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THE BCC 500 COMPUTING SYSTEM; 
AN INTRODUCTION AND OVERVIEW 

1.0 INTRODUCTION 
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This document describes the architecture of the BCC 500 
system, stressing its multiprocessor structure and the 
effects of this structure on the organization and implemen­
tation of tne sec soo operating system. Details of the 
system•s hardware components and descriptions of various 
aspects of the user machine provided by the system are found 
in other documents and papers £91 t; ha;• list Of refer­
encesl. In order to give the reader some orientation, how­
ever, the remainder of this section is devoted to a short 
account of the system's origins. Brief mentions of its 
intended uses, its user machine features, and its hardware 
structure are given in Appendix 1. 

1.1 Background 

The architecture of the BCC 500 system was largely 
determined by a design team working under Project G~NIE at 
the University of California, Berkeley in 1968 Canotner list 
of old Genie references, 6700 documents, van Tuyl's thesis, 
etc.J*. The Project's goal at that time was to develop a 
basic, cost-effective resource-sharing system structure 
which could serve as the nucleus for a number of operating 
systems tailored to specific applications areas. 

*The Project was 
organizations in a 
termed the sec 6700. 

associated with several commercial 
joint venture to produce what was then 



Page 2 

In early 1969 a number of individuals from Project 
GENIE joined with others to form Berkeley computer corpora­
tion (BCC) to develop remotely-accessed resource-sharing 
computing systems. The system architecture concepts were 
carried over from the Project. The specific soo hardware 
and software were developed in the period January 1969 
through July 1970 as a prototype for the company's 
subsequent line of systems. BCC was unable to secure suf­
ficient funding to establish a viable market based on the 
concept of centralized resource-sharing systems and was 
forced to terminate operations in March 1971. The soo sys­
tem was operated, however, for demonstration purposes anc 
for BCC's own programming development activities from 
mid-1970 to the company's demise. 

In 1972 the company's hardware assets -- including the 
500 prototype -- were purchased by the University of Hawaii, 
and the equipment was dismantled and moved to Honolulu, 
where it was refurbished and reassembled by THE ALOHA SYSTEM 
Project to be used as a research and computing tool. The 
system became active again in February 1973, and it has been 
used since that time by the Project, uy othec ARPA 
contractors (Via the ARPA network> and in classes of the 
oepartment of Electrical Engineering. 
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2.0 SYSTEM ARCHITECTURE 

The simplest view of the 500 system architecture is 
shown in Figure 1. In the figure we see six processors 
clustered around a common memory. The multiprocessing 
nature of the structure derives from the concurrent use of 
the processors in support of a common task and the use of a 
common memory for interprocessor communication. The common 
task supported by this computing structure is, of course, 
the provision to each system user of a f icticious, powerful 
Y1~1~~1 ~~£hing which is the target of systems programmers 
as they prepare compilers and other large sub-systems for 
the convenience of the users. Providing and controlling the 
virtual machine -- system resource allocation is one of 
the more prominent roles of an operating system on any type 
of computing structure. 

Figure 1. BCC 500 System. 

The six processors are built almost identically. In 
the system they are individually dedicated, however, to 
various roles. The nature of this dedication and its 
implications are among the more interesting aspects of the 
system architecture. Two of the processors have enhanced 
hardware capability and are used to implement the more 
visible aspects of the virtual machine; they are called 
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accordingly CPUs <although the term is not entirely apt in 
this context). The other processors are dedicated to 
various tasks of resource allocation. 
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2.1 Processor Assignments 

Figure 2 shows the names of the 500 system processors 
and suggests their assignments. 

Figure 2. BCC Central-site Processor Assignments. 

The processors are: 

The two ~entral trocessing Qnits are used 
almost exclusively to execute the code provided by 
the system's users. The rather significant CPU 
power required in other systems for the system's 
own management functions is provided in the 500 
system by more specialized processors. It is 
necessary, of course, for the CPUs to communicate 
with the other processors, and it is unreasonable 
to require the user of the system to write such 
code into each of his programs <especially without 
error>. Hence as a feature of the CPU, code is 
automatically included into each user's program to 
do the requisite communication tasks and a number 
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of others which are convenient to the user. This 
systez-provided code is considered to be logically 
a part of each user's job - called ££QQ~~~ in our 
terminology -- and is shared by all processes. It 
is fully protected by various CPU hardware 
features; it cannot be inspected or modified by 
user code, but only entered at discrete entry 
points implemented as system ~~ll~. These calls 
take on the nature of virtual machine 
"instructions," checking carefully the user's 
intended actions and his authority to do them 
before interacting in any way with the rest of the 
system. 

Beyond the protection mechanisms alluded to 
above the instruction and addressing capabilities 
of the CPUs are of little importance to the system 
architecture. In this system virtually any CPU 
could be used <assuming hardware compatibility 
with the memory system and the requisite 
protection mechanisms). 

The ~Haracter-oriented l/Q processor has. two 
main functions: (1) to communicate and manage the 
terminals which may be connected to the system, 
and (2) to perform a number of functions related 
to dynamic buffering of character I/O streams to 
and from the user processes on the CPUs. 
Originially the CHIO was designed to communicate 
~ith a number of remotely located computers termed 
Data communication Computers <DCCs) to which the 
actual terminals were connected. Thus in 
connection with (1) the CHIO was to supervise and 
control the various occs, load their local 
memories, multiplex I/O for individual terminals, 
acknowledge correct receipt of packets from DCCs, 
initiate retransmissions to occs, etc. In Hawaii 
it was not necessary to implement a full-scale 
communications network just to accommodate the 
local terminals; they were wired directly to the 
CHIO processor and its activities were modified to 
deal with the terminals directly. Remote 
terminals are accommodated by means of the ARPA 
network, which is interfaced to the 500 system 
through the CHIO processor which communicates via 
a wired connection to an IMP port on the network's 
ALOHA-TIP. 
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The £~li~Uuling processor's principal function 
is to schedule the two CPUs amongst the various 
active processes. Thus it is responsible for 
fielding wakeup conditions as they are generated 
and for making decisions on the order in which 
processes are passed through the central memory 
from, say, drum where they commonly reside. This 
information is passed to the memory management 
portion of the system for appropriate action. On 
a different level of activity the SCHEDuler makes 
final decisions as to which of several processes 
ready to run in the central memory is assigned to 
each CPU. This decision is normally made as the 
process on each CPU blocks. It is possible for 
the SCHEDuler to pre-empt a running process on a 
CPU; this does not normally happen, as the 
algorithms for scheduling are designed to permit 
CPU tasks normally to dismiss themselves or run to 
the end of a preset time interval. The SCHEDuler 
generates its own real-time wakeup conditions. 

The Hemory Hanagement lrocessor is 
responsible for management of the entire system 
memory. we define memory here to include the 
contents of drum and disk as well as central 
memory. The MMP together with the storage under 
its control can be viewed as a separate system 
with a table-driven interface to the rest of the 
soo system. The memory syste~ is described more 
fully in Section 2.3 below. Here we simply point 
out that the function of the MMP is to get the 
right information into the right place at the 
proper time. 

The £ystem Honitoring lrocessor continuously 
monitors a number of indicators which are set on 
the occurrence of some malfunction. It is 
equipped with a number of special control lines 
leading to the other processors and has the 
ability to control these processors as well as 
monitoring the system's health. The SMP may thus 
effect automatic crash recovery procedures, in 
many cases before significant damage to the con-
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tents of various system tables has been done. The 
SMP also contains a special system diagnostic and 
control routine called SYSDDT. This routine is 
equipped with an interactive interface via a 
special terminal to a software or hardware 
diagnostician who can control individual proces­
sors in the system. It contains a full emulation 
facility, for example, for a CPU. Either of the 
CPUs, when suspected of being faulty, can be 
single-stepped by SYSDDT and simultaneously 
emulated such that after the execution of each 
instruction the state of the real CPU can be 
compared with that of the emulated one. This 
provides the ability to quickly locate CPU faults. 
SYSDDT is a general-purpose program running from a 
private memory module attached to the SMP. It 
permits other diagnostic procedures to be designed 
on the spot if need be and readily inserted into 
the processor. 
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2.2 Realization of the Dedicated Functions 

The determining factor for the 500 system architecture 
was the development of a simple, but powerful microprocessor 
which is used as the basis of all of the system's proces­
sors. The microprocessor, like most, has active registers, 
scratchpad storage, basic arithmetic and logical processing 
ability, and an interface both to the central memory and to 
a private memory. It also has approximately 2K of diode 
read-only memory <ROM> from which it fetches its 
micro-instructions. The ROM has a minimum cycle time of 
about 65 nsec; but the entire processor is operated 
synchronously with a 100 nsec clock. This means that each 
100 nsec a new micro-instruction may be fetched and 
executed. 

Each word in the ROM contains one micro-instruction. 
There are 90 bits in each word, however, so that very little 
encoding of the bits in the micro-instruction is used. 
This, together with the existence of several busses 
connecting the various storage and processing elements, 
permits up to three or four operations to be done in a given 
micro-instruction. Thus the processor is theoretically 
capable of bursts of computation of up to 20 or 30 million 
operations per second. In practice this speed is not 
attained for long durations, as it is not always possible to 
cram three or four operations into every instruction and the 
processor must wait for memory responses when it references 
central or local memory. Its average rate of processing is 
consequently somewhat less, depending on the frequency with 
which it accesses memory. 

It was decided early in the 500 system design to place 
the dedicated functions of each processor directly into the 
processor microcode. This gives a distinctive cast to the 
system, as it means in effect that the bulk of the operating 
system exists in the processor hardware <more precisely, the 
11L~~s~~l· Clearly, the processors operating in this mode 
have high capability <their instruction bandwidth is high 
since they refer to memory only for data>. But the 
operating system algorithms are difficult to change, as the 
ROMs can be modified only by removing and inserting diodes. 

The difficulty of changing the microcode may be viewed 
as a beneficial constraint. It is the same constraint that 
requires a hardware designer to exercise extreme care and 
regularity in his designs, yielding results which are more 
nearly correct and more maintainable. Yet, it is probably 
unfair to press the analogy too far. Thus, in each proces­
sor there is found microcode which, in more classical 
fashion emulates the instruction set of a simple, 
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conventional processor. This microcode goes to memory for 
instruction fetching for the emulated processor; and thus 
edch processor can execute conventional software. 

In practice, both techniques are used. Placed directly 
into firmware are those functions which are fundamental, 
clearly-known, time-consumptive operations. In the software 
are those functions which are not so well defined initially 
or which are most subject to change. The emulated processor 
has an instruction to call microcoded subroutines directly, 
and the microcode can also start up and stop the emulated 
processor. Thus one can take two views of this hybrid 
approach: the view that the microprocessor emulates a 
standard processor which contains an extraordinary set of 
additional instructions (the microcoded subroutines> to help 
it perform its dedicated tasks, or the view that the micro­
processor performs its tasks directly from microcode, some 
of which is simulated by t h'e standard processor due to the 
necessity to change or parameterize it. we prefer the 
lattter view, but either results in the same end: the 
time-consumptive operations are executed directlY from 
microcode while that portion of the algorithms most subject 
to change is kept in software. This software resides in 
local memories for those processors so equipped: it is 
otherwise found in dedicated areas of the central memory. 
Similarly, data storage required for the sole use .of a give 
processor is kept in private memory, whereas central me~ory 
is used for that storage which must be shared between 
processors. 
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2.3 The Memory System 

Figure 3 shows the principal components of the memory 
system. The processors access only the central memory (CM>, 
shown in the figure as a four-port memory (up to four memory 
transfers can occur each memory cycle). Three of the ports 
are used for processor access, and the fourth is externally 
multiplexed to accommodate the collective transfers of the 
rotating memory devices. Because of the large number of 
user programs being accommodated it is necessary to transfer 
large quantities of information rapidly between CM and· drum 
and disk. one viewpoint which can be taken of the memory 
system is that the rotating memory primarily drum 
constitutes the system's main memory and that the CM is but 
a window on this memory through which the CPUs are permitted 
to access user programs subject to usual scheduling 
considerations. With such a point of view (see Figure 4) we 
see the desirability for continuous transfer of information 
through the CM. 

Figure 3. BCC 500 Memory System. 

In Figure 4 we note that user programs (more precisely, 
processes> found in the CN may be classed into one of four 
categories: 
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1) incoming processes <partially loaded) 

2) fully loaded processes <ready to run) 

3) active processes <being run by a CPU) 

4) outgoing processes (partially unloaded). 

clearly the individual processes do not move physically 
through the CM as Figure 4 suggests. 

Figure 4. ·conceptualization of the Memory system operation. 

They are placed into randomly available page slots by the 
~ and mapped into their proper position in the logical 
address space. by page maps associated with each CPU. To 
facilitate the handling of pages in central memory, the data 
format on the drums and disks was designed so that pages are 
the only unit of information treated as addressible entities 
within the memory system. 
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Figure 4 illustrates how the size of CM is minimized by 
the rapid swapping: the CM need be large enough only to 
hold the two active processes plus enough additional space 
to "buffer" the processes under transfer, i.e., to ensure 
that with good probability there is always a ready process 
to which to assign a CPU when its current process blocks. 
(The system actually deals with !~~~in~ [~i~ of ·pages 
pages of a process on which all memory references are 
localized during an active quantum of a process.) The 
amount of CH used to buffer incoming and outgoing processes 
is kept low by dynamically allocating space on the drums. 
The ~ writes out process pages at any sector address 
currently available and under the read/write heads; 
similarly it reads in processes in the order in which a 
process•s pages happen to come under the heads. 

The identity of the pages in a given process working 
set together with their location in the memory system is 
maintained by the "JnlH: in various resident tables in the CM. 
(This space is not shown in Figure 4.) The 'A"M"S must refer 
to these tables constantly and to the rotational position of 
each of the 16 rotating devices in order to keep the flow of 
pages moving at an optimum rate. 
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3.0 SYSTEM OPERATION 

The purpose of the system is to provide an environment 
for the execution of user processes which, in turn, 
typically access and modify user files. Processes and files 
are thus principal system objects consisting of pages of 
information contained within the memory system together with 
additional descriptive information. The process consists of 
system code shared with all processes <that code which 
communicates with the management processors>, system code 
which may be unique to. the process or shared with a number 
of other processes, user code, and all variable storage. It 
also includes a so-called ~Qn~~Xt ~l2~k containing the CPU 
state when the process is ~nactive, unique names of all the 
process pages, constitution of the present working set of 
pages <those pages which must be loaded into central memory 
before the process can be considered for activation>, and 
mapping information. The file consists of those pages 
holding the file's contents plus directory information, 
again naming the pages and ordering them within the file. 

The files can be created and destroyed <by processes>; 
in the meantime they reside permanently within the system. 
The place of residence of inactive files is, of course, 
disk. when files are accessed the memory system moves them 
first to drum and then to central memory for the actual 
access. As the file is no longer accessed and room on the 
drum is needed for new files or processes, the fil~ is moved 
by the memory system back to disk. 

Processes are created by a single system subprocess bY 
user request, usually when he logs into the system. Each 
process has a subprocess structure to facilitate both the 
system design and the needs of the user. The structure is a 
simple, linear one in which each subprocess is the inferior 
of at most one other subprocess and in turn is <immediately> 
superior to at most one subprocess. Subprocesses may have 
their own memory spaces or may share portions or all of 
memory with other subprocesses. They may communicate by 
means of messages passed through shared memory or by <soft­
ware) interrupts. At the end of a computation the process 
terminates itself or is terminated by the user when he logs 
out. An option permits the user to log out of the system, 
leaving his process undestroyed but in a dormant state. The 
process then takes on the nature of a file, i.e., it takes 
on a symbolic name and is placed in a directory for later 
reference. At a later time a similar option at log-in 
permits the user to re-attach himself to the dormant process 
or establish a new one. 
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It has been implied in all of the foregoing what each 
of the processors does with respect to a process or a file. 
We state here more explicitly the activities of -each 
management processor relative to processes and files. 

The CHIO passes character streams between 
processes and I/O terminals. It also passes files 
between the system and external storage media such 
as magnetic tape or special I/O devices such as 
line printers. The CHIO processor also commun­
icates with the ARPA network. 

The SCHEDuler selects processes for running 
and directs this information to the MMP. It also 
attaches processes loaded and ready to run to 
CPUs. It does this by placing a pointer to the 
process context block in a special central memory 
location and setting a request latch in the given 
CPU, which then proceeds to load its own state 
from the context block and resume computation. 
The SCHEDuler sets in this state a time interval 
which is picked up by the CPU and counted down in 
real time, at which time the CPU blocks the 
process, dumps its state in the context block and 
notifies the SCHEDuler that it has blocked. The 
SCHED processor does not deal with files. 

The MMP swaps processes and files or portions 
of files included in a process working set. It 
also goes to disk when required to move files or 
processes to drum, and vice versa. Both core and 
drum are dynamically allocated. The locations of 
pages in these areas are kept track of in special 
hash tables in central memory keyed by the page 
unique names. Disk, on the other hand is 
allocated in a more static fashion: each page 
existing in the system has a fixed, permanent 
residence on disk. The location of each page on 
disk is determined when the page is created and 
remains so until the page is destroyed. 
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3.1 Interprocessor Communication 

In a multiprocessor system the processors by definition 
interact. The next several sections explore the nature of 
the communication between the 500 system processors. This 
communication closely parallels that between different 
modules of a conventional operating system. 

Basically the processors communicate by means of cen­
tral memory, i.e., by changing bits in shared tables. To 
speed up a processor's having to look through extensive 
tables for changes, a hardware flag system is provided. 
This mechanism consists of a small number of latches in each 
processor which can be set by one or more other processors. 
The latches -- called I~s.Y.~!1 !!IQQ~! are tested and 
reset by each processor's microcode. Flags in central 
memory augment this rudimentary facility into a more general 
one. 

3.2 Processor Interlocking 

When more than one processor accesses a data structure 
it is generally necessary to utilize an interlock mechanism 

a means by which only one processor at a time can modify 
the data structure into a new state which is meaningful to 
all processors. (In effect an interlock allows a processor 
to seize a given data structure, rendering it inaccessible 
to all other processors until the processor has completed 
its updating task>. In the 500 system special hardware 
interlocks· operating at microcode speeds are provided. 
These interlocks called ~I~1~~1~ -- consist of eight 
central latches which may be set or reset by any processor 
but by only one at a time. That is, if more than one 
processor attempts to acquire the same protect at the same 
time or if the protect is already set, a hardware contention 
circuit resolves the conflict and issues a positive or 
negative acknowledgement to the appropriate processor. 
Processors receiving positive acknowledgements to protect 
requests then "own" the protect (and the data structure 
associated with it> until they voluntarily relin uish it. 

u 
protects beyond eight. 
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The particular protect mechanism used is greatly 
simplified by the fact that each processor <and in fact, 
~Y~I~ system component) is operated with a common clock. 
Thus processors make protect requests in exact synchronism. 
The hardware contention circuit shifts its notions of 
contention priority in such a way that each processor is 
treated with the same priority on the average. 
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3.3 Illustration of Processor Interaction 

Figure 5 shows the processors (except SMP> and some of 
the more important communication signals between them. Each 
processor is dedicated to its own task and is designed to 
operate autonomously, independent of the other processors. 
No one proce~sor is "in cntrol" of the other processors or 
of the system (except for, that is, the SMP which exercises 
its privileges only when a problem develops -- see section 
xxxx on restarts>. 

Figure s. Schematic of Processor Interaction 

consider the actions of the processors 
cation between them in response to an 
typing a command on his terminal. We will 
this time his process is blocked for reasons 
the process is physically located on drum. 

1. CHIO 

and the communi­
interactive user 
assume that at 

of I/O and that 
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As the user types, his characters are 
accumulted by the CHIO. (In Hawaii the CHIO also 
echoes these characters; the occs were originally 
designed for this under control of the CHIO.> As 
part of its work the CHIO checks each character to 
see if it is a "wakeup" character. (Wakeup 
characters are defined for the CHIO by the program 
the user is interacting with.> Until a wakekup 
character is received by the CHIO it simply 
buffers and echoes the characters being typed. 
While this is going on, ~nlY the CHIO gives 
attention to the user. No other processors ~- in 
particular, the CPUs -- are involved. They are 
executing code for other users. 

When the CHIO receives a wakeup character 
(say, EOL in our case>, it initiates the sequence 
of events which are required to bring into 
execution the program the user is interacting 
with. The CHIO does this by passing a simple 
message to the SCHEDuler; a pointer to the 
appropriate process is placed into a small queue. 

2. SCHEDuler 

The message from the CHIO is retrieved by a 
dispatcher task in the SCHEDuler and passed to the 
SCHEDuler•s WAKEUP task. This task just (1) _j() 
records a bit which identifies the source of~ life 
~~..,w..j~i.--rn:~:.u~l.fr--+.a_~ e ' a n d ( 2 > 

queues the process on a queue called the WAKEUP 
queue. 

An independent task (the SCHEDULING task) 
later removes the process from the WAKEUP queue 
and places it on the appropriate one of several 
SCHEDULER queues. Still another task removes the 
process from this queue and sends a message to the 
SWAPPER task in the MMP, requesting that the 
process be loaded into central memory. 

3. MMP 

The MMP, in response to the request from the 
SCHEDuler, sets about the task of reading the 
J~~-LQ_cess _w~ of · o ce ~· 

1 
To d'O--this it will have to create space in th~~'\ 

///'/7 ~ 
~· 

' .•. --,_r~' 

'. c e n t r a l me m o r y b y w r i t i n g o u t t h e _ __£_~~ .. -~~~- ..o..i-- .... 
\ previously active protesses. en this rather 
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complex action has been completed, the MMP notes 
back to the SCHEDuler that the process is loaded. 
Note that during the time the MMP is reading pages 
of the process into memory, Q~lY the M~P is 
concerned with the process. In particular, again, 
the CPUs are running other processes. 

4. SCHEDuler 

Loaded processes become the responsibility of 
the SCHEDler task called the MICRO-SCHEDULER. 
This is the module that actually controls the 
CPUs. It keeps track of the "priorities" of the 
processes executing on the CPUs and of the, 
processes which are loaded and ready to be 
executed. When a CPU becomes available for our 
process <by virtue of its being free or because 
its current process has lower priority than ours> 
the MICRO-SCHEDULER hands the process to the CPU 
and tells it to run. 

5. CPU 

When the CPU receives the "switch processes" 
message from the SCHEDuler it picks up the state 
of our process from its context block and starts 
executing it. If it is running a process already, 
it waits until the process is not executing from 
its system code; and as soon as this is true it 
stores the state of the CPU into the context block 
of the process. It then sends a message to the 
SCHEOuler, letting it know that the CPU has 
blocked the process it was running. on picking up 
our process, the CPU then communicates with the 
CHIO to receive the message typed by the user 
which evoked all this activity. 
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3.4 Explicit Communication Between the Processors 

In this section we consider the processor communication 
interfaces in more detail. We consider the various possible 
pairwise combinations. 

1. CHIO - CPUs 

In these bi-directional exchanges the system code 
running on a CPU is always the initiator. At the command of 
a user program, the system code requests the CHIO to accept 
some characters for delivery to a terminal, to deliver to 
the CPU characters Which the CHIO has received and buffered, 
or to change the state of some terminal parameter such as 
echo strategy, wakeup strategy, etc. The system code puts 
its request, together with any associated data, into the 
CHIO•s request buffer (a block of words in central memory>; 
sets a "request waiting" flag associated with this buffer (a 
bit in CM>, and sets the CHIO's request strobe latch to let 
it know it should look at its request buffer. If the nature 
of the request is such that no reply or response from the 
CHIO is expected, this completes the interaction. The sys­
tem code returns control to the user code that called it. 
The CHIO procedes at its leisure (althouqh very quickly> to 
perform the requested operation. When it finishes, it 
resets the "request waiting" flag. For those r~quests to 
which the system code in the CPU does expect a reply <such 
as one which asks for the delivery of any characters which 
may have come in from a given terminal>, the system code 
waits while the CHIO performs the request. The CHIO puts 
its response in the same message buffer and resets the 
"request waiting" flag to let the system code know that the 
response is ready. The system code then delivers the 
response and possibly the characters to the user code. 

2. CHIO - SCHED 

This communication is only one way: from the CHIO to 
the SCHED. When the CHIO finds that it has collected a 
complete message for a process, i.e., when it gets a wakeup 
character from a terminal, the CHIO sends a notification to 
the SCHED. It does this by placing a short message 
containing the process• IO into the SCHED's message input 
buffer. This buffer is also used by the other processors in 
communicating with the SCHED to communicate a variety of 
things. A "wakeup message" from the CHIO must thus contain 
more than just the ID of the process for whom the CHIO has 
collected a message. It contains an "opcode" which means 
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that the message is a wakeup message plus a specification of 
the reason for the wakeup message. 

The CHIO sends wakeup messages to the SCHED for other 
reasons also. Among them are 

- the input buffers allocated to a process are <nearly> 
full 

- the output buffers allocated to a process are empty 
enough that the process can proceed to do more output 

- a special control character<a QUIT or ESCAPE character> 
has been received from the process• terminal. 

The SCHED's message input buffer is used by all the 
system processors. It is protected from simultanous access 
by means of one of the hardware PROTECTS. Thus, whenever a 
processor wants to reference this buffer, it first acquires 
the associated PROTECT, makes its reference <which only 
requires four or five memory references>, and then releases 
the PROTECT. After placing a request in the buffer, the 
processor sets a request strobe latch in the SCHED to let it 
know that there is a message for it. 

3. CHIO - MMP 

These two processors have no need to communicate with 
each other. 

4. CPUs - MMP 

Message exchange between these two processors is always 
initiated ·by the system code in a CPU making a request on 
the MMP. Messages from the MMP to the CPU are always 
responses to such requests. 

What the two processors talk AhQYi are pages of memory. 
Each ,page in the memory system has been given a unique name 
at creation time. Pages are always referred to by name. For 
example the system code in the CPU makes such requests as 

- create a new page 

- destroy a page 
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The MMP has three separate message input "ports." Each 
port corresponds to a major task structure in the MMP. one 
is for the SWAPPER, one for a direct I/O capability (not a 
normal user's facility>, and one is a utility task. 

To make a request on the MMP, the CPU system code first 
constructs a request in the form expected by the MMP, then 
copies the request onto the end of a queue at the 
appropriate port, and finally request strobes the MMP to let 
it know there's a message waiting for it. Clearly, the 
copying operation is done under a PROTECT. 

some requests require no response, and the system code 
in the CPU is finished once it has done the request strobe. 
Other requests initiate actions which require explicit 
responses and some of these call for immediate r~sponses 
while others, taking longer to process, produce a delayed 
response. 

In the immediate response case, the system code waits 
for the MMP to reply in a communication area dedicated to 
this purpose. In the other case, the system code blocks the 
CPU process. When the MMP has the response ready it will 
put its message in an area local to the process from which 
the originating message came, and send a message to the 
SCHED telling it to wake up the process because there's a 
message for it. In due course this will re~start the 
blocked system code, which will then go and read the MMP's 
message. 

5. MMP - SCHED 

The MMP sends messages to the SCHED in the same way for 
the same basic reason the the CHIO does, i.e., to let the 
SCHED know that some event of interest to a process has 
occurred. Thus messages from the MMP to the SCHED are 
normally requests to wake up a specified process. usually, 
some small amount of data for use by the process accompanies 
these messages. 

The SCHED sends messages to the MMP to request the 
swapping into or out of central memory of the working set of 
a process. It gives requests to the MMP the same way the 
CPU does by forming a message, appending it to the 
appropriate one of the MMP's message input queues <under a 
PROTECT>, and then request strobing the MMP. 

6. CPU - SCHED 
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The CPU communicates with the SCHED for various 
reasons. The SCHED implements a real-time interrupt/wakeup 
facility for the use of user processes. At the request of 
such processes, the system code in the CPU calls this 
function in the SCHED to arrange that the process be 
awakened and notified at a certain real time. These 
requests are made by the CPU in the same way that the CHIO 
and MMP send wakeup message to the SCHED. The CPU seizes 
the appropriate PROTECT, puts a short message into the 
SCHED's message input buffer, releases the PROTECT, and 
request strobes the SCHED. 
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4.0 DISCUSSION 

The use of multiple processors permitted the BCC 500 to 
be a more capable system than the use of a single processor 

even a considerably faster < amd more expensive> one. 
The varios processors in the system, while similar in 
hardware, are dedicated to their assigned functions: three 
dedicated to system management and two to running the user 
codes. There are several consequences of this decision 
which should be mentioned. First, there is no need for 
complex time-sharing and scheduling of the various proces­
sors over the many system and user tasks. The tasks can 
thus be designed to run to completion, ie.e, with little 
concern for interruption by higher priority tasks. ,.r'-'hY is ~ 

~fti& 9QiQ?r-., 

Putting the system tasks into separate processors has 
the result that the operating system gets modularized in a 
"real" way. Modularization is always a problem in any 
operating system design: the actual choice of modules is 
frequently difficult, and programmers are of ten led to 
"cheat," i.e., to cut across module boundaries against theri 
own definitions of those boundaries. Although this can be 
remedied by sufficient self-discipline; having separate 
processors forces the issue, with the consequence of clean, 
impossible-to-cheat-on modularization. The modularization 
is readily comprehensible, even to a technician, say, 
because he can identify a module < and its function> with a 
known piece of hardware. This has distinctly beneficial 
ramifications toward maintainability. 

In addition to error analysis the use of separate, 
dedicated processors in general makes checkout and 
performance monitoring easier. The modules arebasically 
independent and are driven by the contents of memory tables 
by which they communicate and interact. Thus they can be 
readily ·tested independently. (Checkout is a serious 
problem normally in complex operating systems because of the 
many module interas.J;J.Juls.> In the checkout of the 500, for 
example, the entire'2;;tLC/function was developed and checked 
out before the CPUs existed. 

Because so much fixed-algorithm computational power 
exists in the several management processors, it is possible 
to consider within those processors the use of 
algorithms for various operating system functions which are 
too complex <i.e., time-sonsumptive) to utilize even ov very 
fast CPUs. Another consequence of the use of multiple 
microprocessors for system management is the ability to 
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utilize more straightforward coding techniques (since, for 
example, many "tricks" are used in conventional operating 
systems for efficiency>. The coding is easier to do, is mor 
easily analyzed, and of course is less likely to fa~l. 
Finally, it is possible to include on a practical scale the 
use of redundant computations for operating system 
management which make error detection more immediate, give 
the system more survivability (is this the right term?>, and 
greater fault locatability. 

>How do we discuss bringing up the 2nd CPU?> 

There are, of course, some drawbacks to the sec soo 
architecture, expecially that of the existing prototype. 
MostlY these relate in one way or another to the purely 
read-only nature of the microprocessors• control stores. 
Because each of the management processors executes unique 
functions as determined by the <fixed> ROMs, there is no way 
to continue operation of the system when a processor fails. 
This does not relate to the basic architecture, ie.e, to the 
use of dedicated, multiple processors, as the use of 
writeable control stores would easily permit standby proces­
sors to be phased in to replace a given management processor 
which has hailed. 

Bhe sec soo system designers were encouraged toward the 
use of multiple processors by their considerations of the 
system's potential need for data security. In the earlier 
example of how the processors executing their separate 
functions communicate and cooperate, we saw how they util­
ized common, resident memory tables as their communication 
medium. The access of any one processor into these tables 
is highly restricted by the microcode whose behavioral 
properties are more amenable to study than the more 
unstructured code of users or systems programmers. The CPU 
(except its microcoded routines> is generally prevented from 
inspecting these tables directly -- even in its system mode. 
Thus the separation of functions into processors has clear 
ramifications on the potential security of the operating 
system; it is much more difficult for a penetrator to induce 
a different processing running fixed code to inspect 
critical information and the re by cause an ab rid gm e n,t of 
security. This aspect of the architecture makes it appear 
favorable for applications in which security is a concern; 
at least, compartmentalization is a classical 
(non-computing> means for implementing security. 
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APPENDIX I 

1.0 Intended Area of APPlications 

A goal of sec was to develop systems which could be 
used by £Q~~~i~L ~iili.t.i~, i.e., companies offering 
appropriately packaged computing power and services by means 
of telecommunications and remote terminals. The soo system 
was intended to serve this purpose particularly where the 
computing jobs individually require small amounts of 
computation; that is, the system architecture was Qi!~~g 
toward accommodating large numbers of relatively smdll Jobs. 
common examples of intended applications were small 
scientific computations (e.g., small BASIC programs>, 
bank-teller systems, reservations systems, real-estate sys­
tems, etc. Many of these systems, while not requiring large 
amounts of computation, do require a large machine -- large 
in the sense of file capacity and memory address space. 
Thus a mini-computer, for example, would be ill-suited to 
the application, while a large machine might not be 
justifiable on economic grounds. 

Cmore: separate utilities, wholesaling, guaranteed service, 
data security] 

1.1 User Machine and Operating System 

The operating is partitioned into functional areas and 
is executed on different processors concurrently. These 
processors are dedicated to their tasks. one type of 
processor is "dedicated," of course, to the running of 
general-purpose <i.e., user-specified> code. This proces­
sor, called a £~Ili~Al ~L~~~~QL, also executes portions of 
the operating system, always on behalf of its active user. 
Those CP characteristics of most interest from the operating 
system viewpoint are briefly listed below: 

The CPs are designed to be 
higher-level languages. 
for the CP. 

programmed only in 
There is no assembler 
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- Virtual memory: The CPs see a virtual memory of 
256K words in pages of 2K each. 

Hierarchical, ring-structured 
mechanisms: 3 protection rings 
accommodate two levels of operating 
one for subsystems and user code. 
references acquire the protection of 
being addresses. 

protection 
designed to 
system and 
Inter-ring 
the ring 

- Numerous addressing modes designed to facilitate 
efficient running of compiler-generated code. 
Heavy emphasis is made on the use of 
descriptors for common data structures such as 
strings, fields, and arrays. 

comprehensive function call and return 
mechanism. Copies arguments between 
environments, creates and stacks environments. 

- CP traps directly under user control. 

The principal features of the operating system are: 

A m2ni~QL, common to all user processes. 
contains a bare minimum of calls and is as 
general as possible. Is intended to be a 
"kernel" for additional operating system code. 
Exists in highest protection ring. 

- A Qiili~y, which can be tailored for individual 
users. Implements all of the user machine 
characteristics and executive command language. 
Runs in middle protection ring. 

subsystems and user code, running in lowest 
ring, can call utility or monitor just like 
they call their own functions, subject to the 
ring protection. 

Finally, the virtual machine seen by user code (the 
user machine) has the following general 
appearance: 

- A 128K address space 

- The usual types of operating system calls. 
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- some unusual calls such as: 
- User control over process working set 

- scheduling decisions like whether to block 
for I/O. 
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1.2 Hardware 

The system as it exists at the University of Hawaii 
includes six processors connected to a high-bandwidth 
multi-port, multi-module 128K central memory; two large 
drums, two large disk files, with their associated control­
lers; and centralized control, synchronization, and communi­
cation logic. These resources are capable of significant 
computation. The original system design, however, called 
for a 256~ central memory and allowed for a significant 
expansion of both drum and disk storage. More importantly, 
the basic design included a number of remote processors for 
terminal and communications handling, connected to the cen­
tral site by a network of communication lines. Three of 
these remote processors were constructed and brought to 
Honolulu. They were not included in the present conf igura­
tion, having been "replaced" in function by a connection 
through one of the central-site processors to the ARPA net­
work. 

All of the processors -- the central-site processors 
and the remote-site processors -- are implemented around a 
basic microprocessor designed by BCC for use in the system. 
The microprocessors used in the central site have 24-bit 
wide arithmetic units, and each executes at a maximum rate 
of about twelve million operations per second. The 
remote-site processors had 16-bit arithmetic units and were 
slower. Each version uses discrete diode circuit boards for 
their control memory, which contains 2K x 90-bit words. 

The central memory to which the six processors are 
connected is a four-port, eight-module memory capable of 
sustaining an average data transfer rate of sixteen mega­
words per second. Each module contains BK double-words of 
one-microsecond core storage and two double-words of active 
storage together with associated logic. The active storage 
and the logic associated with it are called the Fast Memory 
(FM>. The FM functions as a temporary repository for data 
as it passes to and from the core module, and as a gathering 
point for memory requests for better assignment of available 
memory bandwidth in the face of contention between the 
processors and controllers. The FM provides a small amount 
of look-behind capability. 

The drum and disk memory units are interfaced with the 
central memory by rather simple controllers termed "transfer 
units." Each drum is equipped for full parallel transfer at 
the rate of two megawords per second (six megabytes per 
second). The disk units transfer approximately ten times 
more slowly, or at about 600 kilobytes per second. 
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CThe Aux Mem is considered to be part of the system "main 
memory" (as opposed to being I/O units>, and the data format 

pages, unique names, etc.J 
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