PART I

General Description of the Maniac III Computer

A, Introduction

Maniac III is an automatic digital computer designed and con-
structed by the staff of the Institute for Computer Research at the Univ-
ersity of Chicago. It is composed of the following units: (1) a central
processor; (2) an associated rapid-access memory; (3) a primary input/
output system consisting of a paper tape reader, a paper tape punch, a
console typewriter, and a line printer; (4) additional high-speed memory
shared with auxiliary devices and other computers. The additional
memory (4) not only extends the storage available to the central processor,
but also provides a means by which Maniac III can communicate with the
auxiliary devices and other computers,

The basic unit of information for Maniac III is the word, which is
a string of 48 bits, each 0 or 1. Word transfer within the computer is
in parallel, and arithmetic is performed in the binary system,

Provision is made for rapid access to 16384(=214) storage words,
in locations designated by sequentially numbered addresses. Most addresses
refer to locations in memory, but certain registers in the central processor

are also addressable. The latter essentially comprise a set of 48-bit

A registers, which include the following: three constant registers, denoted

V, W, and Z, whose contents are unalterable; eight temporary storage

registers, denoted T ; and two operation registers,
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denoted U (for Universal) and R (for Residual). The Z register contains
a word of all bits 0, and the W register contains a word of all bits 1; the
V register contains a special numeric word (representing the integer -1
in the internal number system of the computer). Arithmetic and formal
operations carried out by computer instructions combine operands residing
in U (and possibly R) with voperands from memory or addressable registers,
and form primary results 1n U, residual results (such as low order parts
and remainders) in R, The addresses assigned to these A registers are
listed in Appendix I,

In addition to these 48-bit registers there are a number of special-
purpose nonaddressable 14-bit B registers., Included among these are

eight index registers, divided into two groups of four each: group P, con-

taining index registers PO’ Pl’ P2 and P3, and group Q, containing index

registers QO, Ql’ Q2 and Q3. Two of these, P3 and Q3, have a special

control function; they are called the reference register (link register or

path finder) and the sequence register (instruction location or control

counter), respectively. Also included as B registers are two indicator
. S T e s 3so . .
registers, D and D ; their individual bit positions are referred to as

sense indicators and trap indicators, respectively.

Other registers, which are ordinarily of no concern to the user
except in special cases, or when console operation is involved, are the

48-bit service register S, the instruction register I', and various special

48-bit communications registers; there is also a 14-bit effective address
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register AB, which records the currently addressed memory location,
Figure I-Al gives a block diagram illustrating the general structure

and organization of the computer, It is convenient to think of the Maniac

III as composed of several independent but interacting units, as shown.

In normal automatic operation the A computer, which contains an instruc-

tion register, can be considered to be primary controller, Its action is

determined, however, by the contents of the sequence register Q3, which
is in the B computer; this records the location in memory of a coded
instruction which is to be fetched to the instruction register. The instruc-
tion specifies an operation to be performed and associated address infor-
mation, the latter to be processed by the B computer and used to obtain
operands from memory, or to store results in memory. The A computer
carries out the instruction, and following this the sequence register, unless
specifically altered by the instruction performed, has its contents aug-
mented by 1 and is used to obtain the next instruction from memory.
Instructions for the A computer are 48-bit words, whose inter-
pretation is given in a standard instruction set or vocabulary, This set
is to be distinguished from a particular set of instructions actually stored
in memory, comprising a program representing a particular computational
task, When residing in memory, instruction words are objectively indisting-
uishable from data words, representing information to be processed; it is
only their treatment in the course of computation that differs (i.e., they

are routed to the instruction register).
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For engineering and mnemonic convenience, the 128 possible
instructions are divided into 8 classes of 16 instructions each., Three
classes are for performing full word numeric operations; these are
designated the FloatingPoint Arithmetic, Numerical Manipulation, and
Specified Point Arithmetic classes. Four classes are for performing
nonnumeric and index word A computer operations; these are the Index
Computation, Formal Manipulation, Data Transmission, and Miscellan-
eous classes, Finally, there is the Auxiliary System Operation class
for performing operations associated with the input/output and auxiliary
equipment,

A single form of number representation is used for all arithmetic
operands; the 48-bit word is partitioned into a 40-bit coefficient part
and an 8-bit exponent part. An exponent part is interpreted as an
integer e, while a coefficient part is interpreted as a fraction f in the
range -1< £< 1; the pair (e, f) then corresponds to the number f.2° .
Complement representation is used for negative numbers and there is
a special exponent symbol to indicate an "absolute zero'' value,

Floating Point Arithmetic in Maniac III differs from the pro-
cedure so called in most computers, in that coefficient parts are handled
in unnormalized form, according to a system which allows an estimation
of the precision of results. Specified Point Arithmetic is a generalization
of what is usually referred to as 'fixed point'' operation, which affords

arbitrary but controlled positioning of the binary point. The use of the
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single number representation eliminates any need for distinguishing
between ''fixed point numbers' and ''floating point numbers''.

Numerical Manipulation instructions include operations which
normalize results (after the manner of traditional floating point arith-
metic),

Index Computation instructions serve to set and alter the contents
of the index registers, and to effect jumps in the normal instruction
sequence (the latter because the sequence and reference registers are
included in the index category). Such jumps may be made conditional,
depending on the outcome of a comparison between the contents of specified
registers or locations, or on the contents of the two indicator registers.,
The primary use of the other index registers ia in connection with address
modification at the time an instruction is performed,

The individual bit positions of the indivator registers can be set
in a variety of ways to indicate the occurence of events during the course
of a program, and to allow manual or programmed imposition of procedural
variations,

The Formal Manipulation instructions are designed to permit the
common variety of internal ''bit processing' to be carried out efficiently,
by means of shifting and combining words without special numeric inter-
pretation. Also in this class are instructions for independently manipul-
ating exponents, and for converting exponent and index representations to

standard numeric form,
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This gives a brief picture of the computer and its operation; a

more detailed discussion is given in the subsequent sections,

B. Basic Information Patterns

Within the computer system, symbolic information is coded in
terms of the bits 0, 1, A sequence of 48 bits comprises a word; the

bits of a word are numbered 47, 46, . . . 1, O from left to right for

identification purposes, as illustrated in Figure I-Bl,

47.............0

O ]

Figure I-Bl, Word format

1, Tetrad symbols

It is often convenient to consider a word as a sequence of 12
tetrads, or 4-bit groups. There are 16 possible distinct tetrads, and
they are represented by the symbols 0,1, . . . , f as shown in Table
I-Bl. This alphabet of tetrad symbols affords a compact written rep-
resentation of computer words; for example, the word

1010011100,....0,
which has first tetrad 1010 and second tetrad 0111, followed by ten

tetrads 0000, is represented by the sequence

a70000000000,
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Shorter sequences of bits may also be expressed in terms of
tetrad symbols; if the number of bits is not divisible by 4, the tetrad
grouping is started from the right, and the leftmost tetrad completed
by considering the string to be headed with an appropriate number of
bits 0. Thus, for example, the 14-bit sequence

01111001100001

is represented by

1e610

2. Sexadecimal representation

It is possible to interpret any sequence of bits as a numeral in
the binary (base 2) system, wherein the bits function as binary digits
weighted by powers of 2 increasing from right to left. For example,
the 4-bit sequence 1101 represents the number 13, since

1:23 4 1022+ 0:2%=84+441=13,
The 16 tetrads listed in Table 1 represent, in order, the numbers
0, 1, « « o415 in binary form; the associated tetrad symbol is seen
to be the natural (decimal) one for the first 10 of these., The assignment
of a single symbol to the remaining 6 cases allows the complete set of

16 tetrad symbols to be considered as a set of digits suitable for rep-

resenting numbers in the sexadecimal (base 16) system, The symbol

le6l, interpreted as a sexadecimal expression, represents the (decimal)

number 7777, for

10163 + (14) 16 + 6216 + 1-16° = 4096 + 3584 + 96 + 1= 7777,
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Tetrad Symbol
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 a
1011
1100 c
1101 d
1110 e
1111 f

Table I-Bl. Assignment of tetrad symbols

As indicated, the tetrad symbols a, b, . . .,f are replaced by their
decimal equivalents in computing the decimal value of a sexadecimal
expression., It can be verified that a similar computation on the 14-bit
sequence represented by le6l gives the same decimal result; thus the
tetrad symbol shorthand retains its usefulness even when sequences of
bits are interpreted numerically,

In the computer system, 14-bit binary numbers are referred
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to as designators. When interpreted as positive binary integers as
described above, they are used as addresses to designate memory
locations; the number of possible addresses is therefore 214 = 16384,
and these are naturally ordered 0000, 0001, ., . . , 3fff,

The natural interpretation of a 14-bit sequence is thus as an

unsigned designator, an integer in the range from 0 to 214-1, as shown

in Table I-B2., In many contexts, however, it is convenient to regard

13

14-digit quantities as signed designators in the range from -213 to +2 1.

The nonnegative integers are represented just as in the unsigned case;
they therefore all have a leftmost digit of 0. Negative integers all have
a leftmost digit of 1 and are related to their absolute values according
to the (true or 2-) complement scheme; this interpretation is also shown
in Table I-B2.

The complement of a binary integer of any length may be formed
by first reflecting (changing 0 to 1 and vice versa) each bit, and then
adding 1 at the right. Cognizance may or may not be taken of whether
this addition causes a carry (overflow) beyond the left end of the number
or into the sign position, depending on the particular application. Arith-
metic (ignoring overflows) may be done completely without regard for
whether the binary numbers involved are regarded as signed or unsigned
or even mixed -- e.g. 1 may be subtracted from 16383 by adding 3fff

(as -1) to 3fff (as 16383), to give 3ffe (=16382).



-10- Maniac III

Designator Unsigned Signed
(sexadecimal) Interpretation Interpretation
0000 0 0
0001 +1 +1
L4 . .
B ‘ . .
> ‘13 "13
1£££ +2° -1 +2° -1
2000 213 -213
2001 213+1 -213+1
: : :
[ 1.4: [
3fff 2 -1 -1

Table I-B2. Unsigned and signed designators,

3, Octad symbols as character codes

To allow the representation of an extended set of symbols,
octads, or 8-bit groups, are employed. These are used to code a
set of characters, which can thus be manipulated within the computer
system. In this code the character represented is determined by the
rightmost 7 bits of an octad; the leftmost bit is normally O for a char-
acter residing in computer memory. When characters are recorded
in coded form on external media such as paper tape, however, the
leftmost bit is set according to a parity criterion, so that the total
number of bits 1 in each octad is even; this provides a means for

checking the transmission of characters between the central processor

and auxiliary devices.



-11- Maniac III

There are 128 possible distinct groups of 7 bits; of these, 88
are used to represent actual symbols producible on the console type-
writer associated with the computer, and several more serve to rep-
resent typewriter carriage control actions, This set of assigned
characters is called the alphabet of the computer; a table of the coding
for this alphabet is given in Appendix I, It can be seen from this
table that the 16 tetrad symbols 0, 1, . . ., f are represented in
octad (actually, 7-bit) form as 001 followed by the four bits of the |
associated tetrad, so that conversion of these symbols between tetrad
and octad representation is straight-forward. Also note that the value
of the leftmost bit of the group of 7 distinguishes between the lower
and upper cases of the typewriter; characters for which this bit is 0
are typed lower case, characters for which this bit is 1 are typed upper
case., The characters corresponding to carriage control actions have two
codes since they can be invoked with the typewriter carriage in either
position.

Any octad can be considered to be composed of two tetrads;
hence it is sometimes convenient to think of the characters of the com-
puter alphabet as coded in terms of tetrads rather than bits. Thus the
octad characters 0, 1, . . ., f are represented by the tetrad-pairs
10, 11, . . . , 1f, and any sequence of k octads is represented by a
sequence of 2k tetrads, For example, the tetrad sequence

5ble2022270f
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represents the sequence of characters
BeginA

(where a stands for the lower case version of the ''space" character),

Via the octad coding.a 48-bit computer word may be interpreted
as a symbolic word of 6 characters, Care must be taken to distingunish
this interpretation from that which is based on tetrad coding, since the
symbols 0, 1, . . . , f are associated with both systems. Frequently
a symbolic word may be intended to represent a string of less than 6
characters; the excess positions (normally grouped at the right) are then
occupied by the '"blank'' character (octad 00,..0), which is vacuous
as far as typewriter action is concerned (and hence is not the same as

""space').

4, Exponent and coefficient

From what has been said, it can be seen that a computer word
can be attributed significance in either its basic (tetrad) or its symbolic
(octad) interpretation. The former is appropriately used to represent
integers (base 16) in certain '"formal' contexts, while the latter serves
to represent general numerical information in ''edited" form, which is
naturally more convenient from the viewpoint of the computer user.

Now, for internal arithmetic manipulation within the operations unit
of the computer,the 48-bit word is interpreted in a third way, as a num-
eric word. In this interpretation the leftmost 8 bits (2 tetrads) represent

an integral exponent e in the range -127< e < +127, while the rightmost
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40 bits (10 tetrads) represent a fractional coefficient f in the range
-1 < f < 1; the entire numeric word then represents a number in the
form 2°+.f . For example, the word

a7000000000
in this interpretation represents a ''relative zero' with e= 39 (rep-
resented by a7 in a sexadecimal "excess-128" code) and f=0, Details
of the exponent and coefficient coding are given subsequently, in
connection with the exposition of arithmetic processes as they are

defined for the computer; see Section I-H, Number Representation.

Still a fourth interpretation of the computer word is as an

instruction word; this is discussed in section I-D,

C. Register Structure and Nomenclature

Stages in a 48-bit register are numbered 47, 46, . . . , 1, O
from left to right, corresponding exactly to the numbering of bit
positions in the word format (see Figure I-Bl), These stages are
referred to by subscripting the register label; thus, single stages in

U, reading from left to right, are

8)

U47, U46,o-o’ Oo

Sections of U are identified by giving the numbers of the leftmost and

rightmost positions in subscript form; for example

Uig...0
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denotes the section of U corresponding to the rightmost five tetrads,

while

U47. ..40

denotes the section of U corresponding to leftmost octad (or two
tetrads). The latter is also precisely the section corresponding to
the exponent in the numeric format; it is convenient in arithmetic
contexts to simply reger to U47 40 25 U™, and the coefficient section
as U, renumbering stages within these sections as

E _E E

7’ U6’ e o o UO

Ysg...0
U
for exponent, and

F _F F
U0

s Ul’ o o o s U39
for coefficient, reading from left to right in each case (the reason
for the renumbering is made clear in Section I-H).

Similar notation applies to the other registers R, TO’ Tl’ e o o>
etc. In describing computer action, it is convenient to adopt the con-
vention that the information stored in a register or part thereof is
denoted by the lower case letter corresponding to the register, section,
or stage; for example, u is the 48-bit word residing in U, uE is its

exponent residing in UE, and ufz, uéE, .« e e s u? are the individual bits

F F
of the exponent., Similarly uF is the coefficient, with bits ugs Ups o o e u39;

in particular, the numeric representation is such that u, is the bit which

F
gives the algebraic sign of u~ (and hence of u, interpreted as a number).
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Such conventions also can be used, when necessary, to denote
14-bit registers and their contents. Thus Pk is the 14-bit designator

residing in Pk’ and its jth bit is Pk i The individual stages of the

?
sense and trap indicator registers are denoted Dsl;3, DSI;Z’ .« o o D(S)
T T T .. . . S S
3 . 3 ; t ? ?
and D13, DlZ’ D0 he indicator bit settings are thus d13 dlZ
. o e ds and dT dT dT

0 13 447+ =00 Y9 - When considering the stages of

the indicator registers individually, they themselves are called

indicators, and the indicator registers are called banks.

D. Instruction Format

For computer control purposes the 48-bit word is interpreted
in an instruction format composed of eight fields, as shown in Figure I-Dl.

The names of the fields and their lengths are listed in Table I-Dl,

M7 s 14 s e 14 |
1 o L gL oc L R gR o« R

Figure I-D1, Instruction format

Within each field, bit positions are conventionally numbered
from right to left starting from 0; thus field & consists of bit positions
d’(,’ Gy » c v W and so forth,

The tag bit4, is used for '"breakpointing'' instructions in a;way
to be described subsequently; see Section K, Trapping. Since the tag
does not affect the interpretation of the remainder of the instruction,

its use is not considered further in this section.
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Field |Length Name
1 1 Tag
(A 7 Operation Code
L
b g 1 Left Inflector
L e
B 5 Left Modifier
L .
o~ 14 Left Designator
R .
¥ 1 Right Inflector
R . s
ﬁ 5 Right Modifier
R . .
oL 14 Right Designator

Table I-D1. Instruction fields

Informally, the general significance of an instruction word
in terms of computer action may be characterized as follows: '"Do
. . ‘s L . .
operation (L, in a manner specified by { and K , on information
L L R . R
designated by ©K  modified by 3, and ok  modified by ﬂ ",
The details of, and exceptions to, this characterization are included
with the descriptions of individual instructions; certain general con-

ventions, however, are appropriately discussed in the present and

following sections.

1. Operation code

The basic function of an instruction is determined by its 7-bit
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operation code (. The 128(:27) possible operation codes are grouped
into 8 classes of 16 codes each. The leftmost 3 bits A)é, 605, 604,
interpreted as integer 0, . . ., 7, specify one of the classes 0, 1, . « ., 7;
these classes are denoted as shown in Table I-D2.* The remaining 4 bits
w3 QZ’ wl, wo similarly identify the operation as one of 0, 1, . . ., f
within a class, Thus any operation is specified by two tetrad symbols.
For example, the code 13 specifies instruction 3 in class 1; this instruction
is named Floating Add-Store, and it specifies that a number from memory
be added to the number in the U register, and the result stofed in memory.
Note that the corresponding instruction word actually begins with tetrad

symbols 13, if the tag bit /L= 0; if /L = 1, however, the first two symbols

are 93.

Class Name

Miscellaneous

Floating Point Arithmetic
Numerical Manipulation
Specified Point Arithmetic
Formal Manipulation

Data Transmission

Index Computation

N o AW N = 2

Auxiliary System Operation

Table I-D2. Instruction classes

*Since the initial design of the machine, some instructions have
been added which violate the characterizations of the instruction classes
given in the table., These are mostly complex auxiliary system instruc-
tions which are not directly used in a typical program.
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2. Inflectors
e s L R . .

The two 1-bit inflectors U and ( determine a mode in
which the instruction is to be performed, By way of illustration, in
the Floating Add-Store instruction already mentioned, b’L has the
. . L L
interpretation + (coded K = 0) or - (coded b/ = 1), and has the
interpretation H or C (''hold" or ''clear', coded correspondingly). The
first allows the addition operation to be performed positively or neg-
atively, and thus to be in actuality either an addition or a subtraction.
The second allows the U register to retain its contents after storing
then, or else to be cleared to zero. There are seven standard inflector

interpretations; these are discussed in detail in Section F, Use of Inflectors,

and in connection with the specific instructions to which they are appli-

cable.

3. Designators

The two 14-bit designators OCL and OCR are used as 14-bit
operands for the instruction or as bases for forming, in conjunction
with the corresponding modifier field, modified designators as discussed
below. A l4-bit designator is ordinarily represented by 4 tetrad symbols,
the first of which is necessarily 0, 1, 2, or 3.

One use of modified designators is as the addresses by which
instructions refer to 48-bit words in memory. Registers R, S, TO’

Tl’ P U, V, W, Z also have addresses of this type, and can

7’

be used to supply or store information as if they were memory locations,
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As mentioned earlier, however, most of these are special-purpose
registers: V, W, Z hold constant words; U, R, figure in all arith-
metic and formal operations in a prescribed way; S is used as an
intermediary in transmitting information along the various units of the
computer, and in general need not be addressed by program., Only
TO, Tl, e o e T7 can be used without restriction as if they were

memory locations; however, their use is conventionally restricted to

certain utility programs and engineering tests.

4, Modifiers
< e L R .

The modifiers /@ and,@ are generally used to specify
one or more index registers, which either serve to modify the
associated designator each time the instruction is executed or are
themselves the objects of the instruction, The 5 bits of either mod-
ifier are identified as /94, 53, /;’, , ﬂl’ 60, reading from left to
right, The bit 64 of the modifier specifies an index register group
(0 for group P, 1 for group Q), while 63, 'QZ’ ﬂl’ 60 specify an
arbitrary subset of the four registers in the group, in the obvious
manner: Pk or Q_k is included in the subset i.f'% =1(0< k< 3)
and excluded otherwise. For example, the configuration 10110,
where B , @. and 6 are 1, specifies Q. and Q.

4" T2 1 1 2

In a few instructions a different interpretation is attached to

the modifier 01"; this interpretation is discussed in connection with

the specific instructions to which it applies.
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If a ‘Bp( pair is used to determine a modified designator
at the time of instruction execution, the contents of the index registers
specified by ﬂ are added to X to form 8. The use of the modified
designator 5 depends on the instruction and position (right or left) in
which /A ,oX appears. Typically 5 functions as an address (of a
memory location or register), an operand(to be used in 14-bit index
arithmetic), a parameter (specifying e.g. the number of places in a
shift operation), or a selection pattern for one of the indicator banks.
The first of these is perhaps the most common use; in this case one
may further distinguish the function of a designator as a "fetch address'
(a word is to be transferred to the central processor) or a ''store
address' (a word is to be transferred from the central processor).

Index register modification is discussed more fully in Section G,

Use of Modifiers.,

5. Instruction operation

Insight into the way that the coding discussed actually determines
instruction operation can be gained by careful perusal of the following
examples, which are designed to reveal typical uses of the more impor-
tant of the conventions described.

Example 1, Consider as a particular instance of an instruction
word the string

1394093e0006.

In terms of the instruction format, this is broken down into bit-groups
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as shown in Figure I-D2.

[0] foo10011] (1] [o0101| [00000010010011] (1] {11000[{00000000000110|

T w JL gt < L P o R

Figure I-D2, A typical instruction

The tag bit £ is seen to be 0 indicating that the instruction is
"untagged'. The configuration 0010011 of the operation code signifies
class 1 (Floating Point Arithmetic), instruction number 3 -- i.e. the
Floating Add-Store (FAS) instruction mentioned earlier. With this
operation code the inflector XL has the %= interpretation; JL =1
thus specifies a minus sign -, which effectively converts the floating
point addition into a subtraction. The configuration 00101 of modifier
AL specifies selection of index registers PO and PZ. As the instruc-
tion is carried out, the 14-bit numbers residing in the selected index
registers are added to the base address (sexadecimal) 0093 appearing
as o(L; in this way the location of the subtrahend for the arithmetic
operation is designated.

When the arithmetic operation is complete, the result is to be
stored in the location specified by a(R modified by ,@R. The config-
uration 11000 of the latter dictates selection of index register Q3, the
sequence register, Since o(R represents the integer 6, the location

effectively addressed is Q3+6, six locations beyond the instruction

itself,
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Finally, the inflector b/R has the interpretation HC for this
instruction, and the value JR = 1 signifies the C option. This causes
register U to be cleared (all positions set to 0) following the store
operation,

Example 2. A second example demonstrates a basically different
use of the X and ,Gsections of an instruction word, and also illustrates
the function of two other inflector options., A Jump instruction is one
which affords the possibility of changing the setting of the sequence
register Q3, thereby giving rise to a '""jump'' in the sequence of instruc-
tions performed. The computer vocabulary has a variety of such
instructions, differing in the conditions under which the jump will
be effective., One such instruction is the Jump on Index Negative instruc-
tion, which might appear as

677FFF80001,

which breaks down as shown in Figure I-D3,
[o] (1roo111| [0] [oooo1| (1111111111111 (1] foooo0] (00000000000001|
3 ) gL pL o L R eR o R

Fig. I-D3. Another typical instruction

Here the tag bit /L is again 0, as indeed it usually is, the con-
trary case causing an instruction trap (see Section K, Trapping). The
operation code « specifies instruction 7 of class 6.

. . R R R . . .
The interpretationof y , 8 , & in this case is common to
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all jump instructions. The pair ﬁR, tXR is used to form a modified
designator (here sexadecimal 0001, since no index registers are
specified), and KR is interpreted as the Operand or Address option.
It specifies whether the modified designator SR is itself the jump
destination ( JR = 0) or is instead the address of the location in
memory whose o« R field gives the jump designation ( d}} = 1),
In the example o<R is 1, which is the address of the U register, and
K R = 1, so the jump, if effective, will set the sequence register Q3
to the designator residing in the 14 rightmost bit positions of U,

In conditional jump instructions such as this one the left
inflector b’L gives the option Jump or Proceed. If (L = 0, the
jump is effective if the condition (described subsequently) is met,
and processing proceeds in the normal sequential order if the condition
is not met, If JL = 1, normal processing proceeds when the condition
is met, otherwise the jump is effective, In effect, a b/L bit of 1
would convert Jump on Index Negative to a ''jump on index not neg-
ative''. However, KL = 0, so the jump will take place if the con-
dition is met,

The modifier BL in this case is used to specify a selection
of index registers whose sum is to be regarded as a signed designator.
The olL field is an unmodifiable designator which is used immediately
as a 14-bit operand. This operand is added to each of the index reg-

ces  1: L . .
isters specifiedin ﬁ , and then these index registers are summed.
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If the sum is negative, the condition is met. In the example, index
register PO is specified, and o(L = 3fff, which is -1 as a'signed
designator.

The operation of this second sample instruction can be summarized:
Decrement P0 by 1. If the result is negative, take the next instruction
from the location given by the oX R field of the U register. Otherwise,

increment Q3 by 1 and take the next instruction from the location now

addressed by Q3.

E. Function of Indicators

The rightmost four sense indicators Di, Di, D?, Di have the
special function of recording the character of a word or string of bits.
The character of the string is a four bit quantity with exactly one bit 1,
which depends on the configuratién of leftmost and remaining bits as
shown in Table 1-El., The leftmost bit is singled out here since it often
has a special significance; it represents the sign in a numeric inter-
pretation, the tag of an instruction, and so forth. The notation )ﬁ(s)
stands for the character of the bit string s. Note that there are two
uses for the word '"character', the present one and the eight-bit
characters for input and output discussed in Section B3. It should
always be clear from the context which '"character' is meant.

This definition of the character may be applied to any string

of bits, but particular instructions exist for recording the character
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of a word, an exponent, a coefficient, or a designator in the indicators

S

Di ..o

Several of the trap indicators D’f3, D'fz, o« o o Dg also have
special functions; they record the occurrence of anomalous events,
or tagged instructions; see Section K, Trapping. Because of the
unanticipated nature of most trap conditions, it is recommended

that these indicators not be used for purposes other than those assoc-

iated with trap control,

Di, Di, D?, Dg Leftmost bit |Remaining bits
0 0 0 1 0 all 0

0 0 1 0 0 some 1

0 1 0 0 1 all 0

1 0 0 0 1 some 1

Table I-E1l., Character coding.

The sense and trap indicators can be set collectively by the
Set Sense and Set Trap instructions or individually by the Jump on
Pattern Comparison and Execute on Pattern Comparison instructions.
The latter two also permit setting the indicators from sense switches
on the console and permit conditional jumps to be made on the

contents of selected indicators.
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F. Use of Inflectors

There are seven basic interpretations of inflectors, as shown

in Table I-F1.

Ealue for

'Variable Description 0 =1
+ Plus /Minus + -
RL Right/Left R L
JP Jump/Proceed J P
KT Keys/Tape K T
OA Operand/Address | O A
HC Hold/Clear H C
IE Ignore/Examine |1 E

Table I-F1, Inflector interpretations

The effect of these in various contexts in which they may occur is

summarized as follows:

a) %

Depending upon the instruction in which a '"'#'! inflection bit
occurs, it is given one of three interpretations. It may be inter-
preted arithmetically, to indicate whether or not an operand in
exponent, coefficient form fetched from memory is (-) or is not
(+) to be negated. It may be interpreted formally in one of two ways:

to indicate that the (numeric) complement of an operand is (-) or is
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not (+) to be formed, or to indicate that the reflection (bitwise comple-
ment) of an operand is (-) or is not (+) to be formed. The operand is
normally that specified by the designator accompanying the inflector
(only exception: instructions CNM and CRM in class 4, where the

operand is u),

b) HC (with store address)
The contents (or partial contents) of zegister U are stored,

after which U may (C) or may not (H) be cleared.

c¢) HC (with fetch address)
An operand is fetched, and register U may (C) or may not (H)

be cleared before the operation proceeds.

d) RL
A 14-bit designator is substituted into either the o(R field (R)

L
or the o<  field (L) of some location.

e} OA

The modified designator functions as a 14-bit operand (O), or
else (A) gives the address of the location where the 14-bit operand
resides (in this case the reference is always to the right designator (o(R)

field of the cited location).

fy Jp
(used as a left inflector in conditional jump instructions.)

L
1f X is J: the instruction effects a program jump if a specified
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condition is met, and the program proceeds in normal sequence if the
condition is not met,
L. . :
If X is P: the program proceeds in normal sequence if the
condition is met, and the instruction effects a program jump if the

condition is not met,

g) KT

The instruction invokes either the console typewriter (K) or

the paper tape equipment (T).

h) IE
At some point in the instruction the character of a specified
string of bits (representing word, coefficient or exponent) may (E)
or may not (I) be examined; if examined, its character is recorded
s .S .S

3’ D2' Dl' DO'

in the indicators D
There are a few instructions in which the inflection bits have inter-

pretations other than those listed above. Such exceptional interpre-

tations are described in Part II in the description of the relevant

instruction,

G. Use of Modifiers

The manner in which the modifier bits ,@4, ﬂ3, ﬂz, ﬂl’ 60

specify the selection of one or more index registers in either of the
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groups P or Q has already been mentioned; Table I-G1 gives the

selection coding explicitly.

Bit @4 = 0 (group P) @4 = 1 (group Q)
0 PO Q0
! Pl Q1
2 P2 QZ
3 P_ (reference Q_ (sequence
register) register)
Table I-G1.

Index register selection coding

In most cases the modifier /5 is used in conjunction with its
associated designator ¢X to form a modified designator 5 ; this
is accomplished by adding to ©< the contents of the index registers
specified by /3, the addition being performed r?xodulo 214.

The IQ configuration 00000 is interpreted consistently with
the above selection scheme; i.e., to specify selection of no (the
empty set of ) index registers. The configuration 10000, which
would be equivalent in effect to 00000 if interpreted naturally, is
used for a special purpose to call for indirect designator specification;
1f /6 is 10000, a new pair B', &', is obtained (at execution time)

R
from the &, o(R fields of the location whose address is <, and

this new pair is used to form a modified designator é ', If B is
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10000, a third pair ﬂ“, A ' is obtained, and this process may be
repeated indefinitely. Note that indirect specification is subject to
the following limitations: the initial address cannot be modified in the
conventional way (since @ is used to indicate indirect specification),
and subsequent modified designators are restricted to the right-hand
fields of the words they occupy.

Note further that if an OA inflector option is associated with a
,4,0( pair it takes effect after the modified designator § is formed;
thus one might have one more level of memory reference on top of
that specified by the /B patterns. To distinguish the two kinds of
address specification involved here, it is convenient to think of the
modifier pattern /3 as giving a choice between direct (@ # 10000) and
indirect ( & = 10000) addressing, while the OA option gives a choice
between immediate (O - the operand is contained in the instruction) and
standard (A - the operand is addressed by the instruction) addressing
forms. (Note that the OA option references only O¢R of the addressed

R ando(R.)

word, whereas indirect addressing uses P
When a /& field is not used to modify the associated designator,
but rather to specify a selection of index registers to be used in some

other manner, the modifier 10000 is equivalent to 00000 and specifies

no index registers.,
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H. Number Representation

As stated earlier, the 48-bit word is partitioned into an 8 -bit
exponent part and a 40-bit coefficient part for purposes of numerical
manipulation, The exponent bits are numbered from right to left, and
the coefficient bits from left to right, starting from 0 in either case.

The format is diagrammed in Figure I-Hl.

7....00 000'0.....0...-39

K‘SII 40
e f

Figure I-Hl, Numeric format

0’ .fl, .« o e f39 of bits in the coefficient field

represents a number f in the range -1 <f< + 1-2-39 according to

Any sequence f

the formula
39
f= -f0+ 2 fk' Z_k
k=1
(see Table I-H1). In this scheme nonnegative numbers are represented
in standard binary form (with implicit binary point between fo and fl),
while negative numbers are represented in the corresponding (true)

complement form. The bit fo is called the sign bit of the representation;

fO = 0 when £ > 0 and fo = 1 when f < 0, If fis negative, the sequence of

bits to the right of fo represents (in standard binary form) the positive

number f* satisfying £* + |f| = 1, so that f = -1 + f*, From this it is
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Code Number
10 000000 "l
100...001 '1+2-39
10.....10 142738
11-0.0.11 "'2-39
00. o 0 00 00 0
00.....01 42739
0l.....10 +1-.2'38
0l.....11 +1-2'39

Table I-H1. Coefficient coding

Maniac III

easily seen that, as indicated by the table, every positive number £
which can be represented has a negative -f which can also be repre-

sented, and the only negative number for which the reverse does not

For f > 0, the number d > 0 of leading digits of f is defined
as the number of consecutive bits 0 appearing to the right of the
binary point in the representation of f. Evidently d = 0 when

1/2 <f<1, d = 1 when 1/43 f< 1/2, and so forth, When f =0,
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d = 39 by convention, and for -1< £< 0, dis defined to be the number
of leading digits in the positive number -f, For all negative f # -Z-k,
this is just the number of consecutive bits 1 appearing to the right of
the binary point in the representation of f; if f = -Z-k, d is one less
than this number, If f= -1, d is taken as -1 by convention.

Any sequence € €ps o 0 o s e of bits in the exponent section,

except the sequence 00 . ., . 0, represents an integer e in the range

-127 < e < +127 according to the formula

6
e=(e7-1)-27+ 2 ek-Zk
k=0

(see Table I-H2). This is an "excess-128'" scheme, in which each
component e is represented by the sequence of bits which would rep-
resent e + 128 in standard binary form. The bit e, is called the

exponent sign; e_ = 1 signifies e > 0, while e_ = 0 signifies e < 0.

7 7

For each possible positive exponent e there is a corresponding neg-
ative -e, and vice versa, without exception. The sequence 00, . . O,
however, is not assigned a numerical value; it is denoted eZand
called the exponent for ''"absolute zero,'' as explained below.
If e # e, the pair (e, f) is taken to represent a number x,
e

x=fe+«2 .

If fl = fo, the same number x is obtained by shifting the co-

efficient pattern one place left (i.e., replacing fk with fk+1 for

- with 0), and subtracting 1 from the

k=0,1, . .., 38, andf39
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exponent, since

-1
20-2° T =f.2%=x,

Maniac III

and the left shift effectively doubles the coefficient, If f # 0, this

process can be repeated until fl # fo, in which case the number x

is said to be in normalized form. In general, d=0 for a normalized

Code Number
000..01 '127
00...10 "126
0l...11 -1
10...00 0
10,..01 +1
10100111 +39
11...10 +126
11...11 +127

Table I-H2. Exponent coding

. -k )
form; the only exception occurs when x = -2 for some k> 0, in

which case f = -1 in the normalized form and d = -1, Forf=0,

the normalized form itself is undefined, since the number x = 0 is
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represented by f = 0 with any numerical. exponent e whatever; for
purposes of standardization, however, e = -127, £ = 0 is adopted
as the "normalized'' representation of zero. The number x = 0 is

also denoted by e = e,, and any coefficient f whatever; this version

Z

of 0 is termed absolute zero, and is subject to different arithmaetic

rules than the versions with coefficient 0 and e # e,, any of which

is termed relative zero.

The difference between the two types of zero will become
clearer in the treatment of arithmetic manipulation on numbers in
exponent-coefficient form which follows.

The (sexadecimal) a7 exponent, i.e. (decimal) 39, effectively
places the binary point at the right end of the coefficient, This ex-
ponent is therefore often possessed by numbers being manipulated
as integers, The V register mentioned in Section A as containing

-1 has this exponent; its contents, in sexadecimal, is aT7ffffffffff,

I. Types of Arithmetic

The foregoing discussion shows that number representation
in the coefficient-exponent system,is, in general, not unique, It
has been customary to take the normalized representation as standard,
with special rules to cover the case of zero coefficient. Thus '"'floating
point'' arithmetic units are conventionally designed to handle operands
in normalized form, and to generate normalized results.’ In Maniac III,

by contrast, the arithmetic unit handles unnormalized as well as
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normalizéd operands in a meaningful way, and generates results whose
form depends not only on the form of the operands, but on which of
several types of arithmetic is called for: Floating Point, Specified
Point, or Normalized. Floating Point results are adjusted according
to a "'significant digit" criterion, while the results of Normalized oper-
ations are adjusted to normalized form, regardless of whether the
operands were normalized or not. Specified Point operations generate
results whose form depends on the operand exponents. It should be
noted that Maniac III has no ''fixed Point'" arithmetic which operates
on numbers in pure coefficient form, Hence the usual distinction
between ''fixed point" and "floating point'' numbers need not be made
in numerical work, and no formal conversion is necessary to employ
the result of one type of arithmetic operation as operand for another.

The computer operations which are relevant to the discussion of
this section are: Add, Multiply, Divide (Floating Point); Add, Multiply,
Divide (Specified Point); and Normalized Add. All Add, Multiply and
Divide operations can be performed with a sign (£) option for the second
operand; hence subtraction is included as a case of addition,

Normally, two words are used to express the complete result
of an arithmetic or numerical operation in the computer, These are
developed in the U and R registers. In some operations the result
u, r is to be interpreted as u + r (with r to a low order part, small

in magnitude compared to u), in others as u with remainder r. In
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any case u is the approximate result generally used in further compu-
tation,

For each of the operations under consideration there is defined
a "true" (arithmetically exact) result, expressible as a single number
in the case of Add and Multiply, or as two numbers one of which is a
remainder, in the case of Divide. Furthermore, these numbers are
all representable with a finite number of binary digits, and their
adjustment (binary point positioning as expressedby the exponent) is
uniquely determined. Sometimes, however, this "'true" result is not
produced by the computer, for reasons as follow:

(a) The desired exponent is out of the representable range

-127< e< + 127;

(b) The desired coefficient is out of the representable range

2-39;

Sl<f<c+ 1-

(c) The coefficient is truncated so that some of its rightmost
digits are lost.

The three effects are, of course, not unrelated; in fact, a case of
(a) where e < -127, if it arises during the course of an operation,
is generally converted to a case of (c) by successively halving the
coefficient (by right-shifting, so that low order digits are lost), and
augmenting the exponent until it reaches the value -127.

During the running of a program, if a final result is generated

in which either (a) or (b) obtains, a trap condition is initiated, unless
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specifically overridden by instructions available for the purpose; see
Section K, Trapping. In case of (c), however, no special computer
action is invoked, since the numerical error committed, unlike that
of the other two cases, is small, In all three situations, moreover,
the result actually developed by the computer can be interpreted in
terms of the '"true' one; in (a), all digits of the exponent except the
sign are correct, in (b) and (c) the coefficient sign is the actual one,
and all other digits are thé)se which would appear in the corresponding
part of the coefficient if it were to be developed in full,

A trap condition:also occurs in special cases where no "true''
result is defined (e,g. because of zero divisor). In some such sit-
uations a partial or related result is generated, depending on the
nature of the anomaly.

In an operation whose result is defined as u + r, the nonsign

coefficient positions of R generally contain the low-order continuation

of the coefficient residing in U; that is, the coefficient of the result is

. F .F F F F
represented by the 69-bit sequence UpgsUys oo e Uiy Tyo oo T 39
E
The u + r interpretation is consistent with this if rE =u - 39 and
rg: 0. This rule for the exponent is the one actually used, unless

rF < -127; in this case, r is adjusted to exponent rE = -127 as explained

0
F
earlier. The u + r interpretation then still holds (although r may have

lost some nonzero digits at the right), but the 79-bit interpretation

must be modified.
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The 79-bit interpretation is also affected when rF = 1, which

0

occurs frequently because of the method of rounding employed in the

Maniac III system; see Section J, Rounding Rules.

Because numbers are not required to be normalized, relative
zero results may be expected to occur more often in this arithmetic
system. Cases where one or both of u and r are relative zero as the
result of the operation arise naturally, and are subjeet to no conven-
tions additional to those described above. Absolute zero (exponent eZ)
can in general occur as a result only if one or possibly both operands
are abeolute zero (specifically, both operands in addition, either
operand in multiplication, and one operand (dividend) in. division). In
these cases, both uE and rE are set to eZ, and both uF and rF to O,

One further property of absolute zero deserves mention, In
the natural ordering of computer numbers, absolute zero is taken as
greater than any number with negative sign and less than any number
with positive sign; the latter category includes all relative zeros. The
effect of this convention is only apparent in the result of the (quasi-
arithmetic) instruction Jump on Arithmetic Comparison, in which a
jump condition is considered to be met if and only if u > x, where x is
a numbér in memory. If u is absolute zero while x is relative zero,
the condition is considered not to be met, since by the above definition

u < x under these circumstances,
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The operations Add, Multiply, and Divide each require two
operands; one of these is taken from register U, the other from memory.
The operand from memory is first fetched to register S. The procedure
then implemented can be symbolized by

u, r <~ u (xs)
where {4 is either +, ¢, or /, and the % alternative is specified (by
an inflector) in the instruction calling for the operation,

The operations designated Floating Point are defined as follows:
Let (el’fl) and (ez,, fz) be operands with d1 and d2 leading digits, resp-
ectively; then a result (e.f) with d leading digits is developed according
to the rule e = max (el, ez) for Add, and d = max (dl’ dz) for Multiply
and Divide. In each case the rule given is enough to uniquely determine
the form of the result; for Add, the final d is generally unpredictable

(and indeed, it may be that d > d1 and d > d_ by considerable amounts,

2
if the operands are nearly equal and the operation is in effect a subtrac-
tion). For a more detailed description of the results of these operations,
including the remainder of a division, see the relevant instructions in
Part II,

If the value of each operand is regarded as uncertain in the 39th
place, then the transmitted uncertainty in the result, formed according
to these rules, will also be approximately in the 39th place; hence, the
informal characterization'''significant-digit arithmetic,"

Exception is made to the rules as given when following them would

give a coefficient out of range, or an exponent less than -127; to remedy
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either of these conditions requires a shifting of coefficient which is in
the direction of decreasing apparent significance. Adjustment for
exponent exceeding +127, however, requires a shift in the opposite
direction; even if this would not take the coefficient out of range, it
would increase its apparent significance, and so the step is not under-
taken. The case therefore causes a trap condition,

Relative zero operands in multiplication and division are
handled in a way consistent with the interpretation d = 39; the result
is always zero with an appropriate exponent (even in the case of relative
zero divisor, which is a trap condition). Absolute zero operands,
however, act like the true zero of the number system, obeying the

rules

0/x = 0; x/0 undefined (trap, no operation).
When absolute zero is produced as a result, it is always with coefficient
0, regardless of any nonzero coefficients which may be attached to the
absolute zero operands involved.

The multiplication and division operations described above have
the property that if they are performed on normalized operands, the
results are generally produced in normalized form also, unless the
normalized result would have exponent less than -127. (A further

exception, of generally trivial consequence, arises for a result which



~-42- Maniac III

is exactly the negative of a power of 2, since the d = 0 form is not
normalized in this case,) Hence only one supplementary operation,
Normalized Add, is needed to permit calculation to be carried out
essentially in standard normalized fashion. The major qualification
""esgentially' points up the exceptions just mentioned; in particular,
when results computed in this way become small or zero, they are
systematically '"denormalized'' so that the condition e > -127 remains
satisfied, Normalized Add givés a normalized, rounded result regard-
less of the original adjustment of the operands, whenever this is
possible keeping the exponent within range. If the normalized result
would have an exponent e > +127, the coefficient is still in normalized
form, and all digits of the exponent except the sign are correct, but

as in the case of Floating Point Add a trap condifion occurs. If the
normalized result would have an exponent e < -127, the result is:pre-
sented at the exponent -127 in unnormalized form, as in the case of
Fleating Point Multiply and Divide. As a special case of this, a zero
result of a Normalized Add operation always appears as a relative zero
with e = -127,

The third type of arithmetic to be discussed is Specific Point,
which supplants the conventional ''fixéd-point' operation, Here Add,
Multiply and Divide are all three subject to the same type of rule: the
result is adjusted so that its exponent is equal to the exponent of the

first operand (that originally residing in U). The only exceptions
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occur when absolute zero operands are involved, in which case the
behavior is the same as for the Floating Point operations.

Following the Specified Point rules obviously never leads to
out-of-range exponents, but the required adjustment may cause the
coefficient to exceed its permitted magnitude, When this happens the
sign and remaining bits which do appear are correct (i.e. are part
of the true result), but since high order digits have been lost a trap

condition obtains,

J. Rounding Rules

For Add or Multiply, rounding is defined as follows: Consider

a coefficient sequence fO’ fl, e o o fn of arbitrary length n, and

suppose it is desired to replace this with a shorter sequence whose

last bit is in place p. If (i) fp = 1 or (ii) fp+1 Ty e . = fn = 0, the

rounded sequence is taken as fO’ fl, I 4 1. Thus the last

p-1’
bit of the rounded sequence is always 1, except in the case where it

originally is 0 and the truncation involves no approximation (i.e. only

bits 0 are dropped).* It should be noted that under these rules the

*This rounding scheme has twice the spread (''variance') of the
more conventional one where u is altered by addition of 1 in the pth
place if the part dropped exceeds 1 in the (p + l)st place; however, the
sceme described here also has some advantages, both theoretical
and practical, over the traditional one. First, it is symmetric
("unbiased'); the mean of the numbers which round to a particular
value uF is u¥. Second, it is nonpropagative; only the rightmost
digit of the number uF is altered in rounding, and this both simplifies
the mechanization of the computer operations and permits their ex-
tension to multiprecision work.
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operations of rounding and negation commute, i.e., the negative of a
rounded value is the rounded value of the corresponding negative.

In practice, a rounded result u is computed from a full
result (u + r) by " forcing" ufg to 1 if any digits 1 have been ''shifted
off'' into the low-order region. If ufg = 0, originally, this amounts

E
- E E
to adding 2" 39 tou; if r = u -39, this incrementation can be

E
compensated for by setting rg‘ to 1, thereby subracting Zu -39

from
r and leaving the u + r interpretation valid. This step is always taken
before any necessary adjustment of r for r < -127; thus it can be said
that the (u + r) interpretation always holds, up to truncation at the
right end of the representation of r, given only that the exponent and
coefficient of u have themselves stayed within range.

For Divide, the quotient u is effectively rounded by the same

. F . . . .

rule, by '"forcing" Usg to 1 if the remainder is nonzero. The remain-
der r is then compensated so that the relation dividend = quotient
X divisor + remainder is exactly satisfied, except in extreme cases

E . .
such as when r < -127 necessitates adjustment of r so that low-order

bits are lost,
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