
J

~mbers

Simple Variables

i~rrays

BCC-500 BASIC INSTRUCTIONS

Integer (no decimal point)
Floating Point (has a decimal point)
Scientific Notation (decimal point and power of 10)

All variables are a letter or a letter followed by
a number (and a $ is a string)

Only one and two dimensional arrays permitted. Array
names must be a letter, subscripts are any expression

Arithmetic Operators

t

*
I
+

Re 1 a ted Operators
=
>
>=
<
<=
<>
><

Commands

Negation
Exponentiation
Multiplication
Division
Addition
Subtraction

Equal to
Greater than
Greater than or equal
Less than
Less than or equal to
Not equa 1 to
Not equa 1 to

to

CHAIN Loads another program segment, retains variables
CONTINUE Continues program execution
DELETE Deletes statements from memory
LET Assigns a value to a variable
LIST Lists statements stored in memory
LOAD Reads a file into memory
QUIT Returns program control to the Executive
RUN Start executing program statements
SAVE Save program memory on designated file
SET Assigns a value to a variable
(~ One or more (~s returns control to BJ\SIC or EXEC
t:;il'\-T't'\i /\<. Con~\/:'\

Mi sc e 11 a_n_2_o_u_s _P_r_o_.g r_a_m_S_t_a_t_e_m_e_n_t_s

~)I P1
END
EXECUTE
PAUSE,
REM
STOP

Reserves memory for an array
Last statement in program (not required)
Automatic program running upon completfon of loading
Stops program execution until CONTINUE command given
Non-executable remark statement
Terminates execution

_Contra 11 i ng Statement Execution Order
FOR
NEXT
GO TO
GOSUB
IF GO TO
IF THEN
ON GO TO
ON GOSUB

Matrix Statements

Substitution
Constant Mu1tip.
Multiplication
Subtraction
Addition
CON
ION
INV
ONE
TRN
ZER

Strings
CHANGE

Input
DATA
READ
RESTORE
INPUT
INPUT FILE
READ FILE
Ir~PUT USING
INPUT FILE USING
ACCEPT
MAT

Output

PRINT
PRINT FILE
t4RITE
WRITE FILE
PRINT USING
PRINT FILE USING
TYPE
MAT

Start loop, TO set range, STEP set increment
Designated end of a FOR loop
Begins execution at statement specified
Begins execution at subroutine statement specified
Conditional GO TO statement
Conditional GO TO statement
Multiple conditional GO TO statement
Multiple conditional GOSUB statement

Sets elements of one matrix to another
Multiplies elements of a matrix by a constant
Multiplies two matrices
Subtracts two matrices
Adds two matrices
Sets elements of a matrix to 1 _
Sets elements of a matrix to the identity matrix
Creates matrix which is the inverse of given matrix
Sets elements of a matrix to 1
Creates matrix which is the transpose of given matrix
Sets elements of a matrix to 0

Changes String-variables to variable or visa-versa

Data stored within program to be used with READ
Reads data from a DATA statement
Sets pointer to first DATA statement
Reads data from the terminal
Reads data from a symbolic file
Reads data from a binary file
Reads formatted data-from the terminal
Reads formatted data from a symbolic file
Identical to INPUT
Mat added to any INPUT or READ statement changes the
statement to read matrices

Writes data on the terminal
Writes data on a symbolic file
Writes data on a binary file
Writes data on a binary file
Writes formatted data on the terminal
Writes formatted data on a symbolic file
Identical to PRINT
MAT added, to any PRiNT or WRITE statement changes the
statement to write matrices

2

Formatting

' i .
<string> 11

:<picture>

Files

OPEN
EOF
CLOSE

Input/Output

Spaces to multiple of 15 positions before printing
Spaces to multiple of 3 positions before printing
No spacing before printing next value
Designates a picture string to format input/output

Opens files
Check for parity error or end-of-file
Closes files

Functions and Subroutines
GO SUB
ON GOSUB
RETURN
DEF
SIN(X)
COS(X)
TAN(X)
A Tr~ (C)
EXP(X)
ABS(X)
LOG(X)
SQR(X)
LGT(X)
INT (X)
RND(X)
EXT(X)
TAB(X)
TIM(X)
EOF (X)
DAT(X)
CHR(X)
STR(X)
fJD(X)
TAL(X)
LEN(X)
NUM(X)
ASC(X)

Call to subroutine
Multiple conditional call to subroutine
Designates end of subroutine
User defined function
Sine of X
Cosine of X
Tangent of X
Arc tangent of X
Exponential (base e)
Absolute value of X
Natural log of S
Square root of X
Log base ten of X
Integer part of X
Random number
Exponentiation (base 10)
see Formatted Input/Output
CPU or terminal time
see Files
Current date and time
Returns one character string
Returns 2-13 character strings
Returns first character of argument
Returns a11 but first character of argument
Length of argument
Returns floating point of argument
Returns internal decimal value

3

Ju.l.t 1973

Chapt.er 2

~IC i'U&nuaJ.

• • • •

GJ:.W:;;.-..:. COliCEi'l'S• • •
~"~4Ac <letinit~on •

;;; c:.at-e11t. NUIAbeL".
~0mman~ • • • • •

• • • • •

•

•
•
•
•

.~ ~'""~ttr .. • • • •
d.oaUnq Point:. •••
~~ientitic Notat1on

V4.1;·.l..abl• • • • • • • •
... rray • • • • • •
._,.:l..aaeMion • • • •

E•~~·a•ion • • • • • •
~.:...... •".l.OiMl'l. ~PJ:•••ion.
:r-u,· ... : ;..:o.;>n • • • • • • •

~iU •
:~.1· •
'lac •
l'Ill •
J;:;O!" •

•

•
•
•

•

•
•

•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•

•

•
•
•
•
•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•
•
•
•

•
•

Cnopter 3 - J?1'i.i<.i.iWi PREPARATION AND EXECUTIO~•
rl.·~ ~ .. J;4 t.ion. • • •
i",. .. .

~n •

•
•

•
• •

•
•

•
•
•

• • • • .. ~ :· • • • • • • • • •
• • • • • • • •
• • • •

Cv..wo\ent.. •
f'h;J;;i:;.

Cv~i. •
ti 'lCi.' •

• •
•
• •

•
•
•
•

E~.IJ. • • • •
Rll~. • • • •

(esc) ••
A<J t.oma tic

EXECUTE. • •

• •
•
• •
• •
• •
• •
• •
Run
• •

• •
• • •

•
•
•
•
•

•

•
•
•
•
•
•
•
•

•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•

• •
• • •

•
• • •
• •
• • •
• • •

•
• • •

• • • • • • • • • • • • . '
BJ\bIC CvlVIANt>S AND S'l'AT.i::JotENTS

commands ••• • •••••
UT. • • • • • • • • • •
SET. • • • • • • • • • • •
PRl N'l'• • • • • • • • • • •
'lY Ff. • • • • • • • • • • •

::.Oneci fom-.t.. • • •
Packed format •••••
Compressed format •••
Special Cha.racters •••

C-1

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•

•
•
•
•
• ..
•
•
•
•
•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

• •

• •
• •
• •
•
• •
• •

•
• •
• •
• •
• •
• •
• •
• •
• •
• •

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•

•
..
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

• • • . ..
.. ..

• •
• • •
• • •
• •
• •

• •
• ••
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

•

•

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

•

•

•

•

•
•
•
•
•

•
•
•
•
•
•
•

•
•
•

•

•

..
• •
• •

•
•
• •
• •
• •
• •
• •
• •
• •

•
•
•
•
•
•
•
•
•

•
•
•
•

•
•
•

•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•

• • •
•
•
•
•
•
•
•
•
•

• •
• •
• •

•
• •
• •
• • . . .
• •

•

•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

• •
• •

•
• •
• •
• •
• •
• •
• •
•

•
• •
• •
• •
• •
• •
• •
• • .. .
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

C-1
Con ten ta

•
•
•
•
•
•
•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•

•
•

•
0

•
•
•
•
•

2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-3
2-3
2-4
2-4
2-4
2-5
2-S

3-1
J-1
3-1
3-1
3-1
3-2
3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-J
3-l
3-4
3-4
3-4
3-S

4-1
4-1
4-1
4-1
"-1
4-1
4-1
4-2
4-2
4-3

C-2

Chapter 5 ~

s ta i:.ement.s
GO TO. •
I "i:' l'liEN • •
IF GO TO •
DA'£.\ • •
READ ••

• •

• •
• •

•
• •

RES '!ORE• • • •
INPUT. • •
ACCEPT • •
l?rog ram Loops.
FOR. • • • •
NEXT • • • •
Arrays •••
DIM. • • • •
QUIT ••

•
DEF. • • •
GOSUB.
RE'IURN •
ON GO'I'O.
ON GOStJB •

• •
• •
• •

•
• •
• •

FI U: STA 'l'E.MENTS

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•

OPEN • • • • •
Sym belie: File
Sina ry File •

!UPUT FI :r..E • •
ACCE i?T FI U •
l?RINT FILE
T'f PE FILE
READ FI ·z.E. •
WRITE.
WRITE FII..E •
IF EOF •
CLOSE. •

•
•

•

•

!1ATR!X S'!:'A'IE.MENTS
Dimensions • •
MAT READ • • •
MAT I.NPUT. • •
MAT ACCEPT • •
MAT INPUT FILE
MAT ACCEPT FILE
MAT READ FI LE
MAT PRINT
MAT T:!PE • •

•

•

•
•
•

•
•
•
• .
•

•
MAT PRINT FI LE •
MA'!' TYPE FILE.
MAT Wa:ITE. •
MT wRITE FILE •
ZER.
CON.
ONE.

•
• •

• • •

•
• • •
• • •

•
•
•

•

•
•
•
•

..
•
•
•
•
•
•
•
•

•
•
•
•
•

•

•

•
•
•

•

•
•
•
•

•
•
•

•
•

BASIC Manual

•
•
•
•
•
•
•

•

•
•
•
•
•
•

•
•

•
•
•

•

•
•
•
•
•
•
•
•
•
•
•

•

. . .
•

•
• •

• •
• •
• •
• •
•
• •
• •

•
•
•
•
•
•

•
•
•
•
•

•
•
•
•
•
•
•
•

•
•

•

•

•
•
•
•

•
•
•

•

•
•
•

•
•
•

•
•
•
•
•
•

•
•
•
•

•
•

•
•

•
•
•
•
•

•
•
•

•
•

•
•

•
•
•
•
•

•
•
•
•

•
•
•
•

•
•

•
•
•
•
•
•
•

•

• •

• •
• ...

• •
• •
• •

•
• •
•

• •
• •
•
• •
• •
• •
•
•

•
• •
• •

•
• •
• •
• •
• •

C-2

•
•
•
•

•

•
•
•
•
•
•

•

•

•

•
•

•
•
•
•
•

•

•

•
•
•
•
•

•

•

•
•
•
•

•

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•

•

•

•

•
•
•

•

• ..

•
•
•
•
•

•
•
•
•
•
•
•
•

•

•
•

•

•
•
•
•

•
•
•
•
•

•

•
•

•
•
•
•
•

•
•
•
•
•
•

•
•
•
•

•

•

•
•
•

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

• •
• •
• •
•
• •
•

• •
• •
• •
• •

•
• •
•
• •
• •

•
• •

• •

•
•

•
• •
• •

•
• •
• •
•
• •
• •
• •
• •

• •
•

• •
•

• •
•

• •
•

• •
• •

• •
•
• •
• •
• •
•

• •
• •
•
•
• •

• •
• •

•

• •

•
•
• •
• •

•

•
• •

July 1973

• • • • • • • •
•

• • •
... -· •

4-3 ..
4-4
4-4
4-4
4-5
4-5
4-6
4-6
4-6
4-7
4-S
4-S
4-9

•
•
•
•
•

•
•
•
•
•
•
•

•
•
•

•
•
•
•
•

•
•

•
•
•
•
•
•
•
•
•

•
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • •

• • •
• • •
• • • •
• •

• • • . •.
• •

• . .. • •
• • • • •

• • • • •
• • • • • •
• • • • • •
• • • • • • ... • • •

• • •
• • • •

• •
• • • • •

• • • !' •

• • • • •
• • • • • •
•
• • • • • •
• • • •
• • • •
• • • •
• • • •
• • •
• • • • •
•
• • • • •

•
• • •

• • • •
• • • • •
•

•
•
•
•
•
•

•

•
•
•
•
•

•
•
•

•
•
•
•
•
•

•
•
•
•

•
•

•
•
•
•
•

•
•
•
•
•
•
•
•

• •
• •
• •

•
• •
• •
• •
• •
• •
• •
• •

• 4-13
4-11

• • 4-12

•
•

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•

•

•
•
•

•
•
•
•

•
•
•

4-12
• 4-12
• 4-13
• 4-13

•
•
•
•
•
•
•

•
•
•
•
•

•

•
•

•
•
•
•
•
•

•
•
•
•
•

5-1
s-1
5-2
5-2
5-2
5-2
5-3
5-J
5-4
5-4
5-4
5-4
S-4

6-1
6-1
6-1
6-1
6-1
6-2
6-2
6-2
6-2
6-2
6-2
6-2
6-3
6-3
6-3
6-3
6-3

J1.1ly 1~73
BASIC Manual

IDN. • • • • • • • • • •
SuQli ti t:ut.ion • • • • • •
Cona'tAnt Multiplication.
Add.ition ••••••••
Subtract.ion. • • • • • •
Multiplication • • • • •
TRN. • • • • • • • • •
INV. • • • • • • • • • •

•
•
•
•
•
•
•
•

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• . •· . .
• • • • •

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

• •
• •
• •
• •
• •
• •
• •
• •

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

C-3
Contents

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•

6..4
6..4
6..4
6..4
6-4
6-5
6-5
6..6

Cbapter 7 - S'l'RI~S • 7-1
7-1
7-1
7-2
7-2
7-2
7-3
7-3
1-3
7-3
1-3
7-4
7-4
7-4
7-4
7-5
7-5
7-5
7-6
7-6
7-7
7-7
7-7
7-7
7-7
7-7
7-8
7-8
7-9

Chapter 8 -

Literal ••••••
Varta'bl• • • • • •
Expression • • • •
IF TH£N. • • • • •
I'F GOTO. • • • • •
READ • • • • • • •
INPUT. • • • • • •
ACCEPT • • • • •
INPUT FILE • • • •
ACCEPT FILE. • • •
PRINT •••••••
'lYPE •• • • • •
PRINT FILE ••••
'IYPE FILE • • •
C l::IAblG E • • • • •

St.rinq to <var>
<var> to s eri nq

OPEN • • • • • • •
CliAIN. • • • • • •
s trinq Functions •

DAT(X). • • •
CliR(X) • • • • •
STR(X). •
lil!ID(S) • • • •
TAL(S) • • • • •
LEN(S) • • • • •
NU.M(S) • • • ••
ASC(S). • • • •

•
•
•,
•
•,
•
•

•
•
•

• • • • • • • • • • • • •••••••
•
•
•
•
• • • • • • • • • • • • • • • • • •
•
•
•
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
•
•
~
•

FORMATTED INPUT/OUTPUT. • • • • • • • • • • • • • • • • • • •
Picture. • • • • • •

Numeric • • • • •
Strtnq. • • • • •
Literal •••••

INPUT USING. •
ACCEPT USING • • • •

• •

blUlll bera •
Strinqs •
Literals.
(ret) • •

PRINT USING•
TlCPE USING •

•
•
•

•
•

•
•
•
•
•

•
•
•

•
•

•
•
•
•
•
•

•

•
•

•
•
•

•
•

•
•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•
•

C-3

•
•
•
•
•

•

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

•
•

•

•

•
•
•
•

•
•
•
•
•
•
•
•
•

•
•

•
•
•
•
•
•
•
•
•
•
•
•

• • •
• • •
• • •
• • •
• • •
• • •
•
•

• •

• • •
• • •
• • •
• • •

•
•
•
•
•

•
•
•
•
•
• ·- .

• •
• •
• •
• •
• •

•
•
•
•
•
•
•
•
•
•
•
•

•
•
• ..
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•

•
•

•
•

•

• •
• •
• •

•
•
•
•
•
•

•
•

•
•

8-1
6-1
9-1
6-1
6-1
6-2
B-2
6-2
S-2
8-3
8-3
B-4
8-4

C-4
Content.a

~SIC Manual
July 1973

Number• S-4
Strinqs • 8-S
(ret) • S-6

INPUT FII.E USING • • • • • • • • • • • • • • • • .. • • • • • 8-7
ACCEPT FI LE USIN:i • S..7
PRINT FILE USING • S..7
'l'lt'PE i'II.E USING. • • • • • • • • • • • • • • • • • • •• • • S-7
KAT INPUT USING. • 8-7
MAT ACCEPT USING • 8-7
MAT PRINT USING. • a;,;7
.MAT· 'lY.PE USING • S..7
MAT INPUT FII.E USING • 8-7
MAT ACCEPT FILE USING. • • • • • • • • • • • • • • • • • • • 8-7
MAT PRINT FILE USING • 8-7
MAT 'lYPE FILE USING. • S-7

Chapter 9 - ERROR MESSAGES. • 9-1

Appendix A ASCII and BCD Character Codes • • • • • • • • • • • • • • • • •

C-4

BASIC Manual
.July 1973

Chapter , - INI'ROOUCTION

Uainq this Manual

1-1
IN'l'ROCUCTION

Thia manual is intended to be a reference manual for XDS 948 BASIC and a
tutorial for learning BASIC.

Chapters one through four provide an introduction to BASIC. Beqinner• may read
these ch!lpters and begin writinq programs immediately. If the user needs only
the elementary. features described, he may use just these without worryin9 about
the excra feature• described in chapters five through eiqht. These more
advanced features, altilouqh always available, cost the user almost nothinq if
they are not used. ibwevar, these other features of BASIC can be of qreat
value. In pa n.1cu.1ar, the matrix paCl<aqe and the formatted input/cutput
capabilities can be very 1wlptul. These can be learned and used as necessity
dictates.

For clarity, certain typoqraphical conventions have been used throuqhout ·this
manual. To distinquisn text output by the computer from text entered by the
user, we have underlined ~aer en~~ text. Actual examples of BASIC COt'llftands
or programs ~re preceeded by I. Nonprintinq control characters are indicated by
an ampersand (&) preceaing the letter (e.g. &D to indicate a control-D}. The
usP. of the RETURN Key is indicated by (ret) and (esc) indicates the use of the
ESCAPP. l<ey.

An 1jea is enclosed by <>. Some of the concepts used in the manual and their
abbrP.viations are:

<cons>
(stn)
(fln)
(tnm)
<rel-expr)
(expr>
(var)
<let>
<111 st)

<ol1st)

<mli st)

constant
ata tement number
file number
ti le name
relational-expression
expression
variable
letter
input list in form:
<var 1) [,<var 2)] •••
output li at in form:
<expr) [{<comma>,;} (expr>J •••
out.pt.it list for matrix in form:
(var 1) [{<comma>,;} <var 2)] •••

Braces {} are used to denote a grouping. For example,

LOAO {(ret). (fnm>J

The groupinq indicates e.hat a choice 1s to be made. The above example indicates
that the word LOAD must be followed by either a (ret) or a file neme.

1-1

1-2
INl'RO!l.lCTION

BASIC Manual
July 1973

Brackets [] denote options. Items enclosed in brackets may or may not appear.
P'or example ,

((st.n 1 >] GO TO (at.n 2)

denotes t.ha t the words GO TO may or may not be preceded by a statement number;
however, the words GO TO must be followed by a statement number.

Ellipsis marks (•••) indicate that the preceedinq item may occur one or more
times in succession. For example,

<expr 1) r. <expr 2)) •••

states that (expr 1) must occur, <expr 2) miqht occur an~ that it may be
followed by <expr 3), (expr 4), etc.

In all proqram examples, each line is terminated by a (ret) which 1• not
indicated in the examples.

1-2

BASIC Manual
.July '973

Chapter 1 - INTRODUCTION

Usinq this Manual

1.,..1
IN'l'ROOOCTION

This manual is intended to be a reference manual for XDS 940 BASIC and a
tutorial for learninq BASIC.

Chapters one throuqh four provide an introduction to BASIC. Beginners may read
these chapters and begin writing proqrams immediately. It the user needs only
the elementary. features described, he may use just these without worryin<; about
the extra features described in chapters five throuqh eight. 'l'heae more
advanced feature a, althouqh always available, coat the user almost nothing if
they are not used. lbwever, these other features of BASIC can be of great
value. In part:.1cu.lar, the matrix pacJCaqe and the formatted input/output
capabilities can be very helpful. These can be learned and used as necessity
dictates.

For clarity, certain typoqraphical conventions have been used throughout this
manual. To d1st1nqu1ah text output by the computer from text entered by the
user, Wd have underlined ~ser entereq text. Actual examples of BASIC conrnands
or programs are preeeeded by I. Nonprintinq control characters are indicated by
an ampersand (&) preceding thE! letter (e.g. &D to indicate a control-D). The
usP. of the RETURN Key is indicated by (ret) and (esc) indicates the use of the
F'.SCAPF. key.

An 11ea is enclosed by <>. Some of the conO!!pts used in the manual and their
abb.rP.viations are:

<cons>
(stn)
(fln)
<tnm>
<rel-expr>
<expr)
<var>
<let>
(ilist)

(olist)

<mlist)

constant
statement number
fi le num Der
tile name
relational-expression
expression
variable
l.etter
input list in form:
(var 1) (,<var 2)] •••
output 11 st in form:
<expr) ({<comma>.;} <expr)) •••
output list for matrix in form:
(var 1) [{<comma>.;} (var 2)) •••

Braces {} are used to denote a grouping. l"or example,

LOAD {(ret), (fr~41-.;;j

The qrc;Npinq indicac.ee that a choice is to be made. The above example indicates
that the word LOAD must be followed by either a (ret) or a file name.

MSIC Manual
July 1 973

Chapter 2 - GENERAL CONC!P'l'S

2-1
GENERAL CONCEPTS

Program definition A computer program is a set of atatements which describe
the specific directions for solvinq a particular problem.
8'f means ot a program you communicate your directions to a
computer and, as with all attempts at <:an!ll\lnication, you
must be careful to restrict yourself to texms that are
clearly understood. A program consists of one or more
statements that are to be executed in a certain oriier by
the computer.

Statement ~mber Statements entered with a statement number are analyzed by
BASIC to see if. it can understand what you wish jone. If
so, it will save this statement tor later execution with
the other statements you may enter. If not, it:. will print
an error message and discard the line. These statements
are actually executed only after you have instructed Bit.SIC
to do so by entering a RUN command. In BASIC, order is
determine·.1 by the statement number. BA.SIC will execute the
statements in increasing numerical se1uence startifl(J with
the smallest statement number and proceedinq to the
largest.

Command

Constant

Integer

Floatinq Point

It a statement
BASIC a ssumea
directly after
statements are

which has no statement number is entared,
that you wish this statement to be executed
a {ret) is typed, and therefore these

called command•.

The arithmetic components of the BASIC lanquage are
constants, variables and expressions.

A constant is a fixed value used in the proqram rather than
beinq calculated by the proqram. A consta·nt may be any
decimal number, positive or negative, with or without a
decimal point, that can be expressed in twelve digits or
less. Only twelve significant digits of aceuracy are
retained. There are three forms in which a constant may be
expressed.

A constant may be expressed as an inteqer number with
twelve or fewer significant digits and no fractional part.
Examples are t

1 -7 139

A constant may be expressed as a floating
containinq a fractional part. Examples are:

2-1

point number

2-2
G!N!RAL CONel!!P'l'S

Sc:i enti tic:
Notation

Variable

Array

Dimension

Expression

BASIC Manual
July '973

, .s . 155 .275

A c:onatant is expre••ed in scientific notation if it i•
too laJ:9e or too amall to 'be expr••••d in eiqht diqit•.
Scientific notation conaiats of a number, either inteqer or
floatinq point., followed by the letter !, followed by a 1
to 3 diqit expQnent. The exponent repre•ent• thl 1nteqral
power of ten by which the number to the left of the '! mu•t
be 11Ult1pl1ed. Pbr example, all of the quantities 2.59,
.259 E1 , 25. 9E-1 , and 259'!-2 expreH the saiae mmber. '1'he
larqHt number which BASIC will accept 1 • 5. 78966M4!!76; the
smallest 1• 4.l1BIB4E-77.

BASIC permit• the user to u• a llYftlbol to represent a
conatant. Such symbol• are called variable• beeau•e the
value repre•ented by the symbol may be C:harMJ9d. In BASIC,
an arithftetic variable may be a •inqle letter or a letter
followed by a diqit. '1'he one exception is that· PI 1• also
a valid variable name. The value of this variable is
initialized by BASIC to be 3.1415926.

It is often convenient to k .. p data in a list. such a list
is called an array. The indi'lidual value• in the list are
called array elements. We refer to an array element by
uainq the name of the array and the position of the element
in the array. Pbr example, we can refer to the fciurth
element in array A by writinq A(4}. In this example, the 4
is called the subscript. Note that the naffte of an array
must be only one letter, while • subscript may be any
well-defined expression, which may also include an array
element. (Expressions are discussed below.)

An array ma-y have one or two dimenaiona. A two dimensional
array 11ay be thouqht of as havinq column• and rows. There
is always one aib•cript for each dimension; thn, a two
d1aensional array is written as A(X, Y) where X represents a
row number and Y represent.a a column number. See the DIM
sta telftent below.

Arithmetic expressions are formed by e0111bininq variables
and/or constants with arithmetic operators. There are six
arithmetic operators in BASIC:

- Neq•tion
r Exponentiation
• Multiplication
I Division
+ Addition

2-2

July 1 973

Re la t1ona l
F.xpress1on

BASIC Manual

- SUb'tra~ion

2-3
GENERAL CONCEPTS

To m•~e sure that the computer evaluates the expression the
way th!:! user meant. it to be evaluated, there is an
es-eabl1shed rule of precedence:

first
second -
'third
fourth
fltth

P\lnetions
P!xponent.iation
Negation
Multiplication or Division
Addition or Subtraction

The computer calculates from left to riqht if operators of
the aame precede nee (for example, multi pli ca ti on and
a1vi•1on) •ppear in t.he same line. To alter this order,
porentneses must be used. Expressions w1thi n the
paren'the11ea are evaluaeed first using the abeve rules of
precedence. Porentheses which do not alter the normal
pr~cedence opera'tions have no effect.

A relat1onal expression consists of two arithmetic
expressions separated 'by one of the relational operators.
The relat1onal operators available in BASIC are:

=
>

>=
<

<=
(,>

><

Relation
equal to
greater than
greater than or equal to
less than
less than or equal to
not equal to
not equal to

In &.S!C, a relational expression is either "true" or
"talae·, depending on whether the an~er so th~ q~estion
implied by the relational expression is yes or no • If
the answer to the question is .. yes"• the relational
expression is :true"4 if the answer is "no~. the relational
expression is false •

2-3

2-4
GENERAL CONCEPTS

P'unction

RND

Im'

TAB

BASIC: Manual

'!'he tunctiona available in BASIC are:

•ine of (expr) in radiarus
c:o•i ne of <expr> in radian•
tanqent of (expr> in radian•
arctanqent of (expr> in radian•
natural exponential of (expr>
ab9olute value of <expr>
natural loq of <expr) (ba•• e)
aquare root of (expr>
common loq of <expr> Cl•• 10)
inteqer part of (expr>
ra ndaa ma be r
exponentiation (ba .. 10)

July 1973

SIN{<expr))
COS((expr))
TAN(<expr>)
ATN((expr))
!!XP(<expr))
ABS ((expr>)
I.OG(<expr>)
SQJl((expr))
IJJT((expr>)
Itfl'((expr))
RND.
!!XT(<expr>)
TAB((expr>)
TIM((expr))
time
!OF((expr>)

tab• output in a PRINT atatement
time since syatam start, or user•• CPU

check for end-of-file

The <expr> eneloaed in parentheses is called the argument.
The argument need not be eneloaed in parentheses where no
confu•ion ean result from the preeedenc:e implied in the
following expreasion.

Some functions require additional description.

The RND function is a paeudo-.randO!'ll number qenerator. When
called, it will produce a number between zero and one.
When called repeatedly, 1 t wi 11 produce a sequence of
pseudo-random numbers. The •ame S«(Uenee of pseudo-random
numbers will occur in every proqram in which the RND
function is used. Thia feature is helpful in debuqqi~.
The argument in the call to the RNt> function is meaningless
and may be called with an argument or simply followed by a
period; either X .. RND. or X .. RMD(Z) is acceptable.

The INT (integer) function is used to determine the integer
part of a number. INT always returns as its value the next
amaller integer value whether the value of th~ expression
1• positive or negative; thus INT(7.B) equals 7 and
Im'(-7.B) equals -8.

When used in a PRim' statemant. the TAE ~.:;:c:tlon $p11C:e1'
over to the Nth print position, where N is the integer part
ot the argument. If N is le•• than or equal to the .current
position, nothinq happens. Spac:inq occurs 9\leh that after
a TAB(N), . the next eharaeter will be printed in the Nth
position.

2-4

July 1973

TIM

EOP'

!ASIC Manual

The TIM t.'unction returns the time since
t/68ths of a second it the a.i:qument is
ac:c:ul'INlated •ince lo<J1,n (in 1 /68ths of
&%'9\119ftt i • 1 •

2-5
G!N!RAL CONCBPTS

system start-up in
8, and the CPO time
a aeeond) if the

When readinq from either a symbolic or binary file, there
will be a certain point when there i• nothinq more to read,
becauae nothinq more ha• been written. Thia ia the
end-of-tile. Readinq paat it ia reqarded ·aa an error, so
the end-of-file conditio~ shoUld be detected before an
error occurs.

The BOP function haa a file number as its a%'9Ument,
returninq -1 if the file ia closed, 8 if the file is open
and everythinq 1• normal, 1 if the file is at the
end-of-ti le and 2 if a hardware error occurred on the last
operation.

When the end-of-file is reached, variable• will be set to
either zero or the null atrinq until the input list 1•
exhausted. Then the file will be tlagqed aa at the
end-of-tile. If an attempt is made to use the file tqain
without closinq and reopeninq it, the error message FILP!
AT EoF" will be printed. If the EOP function is called
after the end-of·-file U detected, the file wi 11 be reset
to its closed state. Therefore the end-of-file can only be
checked once on each file read.

2-5

July 1973

Preparation

LOAD

ll:rrors

!di tinq

BASIC Manual
3-1

PROGRAM PREPARATION AND EXECUTION

Chapter 3 - PROGRAM PREPARATION AND EXECUTION

'l'hlre are aeveral methods tor prepa rinq a BASIC proqram for
execution: typing directly into BASIC, Q!D, or usil'l'!J paper
tape input. The simplest and most direct is to type the
program directly into BASIC. This is the usual procedure
tor amall or medium •ized proqrama. BASIC does not have
c:cnplete provisions tor line editing like those available
in QED and for the programmer who has mast.ereC: QED it is
usually tar simpler to prepare the proqram and make
revisions while in QED, write the prQ9ram to a file and
load it into BASIC for debugqinq and execution. The moat
economical method is to prepare the proqram oft line on
paper tape, loq-in and read the paper tape into a tile.
Ccmplete information req~rding the preparation gt paper
tapes can be found in the Timesharinq User• s Guide •

LOAD (tnm>

If the· proqram was prepared in QED or on paper tape, then
the program is stored in a tile which needs to be brouqht
into memory by the LOAD command. If the user types a (ret)
after LOAr> instead of the file-name, BASIC'! responds with
•FRO~ PILE>•, and waits for a file-name to be suppl14d.

As the program is loadinq or while typing a statement
directly into MSIC, the system prints out any line
containing an error. It also prints a pointer to the
position in the line where BASIC detected the error
although thi~ may not be the location of. the error.

Any line can be corrected by retyping it uainq the same
statement number. The editing control characters &A, &W
and &O may be used while enterinq BASIC canmands or
proqrams. &A deletes the previous charactsr, &.W deletes
the previous word and &Q returns to the beginniB:J of the
current line. An uparrow, back slash or underline is
printe~ respecti1Tely so that you know that the editing
action has taken place.

Remember that a space is ignored in BASIC statements except
in a liter~l strin~ (t9xt surrounded by quotes) although
spt.ces are usu~lly inserted tor readability. ~ince each
B.ftSIC statement is limited to a sinqle line of 90
charact~r~, completion of a complex statement may be more
important than the readability ot that line.

BASIC interprets lower-case letters as upper-case letters
in all cases except.when included in a literal strinq.

MSIC: Manual
3-2

PRoGRAM PREPAM'l'ION All> !XBCU'l'IOM
.J'uly 1973

LIST

DEL

REM

Canment

PAUSE

LIS'l' {[<•tn 1) [-<•tn 2), <ea.na><•tn 2) •••]]}

When editinq the proqram, it 1• u .. ful to liet --. or all
of the •tatement• of the prOCJr••• LIS'!' print• ata.temnta
in a acendi nq numerical order reqardl••• of input order.

c;mmans!
LIS'f
LI S'l' 1 0
LIST 19 - 38
LIST 1111, 20, 30

l'l•nirs
liat entire pro«Jram
liat atate•nt. nuaber 1 e
11 at •ta tement nwnbera 1 8 thru 38
list atat.eaent ~ber• 19, 28, 30

DEL {ALL, [<•tn 1 > (-<•tn 2), <comna•><stn 2) •••)] }

When editinq the proqram in BASIC, it ia poeeible to delete
one or more atate11ent number• of the proqrarn by the DEL
command. To delete one atat.ement, the user may simply type
the statement number followed by a { ret) •

commanfi
DEL ALL
DEL 1 l!J
DEL HJ - 38
DEL 18, 28, 30

<stn) REM (text>

.Meaning
delete entire proqram
delete statement number 19
delete statement numbers 1 e thru 30
delete statement numbers 18, 28, 30

An important part of any proqra11 i• the description of what
is done and what data should be supplied. one way of
documentinq a proC}ram is to aupply remarJcs alonq ~1th the
proqram itself. ~SIC provide• this capability with the
REM (remark) statement.

100 R!M I N!V!R REMEMBER WHAT MY PROGRAM DOES

Line-by-line comment• may be included by puttinq an
exclamation point and the cC111111ent at the end of the
statement. It is not recommended that commands be
commented .in this rnaMer •. The c:omanent will be iqnored, and
the I vUl be treated as thcuqh 1 t were a (ret).
Exclamation point• may still be used in literals, ot
course. CHAIN atatements should not be cannaented with the
I, as MSIC hll• no easy way of determ1ninq it the ! belonqs
with the tile name or a ~nt.

1 ~ PRINT • P'AR OUT! • t c:Olllftent of surprise and awe

<stn) PAUSE

3-2

July 1973

CON

STOP

RUN

BASIC Manual
. 3-3

PROGRAM PREPARATION AND EXECUTION

The PAUSE statement ia useful while debuqqinq a proqram.
When executed it interrupt• the proqn.11 and returns to the
~SIC c:cmmand mode after typinq the me•••qe

PAUSE AT (at.n)

At this point c:cnnand• may be used to chanqe or examine
variable•. Proqram execution may then be re.umed us1nq the
CON C:Olllland. Pxecution may also be bequn at •me other
po:Lnt in ti. proqrana u•inq the GOTO c:Cllllland. However,
GOTO, unl:LJce CON w:Lll perform a certain amount of
initialization. Proqram atateRMtnts shoUld not be c:hanqed
or new statement• added after a PAUSE statement unle•• the
proqram is reatarted with the RUN c:onnand.

CON

The CON (continue) ccnmand is used to resume execution
after • PAUSE.

(atn) STOP

The STOP statement is used to stop proqram execution at
acme point in the proqram other than the last statement.

<stn> END

An END stateftll!nt indicates the temination point of a
proqram. Some versions of BASIC require an END as the last
ata tement of the proqram. While NOAA- M SIC does not, the
END statement is provided for eonsi stenc:y w:L th other

. systems.

RUN [<fnm>J

The user types a RUN C:Olllllland to beqin execution. The
proqram always beqina by exec:utinq the statement with the
smallest statement number and executes by aecendinq
statement numbers. An important point to re!'Aember about
MSIC is that the values of simple variables are not
autcmatieally reset to zero when a proqram has been loaded,
therefore, any variable whose value must be zero at aome
staqe ot the proqram should be initiali~•d f.o 'JUftAntee the
desired reaults.

It an escape is typed while the proqram is running, the
current statement is finished and the messaqet

3-3

BASIC Manual
3-4 July 1973

PROGRAM PREPARATION AND EXECUTION

Autat1ati c Run

SAVE

(!SC) A'l' <atn)

will be printed out. <•tn> will be the number of the next
statement to be executed. You may resume exeeution w1 th
the CON c:ommand.

'l\lo conaec:utive escapes will normally return command to the
Executive. However, if the c:urrent atateMent 1• an INPUT,
one escape will only cause MSIC to wait tor more inpit.
Two must be used to return to the canmand level of BASIC,
but this will bypass the (!SC) meHage. Attempts to
contil'l.le execution will probably meet with failure. Typing
any input value followed by an (esc) and {rat) will cause
termination with the proper message.

If the <fnm) ia included in the RUN ccmmand, the file will
be loaded into BASIC and execution will automatically begin
when loading is completed.

It "BASIC <fnm).. is typed while in the Executive, BASIC
will load the file and automatically run it. tor example:

-Bl\SIC "xYPLOT•

will call BASIC, which will load and run piblie file
'"XYPLO'l'". The file does not need to have a RUN COl!'l'ftand at
the end to start running.

<stn) EXECUTE

Include an EXECUTE statement somewhere. in the program, if
you wish the program to st.art running each time it is
loaded.

SAVE (fnm)

To store the currently loaded V'4traion of a BASIC program
onto a· permanent disc file the SAVE canmand is used. Thia
l't'llst be done if you have made changes to a program and wish.
to save the corrected version of the program on a file.

If .the user types a,.(re~) after SAVE instead ot. the <fnm>,
BASIC responds with ON) and waita for a file name to be
typed.

If there are any doubts about the current Bl\SIC proqram, it
would be beat to list the proqram be tore savtnq it, since
BASIC only writes the version of the proqram that is
currently loaded.

3-4

July 1973

CHAIN

MSIC Manual

[<stn>J CHAIN [<fnm>]

3-5
PROGRAM PREPARATION AND EXECUTION

If the user type• a (ret) after CHAIN instead of the (fnm>,
8.\SlC respond• with •PROM l"IL!!)• and waits for a file name
to be supplied. ·

Thia statement provides the user with the capability to
chain several proqraru toqether aa thouqh they were one
proqram. Althouqh MSIC can now handle ainqle proqrau of
up to 1 2251 characters, proqrama larqer than this may be
run usinq the CHAIN statement. Perhaps more useful is the
capability of breakinq a larqe proqram into Sftaller chains
and after examininq the output of one chain, chaininq to
the other chains to perform additional calc:ulations.

When the CHAIM statement is executed, the current proqram
is deleted (like DEL ALL) and a new proqram is loaded. The
values of all array variable• and simple variables are
preserved.· 'IWo restriction• on the use of the CHAIN
statement are:

1) The contents of atrinq variables (simple and
array) will be destroyed when a CHAIN statement is
executed. In other word•, all strinq variables will
be undefined at the beqinninq of a proqram chain. If
the values of strinq variables need to be retained
frcm one proqram chain to the next, then they must be
written onto a disc file before the CHAIN is executed
and read back into the variables at the beqinninq of
the next chain. This problem will be fixed in a
future version of MSIC.

2) All input and output files are closed before a new.
chain is loaded.

3-5

July 173

CCllUU.nda

LET
SET

PRINT
TYPE

Zoned fomat

BASIC Manual
4-1

BASIC COMMANDS AND STATEMENTS

Chapter 4 - BASIC COMMANDS AND STAT!MU'l'S

Indiv1dutl •t&t•enta wifahou.t a •tat•ent nuaber may be
U8ed •• one-line program• or command8. The•• c011111anda
am exec:ut.ed immediately and the r .. ulta •tor•d in the
computer or printed out. Thi• capability make• BASIC
extr•ely powerfUl •• a de•k calculator, able to evaluate
cctnplicated math .. atical expresaiona.

[<atn>] LET <var) • <expr)
[<•tn>] SET <var) = (expr)

If a variable is to be u••d u part of an expr•••ion in a
BASIC atat•ent• the uaer muat be able t.O aaaiqn a value to
the vanable. The LET or SET co1111and9 are used to indicate
replac•ent of the current value of a vanable ay a new
value. 'In BASIC neither the worda I.ET nor SET are required
l:ut either 1• accepted to retain ccmpatibil1ty with other
sya tema. For example, the conu1uand1

x = 2 + 3

•••i9n• the value S to variable XJ the canmands

SET Y • 18. 2

aaaiqn• the value of 1e.2 to the variable Y ands

LET Z = SOR (Y + X + .S)

aaaigna the value of 4 to the variable z.

[<atn>] PRINT (olUt)
[<stn)) TYPE (oliat)

N\Deric expreaaions in (olist> must be aeparated ay a comma
or a semicolon, while character ••rinca•, which are always
enclosed between quote characters (•••) , may be separated
from other strings or expression• ay nothinq, a coaaa or a
semicolon.

TYPE i• identical to PRINT except that TYPE 18 not Wied in
other BASIC •Y•t•S. Type ha• been added for !t>RTRAN II
81.ai li ad ty.

The use of a c::onaa will reeult 1n BASIC spacing to the next
multiple of 15 print po•i tion• before the next value (or
character atrinq) is printed. Each n1neric:: value oc::c:upiff

BASIC Manual
4-2 July 173

BASIC COMMANDS AND STA'mM&NTS

Packed format

Compressed
format

one print zone of 15 poaitiona. 'l'bere are five print zone•
per line. If all five zon .. have been printed, BASIC qoea
to the firat print zone of the next line to print the next
value. A character atring i• not reatricted to 1 S
poai tiona. '1'he entire atring 18 allfaya pr1nted1 ··
overpr:Lntinq will occur at the riqht l'll&DJin dependinq on
the line length of the output deYice beinq uaed.

If a PRINT atat•ent 1• teminated by a cClllllla, the output
of a (ret) 1• euppreaaed in printifkJ•

l)PllNT "f9R X •
!FOR X •

• • s I TAH(.S)'
.s .5463025

There w1 ll a llfaya be at lea• t one apace between field.I. If
a field endll in the column adjacent to the colwnn where tne
next field would normally beqin, BASIC will apace to the
next zone.

1)1 i PRINT ~12345678901234" • "~(.
1>2a PBIN'l' 1234567891?!12345 , X
I >mm
11 2345678901234 x
11 2345678901 2345 x

The user may specify that output 1• to be printed in packed
format ~ separatinq the expreaeions with a •emicolon
inatead of a comma. The ••icolon siqnala BASIC to type
two apace• and then enouqh additional space• to move to the
next multiple of three print positions on the print line.
One exception to th18 rule ia the case in which a ••icolon
is used to terminate the print ltat. Thi• aervea only to
suppress the output of a (ret) which BASIC normally typea
at the. end of a print stat .. ent •

!>PRINT '"rpR X •
l>FOR X • .S

• I .5; TM(.S)
• 5463025

l>1a PRJ:NT "THE BEGIN·1.
1)2'5 PRINT 4 ING THE ENQ
j>&m
1 TBE BEGINNING THE END

If two character strings (or an expr•••ion and a character
string) appear in an output statanent with neither a comma
nor a •emicolon ••paratinq them• · BASIC will type thau as
cloaely toqether •• poaeibl•l no extra •pacea ani iraaerted
1n the line. R.9nember that BASIC always leaWll one apace
for the siqn when outputtinq a numeric field.

l>A..:!..1

4-2

July 173

Special
Cha meter•

Statements

I
l>L:!..i.

BASIC Manual
4-3

BASIC COMMANDS AND STATBKENTS

l>PR1NT A"conr··aESSEp• B
I 3COKPRESSED 5

In order to include control character. or fUnction
char\ct.era in a charac\er •trinq, it i• neceHuy to know
the internal octal code of the character•• A lUt ot
these octal code• i• in the ·TiJae•harinq U.er' • Guide•
Havinq determined the octal c:ode of any character, include
that character 1:ly usinq the fom iinnn where n 1• an octal
digit. i'or example, the internal octal code of the bell
character (control-G) i• 147. To cause BASIC to rinq the
2-ll ~rinq proqram execution, 1111e the •tat•ent PRINT

&a1 47 • ThU to.ma for •P•C:ia.l character• may be mixed with
other conventional charactere in a •trinq. When MSIC
•CaM the •trinq, the pre•ence of the character &a signal•
it to examine the next 1-3 character• to aee if they are
octal d19ita. If not, the &.. 1• treated like any other
character. Control characters may also be indicated 1:ly ii
followed 1:ly a letter.

!)PRINT "f9R X •
ll'OR X '"'

I
.5

.5.t6302S

To space up a ainqle line include a PRINT atatement with
nothing in 1 ta lU t. Thi• may also be ac:compliS hed by
includinq an &.155 or wt in a atrinq, u 155 is the internal
octal form of a c:arriaqe ret\&rn, which 1• the same as
c:ontrol-M.

If the \Iser wants to execute a number of c:ommand9 in a row
without •toppinq each time to enter the cC111111and. then he
composes a prcqram. This proqram contains arrJ number of
•tat•ent•. For example, consider the followinq •tat.ementa
for a proqram to calculate the hypotenuse of a riqht
trianqle.

1)100 A= 4
1)1 U Ba 3
1>1 fa c • 201car2 ; ari >
))1J0 PBINT A• -A, lil!" "p,
l>mz.tt.

• • C• C

Note that each atat•ent ha8 a unique •tat.anent nmber
(which naay lie any integer in the ranqe 1 throu; h 99999) •
The preaenc:e of the stateent numller tells BASIC that th .. •

BASIC Manual
4-4 July 173

Bi\SIC COMMANDS AND STATEMENTS

GO TO

IF THEN
IF GO TO

statements are not to be immediately executed, but are to
make up a proqram. When the RUN command 18 given, tell1nq
the computer to execute the program• the atatements an
executed one at a tiae in uc::endinq n\Derical aequence.
The result printed 'by the ccmputer for the above example
would bet

s- 3 C• 5

Although BASIC execute• atat•enta accordinq to the
numerical aequence of at&t•ent n\.llllbers • the atatementa of
a program need not be prepared in numerical sequence. !br
example, the above proqram could have been prepared as i

130 PRINT .. A.• A, •s-• B,
100 A• 4
11aB=3
1 20 C • SQR(A'T'2 + 51'2)

• • C• C

and the result• would have been identical.

[<stn 1)) GO TO <atn 2)

<atn 1 > is the optional statement nU'llber Of' the GO TO
statement and <•tn 2) i• the atataaent number that i• to be
executed next.

·As we have seen, BASIC execute• the atat•enta of a proqram
in aacendinq numerical sequence by stata1ent number.
However, in wri tinq proqrams, it is •Ollletime• neceaaaiy to
change the normal sequence of execution. This can be
a.ccompliahed by uaing the GO TO atateent.

109 GO TO 1 SS
GO TO 215

<•tn 1) IF <rel-expr) THEN <stn 2)
<stn 1 > IF <rel-expr> GO TO (atn 2)

It ia often convenient to go to a statement only under
certain conditions. Thia type of statane~t is called the
IF {or conditional GO TO). Thia means, If the relational
expression 1• true, go to <stn 2>; otnerwi•e (that is, if
the relational expression 1• false) , 90 to tht next
statement nuaber in nuillericel,.•equence after <•tn 1) • For
example, 1 f we wan-c. to say, lf .<. is qrea ter than 5, qo to
• ta t•en t HU,- , we would write

70 IF X) 5 THEN 100

4-4

July 173
BASIC Manual

Other exampl .. are:

4-5
BASIC COMMANJ:S AND STA'l'EKBN'l'S

110 IP A • 10 GO TO see
see IF C(S) > 10 TBEH 2300
2301 IP D <• E THEN 111

<a tn> DA TA <con• 1 > [, <con• 2)] •••
((8 tn)) RBAD (1119 t>

· Valuu can be •••19ned to variaal .. in aeveral way•. U•inq
LIT or SET 1• one method. Another method involve• the
caaD:l.ned use of the DATA and RBAl> •tat•enta. All the
con•tant.a that are to be asaiqned to var.t.aale• throQqhout
the proqram are writ.ten toqether 1n DATA atat•enta. !ac:h
time a RBAD atat•ent appear•, the computer autcmaticall:y
aH1qne each constant in the DlTA liat to the correepond1nq
var.t.aDle in that READ statement. Pbr example, the
statementa

111 RBAD A, B, C
280 DA TA 1 t 2 , 3

would l:le equivalent to the • tatementa

100 A • 1
150 B • 2
155 c • 3

Generally a proqram wiee more than one value for a var.t.able
in order to prevent exce••ive uae of constant• and
aaaiqnment•. For example, con.aider the proqram &

1 el G • 101
221 p • 20
30 D • G * P • .11
40AaG-D
SS PRINT D, A
SS G • 151.!1
60 p •. 5
"' D • G * P • .01
80A•G-D
90 PRINT D, A

Another way of writinq this p.r:oqram 1.U1inq the READ and ~TA
atat•ent• 1• s

10 REAt 'J, ?
30 D • G • P • .01
4"A•G-D
S0 PRINT D, A
60 READ G, P

BASIC Manual
4-& July 173
~IC COMMANDS AND STATEJtENTS

INPUT
ACCEPT

70 D • G * P * .01
80A•G-D
98 PRINT D ,. A
96 DATA 100, 21, 150, S

Note that all the data that ia to be aas1qned to G and P 1•
now located in atatmaent number 96.

once all the data has been aHiqned 1:1.!i' READ atatementa,
\441tiona1 READ •tttements will result in the error muaaqe

OUT OF DATA (stn) where (atn) is the atat•ent number of
the READ atatement.

<s tn) RES 'l'ORE

RESTORE inatructa
aeqinning with the
example below, the
the same aa fer A,
RES'l'ORE atat•ent.

the computer to reread DATA valuu
first DATA atat•ent. Thus in the

value• for E, r and G (atat•ent 35) are
B and c because •t•t•ent 35 follow• a

1>10 BiAg &,. D. c;
• I!; .. • • 1>1 S EBU!l: 6• Al II ~- ~

1>20 &IAl2 p • 1>25 fRU!:I: ··~ p
l>JS Uil'QU
!)JS &IAl2 i 1 I, Si • • 1)40 fRlNT i• Ii "f!!. i:J ~- ~
1)45 PAU. 1 I ~
l>S@ I)ATA ~. z. 91 1J. 1~
j)RUN
IA• 1 :a- 3 Ca 5
In- 7
IE• 1 ,. 3 G= 5

f <stn>~ INPUT (111St)
<stn> ACCEPT (ilUt)

To u.e the READ and DATA statement• or the LET statement,
the uaer muat aaa1qn value• to all var1ali:>lea when the
proqram ia written. Tc usign values to variable• at
execution time the uaer may use the INPUT statement. Each
time the INPUT statement 1• encountered durinq execution,
the proqram 1S halted and a ? 1• output to the te:minal.
At thU time numbers separa.ted l:ly comausa, •?ltt!e• or (:et}
must kle typed in. The values are autcmatically aaaigned to
the respective variable• and execution 1• continued.

ACCEPT fUnctions identically to INPUT except that ACCEP'l' 1•
not compatible with other BASIC syat•• and ha• only been

July 173

Proqram loops

BASIC Manual
4-7

BASIC COMMAHDS AND STA'l'EKEN'l'S

added for FOR'l'MN II eimilarity.

The •di t1ft9 centre l c"haractere
used while enterinq data frCllll the
preViou• character, &111 and &Q
field.

W., &1J1 and &Q may auo be
teletype. W. delete• the
delete the current input

Now the ••Pl• proqraa qiven for the REAll and DATA
etat•ente could be written a.a:

1>1 e INPUT a. P
l>2f4 D • G * P * ·91
1>30 A • G - Q
l>:ffi PRINT p. A
1>5@ INPUT GI p
l>§S D • G * P * •IJ
1)7i A • G - p l>st PRINT p, A
l>W
I? UL.? .ii
I 2e ae
I? llL.? 1
I 1 .5 142.5 ·.

When the RUN
INPUT statement
Upon receiving
INPUT statement.

command is 91 ven, BASIC executes the tint
and wai ta for the values of G, P and (ret).
these, execution continues until the next

Note that the first four statement numbers
program for the READ statement are exactly
four statements. This makes it posai ble to
proqram in the followinq way:

10 READ G, P
20 D • G * P * .01
30 A a G - D
40 PRINT D, A
50 GO TO 10
60 DATA 100, 20 1 159, S

of the sample
l.ike the second
repreeent the

The computer will perform atat•enta 10 throuqh 50 in the
no%mal fa•hion, but after completing atat•ent 50 it will
90 back to stat•ent 10 and repeat atatanenta "' through
50. Thi• process 1a repeated over and over until all data
defined. in the DATA .•tatament (or any hiqher numbered DATA
tt.atement) has beeg ..i11ed. ' At 't.hi.• till•, the error meeaa.qe

OUT OF DATA 10 would be typed. Thia technique, often
called a loop, 1a a very import.ant programming capatd.lity.

· The followinq example shows the statements necessary to set

4-7

BASIC Manual
4-8 July 173

BASIC CO.M.MANL'S AND STATEMENTS

FOR
NEXT

up a loop to print all numbers between 1 and 100.

HII•1
15 IF I) 100 THEN 60
20 PRINT I;
45 I = I + 1
Si GO TO 15
60 PRINT •FINISHED."

First, a variable, I, was ••lected to be the cou.nter.
Second 9 an initial value of 1 waa asaigned to the counter
variable. Third, the value of the counter variable was
tested to aee if it exceeded the upper limit of 100.
Fourth, the value of the counter variable was increased
eac: h time the loop was repeated.

<stn> FOR <var) • <expr 1) TO (expr 2) (STEP (expr 3))
<stn) NEXT <var)

A second and more concise method of construct11'19' program
loops is to use the FOR and NEXT 1tateoenta. The FOR
statement assiqna the value of <expr 1 > to the variable,
<var>, uses <expr 2) as an upper limit for the value of the
variable and <expr 3) as the increment to be added to the
variahle when the NEXT statement is executed. The
increment 1• assuned to be 1 if the optional [STEP
(expr 3)] clause is omitted.

The NEXT statement must appear somewhere after the FOR
statement. The variable must be exactly the same variable
gi van in the FOR statement. The purposta of NEXT ia to
increment the value of the variable ~ <expr 3) and to
compare 1ta incremental value with the value that <expr 2)
had when the FOR statement was first encountered. If the
incremented variable is less than or @qual to that value,
.BASIC interprets the NEXT statement as "Go TO the statement
after the previous FOR statement... However, if the
incremented value of the variable is greater then the
initial value of <expr 2) , BASIC interprets the NEXT
statement as "Go TO the next ,.a·tatenaent in numerical
sequence after the NEXT statement •

The FOR loop is always executed at least once, even when
<expr 1) is initially greater then <expr 2).

Thus , using the FOR and NEXT a ta t.ements, thlt t-~:rra.-n ;i ven
ab::>ve could also be written aa:

1 0 FOR I • 1 TO 1 00
20 PRINT !;
30·NEXT I

July 173

Ar~ays

BASIC Manual

40 PRINT "FINISHED.•
RUN

4-9
BASIC COMMANDS AND STA'mMEN'l'S

Exactly the •Ame looping procedure is followed; however, it
happens automaticallY.

In this sample proqram the "body" o! the loop consists of
one statement, statement 20. The body of the loop mil/ be
aey number of stataaents, but it 18 always te.aninated Dy'
the NEXT statement.

In some program loops it is necessa.z:y to increment the
counter variable by a value other than 1. !Or example, to
find and print all even nwubers in the range 50 throuqh 56,
the followinq proqram could be used:

1>1 3 FOR X = 50 TO 56 S'.£EP 2
j)20 PRINT Xf .
l>U NEXT I
1>4@ PRINT "§.MFINISUp, •
l>mui
I 50 s2 54 56
I FINIS BED.

The a.tgwnents in the FOR •t•t•ent may be any exp,re••ion so
that:

1 aa FOR x = 1 .s 'l'O -1 .5 STEP -.1

is a valid statement. In this cue the loop is repeated
until <expr 1 > has been reduead to a value equal to or
less than <expr 2>. With a fractional azquinent, successive
adciition of the increment may not produee exact values of
the variable. The above •tat-ent terminated with X = -1.4
while the statement:

100 FOR X = 1 .5 'l'O -1 .5 STEP -.5

te.miinated properly with X = -1.s.

t,t· is o'ten 1.1sefUl to have loops within loops. These
nea ted loops can be expressed with EOR and NEXT

•tatqenta. A loop 1• vaUcl aa lonq as the <var> used in
one loop i• not identical to <var> in a nested loop and the
NEXT sto.tement for the first loop doe• not fall between the
FOR and NEXT stateruenta of the second loop.

The concept of sublcriptinq and array• bec:cme• extremely
\lsefu.l in relation to proqramminq loop•• Consider the
following table, which liSta the quantity of each type of
item sold Dy' each of five salesmen in one week.

BASIC Manual
4-10 July 173

&\SIC COMMANDS AND STA'l'El'!ENTS

DIM

Jones Smith Brown Doe White

Item 1 4'1 20 37 29 42
It• 2 10 16 3 21 8
Item 3 35 47 29 16 33

The price of each it• 1• Item 1- t1. 25 t Item 2- $4.30 and
Item 3- t2.S0.

In the following discuasion, the quantities of items in the
first table are regarded as the two dimensional array
Q(I ,s) where I 1a the item nwnber and S is the salesman.
The price• of the items are regarded as the one dimensional
array P(I) where I is the item number. The following
pro;ram calculates the total sales in dollars for each
salesman 1.1aing data from the preceding tables:

1>~1 ~fJ "' 1 TO 3 j)tLP{I)
j)30 NEXT I
I)40 fOR I • 1 TO 3
I)50 FOR s = 1 TO 5
1>60 BEAD Q(I.~?)
1>7" NEXT S
j)80 NEXT I
1)90 FOR s .. 1 TO 5
1)1'"2 T = 0
l)110 f9R I = 1 TO 3
1>1 20 T = T + P(!) * Q(I .S)
l)13Q NEXT I ..
1)1 40 PRINT TOTAL SALES FOR SALESMN(§: .. $.. T
J)1 50 NEXT S
1)200 QATA 1,25, 4,30, 2,50
1>2HJ PATA 40 I 20. 37. 29 I 42
1>22e PATA 10. 16, 3. 21. a
1>230 PATA 35 I 47 I 29 I 16, 33,
l)RUN
I TOTAL SALES
I TOTAL SALES
f TOTAL SALES
I TOTAL SALES
I TO'l'AL SALES

FOR SALESMAN 1
FOR SALESMAN 2
FOR SALESMAN 3
FOR SALESMAN 4
FOR SALESMAN 5

$ 1 a0.s
$ 211 .3
$ 131 .65
$ 166.55
$ 109.4

Statement.a 10 throU9h 30 read in the values of the list P.
Statement• 40 through 60 read .in the val1.1es of the table c.
Statements 90 though 15~ compute T, the ·total sales for
each of the five salesmen. and print eacn answer as it is
computed.

<•tn> DIM <let 1) (<expr> [,<expr>J) t,<let 2>] •••

July 173

QUIT

DEF

BASIC Manual
4-11

BAS IC COMMANDS AND STA TEM.EN'l'S

The DIM statement is used to provide storage for
sui:.cripted variables. A DIM statement may appear anywhere
in the proqram. In some other BASIC systems, (expr) can
not be an expression and must be a aet value.

<expr) can take on any non-neqative value. If the value of
the expression is not an 1nt91;Jer, the value is truncated to
the next smaller inteqer value 'before the statement is
executed.

DIM A(N) defines an array of N+1 elements: A{a), A(1),
A(2) ••• A{N). DIM A(M,N) defines an array of (M+1) x (N+1)
elements:

A(0 1 0)
A (0, 1)

A(0,N)

A (1 1 0)
A(1 1 1)
•
A(1 ,N)

A(2,0)
A{2,1)

•
A(2,N)

•••
•••

•••

A(M 1 0)
A(M, 1)

• A(M,N)

BASIC automatically establishes dimension• of A(10) or
A(10,10) for an array A, if a DIM statement doe• not
contain A. The first usage of the array determines if the
array will be singly or doubly dimensioned. Thus:

1 0 DIM A (10 , 1 0)
20 A(5 ,6) '" 3

has exactly the same effect as:

10 A(5 1 6) = 3

If a previously dimensioned array is redimensioned to a
smaller size, the memory difference is reclaimed by BASIC
and used whenever needed. For example, if an array was
dimensioned with 10 DIM A(300) and later by 90 DIM A(100);
200 array locations would be reclaimed by BASIC for further
use. It should be noted that continually red1mens1on1nq
arrays is a very inefficient operation and should be
a voided whenever possible.

[(atn)] QUIT

When the QUIT statement is executed, con~rol is returned to
the Executive.

[<stn>) DEF FN(let> ((var>) = (expr>

where (let) must be A through Z and <var> must be an
uns\lbscripted variable name. This variable is treated as a
dummy az:gument and its value is not c.hanged by a call to

4-11

BAS IC Manual
4-1 2 July 173

BASIC COMMANDS AND STATEMENTS

GOSUB
RE'IU RN

the function. The expression may be any
expression, but it can not contain a reference
user-defined function.

valid BASIC
to another

The DEF statement permits the user to define his own
aritnaetic function. The DEF statement mwat be executed
prior to the first call to the function in the program.
The meaning of a function may be chanqed in a program and
the interpretation of the function when it is called will
be that defined in the most recently executed DEF
statement.

l>20 DEF FNL(X) = SIN(X*P!/1 SW)
!)30 Z = fNL(30l
j)40 PRINT Z
j)50 PEF j'NL(X) = SQR(X*X t X*X)
1>§0 x .. 30
l>70 S = FNL(40)
j)80 PRINT S
l>RUN
l .s
I s0

The use of DEF is limited to those cases where the value of
the expression can be computed within a sinqle BASIC
statement. Often much more complicated functions, or
perhaps even sections of a program that are not functions,
must be calculated at several places within the program.
For this the GOSUB statement may be useful.

(stn 1 > GOSUB (stn 2)
(stn) RETURN

The GOSUB statement transfers control to (stn 2).
Statements are then executed in statement number order
until a RETURN statement is encountered. Then the computer
automatically .returns to the statement immediately
following the most recently executed GOSUB statement.

The following program will calculate the factorial of aey
number X that is input. Note that the subroutine is
recursive, that is, GOSUB 110 calls itself.

DIM f(20)
;NPUT X
I F X(1 THEN 1 0
X = INT(Xl
MAT F = CON{X)

#T F. = (-1) * F
K.,_0} = 1
F 1 l = 1

July 173

OIS GOTO
ON GOSUB

BASIC Manual

l>e0 GOSUB 110
l)90 PRINT X. F(X)

4-13
BASIC COMMANDS AND STATEMENTS

1~1i: !~ i?xl 0> -1 THEN 180
1>1 2a x .. x - 1
1)130 GOSUB 110
I >1 4il x = x + 1
1>170 F(X) = F(X-1) * X
1>1 80 RETUBN
l>RUN
I·? l
I 1
I? i
I 3 6
l? ~
I 5 1 20

<stn> ON <expr) GOTO <stn 1) [, <stn 2>] •••
<stn) ON (expr) GOSUB (stn 1) (, <stn 2)] •••

The effect of this statement is to execute a GOTO or GOSUB
to the Ith statement number, where I is the truncated value
of (expr). ThiS statement is used as a multi-branch GOTO
or GOSUB statement.

10 ON I GO TO 20, 30, 40 1 50, 60
20 ON N - INT(N/2) * 2 + 1 GOSUB 30, 90

In the last example, the GOSUB at statement number 30 will
be executed if N is even and if it is odd the GOSUB at
statement 90 will be executed.

4-13

July 1973

OPEN

BASIC Manual

Chapter S - FILE STATEMENTS

5-1
FI LE STATEMENTS

In addition to the tenninal, data may :be input from a file
or written onto a file. By use of files, data may be set
up beforehand or stored for use at any later date. Arrt
file in the user's file directory or some public files may
be used as input. A BASIC program may write on any file in
the user's file directory.

<stn> OPEN [#(fln),] (fnm>, [<type>J<use)

where <fln) is an expression that must evaluate in the
range 2 through 9, <fnm> is either the name of the file or
an· unsubscripted string variable name, <type) may be either
SYHOOLIC or BINARY (default SY.Ma:>LIC) and <use> is either
INPUT or OUTPUT.

Before input or output to a file can be made in a BASIC
program the file must have been opened by an earlier
statement in the program for input or output by the use of
an OPEN statement. An exception to this are files numbered
0 and 1 which are always open for texminal input and
output, respectively.

If you only have two files, one input and one output, you
do not need to specify [#(fln>,] since files 8 and 9 are
assigned when no file number is given. File 8 is the
default output file number and file 9 the default input
file number. The following pairs of statements are
equivalent:

5 OPEN #8 t /SORT-OUT/, Ot.;T?U'r
6 OPEN /SORT-OU'I'/, OUTPUT

7 OPEN #9, /72-Z7/, IclPUT
c CPi.:N /7 2-07 /, INPUT

'Io use more than one file either for input or output, all
wt one of the files must 0e opened 't1;f assigning a file
number 2 through 7. Th'l! system only allows three :.lisc
files to be open at one time, out file numbers 2 through 9
are allowed for com;;i<iti'bility with FORTAA.'i-II. The
following exa.~ple opens three files for i?Put, each with
their own 1.1.r.ique file number. Tne first uses the .;lefault
mi.-nber <;;.

13LETA.=-1
1S OPEN /1/, INPUT
2~ OPEN #1 +Ab.S {X) , /2It~PUT/, INPUT

5-1

5-2
FI LE STA TEHENTS

Symbolic File

Binary Fi le

r.-.?\.JT E'I.LE
r..cc.:;PT fl.LE

BASIC Manual
July 1913

25 OPEN 13, /3/, SYhEOLIC INPUT

A file which is open may be reopened, in which case the
file is first closed and then opened. This will reset the
file's location counter to the first line in the file in
much the same way the RESTORE statement resets the data
statement pointer to the first data statement.

The two sets of statements:

1 OPEN /A/, INPUT
2 OPE.N /B/, INPUT

1 OPEH #9, /A/, INPUT
2 OPEN /B/ 1 INPUT

both first open file /A/. Since the default input file
number is 9, the first statement of each group opens /A/ as
file 9. But then the second statement opens file /B/ for
input (as file 9, since no file number is specified) , with
the result that file /A/ will be closed and no longer
accessible unless it is reopened.

Int:iut or output files are ordinarily. symbolic. This means
that all data is converted from intemal machine
reiJresentation to normal printing characters, or vice
versa. Because of the conversion from machine
representation, extra CPU ti~e is used for writing or
reading a symbolic file.

'It> eliminate input/output conversion time, binary files
should be used. Binary files do not convert data to normal
frinting characters, but ins.tead, leave the data in the
internal machine representation.

[(stn)] INPUT FILE [#(fln) ,] (ilist>
(<stn)] ACCEP'l' FILE [#<fln),] (ilist)

Once a file has been opened for symbolic input, the user
may read from it l:ly using the INPUT FILE statement. Each
time the• Ii.'-iPUT FILE statement is encounte.red during
execution, the next value appearing on the file speci=iad
is read and assigned to the next variable in the list of
variables in the ItlPUT FILE statement. If the ini:;ut file
was opened without specifying a file num':>er or rr.1
specifying file number ~, then either of the following
statements will read from the input file:

1~ Il.'4PU'l' FILE A, a, C
21d INPUT FILE #9, A, B, C

5-2

July 1973

PRI•n' r'ILE
T'f PE FILE

BASIC Manual
5-3

F!LE STATEMENTS

If a file was opened by specifing a file number between 2
and 7, the INPUT FILE statement must include that same file
number.

10 OPEN #6, /A/, I~PUT
3" INPUT FILE #6, A, B, C

Only le;al BASIC numbers may oe read from a file (excepting
into String variables as outlined in Chapter 7). The
numeric fieldS in a data file may be separated by commas,
spa~es or {ret~s. Since BASIC treats spaces in a file as
an end-of-field character, the user may not imbed spaces
in the numeric fieldS. The only non-numeric characters
allowe<l are: comma, space, E (for scientific notation),
plus sign, minus sign and carriage retur~. A carriag~
return ends a line and is also a valid end-of-field
character. A line consisting of spaces and a carriage
return will be ignored.

[(s tn)] PRINT FI LE [ii (f ln) .J ((o list>]
[<stn)J TYPE FILE [#(fln),] [<olist>J

Once a file is opened for symbolic output, the user may
write on the file using the PRINT FILE .statement. Each
time tne PRINT FILE statement is encountered during
execution, the value of each ex?ression appearing in the
list of expressions is appended to the file specified for
out~ut in the same order that it appeared in the list of
expressions. When a file is first opened for output, the
file loc-:ition pointer always points to the beginning of the
file.

If the output tile was opened without specifying a file
number or by specifying file number i:3, then either of the
following statements will write on the output file:

1 lc'; rRI~.T FIL.i:. A, B, C
21r:l FRI ~T FIL~ Ii ti , A, S, C

If a ~rint statement is only to write a carriage return
onto the file, the conuna and output list r::ay be omitted:

1J PRINT FILZ #3

I :C a file was opene<i 'o'j specif'Jing a file nu.-nber oetween 2
and. 7, then the fRINT FILE statement must include that sQme
file numoer.

1 J OPEN #5, /h/, OU'.L'PU'f
2i:l l?Rl~T FILZ #5, A, 3, C

5-4
FI LE STA TEME~TS

READ FILE
WRI'rE
W .RI 'i't; FI LE

IF EOF

CLOS..:.

BASIC Manual
July 1973

The file output list may also contain strinqs of characters
enclosed in quotes.

15 PRINT A;B" POINTS,"OATA =" N
1 6 PRINT FILE 11 , A; B POINTS, DATA =" N

[<stn)] READ FILE [l(fln) ,] (ilist>
[<s tn)] w RITE <expr) [, <expr>] •••
(<stn>] WRITE FILE (#(fln),J <expr), [,<expr)] •••

Once a file has been opened for binary input or output,
then the alx>ve statements will handle binary data in the
same manner as the I~PUT FILE and PRINT FILE.

<stn 1 > IF EOF (<fln>) = <var) TliEN (stn 2)

See EOF function for detecting end-of-file condition.

[(s tn)] CLOSE ((fln)]

where (fln) is an expression. If no expression is given,
or if the expression is negative, all files are closed. If
the expression is iZ or 1 , or if the file is alreaqy closed,
nothing will ha?pen. Otherwise, the file will be closed.
Some examples are:

2 CLOSE
CLOSE -1
99 CLOSE 5
CLOSE (A ~ B) I 2

5-4

July 1973

D:Lmens1ons

MA'I' READ

MAT INPUT
MAT ACCePT

BASIC Manual

Chapter 6 - MATRIX STATEMENTS

6-1
MATRIX STATEMENTS

In BASIC, there are a number of statements involVing Matri·x
operations. Any array used in a MAT statement must have
been dimensioned in a DIM statement. No default dimenaions
are assumed for matrix arrays, but once the dirDensions have
been established a MAT statement can change the dimensions
of an array as long as they do not exceed the dimensions
specified in the DIM. Max1m\ltl dimensions are about 56 by
56 for a two dimensional array or about 3152 elements for a
one dimensional array.

There are several ways to establish the value• of the
elements in a matrix:

1) Ely reading values into the elements with any of
the input statements.
2) By setting the elements to zero with the ZER
atat-.ent.
3) Ely setting the elements to one with the CON or ONE
statement.
4) Ely setting a matrix to the identity matrix with
the IDN statement.

· (<.stn)] MAT READ (ilist)

The MAT READ statement will result in the input of all of
the elements of a matrix. The values of the elements are
processed row by row from a DATA statement. More than one
matrix may be inclu4ed in the input list but the liSt may
not contain string variables or simple variables.

12! DATA 2,3,4,2,2,3,3,4,5,4,S,6,7,8,9
1 5 DIM A (3 , 3) , S (3 , 2)
20 MAT READ A, B(2,2)

(<stn)) MAT INPUT (ilist>
(<.stn)) MAT ACCEPT (.iliat>

These statements function 1n the same manner as the MAT
READ statement, except that input values a.re from the
t.-.tl'l!ina.l 1nstc:a::i of from DATA statements.

6-2
MATRIX STATEMENTS

MAT INPUT FILE
MAT ACCEPT FILE

MAT READ FILE

MAT PRINT
MAT 'lYPE

MAT PRINT FILE
MAT T'!PE FILE

BASIC Manual

(<stn)) MAT INPUT FILE (iliSt)
(<stn)] MAT ACCEPT FILE <111st>

July 1973

These statements function in the same Wtrf u the MAT READ
statement, except that. input values are frOtll a disc file
previously opened for symbOlic input.

If the file is binary, then the following statement is
used:

((stn)] MAT READ FILE (ilist)

(<stn)] KAT PRINT <.mlist)
[<stn>J MAT '!YPE <.mlist)

These statements type the elements of a matrix on the
terminal, row at row. Subscripts may not be included.

1)10 DATA 2.3.4,2.2.3.3,4.5.4,5,6,7,8,9
1>15 PIM A(3.3). a0.2)
I> 20 MAT MAD A • B (2 • 2)
t>se MT PRINT A. Bl
l)RUN
l 2 3 4
I 2 2 3
I 3 4 s
I 4 s
I 6 1

To get an extra blank line between the matrices u.se a
string containing a carriaqe return. It is important here
not to put a comma or semicolon after the strinq, because
if you de, the first line of the secona array will be
indented a few spaces.

((stn)) MAT PRINT FILE (#(fln),) <.mlist>
[<stn>] MAT TYPE FILE (l<fln) ,] <m11st)

6-2

July 1973

MAT WRITE
MAT WRITE FILE

ZER

CON
ONE

BASIC Manual
6-J

MATRIX STATEMENTS

These statements are like MAT PRINT, except that output is
to a file previously opened for symbolic output. If the
file is binary, use either of the followinq statement
forms l

(<stn>J MAT WRITE <ilist>
[<stn>] MAT WRITE FILE (ilist>

[<s tn>J MAT <var> .,. ZER[(<expr) [,<expr)])]

Thia statement sets all elements of the matrix to zero.

1 >a pu1 A CJ .3 l
I> 2'2 MAT A "' ZER
\>40 MAT PRINT b
,>film
I 0 0
I 0 0
I 0 0

0
0
0

If subscripts are used, the statement will set the
dimensions to the values of the e.xpression(s).

(<stn>] MAT <var>= CON [(<expr) [,<expr)])]
[<;stn>) .MAT (va.r) = ONE [(<expi> [, <expr)])]

This statement sets all elements of the matrix to one.
Like the ZER statement, if subscr:i.pts are used the
statement will set the dimensions to the values of the
expression (a) •

1>10 PIM &(3 .3)
1)20 MAT A : CON
1)40 MAT PRINT A
l>RUN
l 1 1
I 1 1

6-4
MATRIX STA 'l'EMENTS

IDN

Sum t1 tu tion

Constant
Multi p lica ti on

Addi ti on

BASIC Manual
July 1973

I 1 1 1

(<stn)) MAT (var) a IDN ((<expr) (,(expr)])J

Thia statement sets all elements of the principal diaqonal
of the square matrix to one and all off diagonal elements
to zero.

1>10 PIM A{3 .3)
1)20 M{\T A = II?N
I)iii MAT PBINT Ai
l>B!m

I ~
I 0

0
1
0

0
0
1

[<s tn)] MAT <var 1 > = <var 2)

This statement sets the values of the elements of <var 1)
to the values of the elements of <var 2). If the
dimenaions of <var 2) are (M,N) then the dimensions of <var
1) are set to (M,N).

1>10 EATA 2.3.r:'·2·:s3,4.5.4.5.6
1>1s _IM AC3.3 __ c(4 __)
1>20 MAT 8EAP A
1)25 MAT C = A
j)30 MAT PRINT Ci
l)RUN
: 2 3 4
: 2 2 3
I 3 4 s

[<stn>] MAT <var 1) = (expr) * <var 2)
[<stn>J MAT <var 1 > = <var 2) * (expr)

The elements of a matrix may be multiplied, element l::lf
element, l::lf a constant value resultinq frOl'll the evaluation
of any leqal BASIC expression. The dimensions of <var 1 >
will be set to the dimensions of <var 2). (var 1 > need not
be distinct from <var 2),

(<stn>] MAT <var 1; "' <var 2) {+,-} (var 3) Subtraction

Matrix addition or subtraction sets the elements of (var 1 >
equal to the sum or difference of the corresponding
elements of two (not necessarily <U•t1nct) matrices, <var
2) and (var 3). The two matrices to be added or subtracted

July 1973

Multiplication

TRN

BASIC Manual
6-5

MATRIX STA'l'EMEN~

must have the same dimensions and (var 1) will have its
dimensions reset.

1>15 PIM A(3,J), B(3.3), c(3,Jl
1>20 PATA 2,3.4.2,2.3.3.i.5,4.5,6.7,8.9,10
l > 21 PATA 11, 12 .13 I 1 4 .1 5 .1 6 .17.1 8
1>25 MAT READ A. B
1)30 MAT C • A t B,. •
1)35 MAT PBINT C, &M
j)40 MAT C '" A - B
j)45 MAT PR.INT C
I >fillli
I o
I 9
I 13
I
l-2
l-5
1-7

a
10
15

-2
-6
-1

10
1 2
17

-2
-6
-7

[(a tn)] MAT <var 1 > = <var 2) * <var J)

Matrix multiplication uses three distinct matrices. If
<var 2) ha• dimensions (M,N) then <var 3) must have
dimensions (N,P), After multiplication the dimensions cf
<var 1) will have been reset to (M,P).

1 > 1 ~ DIM A , 5 • 5 l r s, 5 : s) t ~ , s • s > 1>2_ ij_T READ __ 3 ,2) _ B_2_4)
1)30 MAT C a A * B
1)40 MAT PRINT C:
1)50 DATA 3.~,4.1,5,2.-5,7.9,6,4.5,J 1 1.2
L>RUN
1-7 31 33 20
l-16 33 39 25
1-17 45 51 32

[<stn)] MAT <var 1) = TRN(<var 2))

This statement is used to calculate the transpose of a
matrix. Both matrices must be distinct. If <var 2) has
dimensions {M,N), then the TRN statement sets the
dimensions of <var 1 > to (N ,M) and each element (I ,J) of
<var 1) is equal to the element (J,I} of <var 2>.

6-5

6-6
MATRIX STA 'l'EMENTS

INV

!)RUN
I 1
I 2
I 3

BASIC Manual

4
3
4

3
4
5

6
7
8

[<stn>] MA'l' <var 1 > = INV(<var 2>)

July 1973

This statement perfo.rma two calculations; the inverse and
the detenninent. <var 2) muat be square and need not be
distinct from <var 1). The dimen•iona of <var 1) will be
reset to the dimensions of <var 2). The value of the
dete.tminent is stored in element (0,0) of <var 1).

1>10 PATA 1,2.3.4,3,4,3 1 4,5,6,7,e.9.10.11
1>15 DIM A(5,5), acs,5), C(5.5)

I~~! g:~ BE!018~1ay>
I) 3.0 MA'J' C '; A * B
1>40 PBINT DETEBMINENT = .. B(0 ,!i2)
1)45 MAT PRINT B, C
j)RUN
IDETERMINENT = 4
1-.25 .s
1-2 _,
I 1.75 .s
l 1 -.1455191E-Hl
I ,S820766E-10 1
I 0 -.2910383E-10

-.25
2

-1.25
-.2910383E-10
-. 2910383E-10

1

Sometimes when the original matrix is multiplied with its
inverse, the result does not give a perfect identity matrix
since the computer is limited to 11 significant digits.
If, during inversion, an element of the matrix is reduced
by a factor of 10 to the ninth or greater, the element will
be set to an exact zero, If this element later appears as
a pivotal element in the inversion process, execution of
~he program will be "terminated and the error message

MATRIX NEARLY SINGULAR will be typed.

July 1973

Literal

Variable

BA.SIC Manual

Chapter 7 - STRINGS

7-1
STRIOOS

BASIC haa been extended to handle groupings of characters,
called strings. Strings may now be used in INPUT or PRINT
statements and some charactei::· 'oy character manipulations
may be done on strings •

'"[<characters>] ..

A string consisting of from 0 to 30~ characters enclosed
between quotation marks is called a literal.

10 PRINT "THIS IS A LITERAL STRING"
20 PRINT ""'

<let)$[((expr))]

A group of characters may be assigned as the value of a
variable which is then designated as a string variable.
Note that numeric quantities may not be assigned to string
variables. String variable names conaist of a letter, A-Z,
followed by a dollar sign. Initially the value of a string
variable is the null string or, no characters.

1" A$ = "THE VALUE OF A IS THIS STR!OO"
20 B$=

A string variable may be a singly dimensioned azray.
Double subscripts may not be used. If a subscripted string
variable, A$, is referenced but has not been previously
dimensioned, it is assigned the default dimension A$(10).
If more then 11 locations are to be used the array must be
dimensioned in a DIM statement.

1 0 DIM B$ (1 5)
20 A$(8+1) = "NEED NOT BE DIMENSIONED
30 B${13) = "MUST BE DIMENSIONED"
40 B$ ((N+M) /2) =

Each element of <l string array is a string and is
independent of all other strir.q va.riahles.

7-1

1-2
STRIOOS

Expression

IF THEN
IF GOTo

BASIC Manual
July 1973

!ELEMENT IS A

<operand) & <operand)

String expressions are similar to numeric expressions in
that they a.re constructed :by repeating the form <operand) &.
(operand), where (operand) is either a atrinq literal,
string variable, or string function. &. is the amperand
string concatenation operator. Strinq expressions,
therefore, make it possible to form one strinq from
multiple strings.

Notice that in all of the above examples on strings, the
contents of the strinq variable haw been assigned :by a
string assignment statement in the form:

(vai;) = <expi;)

where <var) is any valid string variable name and <expr) is
any valid string expression, be it a string literal or
another string variable.

(<s tn 1] > ! F <re l-expr) THEN (s tn 2)
(<stn 1 >J IF <rel-expr) GOTO <stn 2)

Strings may also appear in the <rel-expr) portion of the IF
THEN statement. If the <rel-expr) is true, transfer will
go to <stn 2); othetWiSe, transfer will go to the statement
following the IF THEN statement.

20 I F A$ "' B$ THEN 1 J
25 IF A$(N+1))= A$(N) GO TO 1 2
30 IF A$ & BS < •LITERAL" THEN 100

'!Wo strings are equal if they are of the same length and contain indentical
characters. A string X is greater than 't if, during left-to-right
c.:<-.aracter-1:1;{-character c01Upar1son, a character in x is higher in the collating
sequence than the corresponding character in Y. If all charcters match
throughout the length of the shorter string, then the longer string is greater.
See Appendix A which lists the character collating sequence.

7-2

J'uly 1973

READ

INPUT
ACCEPT

BASIC Manu.al
7-3

STRINGS

String variables may 'ce a.sllligned ~ READ:Lng string li terala
from DATA atatement.a. The following sequence of statements
would assign the a.lpha'cet1c month names to string array M'$
and the corresponding numeric: aays of the month to the
array, o.

1 0 DIM M$ (1 2) , D(1 2)
2liJ FOR I .. 1 TO 1 2
313 READ J1'4$(I), D(I)
416 NEXT I .
50 DATA :JAN:,31 ,:FE:a:,2a,:MAR:,J1 .:APR:,:rn,:MAY:,31
60 DATA ,.JUN,. 1 30, ,.JLY ,.,31 , AUG ,31 , SEP ,30, OCT ,31
7~ DATA NOV ,30, DEC ,31

Strinqs may also be inputed from the teminal 'af wsing the
INPUT statement. The c:harac:ter strings may be entered in
any of the following four ways.

"[<characters>]"
• (<cha.racters>]'
((characters>] (&.D)
[<c harac:ters>] (ret)

With the first two input foans, BASIC will accept and store
characters into the string variable until the ending
dol.lble-quote (") (if the beginning delimiter was a
double-quote) or single-quote character is entered. The
aelimiter quotes will not be included in the st.ring. If
the string being entered is not begun with quotes , it must
be tenninated with either a Coritrol-D (&D) or a RE'IURN
(ret) •

1>10 INPUT Af{1) I A$(2l t Af{3}

I>~~ !~UT t:~4~ :> P NT1 •§$1" A$(2)
1)40 PRINT AS(3) "§,Jj" A$(4l
I>~ " I? DOUBLE QUOTES ? '§ Ii~G LE CUOTE'? CONTROL D (&O)
I? CARGAGE &EWRN(ret)
I DOU BLE QUOTES
I SI NG LE QUOTE
:coNTROL 0
!CARRIAGE RETURN

The input liSt may be a mixed arrangement of string and
numeri~ arrays.

30 INPUT A$t X, ~. A$(3)

7-3

7-4
STRINGS

INPUT FILE
ACCEPT FILE

PRINT
'IYPE

PRINT FILE
TYPE FILE

BASIC Manual
July 1973

Strings may also be input from a file preViously opened for
symbolic input with the INPUT FILE statement. The
character strings may be entered 1n any of the follc:M1 ng
three w~s.

'"[<characters>]"
• [<characters>] •
(<characters>] (ret}

The method of 1;:e.tminatinq a str1nq with a control D does
not work aa w1 th input from the te.nninal since the system
regards it as the end-of-file.

Strings may be output to the teletype by using the PRINT
statement. Literals may be included in the output list.

1>10 DIM M$(12). D(1 2)

I>~~ ~R I = 1 ~O t l>. ADkaCr)pr~ .,
1)35 PR!NT MONTH I IS MS(!) WITH . D(I) DAYS
j>40 NEXT • ,. ,. ,. ,. ,. ,. .. . " ,.
1)5~ pAfeiA JAN .31, FEB .28. MAR .31. APR .30. MAY ,31
l>60 pA'l'A "JUN .30."JLY",31,'Aw",31,·sEPN.30."ocT 00 .31
1>70 DATA ·~mv",30,"oEc=.n
l)RQN
I MONTH
I MONTH
lMONTH
I MONTH

1 IS
2 IS
3 rs
4 IS

JAN WITH
FEB WITH
MAR WITH
APR WITH

31 DAYS
28 DAYS
31 DAYS
30 DAYS

Strings may also be output to a file preViously opened for
symbolic output.

10 PRINT FILE A$, "EXNjPLE" "
20 PRINT FILE #8, A$, EXAMPLE
30 PRINT FILE 16, A$, "EXAMPLE"

Strings are p.rinted without the quote delimiters, so if
there is more than one string per line and the strings a""'
to be read later as BASIC input, then quotes will have t.o
be added to differentiate between strings. Note that. O.l::iJ 2
is the internal value of a double quote charactei;.

l>10 OPEN /A/, OUTPUT
l>20 PRUIT FILE 4 &002FIR§T&i?lil2&!002SECONR&i?l:l2"
1)30 OPEN /AJ, INPUT
l>i0 +NPUT FILENA$, B$
1)50 PRINT AS, &M BS

7-4

Ju.ly 197 3

CHA!GE

l>.&m
'FIRST
!sECOND

BASIC Manual

(<stn>] CHANGE <string var) TO <var)
(<stn>) CHANGE <var> TO <string var)

7-5
STRI!:KJS

In either CHANGE atatement, <string var) will cont.a.in a
atring of length N, <var> will have the zeroth element
equal to N and the first through Nth elements equal to the
internal decimal code of the corresponding cha.cacter of the
string. <string var) must be ei tner a subscripted or
unsubscripted string name and <.var> must be a singly
subscripted array previously dimensioned by a D!M
statement; no default values are available.

String to (var) Changing a (string var> to a <var> stores the length of the
string in the zeroth element of the <var) and the internal
decimal value of each character of the st.ring into
successive elements of the array.

I) 5 p;p1 M { 1 ?)
I >1 ?' A$ = "string
l>1 5 CH.A.NGE AS. TO M
1>20 PRWT LENGTH !S " M(J)
1>30 PRpT 0 VALUES ARE" M(1); J".(21; M{3l; Jf:\4)
: > El:ill
i LENG Th IS o
: V.:.LUES ARE 51 84 82 73

!f the st.ring is lo~ger than the dimensioned length of the
array, the message ARRAY OUT OF BOUNDS wi 11 be printed.

Presumably some manipulation of the string is desired, such
as making sure that all letters are upper case. Since the
value of a lower case character is between 65 and 90, it
can be converted to upper case 'a'j subtracting 32.

I) 5 RIM M (1 0)
l>rn M ,. ·strins"
1>15 CH,ANGE A$ TO M
1>20 FOR I :: 1 TO M(0)
!)30 If i1 (I l < 65 THEN 45
l) 3 ;i I F M (!) > 9 0 THEN 45
l)40 ~(I) = M(I} - 32
l>45 NEXT ;): " "
l>SQ PRINT NE'wJ VALUES
l>RYN
l NEW VALUES 51 52

7-5

M(1lj M(2\; +~ { 3) i M{4)

50 41

BASIC Manual
7-6 July 1973

S'l'RIN:IS

<var> to strinq Perhaps a strinq i• desired fraa an array. To c:hanqe an

OPEN

CHAIN

array to a atrinq make• a strinq whose lenqth 1• the wlue
of the zeroth element of the array and converts the numbers
in each element ot the array to the next character of the
strinq.

1>5 pIH M(10l •
j)10 Ai • String
1)15 ClJMSiE At TO M

!~~ ~t~i~f~-~ ~
I)45 NEX'l' I
1)55 CHAN9E M TO Bf •
1)60 PRINT 4 UPPER CA§E A IS St
l>mat
!UPPER CASE A IS STRING

(stn> OPEN (#(fln>,J (fnm), [<type)] (1.Use)

The (fnm) file name in the OPEN sta talent can be replaced
by an unsubecripted atring vanable, the value of which is
the file name. If an unalashed file name is to be 149•da.
its nt.me must Jae spelled out in full (no subst1tut.1nq TEL
for 'l'ELE'r.CPE) • Strinq expressions hawever, are not
alJ.owed in lieu of file names.

For example, assume that a
files: /A/, /B/ and /c/.
open the files in order
200 when the last file has

10 A$(1) = "./A/•
20 A$(2) = /B/"
30 A$(3) = "/c/"
40 N = 1
50 IF N) 3 THEN 200
60 A$ = A$(N)

prcqram must sequentially read 3
The followinq statements will
and transfer to statement number
been opened:

70 OPEN #3, A$, OUTPUT
80 N = N + 1
90 PRINT FILE #3. "oPENErt
100 GO TO 50
110 QUIT

<stn) CHAIN ((fnm)]

The (fnm> file name in the CHAIN statement can be replaced
by an uneubecripted strinq varia bl•, the value of which is
the file ?µlme, just as in the OPEN statement.

7-6

Ju.ly 197 3

St.ring Functions

DAT(X)

CliR(X)

STR(X)

HED(3)

'I'AL(S)

BASIC M.anual
7-7

STRINGS

This function will always return t.he current elate as an 1 8
character string of the form YY/MM/DD.li!hh:mro:•s.S where
TI=year, M.M=month, DD=day, hh=houra; mm=minutes, ss•seconda
and a represents a blank. '!'he variable name and value of
the numeric argument, x, is unimportant, !::ut must be
present nevertneless.

j)10 As = QAT(0)
1)20 PJYNT A$
'>mm
bJ/04/23 15:32:11

This function returns a one character string eqW.valent to
the internal decimal value of the argument x. If X is less
then 0 or greater than 255, the funcUon returns the null
string.

j)PRINT CHR{55). CHR{ 21}
IW 5

Tnis function will return a 2-13 cha.racter string
equivalent to the value of its numeric axgument, x. The
string will contain 7 significant digits, a minua sign if
negative and scien~ific notation if needed.

This function, in conjunction with funcUon HED, would be
usefUl if a numeric value needed t.O be printed vertically
(along the left margin of a plot printout: poss1 bly).

l>PJYNT STR(P!*-1,0E-11l, STR(5+10)
l-.3141592E-10 15

This function returns a one character string consisting of
the first charact.er of the a.::qument string, S. The
argument remains unchanged. lf the axgument string is
null, then the function returns the null string.

l>rn As="TEST"
1>20 PRINT liED{STR{PI*-1 •E-11)) .HED("STRING"); tlEP(ill
l>RUN
l- S T

This function returns a string consisting of all characters
in the a.rgument string, s. except the first character. The
a.::qument remains unchanged. If the a.::qument is either null
or only one character in length, TAL will return the null

7-1

1-a
STRIWS

LEN(S)

NUM(S)

BASIC Manual
July 1973

strinq. The example shows how to print a vertical heading
with either alpha or numeric values.

I >1 a Ar "'mp1NG ..
1>1 S B$ = STR(PI*-1 e0E::11)

I~~! cr;s .. IuolA:Y 13

!~!! ii : !f ti!t
!>45 PRINT ca. PS
1)50 NEXT I
l)RUN
tH
IE
IA
ID
II
IN
IG
I
I
I ..
I
I
I
I
I

•
3
1
4
1
5
9
2
E

1
0

This function returns a numeric: value equal to the number
of characters in the argument string, s. If the string, S,
is null then zero is returned.

t>PSINT LEN{DATA(0)), LEN(TAL("'x"'l)
l 18 0

This function returns a floating point value equivalent to
its st.ring argument, s. s must contain a string which has
a numeric counterpart.

l>Pfi!NT STR(PI*-1.@E-11) I NUM(STR(PI*-1.@E-11))
J-,314159 2E-1 Ill -.314159 2E-111l

If the arqwnent string is not valid {contains a bad
character. for instance), an error messaqe will be displayed
and ,5798604E77 (positive machine infinity) will be
returned.

l>PRINT NJJM.("3.14$56")
I BAD STR CHAR
I .5799604E+ 77

7-8

July 1973

AS<: (S)

BASIC Manual
7-9

STRINGS

Thia function returns the internal decimal value of the
·first character of its strinq a:rqument. s.

l>PRINT ASC ("usT"L ASC (CliR(51))

' 52 51

If the strinq is null, ASC returns the value -.1; else it
returns a value in the ranqe 0 - 255.

7-9

July 1973

Picture

~iu.."tleric

:.: "Cring

.:..it.era l

BASIC Manual

Chapter 8 - FOR.HATTED INPUT/OUTPUT

a-1
?0.CMATTED !NPUT/CUTPU'l'

Formatted Input/Output may also :oe done in 3ASIC. A line
is formatted according to a picture statement.

<stn> :(~icture string)

'l'he colon denotes a picture statement, <J?icture string> is
the actua.1 ~icture or image by which the data is to be
input or output. 'I'he ,i?icture string begins in the fir.st
character space :allowing the colon.

Pictures are Ji vid.ed into fields: numeric, string or
literal. ;., nur;;eric :1e..l.u consists of mainly libras (#),
;.;i th an oi;;tiona l sign at the tront, an optional decimal
point scmewnere in the libras, and an optional exponent
(denoted '1;{ 4 exc.!.amation points) at the end. If the
optional exponent is used, the decimal point must appear
somewhere in the libxas. A nu_meric field may be term1na-ted
by a commercial at sign (@), which acts lil<:.e a li bra· in
that it reserves a place for a dis-it, but the @will always
be the last character of the field. Examples:

~.; : +####Ii
: -##ff#

4!Z : #•IF
5 i: +# .. #If! I ! !
oir;; :#11#.&+#fflF#

r. string field consists of any nu.11ber of dollar signs and
:::a~· ;:ie ter.ninated with -a sing le quote \') , which mari<s the
last characte.::- of a 3tring field.

,,., : $$$$$$

2.J : $$' $$$$$

.'-. literal field consists of any characters that de not
z;igni.Ey nUrr.eric or string fields.

1~ : this is a literal pictu.::-e field

•• ote that :iou .ole ::;.uotes (") are: not use :.i for literal f-ie lds
in ;;.icture strinCJ;:;. Dif!erent field ty~es may be mixed in
a i--iC t.L;.re st.ring.

1;:; :,;;,;i.##!!!!'I'hat is numeric and this is literal
2.J :$$$##$$String, numeric and literal mixed.

BASIC Manual
8-2 July 1973

FoRMATTED IW?UT/OUTFUT

Il~FUT USI~<G
i.CC!::?T USI~K>

Strings

It is also possible to specify the picture string directly
in the input or output statement instead of referencing
another statement number. Any string expression may be
used in place of the statement number and it will act as
the picture string. For example, instead of using the
following two statements:

1121 : ###@$$$$
20 INPUT USING 10, A, B$

Either of the following INPUT statements could be used and
would be identical.

20 INPUT us~~G "###@i$$$", A, B$
30 F$(3) = ###@$$$$
40 INPUT USING F$ (3) , A, 8$

Runtime formats should be used carefUlly because they cause
a substantial amount of overhead in C?U time each time the
format is used.

[<stn 1>] INPUT USING (stn 2), (ilist)
[<stn 1>] ACCEPT USING (stn 2), (ilist)

where <s tn 2) is the statement number of the picture string
and (ilist> contains variables that may be either string or
numeric. I~PUT USING reads formatted input from the
terminal.

As m.any characters as the field is wide are read from the
in~ut line. once the field has been read, it is converted
to binary using the free field converter - the picture only
reserves a particular width. Thus signs, exclamation
fOints and decimal points in the picture have no effect.

:>10 ilj#@+#@-#@#,@##,1111
:> 20 INPUT USDlG H:: I A • .a. c, D. E
1)30 PBINT A; 3; C: Di E
I)RQi.l
I? 3-5,-40,32,55E3
: 3 -5 -40 .32 550

If the input variable is a string, the characters are
stored as the value of the string,

l>'i J; 5u;>;:;' $$$lilj~
\)20 INPUT USI~G 13, A$, B§
\)30 PR!t-;T h$ "&.11 1 ili
I> .fillli
l? S'I'.!UNG
jST.RI

July 1973

Literals

(re t.)

BASIC Manual
8-3

FORMATTED INPUT/OUTPUT

If there is a literal strina in the picture, as many
characters in the input line will be skipped as the literal
is long.

l>1J :LITERAL$$$$
i)20 !~PUI US!~G 12, A$
l>3? Pr~r~·~T As
l > fillli
i? SOME. 'fl ILL 3E ;USSI.NG
ILL .3

A carriage
s tri:1g skips
I n.t,-u t. then
picture.

return (&M or &1 55) appearing in the picture
to trie :Oeg inning of the next input line.
proceeds accordina t.o the remainder of the

1>12 :U&LH#
1>20 LiPUT us::::.;c 1 J. "• 3
1)30 PRDiT ,.,,, ~

l > fillli.
I? 1 234
15676
: 1 2 56

>1¥ iff#literal&H##
)2J I~?UT USI~G 1~. A, B
)30 FRI:;T A, i3
> ?,r;:;
? 1 234
s 67 2
1T ·so

)1 J ; ilF. 0.1 55 li ##
)~~ Ii.J?UT USI~iG 1~. ;, .. , CJ

>3.J i??.LT t;. 3
> fild..;;;
? 1 234
~

1 2 78

,,·nen tne end of a fil.cture is reached without. the input list
-:.ein-:;- exr.aus te~, tr.2 ,.ic:t.ure is simply rescanned.

l>LL:.JL
:>2~ I~~rW'I C~l,1G 1~. ha .a, C
l/J..; ?~!~1T A; oj 1_

; > "'"u:.
17 571i5
i s 7

BASIC Manual
8-4 July 1973

FORMATTED INPUT/OUTPUT

P~L~'l' USING
T"l PE USii.~G

If a (ret) is read from the input line while getting a
field, the field is immediately te.xminated. Thus INPUT
USING may be used to read a whole line as a strinq. No
trailing spaces will be appended.

:>10 ;$$$$$$$$$$$$
1>20 INPUT QS.NG 10. A$
1)30 PR!NT A$ IS ALL"
l>&lli
I? MTURN
I RETURNIS ALI.

This also means that if a (ret) is read in the middle of a
numeric field, no zeros will' be added at the end.

:>u :11un111
1)20 INPUT USING 10, A
1)30 PRINT A
!)RUN
17 ill
I 333

When a (ret) is read on the input line before the input
list is exhausted, all remaining input variables will be
either zero or the null string.

1>10 ill#@l##iff
1)20 iNPUT USING 10, A, B, A~
l>J@ PRINT A. §, A$
l>.&m
: ? il.S2.1.
: 7 0

When the variable list is exhausted, any remaining
characters on the current input line are skipped.

(<stn 1)) PRINT USING (stn 2), (ilist)
[<stn 1)) TYPE USING <stn 2), <ilist)

where <stn 2) is the statement number of the picture string
and the variables in (ilist> may be either string or
numeric. These statements write foi:matted output on the
te.rminal.

A numeric value may be ou·tput in the
i~teger 'a-:! using a field of multiple '#'
• 1• for each integer digit desired.
right-justified in the indicated field.

1)10 i1Ulit##
1>20 PRINT USI.::iG 10 I 55. -3

form of a rounded
characters• one

The value w.i ll be

July 1973
BASIC Manual

: > llilli
: 55 -3

8-5
FORMA1:TED INPUT/OUTPUT

Numeric values may be output as fixed decimals by using the
field fo.rm (integer).(decirnal); where <integer) is a string
of '#'s denoting places to the left of the decimal point
and (decimal> is a string of '# 1 s indicating the number of
places to the right of the decimal.

:) 5 A= 1 9 87 , 6
:>1~ i#####,#@##,##
l>2f=l PRI•~T US!>lG 10, A• 17.865
.: > fillli
: 1987,6017,36

Scientific notation output for.nat is denoted by including
four exclamation points (I) or up arrows (T) after a fixed
i-'Oint format, The exponent will be output as the character
'E' followed by either a plus or minus sign and two digits
which represent the exponent,

l) 5 A = 1 9 87 , 6
l>10 :#,###llll###,##fTTT
l>W PRVlT QSING 10, A, A
l>RUN
:1.988£+<:3198,76E+01

In all of the aeov~ pictures, no explicit provision has
oeen made for signs, when no siqn is specified BASIC will
output a minus sign if the number is negative, If the
number is positive, no sign will oe output. If it is
uesired to specify the si~n, either a plus or minus sign
may be put before the number format. If a i?lus sign is
used, <.1. plus sign will appear if the num:oer is positive or
zero and a winus sign will appear if the number is
negative. A minus sign prints a space if the number is
g.redte.::- than or equal to zero; i.t prints a minus sign if
the number is less than zero.

i>LJ :#;;,)#ii•#
\) 2i.'. PRb'l' USI.iG
: > 3 0 it# • @+ #. #
l>4.; !?RHT usrnG
l)5C !-f I{#-#! :r
\)6? P:KlN'f USL,C
: > E:.lJ.E
l-3.i s.~:
l-3 .. ~+S ,.u
:-3.d :,.-:;

1 ~. -3 t 5

-3 I 5

-3 ! 5

Strine variables
picture forrr.at

an:l expressions may be output with a
by using a field consisting of multiple

BASIC Manual
S-6 July 1973

fbRMAT'I'ED WPUT/OUTl?UT

(rat)

dollar signs {$). The string value will be left-justified
in the field. with trailing blank fill if the st.rir.g length
is less than the field width. If the string length is
greater than the field width, only the left-most string
characters will be output.

I •• •• ,)10 A$ = HI
1)20 B$ = A$ & " HOW ARE you
l>3Z :$$$$$$ 1 $$$$$
1)40 PRINT USING 30. A$, 3$
l)RUN
IHI- HI HO

Chafacter strings within a picture will be output literally
unless there is an ampersand (&) in the string. If the &
is followed 1::1y a 1-3 digit octal number, then the
corresponding character will be output. The ampersand may
also be followed ey letter A - z, in ·.ihich case the two
characters will be replaced ~ the corresponding
control-character.

:>10 :$$$$$$$$$$$$$$$~$$$$$$$$$$
1)20 PRINT USING 10, TriIS WI&54L BE OSJ1N 2
l>RUN
l THIS WILL BE O
lN 2 LHlES

LINZS
..

#hen a picture does not contain as many ni.m-.eric or string
fieldS as the list contains variables, the picture is
.:;imply repeated from the beginning. t:o (ret) is out;;,ut
when the picture is repeated; l:ut the user :nay incl\..i;ie a &.'-i
or &155 at the end of the picture anj the (ret) will ~
output only when the picture is repeated.

j)1Z PRH;T USHiG 3J• 1, ~' 3, 4• 5
: > 20 l?RINT us n;G 4G • 1 , ". 3 • 4. :;
l>~
1>413 :#&155
l>P-m;
: 1 2345
l 1 :2
13
l4 :s

w..src normally terminates the print line with a ~let.1 af-:..<0::=
the last ext,;ression L.as :oeen writt-::n. ,,.a,.;ever, if t:ie la.st
expression in the PRr:;: t;SI~iC list is followed ,;ii a comma,
2.h<iIC will not output trie (ret).

July 1973

INPUT FI LE USltiG
ACCEPT ?'ILE USING
PRI~T F!LE USING
'n!'PE FILE. USil~G

aA'l' Ii:i?UT USihG
hA 1· .nee;;, P'r usr~.G
;.~n I' r .u t-.:. t::r~~~

hi. -r· ·1y i?.i:: USI~<G

BASIC Manual
8-7

FORMATTED INPUT/OUTPUT

[<stn 1)]
[<stn 1>]
(<stn 1>]
[<stn 1)]

INPUT FILE [l<fln),] USING <stn 2), (ilist)
ACCEPT FILE [#(fln>j] USING (stn 2), (ilist>
PRI . .NT FILE (#(fln)j USI~G. (stn 2), <illst)
'n!'PE FILE (#(fln), USING <stn 2), <ilist>

~ using the above statements,
formatted when used with a
syml:xllic.

input or output may be
file preViously opened as

(<s tn 1) J i·iA'l.' Il.~PlJT USU.iG <s tn 2)' (i list>
[<stn 1)) t:.b.'l' .:.cc.:.r:T GSING <stn 2), (ilist)
[<stn 1)] MAT PRI~..;T USING (stn 2), (ilist)
[(stn 1>] hAT 'I'YPE USING (stn 2), (ilist)

Formatted matrix input or output can use the te.tminal 'af
followinc the same rules as for formatted input/output to
the terminal.

In addition, the hi.'L' i?.:UHT USI.'iG statement will cause the
picture to be rescanned as o·ften as is necessa.i:y to print a
matrix row. A (ret) wi 11 be output after each row.

l >10 .en. x (3 .s l
1)20 MAT READ X
1)30 DA'rA 11.12.13.14.15,21.n,2~.24,25
1>35 PATA 31 ,3 2,33 .34.35 .,
1>4~ 1$ = "=======-==================
l)50 PRINT L$
l>6Z .MA'l' PBINT USING 8? I x
1)70 PRINT L$
I> a0 : 1111. 1 1 #
l>filll:!
\==========================
:11.;: 12 13.0 14 15.Z
121.0 22 23.Z 24 25.0
131 .kl 32 33.iJ 34 35.0
:~=-=======================

1;...1 I~ • .l-U'.i. FI!..i:. us:i:.:.G [<stn 1 >] MAT INPUT fl LE (#(fln) ,] USI~iG <stn 2)' (ilist>
I.A'r ACCEf'.L FIU. US!hGL<stn 1)] };AT ACCEPT FILE [#(fln>,J usrnG <stn 2>, (ilist>
w.'.:..' i-k.I~>'l' .fIL,i:; i,.;SI~<G (<stn 1)] MA'l' PRIN'r FILE [#(fln),J USING (stn 2), (ilist)
ht>::. '.:."fr.i,, i:"IL.;. v5I~.'3 [<stn 1)] hAT TYPE FILE [#(fln>,J usr;;JG (stn 2), (ilist)

Fo.tmatted matrix input/output may be to a file previously
o~ened for syr::bolic output "at following the al:x:lve rules for
fonnatteQ. r..atrix output.

'6-7

JUly 1973

ARRAY DIM 'l'OO I.AlGE

ARRAY OUT OF BOUNDS

~D EXPONENT

~D FILE NAME

BAD INPUT CHARACTER

~D STR CHAR

CMAOOE S'lMT ILLEGAL

DIRECT ONLY

ERR IN FORMAT

ERROR IN PICTURE

EXCESSIVE GOSUB NESTING

BASIC Manual

Chapter 9 - ERROR MESSAGES

9-1
ERROR MESSAGES

Note that error meaaaqes are followed by the atatau.ent
nwabar of the last statement executed before the
erxor.

The size of an array dimensioned by a DIM statement ia
too la19e for the available storaqe.

You are ti:yinq to place values into an array where the
subscript is bigger than the dimensioned value. The
d1nlena1oned value may be either a default value or an
assigned value in a tlIM statement.

The exponent of a number has an illeqal character in
it.

A file name
non-existent
LOAD.

that is
public

not
file

in your diractoi:y or a
name follows the command

You typed a character that is illegal in
field in response to an input statement.
field.

a numeric
Retype the

The function NUM was called with a strinq which·has a
character that is illeqal in a numeric field.
Positive machine infinity is retum and the program
continues runninq.

The variable name used in a CHANGE statement is not a
valid array name.

You. may not insert a command like RUN, LIST, DEL, I.DAO
or SAVE into a proqrCllll as a program statement.

There is a runtime format processing error.

This error occurs t.rom a PRINT USING statement where
the picture statement number is a string or string
variable anc:l that string contains a fomat error such
as only three 1 • s. This error also occurs if a
formatted input/output statement references a
statement which is not a picture.

Too many GOSUB statements without executing a RE'IURN
statement. The max1muaa nU111ber allowed is calculated
by the following t

9-1

9-2
ERROR MESSAGES

FILE AT EOF

FILE CLOSED

FI LE 'l"l PE W RO l:G

FI LE USE WRONG

Et>RMAT NOT FOR NUMBER

FORMAT NOT FOR STRING

EUNCTION ILLEGAL

ILLEGAL

BASIC Manual
J\lly '973

(<no of FOR)) * 7 + (<no o~ GOSUB>) <= 2'54S

It may mean that subroutines are being eXited by GOTO
or IF-THEN statements instead of RETURN.

Attempt to read paat the end of the file on a READ
FILE or INPUT FILE statement.

Attempt to read or write on a file tha.t has not been
opened by an OPEN statement.

A file was opened as symbolic and you are trying to
use it as binary or else it was opened aa 'binaiy and
you are trying to use it as symkolic.

You are trying to write on a file tha.t was opened as
input or else you are trying to read from a file that
was opened as output.

You are attempting formatted reading/writing while
designating a numeric variable in the statement, l::Ut
indicating a non-numeric field in the picture~

You are attempting formatted reading/writing while
designating a string variable in the statement, but
indicating a non-string field in the picture.

You a.re trying to call a BASIC function with an
incorrect name or you are using a three character name
for a subscripted variable and the computer thinks it
is a function.

The computer does not recognize what you have typed as
a legal BASIC statement or command. Sometimes it can
tell you what character is wrong. The statement needs
to be retyped.

IMPROPER NESTING IN FOR You have either a FOR or a NEX'l' for a second loop
LOOP inbetween the FO.R.-NEXT of the first loop. It could

also mean more than one NEXT for a single FOR.

INCO.MPLE: TE

INCONSISTENT DI~ENSIONS

LINE NUMBER REQUIRED

You did not finish the command or statement.

The dimensions of two matrices to be added or
subtracted are not identical. It could also be that
you are trying to multiply two matrices with the first
haVing dimensions {.M,NJ anJ. the second not having
dimensions (N,P).

The command you have just typed is not a valid command
and must be a program statement.

9-2

July 1973

t.J:NE NUMBER '1'00 BIG

BASIC Manual
9-3

ERROR MESSAGES

You have used a statement number that is greater than
99999.

l.l:NE TOO LONG You are tryinq to enter a statement wh1ch exceeds the
maximum number of characters allowed in a line. This
nwnber varies mt will be less than 90.

LOG OF NUMBER <= 0 THE a.tgument of a LOG function is non-positive.

MATRICES NOT INDEPENDENT Matrix multiplication requires three d.istinct matrices
and yours may not be distinct. The MAT TRN statement
also requires distinct matrices and may be your source
of trouble.

MATRIX STATEMENT ILI.SGAL Illegal 1yntax in a MAT statement.
IN

MATRIX NEARLY SINGLULAR A MAT INV statement has encountered a matrix with zero
or .nearly zero pivotal elements. The matrix 'being
inverted is singular or nearly so.

NEGATIVE SUBSCRIPT The expression in a subscripted variable was negative.

NO PROGRAM It is possible to get this from a RUN, LIST or DELETE
command. Perhaps you forgot to load 1 t from a file or
maybe you accidentally deleted it.

NO S'?MT. You have entered a DEL command referencing a statement
number that does not exist.

WMB READ FOR STRING A number was input where the READ statement· expected a
string variable.

NUMBER ILLEGAL The computer is ~.nterpreting something in the
statement as a nwnoer that is illegal or in the wrong
place. Perhaps you have left out an arithmetic
operator or you concatenated a number to form a string
variable.

NUMBER TOO BIG

OUT OF DATA

OUT OF MEMORY

The a.tg"ument
· the la.tg"es t
specified 1:rt
than 9.

of the INT function may be greater than
acceptable integer or the file number

an input or output statement is greater

A READ statement for which there is no data
enc.ountered. This may mean a normal end
proqram and should ce ignored. Othezw.ise,
that you have not supplied enough .lat.a
a ta temen ts •

has been
Of '.iOUr
it mean.;;
in :;,:. TA

Program (or arrays in it) is too big and no sto~age is
available (22,SlJ characters available), or FO.K loops

9-3

9-4
ERROR MESSAGES

OVERFLOW DURING INPUT

RAWE ERROR

RE'IURN BER)RE GOSOB

SQRT OF NEG NUMBER

STNG BAD

STRING READ FOR NUMB

STRING TOO LONG

UNABLE TO OPEN FILE

UliDEF LINE NO IN

UNDE£tNED FUNCTION

UNCEFINED N.ATRIX

BASIC Manual

nested too deep.
according to:

July 1973

The maximum number is figured

(<no of FOR) * 7 + ((no Of GOSUB)) <• 2048

A number larger than 5.78960E76 baa been input. The
computer supplies machine infinity and continues
xunni nq the program.

The expression in an ON-GOTO or ON-GOSUB statement
evaluates to I where I does not have a correspondinq
statement number. Therefore there is no statement to
transfer control to. Another cause can be the
argument of the EOF function is greater than 9.

The computer cannot execute a RETURN before it has
executed a GOS OB because the GOSUB sets up the place
to which the RETURN statement must go.

The argument of the SOR function is negative. The
computer returns the square root of the ab&olute value
of the argument and continues running.

The computer is interpreting something in the
statement as a string that is illegal or in the wrong
place, such as a strinq on the right hand aide of a
numeric expression.

A string was input where the READ statement expected a
numeric value.

You are trying to input a string which is more than
300 characters. Another possible reason for this
message is that you are concatenating two or more
strings and the resulting string 1• more than 300
characters.

You have an OPEN statement that refers to a file name
that does not exist.

The statement number appearing in a GO'l'O, GOSUB,
ON GOTO. ON GOSUB, or IF-THE..>i statement does not
appear as a number for a statement in the program.

You are calling a programmer defined function that you
have forgotten to define or else the DEF statement is
after the :.:tatement where you use the function.

A matrix has been used on the right hand side of a MA'I'
statement before having values assigned to its
elements.

9-4

July 1973

UNDEFINED SUBSCRIPTED
VARIASLE

UNDERFLOW DURING INPUT

VARIASLE ILLEGAL

WRON:i NUMBER SUBSCRIPTS

0 STEP SIZE IN FOR LOOP

BASIC Manual
9-5

ERROR MESS.AGES

The program is trying to use a subscripted van.able
that has no previous value. Before arrt van.able can
appear on the riqht hand side o:f an usiqnment
statement, it must :first appear on the left aide o:f
one, or in an input statement.

A number in absolute size aaller than 4.31 Sta9E-79 hid
been input. The caaputer supplies 0.963616E-77 and
continues running.

There are some places where certain van.able names ara
not allowed:

1)

2)

3)

sub&cripted van.ables aa the iterative variable in
a For statement, i.e. FOR A(I) = •••
subscripted variables as the dmmy variable in a
DEF statement, i.e. DEF FNA(A(0)) •

a letter-number combination variable name of a
subscripted variable, 1.e. DIM. A1 (50).

A one-dimensional array was referenced with two
dimensions or a two-dimensional array was referenced
with one dimension.

The increment . value of a FOR loop contains a zero
value.

9-5

BASIC Manual A-1

July 197 3 ASCII and BCD Character Codes

Xt\S 940 and CDC 3800 Character Cocie•

Xt\S 9 40 ASCII COC 3800 BCD

INT INT EXT 'I'EU: LINE INT INT EXT CARD CARD LINE
D&;~ Q£I OCT !XP~ PBJ;NT&;R I;JEC OCI Q!;;T fBJ;NT .eu~~li fBJ;NTER

00 000 040 Sp
~·

4S 60 20 sp sp -;p
01 001 041 L A 42 52 52 nci -0 "
~2 002 i642 29 35 75 nd +58 ~

03 003 043 ti to 62 76 36 nd 06S -
04 004 044 $ <; 43 53 53 $ -38
05 005 045 % II 14 1 6 16 nd 68 :·~
06 006 046 & ~ 63 77 37 nd 078 " 07 la07 047 • 1 2 14 14 48 t

06 0Hi 050 (60 74 34 (04S
09 011 051) 28 34 74) +48
10 ~1 2 12152 * " 44 54 54 * -4S ..
11 013 053 + .. 16 20 60 + + ~

1 2 014 054 59 73 33 038
13 015 055 32 40 40
1 4 01 6 056 . 27 33 73 . +38
15 017 li;:l57 I I 49 61 21 I 01 I
16 020 060 0 .. ,

~
00 00 1 2 0 0

17 el21 061 1 01 01 01 1 1 l
18 022 062 2 2 02 02 J2 2 2 z.
19 023 063 3 j 03 03 03 3 3
20 024 064 4 ,. 04 04 04 4 4 ..
21 025 Z65 5 5 05 05 JS 5 5)

22 026 066 6 " 06 06 06 6 6 ")

23 027 067 7 7 07 07 07 7 7
24 030 070 8 ,. 08 10 10 8 8
25 031 071 9 :'.:..} 09 11 11 9 9
26 032 072 10 1 2 00 82
27 033 073 . 31 37 77 nd +78 •
28 034 IJ7 4 < < 26 32 72 nd +0 <
29 ia35 07 5 = : 11 1 3 13 .:: 38 ~

30 036 Z76 > > 47 57 57 nd -78
31 037 IJ77 ? .:. 13 1 5 15 nd 58

A-1

A-2 BASIC Manual

ASCII and BCD Character Codes July 1973

XDS 940 ASCII CDC 38'4S BCD

!NT INT EXT TELE :t.INE INT INT EXT CARD CARD :t.INE
QEC ~I Q£;I :rtf!ii fBJ;~DB DEC ~l: S2$;;1: f~li'l' PUN!,;l,I i!BU!DR

32 040 100 @ ./ 61 75 35 nd 0sa ..
33 041 101 A A 17 21 61 A +1 A
34 042 102 B e 18 22 62 B +2 '3
35 043 103 c c 19 23 63 c +3 c
36 044 104 D " 20 24 64 D +4 :J
37 045 HlS E E 21 25 65 E +5 E
38 046 H:J6 F F' 22 26 66 F +6 F
39 047 107 G G 23 27 67 G +7 . .,
40 050 110 H 24 30 70 H +a H
41 051 111 I 25 31 71 I +9 I
42 052 11 2 J J 33 41 41 J -1 J
43 053 113 K !(34 42 42 I< -2 I(

44 054 114 L !.. 35 43 43 L -3 l.
45 055 115 M 36 44 44 M -4 M
46 056 116 N 37 45 45 N -5 ,,
47 057 117 0 " 38 46 46 0 -6 0
48 060 1 20 p p 39 47 47 p -7 p

49 061 1 21 Q ,, 40 50 50 Q -8 1
50 062 1 22 R ~ 41 51 51 R -9 ~
51 063 1 23 s ·~ 50 62 22 s 02 s
52 064 1 24 T ,. 51 63 23 T 03 r
53 065 125 u 52 64 24 u 04 j

54 066 1 26 v v 53 65 25 v 05 " 55 067 1 27 w ·' 54 66 26 w 06 ·~ 56 070 130 x x 55 67 27 x 07 '<
57 071 131 y y 56 70 30 y 08 '(

58 072 132 z z 57 71 31 z 09 z
59 073 133 [(15 17 17 nd 78
60 074 134 \ \ 30 36 76 nd +68
61 075 135 t 58 72 32 nd 028
62 076 136 .:. 45 55 55 nd -58 1'

63 077 137 <lo 46 56 56 nd -68 ..

NOTES

s p space, blank or nc punch.
nd= not. defined, var.tea with particular unit used. . (colon) is not transmitted on a:.o (even parity) tape, changed to 0. .

BASIC Manual A-3

July 1973 ASCII and J3CD Cha.ractar CCdaa

XDSi 940 ASCII" Cha.racter Codes

INT INT ASCII 'l'.EU 940 INT INT ASCII 'l'EU: 940
piiC OCT OCT '!XPi= USE pEC OCT OCT TXPE !]SE

064 100 140 096 14lZI 000 NtJLL Blank tape
065 101 141 a a 097 141 001 SOM &A Delete character
066 Hl2 142 b b 098 142 002 EOA &.S
067 103 143 c c 099 143 003 ETX &C
068 104 144 d. d. 100 144 004 EOT &D End function
0b9 105 145 e e 1 01 145 005 ENQm!' .s.E
070 106 146 f f Hl2 146 006 ACK &F
071 107 147 g g 103 147 007 BELI. &G Ring bell
072 110 150 h h 104 150 010 .Bk.Sp &li
073 111 151 i i. 105 151 011 Tab &I
074 112 152 j j 106 152 012 LF &J Line feed
075 113 153 k. k 107 153 013 VT .s.K. Vertical tab
076 114 154 l l 108 154 014 FORM &I. Paqe eject
077 115 155 m m 109 155 015 CR &M Carriage return
079 116 156 n n 110 156 016 so &N
079 117 157 0 0 111 157 017 SI &O
080 1 20 160 p p 112 160 020 OLE &P
~81 1 21 1 61 q q 113 161 021 OC1 &Q Paper tape on
082 1 22 1 62 r r 114 162 022 DC2 &R
083 1 :23 1 63 s a 115 163 023 OC3 &S Paper tape Off
064 124 1 64 t t 11 6 164 024 OC4 &T
085 125 1 65 u u M7 165 025 NAK &U
086 1 26 1 66 v v 118 1 66 026 SYNC &V Next chr 11 teral
087 1-n 1 67 w w 119 1 67 027 ETB &iii Delete word
086 130 170 x x 120 170 03d CANCL S.X·
009 131 171 y y 1 21 171 031 EM &Y
090 132 17 2 z z 122 172 032 SUB &Z
091 133 173 \ { 123 173 033 Prefix Escape
092 134 174 I 1 24 174 034 FS I I

093 135 175 l ~b 1 25 175 035 GS
:il94 13 6 176 126 17 6 036 RS
095 137 177 DELETE eof 1 27 177 037 us

EOfwd= 27 657537 B {3 137's)

~

ml::Flllultiple· blank character.
esc.aeacape or prefix.
eot=end of file character.

A-3

A-4 BASIC Manual

ASCII and BCD Character Codes July 1973

&IA, &.B, etc. means Control A, Control a, etc.

'l''lY names (NULL, SOM, etc.) are standard communication names.

Prefix is used on model 37 Teletypes for special functions; it can
.be input only with &.V in OED. The characters followinq the
prefix perfoz:m the followinq functions: 1==aet horizontal tao,
2=clear horizontal tabs, 3==shift to red ri'bbon, 4=sh1ft to
black ribbon, S-aet vertical tao, 6-clear vertical tab,
7==reverse line feed, 8=half reverse line feed, 9=half fo:.r:ward
line feed •.

The. multiple blanJc character (135B) will always be followed by
another character whose octal value will be used as a blank
{space) count. Thus, if the characters 135:S 12B are read from
ci symbolic file, it means that Hl spaces in a row were stored
in that file.

End of file character (137B) will generally be read as the last
character in a file. However, it is possible to have 137B's in
the middle of a file. 'l'herefore, any time a 137B is
encountered, the file word should be tested for the EOF bit
(same as the sign Dit) being set to make sure the true end of
file has .been reached.

For.n feed (&L or 154B) should be followed by at least 6 {for model
33 and. 35 Teletypes) or 45 (for. model 37 1 s) non-printing
cha.racters to allow time for the page to stop at the top of the
next foJJn (up to three seconds for a 37).

BASIC Manual A-5

July 1973 ASCII and ECD Character Codes

Special Characters

IN'l' INT AS.CII TELE 940
DEC OCT OCT TXPE USE

221 335 375 } Right brace
234 352 21 2 LF Line feed with no return
237 355 21 5 CR Carriage return with no line feed

35 2B and 355 B are used to produce special output, such as plotting or
underlining. They inhibit the normal carriage return and line feed
processing of the monitor, which normally puts out a carriage return,
rubout, line feed when a carriage return is output; and a line feed,
carriage return, .rub::>ut for a line feed. These characters can be put
in a file ~ using QED. In CED, the control-shift-L (&\) chaxacter
will put in single line feed character (352B), and control-shift-M
(&]) will put in a single carriage return character. Note that these
two characters are treated exactly liX:e any normal character in QED.
'lnat is, tbey are not considered to ma.rk the end of a logical line or
tenninate the edit mode.

335 a is used to produce a right brace on output. It is not possible
to output this character as 135B, because that is the multiple blank
character. 335.9 may be entered into a file using &V in QED (Version
6.lZI or higher.)

A-5

Acknow ledqment

The BASIC language and compiler were originally developed at Dartmouth
College for time-ahar1ng computer wsers with no previoua knowledqe of
computers, as well as for users with considerable programming
experience. A aimple,straightfo.rward language, BASIC clcaely resembles
standard. mathematical notation.

BASIC was orqinally supplied 'af Scientific Data Systems. new Xerox Data
Systems. Modifications to the BASIC language have been sponsored 'aj
the NOAA Computer Division, BOulder, Colorado. The matrix operations
were introduced in 1968 'rlf Dr. R. J. Slutz, J. R. wink.elman and Themas
a. Gray of the NOAA Space Disturbances l..aborato.r:y. Strings and
formatted. input/output were added 'af Howard E. Bussey, Jr. in 197 2.

The first BASIC 11anual was also originally supplied 'af Scientific Data
Systems, then rewritten completely 'r:lf Thomas a. Gray. Suppleaents were
issued for Matrix operations and extensions to the language. This
manual is a complete revision which supercedes all previous manuals and
supi;.,l.ernents.

