
QSPL REFERENCE MANUAL

L. P. Deutch

B. W. Lampson

Project GENIE
University of California, Berkeley

BCC 500 Computer

Department of Electrical Engineering
University of Hawaii

Issued June 12, 1967
Revised February 20, 1969

Revised January 22, 1970
Re-issued September 15, 1977

by UH EE Dept •

QSPL Manual Page 1

INTRODUCTION

This document is a brief but complete description of a
new language invented and implemented by the authors. 'l'his
language is intended to be a suitable vehicle for programs
which would otherwise be written in machine language for
reasons of efficiency or flexibility. It is part of a
system which also includes a compiler capable of producing
reasonably efficient object code and a runtime which imple­
ments the input-output and string-handling features of the
language as well as a fairly elaborate storage allocator.
The system automatically takes care of paging arrays and
blocks from the drum if they have been so declared.

THE LANGUAGE

A QSPL program consists of statements separated by
semicolons. Carriage returns and blanks have no signif­
icance in the language except that they:

1. Act as word (and comment) delimiters.

2. Are taken literally in string and character con­
stants.

Warning: This is one of the many features of the language
which can cause trouble for the unwary programmer. It is
quite possible to write two statements without the separat­
ing semicolon and wind up with something which is legal, but
not at all what was intended. It is a general characteris­
tic of QSPL that it is very permissive; many things are
legal which are not at all reasonable.

A statement may be:

1. A declaration.

2. A listing control statement.

3. An end statement.

4. A function definition.

QSPL Manual Page 2

5. A comment, which is a line beginning
(after a semicolon or another comment)
with an asterisk (~*~) and ending with a
carriage return, (not ·•; ·•) •

6. An expression.

Most statements are expressions, so we will discuss them
first.

Expressions

An expression is made up of operands separated by oper­
ators. Parentheses are allowed to any reasonable depth.
The operators are arranged in a hierarchy of binding
strength or precedence. Those at the top of the following
list are executed latest, so that a+b*c is a+(b*c).

& denotes sucessive evaluation. The value of the
result is the value of the last expression in
the string. Thus

WHERE

A+B & C+D;

or more plausibly

F(A,B) & G(L,Y);

which causes both functions to be called in the
order in which they are written.

is similar to &, but causes the following ex­
pression to be evaluated first. It may not be
iterated. Thus

F(X,Y) WHERE N~l4;

FOR WHILE
takes the form

<expression> FOR <for clause>;.

or

<expression> WHILE <expression>;

QSPL Manual Page 3

The expression is evaluated repeatedly under
control of the for clause (see below for the
syntax of this construct). The final value of
the expression is discarded, and the value of
an expression involving FOR or WHILE is unde­
fined. Of course, something like

(A[I]) [J]~0 FOR I=l TON FOR J=l TOM;

is legal. I

IF takes the form
<expression> IF <expression> ELSE <expres­
sion>;.
The second expression is evaluated. If it is
non-zero, the first expression is evaluated.
Its value becomes the value of the whole thing,
and the third expression (which, by the way,
may contain another IF) is skipped. Otherwise
the first expression is skipped, and the third
is evaluated. Thus

X~4 IF Y=6 ELSE x~s IF Y>=0 ELSE X~6;

!
If the final ELSE is omitted, 0 will be sup­
plied.

is the assignment operator. It ranks on the
same level as for its left-hand operand, and
just below IF for its right-hand one. The
right-hand operand is evaluated, and its value
becomes the value of the left-hand one. The
whole expression is then treated as though only
the left-hand side had been written.

OR Is the logical or. If either operand is a
relation (or an expression containing logical
operator~ connecting at least one relation) ,
then the result is 0 or 1 depending on whether
both operands are true (non-zero)~ If both
operands have ordinary values, these values are
combined with the machine's MRG instruction.
Thus

.A<4 OR B<S

is true if either relation holds;

A<4 OR X+l

QSPL Manual Page 4

AND,EOR

is true if A<4 or if X+l is not zero. In both
these cases, the second operand is not
evaluated if the first one is true. But

F(X,Y) OR Z

is the 24-bi t logical or of z and the value of
the function call. Tfie operands of an OR are
never re-ordered.

AND is the logical and. It is exactly the same
as OR in the way ~treats its operands, dif­
fering only in the result.
EOR always converts its operands to values and
uses the EOR instruction.

NOT is the logical not. If its single operand is a
relation (see --rfie discussion of OR) its value
is inverted (0 becomes 1, 1 becomes 0). Other­
wise, a 24-bit complement is taken (with EOR
=-1).

= # < <= > >=
are the relations. Each one evaluates its
operands and then performs the indicated test.
For these and all the arithmetic operations,
the operands may be re-ordered if it suits the
compiler's convenience.

ftDD A .MOD B is the remainder of A/B.

+ - perform 24-bit integer addition or subtraction.

* / LSH RSH LCY RCY
''*" and ·•;·• perform 24-bit integer multiplica­
tion and division. No test is made for over­
flow on division.
The shift operations. shift the first operand
the number of places indicated by the second
operand. Vacated bits are replaced by zeros.
The cycle operators do an end-around shift.

+ - GOTO RETURN SRETURN DO (unary operators)
The unary ·•+·• and ·•-·• do the obvious thing. DO
is a noise word and is ignored. It may be
convenient for constructions such as this:

DO F_(X,Y)~

\

\

QSPL Manual Page 5

GOTO transfers to the address which is the
value of its operand (see the discussion of
labels below) •
RETURN and SRETURN evaluate their operand(s).
They leave their values in A, 8, and X respect­
ively and return through the return link of the
most recently defined function (see below). If
this is not desired, the RETURN may be modified
by following it with PROM <expression>. In
this case the return is to the address which is
1 + the value of the expression. Thus

RETURN X+Y PROM FCNL;

The programmer should be sure that PCNL has a
proper return address in it, since the compiler
will not check this. The operand of RETURN may
be omitted. RETURN is a normal return, or a
no-skip return (failure return) from functions
called with a failure location (see function
calls below). SRETURN is a skip return, or a
normal or success return from functions called
with a failure location.

() (used with field names) •
A field name followed immediately by an expres­
sion enclosed in parentheses means that
quantity equal to the value of the expression
shifted so that its least significant bit
coincides with that of the field and then
truncated to the field width. That is, the
value is that of the expression's, placed in
the field only, and zero elsewhere. Thus if
the field G is declared as G(2:3,ll) and X+Y is
at the moment -5 (i.e., 777777738), then

G(X+Y)

yields the value 077300008. See field declar­
ations and the two tailing operators below.
Also note that the field displacement quantity
is ignored.

() {used in function calls).
The arguments of the function are enclosed in
the parentheses, separated by commas. Thus

P(X,Y+5,Z).

Note that the function may be specified by an
expression; thus

QSPL Manual Page 6

(A+B) (A,Y+5,Z)

is perfectly legal. It causes control to be
transferred to the location which is the value
of the expression A+B with the specified argu­
ments. Beware! The values of the first three
function arguments are transmitted in the A, B,
and X registers respectively. The addresses of
the values of further arguments are put into
NOP instructions which precede the function
call. The function is called with a POP which
leaves the link in 0 and transfers to the loca­
tion addressed by it. Thus

f(A,Y+S,Z,P+l,Q)

compiles

LOA P; ADD =l; STA T:+l; LOA Y; ADD =5;
CAB; LDA A; LOX Z; NOP Q; NOP T:+l;
CALL ~F; •

In .addition to 0 or more arguments, a function
call may also have a failure location. This
corresponds to a no-skip return (RETURN oper­
ation) from a function which also has a skip
return (SRETURN operation). The failure loca­
tion comes after the arguments and is preceded
by a colon, thus:

F (Al, A2: L) •

·rhe failure location may be either a label, in
which case control will go there in case of
failure, or RETURN or SRETURN possibly followed
by a single expression, which will be executed
in case of failure. A function normally re­
turns just one value, which is passed in the
A-register. However, it may return no values,
or up to three; additional values are put in
the B and X registers. The first value is
always the one used for further computation
(e.g. in situations like F(X)+l), but any sub­
set of the values can be saved by putting a
save list after the failure location, preceded
by another colon, thus:

F(X,Y:M:Vl,V2,V3)

or even

QSPL Manual Page 7

$

@ $

F(P,R: :X,Y,Z)

if there is no failure location. ·rhe save list
must be a list of simple variables. It is all
right to have a comma with no name; the corres­
ponding return value just gets lost. See below
for a discussion of function declarations.
Note that this calling convention is not the
same as FORTRAN's. In particular, in the-above
example nothing the function does (within
reason) can affect the value of A or z. It is
possible to transmit the address of A or z with
the reference operator, however (see below).

(indirect tailing). The • must be followed by
a field name (see discussion of declarations
below). The resultin~ object refers to the
specified field relative to the address which
is the value of the first operand. In other
words, the first operand is considered to be a
pointer to a location which is then offset by
the displacement value of the field. Thus, if
we have

DECLARE FIELD A(l), B(2);

and if X contains 143, then X.A refers to loca­
tion 144, X.B to 145, X.A.B to 2 + the contents
of location 144. A tailed operand may appear ;
on either side of an assignment. See the dis- I

cussion of PAGED declaration for the treatment '
of paged blocks. I

(tailing, binary operator, same ptecedence as I
.). The $ must be followed by a field name.
This (direct) form of tailing refers to the
bits of the first operand itself, described by
the second operand. The construci T$F is
almost equivalent to @T.F. I.e., it refers to i
the bits of T (not the word addressed by T)
selected by F-.~The word displacement of F is
ignored, and F must not cross a word boundary.

(reference and indirection). The reference
operator , ''@'' takes an operand which must be an
address (i.e. acceptable on the left side of
an assignment) and returns this address as its
value. Note that this implies that iteration·
of the reference operator is illegal (in fact
it does not make any sense). The indirection 1

operator ~$~ evaluates its operand and returns

QSPL Manual Page 8

this value as an address. The sequence ''@$ ·• is
equivalent to no operation, except that ''$'' on
an address is compiled with the machine's in­
direct bit, and will therefore be affected by
the presence of indirect or index bits in the
contents of address. If we have written

DECLARE FIELD S(0);

then <E>.S is equivalent to $<E>, with the
exception noted above.

[] (subscripting). A single subscript is allowed.
As with function calls, the object being sub­
scripted may be an arbitrary e~pression. If it
has been declared as an array, the compiler
loads the subscript into the X register and
compiles an indirect reference through the
array name. I.e., it expects the array name to
contain the base address of the array with
index bit on. For any other expression the
~r1u operator is equivalent to ~su+u.tt. Thus

(A-8) [C OR D] + 1

compiles as

LDA C; MRG D; STA T; LDA A; SUB B;
ADD 'r; XXA; LDA /0; ADD =l;

Primaries

The primaries for expressions may be numbers, names,
string constants, or character constants.

numbers

A number may be an integer constant or a real constant.
An integer constant is a string of digits, possibly followed
by B or D, possibly followed by a single-digit scale factor.
B makes the number octal; if it is absent, decimal is as­
sumed. Thus 1000 = 102 = 1448 = 1B2+44B = 100. A real
constant is of the form xxx.xxxExxx. Either the dot or the
E must be present. If the dot is present, there must be
some digits before it; if the E is present, there must be

QSPL Manual Page 9

some digits after it. For further details, consult the
description in R-21 of the SIC SYSPOP, which is used to
convert real constants to binary form.

names

A name is a string of any number of letters and digits
beginning with a letter. Only the first six characters· of
the name are significant. A name must be declared (see
below}. All names except parameters and fields are treated
in exactly the same way when they occur in expressions
(except for subscripting}. E.g. a string name refers to the
pointer to the string descriptor which is the value of the
name. Thus, if S is a string

S"'1A+l:

simply stores A+l into S: this is probably not reasonable.
functions are provided to convert between strings and num­
bers.

reserved words

There are about 80 reserved words (see Appendix B}
which .may not be used as names. In addition, about 20
locations in the runtime (see Appendix C) are predeclared as
external: attempts to declare them for other purposes will
fail.

character constants

A character constant has the form

'<three or fewer pseudo-characters>'

and may be used wherever a constant is used.
pseudo-character is any character other than ''&'', or
followed by one of the following:

1. Another d&~ or a d'd· The two are equivalent
to a single d&d or d'~ in the constant.

2. Three octal digits. The number thus defined,
truncated to 8 bits, counts as one character.

3. A letter. The ASCII (ihternal) code for the
letter + 1008 is the value of the
pseudo-character.

A .. , ..

QSPL Manual Page 10

The characters are right-justified in the constant, which is
filled out with blanks (0) on the left. It is an error to
have mo~e that 3 pseudo-characters in the constant.

string constants

A string constant has the form ~<any number of
pseudo-characters>~. It is legal in any context in which a
string name is legal. A descriptor will be created which
points to the constant string. If the string constant ap­
pears alone immediately after a left arrow, the variable to
which the constant is being assigned is assumed to hold a
pointer to an already existing string descriptor; in all
other cases, space for a descriptor will be al located for
the constant by the compiler. In any case, writing into the
string will alter the constant.

field-derived constants

A variety of operations are provided for converting
field names into constants:

1. F(<constant expression>) is a constant whose
value is that of the expression positioned to
and truncated to fit within the field. Its
value is equivalent to that of the variable T
after the statements

T~0; T$F~<expression>;

have been executed. F must not cross word
boundaries.

2. The function FSHIFT(F) has 23 - (the right­
most bit position occupied by F) as its
value. F must not cross word boundaries.
The value of FSHIFT is a constant.

3. The function FMASK(F) has as value a con~tant
which has one bits in positions selected by
the field as its value. It is equivalent to
F(-1). F must not cross word boundaries.

4. A field name F appearing in any context other
than

F(
.F
$F

is equivalent to a constant whose value is
the word displacement of the field.

QSPL Manual Page 11

constant expressions

Any expression involving operators of precedence higher
than FOR and constant operands will be evaluated by the
compiler yielding a result which behaves exactly like a
constant.

Declarations

Variables are declared with DECLARE or FUNCTION state­
ments or by appearing as labels. The syntax of variable

.DECLARE is

DECLARE [FIXED or PAGED] [INTEGER or REAL or
STRING] [ARRAY] [EXTERNAL or ENTRY or
LOCAL] <namelist>.

The stuff after the DECLARE may be repeated as many times as
desired. Once FIXED, PAGED or ARRAY has been used it re­
mains in effect for the remainder of the current DECLARE
statement. INTEGER is assumed if it is omitted, but once
STRING has been used it remains in effect until INTEGER
appears again. Each name in the namelist may be preceded by
·• $ '' (which makes it an entry) or by ··it·• (which makes it
external, i.e. prevents storage from being assigned for it).
If FIXED and ARRAY are both present, a name may be followed
by an expression in parentheses (or brackets) •. Thus

DECLARE FIXED ARRAY A[l2], B[X*2+14];

The expression (which must be a constant) will be. evaluated
and that many cells assigned for the array at compile time.
The base address of the reg ion assigned, with the index bit
set, will be stored in the name. If a name is declared
ARRAY without any storage being assigned, the system will
assume that its value is a pointer to an array with the
index bit set. I.e., it will compile

LDX I; LDA ~A; STA B
for B~A[I].

Example:
DECLARE INTEGER A,B STRING D, $Gl, G2,
EXTERNAL G3, G4,
ARRAY E(X+Y[4];, INTEGER C(10);

QSPL Manual Page 12

declares two scalar integers, one integer array which will
be assigned 10 locations when the declaration is executed,
two local scalar strings (D and G2), one local string array
which will be assigned X+Y[4] locations when the declaration
is executed, one scalar string which is an entry (Gl) , and
two scalar strings which are assumed to be defined elsewhere
(G3 and G4).

declared paged

A name or an array may be declared paged by putting the
word PAGED in front of its declaration. This attribute,
once mentioned, applies to all the names declared following
it in the same statement. If an array is declared PAGED
(not a FIXED array, of course), all references to it will
be--made to the drum. Correct access to the array will be
obtained only if it is subscripted in the usual way: A[I].
It is not true that (A+l) [I] is equivalent to A[I+l], for
example, as is the case for core arrays.

If a name declared paged is not an array, the only
effect is that when it is tailed the system will assume it
contains a.drum addrsss. Such an address can only be cor­
rectly obtained with PMAKE (see below). It is the program­
mer's responsibility to see that:

a. It does contain a drum. address generated with
PMAKE.

b. The field name used for tailing has a word
displacement less than the block size speci­
fied by the PMAKE. Unpredictable errors will
occur if this rule is not observed.

Declarations of fields are not affected by PAGED. Indirec­
tion ($) and subscripting ([]) will work properly on a PAGED
pointer. Arithmetci may be done on PAGED pointers in the
usual fashion, provided the result is within a block alloca­
ted by a single call to PMAKE. thus after

DECLARE PAGED P: FIELD F0(0) ,Fl(l) ,F2(2):
P~PMAKE(2):

the statements

A~P.Fl: A~(P+l).F0: A~(P+l) [0]:

have the same effect, but

A~P.F2: A~(P+2) [0]:

are all erroneous, since only two words were allocated in
the block pointed to by P.

QSPL Manual Page 13

declared string

When a name is declared to be a string, a single stor­
age location is reserved for it unless FIXED has been used.
Strings are specified, however, by four-word descriptors.
The address of such a descriptor must be put into the string
variable befor it is used in any string operation. For
non-FIXED strings, this is usually done with the SETUP func­
tion, possibly preceded by a MAKE; alternatively, the ad­
dress of a descriptor obtained in some other way can be
used. If a string variable is not properly initialized, the
consequences of using it any string operation are likely to
be serious.

If a string declaration is preceded by FIXED, the
four-word descriptor is assigned by the compiler and its
address is the initial value of the string. If a FIXED
STRING is followed by a parenthesized expression, that many
characters are allocated for the string and the descriptor
is initialized to point to the area thus allocated. Exam­
ple:

DECLARE FIXED STRING S,T,U(5) ,V(240);

allocates string descriptors for S amd T; they must be set
up to point to strings by SETUP. It also allocates 5 char­
acters for U and 240 for V and sets up the descriptors.
properly.

initialized declarations

An integer may be initialized
with d~d <constant> or ~~d <name>.

DECLARE A~3,B~l4,C~A;

by following
Thus,

its name

makes 3 the initial value of A, 14 the initial value of B.
Of course, any expression which can be evaluated by the
compiler may be used as a constant. This is not the same as
a PARAMETER declaration (see below). The u~of this con­
struct is not recommended if the program changes the values
of the variables, since the program must then be reloaded in
order to be restarted.

A FIXED ARRAY can be initialized in the same way:

DECLARE FIXED ARRAY A[l0]~1,3,5,7,ll,13;

The first six elements of A are initialzed as indicated.
The remaining four elements are initialized to 0.

QSPL Manual Page 14

A fixed strinq or a fixed string array may be initial­
ized in the same way, but the initial values must be string
constants. Warning: writing into initialized strings will
destroy the contents.

If any declaration causes space to be allocated at the
point in the program where the declaration occurs, a branch
over it is compiled. Declarations may therefore be freely
interpolated in the program.

field declarations

Another form of DECLARE is the following:

DECLARE fIELD <name>
(<constant>[:<constant>,<constant>])

which defines a field. Lots of fields can be defined if
desired. The first constant specifies the word displacement
of the fie.Id, the other two the bit post ions in the word.
Bit positions can take on values between 0 and 47. A field
may span two words, but it may not be more than 24 bits
long. Thus:

DECLARE FIELD A(0) ,B(l) ,C(2) ,Cl(2:0,5),
C2(2:3,20) ,XYZ(2:12,23);

defines six fields. The last three might be thought of as
subfields of C, but they do not have to be used in this way.
If P were a pointer to a three-word data object, for exam­
ple, then P.XYZ would refer to the last 12 bits of the third
word of the object. Such objects can be created from no­
where with the MAKE function or, of course, may be allocated
by the programmer.

Names declared as FIELD are output to DDT with their
word displacements as value. See the discussion on
field-derived constants in a previous section; in
particular, part 4 of that section. Thus,

$(PTR+B) equiv $(PTR+l) equiv PTR.B

A full-word field may be declared REAL or PAGED. This
means that whenever it is used for tailing, the resulting
quantity is considered REAL or PAGED respectively.

'

QSPL Manual Page 15

parameter declarations

The declaration

DECLARE PARAMETER Cl~l,C2~2,C3~3;

makes the names Cl,C2,C3 equivalent in all ways to the
constants 1, 2,3 for the rest of the program. Any constant
may appear on the right of the ~~··. Note again that any
constant expression may be used where a constant is re­
quired. Parameters, unlike other names, may be redeclared.

equivalence declaration

The declaration

DECLARE INTEGER Q=R, S=T[3];

is legal only if T has already been declared as a fixed
array. It causes Q to be assigned to the same location as
R, S to the same location as T[3].

function definition

A function is defined by

[REAL] FUNCTION or ENTRY [$] name(arglist);

If the word REAL appears, the function is assumed to return
a floating-point value; otherwise, it is assumed to return
integer values, if any. If a $ precedes the function name,
the name is made an entry. Except when compiling under
NOLIST LOCAL (described below), there is no difference be­
tween FUNCTION and ENTRY. Each argument in the arglist can
be preceded by INTEGER, STRING or ARRAY and is declared
automatically. INTEGER is assumed unless otherwise speci­
fied. If ARRAY is specified, the index bit will be merged
into the value supplied. A name can be redeclared in a
function definition (this is illegal in any other context),
but only if the redeclaration exactly matches any previous
declaration. The system creates a return link by prefixing
the function name with X. The statement

FUNCTION <FNAME>(A, ARRAY B, STRING C);

would compile

STA A; CBA; MRG =2B7; STA B; STX C; LDX 0;
STX X<FNAME>;

QSPL Manual Page 16

If additional arguments INTEGER D,E were supplied, the code

LDA ~/-1; STA D; LDA ~/-2; STA E;

would be added,

The function name itself is also declared by this
statement. A storage location is reserved for it, and the
address of the first word of the function (STA A above) is
put into this address.

The link may be specified explicitly, if desired, as
follows:

FUNCTION F(Q,R), LINK W;

recursive functions

A function may be declared recursive by

[REAL] RECURSIVE FUNCTION or ENTRY [$] F(A,
B) , SAVE E;

The effect will be that whenever the function is called the
link and the current values of A,B and E will be saved.
When the function returns (via a RETURN or SRETURN with no
FROM modifier and only one value returned), the saved var­
iable values are restored.

Space for saving the variables is obtained
the function in the reserved location RECSTK.
initialized to be a call to MAKE, but the user
his own function. The call

·roPRST ~ RECSTK (N)

by calling
This cell is

may supply

where N contains the number of words required and the func­
tion returns the address of the first word.

Space is released by

DO RECUNS(TOPRST);

and RECUNS is initialized to FREE.

QSPL Manual

The cell TOPRST, which is also reserved (i.e.
into the runtine) contains the address of the current
the recursion stack. Its old value is saved in the
word of the stack entry.

Page 17

built
top of
second

If a function call appears in a compiled expression, it is
not safe to re-execute the expression inside the function,
since the expression may use temporary locations which are
not saved when the function is called. Beware!

declarations of labels

A symbol is declared as a label by writing it at the
beginning of a statement followed by a colon. It is treated
exactly like a function name: a storage location is reserved
for it and initialized to the address of the first instruc­
tion of the statement. Any state'ment can be labeled. A
label is assumed to be an integer scalar. If we have
A: ••• ; GOTO A; this will compile

:A BSS 0; ••• ;BRU ~A; ••• ;A ZRO :A;

so that the right thing happens. If the symbol is preceded
by a $, the label is made an entry.

These conventions for arrays, strings and labels make
it very easy for them to be transmitted as arguments.

Real (floating-point) numbers

Real numbers occupy two words of storage rather than
one and therefore have a somewhat anomalous status in QSPL,
which otherwise takes the position that any kind of quantity
occupies a single word (integers, strings, labels, func­
tions, and arrays all have this property). We define a real
operand as a real name (possibly subscripted if an array~
real constant, a real function, a real expression, or an
expression tailed by a real field. A real expression may be
formed in the following ways:

1. By combining two real operands with any of
the following binary operators: +, -, MOD, *,
/. If any of these operators is applied to a
real operand and an integer constant, it will
convert the constant to a real number. A real

QSPL Manual Page 18

operand and any other kind of integer operand
will produce an error.

2. By unary + or - applied to a real operand.

3. By the construct <real operand> IF <integer
expression> [ELSE <real operand>].

In addition, two real operands may be compared by any of the
relational operators (=, #, >, <, >=, <=). The test is made
by doing a floatinq subtraction and testing the result
against zero. Beware of round-off error in testing for
equality. Also, a real operand may appear in a RETURN or
SRETURN provided it is the only argument of the operation.
There is no restriction on mixing real and non-real arqu­
ments of functions: however, the types of the actual argu­
ments in a call must correspond to those in the function
definition. The compiler does not check this, and an error
will probably cause chaos at run-time.

Various special functions are available for doing the
same things to real numbers that one can do to integers.
RIN and ROUT provide floating-point input/output: CSR and
CRS provide conversion between reals and strings: FIX and
FLOAT convert between reals and integers. These are all
discussed in detail in the later sections on special func­
tions. There is a library of mathematical routines with
QSPL-compatible calling sequences available, including SIN,
cos, TAN, A'rAN, EXP, LON, LOG10, and random number gener­
ation: this is described in a separate document.

Control Statements

the IF construct

The construction

IF <expression> DO:

ELSEie <expression> DO: (0 or more ELSEIFs al­
lowed)

QSPL Manual Page 19

ELSE DO:

ENDIF:

is legal with the obvious meaning. Any sequence of state­
ments balanced with respect to IF and ENDIF may appear in
place of the dots. Of course, IF may be nested. Proper use
of indentation is strongly recommended. The final ELSE may
oe omitted.

the FOR and WHILE constructs

The construction
FOR <for clause> DO:

ENDFOR:
is also allowed. The arbitrary sequence of statements bal­
anced with respect to FOR and ENDFOR which is symbolized by
the dots is executed repeatedly under control of the for
clause, whose syntax has three forms:

<name>~<expression> WHILE <expression>

which causes the value of the first expression to be as­
signed to the name and the second expression tested each
time around the loop. When the test fails (value of the
expression=0) repetition stops. The assignment and test are
performed once before the loop is executed:

<name>~<expression> [BY <expression>] TO
<expression>

with the obvious meaning. If the BY is omitted, an incre­
ment of 1 is assumed. Repetition continues until the value
of the name is greater than the TO expression, unless the
latter is a negative constant, in which case it continues
until the name is less. A test is performed before the loop
is executed for the first time. The special cases

!~<expression> BY 1 TO N

and

QSPL Manual Page 20

!~<expression> BY -1 TO 0

are recognized and compiled more efficiently.

The similar construction

WHILE <expression> DO:

ENDFOR:

is also allowed. The body of the
repeatedly as long as evaluation of the
true (nonzero) result. The expression
before the loop is entered for the first

Miscellaneous Statements

loop is executed
expression yields a
is evaluated once
time.

Listing may be controlled with the statements LIST and
NOLIST. Either may be followed by SOURCE, CODE, or BINARY,
and turns on or off the specified form of output. It is not
a good idea to turn binary output on and off, since this
will in general result in an unloadable result.

Two special options concerning allocation of variables
are also controlled by NOLIST. NOLIST FREE will prevent
ZRO's for unitialized scalars from appearing on the
assembly-language listing: this may be useful if re-entrant
programs are desired. NOLIST EXTERNAL will cause undeclared
variables to be treated as external: normally they are
treated as errors and space is assigned for them.

The statement

INCLUDE d<file name>d:

has the effect of placing the entire contents of the named
file in the program at that point. This process may be
nested, i.e., the file being inserted may itself contain
INCLUDES. Note that since the file is inserted verbatim, it
should not end with an END statement. The INCLUDE feature
is meant primarily for groups of programs with common dec­
larations. To this end, the statement NOLIST INCLUDE is
provided with the following effect: if it occurs in the
original source file, it has no effect, while if it occurs

QSPL Manual Page 21

in an INCLUDEd file, it terminates processing of that file.
Thus a main program could have the form

(declarations)

NOLIST INCLUDE;

(remainder of program)

END;

and any subprogram could use its declarations by INCLUDEing
it.

The statement

IDEN'r <name>;

will cause the name to be output to DDT as the program name.
No more than one IDENT may appear in a program.

A program should be terminated by an END statement,
i.e.

END;

Macro Fae il i ty

The format of a macro definition is:

DECLARE MACRO
<name>(<dummies>)~<definition>;

where <name> is the name of the macro being defined, <dum­
mies> is the list of dummy argument names, and <definition>
is the definition. <name> must be hitherto unmentioned
identifier. <dummies> may be an empty list; if it is not
empty, it is a sequence of identifiers separated by commas.

QSPL Manual Page 22

These identifiers serve only to indicate the place within
the definition where actual arguments are to be substituted:
their use here does not conflict with their previous or
subsequent uses for any purpose. The <definition> is any
sequence of tokens (identifiers, numbers, operators, charac=
ter constants, or string constants) not including a semi­
colon. It need not be a legal statement, expression, or
anything else.

A macro call looks almost like a function call, i.e.
has the form <name> (<arguments>); However, the <arguments>
are not required to be legal expressions: they need only be
sequences of tokens balanced with respect to parentheses,
not containing semicolons, and delimited by commas which are
not enclosed in inner parentheses. For example, STRING
X(20), #, and (B,C) are legal arguments. The effect of the
macro call is that the definition, with the actual argu­
ments, replaces the call before any further processing is
done on the statement. A macro call may appear anywhere in
the statement, not just where a function c·a11 would be
legal. Macros may call other macros. If listing is being
done, statements will be listed before macro substitutions
have been performed; this is also true when a statement is
listed in response to an error.

A word of warning for those accustomed to the NARP
macro facility. Since substitutions are performed on the
basis of tokens rather than characters, no substitution
occurs within character ·Or string constants in the defini­
tion., e.g.

DECLARE MACRO Sl(X)~··x·•

will not cause a substitution. Also, concatenation is not
available. Finally, each dummy argument has a name of its
own and the proper number of arguments must be supplied at
each call.

Two examples of useful macros:

DECLARE MACRO INC(X)~X~X+l;

causes INC(A) to be equivalent to A~A+l;

DECLARE MACRO TWO(X)~(X)*2;

causes TWO (X+Y) · to be equ.ivelant to (X+Y) *2. Note that if
the definition had been simply X*2, then TWO(X+Y) would have
been equivalent to X+Y*2, which is presumably not what is
wanted.

QSPL Manual Page 23

Special Functions

The following special functions are a standard part of
the language. They provide all the built-in storage alloca­
tion, string handling and input-output facilities. If more
elaborate facilities are required, recourse may be had to
machine-language routines. The necessary linkages are des­
cribed under function calls and declarations above.

1. Storage allocation functions

MAKE, SETARRAY

MAKE(<expression>)

creates a block of storage of the length specified by the
expression (but of at least two cells) and returns a
pointer to this block as its value. In fact, one extra cell
is assigned by the system: the user should keep his hands
off this cell which is the one before the one pointed to by
the value of the MAKE function. An alternate form is

MAKE(<expression>,<array name>)

which assigns the block out of the specified array, which
must have been properly initialized beforehand by a call of

SETARRAY(<expression>,<array name>):

Only blocks of the size specified in the call of SETARRAY
can be assigned in this way. Blocks of any size can be
assigned by a simple MAKE.

PMAKE

To allocate space on the drum the function PMAKE should
be used. It is exactly like MAKE, exce?t that the second
argument, if present, should be a paged pointer to an object
near which the new space should be assigned if possible.
Proper use of this feature will greatly improve the effi­
ciency with which paged objects are accessed. See the dis­
cussion of the PAGED declaration for further information
about the proper use of addresses obtained from PMAKE.

QSPL Manual

FREE

To release a block of storage, do

FREE(<expression>) or FREE(<expression>,
<array name>)

Page 24

where the value of the expression is a pointer to .the block.
The function has no meaningful value. The storage allocator
will attempt to coalesce freed blocks, but since it riannot
move blocks around, it is possible to fragment storage hope­
lessly by acquiring and releasing blocks of many different
sizes in an iridiscriminate manner. If the system runs out
of space, it will complain and quit. Note that

FREE(MAKE(4))

acquires and immediately releases a block of four words. It
is exactly equivalent to NOP (except for timing). FREE also
works for drum space.

BCOPY

To copy one block of storage into another one of equal
size use

BCOPY(<expression>,<expression>).

The first expression is a pointer to the destination, the
second to the source. These must be pointers acquired my
MAKE (or carefully fabricated) since the length of the block
is determined from the contents of the extra hidden word
provided by MAKE. The source block must have been created
by a MAKE with a single argument. If the source block does
not have the hidden word,

BCOPY(<expression>,<expression>,<expres­
sion>)

may be used, where the third argument specifies the number
of words to copy.

QSPL Manual Page 25

2. Paging facility

The paging facilities provide a means for the user to
allocate and access a large (up to 2Tl9 words) address
space, by buffering parts of this address space between core
and drum in fixed-size pages. The user can specify the page
size, the amount of core space to allocate for buffers
(which can be changed dynamically during execution), and the
size of the address space; individual pages may be locked
into core for a time and later allowed to be swapped out
again; the user's paged data may be divided into a number of
categories, which allows more efficient allocation of space
by grouping objects of the same category on the same page.

At the time that INIT is called (see the INITIALIZE
function in section 6), certain cells in the runtime are
examined to determine the setup of the paging logic. The
names of these cells are are pre-declared EXTERNAL. The
cell NPL contains the page size as a power of 2, which must
be between 8 and 11. The cell NPG contains the size of the
desired address space as a multiple of 21NPL: the size

·cannot exceed 2119. If NPG contains a zero, it is assumed
that no use will be make of the paging logic, and any calls
on it will produce error comments. The cell NPB contains
the number of core buffers to be provided. If it contains
0, all available space will be used for buffer. The cell
NPC contains the highest category number which will be used.
The cell PM contains a positive number if the' direct drum
accell machinery, BRS 124-127, is to be used for storing
paged data, or a negative number if a random file called
/$QPDATA is to be used; the former is somewhat more effi­
cient, especially if the address space is large, but the
latter can be accessed by other programs via the ordinary
file machinery whereas the former cannot.

A few other cells are of interest. The cell PCAT is
examined whenever a call is made to PMAKE. If it contains a
non-zero number, the new block will be allocated on 1a page
reserved for data of the designated category. If it con­
tains a zero, the new block will be allocated on some con­
venient page without reference to category. A call of PMAKE
with a valid drum address as the second argument takes
precedence over the setting of PCAT.

QSPL Manual Page 26

LOCK, UNLOCK

A page may be locked into core with

LOCK (X)

where X is a drum address: the value is the corresponding
core address, which is guaranteed to remain valid until the
page is unlocked. The function

UNLOCK(A)

where A is a core address, stores the corresponding drum
address in a cell called PADDR and returns the old lock
count (which is incremented by LOCK and decremented if
non-zero by UNLOCK) as value: it is all right to unlock an
unlocked buffer. The cell NUP always contains the number of
buffers which are not locked at the moment.

Page buffers are allocated downwards (towards
low-numbered addresses) from the initial setting of a cell
called ESTORG: the bottom of the buffer area is put into the
cell EARRAY by the INIT operati.on. If the user wants to
reduce the amount of space available for buffers, he may use
BPUT(X), where x is a core address in a buffer. The buffer
will be returned to the pool of space available to the core
allocator (MAKE). The converse operation is BGET(X), which
restores the buffer for use by the paging logic. Note that
the buffer area is defined at INIT time (as the NPB * 2fNPL
cells just below (ESTORG) - 2fNPL and BPUT and BGET may only
be used on address in this range. INIT allocates space up
from BSTORG for tables for the drum allocator, leaving the
first unused cell in SARRAY. Thus SARRAY and [EARRAY
bracket the core not used by the paging logic after and
INIT, while BSTORG and ESTORG bracket the core available to
it before an INIT.

QSPL Manual Page 27

3. String handling functions

string descriptors, SETUP

A string is described by a four word descriptor which
specifies the beginning and end of ,a the area assigned to
the string, the reader pointer, and the writer pointer. The
function

SETUP(<string name>,<size>)

will obtain a block specified size and set up the descriptor
pointed to by the string name to point to that block. The
name must already contain a pointer to a descriptor; if it
contains a 0 a runtime error will result. The alternate
form

SETUP(<string name>,<size>,<expression>)

will make a descriptor which points to the specified number
of characters starting with the word pointed to by the
expression. The storage allocator is not involked; it is
the programmer's responsibility to create the descriptor);
it is the programmer's responsibility to ensure that the
proper amount of space is in fact available.

SETS, SETR, SETW, LENGTH

To set ·the reader and writer pointers of a string, use

SETS(<name>,<expression>,<expression>).

The first expression specifies the reader pointer, the sec­
ond the writer pointer (which must be greater; if it is not,
the reader is set equal to the.writer pointer). Characters
are numbered starting at 0. To set the reader pointer only,
use

SETR(<name>,<expression>).

·ro set the writer po inter only, use

SETW(<name>,<expression>).

To obtain the length of a string (writer pointer-reader
po inter) use

LENGTH(<name>).

QSPL Manual Page 28

None of these functions except LENGTH has a meaningful
value.

GCI, GCD, WCI, WCD, APPEND, GC

To get the next character from as string and increment
the reader pointer, use

GCI(<name>).

If there is no next character, there will be an error com­
ment and a halt. To avoid this, use the alternate form

GCI(<name>,:<failure location>)

(see discusion of failure locations below). This convention
is also used for the next four functions.

GCD (<name>)

reads a character from the end of the string and decrements
the writer pointer.

WCI(<expression>,<name>)

writes the character specified
string specified by the name.

by the expression on the
It fails if there is no room.

WCD(<expression>,<name>)

writes the character on the front of the string, at the
location of the reader pointer, and fails for the same
reason. These functions have the character written as their
value.

APPEND(<name>,<name>)

appends the second string to the first one. It fails if
there is not enough room. It has no meaningful value.

GC (<name>)

yields the next character of the string, but does not ad­
vance the reader pointer. It never fails, but yields junk
if the strinq is empty.

QSPL Manual Paqe 29

string moving

The expression
simply moves the
descriptor) into A.
tion might be used,
blocks:

A~B (where A and B are string names)
contents of B (presumably a pointer to a

To copy the descriptor, the BCOPY func­
since string descriptors are just 4 word

BCOPY(B,A).

Be sure to read the section on BCOPY above.
string, use

SCOPY (8,A).

·ro copy the

The effect is that of SETS(B,0,0) followed by APPEND(B, A).
SCOPY, like APPEND, fails if there is not enough room in B.

string/number conversion, CNS, CSN, CRS, CSR

To convert a string S to a number, write

CSN(S).·

To convert a number N to a string s, write

CNS(N,S).

'rhis converts a signed number to its decimal representation,
producing only enough digits to accurately represent the
number. Extra arguments may be supplied which specify radix
(10 assumed) and the number of characters in the string
version (-1 or free format assumed). Corresponding oper­
ations for floating-point numbers are

CSR(S)

and

CRS(R,S).

QSPL Manual Page 30

4. File-naming functions

INFILE, OUTFILE, FTYPE, ERROR

A file is opened for input with
I

INFILE(<string name>:<failure location>).

the string contains the full name of the file. This
tion requires the presence of a failure location to
control transfers in the case the function fails. Its
is the file number.

OUTFILE(<name>,<expression>[,:<failure loca­
tion>])

f unc­
which
value

does the same thing for output. The expression is the
option word which BRS 16 takes in the A register. It will
be assured to be 0 if not supplied. Both of these oper­
ations leave in the location FTYPE the type word returned by
the BRS, in case of failure, the error.returned by the BRS
is in location ERROR.

INNAME, OUTNAME

To acquire file names, use

INNAME(<name>:<failure location>)

and

OUTNAME(<name>:<failure location>)

both of which collect the name from the teletype
it to the string supplied. Both transfer to the
tion-rn'"tne event of failure, and have the
character as value.

CLOSE, CLOSALL

To close a file, do

CLOSE(<expression>).

and appends
given loca­
terminating

The expression's value should be the file number. To close
all files, do

CLOSALL():

QSPL Manual Page 31

5. Input-output functions

CIN, COUT, WIN, WOUT, SOUT, CRLF

To read a character, use

CIN(<expression>):

The value of the expression should be the file number. This
function simply does a CIO. Its value is the character
read. To write a character, use

COUT(<expression>, [<expression>]:

File 1 is assumed if not specified. This function has the
character written as argument. To read and write a full
word, use WIN and WOUT in exactly the same way. To write a
string, use

SOUT(<name>[,<file>]).

To write carriage returns, use

CRLf(<expression>[,<file>]):

The expression specifies how many should be written.

The functions WIN and WOUT behave exactly as CIN and
COUT, except that 24-bit words are transferred to/from files
rather than 8-bit characters.

IIN, !OUT, RIN, ROUT

To read a number, use

I IN (< f i 1 e > [, <radix>]) •

Decimal radix is assumed. To write a number, use

IOUT(<expression>).

Extra arguments, in order, are the file (1 assumed), the
radix (10 as~umed) and the number of characters to be writ­
ten (-1 or free format assumed). Characters are discarded
from the left: the number is filled out on the left with
blanks. A sign is supplied if the number is negative.
Corresponding operations for floating-point numbers are

RIN(<file>[,<format>])

QSPL Manual Page 32

for floating input, and

ROUT(<expression>,<file>[,<format>])

for floating output. The format word is explained in R-21;
if it is omitted, it will be taken as zero, leading to free
format output.

6. Miscellaneous functions

FIX, FLOAT

·rwo functions are provided for converting between inte­
ger and floating-point. To convert a floating-point number
to an integer by truncation, use

FIX(<expression>).

To convert to an integer by rounding, use

FIX(X+0.5).

To convert an integer to floating-point, use

FLOAT(<expression>).

INI'fIALI ZE

There are three argumentless special functions of gen­
eral interest. INITIALIZE() initializes the QSPL storage
allocator, taking all the space between the contents of
BSTORG and the end of core for itself.

The compiler provides an INITIALIZE as the first in­
struction of the- user's program. If the program starts
somewhere other than at the beginning and does not begin
with an INITIALIZE, the user may say CALL ~INIT;U to
QRUN(DDT) before starting the program. Failing this, there
will be a disaster as soon as the program calls on any
runtime feature.

QSPL Manual Page 33

HALT, EXIT

The other two functions are

HALT(),

which halts, and

EXIT() ,

which does a BRS 10. The compiler generates a BRS 10 auto­
matically at the end of every program.

BRS, SBRM, POP

To execute a BRS, do

BRS(N,A,B,X)

which sets up the A,B, and X registers and does the BRS
numbered N. Trailing arguments may be ommitted, and the
adjacent commas may be used if one of the registers does not
need to be set up. If the BRS is expected to skip, a
failure location may be used, which will be used if the BRS
does not skip. The value of BRS is the contents of A when
the BRS returns~ the registers may be saved by a save list
as for ordinary function calls.

To execute a SBRM do

SBRM(N,A,B,X).

Conventions_ are exactly the same as for BRS.

Arbitrary machine instructions may be generated with

POP(OP,N,A,B,X).

This works like BRS and SBRM except that the opcode is the
value of OP, which must be a constant. Thus, BRS(31,X) and
POP(573B,31,X) are equivalent.

QSPL Manual Page 34

THE COMPILER

A program is compiled with following set of actions at
the terminal:

~QSJ?L

12/18/69 [the date of the last QSPL assembly]
SOURCE FILE: <file name> <terminating character>

[the terminating character is either "." -
fault file for BINARY and LISTING, or
further file names]

assume de­
,,,·• - demand

BINARY FILE: <file name><terminating character>
[default is NOTHING]

LISTING FILE: <file name>. [default is NOTHING]

2 SEC n ERRS 243 CELLS
@

(A:nl,L:n2(n3) ,I:n4,n5,T:n6,M:n7)

The "n ERRS'' does not appear if there were no errrors.
The numbers printed out in the compilation summary have the
following significance:

A:nl,

L:n2

(n3) ,

I:n4,

number of symbol table cells rema1n1ng at end of
compilation. The symbol table has about 4900 cells.
Symbols take 5 cells: constants take 4 cells.

number of literals (constants) in the literal table.
This includes constants actually written in the pro­
gram, temporary and final values of constant expres­
sions, and other compiler-generated constants such
as field masks.

number of literals which were never referenced in a
instruction.

number of indirect cells generated for labels.

nS, number of indirect cells generated for arrays and
function.

T:n6, total number of arithmetic temporary cells gener­
ated.

QSPL Manual Page 35

M:n7 smallest amount of symbol table space encountered at
any point during compilation. This number is smal­
ler than the dAd number by roughly the number of
tokens in the longest statement in the program. It
is the best measure of how close you are to over­
flowing QSPL's symbol table.

THE RUNTIME

A subsystem called QRUN contains the QSPL runtime.
When called, it puts the runtime code into page 7,
read-only, and initializes the pop transfer vector in page
0. It leaves ;F set after its storage and converts itself
into DDT. Dumps and continues may be performed exactly as
though it were DDT. The user may set up SARRAY to the first
unused cell before call inq INIT: otherwise, SARRAY gets set
to 1008 beyond the last non-zero word of the program.

QSPL Manual Appendix A. Runtime Details A36

APPENDIX A

Runtime Details

Strings

A QSPL string descriptor consists of four words, each
of which is a character address (3 * word address + 0, 1 or
2). They are:

pointer to character before first character of space
allocated to string.

reader pointer for string.
writer pointer for string.
pointer to last character of space allocated to string.

ISD creates such a descriptor. RSD, RSR AND RSW set reader
and writer pointers. Characters are counted from 0. RCS
reads the characters between reader and writer pointer, WCS
writes ,characters between writer and end pointers. RCB
reads characters between writer and reader pointers. WCB
writes characters between reader and beginning pointers. A
variable declared STRING must contain the address of a des­
criptor when it is used in a string operation.

Paging Logic

A valid drum address has bit 3 off and bit 4 on~ bits
0-2 are ignored and bits 5-23 comprise the actual virtual
address. CEA and CEI are used to translate such addresses
into core addresses into core addresses~ if the desired page
is not in core, it is read in (which usually involves writ­
ing out some other page). CEAS and CEIS do the same, execpt
that tbey also set a flag associated with the buffer to
ensure that the page will be rewritten on the drum before a
new one is brought into the buffer.

QSPL Manual Appendix A. Runtime Details A37

Core Storage Allocation

A block allocated by a (fixed) array declaration or by
a single- argument call of MAKE contains one more word than
was requested by the user. The extra word, which is the one
immediately preceding the zeroth word of the block, contains
the total length of the block, including the extra word.
The top two bits are used by the storage allocator:

bit 0 is on if the block is free.

bit 1 is on if the next lower block is free.
Blocks allocated by a two-argument call of MAKE do not have
this extra word.

An array being used for storage allocation (i.e. one
set up by SETARRAY, or the SARRAY array) has the following
form:

Word Contents

-1 Length + flag bits. see above
0 ·Bead size, or 0 for an array which allocates

variable sized beads (or blocks).
1 Address of routine to call when free space is

exhausted. This word may be set by the program­
mer. The system does a CALL* through it.

2 Pointer to master free list (or just to free list
for arrays allocating fixed size blocks).

3 Free space to be allocated.

The free list for a fixed block size array starts at
the second word of the 9rray, is linked through the first
word of each free block, and terminates with a zero.

The master free list for a variable block size array
uses one block for each block size. Three words of this
block are used.

-1 Length + flag bits.
0 Back-pointer. Terminates at 0th word of array.
1 Pointer to slave-fee list for this block size.
2 Pointer to next block on master free list.

The blocks on a slave-free list are all of the same
size. Two words of each are used.

-1 Length + flag bits.
0 Back pointer on slave-free list.
1 Forward pointer on slave-free list, or 0.

QSPL Manual Appendix A. Runtime Details A38

The last entry on the master free list may be for block
size 2. In this case the third word is not available, but
it is not needed, since the master free list is sorted by
decreasing block size, and the the smallest possible block
size is 2.

QSPL RUNTIME POPS

• on mnemonic means that all central registers not used to
return results are destroyed.

+ on mnemonic means that all central registers are cleared.

Code Mnemonic Function

100 CALL Function call. The definition is just BRU
~0. Thus F(A, B) compiles LOA A: LOB B:
CALL ~F.

101 + NSC Numeric to string conversion. (Q) = orig­
inal integer, (A) = string description ad­
dress, (B) = radix, (X) = number of charac­
ters to write (-1 means free format).
CNS(A,S) compiles LOA S: LOB =10: LOX =-1:
NSC A.

102 + MSG Print string starting at A on teletype with
BRS 34. Not output by compiler.

103 + FIO Output integer to file. (A) = file number:
(Q), (B), (X) as for NSC. !OUT (A,F,R,G)
compiles LOA F: LOB R: LOX G: FIO A.

104 RERR

105 * RCN

Runtime error. Q (not (Q))
number.

is the error

Read character, no motion. (Q) = string
descriptor address. Reads the character
following the one addressed by the descrip­
tor to A. The descriptor is not changed.
GD(S) compiles RCN S.

QSPL Manual

HJ6 * RCS

HJ7 * wcs

110 * RCS

111 * WCB

112 + RSD

113 * LNG

114 + RSR

115 + RSW

116 + ESC

Appendix A. Runtime Details

Read character from string. (Q) = string
descriptor address. Reads the character
following the one addressed by the descrip­
tor into A, increments the descriptor to
point to the character. Skip if string is
not empty. GCI(S:F) compiles RCS S; BRU
~F.

Write character (Q) on string (A). See
RCS, but writes character from Q. Skip if
space left in string. WCI(C,S:F) compiles
LOA S; WCS C; BRU ~F.

Read character backwards. See RCS, but
reads the character which would have been
written by the last wcs. GCD(S:F) compiles
RCB S; BRU ~F.

Write character' backwards. See RCS but
writes (Q) into the string so that it will
be read by a following RCS. WCD(C, S:F)
compiles LOA S; WCB C; BRU ~F.

Reset string descriptor. (Q) = string des­
criptor address, (A) = character number to
set read pointer to, (B) = character number
to set write pointer to. SETS(S,R,W) com­
piles LOA R; LOB W; RSD s.

Length of string. (Q) = string descriptor
address. Number of characters between base
and write pointers (.ie. number of charac­
ters of useful information) returned in A.
T~LENGTH(S) compiles LNG S; STA T.

Reset string read pointer. Same as RSD for
read pointer only. SETR(S,R) compiles LOA
R; RSR S.

A39

Reset string write pointer. Same as RSR
for write pointer. SETW(S,W) compiles LOA
W; RSW S.

Establish string constant. (Q) as for ISO.
The word after the ESC contains a character
count, the following words the characters
packed 3/word. The string descriptor is
set to point to this string and control
returns to the word following the last word
of the string. s~dABCDd compiles ESC S;
DATA 4; ASC 2,ABCD.

QSPL Manual

117 CEA

120 CE!

121 CEAS

122 CEIS

123 RCAL

124 RRET

125 DBLX

126 ROUT

127 CRS

Appendix A. Runtime Details A40

Compute effective address for paged object.
(Q) = drum address. Core address of object
returned in X. A preserved, B destroyed.
The validity of the core address is guaran­
teed only until the next paged storage POP.
Use CEAS if object is to be modified.
A~P.X compiles CEA P; LDA /X; STA A.

Compute effective address, indexed. Same
as CEA except that (A) is added to (Q) to
get drum address. Use CEIS if object is to
be modified. A~P[I] compilesLDX I; CEI P;
LOA /0; STA A.

Compute effective address for above. Same
as CEA, but for storing into object. P.X~A
compiles LDA A; CEAS P; STA /X.

Compute effective address, indexed into
array. P[I]~A compiles LDA A; LOX J; CEIS
P; STA 0.

Recursive call entry. Q (not (Q)) gives
number of cells to allocate on stack for
arguments and SAVEd variables. RECURSIVE
FUNCTION F(X, Y), SAVE Z compiles STA
RECRGl; LDA 0; RCAL 3; LDA X; STA /2; LDA
Y; STA /3; LDA Z STA /4; LDA RECRGl; STA X;
STB Y.

Recursive function exit.
from stack and returns.

Removes block

Double X register. Used for floating-point
arrays. If A is a REAL ARRAY, then B~A[I]
compiles LOX I; OBLX; LOP ~A; STP 8.

Real output. (Q), (Q+l) is the number. (A)
= file. (B) = format. ROUT (R,N,Q) com­
piles LDA N; LOB Q; ROUT R.

Convert real to string. (Q), (Q+l) is the
number. (A) = str in_g descriptor address,
(B) =format. CRS(R,S,Q) compiles LDA S;
LOB Q; CRS R.

QSPL Manual

AND
APPEND
ARRAY
BCOPY
BGET
BINARY
BPUT
BRS
BY
CIN
CLOSE
CLOSALL
CNS
CODE
COUT
CRLF
CRS
CSN
CSR
DECLARE
DO
ELSE
ELSE IF
END
END FOR
ENDIF
ENTRY
FOR

· EXI·r
EXTERNAL
t'IELD
FIX
t'IXED
FLOAT

Appendix B.

APPENDIX B

Reserved Words

.FMASK
FOR
FREE
FROM
.!?SHIFT
FUNCTION
GC
GCD
GCI
GOTO
HALT
!DENT
IF
!IN
INCLUDE
IN.FILE
INITIALIZE
IN NAME
INTEGER
!OUT
LCY
LENGTH
LINK
LIST
LOCAL
LOCK
LSH
MACRO
MAKE
MOD
NOLI ST
NOT
OR
OUT FILE

Reserved Words

OUT NAME
PAGED
PARAMETER
PFLUSH
PMAKE
POP
RCY
REAL
RECURSIVE
RETURN
RIN
ROUT
RSH
SAVE
SBRM
SCALAR
SCOPY
SETARRAY
SETR
SETS
SETUP
sE·rw
SOURCE
SOUT
SRETURN
STRING
TO
UNLOCK
WCD
WCI
WHERE
WHILE
WIN
WOUT

841

QSPL Manual Appendix C. Standard Externals C42

APPENDIX C

Standard External Symbols

BSTORG First word of storage available to INIT.

EARRAY Last word not used for page buffers or tables
after INIT.

ERROR Error codes left here by INFILE and OUTFILE.

ESTORG Last word of storage available to INIT.

FTYPE file type left here by INFILE and OUTFILE.

NPB Number of core buffers for pagins. 0 = all
available space.

NPC Desired size of drum address space(2~NPL).
NPG<=2~(19-NPL). 0 =paging will not be
used.

NPL Page size as power of 2. S<=NPL<=ll.

NUP Number of unlocked pages.

PADDR Drum address of unlocked page.

PCAT Category to be used by PMAKE. 0 =don't
care.

PM >=0: use NRH for paging logic. 487: use file
/$QPOATA. 4B7+F: use file no. F. Any of
above + 287: recover old state from file.

SARRAY Address of second word not used for page
buffers or tables after INIT.

QSPL Manual Appendix D. QSPL Syntax D43

APPENDIX D

BNF Syntax of QSPL

<expr> = <xwhr> $('& <xwhr>);

<xwhr> = <xforx> [WHERE <xforx>];

<xforx> ~ <xcond> $(FOR <xforc> /WHILE <xwhilc>);

<xforc> = <identifier> ('= I '~) <xcond> ([', <xcond> 1
WHILE <xcond> / [BY <xcond>] TO <xcond>);

<xwhile> = <xcond>;

<xcond> = <xor> [IF <xor> [ELSE <xcond>]];

<xor> = <xand> $(OR <xand>);

<xand> = <xnot> $ ((AND / EOR) <xnot>) ;

<xnot> = [NOT] <xrel>;

<xrel> = <xmod> [('= I '# I '> I '>= I '< I '<=) <xmod>];

<xmod> = <xadd> $(MOD <xadd>);

<xadd> = <xmul> $ (('+ I ' -) <xmul>) ;

<xmul> = <xsign> $(('* I '/I LSH I RSH I LCY I RCY)
<xsign>);

<xsign> = ['+ I '- I GOTO] <xtail> I (RETURN / SRETURN)
<xsgnl7>;

<xsgnl7> = [<xor> ', <xor> ' <xor> / <xor>
[FROM <xtail>];

< x f c > = < xt a i 1 > [' (< x f c n > ')] ;

< xo r > I < xo r > 1

<xfcn> = [<expr> $(', <expr>)] [': [<failure>] [': [<identi­
fier>]$(', [<identifier>])];

<failure> = <identifier> I (RETURN I SRETURN) [<xor> 1;

<xtail> = <xref> $ (('. / '$) <gfield>) [<xsubs> 1 ['~ <xor> 1 ;

<xref> = $ ('$) ['@] <xpr im> <xsubs>;

QSPL Manual Appendix D. QSPL Syntax

<xsubs> = $ (' [<expr ']) :

<xprim> = '(<expr> ') I <isc> I <xsf> I <identifer> I
<constant>:

<isc> = '•• $<psch> '••:

D44

<psch> = '& ('& I ,, I '~ I <letter> I <octal> <octal>
<octal>) I <otherchar>:

<constant> = <octal> $<octal> B [<digit>] I <digit> $<digit> [D
[<digit>]] I <charcon>:

<identifer> =<letter> $(<letter> I <digit>):

<char con> = " <psch> [<psch> [<psch>]] ":

<octal> = '0 I '1 I '2 I '3 I , 4 I 's I '6 I '7:

<digit> = <octal> I '8 I '9:

<letter> = 'A I
,

. . . I z;

<other char> = <any character other than ' & , '', or '·• >:

<stat> = (DECLARE <xdec> / RECURSIVE FUNCTION <xfdr> /
FUNCTION <xfdn> / LIST <listop> / NOLIST
<nolistop> I END I !DENT <identifier> I FOR
<xforc> DO / WHILE <xwhilc> DO / ELSE DO /
END IF I INCLUDE <isc> I <ex pr>) ': I ['$]
<identifier> ': :

<function> = FUNCTION I ENTRY:

<listop> = SOURCE / BINARY / CODE:

<nolistop> = <listop> / FREE / EXTERNAL:

<xfdn> = <fdec> [', LINK <addr>]:

<xfdr> = <fdec> [', SAVE <vblist>]:

<fdec> = ['$] <identifier> '([<vblist>] '):

<vblist> = <grwfd> $(', <grwfd>):

<grwfd> = $(INTEGER/ STRING I ARRAY I PAGED I REAL) <iden­
tifier>:

<token> = <isc> I <identifier> I <constant> I <pmark>:

QSPL Manual Appendix o. QSPL Syntax 045

<pmark> =<any of: d#$&()*+,-.:<=>@[]~d>1

<Xmd> = <identifier> [' ([<identifier> $ (', <identifier>)]
')] '~ $<token> 1

<fielddec> =<identifier> '(<icon> [': <icon> ·,<icon>] ')1

<paradec> = ['$] <identifier> '~ <icon>1

<icon> = <expr which evaluates to a constant>1

OS.PL Manual

#, 4

$,
binary, 7
unary, 7

&, 2

() (field application), 5
() (function calls) , 5

[) (subscripting), 8

*, 4

I, 4

+,

,

binary, 4
unary, 4

binary, 4
unary, 4

. • (indirect tailing) , 7

, 4

<, 4
<=, 4

=, 4

>, 4
>=, 4

@, 7

~. 3

addition operator, 4
~D, 4
APPEND, 28
Appendix A, A36
Appendix B, 841
Appendix C, C42
~ppendi~ o, D43
arguments,

of functions, 6

Index

of macros, 21
assignment operator, 3

BCOPY, 24, 29
BINARY, 20
branch operator, 4
BRS, 33

CIN, 31
CLOSALL, 30
CLOSE, 30
CNS, 29
CODE, 20
constants,

character, 9
field-derived, 10

constant expressions, 11
compiler,

how to operate, 34
control statements, 18

· E'OR, 19
IE', 18
WHILE, 19

COUT, 31
CRLE', 31
CRS, 29
CSN, 29
CSR, 29
cycle operators, 4

declarations, 11
equivalence, 15
field, 14
initialization of, 13
in function

definitions, 15
!ables, 17
macros, 21
paged, 12
parameter, 15
string, 13
symbols, 8, 17

division operator, 4
DO, 4

ELSE,
as control statement, 19
in expression, 3

ELSEH', 18
ENDIF, 19
END, 21

I46

QSPL Manual

EOR, 4
equal relation, 4
equivalence

declarations, 15
ERROR, 30
EXIT, 33
expressions, 2
external symbols,

standard names, 841

failure returns, 6
field-derived constants, 10
field declarations, 14
fields,

word opera tor, 7
file-naming functions, 30
files,

opening & closing func­
tions, 30

input-output
functions, 31

flX, 32
FLOAT I 32
floating-point numbers, 17
FOR,

as control statement, 19
in expression, 2

FREE, 24
FTYPE, 30
functions,

argument transmission, 6
calls, 5
definition, 15
failure return

operator, 4, 5
failure returns, 6
file-naming, 30
input-output, 31
miscellaneous, 32
paging, 25
recursive definition, 16
return operator, 4, 5
return values, 6
special, 23
storage allocation, 23
string handling, 27
success return

operator, 4, 5

Index

GC, 28
GCD, 28
GCI, 28
GOTO, 4
greater than or equal

relation, 4
greater than relation, 4

HALT I 33

IDENT, 21
IF,

as control statement, 18
in expression, 3

!IN, 31
INCLUDE, 20
indirection operator, 7
INFILE, 30
INITIALIZE, 32
initialization,

of declared objects, 13
of runtime storage

!47

allocator, 32
INNAME, 30
input-output functions, 31
!OUT, 31

labels,
declaration, 17
locality of reference, 20

LCY I 4
left cycle operator, 4
left shift operator, 4
LENGTH, 27
less than or equal

relation, 4
less than operator, 4
LIST, 20
listing control, 20
LOCK, 26
logical and operator, 4
logical exclusive-or oper-

ator, 4
logical not operator, 4
logical or operator, 4
LSH, 4

QSPL Manual

MAKE, 23
macros, 21

definition, 21
use, 21

MOD, 4
multiplication operator, 4

names, 8
name declaration, 8, 17
NOLIST, 20
NOLIST external, 20
NOLIST free, 20
NOLIST include, 20
NO'r, 4
not equal relation, 4
number/string

conversion, 29
numbers,

as primaries, 8
conversion to strings, 29
real, 17

OR, 3
operators, 2
OUTFILE, 30
OU'rNAME , 3 0

paging,
declarations, 12
facility described, 25

parameter declarations, 15
PMAKE, 25
POP, 33
primaries, 8

character constants, 9
constant expressions, 11
names, 9
numbers, 8
reserved words, 9
string constants, 10

program, 1

QRUN, 35
QSPL,

BNP syntax, D43
how to operate

compiler, 34
program, 1

Index I48

RCY, 4
real numbers, 17
recursive functions, 16
reference operator, 7
relations, 4
remainder operator, 4
reserved words,

as primaries, 9
complete list, 841

RETURN, 4
right cycle operator, 4
right shift operator, 4
RIN, 31
ROUT, 31
RSH, 4
runtime, 35

details, A36
programmed operators, A38

SBRM, 33
SCOPY, 29
SETARRAY, 23
SETR, 27
SETS, 27
SETUP, 27
SETW, 27
shift operators, 4
SOURCE, 20
SOOT, 31
special functions, 23
SRETURN, 4
standard external

symbols, C42
statements,

format of, 1
miscellaneous, 20

storage allocation func­
tions, 23

string/number
conversion, 29

string descriptors, A37
string moving, 29
strings,

appending, 28
constants as

primaries, 10
conversion to numbers, 29
copying, 29
declarations, 13
descriptor copying, 29
descriptor

QSPL Manual

initialization, 27
descriptor

manipulation, 27
descriptors defined, A37
moving, 29
reading, 28
writing, 28

st~ing constants, 10
string handling

functions, 27
subscripting, 8
subtraction operator, 4
successive evaluation, 2

Index

tailing,
direct, 7
indirect, 7

unary operators, 4
UNLOCK, 26

WCD, 2 8
WCI I 28
WHERE,

in expression, 2
WHILE,

as control statement, 19
in expression, 2

WIN I 3 l
WOUT, 31

I49

