INTERIM PROGRAMMERS' MANUAL

FOR
MANIAC III

THE UNIVERSITY OF CHICAGO

THE INSTITUTE FOR COMPUTER RESEARCH

INTERIM PROGRAMMERS' MANUAL
FOR
MANIAC III

prepared by Mary Lu Lind
with the assistance of Mr, Robert Ashenhurst,

Mr. David Jacobsohn, and Mr. Herbert Kanner.

This manuscript is to function as a programmers' manual
until a more complete document on Maniac 111 is available.

May 26, 1961

INTRODUCTION

The Introduction contains information on the register structure
of Maniac III, on the ground rules of arithmetic, and on the

trapping procedures. Standard nomenclature and symbolism

used in Maniac III literature are presented.

EXTERNAL AND INTERNAL STATES

{

Maniac III is at all times in one of two states: external

state or internal state. When in external state, the computer is

under control of either the tape reader—in which case we say that

it is in external state - tape—or the console typewriter—in which

case we say that it is in external state - keyboard. When the com-

puter is in external state, symbols in the range O through f are
read in the same manner as is called for by Instruction 70 (RET).
Ten other symbols exert control functions as shown in the table in

Appendix II. All other symbols are ignored.

When in internal state, the computer is either idling or is
running under the control of a stored program. We thus say it is

in internal state and idling or internal state and running.

Switching between external and internal states is accomplished
by the execution of appropriate instructions or by the use of equivalent
console buttons. Instruction 74(SWE) leaves the computerkin external
state-tape or in external state-keyboard. The console "tape' and
""keyboard' buttons put the computer in external state-tape and external

state-keyboard respectively. Instruction 00 (STP) or the console "stop"
button always leaves the computer in internal state and idling. Instruction
01 (RUN) or the console "run' button leaves the computer in internal

state and running.

There is one important difference between the console buttons
and the equivalent instructions: an interlock disables all buttons but the

"stop" button except when the computer is in internal state and idling.

REGISTER STRUCTURE, 48-BIT REGISTERS

Maniac III has three 48-bit arithmetic registers: U, R, and S.

("U" stands for "universal' and "R" for '""residual'.) The results of

arithmetic and logical operations usually appear in U or in U and R.
S is a service register used to hold operands fetched from memory,

and for other purposes not of direct interest to the programmer.

Maniac III has an 8, 192 word core memory and has eight
transistor memory registers, T7, T6’ c e TO. The transistor
memory registers have a shorter access time than the core memory

registers. The computer has three core memory registers known as

trap locations. (See trapping below.)

Maniac III has one register, W, that is permanently wired to
contain 48 bits 1 and has one register, Z, that is permanently wired
to contain 48 bits 0. Although the contents of W or Z may be fetched,
an attempt to store into either of these registers is ignored by the

computer.

All of the registers mentioned thus far are addressable. The

address assignments in sexadecimal are given in Appendix IIIL.

When we wish to discuss sections of a 48-bit register, we
number the bit positions in the register from 0 through 47 from right

to left and subscript the register name. Single bit positions of U are:

U U .., U
47 46’ 0
Sections of U are identified by writing:
U47. .. 42,
U45. .. 0, etc.
imi T T
Similarly, we may speak of 0,47 °F of 0,47, .. 13etc.

Numbers are represented in Maniac III with an 8-bit exponent
part and a 40-bit fractional part. For convenience in discussing
arithmetic procedures, an additional notation is available. U is

F
the leftmost 8-bit section of U, U 1is the rightmost 40-bit section of

-3-

E
U. Bit positions in U are (from left to right):

E E
u_,...,U0
7’ 0

F
and in U™ are (from left to right):

F F
N U B
UO’ '739

sle
"~

E F
Similarly, we may speak of TO or of TO, 39’ etc.

Each of the arithmetic registers U, R, and S possesses an

F F F
-additional bit to those mentioned above, UX’ RX, and SX.

F F F)) F _F F
UX’ RX’ and SX are immediately to the left of UO’ RO and SO’ re-
spectively. These bits are used to extend the numerical range of the
registers in case of overflow and for the purpose of executing multi-

precision arithmetic. They cannot be stored in memory.

REGISTER STRUCTURE: 14-BIT REGISTERS

0

Two of these registers are used for special purposes: B7, called the

Maniac III has eight 14-bit index registers, B7, B6, ..., B

sequence register, normally contains the address of the next instruction

to be performed; B3, called the reference register, normally contains

the address which was in B7 before the last effective jump instruction

was performed.

Maniac III has two banks of 14 lights or "indicators' on the con-

S T
sole, D” and D, called respectively the sense indicators and the trap

indicators. Any of the 28 indicators may be turned on (set to 1) or turned
off (set to 0), or may be interrogated by the program through the use of

. . . S T . .
appropriate instructions. D~ and D~ may each be stored. (See instructions

Lower case letters are used to represent the contents of a register.
u is the contents of U.

u33 0 is a group of binary values held in U335,

ujq is a binary digit held in Ui

Similarly we speak of ug and uI73, etc.

6b, b6¢c, 6d, 6e.)

The sense indicators are entirely free to be used by the program,.
For example, each indicator may be used to represent a Boolean variable.

The rightmost four sense indicators, called character indicators, are also

used to store the results of test instructions. (See instructions, 4c, 4d,
4e, 4f). A table showing the manner of representing character test results

is given in Appendix IV,

- T . s
The trap indicators, D, are turned on by various conditions
in the computer (see below on trapping). Thus it is recommended
programming procedure not to use these indicators for purposes

other than those associated with trapping control.

The Maniac III console has one bank of 14 sense switches, each

of which has three positions: 0,1, and "ignore'. Their purpose is to
permit manual intervention while the computer is in internal state and

running. (See instructions 6b and 6c.)

The bit positions in 14-bit registers are numbered from right

to left, O through 13. We speak of:

B ..., B <K<7;
K, 13’ K, 0 where 0<K<7

DS,...,DS;
13 0
T T

D D .
137777770

The character indicators are:
S S S S
D D D D™,
3 2 1’ and 0

ARITHMETIC: NUMBER REPRESENTATION

All arithmetic is performed on 48-bit operands with 8-bit
exponents and 40-bit fractions. (The terms "fraction' and "coefficient"

are used synonymously). Exponents are represented excess 128. The

acceptable range of exponents is:
- 128<E<+ 127,

which in machine representation is 0<E<+255. Exponent - 128, called
e, is used for a special purpose, to represent absolute zero. (Note that
a zero fraction might have an exponent anywhere in the range - 127<E<
+127. Such a number is called a '""relative zero'".) Adding to a number
with exponent ey subtracting, multiplying, and dividing, have the same

result as adding a number to 0, etc. Thus if N is any number, and Z is

a number with exponent e, and Z0 is that number whose exponent is e,

and fraction is zero:

N+xZ =N
Z +N = =N
ZxN = 2/N=2_
Z+Z = Z

0

(Division by Z, as well as by a relative zero, causes trapping.) In no
other ways than those mentioned here can Z be created by an arith-

metic operation (except by exponent overflow or underflow which causes

trapping).

The leftmost fraction bit functions as a sign bit and is con-
sidered to be followed by a point. Negative fractions are represented
as the 2- complements of their negations. Thus -0.0110...0 is
represented as the 2- complement of +0.0110...0 or as 1.1010...0.
Thus all positive fractions have a leftmost (sign) bit of 0 and all negative
fractions have a leftmost (sign) bit of 1 and the acceptable range of
fractions is:

-1<F<1.
Due to the 2- complement representation of negative numbers, a leading
1 in a negative number has the same function as a leading 0 in a positive

number. ¥ When a fraction is shifted to the right (to preserve significance

* Exception: in a fraction of —Z_K the rightmost leading 1 is a significant bit.

-6-

in floating point arithmetic, or to preserve the designated exponent in
specified point arithmetic, or in instructions 20 and 21 which perform
arithmetic shifts) leading 0's are introduced in a positive number, and

leading 1's are introduced in a negative number.

ARITHMETIC: MODES

Maniac III can perform four modes of arithmetic: floating point,

specified point, normalized, and basic.

Floating Point arithmetic is effected by Class 1 instructions. In
the execution of a floating point arithmetic operation, the number of sig-
nificant bits in the result is calculated as a function of the numbers
of significant bits in the operands. The result of the operation is
represented with the correct number of significant bits in the fractional
part preceded by leading zeros —if the result is positive—or by leading
ones —if the result is negative. In the case of addition and subtraction,
simply omitting the normalization step that ordinarily follows these
floating point operations leads to a representation of the result with
the correct number of significant bits. (The only adjustment of the
coefficient that ever occurs following a floating point addition or sub-
traction consists in a shift of one to the right to prevent coefficient over-
flow. In the case of multiplication and division, the resultis represented
with the same number of leading zeros (if positive, or ones, if negative)

as that of the two operands possessing the greater number.

Specified point arithmetic is effected by Class 3 instructions.
The specified point mode is a generalization of the more conventional
fixed point mode. Before a specified point operation is carried out, one
operand is in U and one operand is fetched from memory. The result of
the operation is represented with the same exponent as the initial operand
in U, Control of the position of the point, with respect to the fraction bits,

is effected by contral of the exponent.

Normalized arithmetic, of the same nature as the conventional
floating point arithmetic, is effected in Maniac III by the use of one
instruction, Instruction 23 (NOA)., This instruction performs addition and
subtraction, giving a normalized result. Special instructions for multi-
plication and division are not needed, since those in Class 1 always give a
normalized result from normalized operands (ex cept when normalization is

impossible due to exponent underflow).

Basic, or multiprecision, arithmetic is effected by Instructions
26,27,28. These instructions enable one to do arithmetic with operands

which have fractional parts longer than 40 bits.

ARITHMETIC: ROUNDING

Rounding of the results of addition, subtraction and multi-

plication is performed as follows:

F
if Uzg = 0 and if any 1's were shifted from U into R

F F
during the operation, then u and r 0 are both set to 1.

39

The rounding procedure for division is described in the section of this

manual on Class 1, floating point, instructions.

An unround, which is performed at the beginning of certain

instructions (e.g., 20, 21), is performed as follows:

F F
if ro =1, ro is set to 0 and 1 is subtracted

from the rightmost bit position of U.
TRAPPING

Maniac IIl has three registers known as trap locations, and a

T
bank of 14 indicators, D, called trap indicators. Corresponding to

each trap indicator is a trap toggle. When the computer "traps' —
interrupts the normal sequence of computation because an anomolous

condition has occurred—a trap toggle is set to 1, a trap indicator is set:

to 1, and usually an instruction in a trap location is performed. The

conditions which cause the computer to trap are called trap conditions.

Each trap is categorized as an:

arithmetic trap,

instruction trap, or

real-time trap

depending upon the nature of the condition causing the trap. Each of the

three trap locations corresponds to one of these categories of traps.

An arithmetic trap is further categorized as a:

coefficient trap,

exponent trap,

parameter trap,

operation trap, or

segment trap.

There is no further categorization of instruction traps, and that

of real-time traps has not yet been completed. A trap indicator
(and the corresponding trap toggle) is assigned to each kind of
arithmetic trap condition, to the instruction trap condition, and to
each kind of real-time trap condition. A diagram of the assignments

of trap indicators to trap conditions is given in Appendix V.

Arithmetic Trap Procedure: More than one arithmetic trap

condition may occur during the performance of an instruction. When

a trap condition arises, the appropriate toggle is set to 1. Whether or
not a given condition causes an immediate interrupt is discussed below
under the section on arithmetic trap conditions. When the interrupt
occurs, all trap indicators corresponding to trap toggles containing 1
are set to 1. The next instruction to be performed is examined, and the

remaining procedure depends upon its nature,

3

-9-

e

Sk
If it is not a Disable instruction, it is discarded, the instruction

3k

in the arithmetic trap location is executed, all arithmetic trap toggles
are set to 0, and the arithmetic trap location is cleared to 0 (a Stop

instruction).

If the next instruction to be performed is a Disable instruction,
the appropriate trap toggle is set to 0. (The "appropriate' trap toggle is
determined by the Disable instruction.) If any arithﬂetic trap toggles are
still on, the above procedure is repeated—the next instruction to be per-
formed is examined to determine whether or not it is a Disable instruction,

etc.

It should be noted that if a Disable instruction is encountered
when no arithmetic trap toggle is on, the instruction is ignored. Further
note that a Disable instruction resets a trap toggle but not the associated
trap indicator. It is thus possible to continue the program in sequence

retaining the information that a trap condition has occurred.

Instruction Trap Procedure: The instruction trap toggle is set

by the fetching of a tagged instruction (before it is performed). The
instruction trap indicator is set to 1 also. The instruction in the instruc-
tion trap location is executed, the toggle is reset to 0, and the instruc-

tion trap location is cleared to 0 (a Stop instruction).

It is assumed that the program will return to normal sequence after a
correction routine initiated by the instruction in the trap location has
been performed. At such a time the ''discarded" instruction is refetched
and computing continues normally.

A distinction is made between executing an instruction and jumping to
the instruction. When the instruction is executed, the sequence register
is not changed. See the discussion of Class 6 instructions, especially
6b and 6c.

Under certain circumstances the tag on an instruction is ignored

and trapping does not occur (neither the toggle nor the indicator is set

to 1). They are as follows:

el
wx

Real-time Trap Procedure:

hC

the tagged instruction is a Disable

instruction;

the instruction is about to be
discarded in favor of execution
of the contents of the arithmetic

trap location;

the instruction is in a trap location;

the instruction is about to be performed
as a direct consequence of the per-
formance of an Execute instruction

(instruction 6c¢).

Real-time traps are associated with

the operation of independently sequenced units, such as one or more sub-

computers for input-output control, a real-time clock, and a console

interrupt button. These have not been definitely assigned at this time.

When a real-time trap condition occurs, the appropriate trap toggle

is set to 1. The interruption of computing does not occur until a fetch cycle

on which the following conditions are satisfied:

no arithmetic trap toggle is on;

the fetched instruction is not tagged;

the fetched instruction is not a

Disable instruction;

-11-

the fetched instruction is not to
be performed as the result of the
performance of an Execute instruc-

tion (6c);

the fetched instruction is not to be

performed as the result of a trap;

the fetched instruction is not a Class

6 (index) instruction.

When these conditions are satisfied, the fetched instruction is discarded.
All trap indicators corresponding to real-time trap toggles which are set
to 1, are set to 1, and the toggles are reset to 0. The instruction in the
real-time trap location is performed and the trap location is set to 0 (a

Stop instruction).

Correction of conditions causing trapping: Instruction 6f is

designed primarily for use in the trap locations. It facilitates a jump to
an appropriate subroutine to correct the trapping condition, and at the same
time records the location thus far reached in the main program. The

correction subroutine may be designed to return to the location thus recorded.

Arithmetic Trap Conditions: The conditions causing instruction

and real-time traps have been mentioned immediately above. The conditions

causing arithmetic traps are discussed here.

A coefficient overflow in u causes the coefficient overflow toggle to
be set. (A coefficient overflows when a fraction bit is shifted into the
sign bit position, i.e. bits have been lost at the left.) Before the trap occurs
the performance of the current instruction is completed, and the sign bit

is reset to match Uy

-12-

The exponent trap toggle is set when the exponent in U
tries to become greater than +127 or less than -127. (The exponent

e., cannot legitimately be created by an arithmetic operation.) Before

Z
the trap occurs the performance of the current instruction is completed.

Due to the excess 128 representation of exponents, an exponent
overflow or underflow leaves an unexpected (in sign and magnitude)
result in the exponent portion of the register. When an exponent tries
to become greater than +127, 1 adds to the rightmost bit of the exponent
(mod 256) and the exponent becomes all zeros representing e, . When
an exponent tries to become less than -127, it first becomes e, and then

becomes +127, +126, etc.

On all shift instructions the shift parameter, n, may be either
positive or negative, -128<n<+127. (Unless otherwise specified for a
particular instruction, if n is positive, the shift is a right shift, and if

n is negative, the shift is a left shift.)

14 bit designators are used for shift parameters. When treated
arithmetically, designators are considered (mod 214) and the range of values
a designator may assume is thus —213f_c(_<_213 -1. If a designator is to
function as a shift parameter in the performance of an instruction and is
not within the specified numerical range, the parameter trap toggle is
set, no fetches or shifts are performed, and a parameter trap occurs

immediately.

It should be noted that within the range of a shift parameter, the
leftmost seven bits of a designator are identical and indicate the sign of

the parameter, for example:

0000000 0000000 = O
0000000 1111111 = +127
1111111 1111111 = -1

1111111 0000000 = -128

INSTRUCTION FORMAT

This section presents the instruction format and the uses of
the various fields in the format. Further standard notations

to be used with reference to Maniac 1Il are presented.

-13-

The operation trap toggle is set, when an operation cannot be
properly carried out due to some anomolous condition (e. g., a divisor
of value 0, a negative square root operand, etc.). The point at which the
trap occurs depends upon the instruction and is indicated in the descrip-

tions of instructions which may cause the operation trap toggle to be set.

The segment trap toggle is set when an instruction which is not
a basic arithmetic instruction (26, 27, 28) calls for the use of u as an
operand when Uy # uy Before trapping occurs, u, is set to match Uy

and the instruction is carried out.

The operation trap toggle is set also if Ty # N at the time of

the store in the basic instruction, BAD(28). r0 is changed to match Ty

the store is effected, and then trapping occurs.

-14-

INSTRUCTION FORMAT

A Maniac III instruction consists of 8 fields, structured as

follows:
O 73100 [14) [a] 5] 14 |
8 %) KL ﬂL O(L KR PR d\R
J" JF
& Tag (1 bit)
GO Operation Code (7 bits)
L
8~ Left Inflector (1 bit)
B" Left Modifier (5 bits)
|
& Left Designator (14 bits)
R
¥ Right Inflector (1 bit)
R
8" Right Modifier (5 bits)
Q ,
X Right Designator (14 bits)
TAG

The tag bit may be either 0 or 1. If 0 it has no function. If 1

an instruction trap is initiated when the instruction is fetched.

OPERATION CODE

The left 3 bits of an operation code give the class of the
instruction and the right 4 bits give the number of the instruction
within the class. In the next section, each operation code is pre-
sented with a description of the function of an instruction in which

the code is used.

-15-

INFLECTORS

An inflection bit can have one of seven interpretations, as

follows:

+ or - Plus or Minus

Hor C Hold or Clear

RorlL Right or Left

Oor A Operand or Address

JorP Jump or Proceed

Kor T Keyboard or Tape

IorE Ignore or Examine

The meaning of an inflection bit in its various contexts are as

follows:

Ij | | I Depending upon the instruction in
+or - Fetch -Address

which a """ inflection bit occurs, it
is given one of three interpretations.
It may be interpreted arithmetically:
a number or its negation is fetched
from memory. It may be inter-
preted formally in one of two ways:

a word or its 48 bit 2-complement is
fetched from memory; the operand or
its 48 bit reflection is fetched from

sle
-~

memory.

Henceforth, "+'" is written in front of a symbol, e. g., #m, indicating the
choice of using m, or the negation of m. When "+" is written in front

of a symbol and encircled, e. g.@m, it indicates the choice of using
m, or its 48 bit 2's complement., When '£'"" is written over, instead of in
front of a symbol, e.g., r%, it indicates the choice of using the designated
quantity or the reflection of the designated quantity.

-16-

[] | | | The contents of register U are storesd in

H or C Store Address memory, after which U may (C) or may

not (H) be cleared.

| { l | An operand is fetched, and register U ov.

H or C Fetch Address in some cases, register R may (C) or mavy

not (H) be cleared before the operation proceads,

|] | | | A 14-bit number (14-bit numbers are knowr

R or L Substitute Address as '"designators'') is substituted into eithe:
the right or left designator field of some

memory location.

[] | | | The modified designator functions as a 14-hit

O or A Designator operand, or else gives the address ot the loca-

tion where, in the a(R field, the 14-bit operand

resides.
. : X . g L ,
‘ } [(as left inflector in If is J: the instruction effects a jump
J or P some instructions in if a specified condition is met, and the
class 6) program proceeds in normal sequence if

the condition is not met.

L. .
1f §~is P: the program proceeds in normal se-
quence if the condition is met, and the inatic.

tion effects a jump if the condition is not ot

L.,_,] (as right inflector in some The instruction invokes either the console
K orT instructions in class 7) typewriter or the paper tape equipment.
L____[{(as left inflector) At some point in the instruction the charaiter
I or E of a specific set of bits may (E) or may nnot (i}
. . . S 5 5 e
be examined and the indicators D D). D’;‘ L‘f“
f& L !

set accordingly.

-17-

DESIGNATOR MODIFICATION

A
,8 field consists of five bits ﬂ4, ﬁ 3 GZ’ Bl’ BO’
which serve to specify a subset of the set of four index registers
B,B, B, B_(i = B

o B By B (if ﬂ‘l 0) or a subset of the set " B5, B6’ B7

(ifﬂ = 1). This is done in the obvious way. B is included
4 k+4ﬁ

4
in the set if ﬂk = 1(0<k<3), and excluded otherwise.

A ﬁ , & pair determines a modified designator, J . The
modified designator is computed by adding (modulo 214) the contents
of the index registers specified in ﬁ to &K (the instruction designator).
The function of the modified designator, o/ , depends upon the instruction

‘
in which ,8 and K appear, and upon whether /3 and K are ﬂ , KLor @'P, LR

in that instruction.

The /3 configuration 00000 is interpreted consistently with
the above, i.e., to indicate that no index registers are specified. The
configuration 10000 is used for a special purpose, to signify indirect
addressing. If ﬁ is 10000, a new pair ﬁ', 0<l is obtained from the
ﬂk , 0<Rfie1d of the location whose address is ¢¢, and this new pair is
used to determine a modified designator. If ﬂ' is 10000 a third pair

" "
ﬂ , X is obtained, and the process can be repeated indefinitely.

The modified designator, J, so defined is still subject to the
O or A option in the inflection field in instructions which involve 14 bit
operands. That is, in such instructions the ﬂ , &K pair determines a
designator which then is treated as an operand or an address depending

upon the state of 7.
NOTATION

As was mentioned in the Introduction, capital letters are used

as names of specific registers, and the corresponding lower

INSTRUCTIONS

This section contains a detailed description of the function of those
Maniac III instructions planned by this time. Most of the instruc-
tions described are available for use now; those which are not avail-

able are listed in Appendix VL.

The instructions are discussed in the order of their Class and number
within their Class, the classes being numbered and designated as

follows:

o

Miscellaneous

Floating Point Arithmetic
Numerical Manipulation
Specified Point Arithmetic
Formal Manipulation

Data Transmission

Index Computation

N4 o0 R W N

Auxiliary System Operation

-18-

case letters designate the contents of the registers. For example,

U is a register and u is the contents of that register. We further
speak of Mﬂ and M as the memory locations whose addresses are
given respectively by d and c{ in a particular instruction under dis-
cussion, and my and m_ as the contents of Mﬂ, and Mr respectively.
The additional convention is used: if x is an address, then <x7 is the

contents of the location with that address. Thus, if ch is the address

ofMt,<c{L>

Designators — 14-bit numbers—are represented by "j" (jump
addresses), "n" (shift parameters), "p" (patterns), "h" (increments),

and "i'" (operands).

The notation '"i or/‘ (i)', "n or /(n)", etc. meaning i or the
address of i, etc., is used in discussions of instructions which have an

O or A option in the inflection field.

The notation "/J (B)'" meaning selection of index registers, is

used in the descriptions of Class 6 (index) instructions.

"X ()" is used to indicate that the character of the quantity de-

signated by the letter in parenthesis is to be put in the character in-

dicators.

-19-

CLASS O: MISCELLANEOUS

The performance of an instruction in this Class

does not disturb u or r.

The operation code is the only relevant part of
the format in all instructions in this Class; all other

fields are ignored by the machine at run time.

Mnemonic Name Description
STP Stop Discontinue externally or in-

ternally controlled action.

Switch to internal control state.

RUN Run Switch to internal control state.

Start running.

DCT Disable Coeffi- Reset coefficient trap toggle to O.
cient Trap

DXT Disable Exponent Reset exponent trap toggle to 0.
Trap

DPT Disable Parameter Reset parameter trap toggle to 0.
Trap

DOT Disable Operation Reset operation trap toggle to 0.
Trap

DST Disable Segment Reset segment trap toggle to O.
Trap

ICS Indicate Coeffi o—'DS If #u 1—>DS
ndicate Coeffi- 4 Uy 0’ 4

cient Spill

IGN Ignore Do nothing.

-20-

CLASS 1: FLOATING POINT ARITHMETIC

There are four operations which can be effected by instructions in
this class: add, multiply, divide, and store. The arithmetic operations
are done in floating point (significant digit) arithmetic. Each instruction
effects two operations, each of which is one of the given four. The six-

teen instructions in class 1 are:

No. Mnemonic Name

0 FAA Floating Add-Add

1 FAM Floating Add-Multiply

2 FAD Floating Add-Divide

3 FAS Floating Add-Store

4 FMA Floating Multiply-Add

5 FMM Floating Multiply-Multiply
6 FMD Floating Multiply-Divide
7 FMS Floating Multiply-Store
8 FDA Floating Divide-Add

9 FDM Floating Divide-Multiply
a FDD Floating Divide-Divide

b FDS Floating Divide-Store

c FSA Floating Store-Add

d FSM Floating Store-Multiply
e FSD Floating Store-Divide

f FSss Floating Store-Store

In each class 1 instruction &t and JL are associated with the first
operation to be performed, and ¥R and JR are associated with the
second. If ¥* and c(L (similarly for ' and JR) are associated with
an arithmetic operation, KL specifies + or - and the modified designator,
JL , gives the address of My, where ﬂ:ml is to be fetched as an operand.
If & and c‘L (similarly for Kﬂ and JQ) are associated with a store
operation, K" specifies H or C and the modified designator, &L , gives
the address of Mg, where u — Ml and U is held or cleared. For example,
FAS has the format: XL

.+ or -
C .M
R. 4
K :Hor C
R
C5 M

-21-

Before an arithmetic operation (add, multiply, divide) is per-
formed, one operand is in U and another is fetched from memory. R
is then cleared, the operation is performed, and the result (in U, R) is

rounded,

After an add or multiply operation is performed, including
E E E
the round, r 1is set to beu -39 unless u -39<-127 in which case

r is shifted right n places and r is set to be -127 (where uE -39 + n = -127).

Thus, to continue the above example, FAS effects:
(clear R)

u+ (:l:ml) —u

(uE -39— rE)

u— M
T

hold or clear U

The division process is performed in such a way that the division
algorithm, N = QD + R where lR’I < D, is satisfied. However, the
remainder may be negative. The sign of the remainder depends upon

the signs of N and D and upon the rounding procedure.

When a divide instruction is given, the dividend, N, is in U and the
divisor, D, is fetched from memory (thus the divisor is *m, where 4
determines the sign, and J is the address of M),]Nl is divided by ‘D[
The resultant quotient is in U and the remainder in R, and rounding

F
proceeds as follows: if r #0and U = 0 then 1 — U and r - IDI — R.

39 39
If N and D were of different sign, -u — U. If N was negative, -r = R. u

Sle
kO

. . . . '
is then the quotient, Q, and r is the remainder, R,

* Detailed specifications of the nature of the exponent of the remainder
will be available in the near future. |

-22-

An exponent trap occurs after any instruction which causes exponent
overflow, The trap occurs after the instruction is performed, including
the round. Thus, on the instruction FMA, if uE overflows during multi-
plication, the multiplication is completed and the add effected before the

trap occurs.

An operation trap occurs if division by zero is attempted. In this

case the trap occurs before u is disturbed and after R is cleared.

A segment trap occurs if Uy # U, and a command in class 1 is given.

-23-

CLASS 2: NUMERICAL MANIPULATION

No. Mnemonic Name Format
0 ADJ Adjust ¥t : +or -
1 SCL Scale J" : MX,

®.00rA
_ n
sznor/((n)

E
Clear R, If mjy = ey clear U and continue to next instruction.

E
otherwise, :hmx —- U, u -39— R .

F F
Instruction O: Shift u and r as a 78 bit fraction (sign bits are
E
not shifted) n places incrementing or decrementing u and
E E E
r accordingly. When shift is complete, u = my + n and

E
r =my + n-39. Round.

Shifting stops one step before coefficient overflow,
exponent overflow, or exponent underflow in U; if n shifts
have not been completed, u is rounded and anoperation trap
occurs. If necessary, rF is shifted right to prevent exponent
underflow in r

The special case may arise in whichmy = -1 and [t
is -. If so, when my is fetched to U, coefficient overflow
is prevented by a right shift of 1, accompanied by an increment
of 1 in the exponent. If n =0, uis rounded and the instruction
has been carried out. If n<0, uis rounded and an operation
trap occurs indicating that n left shifts have not been effected.
If n> 0, the shift to prevent coefficient overflow counts as one

of the right shifts to be performed.

F F
Instruction 1: Shift u and r as a 78 bit fraction (sign bits are not

shifted) n places. Round.

-24-

F
If u overflows on a left shift, a coefficient overflow

trap occurs after n shifts and the round have been effected.

The special case may arise in which mg = -1 and y-
is . If so, unless n> 0 (in which case overflow is prevented
. . F F .
by a right shift of u” , r), a coefficient overflow trap occurs

after n shifts and the round have been completed.

No. Mnemonic Name Format
2 SGN Sign * : + or -
L
J :M,Q
XR :Hor C
AR ' M
r

If u >0, i‘xnz — U. Ifu<o, im’_ - U, u— Mr' Hold or clear U,

A coefficient trap occurs if a coefficient of -1 is negated. In this case,

u, is set to match Uy before trapping occurs, thus leaving 0 in U,

r is not disturbed by the execution of this instruction.

3 NOA Ncrmalized Add & :+or -
L
J . M}-
®.HorcC
5R : M
r

Clear R, u + m,. — U, R, Round. u— Mr' Hold or clear U,

The addition of u and my is performed in such a manner that the final
normalized fraction is correct to 78 bits. rE is set to uE -39 after u and myp
have been added, the sum has been normalized, and u has been rounded. 1If
u-39 <-127 then rF is shifted right n places (where uE -39+ n=-127)

and rE is set to ~-127,

-25-

NOA functions like the floating point arithmetic instructions in
that coefficient traps cannot occur—a right shift accompanied by an increase
in u corrects a coefficient overflow. In this case uE may overflow and an
exponent trap occur.

A segment trap occurs if Uy # u_ when the instruction is read.

0

E
Left shifting of u # my ceases if u= = -127 before normalizing shifts

are completed. In this case an operation trap occurs.

No. Mnemonic Name Format
4 sSQT Square Root KL: + or -
’ JL : MZ
R
. HorC
JR
M
T

Clear R. :I:J_r‘r:l — U, remainder — R. u— Mr. Hold or clear U,
fr;; has the same number of significant bits as m, anvd is not rounded. The
remainder in R is positive and is such that u + r = m (this equation gives
the arithmetic properties of r, but does not suggest that mg can be retrived

oo

in the machine by squaring u and adding r). h

If myp is negative --rnK is computed and then an operation trap occurs.

5 RNV Round to Nearest (- :I1or E
Value L
J . M[z’
&R :Hor C
AP\: M
T

F
Roundedu, r— U, If {*is E, X(r'). r— M. u—M_. Holdor

clear U.

Detailed specifications of the nature of the exponent of the remainder
are not available at this time.

-26-

F
In rounding u, r: ifr > 1/2, 1 is added to the rightmost bit of uF

F
and r0 is set to 1;

F
if - 1/25 r <1/2, no change is made;
F
if r < -1/2, then 1 is subtracted from the right-

F
most of bit of u and r}g is set to O.

F F
A coefficient overflow trap occurs if r > 1/2andu = 0.1...1, or
F F
r <-1/2andu =1.0...0. Inthese cases r appears as it would have had
F
there not been a coefficient overflow in U, and uO is set to match Uy

before trapping occurs. (In the former case then, u = 0 when trapping
2-39)

occurs, and in the latter case, u =

No. Mnemonic Name Format
6 BAA Basic Add f“: Hor C
, JL
. : ML
‘ :+ or -

JR:Mr

E
It is assumed that one operand is in U and one operand is in S. U

is ignored. Hold or clear U. myp — R. s £ r is performed to give a double
precision result, u.F is added in to the low order part of the result (unless
the result has exponent eZ). The result now in U, R is not rounded in any
manner, T — Mr. The exponent of the result (in both UE and RE) is the

larger of the two exponents of the numbers originally in S and R.

No trapping can occur. However, both the original and final contents

F F F F
of U may be such that U #u 0 (i.e., u may be a number whose magnitude
exceeds 1). This condition will cause a segment trap on a subsequent arith-

metic instruction which is not a Basic instruction.

-27-

No. Mnemonic Name Format

7 BAM Basic Multiply ¥* : Hor C
éL : ML
Kk :+ or -
(5 : Mr

E
It is assumed that one operand is in U and one operand is in S. U

is ignored. Hold or clear U, my — R. (s x rF) is performed to give a
double precision result and uF is added in to the low order part of the result
(unless the result has exponent €. The result now in U, R is not rounded.

r — Mp_') The exponent of the result (in both UE and RE) is the sum of the

exponents originally in S and R. If this exponent is not in the range -127 <

E§+127, an exponent trap occurs {unless one operand had exponent eZ).

F F F
Both the original and final contents of U may be such that Uy #u 0
F
(i.e., u may be a number whose magnitude exceeds 1). This condition will
cause a segment trap on a subsequent arithmetic instruction which is not a

Basic instruction.

8 BAD Basic Divide KL ¢ +o0or -
L
éR M MX
K .+ or -
JR M
r

It is assumed that one operand is in U and one operand is in'S.
my — R. RE is ignored. =(u, r/(Normalized s)) — U, R (quotient — R and
remainder — U), XR determines the sign of the remainder. r — Mr' The
exponent of the result (both in UE and RE) is the exponent of the number
originally in U, minus the exponent of the number residing in S after
normalization. An exponent trap occurs if this exponent is not in the range

-127<E< +127 (except when the dividend had exponent e,).

-28-

A segment trap occurs on the final store if Ty # o In multiprecision

work this can occur on the first division of a series only.

An operation trap occurs before the division is executed if the

. F
original s = 0.

No. Mnemonic Name Format
b SEX Set Exponent f-: + or -
c AUX Augment Exponent é" : MZ,
KR :Hor C
éR M
r

E E
Instruction b: :‘cml — U .

_ E E
Instruction c: u d:mL—’ u .

F
u remains unchanged. u — Mr' Hold or clear U.

E
1f KL is - and myg is -128, on instruction b, -128 = e_, — U. (-e, =e_,.)
E E E E z z z
Ifu +m g is not in the range -127<u *m <+127, on instruction c, an

exponent trap occurs.

r is not disturbed by the execution of these instructions.

d CSX Convert Signed * :+or-
Exponent Lo
g M,
KR :Hor C
éR : M
r

E
+m as integer (exponent 39) — U. u — Mr' Hold or clear U.

The excess 128 machine representation of eprnents is compensated for

in the conversion of the exponent to an integer. Thus, the converted exponent

-29-
L F
is in the range -127<u <+127.
An operation trap occurs on an attempted conversion of €-

r is not disturbed by the execution of this instruction.

No. Mnemonic Name Format
e CPD Convert Positive {“:HorC
Designator
L
£ CSD Convert Signed $ My
Designator &R " Oor A .

éR:iorA(i)

Instruction e: i, considered positive, as integer (exponent 39) — U.

Instruction f: i, considered a signed integer, as integer (exponent 39) — U.
u— MX . Hold or clear U.
A designator, i, being a 14 bit entity, when considered positive is in

the range 0<i< 214-=1. When treated as signed integers, designators are

1
considered mod 2 4 with the leftmost bit functioning as a sign bit, e. g.:

0...0 = O
or... 1 = 213-1
10... 0 = —213
1 1 =z -1
The range of a signed designator is thus -213§i§_213 -1.

r is not disturbed by the execution of these instructions.

-30-
CLASS 3: SPECIFIED POINT ARITHMETIC
Any arithmetic instruction in this Class (add, multiply, divide),
in contrast to the floating point arithmetic instructions, leaves a result

in U which has the same exponent as the operand originally in U.

If listed, the instructions in this class, numbered 0 through f,

would appear the same as those in Class 1, except that the mnemonics

would begin with "'S" instead of ""F' and the names would be ""Specified ..

instead of ""Floating ...'. The format of the instructions is the same

as those in Class 1.

The sequence of operations effected by an arithmetic instruction
at run time is the same as described for class 1 instructions: fetch
operand; clear R; perform add, multiply, or divide; round u; adjusrt
rE. The division process is the same as described for Class 1 instruc-
tions. On all class 3 instructions, including ''divide', the round is per-

E
formed after u has been adjusted to the point that u is equal to the

original exponent in U,

Exponent traps cannot occur on class 3 instructions. However,
coefficient overflow may occur in which case a coefficient trap occurs

after the total instruction has been executed.

An operation trap occurs if division by zero is attempted. The

trap occurs before u is disturbed and after R is cleared.

A segment trap occurs if Uy # v, and a Class 3 command is

given,

-31-

CLASS 4: FORMAL MANIPULATION

No. Mnemonic Name Format
0 CON Combine through Normal Mask {".Hor C
1 COR Combine through Reflected Mask éL : Ml
XR :+ or -
CSR ' M
r

Instruction O: my — R,

Instruction 1: EX — R,

+
m2 — S. Hold or cilear U. u— U. Insert a bit of s into U wherever

the corresponding bit of r is 1.

2 SHN Shift with Normal Connection XL :Hor C

3 SHC Shift with Circular Connection JL ' My

4 SHR Shift with Reverse Connection &R : Qor A n
JR :n or/((n)g

These shifts are logical shifts, and thus the separation into exponent and

fractional part is disregarded.
my — R. Hold or clear U.

Instruction 2: Shift the contents of U and R as a 96 bit entity, u, r
(r as the low order part), which shifts as a single unit. Bits
which are shifted off the right of R are lost as are bits which are
shifted off the left of U, e.g.:

on right shift of 1, U’O—*R47’ r_is lost, 0—U

0 47’

. - U
on left shift of 1, Ty o Y47

where bit positions are numbered 0 through 47 from right

is lost, 0 — R47;

to left in each of the U and R registers.

-32-

zeros 4+ U 4+ R 4 + U 4+ R <+ zeros

right shift left shift

Instruction 3: Shift the contents of U and R as a 96 bit entity, u, r
(r as the low order part), which shifts as a single unit. Bits
shifted off either end of the double length register U, R are re-
introduced at the other end. e.g. :

on right shift of 1, u, — R47, ro — U4‘7;

1 — U — .
on left shift of 1, r47 0’ 114,7 RO,
where bit positions are numbered 0 through 47 from right

to left in each of the U and R registers.

U [R (U]R$

right shift left shift

Instruction 4: Shift the contents of U and of R each treated as a 48 bit
entity. The contents of both registers are shifted, but in opposite
directions, u shifting in the direction indicated by the sign of the
shift parameter. Bits shifted off the end of one register are
introduced at the far end of the other register. e.g.

on right shift of 1, u, R, r

o Ta7 7 YUy

7$
on left shift of 1, rO — UO’ u47 — R47;
where bit positions are numbered 0 through 47 from right to

left in each of the U and R registers.

R T
right _shift left shift

No. Mnemonic Name Format

8 PSE Position and Set XL :+ or -
L

9 PAU Position and Augment J MY_

XR :Qor A
sznor/(n)

n

-33-
my — S. Shift s with circular connection (i. e. bits shifted off
one end of S are reintroduced at the other end) treating s as a 48 bit entity

(the separation into exponent and fractional part is disregarded).

Instruction 8: s — U,

Instruction 9: u s — U,

r is not disturbed by the performance of these instructions.

No. Mnemonic Name Format

c TEW Test Word f: Ror L
d TEC Test Coefficient § My

e TEX Test Exponent 8R :Hor C
f TES Test Segment JR : Mr
Instruction c: X (u)

F
Instruction d: X(u)
E
Instruction e: X(u)

F
Instruction f: 7<(ux, u)

S
Substitute the sense indicators, d , into My, right or left designator

field depending on XL . u— Mr' Hold or clear U.

r is not disturbed by the performance of these instructions.

-34-

CLASS 5: DATA TRANSMISSION

The performance of an instruction in this class does not

disturb u or r.

No. Mnemonic Name Format
0 TRW Transmit Word “:lorE
1 TRC Transmit Coefficient | d": M,
2 TRX Transmit Exponent ?SR :Hor C
éR M
r

Hold or clear Mr'

Instruction O:

my — Mr. (Obviously, the value of \(R does not affect the

performance of this instruction.)

F F
Instruction 1: my — M
Ir
. E
Instruction 2: m — M
r T
4 TRS Transmit Sign XL :+ or -
L
5 TRT Transmit Tag é : Mﬁ
XR t:Hor C
éR
M
T

Hold or clear Mr

Instruction 4:

Instruction 5:

£t F F L.]) ...
mQ’ 0 M . 0 (If - is +, sign of my sign position of Mr'
If {& is -, reflected sign of m, — sign position of M .)
g 2 g r
+E E L
M , gL - ...
my 7 .7 (If is +, tag of myg tag position of Mr.

If {* is -, reflected tag of mg — tag position of Mr')

-35-

No. Mnemonic Name
8 SUD Substitute Designator

i MZ , right or left designator field as

XQ

d":
(“
gt

indicated by {"

Format

:Ror L
My
Oor A

i orA(i)

-36-

CLASS 6: INDEX COMPUTATION

The performance of an instruction in this class does

not affect u or r.

During the performance of all effective jump and execute

instructions a step j — A occurs and a toggle, JT, is set. If at

any point in the performance of an instruction b, is changed, a
L

toggle, PA, is set (e.g., in SEI if B, is specified in ﬂ then

#i—+ B, and b, + h— B4). The final step in the performance

of an effective jump instruction is: a — B, . (Note that, as a

result of this step, a change made in b, during the performance

of an effective jump instruction is of no consequence.)

It may be that neither JT nor PA is on after an instruction
has been performed (e. g., any instruction not in class 6; a SEI
which does not specify B, in ﬁL; a jump instruction which is not
effective, i.e., which proceeds). In that event, b, + 1 —+ B, and
the address of the next instruction to be performed is b, . If JT is
on after an instruction has been performed, the address of the next
instruction to be performed is a. If PA is on, the address of the

next instruction to be performed is b, . JT overrides PA,

In the following descriptions, "Bk” represents any index

. P, L
register specified in 2.

No. Mnemonic Name Format
0 SEI Set Index ' : + or -
1 AUI Augment Index 8" . 4B
2 TEI Test Index °<L :h

KR :Oor A

JR T i or/((i)

-37-

Inst ti v *i— B_; — B
nstruction O i K’ bk+h K’

4] —> . —_
bk i Bk’ bk + h Bk.

X(iiibk)

Instruction 1:

b, +h— B

Inst ti 2:
nstruction " K

No. Mnemonic Name

4 JIE Jump on Index

Equal

by
Condition is met if & b, =

If equality condition is not met, b+ 1 — Bk.

k
If jump is effective, by — B3.

5 - JIZ Jump on Index Zero
) JIP Jump on Index Positive
7 JIN Jump on Index Negative
bk + h— Bk'
&b, : 0.

Instruction 5: condition is met if E.bk = 0.

Instruction 6: condition is met if Ebk > 0.
Instruction 7: condition is met if i.bk < 0.

If jump is effective, b7 — B3.

8 JFC Jump on Formal Comparison
9 JAC Jump on Arithmetic Comparison
a JLC Jump on Lexicographic Comparison

Format

YL :JorP
At 4(B)

%L:j

XR :Oor A

JR 0 or/4(i)

XL :JorP
ﬁL:A’(B)
o(L:

KR:OorA g
JR:Jor/((J

XL:JorP
JL:MQ

&R:OorA }
2 or/4(_])

-38-

Instruction 8: condition is met if u and mx are identical when u and mz are

considered as 48 bit entities.

Instruction 9: condition is met if u>mx when u and mg are considered as

sk

arithmetic entities with 8 bit exponents and 41-bit fractions.

Ifu = e, =my , condition is met.
E E F
Ifu = eZ f myg, andmyg < 0, condition is met.

E E F
Ifu £ e, = my, and u > 0, condition is met.

Instruction a: condition is met if u > my when u and mL are considered as

48 bit integers.

If jump is effective, b7 — B3.

No. Mnemonic Name Format
b JPC Jump on Pattern Comparison “:JorP
c EPC Execute on Pattern Comparison @' : additional
inflection
L
o(Cp
KR: Qor A

éR i orA(j)

In each bit position where there is a 1 in p, a sense or trap (determined

byﬂ:) indicator is specified.

* F .) . F . .
If ux = uo, u is essentially 40 bits. If Uy f uo, u is 41 bits and Uy functions

F . .
as the sign bit. In this case m~ may be considered as having a 41st bit, m g X

which is identical to m ¢ 0"

-39.

g
B3

L .
ﬁ" = 0: condition is met if all specified indicators are set to 1.

L Hek
Bq. = 1: condition is met if any specified indicator is set to 1.

L

3 = 0: set B3 from B7(b7 — B3) if jump (or execute) is effective.

ﬁ; = 1: do not set B3 from B_ if jump (or execute) is effective.

7

2=0 ‘s .

. : do not alter the state of specified indicators.
) =0

¢
62 =0 o s .
ﬁ‘ : set specified indicators from sense switches.

=1
1

R
it
—

: set specified indicators to O.

1= 0
A1
: set specified indicators to 1.
L
1= 1
S
,= 0: D specified

»= 1: D specified

If jump, or execute, is effective and /-?;= 0, b7 - B3.

Instructions b and c function alike except that a — B7 is omitted at the
conclusion of the performance of an effective execute instruction. Thus one
instruction out of sequence is executed and, unless that instruction is a jump
instruction, the program returns to the original sequence. Furthermore, this
(out of sequence) instruction which is executed will not cause an instruction trap

to occur even if € = 1.

% L L
If ﬁ4 = 0 and & = 0, condition is met.

% L L
If /} 4" 1 and A = 0, condition is not met,.

-40-

No. Mnemonic Name Format
d SES ‘Set Sense Indicators KL :Ror L
e SET Set Trap Indicators éL : M,

XR : Oor A

JR:ior A(i)

S
Instruction d: d — Mg , right or left designator field as indicated by XL. i— D,
. T . . . N L. T
Instruction e: d — MX , right or left designator field as indicated by . i—-D".

L
f JUN Jump Unconditionally {:RorL
L
é . ML
KR: Oor A

JQ: j or A(j)

L
b7 — MZ , right or left designator field as indicated by X .

-41-
CLASS 7: AUXILIARY SYSTEM OPERATION

The performance of an instruction in this class does not

disturb u or r.

. L L - - .
Fields [, B , and &K are not relevant in instructions

in this class; these fields are ignored by the machine at run time.

No. Mnemonic Name Format

R
0 RET Read Tetrad Word ¥ :Kor T

JR:M
r

Clear S. Read a tetrad (the rightmost four bits of a character) from
the typewriter if YR= K, or from paper tape if XR = T, and place in the right-
most 4 bit positions of S, Read another tetrad, shift s left 4 places, and
place tetrad in rightmost 4 bit positions of S. Continue reading in this manner
until the symbol "'/" is read. s — M,.

When this instruction is performed, any symbol read which is not
between 0 and f, or is not ''/", is ignored. Such a symbol is called a non-

tetradic symbol.

R
1 REO Read Octad . KorT
R
J M
r
. R
Clear S. Read a single octad character from typewriter if = K, or
from paper tape if JR= T, and place in the rightmost 7 positions of S. s — Mr'
(In most cases, the leftmost bit of an octad is a parity bit. Parity bits are not

read into S.)

2 WRT Write Tetrad Word XR :Kor T

ch:M

r

_4E'

R
m S. Write s on typewriter if X = K, or on paper tape if

XR = T, interpreting s as a string of 12 tetrads.

No. Mnemonic Name Format
. XR
3 WRO Write Octad :Kor T
éR ' M

r

m_ S. Shift s left 40 places. Write the character corresponding
to the leftmost 8 bits of s on typewriter if XR = K, or on paper tape if &R = T,
(The leftmost bit of S is ignored and a parity bit is synthesized before printing.)

4 SWE Switch to External XR :Kor T
Control State AR -

i — effective address register. Switch to external control state, typewriter

or tape.

APPEN DIX T

CHARRACTER SET

er case

v

Jower case

I o 06 (1 o o
Il o 0o 1 1 ©

o |l 0 o

/

SToP

[~
o

{

1

sTop
(R

0000

{

(o]

(44
TB
SP

l

/| o0 o0 o |

¢

{

l

o ¢ 0o o
o o ol

0 o0 o ©

sP

| o 0o o o
| o J @ oo I

o o | o

1

o o |

-

o o I ©
{
o

o o
I
/1o | | ©
/
o
o
0
o
l
!
|
!
o
o oo ol

1
o | o
(7]
o
[
o]
(4]
(%)
o
o
0
[
]

|
i
1
‘o | ol o | o
o | o
I

|
|
o
0
|
!
0o o0
|
b o
(N
oo
o |
il o
|

0
o
o
o
o]
0
I

|

|
|
|
I
l

I o
o
l
|
|
l
00000
0 0 o o

!
l
)
I
I
{

-~ am T e e m wm e

°
o
o
o
o
0
o
o
o
0 6
|
i

o

0

ag

0

0

[¢]

]

0

(o]
00 o0
] o o
00 o

0

o

|
/

o o ©
o 0 ©

o 0o | ©

|
I
I

o]
o
o

/

{ 0 ol O O

o6 0 o |
o o |
o 0

oo

o

o

/
/

!

¢ ©

!

o

|

ol oo (| o

o

1

o o | /
0 0o 0O
o o |
e | 0

/
/]

{

/
|
1
1
i

o
0o
o
o
(2]

O - -0 Q - -
- — - 0 © 0 ¢
- - - 0 0o Y o
OO0 Q0 ~~-— ~
- — Q - 0 0 -
D> 32X >
O -~ ~00 -~ -
- -~ <09 0o
lllo.ooo
O O 0 ©® © O o
Q O — 0O - ~ O
+w 3 > 3 x >m

Cont';nued on

next Paqe

lower case vpper CaSe
« / o/ t o r 0 0 - ol I I ol oo
1 oo I ol ol = I 11 10) ol
< ool 1 ol 1o 7 I 1t 11 oI 1o
¥ f ot o 111 = ol 1 1o I 11
} I oI + I 0 ©0 0 5 o I 11 | o0 oo
? oot I | 00 : T I O O A - A |
. ool 1 | ol o v) 1t 1 Lol o
] i ot 1t ol | [o1 1 V1 ot

0o o0 0o oo throuvgh __e oot o1 1
Z6rworer: —_o ! 11 1 0O ‘H\rou%h — o 1 1 11 11

_ 1 00 00 060 fl-\rouak 1l oo 1 o 11

R R A B B B fkraush — a0

The leftmeost bit of each character reFrCSenfoi ion IS a r—.»a.r't‘h/ bit . The
Farlh’ bit does not read into the compoter, nor is it necessary to
Syntkesiec a Farit\/ bt before Funckinj or 1-‘”,-'“(3 octads.

APPENDIX I

comnTROL CMARACTE RS

cantrol ckqvacf‘tr —_— iUgg‘(‘;lc\‘

J o/ o /v 0.0 0o Reod Qol(ow‘tu? characters.
$ I 1o | 600 | {a)—=+Sy a+ti—> A.

- Il 1 ol ©o 0ol © a—-1—rA.

+ 06 1 6 1 oo |+ | at) »A.

/ !/ 1ol o | 00 s-—r<a.7j'a-u-)A', 045,

Vv o 1ol ool s +I' perform I

A o loailol o s—+A; ¢+ S

X 11 o0t o |1 I o — S.

— I 1ol taado a) +S; avi1+ A4

't-”.»c S as 12 tetrads.

4 ol e | | 6 6 | Iinore all Solloawin
chavacters chcr'f «).

Ais e effective addyess reqister awd a ts (fs <contents. <a> i3 +he
contents of the hec‘{sfer' whose addrecs 1§ a. L /s a reqf:‘l’er , and
"perform I’ * means execuvte the tustructhon carrant‘l\.‘ held wa I°.

APPENDIX IT

ADDRESS ASSICVMENVTS
(in sexadecimal)

register | address
Real-time Trap 3fed
Instroction Trap 3fee
Arithwmetic Trap 3fed
7, " 3ffo
] 3£
T, i affz2
T | , 3F+3
Ty 3 ffy
T 3ffs
A ‘ 3f¥e¢
1, 3ffs
U 3ff9
R 3ffa
S 3ffh
z 3f{e
W | S FEP

Core Memorts Cooo ‘H-.rou‘?L I’Cfﬁ

S S S
T
(o] (] o |
o o) | 0
o | o] o
/ (o] fe] lo)

APPENVDIX W

]

CHARRACTER INWNDICATORS

character of bit qroup

Leftmost bit is o0,and all other bits areo.

Leftmest bit is o,and al least one other
bet is 1.

L eftmost bit is 1, and all ether Lits areo.

Leftmost bit is N and al least one dlher
but s).

APPENDIX Y

TRARAP INPICATORS

13 30 09 $ 7 ¢854 32 1 0

CIIIIITJIITIT

Ny e aEEE—
Reai-time Arithmetric
Tr‘?’ TV‘.P’

Tagtrvction

Traps

Assh‘»mev\f: of oritmetic tvops:
DI - Codfficient Tvags

- Ex?encnt Traps

D - Parameter Traps

;- Operation Traps

DT - SQT rmant Tra.?s

APPENDI X V/

A fresent, (ndirect aJJressimi (/‘/0000) /s nel availakle ovn Class ¢
(indey) \Ms\'r’uc!'(oy\\’f or on \wstvvctionw g8 oF Class ¢. Nor are *Yhe

Qo\\ow'\wct instevetions available s
DcT AD T BAM ¢ PD
DXT sclL BAD csSD
DPPT SGN S E X S ES
DoT SQT AV X S ET
PST RNV C s x JTUN
ITCs BAA

It s 'poresee;\ that SHN’SHC) and SHR will be v<?\acecl b‘j stx
instroctions, SRNV,SRC, SRR, SLN,SLC, and SLK Cnombered 2 theovgh 1),
named "Shift R«.ﬁl\f with Novmal Cawnec.{'lon," ceey “Shife Left withh Normal
Connection, " The First three are wevel Mnenmonic and nawee
cl«.un'es for SHN,SHC, and SHR. The last theee Lonction M the gamee
mauner as the GHirst theece with the shift partameter convent lown
reversed , ie. a?o.sih'ue_ :ra.ramo.‘(er- will eavse o left shift and a nec(a‘h'uc
porameter will cavse a r-'QH: shift,

* Iuafﬁéfj d/dres;fn; is aviilable on t+hree (Class ¢ justructioas:

/‘M$+ru6‘ft'ob15 A 3) 657/ auwd éa . [footuote addod i fraa'()

	000
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13a
	13
	14
	15
	16
	17
	18a
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	A-01a
	A-01b
	A-02
	A-03
	A-04
	A-05
	A-06

