other parts of that subfile type had previously been loaded

or created. In th~ STORE operation, the specified segment replaces

the entire subfile in the permanent library.

2.1.5 STORING A SUBFILE IN YOUR USER LIBRARY

If a user has written user programs, created special

characters, created data, or created a COL file, and he wishes

to use them during a subsequent session on the online system,

he must store his programs and data in the permanent library

before he signs off. The procedure for storing a subfile is:

KEYBOARD ENTRY

SYST

STORE (subfile)[predicate

list] RETURN
(name) RETURN

[protection code] RETURN

OLS QUERY/RESPONSE

WORK AREAS UPDATED

STORE (subfile) [predicate list]

FILE NAME = (name)

PROTECT CODE = [protection code]

The predicate list may be a partial subfile as listed on page 20.

The STORE procedure must be repeated for each subfile, even though

several subfiles may be stored under one file name. A file name

is from one to twelve alphameric characters. Note again, if you

store a partial subfile in the permanent library, it becomes the

entire subfile.

The first time a user uses a file name, he may supply a

protection code consisting of at most twelve alphameric symbols.

Thereafter, whenever a subfile is stored under the same name, the

system will ask for the protection code before storing the

working copy over the old file. If the user wishes no protection

code when he first stores his file, he need only press RETURN when

21 Revised Sept. l, 1971

the system requests the protect code. In subsequent stores

the system will not ask for a protection code before it stores

the file.

EXAMPLE: A user wishes to store his working user

system for the first time under the name VENICE with the protection

code GONDOLA. The storing sequence is as follows:

KEYBOARD ENTRY

SYST

STORE USER RETURN

VENICE RETURN

GONDOLA RETURN

2.1.6 LOADING A FILE

OLS QUERY/RESPONSE

WORK AREAS UPDATED

STORE USER

FILE NAME=VENICE

PROTECT CODE=GONDOLA

DONE

You may load any file in your library, while you are signed

on, by the procedure:

KEYBOARD ENTRY

SYST

LOAD (name) RETURN

OLS QUERY/RESPONSE

WORK AREAS UPDATED

LOAD (name)

FILE LOADED

The above sequence is also valid during login; however, the SYST

and LOAD keys are not pressed. The file name supplied may be the

name of a previously stored file or the name of a language. The

load operation is basically a concatenation process; only the sub­

files defined in that file replace previously defined subfiles.

When loading a partial subfile (i.e. LOAD USER !:.!_-LIII RETURN) it

is merged with the current subfile. When loading a whole subfile

(LOAD USER RETURN) it replaces the current subfile, but does not

affect other subfiles.

22 Revised Sept. 1, 1971

2.1.8 DISPLAYING YOUR USER LIBRARY

A list of your files in the permanent library may be displayed

by pressing the DISPLAY key. Every time RETURN is pressed one file

name is displayed, as long as there are files left.

is listed in the form:

Each file

filename language subfile-type

The subfile shown is the first subfile stored in that file. To

see succeeding subfiles within that file press comma. No message

is displayed to indicate that all subfile or files have been

displayed. The example below shows a typical user library display:

TEST MOLSF LII C

USER

INTEGRAL MOLSF USER

LO

LII R

PUNCH COL LII I c

PUNCH2 COL USER

LIII R

C and R are used to indicate complex and real subfiles, respectively.

If there is more than one user name on your user number, the key

sequence "DISPLAY USER name RETURN" followed by successive RETURN' s

displays the library for the user name that you specified.

own library is displayed without specifying a user name.

Your

25 Revised Sept. 1, 1971

2.1.9 OPERATOR DEFINITIONS FOR THE SYSTEM (SYST) LEVEL

DOWN

SUM

REFL

SUB

NEG

EVAL

MAX

purges all temporary workspace,
terminates the billing process, and
signs the user off the online
system.

displays online billing charges
from login to the pressing of the
SUM key.

interchanges the user levels specified.
This operator applies only to the
contents of the user levels in
temporary storage.

replaces the second user level
specified with a copy of the first
user level specified. If any user
programs exist on the second user
level, they are deleted and may not
be recovered. This operator applies
only to the contents of the levels
in temporary storage.

deletes the specified user level.
This operator applies only to the
contents of the user levels in
temporary storage.

displays the names of the operator
keys for which user programs have
been defined on the specified level.
All categories of user programs are
displayed: user program~ user CTX
programs, and user DISPLAY programs.
To display a list of all user
programs not defined, press the not
key 11 -i" before specifying a level.
This operator applies only to the
contents of the user levels in
temporary storage.

displays name and text of all user
programs which have been defined on
the specified level. An erase is
inserted between each display. This
operator is designed for use with a
printer or teletype (see sections
2.4.4 and 2.4.5). This operator
applies only to the contents of the
levels in temporary storage.

25. 1 Revised Sept. 1, 1971

DEL

LOAD

STORE

DISPLAY RETURN

deletes entire file or specified
subfile from the permanent library.

loads an entire file, a specified
subfile, or a specified portion of
a subfile from the permanent library
into temporary storage. The user
is left on the language with which
the file or subfile is associated.
The file or subfile is merged with
other subfiles already existing in
temporary storage. When a portion of
a subfile is loaded, it replaces only
those variables or levels specified
in the predicate list.

the subfile or portion of a subfile
specified replaces the entire subfile
under the same file name in the
permanent library or creates a new
subfile in the permanent library.

displays the first file name in the
permanent library. Subsequently

(1) RETURN displays the next file
name.

(2) , displays additional subfile
types, if any.

(3) USER asks for a user name; thus
the user is able to display the
file names in the permanent
library of any other user on
his user number.

25.2 Revised Sept. 1, 1971

2.2 THE TYPE LEVEL

On the TYPE level the lower keyboard keys function like those

on a typewriter. The keys RETURN, BACK, and SPACE provide "carriage"

control just as on a typewriter. The operator keys UP and DOWN

move the typing position up one line and down one line respectively.

The RS operator positions the display to the upper lefthand corner

of the output device. On the TYPE level, the CASE key operates like

a typewriter shift key, changing to a different set of characters.

In CASE 1, which is normally used, the lower keyboard keys type the

symbols appearing on their faces. By pressign either CASE 2 or

holding down the SHFT key the alphabetic keys type the Greek alpha­

bet, the numeric keys type superscripts, and the punctuation keys

type other symbols, such as"=", as shown in Table 2.2.1. The

remaining shift levels, CASE 3 through 9, are used for message and

symbol generation.

Once a CASE level has been specified the online system remains

on that level until a new level is defined. Pressing TYPE, DISPLAY,

CASE 1 or CASE puts the user on CASE 1 for resumption of normal

typing.

The TYPE level enables the user to include messages in a

user program. Suppose, for example, that the user wishes to

evaluate A+B and to display the message "A+B=" followed by the

sum. He would first press TYPE to indicate that this part of

the program is to be typed out as a message, rather than

interpreted as an operator or operand. Every key pressed on

the lower keyboard, between TYPE and the next level key, is

26 Revised Sept. 1, 1971

BACK removes the last point stored in
the character vector list and
repositions the dot on the scope
to the preceeding location. In
effect, this erases the last
direction keypush. To see the
change, however, the user must
erase the scope and press DISPLAY
RETURN.

37 Revised Sept. 1, 1971

2.3 LEVEL 0 - LO - INDEX LEVEL

LO is a level for integer arithmetic. The major purpose

of this level is to allow the user to vary operand values

where integers would normally be entered. There are two level

0 working registers, the remainder and the quotient registers.

Most operators operate only on the quotient register; however,

0, (/), INV, and REFL modify the remainder register as well

as the quotient register.

2.3.1 LEVEL 0 OPERAND FORMS

(N = an unsigned integer; S = a level 0 storage location

referenced by an alphabetic key; A = a level 0 storage location

or an unsigned integer).

s

-S

S+

S+A

S-

S-A

N+A

N

-N

uses the contents of S.

negates, then uses the contents of S.

uses the contents of S, and then
increments the contents of S by one
and stores the result in S.

uses the contents of S and then
increments the contents of S by A
and stores the result in S.

uses the contents of S and then
decrements the contents of S by one
and stores the result in S.

uses the contents of S and then
decrements the contents of S by A
and stores the result in s.

uses the value of N times 10 to the
Ath power; i.e. , 3 + 2 equals 3 x 10 2

or 300; 3 + A equals 3 x lOA.

uses the positive integer N.

uses the negative integer N.

38 Revised Sept. 1 , 1971

2.3.2 OPERATOR DEFINITIONS FOR LEVEL 0

(L = any level 0 operand; S = any level 0 storage location)

G L, 0 L

Q L

(/) L

REFL

SUM

LOAD L

STORE S

DISPLAY S

D I S P LAY RE TU RN

performs the indicated operation
on the contents of the quotient
register.

multiplies the contents of the quotient
register by the operand. The low-order
thirty-two bits are placed in the
quotient register, and the high-order
thirty-two bits are placed in the re­
mainder register.

divides the contents of the quotient
register by L. The quotient is placed
in the quotient register. The
remainder is placed in the remainder
register. Division by zero results
in the error message "FIXED POINT
DIVIDE CHECK".

interchanges the remainder and
quotient registers.

loads the billing charge (in pennies)
since login into the quotient register.

loads the operand into the quotient
register.

places the contents of the quotient
register in storage location S.

displays the contents of storage
location S.

displays the contents of the quotient
register.

language dependent (see sections 3.10
for COL and 4.10 for MOLSF)

The following operators accept trailing predicates. That is,

if the next key(s) is any level 0 operand, then that operand will

be used for the computation. If the next key(s) is not a level 0

operand, then the operand is the contents of the quotient register.

39 Revised Sept. 1, 1971

§.g_

NEG

INV

MOD

DEL

2.4 SPECIAL OPERATORS

2.4.1 RESET

squares the operand.

negates the operand.

inverts the operand leaving the
remainder in the remainder register.

computes the absolute value of the
operand.

places a one in the quotient register
if the operand was zero; otherwise
the register is set to zero.

RESET is a special operator which is available at all times.

RESET purges all keys which have not been processed, copies user

workspace in main storage to auxiliary storage to allow warmstart,

displays the message "RESET COMPLETED" to signal successful

completion of the reset operation, and, finally, places the user on

the TYPE level. RESET is especially useful when a program is in

an unintentional loop.

2.4.2 ERASE

The ERASE special operator erases the display screen on graphical

output devices. ERASE does not affect the current operation and

it works on all levels, in all modes except LIST.

2.4.3 REPEAT - REPT

The REPT key allows one to repeat nearly any sequence of keys.

A single key, which is not a special operator, may be repeated

by the sequence "REPT key LO operand". A series of keys,

including special operators, may be repeated with the

40 Revised Sept. 1, 1971

sequence "REPT (keys) LO operand". In both forms the level 0 operand

specifies the number of repetitions, and is evaluated before

the key or keys are executed.

EXAMPLE:

TYPE REPT (ABC) 5 RETURN

This series of keys will type "ABC" five times.

The level O operand may be replaced by another operand of

the form "A=I,J,K RETURN", where A is a level 0 storage location

and I, J, and Kare level 0 operands. Before any keys are

processed storage location A is set to I and the terminating

conditions are checked. The terminating condition used depends

on the value of K. Given K is greater than or equal to zero, the

key sequence is executed if A is less than or equal to J. Given K

is less than zero, the key sequence is executed if A is greater

than or equal to J. After the key sequence is executed, A is

incremented by K (or one if K is omitted), and the termination

conditions are checked prior to repeating the key sequence.

EXAMPLE:

REPT (!:.Q. DISPLAY A) A=l,7,2 RETURN

The numbers 1, 3, S, and 7 will be displayed.

2.4.4 SELECT SEL

When a user first logs on the online system, he has one

primary output device, normally a display scope. SEL allows a

user to send displays to an alternate output device or to multiple

output devices. Select must be followed by an integer constant.

If the hardware is available,

41 Revised Sept. 1, 1971

SEL 1 RETURN

SEL 2 RETURN

SEL 3 RETURN

SEL 4 RETURN

SEL 22 RETURN

SEL 1,3 RETURN

selects the user's primary
output device.

selects a plotter.

selects a teletype.

selects the hardcopy output
data set. Output in this data
set may be punched on cards or
printed on the line printer.
(see section 2.4.5)

selects output device number 22.
(Assumes prior arrangements
have been made which enables
the user number to select
other online stations.)

selects multiple devices 1 and
3, the user's primary output
device and a teletype.

The use of SEL is restricted. Devices 1 and 4 are always

available. If a plotter or teletype is available, device 2 or 3

may be selected. SEL for any other device number or multiple

devices requires prior arrangements with online system personnel.

If a user selects an invalid device number, his output device

selection does not change. If the user selects multiple output

devices and any of the device numbers are invalid, the entire list

will be ignored. An invalid device number does not return a user

to his primary output device; it leaves him on any device(s) he

has already successfully selected.

2.4.5 HARDCOPY

After a user has sent output to the hardcopy output

data set, he must submit a batch job (either through the card reader

or through remote job entry; see section 3.5.2) that prints or

punches the data in that data set. The user must run this job

41. 1 Revised Sept. 1, 1971

before midnight on the day he selected device 4 or his data will

be lost. The batch job should consist of the following cards:

llHARDCOPY JOB (ACCT,USERNAME),'output box'

II EXEC HARDCOPY,OPT=option,LSIZE=number,USER=number,

II NAME=name,LOGIN='hh:mm'

II

The JOB card is standard and is described in the user's guide.

The EXEC card parameters are as follows:

1. "option" may be either PRINT, PUNCH or BOX.

OPT=PRINT causes your output to be printed single space using
the line size specified with the LSIZE= parameter.

OPT=PUNCH causes your output to be punched on cards and
printed with LSIZE=80.

OPT=BOX causes your output to be printed in "boxes", 25
characters high, 12 boxes to a printed page. (Output printed
under this option will include a "0" at the lower left boundary
of any box in which an overlay has occurred).

This parameter is optional and will default to PRINT if omitted.

2. LSIZE= the number of characters printed on each line of output;
this n~mber may range from 1 to 132. The LSIZE= parameter is
optional and will default to 120 for the printer and 80 for the
card punch if omitted.

3. USER= the online system user number on which you were running
when you generated the output. This parameter is required.

4. NAME= the online system user name (exactly as entered at sign-on)
on which you were running when you generated the output. This
parameter may be omitted only if your user number does not have
associated user names; it must be omitted in this case. If your
name contains commas, spaces, or other special characters, it
must be enclosed in apostrophes.

5. LOGIN= time of day in hours and minutes (24-hour clock) enclosed
in apostrophes. This parameter allows you to specify that only
output generated at a session starting later than the time coded
is to be processed. Since the output data set is scratched only
at midnight, you will get all of the output generated since mid­
night everytime you run HARDCOPY unless you code the LOGIN= para­
meter. Note that the only time being considered is the time that
you signed on for a particular session. This parameter is optional
and will default to '00:00' if omitted.

41. 2 Revised Sept. 1, 1971

2.5 USER PROGRAMS LIST MODE

Typically, the online system user interacts manually with the

primary operators defined by the online system. However, once a

user has found a key sequence that solves all or part of his

particular problem, he would like to make this key sequence a

subroutine which becomes part of the online system. Such sub­

routines are called USER programs. USER programs are created by

using LIST mode, stored or modified on the EDIT level, and accessed

(executed or recalled for modification) by the USER key. A

collection of USER programs is called a USER system. USER systems

may be stored permanently as described in section 2.1.5 on

storing subfiles. The special LIST mode operators TEST, PRED,

and ENTER control program flow and enter data or key sequences into

USER programs.

2.5.1 STRUCTURE OF THE USER SYSTEM

The USER system has eight levels which are accessed by the

USER key. The levels are designated as USER .!:.Q_, USER~' ... ,

USER LVII. The thirty-one operator keyboard keys are available

on each USER level as storage locations for USER programs. Thus

the key sequences USER~ SIN, USER LVII SORT, etc., each identify

the storage location of one USER program. Additional storage is

provided by using the CTX key preceding the operator key. For

example, the key sequences USER.!:'...!_ CTX SIN, USER LVII CTX SORT,

etc., identify the storage locations of unique USER programs.

A maximum of (8 levels) x (31 operator keys) x (2) = 496 USER

programs that can be stored on any one USER system. This maximum

42 Revised Sept. 1, 1971

pointer remains unchanged until the user goes to EDIT level and

manually moves it. NOTE: the ENTER key is the only way to return

to LIST mode and has this effect only on the EDIT level. Press-

ing the LIST key at this point would destroy the current program.

The change to LIST mode is indicated by blotting out the

post list marker. Once this has been done the user may type the

new keys to be inserted. The keys appear on the display scope

at the end of the program, but are inserted before the edit

pointer. After the new keys are entered, the user presses LIST

to return to the EDIT level. He may store his program or re-

position the edit pointer and modify another part of his program.

The user may verify that the keys were properly inserted

by pressing:

DISPLAY RETURN or

ID DISPLAY RETURN

EXAMPLE: Using the USER program of Section 2.6.4,

enter the key "K" between the "J" and the "USER" keys. The

editing procedure is:

MOD USER positions the edit pointer between
J and USER.

ENTER enters LIST mode, blots out the
post list marker.

K inserts the key into the program.

LIST changes to the EDIT level.

The user is now ready to store his program or reposition the

edit pointer and modify some other part of his program. The

51 Sept. 1, 1971

internal list of the program is:

I LO I LOAD I L I STORE I I I J I K I IJSER I LI I DEL I : I
t edit pointer

Note that the edit pointer's position has not changed.

EXAMPLE: suppose the program

LII REAL .!_Q ~0 -0.5 EXP DISPLAY RETURN

has been incorrectly keyed in as

LII SQ 0 0.5 EXP DISPLAY RETURN

The editing procedure, as soon as the LIST key has been pushed,

is as follows:

MOD SO --

ENTER

REAL ID

LIST

DISPLAY RETURN
(optional)

G) 2 RETURN

EVAL
(optional)

ENTER - LIST

locates the editing point and dis­
plays the pointer between LII
and SQ by underscoring SQ.

changes to LIST mode, blots out " . "
inserts these keypushes before SQ,
displays them at end of program.

changes back to EDIT mode, displays
" . "

displays the keypushes in proper
sequence and shows that the inser­
tion has been made.

moves the edit pointer two places
toward the end of the program.

displays the pointer between "Q"
and "0" by underlining "0".

inserts "-" at the new editing point,
displays it at the end and displays
" . "

52 Revised Sept. 1, 1971

STORE USER .!:.!_ 0

USER LI DISPLAY 0

stores corrected program, displays
"LI 0 UPDATED".

displays correct program, without
editing marks.

2.6.6 DELETION OF KEYS FROM A USER PROGRAM

The SPACE key and the BACK key are used on the EDIT level,

to delete keypushes to the right or left, respectively, of the

edit pointer. Either key, followed by an integer n, followed by

RETURN, deletes n successive keypushes. If no integer is given,

one keypush is deleted for each depression of SPACE or BACK. Each

deleted key is blotted out on the output device.

In the example above, suppose the user had keyed in

LII REAL CMPLX ID SQ (2) -5.0 EXP DISPLAY RETURN

He could correct it as

MOD IO

BACK

0 2 RETURN

EVAL
(optional)

SPACE 5 RETURN

ENTER 0 -0.5 LIST

DISPLAY RETURN
(optional)

follows:

locates the editing point and dis­
plays the pointer between CMPLX
and ID by underscoring ID.

deletes CMPLX.

locates the edit pointer between
SQ and (2)

displavs the location of the edit
pointer by underscoring (/)

deletes 5 keypushes (2), -,5, ., 0,
and blots them out on the output
device.

inserts correct keypushes, displays
" . "

displays program in nroper sequence.

53 Revised Sept. l, 1971

STORE USER..!_© stores program, displays "LI©
UPDATED".

USER I DISPLAY©
(optional)

displays program.

If the user wishes to delete all keypushes on one side of

the editing point, he may push DEL RS for the right side, DEL

LS for the left side. These operations do not produce any

visual (scratching out) effect.

2.6.7 BLOCK KEY SEQUENCE EDITING

As the preceding text explains, the edit pointer locates

that position in the USER program where keys are to be inserted

or deleted. As well as locating this editing point, the edit

pointer divides the internal key list into two parts: that por-

tion to the left of the pointer, i.e. from the beginning of the

program to but not including the edit pointer; and that portion

to the right of the pointer, i.e., from the edit pointer to the

end of the program. By appropriately positioning the edit

pointer the user can manipulate blocks of keys from the current

program or a previously stored program. As a mnemonic aid,

that portion of the program preceding the edit pointer is called

the left side (LS), and that portion of the program following

the edit pointer is called the right side, (RS). By appropriately

manipulating the edit pointer, and loading and storing the LS or

RS of the program, a long program can be rearranged. This is

best illustrated by the examples which follow.

54 Revised Sept. 1, 1971

EXAMPLE: Block transfer

Correct Program:

LI! CMPLX LOAD A SIN STORE C LOAD B LOG 0 c
Incorrect Version:

LI I CMPLX LOAD B LOG LOAD A SIN STORE C 0 c

The editor's objective in this problem is to transfer

LOAD A SIN STORE C to its correct position between CMPLX and

LOAD B.

Assume the incorrect program has been stored under USER

LI! MAX. The user presses USER LI! DISPLAY MAX. The incorrect

program appears on the output device, and the online system console

enters EDIT level. The ~lock transfer is achieved by the

following set of instructions:

STORE RS

MOD LOAD A

LOAD RS

STORE RS

MOD LOAD

LOAD RS

DISPLAY RETURN

pointer placed to left of G
0 C stored temporarily.

pointer placed to the right of LOG.

0 C inserted aft er LOG.

LOAD A SIN STORE C is stored
temporarily.

pointer placed to right of CMPLX.

LOAD A SIN STORE C inserted after
C'MPTx.

displays program in proper sequence.

EXAMPLE: Block Deletion

Correct Program:

LII REAL LOAD F MAX

Incorrect Version:

LII REAL ID 0A0 B SQ STORE C LOAD F MAX

55 Revised Sept. 1, 1971

The editor's aim is to remove ID 0 A 8 B SQ STORE C.

Method 1: MOD ID pointer placed to left of ID.

SPACE 8 RETURN deletes 8 keys to right of pointer.

Method 2: MOD LOAD pointer to left of LOAD. -----
STORE RS LOAD F MAX stored temporarily.

MOD ID pointer to left of ID.

DEL RS deletes everything to right of pointer. -- --
LOAD RS appends LOAD F MAX to LI! REAL --- -----

Observe that Method 1 requires knowledge of the exact number of

keys to be erased, but Method 2 does not.

2.6.8 OPERATOR DEFINITIONS FOR THE EDIT LEVEL

MOD

BACK

allows the user to specify the edit
pointer location. The user identi­
fies the key he wants to appear at
the right of the pointer by typing
it after pressing MOD. If that key
appears but once iilthe program,
typing it is sufficient identifica­
tion, and the key will be underscored.
If that key appears more than once,
then succeeding keys must be pressed
until identification of the pointer
location is uniquely determined. One
key will be underscored when the
position is uniquely fixed. If a
non-existent sequence is pressed
after MOD, the diagnostic "NON­
EXISTENT STRING" is displayed.
The search may be aborted by press­
ing LIST before a unique key sequence
has been designated.

deletes the key preceding the edit
pointer.

56 Revised Sept. 1, 1971

SPACE

BACK n RE TURN }

SPACE n RETURN

ENTER

0

(!} n RETURN}
0 n RETURN

EVAL

ERASE

ID

REFL or

UP or

ENL

CON or

DOWN

DEL RS

DEL LS

DEL RETURN

deletes the key following the edit
pointer.

repeats the respective operation n
times in succession, n an integer.

puts the OLS console in LIST mode.
Any button (except LIST or RESET)
hit after ENTER is inserted into
the program at the left of the edit
pointer. If LIST is pressed after
ENTER, the console changes to the
EDIT level.

shifts the pointer one key to the
right.

shifts the pointer one key to the
left.

repeats the respective operation n
times in succession, n an integer.

displays the location of the edit
pointer on the output device.

erases the output device.

erases the output device, moves
carriage to upper left-hand corner
of the output device.

moves the edit pointer to the
head of the program, and underscores
the first key.

moves the edit pointer to the end
of the program and underscores the
post list marker.

deletes everything to the right of
the edit pointer.

deletes everything to the left of
the edit pointer.

deletes left side and right side.

57 Revised Sept. 1, 1971

DEL USER (level)

STORE RS

STORE LS

STORE RETURN

(operator)
deletes specified user program.

stores everything to the right of
the edit program in a temporary
location called the right side save
area and removes it from the list
buffer.

stores everything to the left of the
edit pointer in a temporary loca­
tion called the left side save area
and removes it from the list buffer.

stores left side and right side
and removes the entire program from
the list buffer.

STORE USER (level) (operator)

SUB

LOAD RS

LOAD LS

stores contents of list buffer in
specified storage location.

restores a
location.
program by
diagnostic

user program in the same
An attempt to store a new
pressing SUB results in the
"PROGRAM HAS NO SOURCE".

inserts the keys stored in the right
side save area into the program at
the left of the edit pointer.

inserts the keys stored in the left
side save area into the program at
the left of the edit pointer.

LOAD USER (level) (operator)

DISPLAY RS

DISPLAY LS

DISPLAY RETURN

inserts the specified user program
into the program at the left of the
edit pointer.

displays everything to the right of
the edit pointer.

displays everything to the left of
the edit pointer.

displays entire program in proper
sequence.

DISPLAY USER (level) (operator)

Same as LOAD except program is also
displayecr:--

58 Revised Sept. 1, 1971

2.7 SPECIAL LIST MODE OPERATORS

2.7.1 THE ENTER KEY

The ENTER key allows the user to halt a program to enter

data or execute other manual operations. When an ENTER instruc-

tion is encountered in a user program, the program is stopped

and the OLS console is returned to the Manual mode. The user

can then perform any basic operations he wishes. When he is

through with his manual operations, he presses the ENTER key,

which signals the online system to resume executing the USER

program where it left off. ENTER can be used to enter data into

a program or to check a recursive program each time before it

cycles. In the latter case the instruction serves effectively

as a program stop or halt command.

In the following example for computing Xn for positive X,

the ENTER instruction allows the user to insert the value of n.

LIST

LII REAL LOAD X LOG 0

ENTER EXP DISPLAY RETURN

LIST

STORE USER LII SIN

When the program is run, it will put the OLS console into Manual

mode at the point in the program where ENTER is located. Now

the user may type a number if n is to be a constant, or an

alphabetic key if the exponent is a stored vector. In any case,

as soon as he presses ENTER, execution of the program will be

59 Revised Sept. 1, 1971

resumed, and enlnX = Xn will be computed and displayed.

It is usually advisable, especially in a longer problem,

to include in the program some visual indication that the ENTER

point is about to be reached. (NOTE: any keys that are pushed

while the program is executing will be queued until the program

halt is executed, then they will be executed). This timing indi-

cation can often be combined with a display of a parameter value,

which is desirable for checking one's typing and for identifying

a graph. The example above could thus be programmed:

LIST

TYPE RETURN

WHAT SPACE N?

LII REAL LOAD ENTER DISPLAY 1 RETURN

G)(LOG X) EXP DISPLAY RETURN

LIST

STORE USER LII COS

2.7.2 THE TEST KEY

The TEST operator gives the user branching capability within

a program. Except for level 0, the number being tested, henceforth

denoted by NT, is dependent upon the current language and level

as follows:

60 Revised Sept. 1, 1971

Level Number Tested CNT)

LO contents of quotient Tegister

MOL SF

LI REAL contents of (3 I working register ---
LI CMPLX contents of °'I working register. -
LII REAL contents of first component of BII

working register.

Lil CMPLX contents of first component of all
working register.

LIII REAL contents of component (1, 1) of SII I
working register.

LIII CMPLX contents of component (1, 1) of a.III
working register.

COL

LI result of last .!:.!_ EVAL operation.

LII value of the record count minus
value of the active file marker.

LII I value of the active file marker.

As a memory aid, note that on MOLSF the working register tested

is always the real part of a number.

60.1 Revised Sept. 1, 1971

NT is tested for the three conditions positive, negative,

and zero, either separately or in combination. In using TEST,

the user may specify that if a certain condition is satisfied

one of the following events will occur:

1) Execute the prescribed list of keypushes.

2) Clear the execution list of all pending keypushes
and execute the following sequence.

3) Suppress execution of a series of keynushes until
a specified subsequence occurs.

4) Skip the number of keypushes specified by the
following integer or level 0 variable.

The several branching possibilities described above are discussed

in the ensuing sections. For purposes of clarification alphabetic

letters will be employed to indicate a sequence of button pushes.

Thus A might imply the sequence USER ..!;_!_ ~. B the sequence TYPE

ERROR RETURN, etc.

BASIC TEST FORMAT

The use of the TEST operator in its basic form allows a

program to branch to one of several other programs or sequences

depending on whether the TEST parameter NT is positive, negative,

or zero. The basic format of TEST to accomplish this branching

capability is

TEST + (A) - (R) O (C) D

61 Revised Sept. 1, 1971

Note that all conditional sequences are enclosed in parentheses

and are preceded by the condition (lower keyboard +, -, or O)

against which NT is to be tested. If a sequence is not enclosed

in parentheses, it will be executed unconditionally. For the

example shown above the following branches occur:

1) If NT > 0, execute A then D.

2) If NT < 0, execute B then D.

3) If NT = 0, execute c then D.

The branching facilities are probably best understood by

considering the flow chart or state diagram of Figure 2.7.1

Figure 2.7.1 Flow chart branching for TEST program:
TEST + (A) - (B) 0 (C) D

As indicated in the figure the basic format provides a three-way

branch for the program depending on the test condition. The key-

62 Revised Sept. 1, 1971

the online system executes the name program for the following

key if that key is an operator. If a name program exists it

will be displayed on the output device; if not, the operator

will be displayed.

EXAMPLE: Assume the following name programs have

been stored: USER LI DISPLAY LS is "START USER LI" and USER LI

DISPLAY RS is "SEARCH". Then pressing the following keys LIST

USER LI LS RS REFL will cause the following display:

START LIST

USER LI START SEARCH

REFL

75 Revised Sept. 1, 1971

CARD ORIENTED LANGUAGE (COL)

COL is a string processing language for the creation and

manipulation of character strings, records and files. COL's

capabilities enable one to:

NOTE:

1. Write a computer program in any language supported
by the Computer Center (i.e., FORTRAN, PL/l, COBOL,
ALGOL, SNOBOL, RPG, ASSEMBLER, etc.).

2. Create a data file.

3. Modify a program or data file.

4. Submit a program and data to the operating system
as a batch job and access its output.

5. Access a data set from the operating system and
create a COL file from it.

6. Scan files for particular characters or character
strings.

7. Translate strings.

8. Create, concatenate, convert, search, compare, and
save strings and substrings.

9. Convert numerical character strings to integers.

Someone reading this chapter for the first time is advised

to skip the sections on level I as they require knowledge of the

operators on levels II and III.

76 Revised Sept. 1, 1971

When a user first signs on COL the record length is set to

80 characters. The user changes the current record length on

level I, II, or III by pressing:

CTX N RETURN

where N is an integer between 1 and 254, or a level 0 operand.

The current record length is displayed on level

by pressing:

DISPLAY CTX

I, II, or III

The length of the character string buffer varies; however, it

may not exceed the maximum declared record length.

ACCESSING COL

COL is loaded in the same manner as any other language (see

Section 2.1.6). If the user is working on any other language,

loading a previously stored COL file switches him to COL.

79 Revised Sept. 1, 1971

3.2 LEVEL I - A STRING MANIPULATION LEVEL

Level I is a character string manipulation level. Its

operators manipulate a variable length string buffer. Level I

and level II share the same work area, the active buffer; however,

to avoid confusion when we are discussing level I, the active buffer

will be called the string buffer and its contents the active string.

As discussed above, the maximum length of the active string is

equal to the maximum record length currently declared on level II.

The shortest string is the null string. On entry to level I, the

length of the active string is not changed. In particular, if the

user has added to or changed the active buffer while on level II

and wishes this to become the active string, he must explicitly

recompute the length of the active string. This is done by the

DEL operator. DEL also deletes trailing blanks.

Temporary data storage on level I is provided by alphabetic

storage locations: REAL A-Z, a-w, and CMPLX A-Z, a-w. Each one

of the storage locations is initially set to the null string. When

a string is stored both its length and contents are retained.

3.2.1 LEVEL I OPERAND FORMS

Level I operand forms can be grouped into three categories

depending upon the source or destination of the string. A literal

operand is one created by the lower keyboard keys. It is defined

by an apostrophe, followed by a character string followed by

RETURN or any operator key.

80 Revised Sept. 1, 1971

The seventh, eighth, and ninth characters from the string stored

in storage location "A" are entered into the string buffer. The

contents of "A" are not altered.

LOAD LTI 77,N,5 RETURN

th The N thru N plus fourth characters from the seventy-seventh

record in the active file are loaded into the string buffer.

The contents of the active file are not altered.

LOAD RETURN

The string buffer is set to the null string.

DISPLAY RETURN

displays the active string. It does not change the active string.

LOAD also has a fourth operand form. A period followed by

0-9, 4,B,C,D,E,r allows one to load a hexadecimal number into

the string buffer.

The STORF key is the converse of LOAD. It transfers the

contents of the string buffer to the indicated storage location.

The string buffer is not altered. The previous contents of the

specified storage location are lost. STORE can he followed bv

an alphabetic or an interlevel operand, but may not specify a

substring location.

EXAMPLE:

STORE LII M RETURN

th The contents of the string buffer replace the M record of the

active file.

83 Revised Sept. 1, 1971

3.2.3 SUBSTRING MANIPULATION

The © and 0 operators enable one to concatenate strings.

G) followed by any level I operand concatenates the operand at

the end of the string buffer. ~ followed by any level I

operand inserts the entire operand at the start of the string buffer.

The SUB and (/) operators enable one to keep or delete any

substring of the active string. SUB preserves the specified

substring, i.e. the specified substring is all that remains in

the string buff er. The Q) opera tor d el et es the specified substring

from the string buffer. For a complete list of SUB and Q) operand

forms, see the summary at the end of this chapter.

3.2.4 SEARCHES AND COMPARISONS

RS followed by any level I operand starts with the first

character of the string buffer and searches right for the specified

operand. LS followed by any level I operand starts at the end of

the string buffer and searches left for the specified operand.

Both LS and RS assume a second operand that tells which occurrence

of the string one is searching for. If no occurrence operand is

specified, the online system assumes the user is searching for the

first occurrence of the string. If no match is found, then the

level I search pointer is set to zero. If a match is found, then

the level I search pointer is set to the value of the position

where the character string was found.

MOD followed by successive characters searches the string

buffer from left to right until (a) enough characters are given to

84 Revised Sept. 1, 1971

define a unique matching character string or (b) the succession

of characters is terminated and an occurrence number is specified.

The level I search pointer is set to the position of the first

character of the matching unique string or the specified occurence,

and displayed. The diagnostic "NO MATCH" or "NO SUCH OCCURRENCE"

is displayed if either of these conditions exist; in either case

the level I search pointer is set to zero.

Comparisons are made with the EVAL operator. EVAL may be

followed by any level I operand. The string buffer is compared

with the operand. The results of the comparison are returned as

an integer which is accessed by: LO EVAL + If the active

string and operand have identical contents and length, then the

integer returned is zero. If the active string and the operand

are not equal, then the integer returned depends on the IBM 360

collating sequence, which is: ¢ • < (+ I & ! $ *) ; -i - I , % _>? : #@ ' ="a f3 x cS E

Tiy81l:K)..µnoTI¢p0Tuvw~\jJC'.; AB ... Zl ... 9 (It can be viewed online by

pressing: ID DISPLAY RETURN). The EVAL operator compares the

string buffer and operand character by character from left to right.

The comparison proceeds until non-matching characters are encountered

or one of the strings is exhausted. If unmatching characters ter-

minate the comparison and if the character in the active string

occurs in the collating sequence before the character in the operand,

then the integer is set to minus one. It is set to plus one if the

opposite occurs. If unequal lengths terminate the comparison

and if the active string is shorter than the operand, then the integer

is set to minus one. If the operand is shorter, then the integer

is set to plus one.

85 Revised Sept. 1, 1971

3.2.5 TRANSLATING STRINGS

Level I has two operators for translating strings. The first

translates all occurrences of one operand to another operand.

The second operator translates individual characters. The latter

works much like a translate table.

The SIN operator followed by two operands will search for

all occurrences of the first operand. Whenever it finds the first

operand it will replace it with the second operand. The operands

may be of different length. The format of the SIN operator is:

SIN operand RETURN operand RETURN

EXAMPLE: Assume the following sentence is in the

string buffer: "TODAY THE DAY RATE IS $5.00." The following

sequence will change "DAY" to "NIGHT":

SIN 'DAY RETURN 'NIGHT RETIJRN

The sentence would now read: "TONIGHT THE NIGHT RATE IS $5.00."

The following sequence could be used to delete the word "NIGHT":

SIN 'SPACE NIGHT RETURN RETURN

The string buffer would now contain "TONIGHT THE RATE IS $5.00."

The null string is a valid second operand.

The COS operator followed by two operands will translate

each character of the first operand to the corresponding character

of the second operand.

EXAMPLE: Suppose the following sentence is in the

string buffer: "IN 1946, CHARLES I WAS BEHEADED: IN 1649, GOERING

86 Revised Sept. 1, 1971

SHOULD HAVE BEEN." The following key sequence will correct

the active string.

COS '96 RETURN '69 RETURN

The string huff er now proper 1 y reads : '' IN 1 6 4 9 , CH AR LES I WAS

BEHEADED, IN 1946 GOERING SHOIJLD HAVE REEN."

87 Revised Sept. 1, 1971

3.3 LEVEL II - A RECORD MANIPULATION LEVEL

The operators on level II enable the user to create and

modify records, and to store them in the active file, thus

creating a COL file. Level II simulates a keypunch, hut has

capabilities a keypunch cannot provide.

3.3.l RECORD CREATION

As indicated above, records are created in a software work

area called the active buffer. The length of the active buffer

is declared with the key sequence:

CTX N RETURN

where N is an integer between 1 and 254, or a level 0 operand.

The default value is 80. The current buffer length is displayed

with the key sequence:

DISPLAY CTX

A record is created by entering lower keyboard keypushes. Each

key is displayed as it is entered and stored in the active buffer.

Depressing the CASE key signals the system to interpret the next

keypush (and only the next key) as upper case, i.e., alphabetic

keys are interpreted as Greek letters and numeric keys as special

characters.

3.3.2 RECORD MODIFICATION AND MANIPULATION OF POINTERS

Associated with the active buffer is the active buffer pointer.

The value of the active buffer pointer determines the position

88 Revised Sept. 1, 1971

job. The member will be printed and the printed output put in

the output bo~ specified on the user•s JOB card.

EXAMPLE: Print the output from the preceding JOB called

"JOBNAME". The user would first create a three card JOB.

//PRINT JOB (ACCT,USERNAME), 'GEOLOGY'

//STEPl EXEC PRJEOUT,NAME=JOBNAME
II

Next he would execute it by pressing:

LIV SUB RETURN

He would then pick up his output from the geology output bins in

the Computer Center.

3,5,4 DISPLAYING THE STATUS OF SYSTEM DEVICES

The user can see the status of operating system devices by

pressing DISPLAY followed by the proper operand followed by

RETURN. A complete list of operands is given in the summary

tables which conclude this chapter.

107 Revised Sept. 1, 1971

3. 6 OPERATOR DEFINITIONS FOR LEVEL I (COL)

3.6.1 LEVEL I OPERAND FORMS

(S = a storage location; L, M, and N = any level O operands)

FORM

'string

s

S,M

S,M,L

,M

,M, L

LII N

LI I N ,M

LII N,M,L

MEANING

The string "string".
closing apostrophe.

NOTE: No

The string stored in storage location
s.

Substring of S starting at character
M and continuing to the end of the
string.

Substring of S starting at character
M and continuing for L characters.

The inactive string.

Substring of the inactive string
starting at character M and con­
tinuing to the end of the string.

Substring of the inactive string
starting at character M and
continuing for L characters.

Level II record N.

The level II record indicated by
the active file marker.

Substring of level II record N start­
ing at character M and continuing to the
end of the record. If N is omitted,
use the record indicated by the
active file marker.

Substring of level II record N starting
at character M and continuing for L
characters. If N is omitted, use
the record indicated by the active
file marker.

108 Revised Sept. 1, 1971

3.6.2 LEVEL I OPERATORS

(~ = any level I operand; S = a storage location; N and M = any
level 0 operands; C =a single character.)

G 0

8 0

SUB N,M or

0 N, M

SUB N or

0N

SUB ,Mor

0,

SUB , or

0,

(])

concatenates the specified operand
to the end of the active string.
The length of the active string is
incremented by the length of the
operand.

inserts the specified operand in
front o f the act i v e s tr in g . Th e
length of the active string is
incremented by the length of the
operand.

The character string starting at
character N of the active string and
continuing for M characters replaces
the previous active string. The
length of the buffer is set to M.

The character string starting at
character N and continuing to the
end of the string buffer replaces the
previous string buffer. The length
of the active string is decremented
by N- 1.

The character string starting at the
level I search pointer and continuing
for M characters replaces the previous
a c t i v e s t r in g . Th e 1 en g th o f the
active string is set to M.

The character string starting at the
level I search pointer and continuing
to the end of the active string
replaces the previous active string.
The length of the active string is
decremented by the search pointer
minus one.

deletes a specified substring from
the active string and leaves the
remaining characters in the string
buffer. It has the same operand forms
as SUB.

109 Revis e d Se pt . 1 , 1 9 7 1

ARG ¢ RETURN

DEL

INV

LS ¢ RETURN N RETURN

RS ¢ RETURN N RETURN

inserts the specified level I
operand into the active string. The
level I search pointer specifies the
location of the first character to be
inserted. The level I search pointer
is not changed. If the character
string inserted causes the number of
characters to exceed the record length,
a character at the end of the active
string will be lost for each character
inserted. No indication of this
condition is given.

strips all trailing blanks from the
active string and recalculates the
length of the active string.

switches the active string and the
save string.

searches the active string for the
Nth occurrence of the specified
operand. RS starts with the first
character and searches right. LS
starts at the end of the active
string and searches left. If the
specified operand is not found, then
the level I search pointer is set to
zero. If the Nth occurrence of the
specified operand is found, then the
level I search pointer is set to the
value of the position where the
string was found. The second operand
may be omitted. If it is, the online
system assumes the user is searching
for the first occurrence of the
specified operand, and sets the level I
search pointer accordingly. The first
operand may be preceded by the not
11 -r 11 key, in which case the online
system searches for the Nth occurrence
not equal to the specified operand and
sets the level I search pointer
accordingly.

NOTE: level I RS is preferred over
level I MOD, aslfs does not attempt
to match~e operand with the string
buffer until the operand has been
completely specified.

110 Revised Sept. 1, 1971

EVAL 0

MOD CCCC ...

S I N !/J l RETURN

02 RETURN

compares the active string with the operand
and sets a code based on the results of the
comparison. The comparison proceeds from
left to right. When the length of the
active string is not equal to the length
of the operand, the shorter string deter­
mines how much of the longer string will
be used for the comparison. If the first
N characters (when N is the lesser of the
two lengths) are not equal the code is
set to plus or minus one depending on the
first non-matching characters. A minus
one indicates that the first non-matching
character in the active string occurred
earlier in the collating sequence. A plus
one indicates the reverse. When the first
N characters are equal the longer string
is considered to be farther in the collat­
ing sequence. When both strings are
equal in length and content a zero is
returned. The results of this comparison
may be tested in a user program by TEST
or viewed by LO EVAL + DISPLAY RETURN"-:-

searches the string buffer for "CCCC ... ".
If it is found uniquely, the level I
search pointer is set to that value and dis­
played. If it is not found, the level I
search pointer is set to zero and the
diagnostic "NO MATCH" is displayed. If the
string is not unique the sequence MOD "CCCC"
may be followed by the keys RETURN N RETURN
where N, a level 0 operand, specifies to
which occurrence of "CCCC" the level I
search pointer is to be set. If there is
no such occurrence the level I search
pointer is set to zero and the message
"NO SUCH OCCURRENCE" is displayed.

NOTE: level I MOD is identical in opera­
tion to level Ir-M°OD except level I MOD
changes the level~I-search pointer.

replaces all occurrences in the active
string of the first operand with the
second operand. The operation may change
the length of the active string. The
null string is valid second operand. In
that case all occurrences of the first
operand would be delted. The first oper­
and may be preceded by the not "-," key
in which case all occurrences not equal
to the first operand are replaced by the
second operand.

111 Revised Sept. 1, 1971

COS j3 l RETURN

02 RETURN

EXP ~ RETURN

SUM N RETURN

ID

LOG

LOAD Ill

EXAMPLES:

Active string = "ABCCDEABC"
SIN 'AB RETURN 'XY RETURN

produces: "XYCCDEXYC"

Active string = "ABCCDEABC"
SIN 'AB RETURN 'XYZ RETURN

produces: "XYZCCDEXYZC"

The characters in the active string
specified by the first operand are
translated to the corresponding
characters in the second operand.
All characters that appear in the
string buffer and the first operand
will be translated to the corresponding
characters in the second operand. All
others will not be changed. Duplicate
characters in the first operand are
ignored.

EXAMPLE: Active string= "THIS IS A
MESSAGE" COS 1 IHA RETURN 'XYZ RETURN

produces: "TYXS XS Z MESSZGE".

Each I was changed to X, the H to Y
and each A to Z.

expands hexadecimal digits in packed
format to zoned format. Each character
in the specified string is expanded to
two characters. (See IBM SYSTEM/360
PRINCIPLES OF OPERATION for an explana­
tion of the above formats),

sets the level I search pointer to N.

causes all presently supported characters
to be loaded into the string buffer in
the IBM collating sequence.

loads the present date and time into
the string buffer.

loads the specified operand into the
string buffer.

111. 1 Revised Sept. 1, 1971

LOAD RETURN

LOAD LO N RETURN

DISPLAY 0

DISPLAY SPACE 0

MAX 0 RETURN

STORE S

STORE LII N

loads the null string into the
string buffer.

converts the specified level 0
operand to a character string and puts
the character string in the string
buffer. N may be omitted. If it is,
the contents of the ·level 0 quotient
register are converted.

loads the specified operand into the
string buffer and displays it.

loads the specified operand into the
string buffer and displays it without
a carriage return preceding the
display.

displays the hexadecimal representation
of the specified operand.

replaces the previous contents of
storage location S with the contents
of the string buffer. The string
buffer is not altered.

replaces the contents of level II
record N with the contents of the
string buffer. LII record N must have
been previously defined. The string
buffer is not altered.

111. 2 Revised Sept. 1, 1971

3. 7 OPERATOR DEFINITIONS FOR LEVEL II (COL)

(M,N, and I = any level 0 operands; C = a single character.)

MANIPULATING POINTERS TO A RECORD

G) N RETURN

0 N RETURN

SIN N RETURN

COS N RETURN

LOG N RETURN

BACK

RS

LS

MOD CCC ...

increments the active buffer pointer
by N. A negative operand implies
the G opera tor.

decrements the active buffer pointer
by N. A negative operand implies
the 0 operator.

sets the active buffer pointer to N.

increments the save buffer pointer
by N. A negative operand implies
the co~ operator.

decrements the save buffer pointer
by N. A negative operand implies
the SIN operator.

sets the save buffer pointer to N.

replaces the preceding character in the
active buffer with a blank and decre­
ments the active buffer pointer and
the save buffer pointer by 1.

NOTE: On the screen BACK blots out
the deleted character;t"hus to see
newly entered characters press RETURN
which returns the carriage to the
next line.

fills the active buffer with blanks
(does not change either pointer).

sets the active buffer pointer and
the save buffer pointer to 1, and
returns the carriage to left of
display device (does not change
contents of active buffer).

(where CCC ... is a character string)
searches for a unique character string.
If no match is found the diagnostic
"NO MATCH" is displayed.

If a match is found the column
number of the first character is
displayed and the active buffer

112 Revised Sept. 1, 1971

pointer and save buffer pointer
are set to that value.

MOD CCC RETURN N RETURN

for multiple occurrences of a
character string, N specifies that
one is searching for the Nth occur­
rence of the specified string. If
there is no Nth occurrence the diag­
nostic "NO SUCH OCCURRENCE" is dis­
played.

MOVING CONTENTS BETWEEN ACTIVE AND SAVE BUFFERS

INV

RE FL N RE TURN

RE FL RETURN

switches the active and save buffers.

copies N characters from the save
buffer to the active buffer. The
save buffer pointer locates the
first character of the character
string to be moved. The active
buffer pointer locates the destin-
ation of the first character. The active
buffer pointer and the save buffer
pointer are incremented by N.

the entire save buffer is copied
to the active buffer. The active
buffer pointer and save buffer
pointer are not changed.

DISPLAYING AND LOADING RECORDS

DISPLAY RETURN

DISPLAY N RETURN

displays the contents of the active
buffer, the value of the active
buffer pointer, the value of the
save buffer pointer, and the number
of records in the active file.

displays the Nth record in the active
file, sets the value of the active
file marker to N, and loads the
record into the save buffer. After
DISPLAY N RETURN:

(1) Each additional RETURN displays
the next record in the active file,
increments the active file marker,
and loads the record into the save
buffer.

113 Revised Sept. 1, 1971

DISPLAY . RETURN

DISPLAY ?

LO AD N RE TURN

(2) BACK
record in
ments the
loads the

displays the preceding
the active file, decre­
active file marker, and
record into the save buffer.

(3) ? displays the value of the
active file marker, i.e., the number
of the last record displayed.

displays the last record in the
active file, sets the value of the
active file marker to the record
number, and loads the record into
the save buffer.

displays the record indicated by
the active file marker and loads
the record into the save buffer.

loads the Nth record from the
active file into the save buffer.
If N is omitted, N is assumed to
be the value of the active file
marker.

INSERTING AND DELETING CHARACTER STRINGS

ARG CCC RETURN

DEL N RETURN

inserts the character string CCC
into the active buffer. The active
buffer pointer defines the location
of the first character to be inserted.
The active buffer pointer and the
save buffer pointer are not changed.
If the character string inserted causes
the number of characters in the active
buffer to exceed the record length, a
character at the end of the active
buffer will be lost for each character
inserted. No indication of this con-
dition is given.

deletes N characters from the active
buffer. The active buffer pointer
defines the first character to be
deleted. The remaining characters
in the record are shifted left to
fill the spaces occupied by the de­
leted characters. The active buffer
pointer and the save buffer pointer
are not changed.

114 Revised Sept. 1, 1971

DEL RETURN

STORING AND DELETING RECORDS

STORE

SUB N RETURN

UP N RETURN

DOWN N RETURN

ATAN +

deletes all characters to the right
of the active buffer pointer. The
active buffer pointer and the save
buffer pointer are not changed.

stores the record in the active buffer
at the end of the active file, copies
the record in the active buffer to
the save buffer, clears the active
buffer, returns the carriage, and sets
the active buffer pointer and the save
buffer pointer to 1.

replaces the Nth record in the active
file with the record in the active
buffer, copies the record in the active
buffer to the save buffer, clears the
active buffer, returns the carriage,
and sets the active buffer pointer and
the save buffer pointer to 1. If N is
omitted, N is assumed to be the value
of the active file marker.

inserts the record in the active buffer
before the Nth record in the active
file, copies the record in the active
buffer to the save buffer, clears the
active buffer, returns the carriage,
and sets the active buffer pointer
and the save buffer pointer to 1. If
N is omitted, N is assumed to be the
value of the active file marker. The sub­
sequent records are appropriately renumbered.

deletes the Nth record from the active
file. If N is omitted, N is assumed
to be the value of the active file
marker. The subsequent records are appro­
priately renumbered.
enables the auto-store option. The
auto-store option automatically stores
the contents of the active buffer in
the active file when the value of the
active buffer pointer exceeds the cur­
rent record length. The value of the
active buffer pointer exceeds the
record length when a character is entered
into the last column of the active buffer,

115 Revised Sept. 1, 1971

ATAN -

RECORD LENGTH

DISPLAY CTX

CTX N RETURN

EVAL -

EVAL +

EVAL ?

EVAL (

EVAL)

EVAL .

EVAL ,

COLUMN CONTROL OPTIONS

0-

when the TAB or NEG key is pressed
and there-are noliiOre tabs on the drum
card, when the automatic skip-
dupl icate-left-zero option causes a
~ip,_J>ast t,h..e last field, or when the
\t), t:J, orl:.)key causes the value of
the active buffer pointer to exceed
the record length. The record is
stored at the end of the active file
and the active buffer is copied to the
save buffer. The active buffer is then
set to blanks and the active buffer
pointer and save buffer pointer are set
to 1. Thus the next character pressed
goes into the first column of the
active buffer.

disables the auto-store option.

displays current record length.

sets the record length to N.

suppresses display of buffer pointers
and card count on LII DISPLAY RETURN.

restores display of buffer pointers
and card count on LII DISPLAY RETURN.

displays the value of the active file
marker (i.e. the record number of the
last record displayed).

displays the value of the active
buffer pointer.

displays the value of the save buffer
pointer.

displays the number of records stored
in the active file.

displays the tab (column control) card.

enables automatic skip-duplicate­
left-zero option.

disables automatic skip-duplicate­
left-zero option.

116 Revised Sept. 1, 1971

~ET M,N, ... RETURN or

SUM M,N, ... RETURN

S E T RE TU RN o r ----
SUM RETURN

CLR or

DIFF

TAB or

NEG

EXP

defines a field N characters long,
starting at character M; A defines
the operation code for this field:

S skips the entire field
D duplicates the entire field
N right adjusts a numeric field

(left zero)

clears all tabs and field definitions.

sets a tab at column M, column N, ...

sets a tab at the value of the active
buffer pointer.

clears the tab at the value of the
active buffer pointer.

skips to the next tab setting.

copies the contents of the active
buffer to the drum card, illegal drum
card characters are replaced by blanks.
The contents of the active buffer are
not changed.

116. 1 Revised Sept. 1, 1971

3.8 OPERATOR DEFINITIONS FOR LEVEL III (COL)

(M,N = any level 0 operands; 0 = any level I operand)

0

0 N RETURN

INV

UP N RETURN

DOWN

EVAL N RETURN ~ RETURN

MOD ~ RETURN

concatenates the inactive file onto
the active file. (The inactive file
is purged).

sets the active file marker to N.

switches the active file and the in­
active file.

inserts all of the inactive file before
the Nth record in the active file. If
N is omitted, it is assumed to be the
value of the active file marker. The
inactive file is unchanged.

purges the active file and sets the
active file marker to zero.

searches the active file starting at the
first record beyond the active file
marker for the designated character
string. N is the column where one
expects to find the first character of
the character string. ~ is any valid
level I operand. If the specified oper­
and is not found the active file marker
is set to zero and displayed on the out­
put device. If the specified operand
is found the active file marker is set
to the record number of the record con­
taining the operand and the value of the
active file marker is displayed. The
level I operand may be preceded by the
not "-i" key, in which case the search is
made for the first record in which the
specified operand does not appear.

searches the active file starting at the
first column in the first record beyond
the active file marker for the specified
string. 0 is any valid level I operand.
If the string is found, the file marker is
set to the record number of the record
containing the string, the level I search
pointer is set to the column number of the
substring, and the file marker is displayed
If the string is not found both the file
marker and the search pointer are set to

117 Revised Sept. 1, 1971

SORT N,M RETURN or

§_g_RT N, M RETURN

CONJ N, M RE TURN

ARG M,N,I RETURN

DEL M, N RETURN

zero. The level I operand may be preceded
by the not ".....," key, in which case the search
is made for the first record in which the
specified operand does not appear.

NOTE: The character string sought must
be on one record.

sorts a copy of the inactive file, as
specified and concatenates the resultant
sorted file onto the active file. The
inactive file is unchanged. N specifies
the first column of the sort field and M
is the length of the sort field. M may
be omitted in which case the rest of the
record is used as the sort field.

merges the inactive file into the active
file. The inactive file is not changed.
N specifies the first column of the merge
field. M specifies the length of the
merge field. M may be omitted; if it is,
the rest of the record is used as the
merge field. CONJ assumes the files are
sorted; no che~are made.

inserts a copy of M records from the
inactive file before record N in
the active file. I is the record number
of the first record in the inactive file
to be copied. N and I may be omitted,
in which case their values default to
the respective file markers. Mis required.
The inactive file is not ~hanged by this
operation.

deletes M records from the active file,
starting with record number N. N may be
omitted, in which case it defaults to the
active file marker. The remaining records
are appropriately renumbered.

118 Revised Sept. 1, 1971

MAX N,M RETURN

DISPLAY M,N RETURN

DISPLAY M RETURN

DISPLAY , N RETURN

DISPLAY , RETURN

DISPLAY RETURN

puts a sequence number in the specified
field of each record in the active file.
N specifies the first column of the
sequence number field. M specifies the
length of the sequence number field.
M may be omitted; if it is, the rest
of the record is used as the sequence
number field. The sequence numbers are
padded on the left with zeroes.

displays M records, starting with
record number N.

displays M records, starting with the
first record bey6nd the active file
marker.

displays the remainder of the active
file starting with record N.

displays the remainder of the active
file starting with the first record
beyond the active file marker.

displays all of the active file.

118.l Revised Sept. 1, 1971

3.9 OPERATOR DEFINITIONS FOR LEVEL IV (COL)

LOAD

SUB

DISPLAY 0 RETURN

concatenates the specified data set
from the operating system with the
contents of the active file. The
entire record of the OS data set is
kept (up to a maximum of 254 characters).

NOTE: The COL record length is
unchanged; thus DISPLAY will not
display the entire record if the OS
data set record length is greater
than the COL record length.

submits the active file to the operat­
ing system for batch processing.

displays the jobs active in the system
and the status of the indicated de-
v i c es . 0 i s on e or mo re o f th e
following operands:

J = jobs currently active in the oper­
ating system.

D direct access data devices.

T tapes.

u = all unit record equipment.

G = graphics devices.

C communication devices (none).

A= all of the above.

119 Revised Sept. 1, 1971

3.10 OPERATOR DEFINITIONS FOR LEVEL 0 EVAL (COL)

EVAL CTX

EVAL

EVAL ?

EVAL (

EVAL)

EVAL RETURN

EVAL S

EVAL +

EVAL

EVAL LI

loads the current record length into
the level 0 quotient register.

loads the number of records in the
active file into the level 0 quotient
register.

loads the current value of the active
file marker into the level 0 quo­
tient register.

loads the current value of the level
II active buffer pointer into the
level 0 quotient register.

loads the current value of the level
II save buffer pointer into the level
0 quotient register.

loads the current length of the level
I active string into the level 0
quotient register.

loads the length of the character
string stored under level I storage
location S into the level 0 quotient
register.

loads the result of the last level I
EVAL operation into the level 0
quotient register.

loads the current value of the level I
search pointer into the level 0 quo­
tient register.

treats the level I active string
as a decimal number, converts it to
an integer, and places the result
in the level 0 quotient register. If
there are one or more minus signs
in the active string, the resultant
number will be negative. If a non­
decimal character is encountered, the
diagnostic "OPERATION ABORTED" is
displayed. If the active string repre­
sents an integer greater than the
computer can handle, the diagnostic
"FIXED POINT OVERFLOW" is displayed.

120 Revised Sept. l, 1971

EVAL #

EVAL -

EVAL

treats the level I active string
as a hexadecimal number, converts it
to an integer, and places the result
in the level 0 quotient register. If
there are one or more minus signs in
the active string, the resultant
number will be negative. If a non­
hexadecimal character is encountered,
the diagnostic "OPERATION ABORTED"
is displayed. If the active string
represents an integer greater than
the computer can handle, the diagnostic
"FIXED POINT OVERFLOW" is displayed.

loads the decimal equivalent of the
IBM EBCDIC bit code for the first
character in the level I string buffer
into the level 0 quotient register.

treats the first four characters
of the level I string buffer as a
bit string, which represents an
integer. The integer is moved to
the level 0 quotient register.

12 0. 1 Revised Sept. 1, 1971

MATHEMATICALLY ORIENTED LANGUAGE
SINGLE PRECISION FLOATING POINT (MOLSF)

MOLSF has four levels of mathematical operators and data

structures. Level I operators enable one to perform calculations

on scalars (single numbers). Level II operators enable one to

perform calculations on vectors (ordered lists of scalars). Level

III operators enable one to perform calculations on two-dimensional

arrays. Level V is reserved for operators for which there is no

space on existing levels. For example, a user can pass MOLSF

data to a FORTRAN or PLl batch program and have the results of

these batch programs returned to MOLSF data structures.

The selection of MOLSF operators has been made to provide

a balance between ease of mathematical formula construction and

simplicity of operator definitions. The sections preceding the

definition of the MOLSF operators provide the background

necessary to efficiently use MOLSF. They discuss MOLSF's

internal number representation, MOLSF's data structures, MOLSF's

computational format and the working registers, MOLSF's operand

forms, the explicit loading of data into the working registers,

the storing of data for later use, and finally a detailed descrip-

tion of MOLSF display facilities. (Note: Except for the first

sub-section in the display section, display may be left for a

later reading.)

121 Revised Sept. 1, 1971

4.1 NUMBER REPRESENTATION

MOLSF uses scientific notation (floating point) to represent

scalars. Each number is defined by a mantissa and an exponent.

7 For example, the number 4,900,000 may be written as 0.49 x 10 ,

where 0.49 is the mantissa and 7 is the value of the exponent,

-2 or 0.0023 may be written as 0 .. 23 x 10 .

tion system may be expressed as

The actual representa-

where y is the number to be represented, M is the mantissa, R

is the radix or base, and p is the integer exponent. Numbers are

stored and manipulated internally in floating point-binary form

(R = 16), but are typed or displayed as decimal numbers (R = 10)

in fixed or floating point form.

Numbers are entered in the form

+ M + p

where M is the mantissa (which may include the decimal point in

any position) and p is the power to which the base R = 10 is

raised. If p = 0 it may be omitted. The first sign indicates

whether the number itself is positive or negative and may be

omitted if it is +; the second sign shows whether the exponent

is positive or negative, and must be included if p is included.

Thus -0.49 x 10 7 would be typed in as -.49+7 and 0.23 x 10- 2

as .23-2.

To summarize, the rules pertaining to the typing of numbers

122 Revised Sept. 1, 1971

A + B + C + D

MOLSF allows the user to simplify this expression by juxtaposing

operands for all binary operators (©, 0, 0, (/)).

EXAMPLE: To add four scalars stored under A, B, C,

and D the following sequences are equivalent.

LOAD A 0 B © C 0 D

LOAD A E) BCD

EXAMPLE: To add the scalars 91, 77, A, 173, 71 the

following sequences are equivalent.

LOAD 9 1 © 7 7 © A © 173 © 71

LOAD 91 © 77 A 173 RETURN 71 RETURN

4.3.3 TRAILING PREDICATES

It is often an inconvenience for the user to press LOAD

every time he wishes to work with a new operand. MOLSF allows

the user to implicitly load operands when working with unary

operators.

LOAD A SIN is equivalent to SIN A. This can be helpful

when constructing a mathematical expression.

EXAMPLE: sin 2 (A) + cos 2 (A)

Without trailing predicate:

LI REAL LOAD A SIN §.g_ STORE T LOAD A COS SQ © T

With trailing predicates:

LI REAL SIN A SQ STORE T cos A SQ© T ---- --

With trailing predicates and parentheses:

LI REAL SIN A SQ@ (COS A SQ) ----

133 Revised Sept. 1, 1971

4.4 LOADING OF DATA

The primary function of the LOAD key is to explicitly enter

numbers or copy data from storage locations into the working

registers for the level the user is presently working on. Data

may be copied from storage locations on any level (I, II, or III).

In many instances, the LOAD key is unnecessary. For example,

LOAD Z SIN is equivalent to SIN Z. In the latter case, the loading

of data into the working register is implicit, and is the preferred

sequence. (See section 4.3.3 on trailing predicates.)

When one loads data into the working register the contents of

any specified storage location are not changed. Concisely, LOAD

provides explicit, nondestructive recall from temporary data

storage to the working registers.

4.4.1 LOAD FOLLOWED BY A NUMBER (a numerical operand)

If the LOAD key is followed by a number, then that number

is loaded into every component of the current level's working

register.

EXAMPLES:

1)

2)

3)

~REAL LOAD 13 RETURN enters 13 into a1 .

LII CMPLX LOAD 3,7 RETURN places 3 + 7i = (3,7)
into every component of the (all' all) register.

Llll REAL LOAD 2 RETURN enters 2 into every
compo"ii'ei'it "()"I""'"the B111 register.

4.4.2 GENERAL MOLSF LOAD FORMAT

The general format for the keys which may follow LOAD is:

134 Revised Sept. 1, 1971

LOAD [level) [REAL l . tC'MPLXj [location][(component)]

As the brackets indicate, all the keys are optional. The

"level" designation is .!:.Q, .!:....!_, LI!, or LIII. A level key n~ed only

be included to load data from a level other than the one which

is presently active. REAL or CMPLX indicates that the data is to come

from the specified mode. "Location" indicates which of the 52

storage locations is to be copied. If "location" is omitted, then

the working register is used as the source of the data to be copied.

"(component)" may be any level 0 operand and indicates the specific

component to be used. The parentheses around the component entry

are required. The actual component may be omitted;

the online system assumes any missing indices are equal to one.

The component entry is necessary when copying data from a higher

to a lower level.

4.4.3 LOADING DATA WHILE ON LEVEL I

All of the following examples assume the user is working on

level I and explicitly wishes to load data into the appropriate

working register. In all cases, the source of the data is not

changed.

EXAMPLES:

1)

2)

LI CMPLX LOAD Z - The contents of the level I
complex scalar Z are copied into the (a 1 ,S 1) working
register.

LI REAL LOAD X - The contents of the level I real
scalar x""""ire copied into the S1 working register.
The contents of a 1 are not changed.

135 Revised Sept. 1, 1971

3)

4)

5)

6)

7)

8)

LI REAL LOAD CMPLX Z - The contents of the real
part of the level I complex scalar Z are copied into
the Sr working register. The contents of ar are
not changed.

LI REAL LOAD LII A(3)- The contents of the third
component of the level II real vector A are loaded
into the Sr working register.

LI REAL LOAD LII (7) - The contents of the seventh
component of tii"e arr working register are copied
into the Sr working register.

LI REAL LOAD LII R(I) - The contents of
componen~of"the level II real vector R are copied
into the Sr working register. The value of I is
obtained from the integer stored under level 0 I.

LI REAL LOAD LIII A (I,J) - The contents of
componen~J~the level III real array A are
copied into the Sr working register.

LI REAL LOAD LIII (,) - The contents of
component"ii(1:T)" of the S11r working register are
copied into the Sr working register.

4.4.4 LOADING DATA WHILE ON LEVEL II

All of the following examples assume the user is working on

level II and explicitly wishes to load data into the appropriate

working register. In all cases the source of the data is not

changed.

EXAMPLES:

1)

2)

3)

4)

LII REAL LOAD G - The contents of the level II real
vector G are-copied into the arr working register.

LII REAL LOAD LI G - The contents of the level I
scalar G are-copied into every component of the Srr
working register.

LII REAL LOAD LI CMPLX X - The contents of the real
~- -~- -~- -- -..,,.-~-part of the level I complex scalar X are copied into
every component of the SrI working register.

LII REAL LOAD LIII A (1,) - The contents of the
first row~the level III array A are copied into
the SII working register.

136 Revised Sept. 1, 1971

5)

6)

LII CMPLX LOAD LIII A (2) - The contents of the
second row~the level III complex array A are
copied into the (aII, 8II) working register.

LII CMPLX LOAD LIII REAL A(,2) - The contents of
the second--column of the level III real array A
are copied into the a 11 working register.

4.4.5 LOADING DATA WHILE ON LEVEL III

All of the following examples assume the user is working on

level III and explicitly wishes to copy data into the appropriate

level III working register. In all cases the source of the data

is not changed.

EXAMPLES:

1)

2)

3)

4)

5)

LIII CMPLX LOAD A - The contents of the level III
complex array A are copied into the (arrr' 8III)
working register.

LIII CMPLX LOAD REAL X - The contents of the level
III real array x---aTe copied into the arrr working
register. The 8rrr register is set to zero.

LIII REAL LOAD CMPLX X - The contents of the real ----part of the level III complex array X are copied
into the 8III working register.

LIII REAL LOAD LI Z - The contents of the level I
real scalar-z-are copied into every component of
the 8IrI working register.

LIII REAL LOAD LII L - The contents of the level II
real vectorr:-are--copied into each column of the
8III working register.

4.4.6 INCREMENTING THE COMPONENT IN LOAD

The component entry in the general MOLSF LOAD format may be

any level 0 operand. Thus it is possible to increment or decrement

any index variable in a LOAD format. For a complete list of level O

operands see section 2.3.1.

137 Revised Sept. 1, 1971

In the following examples there is no key sequence which

leads the user to believe the keys would be executed more than

once. Their explanations are based on the assumption that they

are embedded in a user program which is repeated a number of

times in the course of solving a problem.

EXAMPLES:

1) LI REAL LOAD LI! M(K+) - The variable K is a
Teve!O" operand. The first time the instruction
sequence is executed, M(K) is loaded into 81 and
K is incremented by 1. The next time the sequence
is executed, the entry M(K) for the new value of K
is loaded into Sr. K is incremented again each
time the sequence is repeated. The level 0 operand
can be decremented instead of incremented if the
minus sign is used instead of the plus sign. These
are the lower keyboard plus and minus signs, not
the operator keys 0 and 0. If the desire_d_
increment or decrement is not unity, then the + or
- sign should be followed by the desired integer
specification.

2) LI REAL LOAD LI! L(N+J) where N and J are level 0
operands-.--!£~= 3 and J = 2, then L(3), L(S),
L(7), L(9), etc., are loaded into 8I in turn as the
instruction sequence is repeatedly executed.

4.4.7 LOADING VECTORS AND ARRAYS WITH VARYING DIMENSIONS

The online system allows complete freedom in loading data of

varying sizes into the working registers. Vectors or arrays which

have smaller sizes than the current size of the working registers

will be completely copied into the working registers. The components

already in the working register beyond the data loaded will not be

changed. If the size of the vectors or arrays loaded exceeds the

current size of the working registers, then only that part of the

data up to the limit of the working registers is copied.

138 Revised Sept. 1, 1971

EXAMPLE: Suppose the present context of the working

register is 51; we wish to combine two vectors F and G each

of context 51 such that the resulting vector has the first

46 components of F and the last 5 components of G. Press:

LII LOAD G CTX 46 LOAD F CTX 51

4.5 STORING OF DATA

The STORE key is the antithesis of LOAD. It is used to

copy the contents of the working register into a storage loca-

tion. There are fifty-two unique storage locations (A - Z, a -

w) for each mode on each level, i.e. 52 REAL and 52 CMPLX storage

locations. The previous contents of the designated storage loca-

tions are replaced by the quantity which is stored. The level

specification most recently preceding the alphabetic key will be

the one used to determine which storage location is desired. On

levels II and III, the context of the storage location is auto-

matically set to that of the working register.

The general format for the keys which follow STORE is exactly

the same as that for LOAD:

STORE [level] [REAL l
CMPLXj

[location] [(component)]

1) "level" is .!:.Q_, ..!:.!_, LII, LIII, or omitted.

2) "location" is an alphabetic key A through Z, a through w.

3) "(component)" is "(i)", or "(i+j)", or omitted, with i and
j any level 0 operands.

STORE does not change the contents of the working register.

EXAMPLES:

1) LI REAL LOAD 3.2 STORE A - stores the real scalar 3.2 in
TeveTI real A.

139 Revised Sept. 1, 1971

2) LI REAL LOAD s0s©3 STORED - stores the real scalar
SB +-3inievel I re.al D.

3) LI REAL LOAD 9 STORE CMPLX A - stores the complex scalar
-g--+~inievel I complex A.

4)

5)

6)

7)

8)

LI REAL LOAD I STORE LII Q(J) - stores the contents of
Tevell" real I in component J of the level II real vector
Q. J is any level 0 operand.

LI CMPLX LOAD 3,1 STORE T - stores the complex scalar
3 + i in 1 eve 1 I co mp 1 ex T .

LI REAL LOAD 37.2 STORE LIII CMPLX A(,) - stores the
complex scalar 37.2 + oi--rn-the first component (1,1)
of the level III complex array A.

LI REAL LOAD 8.9 STORE LO C - truncates the real scalar
"8:""9---:ro-the integer 8 an~stores it in level 0 C.

LII REAL LOAD 1 STORE S - stores 1
~the-lever-II real vector S.

into every component

9) LII REAL ID STORE X - stores the uniformly-spaced discrete
domain of~he interval -1 < x < 1 in level II real X.

10) LII REAL LOAD A STORE LI B - stores the first component
~tile-rev-er-II real vector A in level I real B.

11) LIII CMPLX LOAD A STORE LI B - stores the first component
"'C'T:T) of the-level III complex array A in level I complex
B.

12) LIII REAL LOAD A STORE LII C - stores the first column
of the-fever-III real array A in level II real C.

NOTE: When executing a STORE operation into a higher level, the

absence of a "location" specification implies storing into the

working register element(s) specified by "level" "(component)".

For example, .!:.!_ REAL STORE LII (K) stores the contents of 6 1 into

component K of the 6II working register.

(In the above examples, the repeated use of REAL and CMPLX

is only for illustration and normally is only required to change

from one to the other).

140 Revised Sept. 1, 1971

registers is computed. To display vectors on a common scale in

dot or dot-dot mode, specify the list of vectors to be displayed

in line mode, if any; then push dot or dot-dot followed by a

list of vectors to be displayed in that mode.

LII DISPLAY , A.BC .. D RETURN

The vector A is displayed normally, B and C in dot

mode, and D in dot-dot mode. The scale used for the display

is the greatest of the scales of A, B, C, and D. The

dot or dot-dot may be placed anywhere in the sequence and may

be repeated. Therefore, the sequence LII DISPLAY ,A .. B.C .. D

RETURN is valid. After the comma, a number may be specified

to indicate the scale to be used in displaying a curve or a

series of curves.

EXAMPLE:

LII DISPLAY ,2A RETURN

The vector A is displayed with a scale of two, regardless of

maximum scale.

LEVEL III DISPLAY

Level III display is similar to level II display.

very few conceptual changes the same sequences execute

similar operations in two dimensions instead of one.

With

One important concept that does differ is scaling. In

level III display the user has no control over the scale as he

does in level II display.

151 Revised Sept. 1, 1971

It is to the user's advantage to note that for the higher

dimensions displays become cluttered and therefore somewhat

difficult to read.

4.6.4 DISPLAY FORMATTING

Numerical and curvilinear dot-dot displays may be formatted.

There are three types of formats: integer display format, float-

ing-point display format, and the dot-dot graphical display

character.

INTEGER DISPLAY FORMAT ITEM (LO data, LII and LIII contexts,
display scales) (n 2 24)

In Left justified - leading zeros suppressed

Ln Right justified - leading zeros not suppressed

Sn Right justified - leading zeros suppressed

Xn Right justified - leading zeros not suppressed.
Hexadecimal numbers displayed
instead of decimal.

n specifies the number of places. Overflow is indicated by

an asterisk (*) in the sign position. The default format speci-

fication is IlO.

FLOATING-POINT DISPLAY FORMAT ITEM - (n + m 2 24)

Dn.m Float - trailing zeros suppressed.

En.m Float - trailing zeros not suppressed

Fn.m Fixed - no exponent displayed, leading zeros
suppressed.

n specifies the number of places to the left of the decimal

152 Revised Sept. 1, 1971

place and m the number to the right. An overflow or underflow

in the "F" format is indicated by an asterisk in the sign position.

The default floating point format is Dl.S.

DOT-DOT FORMAT ITEM

One lower-keyboard character

When dot-dot display is to be done the character specified

is used in place of the normal (large) dot. The default dot-dot

format item is the dot specified by a period.

The user may change the format on LO (index), LI, LII, or

LIII with a sequence of the form "DISPLAY (format item, format

item, ...)". Any format item may be changed on any level and

the format items may be specified in any order separated by

commas. Should a format of the same type be repeated, the most

recent specification is used. If a RETURN appears during format

specification, the current format items will be displayed. The

format items just specified are not stored until the right

parenthesis is pressed.

EXAMPLE: Change the dot-dot format item to a question

mark. Press:

DISPLAY (?)

EXAMPLE: Change the dot-dot format item to an asterisk

and the floating point format item to fixed form. Press:

DISPLAY (FlO.S,*)

EXAMPLE: Display the present format items.

DISPLAY (RETURN

Press:

153 Revised Sept. 1, 1971

4.7 MATHEMATICAL OPERATORS FOR LEVEL I

The following operand notation is used in describing the

mathematical operators:

1) S represents a storage location as defined by an
alphabetic operand. (See section 4.3.1)

2) "r", "r1", and "r2" represent real numbers, as
entered on the numeric keys.

4.7.1 OPERATOR DEFINITIONS FOR LEVEL I REAL (MOLSF)

©, Q,G, (!)

PWR

SUB K

EVAL K

followed by S or "r" computes the
indicated combination with the number
in the ar register and leaves the
result in the Br register. If one of
these operators is followed by any
other operator, it has no effect.

followed by S or "r" raises the
contents of the Br working register
to the specified power and leaves the
result in the Br working register.
If PWR is followed by S, then the
contents of storage location S are used
as the exponent. If PWR is followed
by any other operator key, then it has
no effect.

puts the contents of the 81 register
into component K of the 811 working
register. K must be a positive integer
or a level 0 operand, not larger than
the current context.

puts component K of the 811 working
register into the ar register. K must
be a positive integer or a level 0
operand, not larger than the current
context.

(In the following, if the operator key is followed immediately by

S or "r", the operand is the value in the REAL storage location S,

or the number r, respectively. If the operator key is followed

by any other keypush, the operand is the value already in the Br
register. The result is always put into the Br register.)

154 Revised Sept. 1, 1971

NEG

INV

MOD

squares the operand.

takes the square root of the operand.
The real square root of a negative
number is defined to be zero.

negates the operand.

takes the reciprocal of the operand.

takes the absolute value of the
operand.

SIN, COS, LOG, EX~, ATAN
~--performs the indicated operation on

the operand. LOG acts on the
absolute value-of the operand.
LOG of zero gives -183.846.

ARG 0 if operand > O; 'IT if operand < 0.

DEL 0 if operand -:/ n; 1 if operand = 0.

ID sets the 3 1 working register to 1.

4.7.2 OPERATOR DEFINITIO~JS FOR LEVEL I COMPLEX UIOLSF)

0

PWR

SUB K

EVAL K

followed '::y S or ''r , r " computes
h . d' d 1 1 2 b' . t e in icate comp ex com ination

with the complex number in the (a.I'
BI) register. And leaves the result in
the (cq, Sr) register.
followed by S or "r" raises the
contents of the (a. 1 , B1) working
register to the specified power and
leaves the result in the (a. 1 , SI)
working register. If PWR is fo lowed
by S, then the contentsof storage
location S are used as the exponent.
If PWR is followed by any other
operator key, then it has no effect.

puts the contents of the (a , S1)
register into component K of the
a.II' BII).working register. K is a
positive integer or a level 0
operand, not larger than the current
context.

puts component K of the (a.111 1311)
working register into the (a.1, 131)
register. K is a positive integer
or a level 0 operand, not larger than
the current context.

155 Revised Sept. 1, 1971

(In the following, if the operator key is followed immediately

by Sor "r 1 , r 2 ", the operand is the value in the complex storage

location S, or the complex number r 1 + ir 2 , respectively. If

the next key pushed after the operator key is not S or "r 1 , r 2",

the complex number in (a 1 , S 1) is the operand.

always put into the (a 1 , S1) register).

The result is

SORT _,_

NEG

INV

REFL

MOD

squares the operand.

takes the complex square root of the
operand, using the branch of the
square root such that the argument
of the answer is half the argument
(defined by ARG) of the original
complex number.

takes the complex conjugate of the
operand.

takes the complex reciprocal of the
operand.

interchanges the real and imaginary
components of the operand.

takes the modulus of the operand,
puts it in a 1 and puts zero in s1 .

SIN, COS, LOG, E_XP, ATAN
--performs the indicated operation on

the operand; LOG takes the branch
provided by ARG. LOG of zero gives
-183.846 + or-ind puts it into the
(a 1 , Sr) register.

ARG or

ARG -

ARG +

DEL

ID

computes the argument in the interval
[-TI, TI] of the operand, puts it in a.I.,
and sets Sr to zero. The argument or
0 + Oi is defined to be zero.

computes the argument in the interval
[O, 2TI] of the complex number in the
(a 1 , S1) register and puts it in a 1 ,
S1 is set to 0. The argument of
0 + Oi is defined to be zero.

0 + Oi if operand 1 0 + Oi; 1 + Oi
if operand = 0 + Oi.

sets (a 1 , S1) equal to 1.0 + O.Oi

156 Revised Sept. 1, 1971

4.7.3 ADDITIONAL COMMENTS ON LEVEL I

Data in the working register can be transferred between

level I REAL and level I CMPLX by simply changing modes. A

real number in Br on level I REAL becomes the imaginary part of

Car, Br) on level I CMPLX. Thus if the real number 6 were in Br

on level I REAL and keys LI CMPLX were pushed, the number would

still be in Br on level I CMPLX. If the contents of aI were

initially 0, the complex number in Car, B1) would now be 0 + 6i.

Likewise, when the level is changed from level I CMPLX to level

I REAL, the imaginary part of the complex number becomes the

real number on level I REAL.

Several simple examples of operations on level I are given

below. More detailed examples are presented in Appendix E.

1)

2)

3)

x LI REAL EXP X DISPLAY RETURN. The number e , x
the single number containecr-in X, is calculated
and printed on the display scope.

LI REAL LOAD Y REPT SIN 3 RETURN. The single
number srn-(sin---rs1n--y)) is computed. The
result is in the B1 register.

LI CMPLX LOAD 3,2 LOG DISPLAY RETURN. The principal
value of ~(3 + 2i) is computed and displayed.

4) LI CMPLX MOD Z DISPLAY RETURN. The modulus of
the complex-number stored in Z is computed and
displayed on the scope. For example, if the number
3 + 4i were in Z, the modulus 5, 0 would be E.!inted
on the scope; (i.e., modulus= 13 2 + 4 2 = /25 = 5).

The repeated use of level specifications LI REAL and LI CMPLX occurs

in the above examples for the purpose of illustration. In general,

such specifications are only used when individual level changes

are required.

157 Revised Sept. 1, 1971

4.8 MATHEMATICAL OPERATORS FOR LEVEL II

4.8.1 OPERATOR DEFINITIONS FOR LEVEL II REAL (MOLSF)

Throughout the description of the level II REAL operators

it is assumed that the vectors needed have previously been

defined and are available for use. The general notation adopted

for the description of the level I operators is also employed.

Note that S, which represents a storage location, now implies

... , s) and "r", which represents a real
n

number, now defines a constant vector of n components.

0, 0 0 ' (J)

PWR

followed by S or "r" performs the
indicated operations componentwise
using the vector in the SII register
and the real vector in Sor "r".
Let (S1, S2, ... , Sn) denote the
contents of SII before any of these
operations. Then the result, in
SII• will be as follows:

0

0

0 S:

(/) s:

. . . ,

. . . ,

... ' s s) n n

If zeros occur in some, or all, com­
ponents of the operand
vector in division, results for those
components will be zero.

followed by S or "r" raises the contents
of each component of the S11 working
register to the specified power and
leaves the result in the S 1 1 working
register. If PWR is followed by S, then
the contents of"the vector S are used as
the exponents.

158 Revised Sept. 1, 1971

LS

RS

ENL

CON

EVAL

shifts each component Bk of the B11
register into position (k-1)
of the Br1 register, placing the
first component in the last position.

. . . , B , B i)
n

LS K (K a level 0 operand) is
equivalent to repeating..!:.§_ K times.

shifts each component Bk of the Brr
register into position (k+l) of B11
placing the last component into the
initial position.

. •• ' B •) n-i

RS K (K a level 0 operand) is
equivalent to repeating RS K times.

doubles the mantissa of each component
of the Brr register, for display pur­
poses, and decrements the binary scale
by 1 so that the magnitude is not
changed. ENL K (K a level 0 operand)
is equivalent to repeating ENL K times.

halves the mantissa of each component
of the Brr register, for display pur­
poses, and increments the binary scale
by 1, so that the magnitude is not
changed. CON K (K a level 0 operand)
is equivalent to repeating CUN K times.

NOTE: For LS, RS, ENL, and CON a
negative operan~implies the inverse
operator. For example, LS -3 is
equivalent to RS 3.

If X is in arr and f(X) is in Brr.
EVAL followed by S replaces f (X)
with f(S). The process is as
follows: for each component si of
S the least upper bound, Xk, and
the greatest lower bound, Xj, with
respect to the ar1 register, are
found. Linear interpolation then
gives the value of f(si) as

159 Revised Sept. 1, 1971

EVAL +

EVAL -

ID

ID X

ID Y

ID ?

If siis greater than (or less than)
all of the a11 components, the value
of f (si) is set equal to the S11
correspondent of the maximum (minimum)
a11 component. If the dimension of
S is not equal to the dimension of
the B11 register, the a11 and S11 registers
containing the result, "X" and f(S),
will have the context of S. If
followed by "r", EVAL creates a constant
vector and proceeds as above. If r is
a negative number, it must be enclosed
in par en th es es.

Similar to EVAL except that f (si) is
replaced by the function of the least
upper bound, f(~k).

Similar to EVAL except that f (si) is
replaced by the function of the great­
est lower bound, f(xj)·

If the working register length is n,
ID places a vector consisting of n
equally spaced values from -1 to +l,
(beginning with -1, ending with +l)
in the a11 and S11 registers.

2k-n-ll a11 = 811 = (1 k = 1, 2, ..• , n) n-

p laces the vector consisting of n
equally spaced values from -1 to +l
in the a11 register only. 8 11 is
unchanged.

(2k-n-ll
a11 = n-1 k = 1, 2, ••• , n)

X in this case is not an operand.

places the vector consisting of n
equally spaced values from -1 to +l
in the a11 register only. a11 is
unchanged.

811 = C 2 ~=~-ll k = 1, 2, .•• , n)

Y in this case is not an operand.

places a vector consisting of n
uniformly distributed random values
in the interval [-1, +l] in 811 .

160 Revised Sept. 1, 1971

ID RETURN

SUB

Similar to ID ?, except that the
contents of--Srr are used to compute
the random numbers.

When followed by S, SUB loads the
contents of S into the arr working
reg is t er . When f o 11 owed by "r" ,
SUB loads "r" into the aII working
register. When followed by (), puts
the contents of Srr into arr·

[In the following, if the operator key is followed immediately

by Sor "r", the operand is the vector in the REAL storage location

S, or the constant vector r, respectively. If the next key is not

one of these, the operand is the real vector in Brr· The result

is always put into the Srr register.]

NEG

INV

DIFF

SUM

squares each component of the operand .

.. . ' s 2) n

takes the square root of each com­
ponent of the operand, assigning
the value of zero to each negative
component.

S II = (/51, 152":" · · · , /Sf n

negates each component of the operand.

. . . ' - s) n

computes the reciprocal of each com­
ponent of the operand.

... , 1/ s) n

forms the forward difference of the
components of the operand, performing
a second-order extrapolation to supply
the last component in the result.

Brr = (s2-s1, s3-s 2 ,

2s -3s +s)
n n-1 n-2

• • • J s -s ' n n- 1

forms the running summation of the
components of the operand.

n
Srr = (s1, s1+s2, s1+s2+s3, ... , E sk)

k=l

161 Revised Sept. 1, 1971

PROD

REFL

MOD

MAX

forms the running product of the
components of the operand

n
8II = (s1, s1s2, s1s2s3, ... , TI sk)

k=l

reverses the order of the n com­
ponents of the operand.

s ' . . . ' s l) n-1

takes the absolute value of each
component of the operand.

Is I) n

sets each component of the 8I I
register equal to the maximum
component of the operand.

SIN, COS, LOG, EXP, ATAN

SORT

performs the indicated operation
componentwise on the operand vector.

SIN: 8II = (sin s l ' sin s2, ... '
sin Sn)

(s's in

COS: 8II = (cos s l ' cos S2,
radians) ... '

cos Sn)

LOG: 811 = (ln s l , ln s 2 ' ... , ln sn)
LOG of 0 gives -183.846.

EXP: 8II = (es l' es 2 ... ' esn)
'

ATAN: 8II (- l - l ... , (results = tan s 1 , tan s 2,
tan- 1sn) in

radians)

rearranges the components of the BII
working register in numerically in­
creasing_ order. At the same time the
integer representing the original
position of each component is placed
in the aII working register.

162 Revised Sept. 1, 1971

SORT A,B

ARG

DEL

CONV

rearranges A using each component
of B as an index to designate which
component of A will be loaded into
aII· The components of B are trun­
cated to integers. Thus

!3II(l) = A(B(l))

!3II(2) = A(B(2)) etc.

If the value of any component of B
is less than or equal to zero, then
the first component of A is loaded
into the indicated component of !3II·
If the value of any component of B
is greater than the context of A,
then the last component of A is
loaded into the indicated component
in SII· The aII working register is
not changed. A may be omitted. If
it is, then the contents of the BII
working register will be sorted as
specified.

assigns the value zero to all non­
negative components, the value TI =
3.14159 to all negative components
of the operand.

identifies zeros and sign changes in
the operand vector as follows:

If sk = o, sk = 1

If (sk)(Sk+1) < 0, sk = 1 if !skl.::lsk+1I

sk+l = 1 if lsk+1l<lskl

All other !3k = 0

provides a means for obtaining a dis­
crete approximation to the integrals

00

J_ 00 K(t - T) F(T) dT

ftK(t - T) F (T) dT
0

and

K period = 2TI

163 Revised Sept. 1, 1971

CONVOLUTION

by pressing: Lil REAL LOAD F CONV K,J
where J is the-COmponent number of K(t-T)
which is to be initially aligned with the
first element of F. (J any level 0
operand.)

The nature of this discrete approximation is such that the

user is expected to reform the kernel to be a distributed kernel

(i.e., the weighting factors resulting from the user-selected

integration formula are included in the representation of the kernel).

In the simplest situation, these weights may all be equal to the

step selected for the independent variable. In this case, K

would be replaced by K • ~T before the convolution operator is used.

In the following discussion, these weights will be presumed

to be included and K represented by a vector Lil REAL K = (k 1 ,

k2, .. . , km)· The easiest way to describe the convolution compu-

tation is by explaining the matrix multiplier derived from K by

CONV K,J (J is any level 0 operand which must be less than or equal

tom). J defines the matrix extension of K by specifying the

upper left hand entry as shown below. The first step of the

calculation extends K to the matrix

K.
J +•jc

Km 0 .••••• 0

K j + 1 , • • • • • • • Km 0 . . 0

. • • • • . • • • . . • . . • • . • . . . • Km

0 K 2 ••••••••••••.•••••••

0 0 Kl •••••

164 Revised Sept. 1, 1971

This matrix then becomes the multiplier for the column vector F.

To use the convolution operator one must progress through

the following steps:

1) Create the kernel as a vector with a context

less than or equal to that of the function to

be convolved.

2) If the first component of the kernel vector is

not equal to zero, multiply the first component

by one half. This lessens the error from the

convolution computation due to the trapezoidal

rule integration formula. To accomplish this

one could press:

LI EVAL 1 0 0.5 SUB 1 LII ...

3) Next reflect the kernel (REFL), then store it in

temporary data storage (STORE K).

4) Create the function to be convolved.

5) If the first component of the function vector is

not equal to zero, multiply the first component

by one half.

6) Make sure the function to be convolved is in the

working register, convolve it with the appropriate

operand (CONV K,J).

7) If the lower limit of integration is zero, the user

may want to set the first component of the resultant

vector to zero since:

limt+O~ dt = 0.0

0

EXAMPLE:

The response of a single-degree-of-freedom linear

164.1 Revised Sept. 1, 1971

oscillator initially at rest subjected to a suddenly applied

excitation provides an illustration for the application of:

y(t) =ft F ('r) K(t - T) dT

0

K(t) & F(t) = 0 for t < 0

This special form of the superposition integral is referred to as

the Duhamel integral and results from the differential equation:

x +
• 2 F

21',;WX + W X = -m

m

(1)

k k y

~~2~~~~2~~z~ t

where 21',;W is the viscous resistance per unit mass (c/m), w2 is the

spring rate per unit mass (k/m), xis the motion of the mass and

y of the base. Such a dynamical system can be subjected to a sudden

movement specified by its displacement, velocity or acceleration.

The equation of motion (1) is often expressed in terms of the

relative displacement between the mass and base such that z = x - y

and

(2)

164.2 Revised Sept. 1, 1971

where the term F/m is replaced by -y or the negative of the base

acceleration . For an undamped system (~ = 0) initially at rest

.
(z 0 = z 0 = 0), the solution for the relative displacement is

expressed by

z =-~lt y(T) sinw(t - T) dT (3)

0

If y(t) is defined only for a finite time, say 0 ~ t ~ tp, then the

motion of the system after the pulse terminates at tp becomes

harmonic.

Figure 4.8.1 provides a graphical presentation to assist in

visualizing the operations involved in executing the convolution

of superposition integral. A given impulse (a) enters the convolu-

tion integral in the form of a weighting function K(t - T). A

"memory" function can be plotted against t with T treated as a

parameter as in (b) or, alternatively, K(t - T) can be envisioned

as a function of the input time T with the output time t as a

parameter (c). It is observed that the impulse-response-function

shape appears reversed in (c) since the integration is to be

carried out over the input-time variable T. An input function, (d),

is successively multiplied by the "memory" function (e) to obtain

the weighted input (f), with each resulting area under the weighted

input curve the value of the output signal (g) at specific output

times, such as ta and tn. If the multiplication and input-time

integration are envisioned as instantaneous operations, then the

"memory" function can be considered to slide to the right along the

164.3 Revised Sept. 1, 1971

(c)

(d)

(e)

(f)

(g)

k(t)

0
Joo.-------- t

(a)

t
n

k(t - T)
I

0 T

k(t - T)~ I

/

"window" -----;

r
.,.,,. ,,

I

I
I

__ ..._ _______ t

(b)

l ------·----- ---·--- ------··--+-- - T

0

0

I
I

k(t8 - T) \. : Jf k(tn - t:) ~. A
>(I I ~/ I

,, ,,. : I .,,.. .., ,,. I ,.......... , , r 1
l I I _________ .L_ ______ _

I
0 f (T)k(t 8 - T)

0

0
I

\ I

' J ._

T

this area
equai.

th is orclinat

Convolution of an iapulse response (a) with an input function (d), yielding
the output function (g).

Figure 4.8.1
164.4 Revised Sept. 1, 1971

input waveform generating as it goes successive instantaneous

values of the output signal. The "memory" or weighting function

is sometimes referred to as a "window" function since the output

(at a given time) is influenced only by that part of the input

signal which can be "seen" as it passes through the "window."

Let

y(t) =lt F(T) K(t - T) dT (4)

where F (t) = sin
and K (t) = exp

= 0

2 TI t ,

(- t) '
0 < t < 2.50
0 < t < 1.25

t > 1.25

An online solution invoking the convolution integral module for

Equation (4) is:

LII CTX 51 ID e 1 Q) 2 8 1. 25 STORE T

NEG EXP 0 (D IFF T) LI EVAL 1 0 0. 5 SUB 1

LII REFL STORE K CTX 101 LOAD 0 LOAD K STORE

ID 0 1 (j) 2 0 2.5 STORE T LOAD - 1 ARG

0 2T SIN STORE F CONV K,51 STORE p DISPLAY

RETURN

Note that the function K(t - T) is simply multiplied by ~T and

reflected to create the weighting function before engaging the

integral module. Since the first component is non-zero,

it is multiplied by one half. After F(t) is created, the

convolution integral is enacted by the sequence CONV K,51 with the

K

function F(t) in the s11 register. The designation "K,51" dictates

that location K contains the vector or "memory" function and that

164.5 Revised Sept. 1, 1971

its s1st element is to be initially aligned with the 1st element

of F(t) as illustrated in (c) and (d) prior to commencing the

sequence of operators. The convolution module will successively

multiply and shift the weighting function across the length of

F(T) as shown in (e) and (f) thereby generating the output function

y(t) as sought and depicted in (g) within the defined "window."

164.6 Revised Sept. 1, 1971

4.8.2 OPERATOR DEFINITIONS FOR LEVEL II COMPLEX (MOLSF)

The operands for the level II CMPLX operators are previously

defined complex vectors S, complex constant vectors "r 1 , r 2",

(representing r1 + iri), or the contents of the (au, 13u)

register. The results of the operations are always complex

vectors put into the (aII• 13II) working register.

0 0, (/)

PWR

LS

RS

f o 1 1 ow e d b y S or " r i , r 2 " , performs
the indicated complex combination
of the operand vector with the com­
plex vector in the (aII• 13II) register.
In division, if any or all components
of the operand vector are O + Oi, the
quotient will be set to 0 + Oi for
those components.

followed by S or "r" raises the
contents of each component of the
(aII· 13II) working register to the
specified power and places the
result in the (a.II• 13II) working
register. If PWR is followed by S,
then the contents of the vector S
are used as the exponent.

shifts each component (ak, Bk) of
the (au, Bu) register into the
(ak-1 l3k- 1) position, placing the

component into the last position.

(au, 13II) = [(a2, 132),

(an, Sn),

(a3, 133),

(a1, 131)]

LS K left shifts the aII register
K times. ~ K1, K2 shifts the all
and 13II registers separately, the

... '

aII register K1 times and the 13II
register K2 times. LS , K left shifts
the 13II register K times. (K a level
0 operand.)

shifts each component (ak, 13k) of
the (a.II• 13II) register into the

165 Revised Sept. 1, 1971

ENL

CON

(Ctk+l • Bk+ 1) position, placing the
last component into the first
position.

(all' Brr)= [(an' Sn)' (a1, B1),

Ca2, B2), .. .,

(an-1' 8n-1)]

RS K right shifts the a 11 register
K times. RS K1, K2 shifts the arr

and Brr registers separately, the
all register K1 times and the B1 r

register K2 times. RS , K right
shifts the Brr register K times.
(K a level 0 operand.)

doubles the mantissa of each
component of the arr and Brr
reg i s t er s , f o r di s p 1 a y p u rp o s es ,
and decrements the binary scale
of each register by 1.

ENL K enlarges the a 11 register K
times. ENL K1 , K2 enlarges the
arr and Brr registers separately,
the arr register K1 times and the
Brr register K2 times. ENL , K
enlarges the Brr register K times.
(Ka level 0 operand.)

halves the mantissa of each
component of the a 11 and B11
re g i s t e rs , f o r di s p 1 a y p u rp o s es ,
and increments the binary scale
of each register by 1.

CON K contracts the Brr register K
times. CON K1 , K2 contracts the

arr and Brr registers separately, the
a 1 1 re g i s t e r K1 t i mes and th e B1 1
register K2 times. CON , K contracts
the Brr register K tTmes. (Ka level 0
operand.)

NOTE: For LS, RS, ENL, and CON a
negative operand""implies the--rilverse
operator, For example, RS , -7 is
equivalent to ~ , 7.

166 Revised Sept. 1, 1971

ID places a unit square centered at
the origin with vertices at Cl, 1),
(-1, 1), C-1, -1), (1, -1) in the
Ca 11 , 13 11) register.

ID places a unit circle centered at
the origin in the Carr, Srr) register,

[In the following, if the operator key is followed immediately by

Sor "r1, r2" , the operand is the vector in the level II CMPLX

storage location S, or the constant complex vector r1 + ir 2 ,

respectively. If the next key is not one of these, the operand

is the complex vector a 11 + ii3 11 .

the (a 11 , SII) register.]

The result is always put into

NEG

INV

DIFF

SUM

PROD

REFL

squares each component of the operand.

takes the square root of each com­
ponent of the operand, using the
branch of square root such that the
argument of the answer is half the
argument (defined by ARG) of the
original function. --

takes the complex conjugate of each
component of the operand.

takes the complex reciprocal of each
component of the operand.

forms the complex forward difference
of the operand, extrapolating to get
the final component of the result.

forms the running sum of the complex
values in the operand, storing the
subtotals in the corresponding
components of the result.

forms the running product of the
complex values in the operand,
storing the subproducts in the
corresponding components of the
result.

reflects the operand vector about
the 45° line; thus, it interchanges
the real and imaginary parts of the
operand.

167 Revised Sept. 1, 1971

MAX

MOD

makes a constant complex vector whose
real part is the maximum of the real
parts of the operand and whose
imaginary part is the maximum of the
imaginary parts of the operand.

evaluates the modulus of each
component of the operand vector,
stores the answer in the aII register,
places zeros in the s11 register.

SIN, COS, LOG, EXP, ATAN

DEL

ARG or
ARG -

ARG +

~~performs the indicated operation com­
ponentwise, using the values obtained
from ARG whenever a function has
branches (i.e. LOG and ATAN). If
the lower keyboard + follows an
operation using ARG then the branch
is obtained from ARG + • LOG of
zero gives -183.8~+ Oi.

executes LI! REAL DEL on the real and
imaginary----p-artsC>f~e operand sep­
arately, then puts their product into
the a 11 register and sets the S11
register to zero.

computes the argument of each component
of the operand vector, assuming
that the argument of the first point
lies in the interval (-TI , TI). Puts
the result in the a 11 resister and sets
the 6II register to zero. The follow­
ing values are true arguments based
on that branch cut.

same as ARG except that the interval
for the first component is (O, 2TI).

4.8.3 ADDITIONAL COMMENTS ON LEVEL II

DISPLAY

In order to generate a display on level II REAL the a 11

register must contain the desired set of X coordinates in the form

of the ID vector or some similar function. Most operations on

level II REAL affect only the 611 register and leave a 11

unchanged. An important exception to this is SUB which operates

168 Revised Sept. 1, 1971

4.9 MATHEMATICAL OPE~ATORS FOR LEVEL III

Level III operators provide the ability for a user to mani-

pulate arrays. The number of elements or dimension of an array

is restricted by the arrangements made with the Computer Center

when the user number is set up.

Arrays are stored on level III under the alphabetic keys,

A through Z and a through w. As discussed earlier the dimensions

can be changed by the use of the CTX key.

Level III operators and data are column oriented. Therefore,

level III overhead is minimized when the number of rows is

greater than the number of columns [i.e., n >min an (n,m) array].

4.9.1 OPERATOR DEFINITIONS FOR LEVEL III REAL (MOLSF)

Throughout the description of the level III REAL and CMPLX

operators it is assumed that the arrays needed have previously

been defined and are available for use. The general notation

applied to the description of level I is again used. Note that

S, which represents an alphabetic key, now implies an array

s =
s2 1 • • • • • • • • • • s2 m

171

s nm

Revised Sept. 1, 1971

and "r", which represents a real number, now defines a constant

array of n,m components.

© 0 0

PWR

LS

foll owed by S or "r" performs the
indicated operation component by
component using the array in the
SITI register and the array S or
"rtt. Let

denote the contents of Brrr before
any of these operations. Then the
result, in Srrr• will be as follows:

© s:

Srrr

S +s n,m n,m

The results are formed in a similar
fashion for 0 0 (/)

followed by S or "r" raises the
contents of each component of the
Srrr working register to the specified
power and places the result in the
Srrr working register. If PWR is
followed by S, then the contents of
the array S are used as the exponents.

left shifts each column of the Brrr
working register. Each component
Bi,j in the Srrr working register
is shifted into the Bi,j-i position.
The components in the first column
are shifted into the last column.

Bi , 2 , Bi , 3 ... Bi, m, B i , i

B 2, 2 B2,m, 62,1

Brrr =

Bn 2 B Bn, i
'

n,m,

172 Revised Sept. 1' 1971

RS

UP

DOWN

LS K repeats LS K times. (Ka level 0
operand.)

right shifts each column of the S111
working register. Each component Si j
in the J3111 working register is shifted
into the Si,j+l position. The.compon­
ents in the last column are shifted
into the first column.

S 1, m, s 1 l) , s 1 2 , J3 1, m- 1

S2,m• s2 1 ,
J3111 =

Sn,m• Sn 1 , Sn m-1 ,
RS K repeats RS K times. (K a 1 evel
operand.)

shifts each row of the S111 working
register up to the next row. Each
component Si j in the S111 working
register is §hifted into the Si-l j
position. The components in the '

0

first row are shifted into the last row.

s 2 , 1 , s 2, 2 ... f3 2, m

S1 II =

Sn, 1, Sn, 2 Sn,m

s l , 1 , sl 2 , J3 1 , m

UP K repeats UP K times. (K a level
operand.)

shifts each row of the J3111 working
register down to the next row. Each
component Si,j in the 13111 working
register is shifted into the J3i+1 j
position. The components in the '

0

last row are shifted into the first row.

173

Sn,l' Sn, 2

J3 1 l , s l 2 , ,

Sn-1, 1 · · · · · · · · Sn-1,m

Revised Sept. 1, 1971

REFL

REFL C

REFL R

ID or

ID C

ID R

DOWN K rep ea ts DOWN K times. (K a
level 0 operand-.-)~

NOTE: For LS, RS, UP, and DOWN a
negative operana-impYies the inverse
operator. For example, UP -7 is
equivalent to DOWN 7.

transposes the SIII array, i.e.,
Sij = Sji·

reverses the order of the components
in each column of the BIII working
register.

reverses the order of the components
in each row of the SIII working
register.

If the working register is of dimen­
sion n,m ID places m vectors con­
sisting o-r-n equally spaced values
from -1 to +l, (beginning with -1,
ending with +l) in the columns of the
SIII register.

is the same as J_Q. C except that ID R
places the vectors in rows rather-than
columns.

(In the following, if the operator key is followed immediately by

Sor "r", the operand is the array in the real storage location S,

or the constant array r, respectively. If the next key is not

one of these, the operand is the real array in BIII·

is always put into the BIII working register.)

The result

ATAN, LOG, EXP, SIN, COS
~-performs the indicated operation com­

ponent by component on the operand
array. LOG of zero gives -183.846.

squares each component of the operand
array.

takes the square root of each com­
ponent of the operand array.

174 Revised Sept. 1, 1971

INV

NEG

MOD

ARG

MAX

DEL

DIFF

SUM

PROD

takes the reciprocal of each
component of the operand array.

negates each component of the operand array.

takes the absolute value of each
component of the operand array.

assigns the value zero to all non­
negative components, the value TI =
3.14159 to all negative components
of the operand array.

sets each column equal to the maxi­
mum component in the corresponding
column of the operand array.
identifies zero and sign changes in
each column of the operand array as
follows:

if s . = 0 then B. . = 1
1 'j 1 'J

if (s . .) (s. .) < 0 then
1' J 1 + l 'J

B. . = 1 if Is. . < I s · i · I
1 'J 1 'J 1 + , J

Bi+1,j = 1 if I s . j I > I s · i · I
1 ' 1 + 'J

all other B. . = 0 i = 1 ' ... 'n
1 'J

j = 1' ... 'm

computes the forward difference of
each column of the operand array,
performing a second order extrapola­
tion to supply the last component
in the result.

computes the running summation of
each column of the operand.

computes the running product of each
column of the operand.

174.1 Revised Sept. 1, 1971

4.9.2 OPERATOR DEFINITIONS FOR LEVEL III COMPLEX (MOLSF)

The operands for the level III CMPLX operators are previously

defined complex arrays S, complex constant arrays "r" (representing

r 1 + ir 2) or the contents of the (a.III' 13III) register. The results

of the operations are always complex arrays put into the (a.III'

13III) register.

0 (!)

PWR

LS

RS

followed by S or "r" performs the
indicated complex computation com­
ponent by component on the operand
array with the complex array in the
(a I I I , 13 I I I) reg i s t er . In division·,
if any or all components of the
operand array are 0 + Oi, the quo­
tient will be set to 0 + Oi for
those components.

followed by S or "r" raises the
contents of each component of the
(a.III' 13III) working register to
the specified power and places
the result in the (Cl.III' 13III)
working register. If PWR is followed
by S, then the content"SOf the array
S are used as the exponents.

left shifts each column of the
(a.III' 13III) working register.
Each component ai,j' Si,j is
shi~t~d into the ai,j- 1 , Bi,j-1
position. The components in the
first column are shifted into the
last column.

LS K repeats LS K times. ~ K1 , K2

Shifts the Cl.III and BIII registers
separately, the Cl.III register K1 times
and the 13III register K2 times. LS ,K
shifts the 13III register K times.~(K
a level 0 operand.)

right shifts each column of the
(a.III' SIII) working register. Each
component ai j, Si j is shifted into
the ai,j+l • Si, ·+1 'position. The com­
ponents in the last column are shifted
into the first column.

175 Revised Sept. 1, 1971

UP

DOWN

ID

ID •

RS K repeats RS K times. RS Ki, K2
shifts the a1I1 and 8111 registers
separately, the a111 register Ki times
and the 8111 register K2 times. RS ,K

shifts the 8111 register K times.
(Ka level O operand.)

shifts each row of the (a111, 8111)
working register up to the next row.
~ach component ai,j, 8i,j i7 7hifted
into the ai-i j, 8i-i,j position.
The components in the first row are
shifted into the last row.

UP K repeats UP K times. UP Ki,K2
shifts the a1!I and 8 11 1 registers
separately, the a111 register K1
times and the 8111 register K2 times.
UP ,K shifts the 8111 register K
times. (Ka level 0 operand.)

shifts each row of the (a111, 8111)
working register down to the next
row. Each component ai j, 8i,j is
shifted into the ai+l j: Si+l ·
position. The compon~nts in the last
row are shifted into the first row.

DOWN K repeats DOWN K times. DOWN Ki,K2
SliITts the a1II and 8IlI registers
separately, the alII register K1
times and the 8III register K2 times.
DOWN ,K shifts the 8III register K
times. (Ka level 0 operand.)

If the (a1u, 8III) register is
dimensioned (n,m), ID places m
complex vectors of context n
each of which forms a unit square centered
at the origin with vertices at (1,1)
(-1,1), (-1,-1), (1,-1) in the
(a.III, 8III) register.

If the (aIII' 8IlI) register is
dimensioned (n,m), ID places m
complex vectors of context n each
of which forms. a unit circle centered
at the origin in the (a.III, 8III)
reg is te r.

176 Revised Sept. 1, 1971

(In the following, if the operator key is followed immediately by

Sor "r,r 2 ", the operand is the array in the level III complex

storage location S, or the constant complex array r1 + ir 2 ,

respectively. If the next key is not one of these, the operand

is the complex array aIII + iBIII· The result is always put into

the (aIII' BIII) working register.)

AT AN , SIN, COS, L 0 G , EXP

SORT ----

NEG

INV

MOD

ARG or

ARG -

ARG +

~-performs the indicated operation
component by component using the
values obtained from ARG whenever
a function has branches~ If the
lower keyboard + follows an opera­
tion using ARG then the branch is
obtained from-ARG +. LOG of zero
gives -183.846~+-0i.

squares each component of the operand array.

takes the square root of each com­
ponent of the operand array using the
branch of square root such that the
argument of the answer is half the
argument (defined by ARG) of the
original function. -~

takes the complex conjugate of
each component of the operand array.

takes the complex reciprocal of
each component of the operand array.

evaluates the modulus of each
component of the operand array,
stores the answer in the aIII
register, places zeros in the
BIII register.

computes the argument of each
component of the operand array,
assuming that the
argument of the 1st point lies in
the interval (-TT, TT). Puts the
result in the aIII register and
sets B111 to zero.

same as ARG except that the inter­
val for the first component is
(0, 2TT).

177 Revised Sept. 1, 1971

MAX

REFL

DEL

DlFF

SUM

PROD

sets each column equal to the maximum
value in the corresponding column of the
oper~nd ~rray separately for the real
and imaginary co~ponents.

interchanges real and imaginary parts
of the operand array.

executes Lll REAL DEL on the real and
imaginary parts"Of-eich column of the
operand array separately, then puts the
product of the corresponding parts
into the a 111 register and sets the
6111 register to zero.

forms the complex forward difference
of each column of the operand array,
extrapolating to get the final
component of each result.

forms the run~ing sum of the complex
values of each column in the operand array,
storing the subtotals in the corres­
ponding components of the result.

forms the running product of the
complex values of each column in
the operand array storing the subproducts
in the corresponding components of
the result.

178 Revised Sept. 1, 1971

4.10 OPERATOR DEFINITIONS FOR LEVEL 0 SUB AND EVAL (MOLSF)

Integer arithmetic as described in section 2.3 does not

depend on whether the current mode is real or complex. However,

the mode is significant in level 0 EVAL which extracts integer data

from levels I, II, and III, and SUB, which inserts integer

data into levels I, II, and III data structures. Normally,

EVAL and SUB extract or insert data from the real part of a

number. REAL or CMPLX precedes each definition where the

distinction is material. They need not immediately precede the

EVAL or SUB key, since the online system remembers whether REAL

or CMPLX was last pressed.

an alphabetic key.

EVAL CTX LIII

REAL EVAL CTX LIII S

S is a storage location as defined by

loads the current level III dimension
into the quotient and remainder
registers. The number of rows is put
into the quotient register, the
number of columns into the remainder
register.

loads the current dimension of the
level III real array S. The number of
rows is put into the quotient register,
the number of columns into the
remainder register

CMPLX EVAL CTX LIII S loads the current dimension of the
~~- -~

EVAL CTX LII or

EVAL CTX

level III complex array S. The number
of rows is put into the quotient
register, the number of columns into
the remainder register.

loads the current level II context
into the quotient register.

REAL EVAL CTX LII S or loads the current context of the

REAL EVAL CTX S level II real vector S into the
quotient register.

179 Revised Sept. 1, 1971

CMPLX EVAL CTX LII S
or

CMPLX EVAL CTX S

REAL EVAL 0

CMPLX EVAL 0

REAL EVAL k

CMPLX EVAL k

REAL EVAL + S

CMPLX EVAL + S

loads the current context of the
level II complex vector S into the
quotient register.

loads the value of the BII working
register display scale into the
quotient register.

loads the value of the a11 working
register display scale into the
quotient register, and the value of
the 811 working register display
scale into the remainder register.

extracts the contents of
component K of the Brr working
register, computes ~he nearest integer
to this value, and places the result
in the quotient register. k must be
an integer constant.

extracts the contents of
component K of the a 11 working register,
computes the nearest integer to
this value, and places the result in
the quotient register. k must be an
integer constant.

computes the least integer greater
than or equal to the contents of the
level I real scalar S and places it
in the quotient register. If S is
omitted, then the online system uses
the Br working register as the source
of the datum.

computes the least integer greater
than or equal to the real part of the
level I complex scalar S and places
it in the quotient register. If S
is omitted, then the online system
uses the ar working register as the
source of the datum.

180 Revised Sept. 1, 1971

REAL EVAL - S

CMPLX EVAL - S

REAL EVAL S

CMPLX EVAL S

RE AL SUB 0

CMPL X SUB 0

REAL SUB k

CMPLX SUB k

computes the greatest integer less
than or equal to the contents of the
level I real scalar S and places it
in the quotient register. If S is
omitted, then the online system uses
the Br working register as the source
of the datum.

computes the greatest integer less
than or equal to the real part of
the level I complex scalar S and
places it in the quotient register.
If S is omitted, then the online
system uses the a 1 working register
as the source of the datum.

computes the nearest integer to the
contents of the level I real scalar
S and places it in the quotient
register. If S is omitted, then
the online system uses the Br work­
ing register as the source of the
datum.

computes the nearest integer to the
real part of the level I complex
scalar S and places it in the
quotient register. If S is omitted,
then the online system uses the a 1
working register as the source of
the datum.

stores the contents of the quotient
register into the Brr working register
display scale.

stores the contents of the quotient
register into the a 11 working register
display scale, and the contents of
the remainder register into the Srr
working register display scale.

stores the integer in the quotient
register in component k of
the Brr working register. k must be
an integer constant.

stores the integer in
register in component
a 11 working register.
integer constant.

the quotient
k of the

k must be an

18 0. 1 Revised Sept. 1, 1971

REAL SUB S

CMPLX SUB S

stores the integer in the quotient
register in the storage location for
the level I real scalar S. If S is
omitted, then the online system
stores the integer in the Sr working
register.

stores the integer in the quotient
register in the real part of the
storage location for the level I
complex scalar S. If S is omitted,
then the online system stores the
integer in the a 1 working register.

180.2 Revised Sept. 1, 1971

4. 11 OPERATOR DEFINITIONS FOR LEVEL V (MOLSF)

LV REAL is a level reserved for operators which are not

appropriate to any other MOLSF level and as a means whereby a

user with an old keyboard may perform operations such as SORT

and CONV. The operators LOAD, STORE, DISPLAY, and DEL interact

with a FORTRAN nrogram thru FORTRAN subroutine calls. The calls

are explained in Appendix F.

NEG

DISPLAY jobname RETURN

DISPLAY johname ?

Equivalent in operation to

LII SORT.

Equivalent in operation to

LII CONV.

Displays the status of a hackground
joh. Possible responses:

A. "jobname NOT FOUND" if the joh
is not in execution.

B. "johname STEP stepname" if the
joh is in execution but is not
currently executing the FORTRAN
subroutine FOLS or TOLS.

C. "jobname ASK INPUT n" if the job
is executing a "CALL FOLS" for
input from the on-line terminal.
"n" is the numher of components
requested of the terminal.

D. "johname l!.AS OUTPUT n" if the joh
is executing a "CALL TOLS" to
send output to the on-line
terminal. "n" is the number of
components made availahle to the
terminal.

All activity at the terminal is sus­
pended until "johname" executes a
CALL FOLS or TOLS. LV LOAD and
STORE operators can he preceded by
the sequence, thus providing syn­
chronization with the hatch job.
When the job requests a transfer
the succeeding kevs are executed.
If the joh is ready when the sequence
is executed, execution of keys pro­
ceeds immediatelv.

181 Revised Sept. 1, 1971

LOAD p jobname RETURN

STORE p jobname RETURN

Fetches data from a background job.
"p" is a level 0 operand. Possible
responses:

A. A and B as described under DISPLAY.

B. "jobname ASKS INPUT (m) n" if the
job has requested data from the
terminal. "n" components are
requested; "p-m" components were
successfully transferred in this
LOAD operation before the request
wa:s-made. ·

C. No response if the transfer opera­
tion was completed successfully.
Data received from the background
job was stored as the first "p"
components of the Brr working
register. "p" may be a
positive integer; a level 0 storage
location; or the key CTX, in which
case the value of "p"iS taken to
be equal to the current context
on level II. If an integer was
specified to be transferred in the
FORTRAN program it will become the
new contents of the level 0 quotient
register.

This key sequence transfers data to a
background job. "p" is a level 0
operand. Possible responses:

A. A and B as described under DISPLAY.

B. "jobname HAS OUTPUT (m) n" if the
job has data to transfer to the
terminal. "n" components are
offered; "p-m" components were
successfully transferred in this
STORE operation before the offer
was made.

C. No response if the operation was
completed successfully. The first
"p" components of the Brr working
register were transferred to the
background job. "p" may be
a positive integer; a level 0
storage location; or the key CTX,
in which case the value of "p'il"Ts

182 Revised Sept. 1, 1971

DEL jobname RETURN

CTX A,B,C,D RETURN

CTX RETURN

taken to be equal to the current
context on level II. The level
0 quotient register is transferred
to the background job if requested
by that job.

Terminates the background job. Possible
responses:

A. A as described under DISPLAY.

B. "jobname STEP stepname" the job is
currently in execution and has not
issued a CALL FOLS or CALL TOLS.
A job cannot be cancelled until
it has executed a subroutine call
to FOLS or TOLS.

C. No response if the operation was
completed successfully. The job
is cancelled immediately, termi­
nating with a system completion
code of 222.

sets the display window for graphical
display. A and B are the coordinates of
the lower left corner of the window, and
C and Dare coordinates of the·upper right
corner of the window. A, B, C, and D must be
floating point scalars -1.0<A,B,C,D<l.O.
A scalar greater than one defaults to
one; a s~alar less than minus one
defaults to minus one.

returns to the default display window.

183 Revised Sept. 1, 1971

4.12 USE OF PARENTHESES

An additional facility which exists on levels I, II, and III

is the use of parentheses to specify as an operand an expression

which must be computed, thus bringing the programming language

much closer to the user's "pencil-and-paper" language. For

example, to compute sin X (-2w < X < 2w), one could use, on

LII REAL,

SIN (]_Q_ 0 6. 28)

to effect the same computation as

.!..Q.0 6.28 SIN

Parentheses are extremely useful in both the MANUAL mode

of system operation and the construction of user subroutines.

For example, if the user desired to evaluate the expression

(2X + 1) I (3X + 1) over the range -1 ~ X ~ 1 without using

parentheses, the required series of button pushes would be

LI I REAL .!.Q 0 3 (£) 1 STORE A

.!..Q.0 2 ct) 1 (/)A DISPLAY RETURN

The instructions !.Q.0 3@ 1 STORE A generate the denominator

term (3X + 1) and store it under A. The remaining instructions

generate the numerator term (2X + 1), divide it by (3X + 1),

and display the result.

The same program using parentheses would be

184 Revised Sept. 1, 1971

Appendix C

~LS SOFTWARE STRUCTURE & KEYBOARD DIAGRAMS

193 Revised Sept. 1, 1971

(i')LS

Region

SYST LOAD -- Bas'ic
1Q.

data SYST §!Q!lli !&.

Select

Other
\3LS
Stations

Computer ----1• Center
Card Punch

;:o
CD
<
I-'•
V>
CD
p.

en
CD
'd
rt

LI REAL --
Real
Scal.ars

11 ~

~ornplex
~calars

fil REAL

Real
Lrectors

LII CMPLX --
Complex
Vectors

LIII ~ -
~eal
~rrays

!d!l. CMPLX

~ornplex
!Arrays

.bY fil&

t:;pecial
pperators

~]~ RN

"'~

~ It_
~

1.-
~ 7

L

'
i. ' !"" --,

It_
I\

~ _.to

~
,

"· k--1
\

MOLSF

'~

MOLSF s~nr on COL
RETURN r

"-
1, RETURN

COL r ,
.,
~

SYST LOAD MOLSF -- RETURN

!&

Inte_g_ers
~ x .. ~

I TYPE LI -.... 1- IL ' ii i String

' ~isplay ~ ~ ~ I Manipulation
~essa,g:ds

l I l
l:Symbol) ill

""
f!essagE

ii ~ Ii Record IBuild Gener-

' Specia1ation "" 7 I\ 7 Manipulation
~bolg

I
I LIST LIII

~rite I EDIT -' " ' I; ' File ----, l:Jser I ~ .., / !'\" ,
Manipulation Progranis

I
I fil'..§1' LIV

'! I IL .t. 1~ " Operating
~ p...ibrarYJ ~ 7 ~ ~ Systems
~uncti~s COL Interface

1
' " I~

~ I ~

~~:ral
-, I'.

......
I

BASIC ~LS SOFTWARE CONFIGURATION

BASIC SYSTEM: SYST KEYBOARD

.-------~------------------...,------------~...,-,..----........ ----.._-~------..,..,.,..,..--........ _______ ~~-----""----...... ~,....--~
I I I

(±) G

....
··•v•·

LS RS

..... ~

I-'
\0

SHIFT SIN
0\

.... ... -
;;i::I
(b

<
I-'·
Ill
(b

p.

Cll
(b

"C
rt'

......

......

'° '-I
I-'

I II IV

0 (/)

...
REFL UP

Xchnge
user
levels

.........

cos LOG

SQ

v VI VII

.....
SQRT CONJ

...
DOWN EVAL SUB

Display Copy
it user user

Log ou g~~Ind level
....

EXP PWR ATAN

...

REAL CMPLX SYST USER TYPE LIST

ILog in

"""If"" ...,~ """I

INV DIFF SUM PROD SORT PRED TEST

Pisplay
~illing

........ -
~

MAX MOD NEG CTX ENL CON REPT
Displa~ Delete
user user
pgms level

....
.... """'I ,..

ARG DEL CONV ID LOAD STOR ENTER
Delete ~oad Store
sibfile t:;ubfile subfile

.... ~ ...
,... ,...

DISPLAY ' ¢= ESCAPE
SEL RESET

Display user library

) ...

,(after display): Displays all subfiles with conunon names

..-
~

~

BASIC SYSTEM: TYPE KEYBOARD

--------.... -------.,,,.------..,,,.-----...----....... ..,,,.--....... _..----..._----.-...----......._~-----....-----..~~.,,,-~--........ -----..~..... ~ ~

....

;:o
(!)

<
....
(/I

(!)
p..

Ul
(!)

"d
M

......

......
\0
".J
......

I I I

....._
""" ""Ill

@ G
Enable~ Pisabls
all lall
display ~isplay

....
"""I

LS RS

....

New
page

SHIFT SIN

.....

....
0

cos

I I I IV

(/)

.....

REFL UP

f

\

Line
feed
up

LOG

v VI

....
""'I

SQ SQRT CONJ

DOWN EVAL
Line
feed
down

EXP PWR ATAN

....

VII REAL CMPLX SYST USER TYPE LIST

""'I ""iii .,,,.

INV DIFF SUM PROD SORT PRED TEST

....
""'I

* """'
SUB MAX MOD NEG CTX ENL CON REPT

Go to Set Line Line
char. char feed feed

.... gen/ _.... ~ize li.!P Id own ...
*

.....
ARG DEL CONV ID LOAD STOR ENTER

Pause
N Pause

secs .
- ...

DISPLAY <=
SEL

ESCAPE
RESET

Return:
Space
Back
Case

Carriage return.
Advance to the right.
Backspace to the left.

J

Change to case level specified.

...

BASIC SYSTEM: MESSAGE/CHARACTER GENERATION KEYBOARD

,,,,,,,.-----------------~-----.....--~--....... ~,,,---~~,~------~-----..------....,.,----......... ----.__,,..,,,.,,._... ____ ~--....... ~-----~
I I I I I I IV v VI VII

.....
,.. """'II

@ G 0 (/) SQ
~

SQRT CONJ

....

LS RS REFL UP DOWN EVAL SUB

...
..... ~ ~

SHIFT SIN COS LOG EXP PWR ATAN

INV

.-

ARG

REAL CMPLX SYST USER TYPE LIST

MAX

""''I'""' ~ ~ ...
DIFF SUM PROD SORT PRED TEST

...... --
MOD NEG

Enter/
leave
char.
~en.

DEL CONV

- ...
....

CTX ENL CON REPT

........
ID LOAD STOR ENTER

J

Save
special
char. ~ -....

¢:: ESCAPE
SEL RESET

Back Delete last direction keypush.
Decimal point: Reposition the dot.

BASIC SYSTEM: LO KEYBOARD

------..... -----------------..----..... ,.,,.--...... _,.. ____ ~-~~----~--~------,,,.,,,...--........ __.--.___~,,,,,,,,,.--...... ~-----~,,...~"""'I
I

....

@ G

Add Subt.

LS

...
....

...... SHIFT SIN
\0
\0

.... -
;:c
CD
<
(/I

CD
~

Ul
CD

"d
rt

......

......
\0

"

I I I I I IV v VI VII REAL CMPLX SYST USER TYPE LIST

.....

0 (J) SQ SQRT CONJ INV DIFF PROD SORT PRED TEST

Mult. bivide ~quare ±1+ ±1
else,O

....

RS REFL UP
Inter-
change
regist rs

.... _,...
cos LOG

\

DOWN EVAL SUB MAX
Lang. Lang.
depen- depen-
dent dent -EXP PWR ATAN ARG

.....11io.

DISPLAY

MOD NEG

li\bsolutlNegate
!value

....

CTX

....
.....

ENL CON REPT

......... ...

DEL CONV ID LOAD STOR ENTER

!Declare Save
jquotnt. quotnt
treg.!:eg ·

~
SEL

_,...
ESCAPE

RESET
Display quotient reg. or storage

J

BASIC SYSTEM: EDIT LEVEL KEYBOARD

--------....~------------------.....-----..-----...-----..-------~-~-----.fl".,,,,-~--....... -------~~--~--....... -----..~,...~---~~

N
0
0

I I I

.....

<±> G
!Move Move
1Pointe11Pointer
right left

....

LS RS

II I

0

...
REFL

Move

IV v VI VI I

SQ SQRT CONJ

~

UP DOWN EVAL SUB

REAL CMPLX SYST USER TYPE LIST
See
bottom
of pg .

INV DIFF SUM PROD SORT PRED TEST

.... -- -
....

"""'
....

MAX MOD NEG CTX ENL CON REPT
Restore ~earch !Move ~ove

Left Right
side side ~ointe:i:j

to

~ove
~oye !Pointer

to pornte11
bispla~ user !for ke~ ~ginter ~~interj
IPointerj o end

... [rant front
~

SHIFT SIN cos LOG

pgm
~o end

EXP PWR ATAN ARG

........

DISPLAY

lsequnc~
~

DEL CONV ID

Delete Erase
& new

..,jpage

Display user program

Back :
Space:
List :

Delete one key to left of pointer.
Delete one key to right of pointer.
Leave EDIT level, enter LIST mode.

lf.i-ont

LOAD STOR
Insert µpdate
user juser
prog. 1E_rog .

' ¢::

SEL

..,j
~

ENTER
Enter list
mode to
insert keys

ESCAPE
RESET

J

""""

COL: LI KEYBOARD

- - -~ ~ ,,,,. ~------~....-... -----------.....,,.,----....,,,.----.._.,,.---.._..-----....------.~-.... -----.,_,~ r

....

N
0
I-'

CJ)

())

'O
rt

I I I I I I IV v VI VII REAL CMPLX SYST USER TYPE LIST

.... _

""""' 0
~

@ G (])
Conca- ~on ca- Save Remove
tenate ~enate sub- sub-
pn pn string string
I.right eft,

~

LS RS REFL UP

Search Search
to to
Jeft right

....
SHIFT SIN cos LOG

Load
pubsti- Trans- time &
ute late date

..... - ,
\

......,..
SQ SQRT CONJ INV DIFF SUM PROD SORT PRED TEST

Set Switch
string search

pointer

DOWN EVAL SUB MAX MOD
Save Displa} Set

CornparE sub- hex lnointe1 . repre- It'
strrng sntatn lby key

~-.... -
EXP PWR ATAN ARG DEL CONV

Expand Insert
to sub- Strip
hex string !blanks

""""
....

DISPLAY

Display string

- -"""' ...
NEG CTX ENL

Set
buffer

.... ~ength i...

..... -
ID LOAD STOR

Load ls tore

CON

Load
all
char. string string

........
~, - ---¢=

SEL

J

REPT

...
ENTER

ESCAPE
RESET

.....,,,,

~

N
0
N

:;>;:I
CD
<
I-'·
Ill
CD
£1.

(/)

CD
'd
rt

COL: LI! KEYBOARD (KEYPUNCH) - - -....
I I I I I I IV v VI VII REAL CMPLX SYST USER TYPE LIST

..... ""-A..
.... """',..

INV DIFF SUM PROD SORT PRED TEST
....

0
""'I

@ G (J) SQ SQRT CONJ

Iner. !Deer. ~et !Turn
on/off active active !active auto

pointe tpointe:tj pointe~ entry

!Set !clear !auto
~ntr)' drum
fields card

Skip
to
next
tab

Switch Clear Set
buffer tab tab

.....

*
LS RS REFL UP DOWN EVAL SUB MAX MOD NEG

Both ~!ear
IJ>ointr~lacti ve
to 1 !buffer

Save
to Insert !Delete Di~pla~Jleplace
active a a point. a

....
buff er frecord 1;:,ecord .._ :r_ecord

* * SHIFT SIN cos LOG EXP PWR ATAN ARG
rrurn

Insert Ion-off
auto char.
store

Iner. !Deer. Set Active
save save ls ave buffer

• • .. 1n, • • to drm pornte .. l1'01nte~1Po1nterj card
.........

(
DISPLAY

Set Ski
pointer to p
by key next

...... i.Eab

DEL CONV

belete
lchar.
....

Display active buffer and pointers, specified
record, or record length.

Back: Display preceeding record or

...
.......,...

CTX

~et
lbuf fer
length

ENL CON

........

ID LOAD STOR
!Load !Add !record record
linto to end
~~~£i;m ~f fil~ 

' 
""If"" 

¢= 
SEL 

J 

move active buffer pointer left. 
Tab : Tab. 
Set: : Set tabs. 
Clr : Clear tabs. 

REPT 

ENTER 

ESCAPE 
RESET 



COL: LIII KEYBOARD 

-~------~-------------~----...... ..----.,_,..---.._..---.._.....----..,,.----.~,,.,,,,,,,,,.---.....-..--..~r_,..--......_..----..~~-----....~ 

N 
0 
(>;! 

CJ) 

Conca­
tenate 
files 

I 

LS 

... 
SHIFT 

..... -

....... 

G 

SIN 

I I I I I IV v VI VII REAL CMPLX SYST USER TYPE LIST 

.... ....,j .>.. ......... 
...., ""'I ..... 

0 (/) SQ SQRT ~ONJ INV DIFF SUM 
erge Switch 

Set Sort inactvej active 
file inactv~ file and 

into inactv~ 
marker file active files 

__. .... ... ... ...... .... __. .... .... 

RS REFL UP DOWN EVAL SUB MAX MOD 

.... ... 

..... ........... 

\ 

~ Search Insert ,_,elete 
file If ile onl co umn 

.... .... 

LOG EXP PWR ATAN 

Sequnc~ Search 
active for 
file cha:r. 

str1n&.,.., 
........ -

ARG DEL CONV 
Insert belete 
block JJlock 
of pf 
records~ecords ..... ...... .... 

DISPLAY 

Display file or portion of file 

NEG 

.... 

PROD SORT PRED TEST 

Sort 
inacthe 

_file 

CTX 
Set 
buffer 

Jength ... 

ENL 

.... 

ID LOAD STOR 

..... 

CON REPT 

ENTER 

.... Iii.. 

J 

~ 
SEL 

.... 

ESCAPE 
RESET 



COL: LIV KEYBOARD 

- .... 
I I I I I I IV v VI VII REAL CMPLX SYST USER TYPE LIST 

.... 
r 

@ G 0 (/) SQ SQRT CONJ INV DIFF SUM PROD SORT PRED TEST 

.... .... .... ... .... - .... .... 
......... ~ 

LS RS REFL UP DOWN EVAL SUB MAX MOD NEG CTX ENL CON REPT 

Submit 

... job ... .... ... ........ ... ....,j 

,... ,... ..... ..... 
N SHIFT SIN cos LOG EXP PWR ATAN ARG DEL CONV ID LOAD STOR ENTER 
0 

.i:.. Load 
~s dat~ 
set 

...... ..... .... -..... .... .... ....... .... 
"""" - -

' 
~ ........ 

::0 DISPLAY ¢:: ESCAPE (1) 

< SEL RESET ..... 
Ill Display status of jobs or devices 
(1) 

p. \_ J en ...... .... 
(1) 

'O 

" 
....... 

....... 
ID 
-..J 
....... 



MOLSF: Ll REAL KEYBOARD 

~--------.... ------~-------------.----..... _,,,.------~------------------....,,.,,,,,.,.--........ __ --...... ..,,,,,,,,.----........ ----....... ~----..... ~ 

N 
0 
U1 

;:o 
Cl) 

< ..... 
Cll 
Cl) 

Po 

(/) 
Cl) 

"d 
rt 

l[ I I I I I I IV v VI VII REAL CMPLX SYST USER TYPE LIST 

.... .... .... 

<±l G 0 (}) SQ SQRT CONJ INV DIFF SUM PROD SORT PRED TEST 

Add 

LS 

.... 

Subt. Mult. Divide Square Square 
root 

Invert 

.... ... .... ........ 
........ 

RS REFL UP DOWN EVAL SUB MAX 
IExtract Insert 
If rom into 

......... .... 11.:.I I .._LII 
-i"" 

.... -
MOD NEG 

~bsolut Negate 
!value 

-
CTX 

- ~ 

...... 
.... .... 

ENL CON REPT 

.... .... 

SHIFT SIN cos LOG EXP PWR ATAN ARG DEL CONV ID LOAD STOR ENTER 

Sine ~osine ~atural 
....,,. ..... .!_og ... - - ' 

\ 

Expon. Power Atan 

........ 

~OS}+ Q 0 -+ 1 

lneg -+ 1T -f.O -+ 0 
.... Ii... 

DISPLAY 

Display 81 or storage location 

Save 
~eclartDeclarqcontnts 

8 = 1 a of 8I 
I _,j I .., 

J 

<= 
SEL 

.... 

ESCAPE 
RESET 



][ 

MOLSF: LI COMPLEX KEYBOARD - -.... .... ..... 
I II I II IV v VI VII REAL CMPLX SYST USER TYPE LIST 

.... 
..... 

@ G 0 (/) SQ SQRT CONJ INV 

Add Subt. Mul t. Divide jsquare Square 
root 

Invert 

LS RS REFL 

~witch 
Pi & f3I ... .... ....11 .... 

.... 

UP 

lo.. 

DOWN EVAL SUB 

!Extrad Insert 
!from into 
.w..II IL..I I 

MAX 

.... .... ,.. 
DIFF SUM PROD SORT 

..... 

MOD NEG 
Modulu~~onju­

~ate 

,... 

CTX 

PRED TEST 

ENL CON REPT 

~ SHIFT SIN cos LOG EXP PWR ATAN ARG DEL CONV ID LOAD STOR ENTER 
(]\ 

:::0 
CD 
< ..... 
en 
CD 
(:l.. 

(/) 

Sine 

..... .... -

~osine ~atural 

,,,,,,. ~og 
~ -

\ 

Expon. Power Atan ~omplex 
0,(}+1,0 
rO,D-+ 

....II ... 
~rg. 0,0 .... 

DISPLAY 

Display (a.I,f3I) or storage 
' 
) 

¢:: 
SEL 

ESCAPE 
RESET 



N 
0 
'-l 

MOLSF: LII REAL KEYBOARD 

I II I I I IV v VI VII REAL CMPLX SYST USER TYPE LIST 

@ G 
- ......... .... 

""II 

(/) SQ SQRT CONJ 0 
.... """' 

.... 
~ 

INV DIFF SUM PROD SORT PRED TEST 

Add Subt. Mult. Divide Square Square Invert !Forward Running t:lunnin! Sort 

..... 
r 

LS RS 
~eft ~ight 
t;hif t ~hi ft 

.._ f3II f3II 
.... 

SHIFT 

..... 

REFL UP 
ReversE 
order 
~f f3_1T. 

COS LOG 

root cliff. sum prod. f3II .... - .... 
...... ~ ~ 

DOWN EVAL SUB MAX MOD NEG CTX ENL CON REPT 
Inter. 1n M IAb 11 !Declare 
extrap .111eclare ax. 11'\I solu Negate length IDecreas Increa~ 

a 11 compt. value of all scale scale 
i.. i.... ..... ..._ i... ...,; ii....& )_I 1 .... i... 

EXP PWR ATAN DEL CONV ID LOAD STOR ENTER 
0 -+l 

Sine ~osine Log IExpon. Power Atan 

ARG 
0 }+a 
1Pos Sign ~. Peclar~peclare Save 

h . ,1~onvo- Ii ·d . . \) c nge+.ll 1 t" ,..-IL' en1t,, f3II contnts 
else+O u io.i~ector lneg -+rr 

..... ....i..... ~ ~ ~..... SII , 
DISPLAY ' ¢= ESCAPE 

SEL RESET 

\ 
Cross-plot a 11 and f3 11 

j 



.... 

N 
0 
00 

;o 
CD 
< 
I-' 
Ul 
CD 
p.. 

(/) 

Cll 
"C 
rt 

...... 

...... 
\0 
-...] 

...... 

I I I 

~ .... 
~ 

<±> G 
Add Subt. 

.... 
~ 

LS RS 

~ef t ~ight 
!shift ~hift 

.... 

MOLSF: LII COMPLEX KEYBOARD 

I I I IV v VI 

.... 
0 SQ SQRT CONJ 

Mult. Divide Square Square 
root 

.... .... 

REFL UP 

Switch 
aII & 

8II 

DOWN EVAL 

.... 

- - - - -
VII REAL CMPLX SYST USER TYPE LIST 

... 
..., ...,.r ,... ~,... ""I 

INV DIFF SUM PROD SORT PRED TEST 

Invert Worward~unning~unnin~ 
diff. sum prod. 

.... ..... __,,. _, 

SUB MAX 

Max. 

MOD NEG CTX ENL CON REPT 

Declar~Decrse Incrse 
~odulu~~onju- length scale scale 

..._gate .._of * .._ ..,. .... 
..... ,,. 

I"'" ~ ""I~ 

SHIFT SIN COS LOG 

Sine Cosine Log 

..... 

' 

EXP PWR ATAN ARG DEL CONV 
Prod of 

!Expon. Power Atan ~omplex real 
del on 

......... arg. ~II, SU 

DISPLAY 

Plot (a 11 ,SI 1) in complex plane 

...... 

ID LOAD STOR ENTER 
ilJnit 
circle Declare Save 
or * * square .... .... 

' 
..... ,,. 

¢= ESCAPE 
SEL RESET 

} ... Iii.... 

"""' 
"""""" 

..... 



N 
0 
\0 

CfJ 
CD 
"'d 
rt 

][ 

... 

,. 

MOLSF: LIII REAL KEYBOARD 

I I I I I I IV v VI 

..... ......... i... 

G 
~ ""II 

(/) SQ SQRT CONJ 0 
Add Subt. Mult. Divide Square Square 

root 

... ... 
~ .... 

* LS RS REFL UP DOWN EVAL 
Shift Shift Trans- Shift Shift 
cols. 
left .... 

cols. 
right 

pose rows rows 
up down .... .... .... .... 

II"" .... 

-
VII REAL CMPLX SYST USER TYPE LIST 

~ "' INV DIFF SUM PROD SORT 
Column ~olumn "'· 

Invert forwarcUrunningi--olum~+ 
diff. lsum ~roduc ~ 

SUB 

.... - -
MAX MOD NEG CTX 

Max. Absolu Declare 
of each 1 Negate size of 
column va ue __ .., .._ $III.._ 

.... 
""II 

PRED TEST 

..... ""II 

ENL CON REPT 

.... ...... 

SHIFT SIN COS LOG EXP PWR ATAN ARG DEL CONV ID LOAD STOR ENTER 

Sine 
Row or peclare Save 
column SIII SIII idenit 

Expon. Power Atan Cosine Log 
O }+O rolumn pos .-
neg +TI ~elta 

..... vector .... .... 
1 ¢::: ESCAPE ' 

-
DISPLAY 

SEL RESET 
Plots SIII as a surface over a fixed X-Y grid 

J .... .... 

~ 

""""""" 



N 

I-' 

0 

::i::i 
CD 
< ...... 
Ul 
CD 
p.. 

(/) 

CD 
"d 
rt 

I-' 

I-' 
ID 
-.J 
I-' 

MOLSF: LIII COMPLEX KEYBOARD 

I II I I I IV v VI VII REAL CMPLX SYST USER TYPE LIST 

..... 
@ G 0 

Add Subt. Mult. 

.......... 

SQ SQRT 

Divide Square Square 
root 

CONJ 

LS RS REFL UP DOWN EVAL 

,. 

Shift 
cols. 
left .... 

I""' 

Shift Inter­
chnges Shift Shift 

cols. aIII & 
right SIII up 

..... ... 
rows 

II"' 

rows 
.gown 

SHIFT SIN COS LOG EXP 

... 
PWR ATAN 

.... 
....,r 

INV DIFF SUM PROD SORT 
Column ~olumn ~olumn 

Invert forwrd ~unning~unninB 
~iff. sum prod. 

~ 

SUB MAX MOD NEG CTX 
Max. 
of each lodulm Conju-
column gate .. 

..... .... 
ARG DEL CONV ID LOAD 

Column 
Unit 

PRED TEST 

ENL CON REPT 

STOR ENTER 

Sine Arg. delta 
Exp on Power Atan of of square Peclare Save Cosine Log 

... oprnd oprnd by col 
...... 

""""" 
.... ... .... ...... - -, 

DISPLAY ' Plots (a111, Srrr) as a surface with perspective. 

\ ) 

* _ .... 

.... 

* 

<= 
SEL 

-I"' 

.... 

ESCAPE 
RESET 



I I I I I I IV 

.... . ... 
@ G - r 0 (/) SQ 

... 
LS RS REFL UP 

.... ... ... 
P"' P"' r 

SHIFT SIN COS LOG EXP 

... ...... ......... ..... - I 

\ 
C/l 

v 

MOLSF: LV REAL KEYBOARD 

VI VII 

--r 
SQRT CONJ 
LII LII 
real real 

con­
volve ... 

INV 

.... 

REAL CMPLX SYST USER TYPE LIST 

... ... .... 

DIFF SUM PROD SORT PRED TEST 

.... - - ... ,... .... 

DOWN EVAL SUB MAX MOD NEG CTX ENL CON REPT 

........ 

Set 
display 

....,. ...iWii..indow i... ..._ 

--~ ..... ,... ..... - ..... ..... 
PWR ATAN ARG DEL CONV ID LOAD STOR 

Cancel 
job .... ... 

ILoad t3end 
~ec frmll!ec to 
~ob shop~ ob shop _... ... 

-~ 

... 
ENTER 

DISPLAY <:: ESCAPE 
SEL RESET 

Display status of job 

j ..... 

..... 



Appendix D 

ON-LINE ERROR AND SYSTEM MESSAGES 

The on-Line system displays various system and error 

messages. The following list explains some of the more common 

messages. The format for error messages is: 

THE ERROR MESSAGE 

Key or keys which usually cause the message to be displayed. 

An explaination of the message. 

Suggested user response. 

For system messages the format is: 

THE SYSTEM MESSAGE See page 

AUTOSAVE CODE = number See page 15 

CONTEXT ERROR 

CTX level 0 operand ~ETURN (on MOLSF) 

You have requested a vector or array dimension (s) that 

is too large, zero, or negative. 

Request a context within the allowed range. If the context 

is less than 873, then your user number may have a 

lower context limit and attempts to exceed that limit 

will result in an error message. 

ENTER USER NUMBER 

EXPONENT OVERFLOW 

See page 15 

Any sequence of keys on the mathematical levels (on MOLSF). 

An operation has caused the exponent of a number to exceed 

the hardware limitations of the computer. 

212 Revised Sept. 1, 1971 



Wood, R. C. and J. C. Bruch, Jr.: "Teaching Complex Variables 
with an Interactive Computer System." Article Submitted for 
review and publication in the IEEE Transactions on Education, 
July, 1970. 

Wood, R. C. and J. A. Howard: "An Interactive Computer 
Classroom." Educational Research and Methods Journal, Vol. 2, 
No . 4 ( Jun e • 1 9 7 0 ) • 2 9 - 3 1 . 

Yu, S. Y.: "On-Line Computer Program for Magnetic Hysteresis 
Loop Characteristics of Permeable Rods." TRW IOC 3343.3-165, 
November 7, 1966. 

Yu, S. Y.: "On-Line Computer Program for Solving up to 
Five Simultaneous Equations." TRW IOC 66-3343.3-197, 
December 6, 1966. 

261 Revised Sept. 1, 1971 



INDEX 

Abscissas for real vector display - LII SUB - (MOLSF) 
Absolute value of a real array - LIII MO'i)"":" (MOLSF) 

of a real scalar - LI MOD - (MOLSF) ~-
of a real vector - LI! MOD - (MOLSF) 

Accessing operating system data sets (COL) 
Accessing the edit level 
Accessing the online system 
Active buffer (COL) 
Active buffer pointer (COL) 
Active file (COL) 
Active file marker (COL) 
Active string (COL) 
Adding complex arrays - LIII G) - (MOLSF) 

complex scalars - LI ~- (MOLSF) 
complex vectors - ITI . \D - (MOLSF) 
real arrays - LIII--=:E) - (MOLSF) 
real scalars - LI (iT - (MOLSF) 
real vectors - ITI ~ - (MOLSF) 

Alphabetic operane:rs--(COL) 
Alphabetic operands (MOLSF) 
Arctangent of a complex array - LIII ATAN - (MOLSF) 

of a complex scalar - LI ATAN -=---(MOLSF) 
of a complex vector - Lfr ATAN - (MOLSF) 
of a real array - Lill ATAr:r-=-(MOLSF) 
of a real scalar --Y:-Y-ATAN - (MOLSF) 
of a real vector - ITI ATAN - (MOLSF) 

Argument of a complex--aT"ray - Lill ARG - (MOLSF) 
of a complex scalar - LI ARG~MOLSF) 
of a complex vector - ITI ARG - (MOLSF) 
of a real array - LIII ARG~--(MOLSF) 
of a real scalar ---rr-A~- (MOLSF) 
of a real vector - Lii ARG - (MOLSF) 

Arrays (MOLSF) 
Auto-skip - Lii Q) - (COL) 
Auto-store option - Lil ATAN - (COL) 
Automatic skip, duplicate:-D"r left zero (COL) 
Autosave code 
Backspacing (COL) 
Basic subfiles 
Basic system 
Billing charges - LO SUM -
Billing charges - SYST SUM -
Binary scale (MOLS~ ~-
Blanking the active buffer - Lii RS - (COL) 
Block key sequence editing in user programs 
Boxed output 

262 Revised Sept. 1, 1971 

161 
174.1 

155 
162 
100 

46 
15 
78 

78,88 
77 
78 
80 

175 
155 
165 
172 
154 
158 

81 
132 
177 
156 
168 
174 
155 
162 
177 
156 
168 

174.1 
155 
163 
129 
116 
115 

91 
16,17 

112 
19 
13 
39 

25.1 
145 
112 

54 
41. 2 



INDEX CONTINUED 

Branching in a user program 
Cancelling a batch job - LV DEL - (MOLSF) 
Card oriented language 
Carriage control 
Case level 
Case 1 type level symbols 
Case 2 type level symbols 
Character generation 
Character generation keyboard 
Character string (COL) 
Clearing all auto-skip fields - LII SQRT - (COL) 

a tab - LII CLR - (COL) 
COL 

file 
level 0 operator definitions 
level I operator definitions 
level II operator definitions 
level III operator definitions 
level IV operator definitions 
subfiles 

Collating sequence (COL) 
Common scale (MOLSF) 
Comparing character strings (COL) 
Complex file (COL) 
Complex numbers (MOLSF) 
Concatenating blocks of records (COL) 

character strin~ (COL) 
files - LIII + - (COL) 
strings -=-rf + - (COL) 

Conjugating ~complex array - LIII NEG - (MOLSF) 
a complex scalar - LI NEG - (MOLS~ 
a complex vector - LTI---r:J'EG - (MOLSF) 

Constructing a user program 
Context of a vector (MOLSF) 
Contracting a complex vector - LII CON - (MOLSF) 

a real vector - LII CON - (MOLSF)~-
Converting an integer ~a character - LI LOAD LO - (COL) 
Convolution integral - LII CONV - (MOLSF) ~~ ~ 
Copying the active buffer-to the drum card - LII EXP - (COL) 

the save buffer - LII REFL - (COL) 
Correcting a user progra-m~-
Cos ine of a complex array - LIII COS - (MOLSF) 

of a complex scalar - LI C~ (MOLSF) 
of a complex vector - LTI---COS - (MOLSF) 
of a real array - LIII--C0S~--(MOLSF) 
of a real scalar ---Y:Y-c~- (MOLSF) 
of a real vector - LfI--COS - (MOLSF) 

60 
183 

76 
26 

26,31 
27 
27 
31 

198 
77 

116.1 
116.1 

76 
77 

120 
108 
112 
117 
119 

19 
85,111.1 

148 
84 
77 

123 
96 
84 

117 
109 
177 
156 
167 

44 
125 
166 
159 

111.2 
163 

116.1 
113 

46 
177 
156 
168 
174 
155 
162 

263 Revised Sept. 1, 1971 



Creating a file 
a record (COL) 

CTX pro grams 

INDEX CONTINUED 

Curvilinear display (MOLSF) 
Data scale (MOLSF) 
Data structures (MOLSF) 
Data subfile predicate lists 
Date and time - LI LOG - (COL) 
Day system ~ --
Decrementing the active buffer pointer - LII () 

the save buffer pointer - LII COS - (CO~ 
Delaying display - TYPE DEL or-A~-

- (COL) 

21 
88 
42 

141 
146 
124 

20 
111. 1 

11 
112 
112 

30 
Deleting a block of----r=ecords from the active file - LIII DEL -

a file from the permanent library - SYST DEL -
a record - LII DOWN - (COL) -~ --
a subfile from the permanent library - SYST DEL -
a substring from the active string - !:.!_--m---(COL) 
a user level - SYST NEG -
characters from---a-record - LII DEL - (COL) 
keys from a user program 
the active file - LIII DOWN - (COL) 
trailing blanks - ITJ)Er-:-(cOL) 

Delta function of a complex array - LIII 
of a complex scalar - LI DEL - (MOLSF) 
of a complex vector - LII----nE'"L - (MOLSF) 
of a real array - LIII----nE'"L~--(MOLSF) 
of a real scalar ---r:r-DE°r-- (MOLSF) 
of a real vector - LII----nE'"L - (MOLSF) 

Developmental system ~- -­
Differencing a complex vector - LII DIFF 

a real vector - LII DIFF - (MOLSF)-­
Dimension of an array (MOLSF) 
Disabling all display - TYPE Q -
Display (MOLSF) 

formatting (MOLSF) 
on level III (MOLSF) 
programs, see name programs 
scale (MOLSF) 
window - LV CTX - (MOLSF) 

Displaying a-block of records (COL) 
a character string (COL) 
a hexadecimal string - ~ MAX - (COL) 
a name program 
a parenthesized expression (MOLSF) 
a record - LII DISPLAY - (COL) 
a string - ~DISPLAY - (COL) 

DEL - (MOLSF) 

- (MOLSF) 

(COL) 99,118 
24,25.2 

115 
24,25.2 
84,109 

25.1 
114 

53 
117 
110 
178 
156 
168 

174.1 
155 
163 

11 
167 
161 
129 

29 
141 
152 
151 

145 
183 

97 
82 

111.2 
74 

186 
113 

111. 2 

264 Revised Sept. 1, 1971 



INDEX CONTINUED 

a user program 
file names in a user library - SYST DISPLAY -
lists of user programs defined - SYST EVAL -
records (COL) 
text of all user programs - SYST MAX -
the active buffer (COL) 
the active buffer pointer - LII EVAL ( - (COL) 
the active file - LIII DISPL~---CC0L) 
the active file marker - LII EVAL ? - (COL) 
the drum card - LII EVAL -:---=- (COL) 
the record count~--LIIE°vAL . - (COL) 
the record length (COL)~~ 
the save buffer pointer - LII EVAL ) - (COL) 
the status of a batch job :--Cvl51SPLAY - (MOLSF) 
the status of operating system devices (COL) 
the status of the operating system - LIV DISPLAY - (COL) 
vectors (MOLSF) ~-

Dividing complex arrays - LIII (]) - (MOLSF) 
complex scalars - LI (Z2~---(MOLSF) 
complex vectors - LII <:/) - (MOLSF) 
real arrays - LIII~ - (MOLSF) 
real scalars - LI - (MOLSF) 
real vectors - LII - (MOLSF) 

Dot-dot display format item (MOLSF) 
Drum card (COL) 
Duplicate field (COL) 
Edit level 
Edit level keyboard 
Edit level operator definitions 
Edit pointer 
Editing a user program 
Enabling all display - TYPE G 
Enlarging a complex vector - LII ENL - (MOLSF) 

a real vector - LII ENL - (MOLS~ 
Enter in a user progra~ 
Entering floating point numbers (MOLSF) 
Erase 
Error corrections in a user program 
Error messages 
EVAL on level 0 (COL) 
EVAL on level 0 (MOLSF) 
Evaluating a real vector - LII EVAL - (MOLSF) 
Executing a user program 
Expanding the active string from packed decimal format -

LI EXP - (COL) 
Explicit data transfer (MOLSF) 

47 
25,25.2 

2 5 .1 
94 

25.1 
90 

90,116 
118.1 

116 
116 

90,116 
79 

90,116 
181 
107 
119 
168 
175 
155 
165 
172 
154 
158 
153 

92 
91 

44,46 
200 

56 
49 
48 
29 

166 
159 

59 
122 

40 
46 

212 
120 
179 
159 

43 

1 1 1 . 1 
134 

265 Revised Sept. 1, 1971 



INDEX CONTINUED 

Exponentiating a complex array - LIII EXP - (MOLSF) 
a complex scalar - LI EXP - (MOLSF) ~-
a complex vector - ITr"ExP - (MOLSF) 
a real array - LIII EXP~--(MOLSF) 
a real scalar ----r:r-E~- (MOLSF) 
a real vector - LII°ExP - (MOLSF) 

Extracting a substring()f the active string - LI SUB - (COL) 
integer data (COL) 
integer data (MOLSF) 

File (COL) 
File creation (COL) 
File manipulation level (COL) 
File, user library 
File name 
Floating point display format item (MOLSF) 
Floating point numbers (MOLSF) 
Fols (MOLSF) 
Format item (MOLSF) 
Fortran subroutine calls (MOLSF) 
Fortran vector transfer (MOLSF) 
Forward differences of a complex vector - LII DIFF - (MOLSF) 

of a real vector - LII DIFF - (MOLSF) 
of the columns of a---COmplex array - LIII DIFF - (MOLSF) 
of the columns of a real array - LIII DIFF - (MOLSF) 

General load format (MOLSF) 
General store format (MOLSF) 
Graphical display (MOLSF) 
Halt in a user p~ogram 
Hard copy 
Hierarchy of operators (MOLSF) 
IBM collating sequence (COL) 
Identity function, real vectors - LII .!.Q - (MOLSF) 
Identity scalar - LI CMPLX ID - (MOLSF) 
Identity scalar - LI REAL I~- (MOLSF) 
Identity vectors in-a--rea11lrray - LIII ID - (MOLSF) 
Incrementing the active buffer pointer -"I:"II E) - (COL) 

the component in a load instruction (MOLSF) 
the save buffer pointer - LII SIN - (COL) 

Index level see level 0 ~- -~ 
Initiating the online system 

177 
156 
168 
174 
155 
162 
109 
120 
179 

77 
93 
96 
18 
21 

152 
122 
255 
152 
255 
255 
167 
161 
178 

174.1 
134 
139 

141,144 
59 

41.1 
187 

111.l 
160 
156 
155 
174 
112 
137 
112 

15 
Inserting a block of records into the active file - LIII ARG -

a record - LII UP - (COL) 
a string intc)°the active string - LI 0 - (COL) 
characters into a record - LII ARG----:- (COL) 
characters into the active string-- LI ARG - (COL) 
keys in a user program 
the inactive file into the active file - LIII UP -

--(COL) 

(COL) 

266 Revised Sept. 1, 1971 

96,118 
93,115 

109 
114 
110 
so 

117 



INDEX CONTINUED 

Integer display format item (MOLSF) 
Integer level see level 0 
Interacting with FORTRAN programs (MOLSF) 
Interchanging the active and inactive files - LIII INV - (COL) 

the active and save buffers - LII INV - (COL_) __ --
the active and save strings - Y:Y-lNV - (COL) 
the real and imaginary componerits()'f a complex scalar -

user levels - SYST REFL -
Interlevel operands (COL) 

transfer of data (MOLSF) 

g REFL - (MOLSF) 

Interpolating in a table - LII EVAL - (MOLSF) 
Interrupting a user program-- ---
Inverting a complex array - LIII INV - (MOLSF) 

a complex scalar - LI INV ::---cM"OLSF) 
a complex vector - ITI--r-N°V - (MOLSF) 
a real array - LIII--r-N°V---(MOLSF) 
a real scalar -~INV - (MOLSF) 
a real vector - ITI--r-N°V - (MOLSF) ----Job card (COL) 

Juxtaposition of operands (MOLSF) 
Keyboard diagrams 
Left side 
Left zero field (COL) 
Left-shifting a complex vector - LII ~ - (MOLSF) 

a real vector - LII LS - (MOLSF) 
the columns of a--COmPfex array - LIII LS - (MOLSF) 
the columns of a real array - LIII LS :-(MOLSF) 

Length of a vector (MOLSF) 
Level 0 

0 COL operator definitions 
0 EVAL (COL) 
0 EVAL (MOL SF) 
0 K"'e'YD o a rd 
0 operand forms 
0 operator definitions 
0 SUB and EVAL (MOLSF) 
I COL opera tor definitions 
I complex keyboard (MOLSF) 
I complex operator definitions (MOLSF) 
I keyboard (COL) 
I operand forms (COL) 
I real keyboard (MOLSF) 
I real operator definitions (MOLSF) 
II COL operator definitions 
II complex keyboard (MOLSF) 
II complex operator definitions (MOLSF) 

267 Revised Sept. 1, 1971 

152 

181 
117 
113 
110 

156 
25.1 

81 
135 
159 

59 
177 
156 
167 

174.1 
155 
161 
103 
132 
196 

54 
91 

165 
159 
175 
172 
125 

13,38 
120 
120 
179 
199 

38 
39 

179 
108 
206 
155 
201 

80,108 
205 
154 
112 
208 
165 



INDEX CONTINUED 

II keyboard (COL) 
II real keyboard (MOLSF) 
II real operator definitions (MOLSF) 
III COL operator definitions 
III complex keyboard (MOLSF) 
III complex operator definitions (MOLSF) 
III keyboard (COL) 
III real keyboard (MOLSF) 
III real operator definitions (MOLSF) 
IV COL operator definitions 
IV keyboard (COL) 
V keyboard (MOLSF) 
V operator definitions (MOLSF) 

Library organization 
Line display (MOLSF) 
List mode 
Literal operand (COL) 
Loading a character string (COL) 

a file from another user name on your user number 
a file from another user number 
a file from the permanent library - SYST LOAD -
a real vector from a batch job - LV LOAD -=--cM'OLSF) 
a record - LII LOAD - (COL) ~ 
a string - ~LOAD - (COL) 
a subfile from the permanent library - SYST LOAD -
a user program 
an operating system data set - LIV LOAD - (COL) 
data (MOLSF) 
the null string (COL) 
vectors and arrays with varying dimensions (MOLSF) 

Logarithm of a complex array - LIII LOG - (MOLSF) 
of a complex scalar - LI LOG -=--cM'OLSF) 
of a complex vector - LII---uJ°G - (MOLSF) 
of a real array - LIII---uJ°G~--(MOLSF) 
of a real scalar -~L~- (MOLSF) 
of a real vector - LII LOG - (MOLSF) 

Login 
Logout 
Looping in user programs 
Manipulating substrings (COL) 
Mantissa (MOLSF) 
Manual mode 
Mathematical operand forms (MOLSF) 
Mathematical operators for level I (MOLSF) 

for level II (MOLSF) 
for level III (MOLSF) 

202 
207 
158 
117 
210 
175 
203 
209 
171 
119 
204 
211 
181 

18 
141 

10,14,42,43 
80 
82 
23 
23 

22,25.2 
182 

94,114 
111.1 

23,25.2 
47 

100,119 
134 

111. 2 
138 
177 
156 
168 
174 
155 
162 

15 
16 
71 
84 

122,145 
10 

132 
154 
158 
171 

268 Revised Sept. 1, 1971 



INDEX CONTINUED 

Mathematically oriented language 
Maximum component of a complex vector - LII MAX - (MOLSF) 

of a real vector - LII MAX - (MOLSF) 
of each column of a---COmplex array - LIII MAX - (MOLSF) 
of each column of a real array - LIII MAX~--(MOLSF) 

Merging files - LIII CONJ - (COL) 
Message generation--- ~~ 
Message generation keyboard 
Message generation operator definitions 
Modifying a record (COL) 

a user program 
Modulus of a complex array - LIII MOD - (MOLSF) 

of a complex scalar - LI M00-:--(MOLSF) 
of a complex vector - L"fI MOD - (MOLSF) 

MOL SF 
MOLSF subfiles 
Multiplying complex arrays - LIII 0 - (MOLSF) 

complex scalars - LI Q - (MOLSF) 
complex vectors - L"fI Q - (MOLSF) 
real arrays - LIII-n - (MOLSF) 
real scalars - LI Q - (MOLSF) 
real vectors - LII 1) - (MOLSF) 

Name programs 
Negating a real array - LIII NEG - (MOLSF) 

a real scalar - LI NEG----:---CMOLSF) 
a real vector - L"fI°"NEG - (MOLSF) 

Normal form (MOLSF-)~ ~-
Number representation (MOLSF) 
Numerical display (MOLSF) 
Numerical operands (MOLSF) 
Opening an online account 
Operand forms (MOLSF) 

for level 0 
for level I COL 

Operating system interface level (COL) 
Operator definitions for level 0 

for level 0 EVAL (COL) 
for level 0 SUB and EVAL (MOLSF) 
for level I (COL) 
for level I complex (MOLSF) 
for level I real (MOLSF) 
for level II (COL) 
for level II complex (MOLSF) 
for level II real (MOLSF) 
for level III (COL) 
for level III complex (MOLSF) 
for level III real (MOLSF) 

121 
168 
162 
178 

174 .1 
118 

30 
198 

31 
88 

46,48 
177 
156 
168 
121 

19 
175 
155 
165 
172 
154 
158 

73 
174.1 

155 
161 
146 
122 

141,143 
132,134 

189 
132 

38 
80,108 

100 
39 

120 
179 
108 
155 
154 
112 
165 
158 
117 
175 
171 

269 Revised Sept. 1, 1971 



for level IV (COL) 
for level V (MOLSF) 
for message generation 
for symbol generation 
for the edit level 
for the system level 
for the type level 

Parentheses (MOLSF) 
Permanent library 
Plotter 
Point display (MOLSF) 
Port see display window 
Post list marker 

INDEX CONTINUED 

Power operator for a complex array - LIII PWR - (MOLSF) 
for a complex scalar - LI PWR - (MOLSF) ~-
for a complex vector - LfIJJ'WR - (MOLSF) 
for a real array - LIIIJJ'WR~--(MOLSF) 
for a real scalar -~PWR - (MOLSF) 
for a real vector - LII PWR - (MOLSF) 

PRED in a user program 
Predicate lists 
Preserving a substring (COL) 
Printed output 
Printing output in rjeout (COL) 
Prjeout (COL) 
Product of the components of a complex vector - LII PROD -

(MOLSF) 
of the components of each column of a complex array -

LIII PROD - (MOLSF) 

119 
181 

31 
36 
56 

25.1 
30 

184 
18 

41.1 
141 

46 
175 
155 
165 
172 
154 
158 

69 
20 
84 

41.1 
106 
106 

167 

178 
of the components of each column of a rear-array - LIII PROD -

(MOL'SF'")"° 174.1 
of the components 

Protection code 
Punched output 

of a real vector - LII PROD - (MOLSF) 162 

Purging the active file - LIII DOWN - (COL) 
Quotient register 
Radix (MOLSF) 
Random real vector - LII ID ? or ID RETURN - (MOLSF) 
Real file (COL) 
Real numbers (MOLSF) 
Rearranging a vector - LII SORT A,B - (MOLSF) 
Recalculating the length""Of the active string - LI DEL 
Reciprocal of a complex array - LIII INV - (MOLSF) 

of a complex scalar - LI INV --cMQLSF) 
of a complex vector - LII---rN°V - (MOLSF) 
of a real array - LIII---rN°V~--(MOLSF) 
of a real scalar -~INV - (MOLSF) 
of a real vector - LfI---rN°V - (MOLSF) 

- (COL) 

270 Revised Sept. 1, 1971 

21 
41.1 

117 
38 

122 
160 

77 
123 
163 
110 
177 
156 
167 

174. 1 
155 
161 



Record (_COL) 
Record creation (COL) 
Record 1 ength (COL) 

INDE.X CONTINUED 

Record manipulation level (COL) 
Reflecting a complex aTray ~ LfII REFL - (MOLSF) 

a complex scalar - Lf REFL - (MOLSF) 
a complex vector - Lll REFL - (MOLSF) 

Relative scale (MOLSF-)~ 
Remainder register 
Remote data set (COL) 
Remote job entry - LIV SUB - (COL) 
Repeat ~-
Repeating user programs 
Replacing a record - LII SUB - (COL) 

a user level - SYST-SUB~--
strings - .!:.!_SIN - (COL) 

REPT 
REPT with user programs 
ifE'SET 

77 
88 
78 
88 

178 
156 
167 
146 

38 
105 

102,119 
40 
71 

93,115 
25.1 

111 
40 
71 
40 
64 Reset in test - RS -

Reversing the components 
Right side 

of a real vector - LII REFL - (MOLSF) 162 

Right-shifting a complex vector - LII RS - (MOLSF) 
a real vector - LII RS - (MOLSF) 
the columns of a-COmPTex array - LIII RS - (MOLSF) 
the columns of a real array - LIII RS -:-(MOLSF) 

Rjeout (COL) 
Sample problems 
Save buff er (COL) 
Save buffer pointer (COL) 
Scalars (MOLSF) 
Scaling algorithms (MOLSF) 
Scaling graphical display (MOLSF) 
Scientific notation (MOLSF) 
Searching a character string (COL) 

a record - LII MOD - (COL) 
the active file~--LIII EVAL or MOD - (COL) 
the active string -=-LT MOD - (COL) 
the active string - LI RS or ~ - (COL) 

Select - SEL -
Sequence numbering the active file - LIII MAX - (COL) 
Setting a tab - LII SET - (COL) 

the active buffer pointer - LII 0 - (COL) 
the active buffer pointer anCfS'"ave buffer pointer to 1 -

54 
165 
159 
175 
173 
105 
222 

78 
78 

124 
146 
145 
122 

84 
112 

98,117 
111 
110 

41 
118.1 
116.1 

112 

LII LS - (COL) 112 
117 

30 
151 

the active file marker - LIII Q 
the display position - TYPE RS -
the display scale (MOLS~ 

271 

- (COL) 

Revised Sept. 1, 1971 



INDEX CONTINUED 

the display window - LV CTX ~ (MOLSF) 
the record length (COL) 
the save buffer pointer - LII LOG - (COL) 
the search pointer - LI SU~ (COL) 

Shifting the rows of a complex array - LIII UP or DOWN -

the rows of 
Signing off 
Signing on 

(MOLSF) 
a real array - LIII UP or DOWN - (MOLSF) 

Sine of a complex array - LIII SIN - (MOLSF) 
of a complex scalar - .!:.!_ SIN -:---CMOLSF) 
of a complex vector - LII SIN - (MOLSF) 
of a real array - LIII---sfN~--(MOLSF) 
of a real scalar ----Y:-Y-s~- (MOLSF) 
of a real vector - LfI---sTN - (MOLSF) 

Skip field (COL) ~- -~ 

Skipping to a tab setting - LII TAB - (COL) 
Software structure 
Sorting a real vector - LII SORT - (MOLSF) 

the active file - LIII---S0RT or SQRT - (COL) 
Special list mode operators--
Special operators 
Square root of a complex array - LIII SQRT - (MOLSF) 

of a complex scalar - .!:.!_ SQRT - (MOL~ 
of a complex vector - LII SQRT - (MOLSF) 
of a real array - LIII-sQ°Rr-:-(MOLSF) 
of a real scalar ----Y:-Y-SQRT - (MOLSF) 
of a real vector - LII SQRT - (MOLSF) 

Squaring a complex array - LIII §_g_ - (MOLSF) 
a complex scalar - LI SQ - (MOLSF) 
a complex vector - LII §_g_ - (MOLSF) 
a real array - LIII §_g_ - (MOLSF) 
a real scalar - .!:.!_ ~ - (MOLSF) 
a real vector - LII §_g_ - (MOLSF) 

Storing a character string (COL) 
a file see storing a subfile in the permanent library 
a record - LII STORE - (COL) 
a string - ~STORE - (COL) 
a subfile i~the permanent library - SYST STORE -
a user program 
data (MOLSF) 

String buff er (COL) 
String manipulation (COL) 
Structure of the user system 
SUB on level 0 (MOLSF) 
Subfile 
Subfile predicate list formats 

272 Revised Sept. 1, 1971 

183 
79 

112 
111.1 

176 
173 

16 
15 

177 
156 
168 
174 
155 
162 

91 
116.1 

194 
162 
118 

42,59 
14,40 

177 
156 
167 
174 
155 
161 
177 
156 
167 
174 
155 
161 

82 

115 
111.2 

25.2 
47 

139 
80 
80 
42 

179 
18 
20 



lNDEX CONTINUED 

Subfiles presently supported 
Submitting a batch job - LIV SUB - (COL) 
Subtracting comp 1 e:x arrayS-:- LI I I 0 - (MOL SF) 

complex scalars - LI G .,... (MOLSF) 
complex vectors - LII 0 - (MOLSF) 
real arrays - LII I 8 - (MOLSF) 
real scalars - LI EL - (MOLSF) 
real vectors - LII '1:) - (MOLSF) 

Summation of a complex vector - LII SUM - (MOLSF) 
of a real vector - LII SUM - (MOLS~ 
of each column of a---COmplex array - LIII SUM - (MOLSF) 
of each column of a real array - LIII SUM---(MOLSF) 

Suppressing all display - TYPE 0---
carriage return (MOLSF) 

Symbol generation 
Symbol generation operator definitions 
SYST keyboard 
SYST level 
System level operator definitions 
System messages 
Table look-up - LII EVAL - (MOLSF) 
Tabulating - LII TAB--=---TCOL) 
Teletype -- --
Templ (MOLSF) 
Terminating a batch job - LV DEL - (MOLSF) 
Test clearing subsequent keys--

condition 
in a user program 
key for displaying a parenthesized expression (MOLSF) 
number 
operator NEG 
operator ~ 
skipping keys 
skipping to key sequence 
used with parentheses 
with LO operands 

Testing---On the active string - ~ EVAL - (COL) 
Tols (MOLSF) 
Trailing predicates (MOLSF) 
Transferring a block of records (COL) 

a complex scalar - LI SUB or EVAL - (MOLSF) 
a real scalar - LI SUBor EVA~(MOLSF) 
data from one leve1-:ro another (MOLSF) 
records between buffers (COL) 

Translating characters - LI COS - (COL) 
Transmitting a vector to a-batch job - LV STORE - (MOLSF) 

19 
119 
175 
155 
165 
172 
154 
158 
167 
161 
178 

174.1 
30 

141 
31 
36 

196 
13 

25.1 
212 
159 

116.1 
41.1 

187 
183 

64 
61 
60 

186 
60 
65 
64 
66 
65 
67 
66 

111 
255 
133 

96 
155 
154 
135 

95 
86,111.1 

182 

273 Revised Sept. 1, 1971 



LNDEX CONTl:NUED 

Transposing a real array - Lrrr REFL - (MOLSF) 
Type keyboard 
Type level 
Type level operator definitions 
Unit circle complex vector - LII ID • - (MOLSF) 
Unit circle vectors in a complex array - LTII ID - (MOLSF) 
Unit square complex vector - LII ID - (MOLSF) ~ 
Unit square vectors in a complex array - LIII .!.Q_ - (MOLSF) 
User complaints 
User CTX programs 
User levels 

delete 
display text of all user programs 
display user programs defined 
interchange 
replace 

User library organization 
User programs 

block sequence editing 
constructing 
deleting keys 
displaying 
editing 
entering data 
error corrections 
executing 
inserting keys 
modifying 
passing arguments 
pred 
repeating 
storing 
test operator 

User subfile predicate lists 
User system 
Varying the context of the working register (MOLSF) 
Vectors (MOLSF) 
Warms tart 
Window for display (MOLSF) 
Working registers (MOLSF) 

on level I (MOLSF) 
on level II (MOLSF) 
on level III (MOLSF) 

X-axis for real vector display - LII SUB - (MOLSF) 

274 Revised Sept. 1, 1971 

174 
197 

13,26 
30 

167 
176 
167 
176 
191 

42 
14 

25.1 
25.1 
25.1 
2 5. 1 
2 5. 1 

18 
42 
54 
44 
53 
47 
48 
59 
46 
43 
50 
48 
69 
69 
71 
47 
60 
20 
42 

170 
125 

17 
183 
124 
125 
126 
130 
161 


	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	015
	016
	019
	020
	021
	022
	025.0
	025.1
	025.2
	026
	037
	038
	039
	040
	041.0
	041.1
	041.2
	042
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060.0
	060.1
	060.2
	061
	062
	075
	076
	079
	080
	083
	084
	085
	086
	087
	088
	107
	108
	109
	110
	111.0
	111.1
	111.2
	112
	113
	114
	115
	116.0
	116.1
	117
	118.0
	118.1
	119
	120.0
	120.1
	120.2
	121
	122
	133
	134
	135
	136
	137
	138
	139
	140
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164.0
	164.1
	164.2
	164.3
	164.4
	164.5
	164.6
	165
	166
	167
	168
	171
	172
	173
	174.0
	174.1
	174.2
	175
	176
	177
	178
	179
	180.0
	180.1
	180.2
	181
	182
	183
	184
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274



