BCC-500 BASIC INSTRUCTIONS

Mumbers

Integer (no decimal point) ‘
Floating Point {(has a decimal point)
Scientific Notation {decimal point and power of 19)

Simpie Variables

A11 variables are a letter or a letter followed by
a number {and a § is a string)

Arrays

Cnly one and two dimensional arrays permitted. Array
names must be a letter, subsCripts are any expression

Arithmetic Operators

- Negation

+ Exponentiation

* Multiplication

/ Division

+ Addition

- Subtraction

Related Operators

= Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

<> Not equal to

>< Not equal to

Commands

CHAIN Loads ancther program segment, retains variables
CONTINUE Continues program execution

DELETE Deletes statements from memory

LET Assigns a value to a variable

LIST Lists statements stored in memory

LOAD Reads a file into memory

QUIT Returns program control to the Executive

RUN Start executing program statements

SAVE Save program memory on designated file

SET Assigns a value to a variable

(ese) One or more (ws&-s returns control to BASIC or EXEC
condrd /ig Condml /i«

Miscellaneous Frogram Statements .

Ui Reserves memory for an array

END Last statement in proagram (not required)

EXECUTE Automatic program running upon completion cf loading
PAUSE Steps program execution until CONTINUE command given
REM Non-executable remark statement

S0P Terminates execution

Controlling Statement Execution Order

FOR Start loop, TO set range, STEP set increment

NEXT Designated end of a FOR loop

GO TO Begins execution at statement specified

GOSUB Begins execution at subroutine statement specified
IF GO TO Conditional GO TO statement

IF THEN Conditional GO TO statement

ON GO TO Multiple conditional GO TO statement

ON GOSUB Multiple conditional GOSUB statement

Matrix Statements

Substitution Sets elements of one matrix to another

Constant Multip. Multiplies elements of a matrix by a constant
Multiplication Multiplies two matrices

Subtraction Subtracts two matrices
Addition Adds two matrices
CON Sets elements of a matrix to 1 ,
IDN Sets elements of a matrix to the identity matrix
INV Creates matrix which is the inverse of given matrix
ONE Sets elements of a matrix to 1
TRN Creates matrix which is the transpose of given matrix
ZER Sets elements of a matrix to P
Strings
CHANGE Changes String-variables to variable or visa-versa
Input
DATA , Data stored within program to be used with READ
READ Reads data from a DATA statement
RESTORE Sets pointer to first DATA statement
INPUT Reads data from the terminal
INPUT FILE Reads data from a symbolic file
READ FILE Reads data from a binary file
INPUT USING Reads formatted data from the terminal
NPUT FILE USING Reads formatted data from a symbolic file
ACCEPT Identical to INPUT
MAT Mat added to any INPUT or READ statement changes the
statement to read matrices
OQutput
PRINT Writes data on the terminal
PRINT FILE Writes data on a symbolic file
WRITE Writes data on a binary file
WRITE FILE Writes data on a binary file
PRINT USING Writes formatted data on the terminal
PRINT FILE USING Writes formatted data on a symbolic file
TYPE Identical to PRINT -
MAT MAT added to any PRINT or WRITE statement changes the

statement to write matrices

Formatting Input/Output

R Spaces to multiple of 15 positions before printing
i. Spaces to multiple of 3 positions before printing
<string>" No spacing before printing next value
:<picture> Designates a picture string to format input/output
Files

OPEN Opens files

EOF Check for parity error or end-of-file

CLOSE Closes files

Functions and Subroutines

GOSUB Call to subroutine

ON GOSUB Multiple conditional call to subroutine
RETURN Designates end of subroutine

DEF User defined function

SIN(X) Sine of X

COS(X) Cosine of X

TAN(X) Tangent of X

ATN(C) Arc tangent of X

EXP(X) Exponential (base e)

ABS(X) Absolute value of X

LOG(X) Natural log of S

SQR(X) Square root of X

LGT(X) Log base ten of X

INT(X) Integer part of X

RND(X) Random number

EXT(X) Exponentiation (base 19)

TAB(X) see Formatted Input/Output

TIM(X) CPU or terminal time

EOF (X) see Files

DAT(X) Current date and time

CHR(X) Returns one character string

STR(X) Returns 2-13 character strings

HED(X) Returns first character of argument

TAL(X) Returns all but first character of argument
LEN(X) Length of argument

NUM(X) Returns floating point of argument

ASC(X) Returns internal decimal value

BEaSIC Manual

C-1
Contents

15973

1-1

.

<hapter 1 - INIRCSUCTION.

2-1
2-1
2-1
21

L
*
.

L
L]
»

e e o o &
e o 9
e o o

scatement Nuoebecs,

Piogcam Qerinition ,

Chapter 2 - GEMER:L CONCEFTS,

Commang
Clumrant o

21

2-1
2-1
2-2

. L]
* [
L L]

scienti fic Notation

Variable

Ed . . »
sioating Poinc,

asiteyer

2.2

*

22

. .

KYY :ay

2.2

2.2

23

.3

* o o o
e s v o
. 2 o @
* s 0 0
€« » o @
* & 0 0
s o o o
* ¢ & s
« s 9 0
L R
* o &
e 2 0 »
LI I I
* 2 0 e
s » & 0
LI I
* = 0 9
¢ » o 0
* * @ @
e * s @
=

. e o
4

e ey o
A

® 2P o
a

L L]
%

nou 2] o

NS e

0

233
¥R0N
A4

A3

Erm»r

-4

-

Nl Y

=4 -

L]

.

--id o

P

2=5

L]

.

im

253

- L 4

sOF

31

Chapter 3 = PhGaadt PREPARATION AND EXECUTICH o

31
31

. »

&

Freparativn.

-0
1111
Mmmmm
s e o o
.0 o 0
’» e o o
e o o o
e o o o
2 0 o o
LY
* e 0
LI I)
» e » @
* o o
LIS S)
e e »
s 0 0
s e 0 2
LI T
» > 0 9
» 9 e -
* s n o
s 0 s »
Y e o »
. o o -
e s
v o o »
LI S S]
uhmo -
Maej o o
oW
ﬂ“n s o
S R
4
Aa

3-2

L3

3-2

L 4

Cumisent .,

3-2
3-3
3-3
"33

L

e

Fadoi,

.

Cliie

* L]

*

S1ice
ENL.

Mmm T
o o o b
* & ¢ o
P e & @
* ® & O
* o o o
e o o o
e o » 9
e ¢ @
T o & @
e o »
e e ¢ o
® o @ o
* 2 ® @
LN] L
* @& » o
* & &
s e s o
s 9 » @
* 9 o o
® o » @
* 9 0 @
e o & 0
”® e o o
* o o
L Dm *
e oYU o
* 0'.1.“ *
l)a..
L fd
L2358
S £
ER

3-4
3-5

3

R
yo

Chalin,

SA\N

.

o 4=i

*

NTS .

BASIC CUMMANDS AND STATE

Chapter 4 -

4
4.1

®

Commands

LET,

4.1

.

.

SET.

1

42
4-3

o 6 9 8 o @
o e o o o @
o o 0 o 0 0
e e o 0 2 o
e s 0 0 0 o
e e e 2 0 o
e s 0 e 0 0
« o 9 0 8 @
* 2 0 0 o o
« » o 0 0 0
e 9 00 0
4 & @ & 0o o
e s 2 o s @
¢ o 0 0 0 o
o o o 0 o s
e o o 0o 0 0
e o ¢ o o ¢
s e 0 0 0 ¢
o e b oo
¢ e o e 0
ooootm
o
* o 0 0
EY
oo e O0Om
] g v b
LY
ghod
* e [X Né)
[PRYE"
oofd“.u
*re2an
.oncmm.
& &30
Zarlbegm
.«DMD.
atl

C-1

1

. 412

413
Sem
S<1

.
»

July 1973

.

BASIC Manual

L]
*
L]
o

-
.
.
3
.
*
.
.

*
.
[]
-
»
L]
.
L)
»
-
-
»
*

.
.
L]
-
.
-
*
*
*
*
.
L d

.
.
*
-~
L]
L
>

m

THEN,

IF GO TO
DATA

o~
Program LOODSe

FOR,

NEXT .

RETURN

NPU
ACCEPT
DINM,
QuliT .,
DEF,
GOsSUB,
CN GQTO,.

READ
RECTORE,

Scatements

GO
ON GOSUB

Arrays

-

T
FILE STATEMENTS

2r 5 -

t

Chap

52
S-2
5-2

* 0 & &

.
*
-
*

. L * . L4] .
L] .

. % e

. L] > - .

Binary File .
=

Symbolic File .
PUT FI

3
ACCERT

B

OPEN
I

5-2
5-3

S=3

S
5=4
5-4
5-4
S=43

- -

L
*
»
.

-

L]
*

*
.

.
.
.

FllE,
1LE
FILE

r

TATEMENTS
Dimensions
MAT READ

-

-

1

PE

READ FILE.

PRINT
MATRIX S

MAT INPUT,

MAT ACCEPT

MAT INPUT

s

.
*
*

-

L] *
.'.‘LE
CCEPT FILE

READ FILE

AT Al

MA
MAT

-
El
..

3
L]

3
.
.

*
-
»

.

Ad
-
FIlZ

-
FIL

»

MAT PRINT FILE
MAT TYPE
MAT ARITE,

MAT WRITE

MAT PRINT
ZER.

MAT TYPE
CNE,

CON,

BASIC Manual

Cc-3

Contents

Sudy 1973

@ 0 0 0 0 0 0 0
® o 0o 0 0 0 0 0
S 00 0 s 0 0 0
@ o 0 0 0 o o o
® 0 0 ¢ 0 0 0
e o 0 0 0 0 9 o
¢ 0 0 0 o 0 0 0
@ @ 4 0 0 0 0 o
® e 0 ¢ 0 0 0 o
® o 0 0 0 0 0 @
® 2 0 0 0 0 0 0
® o @ & 0 0 0 o
® o 0 ¢ 0 0 0 o
¢ ® 0 0 00 o 0
e 6 ¢ 0 ¢ 6 6 o
® 6 0 0 0 0 0 o
e ¢ 8 0 0 0 0 o
e & 0 0 0 0 0 o
e @ 0 0 0 0 o 0
[+
e o) o o o o o
-4
@ ¢4 o o o o @
]
o e ¢ e o o o
-4
o o ¢ o 8 o @
oopotntc
3°°%
e o 044 o o
o3 g4¥
s X e 0 M o o
[- U
LI~ R - I]
eqRa gD
LR T
. .
EEREEEE
HONU LN XM

71
71
7=1

Chapter 7 - STRINGS ,

Literal.

[2

Variable .

¢ o =2
7=2

Expression .
IF THEN,
IF GOTO,

KEAD ,

7-2
7-3
7-3

® * *

*

[

®

INPUT,

7-3
7=3

L
e

ACCEPT ,

*>

INPUT FI

7-3

*

L]

ACCEPT FILE.

PRINT,

7-4
T7-4
7-4

PRINT FILE
TYPE FILE

TYPE .

74
7=5
7=5
7—5

° L

L]

*

L4

. .
strim to <var> L [] L] * L] L] * * * L] L ® - ® L] L J L] ° L]
{var> to 51:1@ ® 6 o ¢ & & 06 & 5 & 2 8 & % 8 s » & s & &

CPEN

CHANGE .,

7-6

L * *

.

Ot~ 00 0
fFrr v et
[T o N S S S N L SN O
® & o © & & & .

» ® o o ° 0o 9 0 .
o & & 0 ® o 9 0 [
. o » ¢ * * 09 *

*
mn(s). * L . ° L] L L * . . * * @ ° . L] * » L L] . * * L *

o @ o o 0 8 o 0 .
e @ o 0 0 o o o .
@« @ ¢ 8 0o 0 o o L}
oM * e 0 o o 0 .
[~
e Q ® o o ¢ o 3
bl
ey o o o & o o .
13}
ef: o ¢« o o & o .
ARERaanan
Nmmmum o
: &
3]
GgAdudanay
EY)
own

Chlptﬂr 8 - FORHATTED INPUT/CUTPUT. * L 2) [* & @ 8 ° » & * 8 o e L] L] 0.

Picture, .

Numeric .
String,

L4

Literal .

INPUT USING.

ACCEPT USING ,

Numbers

e

Strings . .
Literals,
(ret)

PRINT USING,

TYPE USING

*

L

*

C-3

BASIC Manual

July 1973

C=-4
contents

. 8-4

L]

s ° 9 o L]

® o o

*

Numbers .

8.5

Sttims L] L] L] L] L] L L] L] L] L] * . e o L * o L] L] L] ® L] L] L] *

(xet)
INPUT FILE USING

8-6
8.7
8.7
a-7
87
87
8~7
8.7
87
a-7
87
a7
a7

® & 9 o O

L L] . o L] * e . e .
L] L] * L] L] * L N L] L]
L] L] L] L] L] L] L] L L L]
L] L] L *® L L] L] L] ® . . L] []
” & 6 & 9 ° o 9 o L] ®*® & @ o o
[. * L] L d L] s & & @ ® o L] . * @ *
L] . L L] L ® ® ° e o o o L] L4 L] . * o
* e o . e & & & © © 3 & e * o » o ¢
L] L ® L J L) e @ . L 4 L L]

L Ld e o o L] ® o e

L] L] L] L) L] * * L] L] L]

L] L L] * e o L L] L]
L . * L] L] L] L L] L] L]

L]
e
.
L]
.
L]
.
L[]

ACCEPT FILE USING, ,

L)
L]
*
L]
L]
L]
.

L]
L

L]

PRINT FILE USING

TYPE FILE USING.

MAT INPUT USING.

MAT PRINT USING,

MAT INPUT FILE USING ,
MAT ACCEPT FILE USING,
MAT PRINT FILE USING ,
MAT TYPE FILE USING.

MAT TYPE USING

MAT ACCEPT USING .

9t

*

LB

Chapter 9 - ERROR MESSAGES,

Appendix A ASCII and BCD Character Codes .

C-4

BASIC Manual
July 1973 1-1

INTRODUCTION
Chapter 1 - INTRODUCTION

Using this Manual

This mamual is intended to be a reference manual for XDS 94@ BASIC and a
tutorial for learning BASIC,

Chapters one through four provide an introduction to BASIC, Beginners may rsad
these chapters and begin writing programs immediately, If the user needs only
the elementary features described, he may use just these without worrying about
the extra features described in chapters five through eight, These more
advanced features, although always available, cost the user almost nothing if
they are not used, However, these other features of BASIC can be of great
value, In particular, the matrix package and the formatted input/ocutput
capabilities can be very helpful, These can be learned and used as necessity
dictates,

For clarity, certain typographical conventions have been used throughout this
manual, To distinguish text output by the computer from text entered by the
user, we have underlined user entered text, Actual examples of BASIC commands
or programs are preceeded by |. Nonprinting control characters are indicated by
an ampersand (&) precedaing the letter (e.g, &D to indicata a control-D), The

use of the RETURN xey is indicated by (ret) and {esc) indicates the use of the
FSCAPE keay.

An idea is enclosed by (3, Some of the concepts used in the manual and their
abbreviations are:

{cons> constant
{stnd> #tatement number
{fln> file number
<tnm> tile name
(rel-expr> relational-expression
{expr> expression
var> variable
{let> letter
{ilised input list in form:
<var 1> [,Kvar 2>]...
{olist> output list in form:
(expr> [{<commad>,;} <exprd]...
<mlist> output list for matrix in form:

<var 1> [{<comma),;} <var 2>]...
Braces {} are used to denote a grouping. For example,
LOAD {(ret), <fnm>)}
The grouping indicates that a choice is to be made, The above example indicates
that the word LOAD must be followed by either a (ret) or a file name.

»

BASIC Manual
1-2 July 1973
INTRODUCTION

Brackets [] denote options, Items enclosed in brackets may or may not appear.
For example,

[<stn 1>] GO TO <{stn 2>

denotes that the words GO TO may or may not be precsded by a statement number;
however, the words GO TO must be followed by a statement number,

Ellipsis marks (...) indicate that the preceeding item may occur one or more
times in succession, For example,

(expr 1 E, <expl‘ 2)].00

statags that <Cexpr 1> must occur, <expr 2> might occur and that it may be
followed by <expr 3>, <expr 4>, etc.

In all program examples, each line is terminated by a (ret) which is not
indicatad in the examples, .

BASIC Manual
July 1973 1-1
INTRODUCTION

Chapter 1 - INTRODUCTION

Using this Manual

This marmual is intended to be a reference manual for XDS 944 BASIC and a
tutorial for learning BASIC,

Chapters one through four provide an introduction to BASIC, Beginners may read
these chapters and begin writing programs immediately. If the user needs only
the elementary features described, he may use just these without worrying about
the extra features described in chapters five through eight, These more
advanced features, although always available, cost the user almost nothing 1if
they are not used, However, these other features of BASIC can be of great
value, In particular, ths matrix package and the formatted input/cutput
capabilities can be very helpful, These can be learned and used as necessity
dictates, :

For clarity, certain typographical conventions have been used throughout this
manual, To distinguish text output by the computer from text entered by the
user, we have underlined user entered text, Actual examples of BASIC conmands
or programs Are preceecded by |, Nonprinting control characters are indicated by
an ampersand (&) preceding the letter (e.j. &D to indicate a control-D). The
use Of the RETURN key is indicatsd by (ret) and (esc) indicates the use of the
ESCAPF kay.

An idea is enclosed by <>. Some of the concepts used in the manual and their
abbreviations are:

{cons> conatant
{stnd> statement number
{fln> file number
{tnm> file name
{rel-expr> relational-expression
{axpr> expression
{vard variable
{let> letter
{ilist> input list in form:
{var 1> [, Kvar 2>]...
{olist) output list in form:
<expr> [{<comma),;} <expr>l...
{mlist> output list for matrix in form:

(var 1> [{<{commad>,;} <var 2>]...
Braces {} are used to denote a grouping. For sxample,
LOAD {(ret), <{frm,;

The grouping indicates that a choice is to be made, The above example indicates
that the word LOAD must be followed by either a (ret) or a file name.

1-1

July 1973

Program definition

Statement Number

Command

Constant

Ihteger

Floating Point

BASIC Manual 2.1
GENERAL CONCEPTS

Chapter 2 - GENERAL CONCEPTS

A computer program is a set of statements which describe
the specific directions for solving a particular problem.
By means of a program you communicate your directions to a
computer and, a3 with all attempts at communication, you
must be careful to restrict yourself to terms that are
clearly understood, A program consists of one or more
gstatements that are to be executed in a certain order by
the computer,

Statements entered with a statement number are analyzed by
BASIC to see if it can understand what you wish lone, If
80, it will save this statement for later execution with
the other statements you may enter, If not, it will print
an error message and discard the 1line, These statements
are actually executed only after you have instructed BASIC
to do so by entering a RUN command, In BASIC, order \is
determined by the statement number, BASIC will execute the
statements in increasing numerical sejuence starting with
the smallest statement number and proceeding to the
largest,

If a statement which has no statement number i3 entared,
BASIC assumes that you wish this statement to be executed
directly after a (ret) is typed, and ctherefors these
statements are called commands,

The arithmetic components of the BASIC language are
constants, variables and expressions,

A constant is a fixed value used in the program rather than
being calculated by the program, A constant may be any
decimal number, positive or negative, with or without a
decimal point, that can be expressed in twelve digits or
less, Only twelve significant digits of accuracy are
retained, There are three forms in which a constant may be
expressed,

A constant may be expressed as an integer number with
twelve or fewer significant digits and no fractiocnal part,
Examples are:

1 -7 130

A constant may be expressed as a floating point number
containing a fractional part., Examples are:

2-2
GENERAL CONCEPTS

Scientific
Notation

Variable

Array

Dimension

Expression

'BASIC Manual
July 1973

1.5 19,2 155,275

A constant is expressed in scientific notation if it is
too large or too small to be sxpressed in eight digits,
Scientific notation consists of a number, either integer or
floating point,, followed by the letter B, followed by a !
to 3 digit exponent. The axponent represents the integral
pover of ten by which the number to the left of the ¥ mnmust
be multiplied, For example, all of the quantities 2,59,
.259E1, 25,9E-1, and 259E-2 express the same number, The
largest number which BASIC will accept is 5,7896944E76; the
smallest {s 4,318084E.77,

BASIC permits the user to use a symbol to represent a
constant, Such symbols are called variables because the
value represented by the symbol may be changed, In BASIC,
an aritmetic variable may be a single letter or a letter
followed by a digit, The one excsption is that PI is also
a wvalid wvariable name. The value of this variable is
initialized by BASIC to be 3,1415926,

It is often convenient to keep data in a list, Such a list
is called an array, The individual values in the list ars
called array elements, We refer tc an array element by
using the name of the array and the position of the element
in the array, For example, we can refer to the fourth
element in array A by writing A(4). 1In this example, the 4
is called the subscript, DNote that the name of an array
must be only one letter, while a subscript may be any
well-defined expression, which may also include an array
element, (Expressions are discussed below.)

An array may have one or two dimensions, A two dimensional
array may be thought of as having columns and rows, There
is always one msubscript for each dimension; thus, a two
dimensional array is written as A(X,Y) where X represents a
row mumber and Y represents a column number. See the DIM
statement below,

Arithmetic expressions are formed by combining variables
and/or constants with arithmetic operators. There are six
arithmetic operators in BASIC:

- Negation
Exponentiation

Multiplication

/ Division

+ Addition

2-2

July 1973

Relational
Fxpression

BASIC Manual
2-3
GENERAL CONCEPTS

- Suptraction

To make sure that the computer evaluates the expression the
way tThe user meant it ¢to be evaluated, there is an
established rule of precedence:

first - Functions

second Fxponentiation

third - Negation

fourth - Multiplication or Division
fifth - Addition or Subtraction

]

The computer calculates from left to right if operators of
the same pracedence {for sxample, multiplication and
division) appear in the same line, To alter thia order,
parentneses must be used, Expressions within the
parentheses are evaluated first using the abcve rules of
precedence, Pazrencthesea which do not alter the normal
precedence operations have no effect,

A relational expression consists of two arithmetic
expressicns separated by one of the relaticnal operators,
The relational operators available in BASIC are:

Cperator Relation
= asjual to
> greater than
D= greater than or equal to
< less than
{= less than or equal to
2 not equal to
> not egqual to

In 8ASIC, a relational expression is either true or

false , depending on whether the answer to the question
implied by the relaticnal expression is yes or no ., If
the answer to the Jquestion is yes , the relational
expression is ¢true ; if the answer is no , the relational
expression is false ,

2-4
GENERAL CONCEPTS

Punction

RND

INT

TAB

BASIC Manual
July 1973

The functions available in BASIC are:

SIN(<expr>) sine of {expr> in radians
Cos(<expr>) <cosine of <expr)> in radians
TAN(<{expr>) tangent of <{exprd in radians
ATN(<expr)>) arctangent of {expr)> in radians
BXP(<{expr)) natural exponential of <expr>
ARS(<sxpr)>) absolute value of <expr>
LOG({expr>) natural log of <{axpr)> (base e)
SQR(<expr>) square root of <{expr>
LGT(<expr>) common log of {expr> (bass 18)
INT(<expr>) 1integer part of <{expr>

RND, random number

EXT(<{expr>) exponentiation {base 18)
TAB(<expr>) tabs output in a PRINT statement
TIM(<expr)) time since system start, or user’s CPU
time

EOF(<{expr>) check for end-of-file

The <{axpr) enclosed in parentheses is called the argument,
The argqument need not be enclosed in parentheses where no
confusion can result from the precedence implied in the
following expression.

Some functions require additional description,

The RND function i3 a pseudo-random number generator. When
called, it will produce a number bestween zero and one.
When called repeatedly, it will produce a sequence of
pseudo-random numbers, The same sequence of pseudo-random
mumbers will occur in every program in which the RND
function is used, This feature is helpful in debugging.
The arqument in the call to the RND function is meaningless
and may be called with an argument or simply followed by a
period; either X = RND, or X = RND(Z) is acceptable,

The INT (integer) function is used to determine the integer
part of a number, INT always returns as its value the next
smaller integer value whether the value of the expreasion
is positive or negative; thus INT(7.8) equals 7 and
INT(-7.8) equals -8,

When used 4in a PRINT statemant, the TAE %f:astion spacesn
over to the Nth print position, where N is the integer part
of the argument, If N is less than or equal to the current
position, nothing happens, Spacing occurs such that after
a TAB(N), the next character will be printed in the Nth
position,

2~4

July 1973

TIM

EOF

BASIC Manual 2.5
GENERAL CONCEPTS

The TIM function returns the time since system start-up in
1/60ths of a second if the argqument is 8, and the CPU time
accumulated since login (in 1/60ths of a second) if the
argument is 1,

When reading from either a symbolic or binary file, there
will be a certain point when there is nothing more to read,
because nothing more has been written, This is the
end-of-file, Reading past it is regarded as an error, 8o
the end-of-file condition should be detected before an
error occurs,

The EOF function has a file number as its argument,
returning -1 if the file is closed, # if the file is open
and everything 4is normal, 1 1if ¢the file is at the
end-of-file and 2 if a hardware error occurred on the last
operation,

When the end-of-file is reached, variables will be set to
either zero or the null satring until the input list is
exhausted, Then the file will be flagged as at the
end-of-file, If an attempt is made %o use the file again
without closing and recpening it, the error message FILE
AT EOF will be printed, If the EOF function is called
after the end-of-file is detected, the file will be reset
to its closad state, Therefore the end-of-file can only be
checked once on each file read,

2-5

July 1973

Preparation

LOAD

Frrors

Editing

BASIC Mamual 3
-1
PROGRAM PREPARATION AND EXECUTION

Chapter 3 - PROGRAM PREPARATION AND EXECUTION

There are several methods for preparing a BASIC program for
exacution: typing directly into BASIC, QED, or using paper
tape input, The simplest and most direct is to type the
program directly into BASIC, This is the usual procedurs
for small or medium sized programs, BASIC does not have
complete provisions for line editing like those available
in QED and for the programmer who has mastered QED it is
usually far simpler to prepare the program and make
rfevisions while 4in QED, write the program to a file and
load it into BASIC for debugging and execution. The most
economical method 1is to prepare the program off line on
paper tape, log-in and read the paper tape into a file,
Complete information regarding the prepara:ion of paper
tapes can be found in the Timesharing User’s Guide".

LOAD <{fnm>

If the program was prepared in QED or on paper tape, then
the program is stored in a file which needs to be brought
into memory by the LOAD command, If the user types a (ret)
after LOAD_ instsad of the file-name, BASIC responds with
“PrROM PILE>" , and waits for a file-name to be supplied,

As the program is loading or while typing a statement
directly into BASIC, the system prints out any line
containing an error, It also prints a pointer to the
position in the linea where BASIC detected the error
although thia may not be the location of the error,

Any line can be corrected by retyping it using the same
statement number, The editing control characters &A, &W
and &Q may be wused while entering BASIC commands or
programs, &A deletes the pravious character, &W deletes
the previous word and &Q returns to the beginning of the
current line, An uparrow, back slash or underline is
printed respectively so that you Xknow that the editing
action has taken place,

Remember that a space i3 ignored in BASIC statements except
in a literal string (text surrounded by quotes) although
spaces are usually inserted for readability. Since each
BASIC statement is 1limited to a single line of 83
Characters, completion of a complex statement may be more
important than the readability of that line,

BASIC interprets lower-case letters as upper-case letters
in all cases except when included in a literal string.

3-2

PROGRAM PREPARATION AND EXECUTION

LIsT

DEL

REM

Comment

PAUSE

BASIC Manual :
July 1973

LIST {[<(stn 1> [-<{atn 2>, <{commad<{stn 2>...]]}

When editing the program, it is useful to list some or all
of the statements of the program, LIST prints statements
in ascending numerical order regardless of input order,

Command Meaning

LIST list entire program

LIST 10 list statement number 18

LIST 19 - 38 list statemant numbers 19 thru 38

LIST 19, 20, 3@ list statement numbers 19, 29, 38

DEL {ALL, [<stn 1> [-<stn 2>, <commad><stn 2>,..]]}

When sditing the program in BASIC, it is possible to delete
one or more statement numbers of the program by the DEL
command, To delete one statement, the user may simply type
the statement number followed by a (ret),

Command Meaning

DEL ALL delete entire program

DEL 19 delete statement number 18

DEL 19 - 398 delete statement numbers 10 thru 30

DEL 19, 29, 38 delete statement numbers 12, 28, 30

{atnd> REM <{text)

An important part of any program is the description of what
is done and what data should be supplied, One way of
documenting a program is to supply remarks along with the
program itself, BASIC provides this capability with the
REM {(remark) statement,

190 REM I NEVER REMEMBER WHAT MY PROGRAM DOES

line~by~line comments may be included by putting an
exclamation point and the comment at the end of the
statement, It is not recommended that commands be
commented in this manner, The comment will be ignored, and
the ! will be trsated as though it were a (ret).
Exclamation points may still be used in literals, of
course, CHAIN statements should not be commented with the
!, as BASIC has no easy way of detomlninq if the t belongs
with the file name or a <omment, :

19 PRINT "FAR OUT!” ! comment of surprise and awe

{stn)> PAUSE

July 1973

CON

STOP

END

BASIC Manual 1
. 3
PROGRAM PREPARATION AND EXECUTION

The PAUSE statement is useful while debugging a program.
When executed it interrupts the g:oqram and returns to the
BASIC command mode after typing t me ssage

PAUSE AT {atn)

At this point commands may be used to change or examine
variables, Program execution may then be resumed using the
CON command, Execution may also be bequn at some other
point in the program using the GOTO command, However,
GOTO, unlike CON will perform a certain amount of
initialization, Program statements should not be changed
or new statements added after a PAUSE statement unless the
program is restarted with the RUN command.

CON

The CON (continue) command is used to resume axecution
after a PAUSE, .

<{stn)> STOP

The STOP statement is used to stop program execution at
some point in the program other than the last statement,
<stn)> END

An END statement indicates the termination point of a
program, Some versions of BASIC require an END as the last

statement of the program, While NOAA-BASIC does not, the
END statement 1is provided for consistency with other

_systems.

RUN [<frm)>]

The user types a RUN command to begin execution, The
program always begins by executing the statement with the
smallest statement number and executes by ascending
statement numbers., An important point to remember about
BASIC is that the values of simple variables are not
automatically reset to zero when a program has been loaded,
therefore, any variable whose value must be zerc at some
stage of the procgram should be initializaed to guarantee the
desired results,

If an escape is typed while the program is running, the
current statement is finished and the message:

3-4

BASIC Mamial :
July 1973

PROGRAM PREPARATION AND EXECUTION

Automatic Run

EXRCUTE

SAVE

(EsSc) AT <satn)>

will be printed out, <stn)> will be the number of the next
statement t0 be executed, You may resume execution with
the CON command,

Two consecutive escapes will normally return command to the
Executive, However, i{f the current statement is an INPUT,
one escape will only cause BASIC to wait for more input,
Two must be used to return to the cammand level of BASIC,
but this will bypass the (ESC) message, Attempts to
contime execution will probably meet with failure., Typing
any input value followed by an (esc) and (ret) will cause
termination with the proper message,

If the <{fnm> is included in the RUN command, the file will
be loaded into BASIC and execution will automatically begin
when loading is completed.

If "BASIC <fnm>" 4is typed while in the Executive, BASIC
will load the file and automatically run it, For example:

-BASIC "XYPLOT™

will call BASIC, which will 1load and run public file
XYPLOT , The file does not need to have a RUN command at
the end to start running,

{stnd> EXECUTE

Include an EXECUTE statement somewhere in ths program, {if
you wish the program ¢to start running sach time it is
loaded,

SAVE <{fnm)

To store the currently locaded version of a BASIC program
onto a permanent disc file the SAVE command is used., This
must be done if you have made changes to a program and wish
to save the corrected version of the program on a file,

If .the user types a _(ret) after SAVE instead of the {fnm),
BASIC responds with ON)> and waits for a file name to be

typed.

If there are any doubts about the current BASIC program, it
would be best to list the program before saving it, since
BASIC only writes the version of the program that is
currently loaded,

July 1973

CHAIN

BASIC Manual 3.5
PROGRAM PREPARATION AND EXECUTION

[<stn>] CEAIN [<fnm)]

If the user types a (ret) after CHAIN instead of the {fnm),
BASIC responds with FROM PILED>" and waits for a file name
to be supplied.

This statement provides the user with the capability to
chain several programs together as though they were one
program, Although BASIC can now handle single programs of
up to 12250 characters, programs larger than this may be
run using the CHAIN statement, Perhaps more useful is the
capability of breaking a large program into smaller chains
and after examining the output of one chain, chaining to
the other chains to perform additional caliculations,

When the CHAIN statement is executed, the current program
is deleted (1ike DEL ALL) and a new program is locaded, The
values of all array variables and simple variables are
preservad,” TWwo restrictions on the use of the CHAIN
statement are:

1) The contents of string variables (simple and
array) will be destroyed when a CHAIN statement is=
executed, In othar words, all string variables will
be undefined at the beginning of a program chain, If
the values of string wvariables need to be retained
from cne program chain to the next, then they must be
written onto a disc file before the CHAIN is executed
and read back into the variables at the beginning of
the next chain, This problem will be fixed in a
future version of BASIC,

2) All input and output files are closed before a new.
chain is loaded.,

July

173

Commands

LET
SET

PRIN
TYPE

T

Zoned format

BASIC Manual
: 4-1
BASIC COMMANDS AND STATEMENTS

Chapter 4 - BASIC COMMANDS AND STATEMENTS

Individual statements wighout a statement number may be
used as one-line programs or commands, These commands
are executed immediately and the results stored in the:
computer or printed out. This capability makes BASIC
extremely powerful as a desk calculator, able to svaluate
complicated mathematical expressions.

[<stn)>] LET <var> = <expr>
{<stn>] SET <var> = <{expr>

If a variable is to be used as part of an expression in a
BASIC statement, the user must be able to assign a value to
the variable, The LET or SET commands are used to indicate
replacement of the current value of a variable by a new
value, ‘In BASIC neither the words LET nor SET are required
but either is accepted to retain compatibility with other
systems, For example, the command:

X= 2+ 3

assigns the value 5 to variable X; the command:

SET Y = 18,2
assigns the value of 18.2 to the variable Y and:
LET Z = SQR (Y + X + .8)

assigns the value of 4 to the variable 2.

[<stn>] PRINT <olist)>
{<stn>] TYPE <olist)

Numeric expressions in <{olist) must be separated by a comma
or a semicolon, while character s{rings, which are always
enclosed between quote characters { ...), may be separated
from other strings or expressions by nothing, a comma ©r a
semicolon.

TYPE is identical to PRINT except that TYPE is not used in
other BASIC systems, Type has Dbeen added for FORTRAN IT
similiazity.

The use of a comma will ruult‘in BASIC spacing to the next
multiple of 15 print positions before the next valus (or
character string) is printed. Each numeric value occupies

BASIC Manual
4-2

, July 173
BASIC COMMANDS AND STATEMENTS

one print zone of 15 positions. There are five print zones
per line, If all five zones have been printed, BASIC goes
to the first print zone of the next line to print the next
va lue, A character string is not restricted to 15
positions., The entire string is always printed;-
overprinting will occur at the right margin depending on
the line length of the output device being used.

If a PRINT statement is terminated by a comma, the output
of a (ret) is suppressed in printing,

> ° = 5
|FOR X = .5 .5463025

There will always be at least one space between fielas. If
a field ends in the column adjacent to the column where the

next field would normally begin, BASIC will space to the
next zone.

I>1@ PRINT 712345678981234", "X"_
|>28 PRINT 123456789812345 , X
1> RUN

|12345678901234 X
{12345678901 2345 X

Packed format The user may specify that output is to be printed in packed
format by separating the expreasions with a semicolon
instead of a comma. The semicolon signals BASIC to type
‘two spaces and then enough additicnal spaces to move to the
next multiple of three print positions on the print line,
One exception to this rule is the case in which a semicoclon
is used to terminate the print list, This serves only to
suppress the output of a (ret) which BASIC normally types
at the end of a print statement.,

I>PRINT "POR X = 7; ,5; TAN(,5)
[>FOR X = 5 .5463825

{>12_PRINT "THE BEGIN 3 _
> NT__ING N
{”>RUN ‘
| THE BEGINNING THE EN

Compressed If two character strings (or an expression and a character

format string) appear in an output statement with neither a comma
nor a semicolon separating them, BASIC will type them as
closely together as possible; no extra spaces are inserted
in the 1line., Remember that BASIC always leaves one space
for the sign when ocutputting a numeric field.

va.=3

4-2

July 173

Special
Characters

Statements

BASIC Manual
_ 4-3
BASIC COMMANDS AND STATEMENTS

In order to include control characters or function
characters in a character string, it is necessary to Kknow
the internal octal code of the Lharacters. A list of
these octal codes is in the T&muharing User’'s Guide
Having determined the octal code of any character, include
that character by using the form &nnn where n is an octal
digit. For example, the internal octal code of the bell
character (control-G) 4is 147. To cause BASIC to ring the
bell quring program execution, use the statement PRINT
“s147°, This form for special characters may be mixed with
other conventional characters in a string, When BASIC
scans the string, the presence of the character & signals
it to examine the next 1-3 characters to see if they ars
octal digits, If not, the & is treated like any other
character. Control characters may also be indicated Wy &
followed by a letter.

{>P L) - - Se » sln ; }
!FORXS
e

i .5463025

To space up a single line include a PRINT statement with
nothing in its list. This may alsc be accomplished &ty
including an &155 or &M in a string, as 155 is the internal
octal form of a carriage return, which is the same as
control-M.

If the user wants to execute a number of commands in a row
without stopping each time to enter the command, then he
composes a program., This program contains any number of
statements, For example, consider the following statements
for a program to calculate the hypotenuse of a right
triangle,

1>100 8 = ¢

orie e =

128 < =_Sog(al2

12132 PRINT A= A—.;_B'Zﬁg. _Q__,_S;
1> BN

Note that each statement has a unigue statemeant number
(which may be any integer in the range ! through 99999).
The presence of the statsment number talls BASIC that these

4-4

BASIC Manual
July 173

BASIC COMMANDS AND STATEMENTS

GO T0

IF THEN
IF GO TO

statements are not to be immediately executed, but are to
make up a program, When the RUN command is given, telling
the computer 0 execute the program, the statements are
executed one at a time in ascending numerical sequence.

The result printed by the computer for the abave example
would be:

A= 4 B= 3 Cc= 5

Although BASIC executes statements according to the
numerical sequence of statement numbers, the statements of
a program need not be prepared in numerical saquence, For
example, the above program could have been prepared as:

138 PRINT "a=" A, "B«" B, "c=" ¢
190 A = 4

118 B= 3
128 ¢ = SQR(AT2 + BT2)

and the rasults would have been identical.

[<stn 1>] GO 70 <stn 2>

{stn 1> 4is the optional statement number of the GO T0
statement and <{stn 2> is the statsment number that is to be
exeacuted next,

"As we have seen, BASIC executes the statements of a program

in ascending numerical sequence by statement number,
However, in writing programs, it iz sometimes necessary to
change the normal sequence of execution, This can be
accomplished by using the GO TO statament,

128 GO TO 195
GO TO 215

<stn 1> IF <rel-expr> THEN <stn 2>
<atn 1> IF <{rel-expr> GO T0 <{stn 2>

It i3 often convenient t© go tO a statement only under
certain conditions. This type of statement is called the
IF (or conditional GO T0). This means, If the relational
expression is true, go to <stn 2>; otherwise (that is, if
the relational expression is false), go ©o the next
statement number in numerical _sequence after <stn 1> . For
example, if we wanc to say, 1f X is greater than 5, go to
statement 198 , we would write

7@ IF X > 5 THEN 102

4-4

July 173

DATA
READ

BASIC Manual
4-5
BASIC COMMANDS AND STATEMENTS

Other examples are:

100 IF A = 12 GO TO 500
506 IF C(5) > 1@ THEN 2300
2300 1P D <= E THEN 100

<stn> DATA <cons 1> [,<{cons]...
{<stn>] READ <ilist>

" Values can be assigned to variables in several ways, Using

LET or SET is one method. Ancther method involves the
combined use of the DATA and READ statements. All the
constants that are to be assigned to variables throughout
the program are written together in DATA statements. Bach
time a READ statement appears, the computer automatically
assigns each constant in the DATA list to the corresponding
variable in that READ statement, For example, the
statements

122 READ a, B, C
200 DATA 1, 2, 3

would be equivalent to the statements

100 A = 1
150 B = 2
155 ¢ = 3

Generally a program uses more than one value for a variable
in order to prevent excessive use of constants and
assignments, For example, consider the programi

12 G = 120

2@ P = 20

32 D=G * p * 2%
42 A =G - D

5@ PRINT D, A

55 G = 158

62 P = 5

78 D=G * P * 21
80 A =G - D

9@ PRINT D, A

Another way of writing this program using the READ and DATA
statements is:

40 A =G -~
58 PRINT D, A
60 READ G, P

BASIC Manual
4-6 July 173
BASIC COMMANDS AND STATEMENTS

718 D=G * P * 4
80 A =G - D .

98 PRINT D , A

96 DATA 108, 28, 150, 5

Note that all the data that is to be assigned to G and P is
now located in statement number 96.

Once all the data has been assigned by READ statements,
additional READ statements will result in the error message
“OUT OF DATA <stn)>" where <stn) is the statement number Oof
the READ statement,

RES TORE {stn)> RESTORE

RESTORE 4instructs the computer to reread DATA values
beginning with the £first DATA statement, Thus in the
example below, the values for E, F and G (statsment 35) are
the same as for A, B and C because astatement 35 follows a
RESTORE statement.

210 READ A, B, C . . . =
§1S_ymfr A= _A; "B=" B "c=" ¢

>2§ PRINT - Qg D
W - - ”»

) 3 =" P "g= (¢]
s.a.m...,__;.

>w 5! 7,‘ 9‘ 1’.12

>RUN

A= 1 B= 3 C= 5

D= 7

E=1 P 3 G= 5

INPUT %(scn)} INPUT <{ilistd
ACCEPT <stn>] ACCEPT <{ilist)

To wuse the READ and DATA statements or the LET statement,
the user must assign values to alli variables when the
program is written, To assign values to variables at
execution time the user may use the INPUT statement. Each
time the INPUT statement is encountered during execution,
the program is halted and a ? is output t0 the teminal,
At this time numbers separated by commas, snaceg or (rat)
must be typed in, The values are automatically assigned to
the respective variables and executicn is continued.

ACCEPT functions identically to INPUT except that ACCEPT is
not compatible with other BASIC systems and has only bsen

4-6

July 173

Program loops

BASIC Manual
4-7
BASIC COMMANDS AND STATEMENTS

added for FORTRAN II similarity.

The editing control characters &\, & and &Q may also be
used while entering data from the teletype. &A deletes the

previous character, &W and &Q delete the current input
field.

Now the sample program given for the READ and DATA
statements could be written as?

7.5 142.5:

When the RUN command is given, BASIC executes the first
INPUT statement and waits for the values of G, P and (ret),
Upon receiving these, execution continues until the next
INPUT statement,

Note that the first four statement numbers of the sample
program for the READ statement are exactly like the second
four statements., This makes it possible to represent the
program in the following way:

1@ READ G, P

20 D=G*P* 21
30A=G =D

4@ PRINT D, A

59 GO TO 1@

6@ DATA 108, 28, 158, 5

The computer will perform statements 10 through 50 in the
normal fashion, but after completing statement 50 it will
go back to statement 18 and repeat statements 12 through
50. This process i3 repeated over and over until all data
defined in the DATA statement (or any higher numbered DATA
statement) has beep used, Al this time, the error message
oUT OF DATA 18 would be typed., This technique, often
called a loop, is a very important programming capability.

' The following example shows the statements necessary to set

4-7

4-8

BASIC Manual
July 173

BASIC COMMANDS AND STATEMENTS

FOR
NEXT

up a loop to print all numbers between 1 and 18@.

19 I =1

15 IF I > 108 THEN 6@
28 PRINT I;

45 I =1 + 1

58 GO To 135 -
6@ PRINT FINISKED.

First, a variable, I, was selected to be the counter,
Second, an initial value of 1 was assigned to the counter
variable. Third, the wvalue of the counter variable was
tested to see if it exceeded the upper 1limit of 184.
Fourth, the value of the counter variable was increased
each time the loop was repeated. :

<{stn> FOR Kvar> = <expr 1> TO <expr 2> ([STEP <expr 3>]
<{stn> NEXT (var

A second and more concise method of constructing program
loops 18 to use the FOR and NEXT statements, The FOR
atatement assigns the value of <expr 1> to the variable,
{var>, uses <expr 2> as an upper limit for the value of the
variable and <expr 3> as the increment to be addad to the
variable when the NEXT statement is executed. The
increment 418 assumed to be 1 if the optional ([STEP
{expr 3>] clause is omitted.

The NEXT statement must appear scmewhere after the FOR
statement., The variable must be exactly the same variable
given in the FCOR atatement, The purpose of NEXT is to
increment the value of the variable by <expr 3> and to
compare its incremental value with the value that <expr 2>
had when the FOR statement was first encountered, If the
incremanted variable 4is less than or equal to that value,
BASIC interprets the NEXT statement ag GO TO the statement
after the pravious FOR statement . However, if the
incremented value of the variable i3 greater then the
initial value of <expr 2> , BASIC interprets the NEXT
statement as GO TO the next _statement in numerical
sequence after the NEXT statement .

The FOR loop 4is always executed at least once, even when
{expr 1> is initially greater then <expr 2>,

Thus , using the FOR and NEXT statements, the rregzam. given
above could also be writiten as:

10 FOR I = {1 TO 109
28 PRINT I3
33 NEXT I

July 173

Arrays

BASIC Manual
4-9
BASIC COMMANDS AND STATEMENTS

48 PRINT "FINISHED,
RUN

Exactly the same looping procedure is followed; however, it
happens automatically.

In this sample program the body of the loop consists of
one statement, statement 28. The body of the loop may be
any number of statements, but it is always temminated by
the NEXT statement,

In some program loops it is necessary to increment the
counter variable by a value other than 1, For example, to
find and print all even numbers in the range 58 through 56,
the following program could be used:

212 FOR X = 508 TO 56 STEP 2
{228 PRINT X3 '
1030 NEXT X -
{742 _PRINT &MFINISHED,
{>RUN

! 58 52 54 56

| FINISHED,

The arguments in the FOR statement may be any expression so
that:

128 FOR X = 1,5 TO ~1.5 STEP -,1

is a wvalid statement, In this case the loop is repeated
until <expr 1> has been reduced to a value equal to or
less than <expr 2>. With a fractional argument, successive
addition of the increment may not produce exact values of
the variable. The above statement terminated with X = -1,4
while the statement:

180 FOR X = 1.5 TO =1.,5 STEP =.5
teminated properly with X = =1,5.

Lt is often useful to have loops within loops. These
nes ted loops can be expressed with FOR and NEXT
statements. A loop is valid as long as the {var> used in
one loop is not identical to {var> in a nested loop and the
NEXT statement for the first loop does not fall between the
FOR and NEXT statements of the second loop.

The concept of 8ubscripting and arrays becomes extremely
useful in relation to programming loops. Consider the
following table, which lists the quantity of sach type of
item sold by each of five salesmen in one week,

4-9

4-10

BASIC Manual .
July 173

EASIC COMMANDS AND STATEMENTS

DIM

Jones Smith Brown Doe White

Item 1 40 20 37 29 42
Item 2 12 16 3 21 8
Item 3 35 47 29 16 33

The price of each item is Item 1- $1,25, Item 2- $4.,38 and
It‘l\ 3- ‘2.50.

In the following discussion, the quantities of items in the
first table are regarded as the two dimensional array
Q(I,S) where I is the item number and S is the salesman,
The prices of the items are regarded as the one dimensicnal
array P(I) where I i3 the item number. The following
program calculates the total sales in dollars for each
salesman using data from the preceding tables:

TOTAL SALES FOR SALESMAN
TOTAL SALES FOR SALESMAN
TOTAL SALES FOR SALESMAN
TOTAL SALES FOR SALESMAN
TOTAL SALES FOR SALESMAN

188.5
211.3
131.65
166,55
169.4

(S0 SN VU S
@D o000

Statements 12 through 33 read in the values of the list P,
Statements 40 through 8¢ read in the values of the table Q.
Statements 90 though 152 compute T, the total sales for
each of the five salesmen, and print each answer as it 1is
computed,

<stn> DIM <let 1> (<Kexpr> [,<expr>]) {,<let 2>]...

July 173

QuUIT

DEF

BASIC Manual
4-11
BASIC COMMANDS AND STATEMENTS

The DIM statement is used to provide storage for
subscripted variables, A DIM statement may appear anywhere
in the program, In some other BASIC systems, <{expr> can
not be an expression and muat be a set value,

{expr> can take on any non-negative value, If the value of
the expression is not an integer, the value is truncated to
the next smaller integer value Dbefore the statement 1is
executed.,

DIM A(N) defines an array of N+1 elements: A(d), A(1),
A(2)e..A(N), DIM A(M,N) defines an array of (M+1) x (Ne&t)
e lements:

A(0,8) A(1,0).

A(see A(M’g)
A(@,1) A(1,1) A(
(

)

) 'R X A(H,‘)
A(QON) A(1 ’N) A ’N) e A(M.N)

BASIC automatically establishes dimensions of A(18) or
A(19,19) for an array A, if a DIM statement does not
contain A, The first usage of the array detemines if the
array will be singly or doubly dimensioned. Thus:

10 DIM A(1@,18)
20 A(5,6) = 3

has exactly the same effect as:
19 aA(5,6) = 3

If a previously dimensioned array is redimensioned to a
smaller size, the memory difference is reclaimed by BASIC
and used whenever needed. For example, if an array was
dimensioned with 1@ DIM A(308) and later by 3@ DIM A(120);
200 array locations would be reclaimed by BASIC for further
use, It should be noted that continually redimensioning
arrays is a very inefficient operation and should be
avoided whenever possible,

[<stn>] QuIT

When the QUIT statement is executed, control is returned to
the Executive,

{<stn>] DEF FN<let> (<var>) = <expr>

where <let)> must be A through 2 and <var> must be an

unsubscripted variable name. This variable is treated as a
dummy argument and its value is not changed by a call to

4-12

BASIC Manual
July 173

BASIC COMMANDS AND STATEMENTS

GOoSUB
RE TURN

the function, The expression may be any valid BASIC
expression, but it can not contain a reference to another
user-defined function.

The DEF statement permits the user to define his own
arithmetic function, The DEF statement must be executed
prior to the first call to the function in the program.
The meaning of a function may be changed in a program and
the interpretation of the function when it is called will
be that defined in the most recently executed DEF
statement, .

.) @ _DEF PNL(X) = SIN(X*PI/18@)
w

'> 4@ _PRINT 2Z

’>§L2§._M)._‘:‘._S_QW

i>§LL=.§.Q s

»mz__
{>RUH

G

U’!

The use of DEF is limited to those cases where the valiue of
the expression can be computed within a single BASIC
statement, Often much more complicated <functions, or
perhaps even sections of a program that are not functions,
must be calculated at several places within the program.
For this the GOSUB statement may be useful,

{stn 1) GOSUB <stn 2
{stn> RETURN

The GOSUB statement transfers contrcl to {stn 2.
Statements are then executed in statement number order
until a RETURN statement is encountered. Then the computer
automatically returns to the statement immediately
following the most recently executed GOSUB statement.

The following program will calculate the factorial of any
number X that 1is input. Note that the subroutine is
recursive, that is, GOSUB 11@ calls itself.

>_S D

219 INPUT X
IErmacmicopan
> = INT

1240 MAT F = CON(X)

> TF=(~1) *#F
> F = 1

>7¢ F(1) = 1

4-12

July 173

~ ON GOTO

CON GOSUB

BASIC Manual
413
BASIC COMMANDS AND STATEMENTS

1>8¢ GOSUB 119

‘>2ﬂ___1!2_z‘_ﬁlzl
>1]Q ;g g(x‘ z -1 THEN 18g
M2 X = X -1
>13Q GOSUB 11@
148 X = X +
2178 F(X) = F(X-1) * X
>18¢ 5§TU§§
>RUN
1 : 1
? 3
3 6
? 3
5 120

{stn> ON <expr)> GOTO <stn 1> [, <stn 2].,..
{stn) ON <{expr)> GOSUB <stn 1> [, <stn 2>]...

The effect of this statement is to execute a GOTO or GOSUB
to the Ith statement number, where I is the truncated value
of <expr>. This statement is used as a multi-branch GOTO
or GOSUB statement,

18 ON I GO TO 208, 30, 49, 50, 60
20 ON N - INT(N/2) * 2 + 1 GOSUB 32, 99

In the last example, the GOSUB at statement number 38 will

be executed if N is even and if it is odd the GOSUB at
statement 90 will be executed.

4.13

July 1973

OPEN

BASIC Manual 5
. -1
FILE STATEMENTS

Chapter 5 - FILE STATEMENTS

In addition to the teminal, data may be input from a file
or written onto a file. By use of files, data may be set
up beforehand or stored for use at any later date. Amny
file in the user’s file directory or some public files may
be used as input. A BASIC program may write on any file in
the user’s file directory.

{stn> OPEN [#<fln>,] <fnm>, [<type>]<use>

where <fln> is an expression that must evaluate in the
range <2 through 9, <{fnm> is either the name of the file or
an-unsubscripted string variable name, <{type> may be either
SYMBOLIC or BINARY (default SYMBOLIC) and <use> is either
INPUT or OUTPUT,

sefore input or output to a file can be made in a BASIC
program the file must have been opened by an earlier
statement in the program for input or output by the use of
an OPEN statement. An exception to this are files numbered
2 and 1 which are always open for teminal input and
output, respectively.

If you only have twc files, one input and one output, you
do not need to specify [#<{£1ln>,] since files &€ and 9 are
assigned when no file number is given, File 8 is the
default output file number and file 9 the default input
file nunmber, The following pairs of statements are
eguiva lent:

5 OPEN #8, /SORT-OUT/, OUTBUT
€ OPEN /SORT-OUT/, OUTPUT

7 OPEN #9, /72-37/, INPUT
€ CPEN /72-07/, INPUT

To use more than one file either for input or output, all
amt one of the <files must be opened by assigning a file
number 2 through 7. The system only allows three disc
files to be open at one time, out file numbers 2 through %
are allowed for compatibility with FORTRAN-II, The
following example opens three files for input, each withn
their own unigque file number., Tne first uses the default
aumnber 9.
d LET & = =1

CFEN /1/, INPUT
o}

1
1
2 PEN #1+4B3(X), /2INPUT/, INPUT

[O VN

5-2

FILE ‘STATEMENTS

Symbolic File

Binary File

IsPUT FILE

alCzZPT

FI1Lc

v

BASIC Manual
July 1973

25 OPEN #3, /3/, SYMBOLIC INPUT

A file which is open may be reopened, in which case the
file is first closed and then copened. This will reset the
file’s location counter to the first line in the file in
much the same way the RESTORE statement resets the data
statement pointer to the first data statement,

The two sets of statements:

1 OPEN /A/, INPUT
2 OPEN /B/, INPUT

1 OPEN #9, /A/, INPUT
2 OPEN /B/, INPUT

both first open file /A/. Since the default input file
number is ¢, the first statement of each group opens /&/ as
file 9. But then the second statement opens file /B/ for
input (as file 9, since no file number is specified), with
the result that file /A/ will Dbe closed and no longer
accessible unless it is reopened.

Input or output files are ordinarily symbolice This means
that all data is converted from internal wmachine
regpresentation to normal printing characters, or vice
versa, Secause of the conversion from machine
representation, extra CPU time is wused for writing or
reading a symbolic f£ile.

To eliminate input/output conversion time, binary files
should oe used, Binary files do not convert data to normal
prianting characters, but instead, leave the data in the
internal machine representation.

[<stn>] INPUT FILE [#<fln>,] <ilistd
[<stn>] ACCEPT FILE [#<fln>,] <ilist>

Once a file has been opened for symbolic 4input, the user
may read <from it by using the INPUT FILE statement., Each
time the® INPUT FILE statement is encountered during
execution, the next value appearing on the file sgecifiad
is read and assigned to the next variable in the 1list of
variables in the IlPUT FILE statement. If the input fils
Wwas ogpehed without specifying a £file number or oy
specifying £file number %, then either of the following
statements will read from the ingut f£ila:

16 INPFUT FILE &, B, C
2¢ INPUT FILE #9, A, B, C

July 1973

PRINT FILE

TYPE

FILE

BASIC Manual i
5-3
FILE STATEMENTS

If a file was opened by specifing a file number between 2
and 7, the INPUT FILE statement must include that same file
number.

1) OPEN #6, /A/, INPUT
3@ INPUT FILE #6, A, B, C

Only lejal BASIC numbers may be read from a file (excepting
into String variables as outlined in Chapter 7). The
numeric fields in a data file may be separated by commas,
spages or (ret)s. Since BASIC treats spaces in a file as
an end-of-field character, the user may not imbed spaces
in the numeric fields. The only non-numeric characters
allowed are: comma, space, E (for scientific notation),
plus sign, minus sign and carriage return. A carriage
return ends a line and is also a valid endg-of-field
character, A line <consisting of spaces and a carriage
return will be igncred.

{<stn>] PRINT FILE [#<£1ln>,] [<olist>]
[<stn>] TYPE FILE [#<fln>,] [<olist>]

Once a file is opened for symbolic output, the user may
write on the <£file using the PRINT FILE statement. Each
time the PRINT FILZ statement is encountered during
execution, the value of each expression appearing in the
list of expressions is appended to the £il specified for
output in the same order that it appeared in the list of
expressions, Wnen a file is first opened for output, the
f£ile location pointer always points to the beginning of the
file.

If the output file was cpened without specifying a file
number or by specifying file number 3, then either of the
following statements will write on the output f{ile:

~
~

16 FXIMLT FILZL &, 2,
8, A, B, C

2d FRINT FILZ

w

If a print statement is only to write a carriage return
onto the file, the comma and output list may be omitted:

1d PRINT FILZ #3
Iz a file was opened by specifying a file number between 2
and 7, then tne FRINT FILE statement must include that same

file numper.

1J GEBEN #5, /A/, OUTPUT
26 PRINT FILZ #5, &, 3, C

5-4 :
FILE STATEMENTS

READ FILE
WRITE
WRILE FILE

IF ECF

BASIC Manual
July 1973

The file ocutput list may also contain strings of characters
enclosed in quotes.
15 PRINT A;B " POINTS, DATA =" N .
16 PRINT FILE #1, A; B POINTS, DATA = N

[<stn>] READ FILE [#<f1ln>,] <{ilist>
(<stn>] WRITE <expr> [, <expr>]leece.
[<stn>] WRITE FILE [#<£1ln>,] <expr> [,<exprd]ie..

Cnce a file has been opened for binary input or output,
then the above statements will handle binary data in the
same manner as the INPUT FILE and PRINT FILE.

<stn 1> IF EOF (<fln>) = <var> THEN <stn 2>

See EOF function for detecting end-of-file condition.

[<stn)>] CLOSE (<K£fln>]

where <f1ln> is an expression. If no expression is given,
or if the expression is negative, all files are closed. IZI
the expressicn is ¢ or 1, or if the £ile is already closed,
nothing will happen. Otherwise, the file will be closed.
Some examples are:

2 CLOSZ

CLOSE -1

99 CLOSE 5

CLCSE (A + B) / 2

5-4

July 1973

Dimensions

MAT READ

MAT INPUT
MAT ACCEPT

BASIC Manual
6.1
MATRIX STATEMENTS

Chapter 6 - MATRIX STATEMENTS

In BASIC, there are a number of statements involving Matrix
operations. Any array used in a MAT statement must have
been dimensioned in a DIM statement, No default dimensions
are assumed for matrix arrays, but cnce the dimensions have
been established a MAT statement can change the dimensicns
of an array as long as they do nct exceed the dimensions
specified in the DIM., Maximum dimensions are abnut 56 by
56 for a two dimensional array or about 3152 elements for a
one dimensional array.

There are several ways to establish the values of the
elements in a matrix: '

1) By reading values into the elements with any of
the input statements.

2) By setting the elements o zerc with the ZER
statement. :

3) By setting the elements to one with the CON or CNE
statement,

4) By setting a matrix to the identity matrix with
the IDN statement,

- [<stn>] MAT READ <{ilist)

The MAT READ statement will result in the input of all of
the elements of a matrix. The values of the elementsg are
processed row by row from a DATA statement., More than one
matrix may be included in the input list but the list may
not contain string variables or simple variables.

12 DATA 2,3,4,2,2,3,3,4,5,4,5,6,7,8,9
15 DIM A(3,3). B(3,2)
20 MAT READ A, B(2,2)

E(stn)] MAT INPUT <ilist>
{stn>] MAT ACCEPT <ilist>

These statements function in the same manhner as the MAT
READ statement, except that dinput values are from the
terminal instead of from DATA statements.,

1215 DIM A(3,3}, B(3,2)
>3 AT INPUT A, B(2,2
1>RUN

129 ,72,73,24,75,76,77,28,79,713, 211,712,713 (ret)

6-2
MATRIX STATEMENTS

MAT INPUT FILE
MAT ACCEPT FILE

MAT READ FILE

MAT PRINT
MAT TYPE

MAT PRINT FILE
MAT TYPE FILE

BASIC Manual
July 1973

{<stn>] MAT INPUT FILE {ilist)
[{<stn>] MAT ACCEPT FILE <{ilist>

These statements function in the same way as the MAT READ
statement, except that input values are from a disc file
previously cpened for symbolic input.

If the file is binary, then the following statement is
used:

[<stn>] MAT READ FILE <ilist)

[<stn>] MAT PRINT <mlist)
[<{stnD>] MAT TYPE <mlist)

These statements type the elements of a matrix on the
teminal, row by row. Subscripts may not be included.

219 DATA 2,3,4,2,2,3,3,4,5,4,5,6,7,8,9
215 DIM A(3,3), B(3,2)

>40 MAT READ A, B(2,2)
>50 MAT PRINT AL By

>RUN

2 3 4
2 2 3
3 4 5
4 5

3 7

To get an extra blank 1line between the matrices use a
string containing a carriage return, It is important here
not to put a comma or semicolon after the satring, because
if you dc, the first 1line of the second array will be
indented a few spaces,

1 \Ta_ 2,3 2,243 .3 5,4,5,6,7,8,9"
> M 3.2
> T AD 2
>50 MAT PRINT A, &M B;
>RUN
2 3 4
2 2 3
3 4 S

—) 4 5

16 7

[<stn>] MAT PRINT FILE {#<fln>,] <mlist>
[<stn>] MAT TYPE FILE (#<fln>,] <mlist)

62

July 1973

MAT WRITE
MAT WRITE FILE

ZER

CON
ONE

BASIC Manual
6.3
MATRIX STATEMENTS

These statements are like MAT PRINT, except that output 1is
to a file previously opened for symbolic output, If the

file is binary, use either of the following statement
forms 3

{<stn>] MAT WRITE <dlistd
[<stn>] MAT WRITE FILE <ilistw>

[<stn>] MAT <var> = ZER[(<expr> [,<expr>])]

This statement sets all elements of the matrix to zero.

1212 _DIM A(;.})

1520 MAT A = ZER

1>4@ MAT PRINT A

|SRUR

) 2 2
| o a 2
| 8 2 [}

It subscripts are used, the statement will set the
dimensions to the values of the expression(s).

1> M A(3,3 B(6
> T A = ZER(2
= R(3

{>30 MAT B = ZER(3)
|>40 MAT PRINT a; su” B
|>RUN

) @

| @]

|

H)

"

| @

[<stn>] MAT <var>

CoN [(<expr> [,<expr>])]
[<stn>] MAT <var>

ONE {(<expr> [,<expr>])]

Hou

This statement sets all elements of the matrix to one.
Like the ZER statement, 1if subscripts are used the
statement will set the dimensions to the values of the
expression(s).

1>19 _DIM A(3,3)
1722 MAT a = CON
1>48 MAT PRINT A
{>RUN

-—————

..."

6-4
MATRI X STATEMENTS

IDN

Subs titution

Cons tant ‘
Multiplication

Adgdition

BASIC Manual
July 1973

-—
-
-—h

-

(<stn>] MAT <{var> = IDN [(<expr> [,<expr>])]

This statement sets all elements of the principal diagonal
Oof the square matrix to one and all off diagonal elements
to zero.

%>lﬂ_21ﬂ_611‘il

1220 MAT A = IDN
l>$ﬂ.ﬂé..—51.2—ﬁs
I>RUN

QQ"‘

) 2
1 2
("] 1

[{<stn>] MAT (var 1> = {var 2>

This statement sets the values of the elements of Kvar 1
to the values of the elements of <(var 2. If the
dimensions of <{var 2> are (M,N) then the dimensions of <var
1> are set to (M,N).

1>19 DATA 2,3,4,2,2.3,3,4,5,4,5,6
1>45_ DIM A(3,3), C{4,3)
a>2QMAT_R_§AE

1225 MAT C =
>§ﬂ.ﬂé2.2§l§2.§i
>

w o
'c

3
2
4

w Wb

[<stn>] MAT <var 1> = {expr> * <{var 2>
[<stn>] MAT <var 1> = <var 2> * <{expr>

The elements of a matrix may be multiplied, element by
element, by a constant value resulting from the evaluation
of any legal BASIC expression, The dimensions of <var 1>
will be set to the dimensions of <var 2>, <var 1> need not
be distinct from <var 2>,

[<stn>] MAT <var 1> = {var 2> {+,~} <var 3) Subtraction
Matrix addition or subtraction sets the elements of <{var 1>
equal %o the sum or difference of the corresponding

elements of two {(not necessarily distinct) matrices, <var
2> and <var 3>, The two matrices to be added or subtracted

6.4

July 1973

Multiplication

TRN

BASIC Manual
6-5
MATRIX STATEMENTS

must have the same dimensions and <{var 1> will have its
dimensions reset,

'>15 DIM 5;3.3), B(3,3), ¢(3,3)
2,.2.3 S ,4,5,6,7,8
> T, 13,14,15,16,17 ,18
w
230 MAT C = A + B
)35 MAT PRINT ¢, &M
240 MAT C = A - B
M&LE&I__Q
RUN
6 8 10
9 19 12
13 15 17
-2 -2 -2
-5 -6 -6
-7 -7 -7

[<stn>] MAT <var 1> = {var 2> * (var 3>

Matrix multiplication uses three distinct matrices. If
{var 2> has dimensions (M,N) then <var 3> must have
dimensions (N,P). After multiplication the dimensions cf
{var 1> will have been reset %o {(M,P).

1>18_DIM A(5,5 B(S5,5 5,5
"1>20 MAT READ A(3,2 3{(2,4
I3 MAT C = A * B
1>4@ MAT PRINT C;

1>s AT 4,1 35 ,2,-5,7,9,6,4,5,3,1
i> RUN

=7 31 33 20

1-16 33 39 25

|=17 45 51 32

[<stn>] MAT <var 1> = TRN(<var 2>)

This statement is used to calculate the transpose of a
matrix. Both matrices must be distinct. If <var 2> has
dimensions (M,N), then the TRN statement sets the
dimensions of <var 1> to (N,M) and each element (I,J) of
{var 1> is equal to the element (J,I) of <var 2>,

1>1 AT, 3,4,3,443,4,5,6,7,8,9,18,11
1>15 DIM fs 5.5
%g §§T§= TRN?ES

?
v49% MAT PRINT Cj

v

[—

6-5

6-6
MATRIX STATEMENTS

INV

BASIC Manual
July 1973

———
wm-’g
-4

B W
v s W
@® NN

[<s8tn>] MAT <var 1) = INV({var 2D)

This statement performs two calculations: the inverge and
the detemminent, {var 2> must be square and need not be
distinct from <var 1>, The dimensions of <var 1> will be
regset to the dimensions of <var 2. The value of the
deteminent is stored in element {(@,d) of <var 1D,

>1 DATA 1,2,3,4,3,4,3,4,5,6,7,8,9,19,11
>15 DIM A(5,5), B(5,5), c(5,5)
>20 MAT D
>§§ Eir %%{fnfvf{ﬁl
D3P MAT C = A * 3
>4@ PRIN ETERMINENT =
242 MAT PRINT B, C
>RUN
DETERMINENT = 4
-425 o5 ~o25
-2 -1 2
1.75 W5 -1,25
1 -.1455191E-10 =-,2910383E~-10
.5820766E~-198 1 ~+2910383E~-19
) -+291@383E~-198 1

Sometimes when the original matrix is multiplied with its
inverse, the result doces not give a perfect identity matrix
since the computer is limited to 11 significant digits.
If, during inversion, an element of the matrix is reduced
by a factor of 12 to the ninth or greater, the element will
be set to an exact zerc. If this element later appears as
a pivotal element in the inversion process, execution of
the program will be _ terminated and the error message
MATRIX NEARLY SINGULAR will be typed.

July 1973

literal

Variable

BASIC Manual
7-1
STRINGS

Chapter 7 - STRINGS

BASIC has been extended to handle groupings of characters,
called strings. Strings may now be used in INPUT or PRINT
statements and some character by character manipulations
may be done on strings.

"[<{characters)>] "

A string consisting of from @ to 309 <characters enclosed
between guotation marks is called a literal.

18 PRINT "THIS IS A LITERAL STRING™
20 PRINT

<let> [(<expr>)]

A group o©of characters may be assigned as the value of a
variable which is then designated as a string variable.
Note <that numeric gquantities may not be assigned to string
variables, String variable names consist of a letter, A-Z,
followed by a dollar sign, Initially the value of a string
variable is the null string or, no characters.,

12 A$ = "THE VALUE OF A IS THIS STRING
20 Bs=

A string variable may be a singly dimensioned azray.,
Double subscripts may not be used. If a subscripted string
variable, A$, is referenced tut has not been previously
dimensioned, it is assigned the default dimension as(1d).,
If more then 11 locations are to be used the array must be
dimensioned in a DIM statement.

12 DIM Bs(15) .
20 As(8+1) = "NEED NOT BE DIMENSIONED
32 B$(13) = "MUST BE DIMENSIONED

40 Bs((N+M) /2) =

Each element c¢f a string array 1s a string and is
independent of all other string variables.

;>§a %gm = "Ev%ca N .
| S = ENT IS

1> 3) = _UN -
{242 a$(4) = UE STRING
1228 PRINT As(2)

{>RUN

BASIC Manual

7-2 July 1973
STRINGS .
JELEMENT IS A

Expression ' {operand & <operand>
String expressions are similar to numeric expressions in
that they are constructed by repeating the form <operand &
{operand>, where <operand> 1is either a string 1literal,
string variable, or string functicn., & is the amperand
string concatenation operator. String expressions,
therefore, make it possible to form one string from
multiple strings. '
Notice that in all of the above examples on strings, the
contents of the string variable have been assigned Ly a
string assignment statement in the form:

{vard> = <expr>

where <var> is any valid string variable name and <expr> is
any valid string expression, be it a string literal or
another string variable,

IF THEN {<stn 1]) IF <{rel-expr> THEN <{stn 2>

IF GOTO {<stn 1>] IF {rel-expr> GOTO <stn 2>

Strings may also appear in the <rel-expr> portion of the IF
THEN statement. If the {rel-expr> is true, transfer will
go to <stn 2>; otherwise, transfer will go to the statement
following the IF THEN statement,

20 IF A$ = Bs THEN 13
25 IF As(N+1) >= as(N) GO TO 12
30 IF A$ & Bs < "LITERAL ™ THEN 109

Two strings are equal 1f they are of the same length and contain indentical
characters. A string X is greater than Y i£, during left-to-right
cnaracter-oy-character comparison, a character in X is higher in the collating
sequence than the corresponding character in Y, If all charcters match
throughout the length of the shorter string, then the longer string is greater.
See Appendix A which lists the character collating segquence.

July 1973

READ

INPUT
ACCEPT

BASIC Manual
7=3
STRINGS

String variables may be assigned by READiIng string literals
from DATA statements. The following sequence of statements
would assign the alphabetic month names to string array M3
and the corresponding numeric days Of the month to the
array, D. ’

12 DIM Me(12), D(12)

20 FORI = 1 TO 12

38 READ M$(I), D(I)

44 NEXT L .

5¢ DATA "JAN 231, FEB ,28, MAR .31, APR 238, HAY ,31
60 DATA _JUN_,30, JLY. 31, "AUG ,31, "SEP” 3@ “ocT” 31
72 DATA "NOV™ 3a "pEC”,31

Strings may also be inputed from the termminal by using the
INPUT statement, The character strings may be entered in
any of the following four ways.

"&(charactersﬂ "
{characters>]’
[<characters)] (&D)
[<characters)] (ret)

With the first two input forms, BASIC will accept and store
characters into the string variable until the ending
double-guote () (if the beginning delimiter was a
double-quote) or single-quote character is entered, The
delimiter gquotes will not be included in the string. If
the string being entered is not begun with guotes, it must
be termminated with either a Control-D (&D) or a RETURN
(ret).

1012 INPUT As(1), As(2), As(3)

! NPUT 4 . .

:>§-§ Pﬁm géH &M As(2)

1240 PRINT As(3) &M As{4)

>RUN . .
? _DOUBLE QUOTES 2 ‘SIWNGLE CUOTE’? CONTROL D(&D)
? CARRIAGE RETURN(ret)

DOUBLE QUOTES

{SINGLE CUOTE

'{CONTROL D

{CARRIAGE RETURN

e o 2 e e

The input list may be a mixed arrangement ©of string and

numeric arrayse.

38 INPUT As, X, Y, As(3)

7-3

7-4.
STRINGS

INPUT FILE
ACCEPT FILE

PRINT
TYPE

PRINT FILE
TYPE FILE

BASIC Manual
July 1973

Strings may also be input from a file previously opened for
symbolic 4input with the INPUT FILE statement, The

Character strings may be entered in any of the following
three ways.

'{(characters>]"
*[{characters)>]’
[{characters>] (ret)

The method of teminating a string with a control D does
not work as with input from the temminal since the system
regards it as the end-of-file.

Strings may be output to the teletype by using the PRINT
statement, Literals may be included in the output list.

1210 DIM Me(12), D(12)
> RI=1T

3 ONTH s "ms(z)" wiTH "p(7)" pays”
24@ NEXT T . m " w . w
>5¢ DATA JAN .31, FEB ,28,"MAR ,31, APR .38, "MAY " 31
i>6@ DATA JUN 308, JLY ,31, aAUG ,31, SEP 3@, OCT ,31
219 DATA _NOV_ ,3@, DEC ,31 :

J>RUN

IMONTH 1 IS JAN WITH 31 DAYS
MONTHE 2 IS FEB WITH 28 DAYS
MONTH 3 IS MAR WITH 31 DAYS
{MONTH 4 IS APR WITH 30 DAYS

Strings may alsc be output to a file previously opened for
symbolic output.

10 PRINT FILE A$, EXAMPLE
20 PRINT FILE #8, As, _EXAMPLE.
3¢ PRINT FILE #6, A$, EXAMPLE

Strings are printed without the quote delimiters, so 1f
there is more than one string per line and the strings are
to pe read later as BASIC input, then guotes will have to
be added to differentiate between strings. Note that &ddz
is the internal value of a double guote character.

1>19 QPEN /A/, QUTPUT "
> INT FILE &3

1> EN NPUT

1> T E_ A B$

1> RIN B

July 1973

CHANGE

String to <var>

BASIC Manual
7-5
STRINGS

1> RUN
{FIRST
{SECOND

[<{stn>] CHANGE <string var)> TO <{var>
{<stn>] CHANGE {var> TO <{string var

In either CHANGE statement, <{string var> willi contain a
string of 1length N, <var> will have the zeroth eslement
equal to N and the first through Nth elements equal to the
internal decimal code of the corresponding character of the
string. <string var> must Dbe either a subscripted or
unsubscripted string name and <var> must be a singly
subscripted array previously dimensicned by a DIM
statement; no default values are available.

Changing a <string var> to a <var> stores the length of the
string in the zeroth element of the <var> and the internal
decimal value of each character of the string into
successive elements cf the array.

> = Strin
>

i

1

i

1>15 CHANGE Asg TO M .

1>2¢ PEINT TINGTH IS M(2)

!>39 PRINT VALUES ARE m(4); M(2Y: M(3): ¥(4)
{>RUN

'LENGTH IS &

IVALUES ARE 51 84 82 73

If the string is longer than the dimensioned length of the
array, the message ARRAY OUT OF BOUNDS will be printed.

Presumably some manipulation of the string is desired, such
as making sure that all letters are upper case. Since the
value o¢of a lower case character is bhetween 65 and 99, it
can be converted to upper case by subtracting 32.

un

X

<
3

i = 5
15 CHANGE As TO M
R I = 1 M (2
E 85 THEN 45
I) Sg THEN 4
%]) = (1) - 32

NEXT T "
PRINT NEW VALUES M{1)3 M(2Y; M{3}): M(4)

ZUUVUUUUTUY
E "
=4
4
o]
a%

]

VALUES 51 52 58 41

7-5

7-6
STRINGS

{var> to string

OPEN

CHAIN

BASIC Manual
July 1973

Perhaps a string is desired from an array. To change an
array to a string makes a string whose length is the value
of the zerxroth element of the array and converts the numbers
in each element of the array to the next charactar of the
string.

= 1 _TO M(Q)
> N 4
>35 1F M(J) > O¢ THEN é
I) = M(1) - 32

22 CHANGE M 1O B§ -
>6Q PRINT "UPPER CASE A IS " Bs
>R
UPPER CASE A IS STRING

{stn> OPEN [#<fln>,] <fnm>, [<type>] <use

The <fnm> file name in the OPEN statement can be replaced
by an unsubscripted string variable, the value of which is
the file name. If an unslashed file name is to be wused,
its name must be spelled out in full (no substituting TEL
for TELETYPE). String expressions however, are not
allowed in lieu of file names.

For example, assume that a program must sequentially read 3
files: /A/, /B/ and /C/. The following statements will
open the £files 4in order and transfer to statement number
20¢ when the last file has been opened:

10 As(1) = ~/a/"
20 as(2) = /B/"
30 as(3) = /c¢/
40 N = 1

5¢ IF N > 3 THEN 200

60 A$ = As$(N)

78 OPEN #3, A$, OUTPUT

83 N =N+ 1 . -
99 PRINT FILE #3, OPENED
122 GO TO 5@

112 QUIT

<stn)> CHAIN [<fnm)]

The <fnm> file name in the CHAIN statement can be replaced
by an unsubscripted string variable, the value of which is
the file name, just as in the OPEN statement,

July 1973

Scring Functions

DAT(X)

CHR(X)

STR(X)

HED(E)

BASIC Manual
77
STRINMGS

This function will always return the current date as an 18
character string of the form YY/MM/DDphh:mm:ssb where
YY=year, MM=month, DD=day, hh=hours, mm=minutes, ss=seconds
and b represents a blank. The variable name and value of
the numeric argument, X, 4is unimportant, Ut must be
present nevertneless,

12192 as = DAT()
|24 ZRINT a3

’73 24/23 15:32:11

This functicn returns a one character string equivalent *o
the internal decimal value of the argument X, If X is less
then O or greater than 255, the functiicn raturns the null
string .

HER{55 HR(21
5

This functicn will return a 2-13 character string
equivalent to the value of its numeric argument, X, The
string will contain 7 significant digits, a minus sign if
negative and scientific notation if needed.

This function, in conjunction with function HED, would be
useful if a numeric value needed toc be printed vertically
(along the left margin of a plot printout possibly).

{>PRINT STR(PI*-1,3E-11 STR{S5+
1=e3141592E-10 15

This function returns a one character string consisting of
the <first character of the argunent string, S. The
argument remains unchanged. I£f the argument string is
null, then the function returns the null string.

i>]@ As= "rEsT”

223 PRINT HED{STR(PI®-
p)KU.\

t

s T

This function returns a string consisting of all characters
in the argument string, S, except the first cna*acter. The
argument remains unchanged. If the argument is either null
or only one character in length, TAL will return the null

7-7

7-8
STRINGS

LEN(S)

NUM(S)

BASIC Manual
July 1973

string. The example shows how to print a vertical heading
with either alpha or numeric values,

1@ As= "HEADING -
pd = S *.1 1
> = 1
> =
>30 As = TAL(AS)
> =
> =T
>45_PRINT Cg, Ds
>32 NEXT T
>RUN
H -
E .
A 3
D 1
1 4
N 1
G S
9
2
E
1
2

This function returns a numeric value equal to the number
of characters in the argument string, S. If the string, S,
is null then zero is returned.

{> PRI N(DATA(@ N(TAL("x"
i 18 2

This function returns a floating point value equivalent to
its string argument, S, S must contain a string which has
a numeric counterpart.

T STR(PI*-1,0E-11), NU R(PT*-1
{=+3141592E~18 ~.3141592E-10

If the argument string is not valid {(contains a bad
character for instance), an error message will be displayed
and .5798604E77 (positive machine infinity) will be
returned,

{>PRINT NUM("3,14356")
!BAD STR CHAR
! «3789604E+77

7-8

BASIC Manual
July 1973

7-9
STRINGS

ASC(S) This function returns the internal decimal value of the

first character of its string argument, S,

{>PRINT ASC("TEST"), ASC(CHR(51)}
! 52 51

If the string is null, ASC returns the value -1; else it
returns a value in the range ¢ - 255,

July 1973

Picture

numeric

Liring

BASIC Manual

Chapter 8 - FORMATTED INPUT/OUTPUT

Formatted Input/Output may also be done in BASIC, A line
is formatted according to a picture statement,

<stn> :{picture string>

Tre colon denctes & picture statement, <{picture string, is
the actual gicture or image by which the data is to e
input or output. The picture string begins in the £first
character space Icllowing the colon.

r

Pictures are divided into fields: numeric, string or
literal, & numeric IZield consists of mainly libras (#),
with an <cptional sign at the front, an optional decimal
point scmewnere in the libras, and an optional exponent
(denotea oy 4 exclamation points) at the end. If the
cptional expcnent is used, the decimal point must appear
somewnere in the libras. A numeric field may be terminated
iy, a commercial at sign {9), which acts 1like a 1libra in
that it reserves a place for a dicit, but the @ will always
e the last character of the fielid. iZxamples:

@
N

VG s gR#EER

20 T4+ FRERK

S0t —#AwF

VA NS

Sci+radwllll

VO IHRFLIHHARAR
& string field consists of any number of Jdollar signs and
may e terminated with a single guote (°), which marks the
last character of a string field.

1o 1 65383353

- ¥

<d 138 g$sss
L literal field consists of any characters that de not
signify numeric or string fields,

wote that dousle guctes () are not usel for literal £ields
in pilcture stringo. Different field tvies may »e mixed in
& ricture string.

15 ts#.441111That is numeric and this is literal

<u 1$3sF#s8String, numeric and literal mixed.

o
1
-

8-2

FORMATTED INPUT/OUTPUT

INFUT USING
ACCEPT USING

lumpe rs

Strings

BASIC Manual
July 1973

‘

It 4is also possible to specify the picture string directly
in the input or output statement 1instead of referencing
another statement number. Any string expression may be
used in place of the statement number and it will act as
the picture string. For example, 4instead of using the
following two statements:

10 :###03388
20 INPUT USING 14, A, B$

Either of the following INPUT statements could be used and
would be identical.

20 INPUT USING “###0gsss”, A, B$
30 F$(3) = ###0s8$s
4¢ INPUT USING F$(3), A, Bs

Runtime formats should be used carefully because they cause
a substantial amount of overhead in C?PU time each time the
format is used.

[<stn 1>] INPUT USING <stn 2>, <ilist>
[<stn 1>] ACCEPT USING <{stn 2>, <{ilist)

where <{stn 2> is the statement number of the picture string
and <ilist> contains variables that may be either string or
numeric, INPUT USING reads formatted dinput £from the
terminal.

As many characters as the field is wide are read from the
input line. Once the field has been read, it is converted
to binary using the free field converter - the picture only
reserves a particular width. Thus signs, exclamation
points and decimal points in the picture have no effect.

D13 s #p0+#0—#0F,8#¢,1111

>22 INPUT USING 1 3 D, E
>30 PRINT A; B; C; D3 E
>
2

3=2,-40,32,55E3

3 -5 -49 «32 359

If the input variable is a string, the characters are
stored as the value of the string.

July 1973

Literals

BASIC Manual
8.3
FORMATTED INPUT/CUTPUT

1
el

If there is a literal string in the picture, as many
characters in the input line will be skipped as the literal
is long.

1212 :LITERALSSSS

I>28 INPUT USING 1<, AS
1238 PRINT A3

1> RUN

{? SOME WILL BE MISSING
ILL B

”.

A carriage return (&% or &155) appearing in the picture
string sKips to the ©D2eginning ©f the next input line.
Ingut then fproceeds according to the remainder of the
picture,

1>2

1233 PRINT &, =

| > RUN

1? 1234

15676

12 56

D1g spglitera lSM4#

'>23 INPUT USING 12, &, B
1238 FRINT A, B

I >R

17 1234

15678

I Se

ID1g 3 #Es1 551144

12 TUPUYT USING 18, &, Z
123K ERILT A, 3

IORUn

17 1234

1547

W 78

«#nen the end ©of & picture is reached without the input list
seing exnausted, tnz ficture is simply rescanned,

io1d s

IR p ; R <
1P 2e Lardl USING 10, a, 3, C
Vo3 FRIGT A oy O

BASIC Manual
8-4

July 1973
FORMATTED INPUT/OUTFUT

If a (ret) is read from the input line while getting a
field, the field is immediately terminated. Thus INPUT
USING may be used to read a whole line as a string. No
trailing spaces will be appended.

1218 1333988338888
!>2Q.1§2§I_§§£§§_lﬂ4,ﬁi
'>§Q PRINT A$ IS ALL
.>B§_

? RETURN
}RETURNIS ALL

This also means that if a (ret) is read in the middle ¢f a
numeric field, no zeros will be added at the end.

P4

CYI177177]
l>wms_r_u.§._1,@._a
‘ 1238 _PRINT A

5
i

]

RUN
\?
i 333

%

When a (ret) is read on the input line before the input
list is exhausted, all remaining input variables will be
either zero or the null string.

1212 244

1>20 ;NPUT USING 18, A, B, A$
1232 _PRINT A, B, AS

1>RUN

1? 2087

V7 2

When the variable 1list 4is exhausted, any remaining
characters on the current input line are skipped.

PRINT USIHG {<stn 1>} PRINT USING <stn 2>, {ilist>
TYPE USING [{stn 1>] TYPE USING <stn 2>, <ilist>

wnere <stn 2> is the statement number of the picture string
and the variables in <ilist> wmay Dbe either string or
numeric., These statements write formatted output on the
terminal,

SUm De I's A numeric value may Dbe output in the fom of a rounded
integer by using a field of multiple ‘#° characters, one
’#’ for each integer digit desired, The value will be
right-justified in the indicated field,

> ##
1220 PRINT USING 18, 55, =3

July 1973

BASIC Manual
8-5
FORMA?TED INPUT/OUTPUT

—————

{ >RUN
' 55 =3

Numeric values may be output as fixed decimals by using the
field form <integer>.<{decimal>; where <integer> is a string
of ‘#’s denoting places to the left of the decimal point
and <decimal> is a string of “#’s indicating the number of
places to the right of the decimal.

125 A=1987,6

D13 _;#4F4%, 4844 44

{>20_ PRINT USING 10, A, 17,865
| >RUN

]

]

Scientific notation output format is denoted &by including
four exclamation points (1) or up arrows (T) after a fixed
point format. The exponent will be output as the character
"E’ followed by either a plus or minus sign and two digits
which represent the exponent,

i>5 A = 1987,6

V10 g, 4wl iV 14sg, #2TTTT
1>28 PRINT USING 10, A, A
{>RUN

11 .38BE+L 3193, 76E+21

In all of the above pictures, no explicit provision has
ccen made for signs, When no sign is specified BASIC will
cutput a minus sign if the number is negative. If the
number is Gpositive, no sign will ©oe output. If it is
Gesired to specify the sign, either a plus or minus sign
may be put Dbefore the number format. If a plus sign is
used, a plus sign will appear if the number is positive or
zero and a nminus sign will appear if the number is
negative, A minus sign prints a space 1f the numbder is
greater than or equal to zero; it prints a minus sign if
the number is less than zero, '

12 PRI
1>20 PRINY USILNG 19, =3, 5
1030 3+f 0+#, ¢

>4 ERINT USING 38, =3, 5
D08 g bmito¥

D6 PRINYT USILG 58, =3, 5
>rUL

=34k 5.¥

|—-3c'j+5ob

P oaon s
(=S e% Je¥

1
i
[}
1
i
1
!
i
)

String variables and expressions may De output with a
picture format by using & field consisting of multipgle

¢
i
u

8-%

BASIC Manual
July 1973

FORMATTED INPUT/OUTPUT

dollar signs ($). The string value will be left-justified
in the field with trailing blank £ill if the string length
is less than the field width. If the string length 1is
greater than the £field width, only the left-most string
characters will be output.

{>20 Bs = A$ & HOW ARE vou"

E

>
>4Q PRINT USING 32, As, B$
>RUN

B

HI HO

Character strings within a picture will be output literally
unless there is an ampersand (&) in the string. If the &
is followed by a 1-3 digit octal number, then the
corresponding character will be output. The ampersand may
alsc be followed oy letter A - Z, in which case the two
characters will e replaced oy the corresponding
control-character,

218 3 38838888383 s
20 PRINT USING 13, THIS WI&S54L BE OSSN 2 LINES

When a picture does noct contain as many numeric or string
fields as the 1list contains variables, the picture is
simply repeated from the beginning. tlo (ret) is ocutput
when- the picture is repeated; tut the user may include a &
or &155 at the end of the picture ani the (ret) will De
output only wnen the picture is regeated,

p)
S

VLK== VYV
L
C
14

BASIC normally terminates the print line with a {ret) aiter
the last expression Las been written. aowever, i the last
expression in the PRINT USINC list is fcllowed oy a cocmma,
3A5IC will not output tne (ret).

July 1973

INPUT FILE USING
ACCEPT rILE USING
PRINT FILE USING
TYPE FILE USING

HAT INPUT USING
AT ACCLZPT USING
Lal Falbhil UZIiC

haeT Y PE USING

BASIC Manual ’
8.7
FORMATTED INPUT/QUTEUT

[<{stn 1>] INPUT FILE (#<fln>,] USING <stn 2>, <ilist)
{<{stn 1>] ACCEPT FILE [#<fln)>,] USING <{stn 2>, <{ilist>
[<stn 1>] PRINT FILE [#<£1ln>,] USING <stn 2>, <ilist>
[<stn 1>] TYPE FILE [#<£1ln>,] USING <stn 2>, {ilist>

By using the above statements, input or output may be
formatted when wused with a <file previcusly opened as
symbolic.

[<stn 1>] HAT INPUT USING <stn 2>, {ilist>
i<stn 1>] HAT aCCZZT USING <stn 2>, <ilist>
{<stn 1>] MAT PRINT USING <stn 2>, <ilist)
(<stn 1>] AT TYPE USING <stn 2>, <ilist>

Formatted matrix input or output can use the temminal by
following the same rules as for formatted input/output to
the terminal.

In addition, the Mhal PRINT USING statement will cause the
picture to be rescanned as often as is necessary o print a
matrix row. A (ret) will be output after each row.

218 _CId X(3,5)

>20 WAT READ X

238 DATA 11,12,13,14,15,21.,22,23,24,25
>35 DATA 31,32,33,34,35 "
1243 1L$ = =====zzz=zszzzzzzzszz=zzz===
{258 PRINT L

262 MAT PRINT USING BZ, X

>78 PRINT L$

280 :if.f #F
> RUN
‘=2====================:‘.===

11.2 12 13.0 14 1540
21.0 22 23.2 24 25.3
g 32 D) 35.0

O T I e e e e ot e e e e e e

T TakUT FILe USING [<stn 1>] MAT INPUT FILZ [#<fln>,] USIHG <stn 2>, <{ilist>

A

LAT ACCZPT FILE USINGL<stn 1>] KAT ACCEPT FILE [#<{fln>,] USING <stn 2>, <ilist
Gt FRINT FILL USING [<stn 1>] MAL PRINT FILZ ([#<fln)>,] USING <stn 2>, <ilist>

- e - e e
e Wrn fILa USIow

{<stn 1>] w&T TYPE FILE ([#<fln>,] USIXNG <stn 2>, <ilistd

rformatted matrix input/output may oe to a £file previcusly
opened Lor symbolic cutput by following the above rules for
formatteq matrix output. -

July 1973

ARRAY DIM TO0 LARGE

ARRAY QUT OF BOUNDS
BAD EXPONENT
BAD FILE NAME
BAD INPUT CHARACTER
BAD STR CHAR
CHANGE S™T ILLEGAL

DIRECT ONLY

ERR IN FORMAT
ERROR IN PICTURE

EXCESSIVE GOSUB NESTING

BASIC Manual
91
ERROR MESSAGES-

Chapter 9 - ERROR MESSAGES

Note that error messages are followed by the statement
number of the last statement executed baefore the
erxror,

The size of an array dimensioned by a DIM statement is
too large for the available storage.

You are trying to place values into an array where the
subscript is bigger than the dimensioned value. The
dimensioned value may be either a default value or an
assigned value in a DIM statement,

The exponent of a number has an illegal character in
it.

A file name that is not in your directory or a
non-existent public £file name follows the command
LOAD, i

You typed a character that is 1illegal in a numeric
gield in response to an input statement., Retype the
ield.

The function NUM was called with a string which-has a
character that is illegqal in a numeric field.
Positive machine infinity is return and the program
continues running.

The variable name used in a CHANGE statement is not a
valid array name,

You may not insert a command like RUN, LIST, DEL, LOAD
or SAVE into a program as a program statement.

There is a runtime format processing error.

This error occurs from a PRINT USING statement where
the picture statement number is a string or string
variable and that string contains a format error such
as only three 1!’s. This error also occurs if a
formatted input/output statement <references a
statement which is not a picture.

Too many GOSUB statements without executing a RETURN

statement. The maximum number allowed is calculated
v the following:?

=1

9-2
ERROR MESSAGES

FILE AT EOF
FILE CLOSED

FILE TYPE WRONG
FILE USE WRONG

FORMAT NOT FOR NUMBER
FORMAT NOT FOR STRING

FUNCTION ILLEGAL

ILLEGAL

IMPROPER NESTING IN FOR
LOOP

INCOMPLETE

INCONSISTENT DIMENSIONS

LINE NUMBER REQUIRED

BASIC Manual
July 1973

(<no of FOR>) * 7 + (<no of GOSUB>) <= 2048

It may mean that subroutines are being exited hy GOTO
or IF-THEN statements instead of RETURN,

Attempt to read past the end of the file on a READ
FILE or INPUT FILE statement.

Attempt to read or write on a file that has
opened by an OPEN statement.

not been

A file was opened as symbolic and you are trying to
use it as binary or else it was opened as binary and
you are trying to use it as symbolic.

You are trying to write on a file that was opened as

input or else you are trying to read from a file that
was opened as output.

You are attem'ptinq formatted reading/writing while
designating a numeric variable in the statement, but
indicating a non-numeric field in the picture,

You are attempting Fformatted reading/writing while
designating a string variable in the statement, but
indicating a non-string field in the picture.

You are trying to call a BASIC function with an
incorrect name or you are using a three character name
for a subscripted variable and the computer thinks it
is a function.

The computer does not reccgnize what you have typed as
a legal BASIC statement or command. Sometimes it can
tell you what character is wrong., The statement needs
to be retyped.

You have either a FOR or a NEXT for a second loop
inbetween the FOR-NEXT of the first loop. It could
also mean more than one NEXT for a single FOR.

You did not finish the command or statement.

The dimensions of two matrices to be added or
subtracted are not identical. It could also be that
ycu are trying to multiply two matrices with the first
having dimensions (M,N) and the second not having
dimensions (N,P).

The command you have just typed is not a valid command
and must be a program statement.

92

July 1973

LINE NUMBER TOO BIG

LINE TOO LONG

LOG OF NUMBER <= @
MATRICES NOT INDEPENDENT

MATRIX STATEMENT ILLEGAL
IN

MATRIX NEARLY SINGLULAR

NEGATIVE SUBSCRIPT
NO PROGRAM

NO STMT,
NUMB READ FOR STRING

NUMBER ILLEGAL

NUMBER TQO BIG

OUT GCF DATA

QUT OF MEMORY

BASIC Manual
9-3
ERROR MESSAGES

You have used a statement number that is greater than
99999,

You are trying to enter a statement which exceeds the
maximum number of characters allowed in a line, This
number varies but will be less than 9d.

THE argument of a LOG function is non-positive,

Matrix multiplication requires three distinct matrices
and yours may not be distinct. The MAT TRN statement
also requires distinct matrices and may be your source
of trouble,

Illegal syntax in a MAT statement.

A MAT INV statement has encountered a matrix with zerc
or .nearly =zero pivotal elements. The matrix being
inverted is singular or nearly so.

The expression in a subscripted variable was negative.

It is possible to get this from a RUN, LIST or DELETE
command. Perhaps you forgot to load it from a file or
may be you accidentally deleted it,.

You have entered a DEL command referencing a statement
number that dces not exist.

A number was input where the READ statement expected a
string variable.

The computer 1is ‘nterpreting something in the
statement as a numper that is illegal or in the wrong
place. Perhaps you have left out an arithmetic
operator or you concatenated a number to fomm a string
variable.

The argument of the INT function may be gJreater than
the largest acceptable integer or the file number
specified by an input or output statement is greater
than 9.

A READ statement for which there is no data has been
encountered. This may mean a normal end oI jyour
program and should bpe ignored. therwise, it means
that you have not supplied enougn data in ZaTa
statements.,

Program {or arrays in it) is too big and no storage is
available (22,522 characters available), or FOR loops

BASIC Manual

9-4 July 1973
ERROR MESSAGES

nested too deep. The maximum number 1is figured
according to:

(<no of FOR) * 7 4+ (<no of GOSUB>) <= 2048

OVERFLOW DURING INPUT A number larger than 5,78960E76 has been input. The
computer supplies machine 4infinity and continues
running the program.

RANGE ERROR The expression in an ON=GOTO or ON-GOSUB statement
evaluates to I where I does not have a corresponding
statement number., Therefore there is no statement to
transfer control to. Another cause can be the
argument of the EOF function is greater than 9.

RETURN BEFORE GOSUB ' The computer cannot execut® a RETURN before it has

executed a GOSUB because the GOSUB sets up the place
to which the RETURN statement must go.

SQRT OF NEG NUMEER The argument of the SQR function is negative. The
computer returns the square roct of the absolute value
of the argument and continues runninge.

STNG BAD The computer is interpreting something in the
statement as a string that is illegal or in the wrong
place, such as a string on the right hand side of a
numeric expression.

STRING READ FOR NUMB A string was input where the READ statement expected a
numeric value,

STRING TOO LONG You are trying to input a string which is more than
308 characters. Another possible reason for this
message is that you are concatenating two or more
strings and the resulting string is more than 320
characters,

UNABLE TO OPEN FILE You have an OPEN statement that refers to a file name
that does not exist.

UNDEF LINE NO IN The statement number appearing in a GOTC, GOSUB,
ON GOTO, ON GOSUB, or IF-THEN statement does not
appear as a number for a statement in the program.

UNDEFINED FUNCTION You are calling a programmer defined function that you
have forgotten to define or else the DEF statement is
after the ctatement where you use the function.

UNDEFINED MATRIX A matrix has been used on the right hand side of a MAT
statement before having values assigned to its
elements.

9-4

July 1973

UNDEFINED SUBSCRIPIED
VARIABLE

UNDERFLOW DURING INPUT

VARTABLE ILLEGAL

WRONG NUMBER SUBSCRIPTS

¢ STEP SIZE IN FOR LOOP

BASIC Manual o5
ERROR MESSAGES

The program is trying to use a subscripted variable
that has no previous value, Before any variable can
appear on the right hand side of an assigmment
statement, it must first appear on the left side of
one, or in an input statement,

A number in absolute size smaller than 4.31839E-78 has
been input. The computer supplies 0.863616E-77 and
continues running.

There are some places where certain variable names are
not allcwed:

1) subscripted variables as the iterative variable in
a For statement, i.e. FOR A(I) = ...

2) subscripted variables as the dummy variable in a
DEF statement, i.e. DEF FNA(A(8)).

3) a letter-number combination variable name of a
subscripted variable, i.e. DIM A1(58).

A one-dimensicnal array was referenced with two
dimensions or a two-dimensional array was referenced
with one dimension, ’ ‘

The increment value of a FOR loop contains a zexo
value,

9-5

BASIC Manual A1

July 1973 ASCII and BCD Character Codes

XDS 940 and CDC 3800 Character Codes

XDS 948 ASCII CDC 3828 BCD

INT INT EXT TELE LINE INT INT EXT CARD CARD LINE
D oCT PE__PRINTER C_ O T NT__PUNCH INTER
00 @00 2840 sp 55 48 68 2 sp sp 3P
21 @1 241 | s 42 52 52 nd -2 v
2 002 42 ' 29 35 75 nd +58 >
@3 903 243 # N 62 76 36 nd 268 :
24 004 244 S % 43 53 53 3 -38 :
25 205 @45 % o 14 16 16 nd 68 ¥
6 206 046 & A 63 77 37 nd 278 n
@7 @@l 247 ° : 12 14 14 ° 48 t
68 218 @50 ((66 74 34 (248 (
29 211 251) N 28 34 74) +48)
18 212 852 * . 44 54 54 * -48 .
11 213 353 + . 16 20 68 + + .
12 214 @54 , , s 73 33 , 238 ,
13 215 @55 - - 32 40 48 - - -
14 @16 2856 . . 27 33 713 . +38 .
15 @17 @57 / ; 49 61 21 / g1 /
16 020 063 @ - g6 ©6 12 2 2 J
17 221 261 1 1 21 21 01 1 1 L
18 922 262 2 - 22 @2 22 2 2 E
19 @23 9063 3 3 23 @3 23 3 3 3
20 224 264 4 4 94 24 04 4 4 .
21 g25 265 5 5 25 @5 95 5 5 .
22 226 066 6 A g6 @6 026 6 6 5
23 227 @67 7 7 g7 @71 37 7 7 ;
24 030 @78 € 5 28 18 10 8 8)
25 231 971 9 29 11 11 9 9)
26 232 272 : 19 12 988 82 :
27 @33 @73 ; 3 37 77 na +78 :
28 234 674 < < 26 32 72 nd +2 <
29 835 275 = . 11 13 13 = a8 -
39 @236 276 > > 47 57 57 na -78 ,
31 @237 @17 2 s 13 15 15 n4d 58 <

A=1

A=-2 BASIC Manual

ASCII and BCD Character Codes July 1973
XDS 940 ASCII CDC 3808 BCD
INT INT EXT TELE LINE INT INT EXT CARD CARD LINE
c T T DE T N
32 240 100 @ v 61 75 35 nd @58 -
33 941 191 A A 17 21 61 A +1 A
34 942 182 B 8 18 22 62 B +2 3
35 @43 103 ¢ C 199 23 83 ¢ +3 c
36 @44 104 D > 20 24 64 D +4)
37 245 125 E 3 21 25 65 E +5 E
38 @46 106 F F 22 26 66 F +6 F
39 247 1907 G G 23 27 671 G +7 5
40 25¢ 11 H - 2¢ 32 70 H +8 H
41 251 111 I ! 2 31 M1 1 +9 I
42 952 112 J J 33. 41 41 g -1 J
43 253 113 K < 34 42 42 K -2 K
44 254 114 L L 35 43 43 L -3 L
45 @55 115 M ~ 36 44 44 M -4 “
46 @856 116 N N 37 45 45 N -5 N
47 257 117 o s 38 46 46 © -6 0
48 9268 120 P = 39 47 47 P -7 P
49 261 121 Q o 40 58 50 Q -8 2
50 @62 122 R % 41 51 51 R -9 Q
51 263 123 s 3 5¢ 62 22 s 22 s
52 9264 124 T T 59 63 23 T 23 T
53 @65 125 U U 52 64 24 U 24 J
54 @66 126 V v 53 65 25 V a5 v
55 @67 127 W . 54 66 26 W 26 W
S6 279 138 X X 55 67 21 X a7 X
57 271 131 ¥ v 56 76 3¢ Y 28 Y
58 972 132 2 7 57 71 31 2 29 z
59 273 133 [t 15 17 17 nd 78 {
68 @74 134 \ \ 30 36 76 nd +68 -
61 @75 135 } 1 58 72 32 nad 228]
62 276 136 a 45 55 55 nad -58 ,
63 277 137 _ N 46 56 56 nd -68 .

NOTES

sp= space, blank or no punch.
nd= not defined, varies with particular unit used.
: (colon) is not transmitted on BCD (even parity) tape, changed to .

BASIC Manual ‘ A-3
July 1973 ASCII and BCD Character Codes
XDS 940 ASCII Character Codes

INT 1INT ASCII TELE 940 INT INT ASCII TELE 944
PEC__QCT __OCT PE __USE DEC__OCT ocT TYPE USE

[4
Ld

064 100 140 896 140 000 NULL Blank tape

265 101 144 a a @97 141 291 SOM &A Delete character
66 192 142 b b 298 142 02@2 ECA &B

067 193 143 c c @99 143 003 ETX 5C

@go8 104 144 d d 1880 144 0204 EOT &D End function
Bes 135 145 e e 191 145 205 ENQRY &E

@723 106 146 £ £ 102 146 0206 ACK &F

@71 187 147 g g 103 147 227 BELL &G Ring bell

72 118 150 h h 104 150 021@ Bksp &K .

873 111 151 i i 185 151 @14 Tab &I ‘

74 112 152 i b 106 152 @12 LF &J Line feed

075 113 153 k K 187 153 213 vT &K Vertical tab
976 114 154 1 1 1288 154 014 FORM &L Page e ject

877 115 155 m m 199 155 215 CR &M Carriage return
278 116 156 n n 114 156 0216 7o) &N

279 117 157 o o 111 157 @17 SI &0

@82 122 160 P E 112 168 0923 DLE &P

481 121 161 q q 113 181 @21 DC1 &Q Paper tape on
@82 122 162 r r 114 162 @22 2 &R :
P83 123 183 s s 115 183 @23 b» o] &S Paper tape off
484 124 164 t t 116 164 0224 .bQ4 &T

985 125 165 u u 117 165 025 NAK &U

486 126 166 v v 118 166 @226 SYNC &V Next chr literal
287 127 167 W w 119 167 227 ETB &4 Delete word

@88 138 172 X X 120 178 833 CANCL &X

289 131 171 y y 121 171 231 EM &Y

€99 132 172 z z 122 172 @32 suB &2

291 133 173 { { 123 173 233 Prefix Escape

292 134 174 i i 124 174 334 Fs

093 135 175 L mb 125 175 235 GS

294 136 176 126 176 336 RS

295 137 177 DELETE eof 127 177 337 us

Eofwd=27657537B (3 137°s)

NOTES

mo=multiple blank character.
escsescape or prefix.
eof=end of file character.

A-3

A-4

ASCII

A,

BASIC Manual

and BCD Character Codes July 1973

NOTES

&B, etc. means Control A', Control B, etc.

TTY names (NULL, SOM, etc,) are standard communication names.

Prefix is used on model 37 Teletypes for special functions; it can

The.

t
&

be input only with &V in QED. The characters following the
prefix perform the following functions: 1=set horizontal tab,
2=clear horizontal tabs, 3=shift to red ribbon, 4=shift to
black ribbon, 5S=set vertical tab, 6=clear vertical tab,
7=reverse line feed, 8=half reverse line feed, 9=half forward
line feed.

multiple blank character (135B) will always be followed by
another character whose octal value will be used as a blank
(space) count. Thus, if the characters 135B 12B are read from
a symbolic file, it means that 18 spaces in a row were stored
in that filec

of file character (137B) will generally be read as the last

character in a file. BHowever, it 1s possible to have 137B°s in
the middle of a file. Therefore, any time a 137B is
encountered, the file word should be tested £for +the EOF Dbit
(same as the sign bit) being set to make sure the true end of
file has been reached.

Form feed (&L or 154B) should be followed by at least 6 (for model

33 and 35 Teletypes) or 45 (for model 37’s) non-printing
characters to allow time for the page to stop at the top of the
next form {(up to three seconds for a 37).

BASIC Manual A-5

July 1973 ASCII and BCD Character Codes

Special Characters

INT INT ASCII TELE 949

DEC__OCT OoCT TYPE__USE
221 335 375 1 Right brace

234 352 212 LF Line feed with no return
237 355 215 CR Carriage return with no line feed

352B and 355B are used to produce special output, such as plotting or
underlining. They inhibit the normal carriage return and 1line feed
processing ¢f the monitor, which normally puts out a carriage return,
rubout, line feed when a carriage return is output; and a line feed,
carriage return, rubout for a line feed. These characters can be put
in a file by using QED, In CED, the control-shift-L (&\) character
will put in single line feed character (352B), and control-shift-M
{&]) will put in a single carriage return character, Note that these
two characters are treated exactly like any normal character in QED.
That is, they are not considered to mark the end of a logical line or
teminate the edit mode,

335B 1is wused to produce a right brace on output. It is not possible
to output this character as 125B, because that is the multiple blank
character, 3353 may be entered into a file using &V in QED (Version
6.8 or higher.)

Ackncw ledgment

The BASIC language and compiler were originally developed at Dartmouth
College for time~sharing computer users with no previous knowledge of
computers, as well as for wusers with considerable programming
experience. A simple.straightforward language, BASIC clcsely resembles
standard mathematical notation,

BASIC was orginally supplied by Scientific Data Systems, now Xerox lata
Systems, Modifications to the BASIC language have Yeen sponsored by
the NOAA Computer Division, Boulder, Colorado. The matrix operations
were introduced in 1968 by Dr. R. J. Silutz, J. R. Winkelman and Thomas
B, Gray of the NOAA Space Disturbances Laboratory. Strings and
formatted input/cutput were added by Howard E. Bussey, Jr. in 1972,

The first BASIC Manual was also originally supplied by Scientific Data
Systems, then rewritten completely by Thomas B. Gray. Supplements were
issued for Matrix cperations and extensions to the language, This
manual is a complete revision which supercedes all previous manuals and
supplements.

