
PAPER:9SYM ThURSDAY MARCH 20, 1975 3:11:17
PAPER:9SYM THURSDAY MARCH 20, 1975 6:11:17
PAPER:9SHi THURSDAY. MARCri 20, 1975 e:11:11
PAPER:9SYM THURSDAY ~1ARCii 20, 1975 d : 11 :_ 1 7
PAPER:9SYM ThURSi.JAY MAR.CH 20, 1975 8:11:17

THE BCC 500 COMPUTING SYSTEM;
AN INTRODUCTION AND OVERVIEW

1.0 INTRODUCTION

Page 1

This document describes the architecture of the BCC 500
system, stressing its multiprocessor structure and the
effects of this structure on the organization and implemen­
tation of tne sec soo operating system. Details of the
system•s hardware components and descriptions of various
aspects of the user machine provided by the system are found
in other documents and papers £91 t; ha;• list Of refer­
encesl. In order to give the reader some orientation, how­
ever, the remainder of this section is devoted to a short
account of the system's origins. Brief mentions of its
intended uses, its user machine features, and its hardware
structure are given in Appendix 1.

1.1 Background

The architecture of the BCC 500 system was largely
determined by a design team working under Project G~NIE at
the University of California, Berkeley in 1968 Canotner list
of old Genie references, 6700 documents, van Tuyl's thesis,
etc.J*. The Project's goal at that time was to develop a
basic, cost-effective resource-sharing system structure
which could serve as the nucleus for a number of operating
systems tailored to specific applications areas.

*The Project was
organizations in a
termed the sec 6700.

associated with several commercial
joint venture to produce what was then

Page 2

In early 1969 a number of individuals from Project
GENIE joined with others to form Berkeley computer corpora­
tion (BCC) to develop remotely-accessed resource-sharing
computing systems. The system architecture concepts were
carried over from the Project. The specific soo hardware
and software were developed in the period January 1969
through July 1970 as a prototype for the company's
subsequent line of systems. BCC was unable to secure suf­
ficient funding to establish a viable market based on the
concept of centralized resource-sharing systems and was
forced to terminate operations in March 1971. The soo sys­
tem was operated, however, for demonstration purposes anc
for BCC's own programming development activities from
mid-1970 to the company's demise.

In 1972 the company's hardware assets -- including the
500 prototype -- were purchased by the University of Hawaii,
and the equipment was dismantled and moved to Honolulu,
where it was refurbished and reassembled by THE ALOHA SYSTEM
Project to be used as a research and computing tool. The
system became active again in February 1973, and it has been
used since that time by the Project, uy othec ARPA
contractors (Via the ARPA network> and in classes of the
oepartment of Electrical Engineering.

Page 3

2.0 SYSTEM ARCHITECTURE

The simplest view of the 500 system architecture is
shown in Figure 1. In the figure we see six processors
clustered around a common memory. The multiprocessing
nature of the structure derives from the concurrent use of
the processors in support of a common task and the use of a
common memory for interprocessor communication. The common
task supported by this computing structure is, of course,
the provision to each system user of a f icticious, powerful
Y1~1~~1 ~~£hing which is the target of systems programmers
as they prepare compilers and other large sub-systems for
the convenience of the users. Providing and controlling the
virtual machine -- system resource allocation is one of
the more prominent roles of an operating system on any type
of computing structure.

Figure 1. BCC 500 System.

The six processors are built almost identically. In
the system they are individually dedicated, however, to
various roles. The nature of this dedication and its
implications are among the more interesting aspects of the
system architecture. Two of the processors have enhanced
hardware capability and are used to implement the more
visible aspects of the virtual machine; they are called

Page 4

accordingly CPUs <although the term is not entirely apt in
this context). The other processors are dedicated to
various tasks of resource allocation.

Page 5

2.1 Processor Assignments

Figure 2 shows the names of the 500 system processors
and suggests their assignments.

Figure 2. BCC Central-site Processor Assignments.

The processors are:

The two ~entral trocessing Qnits are used
almost exclusively to execute the code provided by
the system's users. The rather significant CPU
power required in other systems for the system's
own management functions is provided in the 500
system by more specialized processors. It is
necessary, of course, for the CPUs to communicate
with the other processors, and it is unreasonable
to require the user of the system to write such
code into each of his programs <especially without
error>. Hence as a feature of the CPU, code is
automatically included into each user's program to
do the requisite communication tasks and a number

Page 6

of others which are convenient to the user. This
systez-provided code is considered to be logically
a part of each user's job - called ££QQ~~~ in our
terminology -- and is shared by all processes. It
is fully protected by various CPU hardware
features; it cannot be inspected or modified by
user code, but only entered at discrete entry
points implemented as system ~~ll~. These calls
take on the nature of virtual machine
"instructions," checking carefully the user's
intended actions and his authority to do them
before interacting in any way with the rest of the
system.

Beyond the protection mechanisms alluded to
above the instruction and addressing capabilities
of the CPUs are of little importance to the system
architecture. In this system virtually any CPU
could be used <assuming hardware compatibility
with the memory system and the requisite
protection mechanisms).

The ~Haracter-oriented l/Q processor has. two
main functions: (1) to communicate and manage the
terminals which may be connected to the system,
and (2) to perform a number of functions related
to dynamic buffering of character I/O streams to
and from the user processes on the CPUs.
Originially the CHIO was designed to communicate
~ith a number of remotely located computers termed
Data communication Computers <DCCs) to which the
actual terminals were connected. Thus in
connection with (1) the CHIO was to supervise and
control the various occs, load their local
memories, multiplex I/O for individual terminals,
acknowledge correct receipt of packets from DCCs,
initiate retransmissions to occs, etc. In Hawaii
it was not necessary to implement a full-scale
communications network just to accommodate the
local terminals; they were wired directly to the
CHIO processor and its activities were modified to
deal with the terminals directly. Remote
terminals are accommodated by means of the ARPA
network, which is interfaced to the 500 system
through the CHIO processor which communicates via
a wired connection to an IMP port on the network's
ALOHA-TIP.

Page 7

The £~li~Uuling processor's principal function
is to schedule the two CPUs amongst the various
active processes. Thus it is responsible for
fielding wakeup conditions as they are generated
and for making decisions on the order in which
processes are passed through the central memory
from, say, drum where they commonly reside. This
information is passed to the memory management
portion of the system for appropriate action. On
a different level of activity the SCHEDuler makes
final decisions as to which of several processes
ready to run in the central memory is assigned to
each CPU. This decision is normally made as the
process on each CPU blocks. It is possible for
the SCHEDuler to pre-empt a running process on a
CPU; this does not normally happen, as the
algorithms for scheduling are designed to permit
CPU tasks normally to dismiss themselves or run to
the end of a preset time interval. The SCHEDuler
generates its own real-time wakeup conditions.

The Hemory Hanagement lrocessor is
responsible for management of the entire system
memory. we define memory here to include the
contents of drum and disk as well as central
memory. The MMP together with the storage under
its control can be viewed as a separate system
with a table-driven interface to the rest of the
soo system. The memory syste~ is described more
fully in Section 2.3 below. Here we simply point
out that the function of the MMP is to get the
right information into the right place at the
proper time.

The £ystem Honitoring lrocessor continuously
monitors a number of indicators which are set on
the occurrence of some malfunction. It is
equipped with a number of special control lines
leading to the other processors and has the
ability to control these processors as well as
monitoring the system's health. The SMP may thus
effect automatic crash recovery procedures, in
many cases before significant damage to the con-

Page 8

tents of various system tables has been done. The
SMP also contains a special system diagnostic and
control routine called SYSDDT. This routine is
equipped with an interactive interface via a
special terminal to a software or hardware
diagnostician who can control individual proces­
sors in the system. It contains a full emulation
facility, for example, for a CPU. Either of the
CPUs, when suspected of being faulty, can be
single-stepped by SYSDDT and simultaneously
emulated such that after the execution of each
instruction the state of the real CPU can be
compared with that of the emulated one. This
provides the ability to quickly locate CPU faults.
SYSDDT is a general-purpose program running from a
private memory module attached to the SMP. It
permits other diagnostic procedures to be designed
on the spot if need be and readily inserted into
the processor.

Page 9

2.2 Realization of the Dedicated Functions

The determining factor for the 500 system architecture
was the development of a simple, but powerful microprocessor
which is used as the basis of all of the system's proces­
sors. The microprocessor, like most, has active registers,
scratchpad storage, basic arithmetic and logical processing
ability, and an interface both to the central memory and to
a private memory. It also has approximately 2K of diode
read-only memory <ROM> from which it fetches its
micro-instructions. The ROM has a minimum cycle time of
about 65 nsec; but the entire processor is operated
synchronously with a 100 nsec clock. This means that each
100 nsec a new micro-instruction may be fetched and
executed.

Each word in the ROM contains one micro-instruction.
There are 90 bits in each word, however, so that very little
encoding of the bits in the micro-instruction is used.
This, together with the existence of several busses
connecting the various storage and processing elements,
permits up to three or four operations to be done in a given
micro-instruction. Thus the processor is theoretically
capable of bursts of computation of up to 20 or 30 million
operations per second. In practice this speed is not
attained for long durations, as it is not always possible to
cram three or four operations into every instruction and the
processor must wait for memory responses when it references
central or local memory. Its average rate of processing is
consequently somewhat less, depending on the frequency with
which it accesses memory.

It was decided early in the 500 system design to place
the dedicated functions of each processor directly into the
processor microcode. This gives a distinctive cast to the
system, as it means in effect that the bulk of the operating
system exists in the processor hardware <more precisely, the
11L~~s~~l· Clearly, the processors operating in this mode
have high capability <their instruction bandwidth is high
since they refer to memory only for data>. But the
operating system algorithms are difficult to change, as the
ROMs can be modified only by removing and inserting diodes.

The difficulty of changing the microcode may be viewed
as a beneficial constraint. It is the same constraint that
requires a hardware designer to exercise extreme care and
regularity in his designs, yielding results which are more
nearly correct and more maintainable. Yet, it is probably
unfair to press the analogy too far. Thus, in each proces­
sor there is found microcode which, in more classical
fashion emulates the instruction set of a simple,

Page 10

conventional processor. This microcode goes to memory for
instruction fetching for the emulated processor; and thus
edch processor can execute conventional software.

In practice, both techniques are used. Placed directly
into firmware are those functions which are fundamental,
clearly-known, time-consumptive operations. In the software
are those functions which are not so well defined initially
or which are most subject to change. The emulated processor
has an instruction to call microcoded subroutines directly,
and the microcode can also start up and stop the emulated
processor. Thus one can take two views of this hybrid
approach: the view that the microprocessor emulates a
standard processor which contains an extraordinary set of
additional instructions (the microcoded subroutines> to help
it perform its dedicated tasks, or the view that the micro­
processor performs its tasks directly from microcode, some
of which is simulated by t h'e standard processor due to the
necessity to change or parameterize it. we prefer the
lattter view, but either results in the same end: the
time-consumptive operations are executed directlY from
microcode while that portion of the algorithms most subject
to change is kept in software. This software resides in
local memories for those processors so equipped: it is
otherwise found in dedicated areas of the central memory.
Similarly, data storage required for the sole use .of a give
processor is kept in private memory, whereas central me~ory
is used for that storage which must be shared between
processors.

Page 11

2.3 The Memory System

Figure 3 shows the principal components of the memory
system. The processors access only the central memory (CM>,
shown in the figure as a four-port memory (up to four memory
transfers can occur each memory cycle). Three of the ports
are used for processor access, and the fourth is externally
multiplexed to accommodate the collective transfers of the
rotating memory devices. Because of the large number of
user programs being accommodated it is necessary to transfer
large quantities of information rapidly between CM and· drum
and disk. one viewpoint which can be taken of the memory
system is that the rotating memory primarily drum
constitutes the system's main memory and that the CM is but
a window on this memory through which the CPUs are permitted
to access user programs subject to usual scheduling
considerations. With such a point of view (see Figure 4) we
see the desirability for continuous transfer of information
through the CM.

Figure 3. BCC 500 Memory System.

In Figure 4 we note that user programs (more precisely,
processes> found in the CN may be classed into one of four
categories:

Page 12

1) incoming processes <partially loaded)

2) fully loaded processes <ready to run)

3) active processes <being run by a CPU)

4) outgoing processes (partially unloaded).

clearly the individual processes do not move physically
through the CM as Figure 4 suggests.

Figure 4. ·conceptualization of the Memory system operation.

They are placed into randomly available page slots by the
~ and mapped into their proper position in the logical
address space. by page maps associated with each CPU. To
facilitate the handling of pages in central memory, the data
format on the drums and disks was designed so that pages are
the only unit of information treated as addressible entities
within the memory system.

Page 13

Figure 4 illustrates how the size of CM is minimized by
the rapid swapping: the CM need be large enough only to
hold the two active processes plus enough additional space
to "buffer" the processes under transfer, i.e., to ensure
that with good probability there is always a ready process
to which to assign a CPU when its current process blocks.
(The system actually deals with !~~~in~ [~i~ of ·pages
pages of a process on which all memory references are
localized during an active quantum of a process.) The
amount of CH used to buffer incoming and outgoing processes
is kept low by dynamically allocating space on the drums.
The ~ writes out process pages at any sector address
currently available and under the read/write heads;
similarly it reads in processes in the order in which a
process•s pages happen to come under the heads.

The identity of the pages in a given process working
set together with their location in the memory system is
maintained by the "JnlH: in various resident tables in the CM.
(This space is not shown in Figure 4.) The 'A"M"S must refer
to these tables constantly and to the rotational position of
each of the 16 rotating devices in order to keep the flow of
pages moving at an optimum rate.

Page 14

3.0 SYSTEM OPERATION

The purpose of the system is to provide an environment
for the execution of user processes which, in turn,
typically access and modify user files. Processes and files
are thus principal system objects consisting of pages of
information contained within the memory system together with
additional descriptive information. The process consists of
system code shared with all processes <that code which
communicates with the management processors>, system code
which may be unique to. the process or shared with a number
of other processes, user code, and all variable storage. It
also includes a so-called ~Qn~~Xt ~l2~k containing the CPU
state when the process is ~nactive, unique names of all the
process pages, constitution of the present working set of
pages <those pages which must be loaded into central memory
before the process can be considered for activation>, and
mapping information. The file consists of those pages
holding the file's contents plus directory information,
again naming the pages and ordering them within the file.

The files can be created and destroyed <by processes>;
in the meantime they reside permanently within the system.
The place of residence of inactive files is, of course,
disk. when files are accessed the memory system moves them
first to drum and then to central memory for the actual
access. As the file is no longer accessed and room on the
drum is needed for new files or processes, the fil~ is moved
by the memory system back to disk.

Processes are created by a single system subprocess bY
user request, usually when he logs into the system. Each
process has a subprocess structure to facilitate both the
system design and the needs of the user. The structure is a
simple, linear one in which each subprocess is the inferior
of at most one other subprocess and in turn is <immediately>
superior to at most one subprocess. Subprocesses may have
their own memory spaces or may share portions or all of
memory with other subprocesses. They may communicate by
means of messages passed through shared memory or by <soft­
ware) interrupts. At the end of a computation the process
terminates itself or is terminated by the user when he logs
out. An option permits the user to log out of the system,
leaving his process undestroyed but in a dormant state. The
process then takes on the nature of a file, i.e., it takes
on a symbolic name and is placed in a directory for later
reference. At a later time a similar option at log-in
permits the user to re-attach himself to the dormant process
or establish a new one.

Page 15

It has been implied in all of the foregoing what each
of the processors does with respect to a process or a file.
We state here more explicitly the activities of -each
management processor relative to processes and files.

The CHIO passes character streams between
processes and I/O terminals. It also passes files
between the system and external storage media such
as magnetic tape or special I/O devices such as
line printers. The CHIO processor also commun­
icates with the ARPA network.

The SCHEDuler selects processes for running
and directs this information to the MMP. It also
attaches processes loaded and ready to run to
CPUs. It does this by placing a pointer to the
process context block in a special central memory
location and setting a request latch in the given
CPU, which then proceeds to load its own state
from the context block and resume computation.
The SCHEDuler sets in this state a time interval
which is picked up by the CPU and counted down in
real time, at which time the CPU blocks the
process, dumps its state in the context block and
notifies the SCHEDuler that it has blocked. The
SCHED processor does not deal with files.

The MMP swaps processes and files or portions
of files included in a process working set. It
also goes to disk when required to move files or
processes to drum, and vice versa. Both core and
drum are dynamically allocated. The locations of
pages in these areas are kept track of in special
hash tables in central memory keyed by the page
unique names. Disk, on the other hand is
allocated in a more static fashion: each page
existing in the system has a fixed, permanent
residence on disk. The location of each page on
disk is determined when the page is created and
remains so until the page is destroyed.

Page 16

3.1 Interprocessor Communication

In a multiprocessor system the processors by definition
interact. The next several sections explore the nature of
the communication between the 500 system processors. This
communication closely parallels that between different
modules of a conventional operating system.

Basically the processors communicate by means of cen­
tral memory, i.e., by changing bits in shared tables. To
speed up a processor's having to look through extensive
tables for changes, a hardware flag system is provided.
This mechanism consists of a small number of latches in each
processor which can be set by one or more other processors.
The latches -- called I~s.Y.~!1 !!IQQ~! are tested and
reset by each processor's microcode. Flags in central
memory augment this rudimentary facility into a more general
one.

3.2 Processor Interlocking

When more than one processor accesses a data structure
it is generally necessary to utilize an interlock mechanism

a means by which only one processor at a time can modify
the data structure into a new state which is meaningful to
all processors. (In effect an interlock allows a processor
to seize a given data structure, rendering it inaccessible
to all other processors until the processor has completed
its updating task>. In the 500 system special hardware
interlocks· operating at microcode speeds are provided.
These interlocks called ~I~1~~1~ -- consist of eight
central latches which may be set or reset by any processor
but by only one at a time. That is, if more than one
processor attempts to acquire the same protect at the same
time or if the protect is already set, a hardware contention
circuit resolves the conflict and issues a positive or
negative acknowledgement to the appropriate processor.
Processors receiving positive acknowledgements to protect
requests then "own" the protect (and the data structure
associated with it> until they voluntarily relin uish it.

u
protects beyond eight.

Page 17

The particular protect mechanism used is greatly
simplified by the fact that each processor <and in fact,
~Y~I~ system component) is operated with a common clock.
Thus processors make protect requests in exact synchronism.
The hardware contention circuit shifts its notions of
contention priority in such a way that each processor is
treated with the same priority on the average.

Page 18

3.3 Illustration of Processor Interaction

Figure 5 shows the processors (except SMP> and some of
the more important communication signals between them. Each
processor is dedicated to its own task and is designed to
operate autonomously, independent of the other processors.
No one proce~sor is "in cntrol" of the other processors or
of the system (except for, that is, the SMP which exercises
its privileges only when a problem develops -- see section
xxxx on restarts>.

Figure s. Schematic of Processor Interaction

consider the actions of the processors
cation between them in response to an
typing a command on his terminal. We will
this time his process is blocked for reasons
the process is physically located on drum.

1. CHIO

and the communi­
interactive user
assume that at

of I/O and that

Page 19

As the user types, his characters are
accumulted by the CHIO. (In Hawaii the CHIO also
echoes these characters; the occs were originally
designed for this under control of the CHIO.> As
part of its work the CHIO checks each character to
see if it is a "wakeup" character. (Wakeup
characters are defined for the CHIO by the program
the user is interacting with.> Until a wakekup
character is received by the CHIO it simply
buffers and echoes the characters being typed.
While this is going on, ~nlY the CHIO gives
attention to the user. No other processors ~- in
particular, the CPUs -- are involved. They are
executing code for other users.

When the CHIO receives a wakeup character
(say, EOL in our case>, it initiates the sequence
of events which are required to bring into
execution the program the user is interacting
with. The CHIO does this by passing a simple
message to the SCHEDuler; a pointer to the
appropriate process is placed into a small queue.

2. SCHEDuler

The message from the CHIO is retrieved by a
dispatcher task in the SCHEDuler and passed to the
SCHEDuler•s WAKEUP task. This task just (1) _j()
records a bit which identifies the source of~ life
~~..,w..j~i.--rn:~:.u~l.fr--+.a_~ e ' a n d (2 >

queues the process on a queue called the WAKEUP
queue.

An independent task (the SCHEDULING task)
later removes the process from the WAKEUP queue
and places it on the appropriate one of several
SCHEDULER queues. Still another task removes the
process from this queue and sends a message to the
SWAPPER task in the MMP, requesting that the
process be loaded into central memory.

3. MMP

The MMP, in response to the request from the
SCHEDuler, sets about the task of reading the
J~~-LQ_cess _w~ of · o ce ~·

1
To d'O--this it will have to create space in th~~'\

///'/7 ~
~·

' .•. --,_r~'

'. c e n t r a l me m o r y b y w r i t i n g o u t t h e _ __£_~~ .. -~~~- ..o..i--
\ previously active protesses. en this rather

Page 20

complex action has been completed, the MMP notes
back to the SCHEDuler that the process is loaded.
Note that during the time the MMP is reading pages
of the process into memory, Q~lY the M~P is
concerned with the process. In particular, again,
the CPUs are running other processes.

4. SCHEDuler

Loaded processes become the responsibility of
the SCHEDler task called the MICRO-SCHEDULER.
This is the module that actually controls the
CPUs. It keeps track of the "priorities" of the
processes executing on the CPUs and of the,
processes which are loaded and ready to be
executed. When a CPU becomes available for our
process <by virtue of its being free or because
its current process has lower priority than ours>
the MICRO-SCHEDULER hands the process to the CPU
and tells it to run.

5. CPU

When the CPU receives the "switch processes"
message from the SCHEDuler it picks up the state
of our process from its context block and starts
executing it. If it is running a process already,
it waits until the process is not executing from
its system code; and as soon as this is true it
stores the state of the CPU into the context block
of the process. It then sends a message to the
SCHEOuler, letting it know that the CPU has
blocked the process it was running. on picking up
our process, the CPU then communicates with the
CHIO to receive the message typed by the user
which evoked all this activity.

Page 21

3.4 Explicit Communication Between the Processors

In this section we consider the processor communication
interfaces in more detail. We consider the various possible
pairwise combinations.

1. CHIO - CPUs

In these bi-directional exchanges the system code
running on a CPU is always the initiator. At the command of
a user program, the system code requests the CHIO to accept
some characters for delivery to a terminal, to deliver to
the CPU characters Which the CHIO has received and buffered,
or to change the state of some terminal parameter such as
echo strategy, wakeup strategy, etc. The system code puts
its request, together with any associated data, into the
CHIO•s request buffer (a block of words in central memory>;
sets a "request waiting" flag associated with this buffer (a
bit in CM>, and sets the CHIO's request strobe latch to let
it know it should look at its request buffer. If the nature
of the request is such that no reply or response from the
CHIO is expected, this completes the interaction. The sys­
tem code returns control to the user code that called it.
The CHIO procedes at its leisure (althouqh very quickly> to
perform the requested operation. When it finishes, it
resets the "request waiting" flag. For those r~quests to
which the system code in the CPU does expect a reply <such
as one which asks for the delivery of any characters which
may have come in from a given terminal>, the system code
waits while the CHIO performs the request. The CHIO puts
its response in the same message buffer and resets the
"request waiting" flag to let the system code know that the
response is ready. The system code then delivers the
response and possibly the characters to the user code.

2. CHIO - SCHED

This communication is only one way: from the CHIO to
the SCHED. When the CHIO finds that it has collected a
complete message for a process, i.e., when it gets a wakeup
character from a terminal, the CHIO sends a notification to
the SCHED. It does this by placing a short message
containing the process• IO into the SCHED's message input
buffer. This buffer is also used by the other processors in
communicating with the SCHED to communicate a variety of
things. A "wakeup message" from the CHIO must thus contain
more than just the ID of the process for whom the CHIO has
collected a message. It contains an "opcode" which means

Page 22

that the message is a wakeup message plus a specification of
the reason for the wakeup message.

The CHIO sends wakeup messages to the SCHED for other
reasons also. Among them are

- the input buffers allocated to a process are <nearly>
full

- the output buffers allocated to a process are empty
enough that the process can proceed to do more output

- a special control character<a QUIT or ESCAPE character>
has been received from the process• terminal.

The SCHED's message input buffer is used by all the
system processors. It is protected from simultanous access
by means of one of the hardware PROTECTS. Thus, whenever a
processor wants to reference this buffer, it first acquires
the associated PROTECT, makes its reference <which only
requires four or five memory references>, and then releases
the PROTECT. After placing a request in the buffer, the
processor sets a request strobe latch in the SCHED to let it
know that there is a message for it.

3. CHIO - MMP

These two processors have no need to communicate with
each other.

4. CPUs - MMP

Message exchange between these two processors is always
initiated ·by the system code in a CPU making a request on
the MMP. Messages from the MMP to the CPU are always
responses to such requests.

What the two processors talk AhQYi are pages of memory.
Each ,page in the memory system has been given a unique name
at creation time. Pages are always referred to by name. For
example the system code in the CPU makes such requests as

- create a new page

- destroy a page

Page 23

The MMP has three separate message input "ports." Each
port corresponds to a major task structure in the MMP. one
is for the SWAPPER, one for a direct I/O capability (not a
normal user's facility>, and one is a utility task.

To make a request on the MMP, the CPU system code first
constructs a request in the form expected by the MMP, then
copies the request onto the end of a queue at the
appropriate port, and finally request strobes the MMP to let
it know there's a message waiting for it. Clearly, the
copying operation is done under a PROTECT.

some requests require no response, and the system code
in the CPU is finished once it has done the request strobe.
Other requests initiate actions which require explicit
responses and some of these call for immediate r~sponses
while others, taking longer to process, produce a delayed
response.

In the immediate response case, the system code waits
for the MMP to reply in a communication area dedicated to
this purpose. In the other case, the system code blocks the
CPU process. When the MMP has the response ready it will
put its message in an area local to the process from which
the originating message came, and send a message to the
SCHED telling it to wake up the process because there's a
message for it. In due course this will re~start the
blocked system code, which will then go and read the MMP's
message.

5. MMP - SCHED

The MMP sends messages to the SCHED in the same way for
the same basic reason the the CHIO does, i.e., to let the
SCHED know that some event of interest to a process has
occurred. Thus messages from the MMP to the SCHED are
normally requests to wake up a specified process. usually,
some small amount of data for use by the process accompanies
these messages.

The SCHED sends messages to the MMP to request the
swapping into or out of central memory of the working set of
a process. It gives requests to the MMP the same way the
CPU does by forming a message, appending it to the
appropriate one of the MMP's message input queues <under a
PROTECT>, and then request strobing the MMP.

6. CPU - SCHED

Page 24

The CPU communicates with the SCHED for various
reasons. The SCHED implements a real-time interrupt/wakeup
facility for the use of user processes. At the request of
such processes, the system code in the CPU calls this
function in the SCHED to arrange that the process be
awakened and notified at a certain real time. These
requests are made by the CPU in the same way that the CHIO
and MMP send wakeup message to the SCHED. The CPU seizes
the appropriate PROTECT, puts a short message into the
SCHED's message input buffer, releases the PROTECT, and
request strobes the SCHED.

Page 25

4.0 DISCUSSION

The use of multiple processors permitted the BCC 500 to
be a more capable system than the use of a single processor

even a considerably faster < amd more expensive> one.
The varios processors in the system, while similar in
hardware, are dedicated to their assigned functions: three
dedicated to system management and two to running the user
codes. There are several consequences of this decision
which should be mentioned. First, there is no need for
complex time-sharing and scheduling of the various proces­
sors over the many system and user tasks. The tasks can
thus be designed to run to completion, ie.e, with little
concern for interruption by higher priority tasks. ,.r'-'hY is ~

~fti& 9QiQ?r-.,

Putting the system tasks into separate processors has
the result that the operating system gets modularized in a
"real" way. Modularization is always a problem in any
operating system design: the actual choice of modules is
frequently difficult, and programmers are of ten led to
"cheat," i.e., to cut across module boundaries against theri
own definitions of those boundaries. Although this can be
remedied by sufficient self-discipline; having separate
processors forces the issue, with the consequence of clean,
impossible-to-cheat-on modularization. The modularization
is readily comprehensible, even to a technician, say,
because he can identify a module < and its function> with a
known piece of hardware. This has distinctly beneficial
ramifications toward maintainability.

In addition to error analysis the use of separate,
dedicated processors in general makes checkout and
performance monitoring easier. The modules arebasically
independent and are driven by the contents of memory tables
by which they communicate and interact. Thus they can be
readily ·tested independently. (Checkout is a serious
problem normally in complex operating systems because of the
many module interas.J;J.Juls.> In the checkout of the 500, for
example, the entire'2;;tLC/function was developed and checked
out before the CPUs existed.

Because so much fixed-algorithm computational power
exists in the several management processors, it is possible
to consider within those processors the use of
algorithms for various operating system functions which are
too complex <i.e., time-sonsumptive) to utilize even ov very
fast CPUs. Another consequence of the use of multiple
microprocessors for system management is the ability to

Page 26

utilize more straightforward coding techniques (since, for
example, many "tricks" are used in conventional operating
systems for efficiency>. The coding is easier to do, is mor
easily analyzed, and of course is less likely to fa~l.
Finally, it is possible to include on a practical scale the
use of redundant computations for operating system
management which make error detection more immediate, give
the system more survivability (is this the right term?>, and
greater fault locatability.

>How do we discuss bringing up the 2nd CPU?>

There are, of course, some drawbacks to the sec soo
architecture, expecially that of the existing prototype.
MostlY these relate in one way or another to the purely
read-only nature of the microprocessors• control stores.
Because each of the management processors executes unique
functions as determined by the <fixed> ROMs, there is no way
to continue operation of the system when a processor fails.
This does not relate to the basic architecture, ie.e, to the
use of dedicated, multiple processors, as the use of
writeable control stores would easily permit standby proces­
sors to be phased in to replace a given management processor
which has hailed.

Bhe sec soo system designers were encouraged toward the
use of multiple processors by their considerations of the
system's potential need for data security. In the earlier
example of how the processors executing their separate
functions communicate and cooperate, we saw how they util­
ized common, resident memory tables as their communication
medium. The access of any one processor into these tables
is highly restricted by the microcode whose behavioral
properties are more amenable to study than the more
unstructured code of users or systems programmers. The CPU
(except its microcoded routines> is generally prevented from
inspecting these tables directly -- even in its system mode.
Thus the separation of functions into processors has clear
ramifications on the potential security of the operating
system; it is much more difficult for a penetrator to induce
a different processing running fixed code to inspect
critical information and the re by cause an ab rid gm e n,t of
security. This aspect of the architecture makes it appear
favorable for applications in which security is a concern;
at least, compartmentalization is a classical
(non-computing> means for implementing security.

Page 27

APPENDIX I

1.0 Intended Area of APPlications

A goal of sec was to develop systems which could be
used by £Q~~~i~L ~iili.t.i~, i.e., companies offering
appropriately packaged computing power and services by means
of telecommunications and remote terminals. The soo system
was intended to serve this purpose particularly where the
computing jobs individually require small amounts of
computation; that is, the system architecture was Qi!~~g
toward accommodating large numbers of relatively smdll Jobs.
common examples of intended applications were small
scientific computations (e.g., small BASIC programs>,
bank-teller systems, reservations systems, real-estate sys­
tems, etc. Many of these systems, while not requiring large
amounts of computation, do require a large machine -- large
in the sense of file capacity and memory address space.
Thus a mini-computer, for example, would be ill-suited to
the application, while a large machine might not be
justifiable on economic grounds.

Cmore: separate utilities, wholesaling, guaranteed service,
data security]

1.1 User Machine and Operating System

The operating is partitioned into functional areas and
is executed on different processors concurrently. These
processors are dedicated to their tasks. one type of
processor is "dedicated," of course, to the running of
general-purpose <i.e., user-specified> code. This proces­
sor, called a £~Ili~Al ~L~~~~QL, also executes portions of
the operating system, always on behalf of its active user.
Those CP characteristics of most interest from the operating
system viewpoint are briefly listed below:

The CPs are designed to be
higher-level languages.
for the CP.

programmed only in
There is no assembler

Page 28

- Virtual memory: The CPs see a virtual memory of
256K words in pages of 2K each.

Hierarchical, ring-structured
mechanisms: 3 protection rings
accommodate two levels of operating
one for subsystems and user code.
references acquire the protection of
being addresses.

protection
designed to
system and
Inter-ring
the ring

- Numerous addressing modes designed to facilitate
efficient running of compiler-generated code.
Heavy emphasis is made on the use of
descriptors for common data structures such as
strings, fields, and arrays.

comprehensive function call and return
mechanism. Copies arguments between
environments, creates and stacks environments.

- CP traps directly under user control.

The principal features of the operating system are:

A m2ni~QL, common to all user processes.
contains a bare minimum of calls and is as
general as possible. Is intended to be a
"kernel" for additional operating system code.
Exists in highest protection ring.

- A Qiili~y, which can be tailored for individual
users. Implements all of the user machine
characteristics and executive command language.
Runs in middle protection ring.

subsystems and user code, running in lowest
ring, can call utility or monitor just like
they call their own functions, subject to the
ring protection.

Finally, the virtual machine seen by user code (the
user machine) has the following general
appearance:

- A 128K address space

- The usual types of operating system calls.

Page 29

- some unusual calls such as:
- User control over process working set

- scheduling decisions like whether to block
for I/O.

Page 30

1.2 Hardware

The system as it exists at the University of Hawaii
includes six processors connected to a high-bandwidth
multi-port, multi-module 128K central memory; two large
drums, two large disk files, with their associated control­
lers; and centralized control, synchronization, and communi­
cation logic. These resources are capable of significant
computation. The original system design, however, called
for a 256~ central memory and allowed for a significant
expansion of both drum and disk storage. More importantly,
the basic design included a number of remote processors for
terminal and communications handling, connected to the cen­
tral site by a network of communication lines. Three of
these remote processors were constructed and brought to
Honolulu. They were not included in the present conf igura­
tion, having been "replaced" in function by a connection
through one of the central-site processors to the ARPA net­
work.

All of the processors -- the central-site processors
and the remote-site processors -- are implemented around a
basic microprocessor designed by BCC for use in the system.
The microprocessors used in the central site have 24-bit
wide arithmetic units, and each executes at a maximum rate
of about twelve million operations per second. The
remote-site processors had 16-bit arithmetic units and were
slower. Each version uses discrete diode circuit boards for
their control memory, which contains 2K x 90-bit words.

The central memory to which the six processors are
connected is a four-port, eight-module memory capable of
sustaining an average data transfer rate of sixteen mega­
words per second. Each module contains BK double-words of
one-microsecond core storage and two double-words of active
storage together with associated logic. The active storage
and the logic associated with it are called the Fast Memory
(FM>. The FM functions as a temporary repository for data
as it passes to and from the core module, and as a gathering
point for memory requests for better assignment of available
memory bandwidth in the face of contention between the
processors and controllers. The FM provides a small amount
of look-behind capability.

The drum and disk memory units are interfaced with the
central memory by rather simple controllers termed "transfer
units." Each drum is equipped for full parallel transfer at
the rate of two megawords per second (six megabytes per
second). The disk units transfer approximately ten times
more slowly, or at about 600 kilobytes per second.

Page 31

CThe Aux Mem is considered to be part of the system "main
memory" (as opposed to being I/O units>, and the data format

pages, unique names, etc.J

	000
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31

