
Carnegie-Mellon Un1vers1ty Department of Computer Science

Schenley Park
Pittsburgh, Pennsylvania 15213

[412] 621-2600

June 7, 1976

Professor Wayne Lichtenberger
Department of Electrical Engineering
University of Hawaii at Manoa
2540 Dole St.
Honolulu, Hawaii 96822

Dear Wayne:

When I was in Hawaii, I became intrigued with the fast memory
on the 500. Using the document you gave me and talking to Mel last
year, I tried to spell out the algorithms for the different parts
of the fast memory logic. I think they are quite fascinating. How­
ever I will not be able to complete them. If you o.r someone else
would like to complete them and correct the description of the algo­
rithms, I would like that very much. Even at this late date people
would find this interesting, I think.

Best of luck with everything.

AKJ/ dmj
enc.
cc: M. w. Pirtle

Sincerely,

Anita K. Jones
Assistant Professor

FAST MEMORY

A Technique for Increasing the Effective Access Cycle of Central Memory

INTRODUCTION

Since the inception of the modern computer system, providing a sufficient

quantity of directly addressable memory -- cost effectively -- has been a

problem. The solution has been to use a hierarchy of memories: directly ac-

cessible central memory, sequentially addressable secondary memory and archiv-

al off-line storage. Processing power is used to manage the flow of data be-

tween levels in the hierarchy so that the several levels effectively simulat­
containing all information in the system

ed a large directly addressable memory'; that is, whenever data is required for

program execution, it can be directly accessed. Such techniques are cost ef-

fective because the processing power to support them is cheaper than the fast

directly addressable passive memory being simulated.

An additional problem arises when the central memory that is cost effec-

tively available -- or available in the market place at all responds so

slowly (that is, has a long cycle time) to accesses made by processors that the

processor's instruction execution rate is effectively reduced. Again the solu-

tion is to expend processing power to effectively increase the performance of

the memory by interposing a mechani'sm between the direct access memory and

the processor. This paper narrates one innovative solution to the problem of

providing cheap but very fast directly accessible memory.

THE PROBLEM

The problem of providing rapidly and directly accessible memory arose in

the design of the Berkeley Computer Corporation time sharing utility, the

-2-

BCC500 system []. In particular central memory was to be directly address-
15 million operations per second

able by five microprocessors (maximum rate of /\ each) and sequentially

accessible to four (two drum and two disk) controllers collectively able to

sustain a transfer rate of over 12~ bytes per second. Any solution was con-

strained to minimize interference, minimize cost and to be a maintainable

• component of the system.

At the time of the design 0969) a reliable direct access memory

fast enough to satisfy the voracious appetites of the five processors and

four controllers was not on the market. Furthermore, the fastest reliable

memories on the market were very expensive. Restated the problem was: Is

* there a way to interface 1 microsecond memory to the processors and control-

lers (designed and built at BCC) to meet the economic and performance goals

stated above?

MOTIVATING THE SOLUTION

The central memory is referenced through four ports connected to the pro-

cessors.

CPUl

J

memory

IO
Controllers

CPU2

'

Scheduler
M/
P --MMP

M "cHIO
B
M

The two Central Processing Units (CPUs) are dedicated to executing user jobs.

In contrast to conventional operating systems the BCCSOO has three micropro-

cessors dedicated to performing physical resource management. The Scheduler

* Judged at the time to be the fastest memory that was (1) reliable, (2) main-
tainable, (3) quickly obtainable and (4) affordable!

-3-

performs user process synchronization and process multiplexing on the two

CPUs. The Memory Management Processor (MMP) manages the flow of user process

working sets between central memory and secondary storage so that the Sched­

uler directs a CPU to execute a user process only if that process' working

set is resident in central memory. The Character IO (CHIO) processor manages

the information streams between the system and the many local and remote con­

sole devices. The IO controllers transfer pages between central memory and

drum or disk as directed by the MMP.

The three management processors each have private memory though they do

share central memory data structures such as process descriptors and thus re­

quire access to central memory. Since the resource management processors

make relatively few accesses to central memory (for example, they execute

their microprograms and do not fetch instructions from central memory as do

the CPUs), their requests to central memory are multiplexed onto one bus by

* the MPMBM.

The goal is to increase the apparent speed of the central memory. In

fact the goal is for the processors and controllers to see a central memory

which appears to be an order of magnitude faster than the actual 1 microsecond

core memory.

One approach to this problem is to place a small fast memory called a

cache in the processor into which small blocks of central memory contents are

'demand paged'. Effectiveness of cache depends on the locality property of

program execution. The locality property predicts that if a ~.v-ord is refer­

enced, it or a near neighbor word will be referenced shortly. Thus if the

wordis referenced, it and its neighbors (a cache page) should be brought to

* !:!el Kirt le' s Miraculous Bus ·!:!ul tiplexor

~-

the cache so that references to that page which are expected to occur in the

near future can be performed at cache speed.

The cache solution presents several difficulties. First, to solve the

present problem, every access should be fast, not just the second and succeed-

ing references to a 'cache page'. Second, if multiple processors are to refer-

ence a shared central memory, the cache solution (a cache per processor) intro-

duces the problem of maintaining the accuracy and consistency among the con­
multiple

tents of the / ·caches and the central memory. Third, many of the accesses

to central memory are by secondary storage device controllers whose accesses
generally

are sequential by nature of the devices. Caches are not/used for these refer-

ences.

It must be concluded that cache does not solve the present problem; indeed

it would introduce substantial difficulties in maintaining consistency.

THE SOLUTION -- AN OVERVIEW

In contrast to cache, the solution implemented associates with each of

the eight central memory (core) modules a buffer of six FAST REGISTERS. 'lb.ese

registers together with the logic to manage them are called the FAST MEMORY.

The logic in each fast memory selectively assigns registers in the fast memory

to locations in the associated core module. Then the fast register is effec-

tively substituted for the assigned core location. If the required data for

reads is in a fast register, then both reads and writes can be serviced at

fast memory speeds so that the apparent speed of central memory is increased.

In the BCC500 each fast memory can accept a request each 100 nanoseconds, an

order of magnitude faster than the core memory.

Note that the fast memory solution does not have the consistency difficult-

ies of the cache solution. References from all processors to central memory go

-5-

to the single fast memory associated with the core module addressed so that

all processors see an updated value as soon as it is changed. Description of
the fast memory solution will demonstrate that it does not

have the other disadvantages of the cache : >

- ------
--,--~-)every processor or controller access can be serviced

by the fast_memory, not just the second and succeeding accesses to the arti-

ficially defined 'cache page'. Indeed the fast memory is even designed to

take advantage of the fact that a substantial number of memory accesses (at

least those made by the controllers) have a sequential pattern.

There will be cases in which the fast memory will fail to have data ready

to satisfy a read request. To minimize the occurrence of this event, the mem-

ory interface to the processor is altered so that the fast memory can REJECT

requests which it cannot honor immediately out of the fast registers. In

fact a response is generated in the same clock cycle as the request so that
a

the central memory appears to a processor to be/component internal to the

processor! If the fast memory does not reject a request, then any data to

be provided by the memory will be available on the bus during the next clock

cycle.

The processors and controllers are adapted to the fast

memory in two ways:

- a request to memory can fail (be rejected) and must be retried

- prefetch requests can be made to alert the fast memory to acquire

data for an imminent access.

The fast memory is another example of using plentiful and inexpensive pro-

cessing power to upgrade the effective use of a resource. In this case the

logic associated with the fast registers and the logic to augment the processor

-6-

and controller interface to memory as just suggested is the price paid to make

1 microsecond memory appear to be a 100 nanosecond memory. For a discussion

of this philosophy see reference [].

We will now discuss the interconnections between the fast memory and

the other BCC500 system components, then give an overview of the logic which

interfaces the fast memory with core (the 'inboard' side of the fast memory)

and the 'outboard' interface between the fast memory and the processors and

controllers.

If access time is to be minimized, it is essential that the memory be

near the components making requests of it. When dealing with memory response

times of 100 nanoseconds, every foot of cable separating the fast memory and

the requesting components will noticeably increase the effective access time.

(That is the reason the MPMBM is backplane cabled to the resource management

processors.) .The BCC500 components are connected as follows:

z A
R . . B . I . .
T . .
E
R

l
core mo dules

fast memory
(8 modules)

48M bytes/ sec

('\
CPU

CPU 2

}

resouce
MPMBM __..--- manageornt

----- processors
Controllers }

drums
~and

disks

120M bytes/sec

-7-

Because the core cycle time is so slow, the length of the cables between
relatively

core and fast memory isAunimportant. So the fast memory is located in the

same physical package as the CPUs, the MPMBM and the controllers so that

the cabling between them is backplane cabling, no more than a few feet in

length.

The bus between memory and the requestors (processors and controllers)

has the following lines:

to requester (> to fast memory
clock time line name number of lines

t ADDRESS
~

19

t REgUEST
~ 4

t DATA IlJ
~

26

t CPRIORITY :;. 2

t PPRIORITY
~

t+l
(

DATA OUT 26

t
(REJECT 1

t+l ~ACCEPT

t+l < SATISFY 1

can
The bus is clocked. At each clock time t the requestor~place values on

the ADDRESS, REQUEST, CPRIORITY and PPRIORITY lines and perhaps the DATA TI;

line if the request is a 'store'. At the end of the clock cycle (100 nano-

seconds) a REJECT response will have been set or reset by the fast memory.
then

If the request was not REJECTe~Aat time t+l the fast memory will set the

ACCEPT, SATISFY and perhaps the DATAOUT lines. At the fast memory side the

bus enters an arbiter which resolves the (hopefully) infrequent conflicts

arising when two requestors attempt to reference a location in the same core

module. The arbiter uses the PPRIORITY (port priority) value, which is either

low or high, to select one request to be gated into the fast memory logic.

-7a-

REJECT responses are sent to all others. We will not describe the fast

memory arbiter any further.

REQUEST is composed of four lines

F fetch request

S store request

H hold or defer (used by the inboard logic to
determine when to transfer data between a
register and core memory)

Q signifies whether a request is from a sequential
device

The REQUEST line values (H and Q) are essentially control information to

allow the fast memory logic to optimize the service it provides to requesters.

-8-

In the remainder of this section we will describe the fast memory. Tite

explanation ignores details irrelevant to the basic idea of the fast memory

solution. For example, the core memory is double word interleaved fetching

a double word every cycle, so each fast register contains a pair of data

words. This is ignored in the remainder of this section.

Looking more closely at the fast memory structure one finds an array of

six registers each ~ontaining four ~inds of information:

ADDR specifying the address of the core location assigned to
the register

DATA contents of the assigned core location

DATASTATE specifying whether
R correct data is in fast register
C correct data is in core location*

STATUS status of the register

H requestor intends to reuse regis~er in immediate future
IP core cycle is 'in progress' for this register
Q signifies whether last requestor addresses memory in a

sequential pattern
P priority information

We will first give a version of the outboard algorithm which processes

requests. Again, it masks many of the problems and nuances of the logic but

suggests roughly what takes place. The outboard algorithm first determines

* We will freely mix terminology by referring to a bit, say RL, as being 'set'
or 'reset', or 'true' or 'false'. (A set bit is interpreted to encode the
boolean value true.)

-9-

a fast register assigned to the ADDRESS in the request. The second portion

responds to the specific request made. Described in English prose augment-

ed by familiar programming language control constructsl the algorithm stated

below narrates what the outboard logic of each fast memory module does every

clock cycle.

if ADDRESS in range this module then

begin if -, (fast register X assigned to ADDRESS)

*

enfd1

then if a X, an available register

then (assign X to ADDRESS; ACCEPT ~ true)**

else (ACCEPT~ false; exit begin block);

update I.STATUS using REQUEST and CPRIORITY;

case

store request:

fetch request:

(latch DATAIN to X.DATA; adjust X.DATASTATE;
SATISFY ~ true)

if X.R then (latch X.DATA to DATAOUT; SATISFY ~true)
- else SATISFY ~ false

prefetch or reserve request: SATISFY~ true

This outboard algorithm can respond to a request every 100 nanoseconds.

Consequently fetched data is returned to a requestor in the clock cycle follow-

ing that in which the request is made. For example, if a read request is made

when the required data is in a fast register:

clock time: 2

Processor makes request, Data avilable on
Receives reset DATAQUT lines by

REJECT response end of cycle
~time

by end of cycle

* ~egister availability for assignment will be discussed in detail later.
Where no confusion should arise (mostly because of indention and spacing),
parentheses are used to denote block begin and block end.

-10-

The time for a single successful fast memory request is 200 nano-

seconds. However, during each clock cycle a processor may make a request so

that a request and the results of the previous request are on the bus during

the same clock time making the effective fast memory access time 100 nano-

seconds • The MPMBM costs an extra clock time so that the resource

management processors receive REJECT responses during the clock time after

the request is made and any data is received two clock times after the request

is made.

The fast memory is analogous to a demand paging system. Demands are in
f rarne

the form of memory access requests. Each register corresponds to a page in

the demand paging system. One difference between the two is that the proces-

sors ·cooperate with the fast memory to the extent of announcing imminent ac-

cesses by prefetches so that the fast memory can preassign registers and fetch

data from core memory if necessary. Tile inboard fast memory logic attempts

to keep the values in the register and core the same.

Except for the shared fast registers the inboard and outboard logic imple-

ment quite separate algorithms. While the outboard logic executes at proces-

sor and fast register speed, the inboard logic necessarily executes at core

cycle speed (10 times more slowly). Tiius the two algorithms are synchronous

by the clock, but asynchronous by activity.

Each core cycle the inboard logic of the fast memory functionally performs

the following operation. (Again, the fact that the core modules transfer a

double word at a time is ignored.)

-11-

if ~ fast register X- with DATASTATE and STATUS values (R A C A H) or (R A C)

then begin select the highest priority such register X;

X.IP4_1~e;

if'- X-;R-1\-X.G- then (X.DATA is loaded from core location X.ADDR;

X.R~ true)

else (X.DATA is stored in core location X.ADDR;

X.C ~ true)

X.IP~ false
end

The goal of the inboard logic is to cause the DATASTATE flags R (right in

the register) and C (right in core) to be set.

As mentioned earlier, the microprocessors are adapted to match the fast

memory. The CPUs are pipeline machines in order to be able to decode instruc-

tions fetched from memory and prefetch operands before they are required for
graphically

performance of operations in the ALU. The CPU pipeline can behdescribed by

PRE FETCH
and

FETCH

FOLLOW ~
DECODE INDIRECTIONS OPSH.AND

INSTRUCTION AND PREFETCH FETCH ALU
OPERANDS I

STORE
RESULTS

The first section of the pipe logic prefetches and fetches instructions,

possibly pursuing both paths following a branch. The instruction prefetch

and fetch portion of the pipe increment shadow program counters. Instructions

are decoded and the operands determined and prefetched. This may involve in-
(AI1J)

direction and indexing. The arithmetic and logic unit~is the only portion

of the pipe in which the state of the machine is actually changed. It is the

ALU that alters the actual program counter. The ALU will request its operands

and find them in fast memory. The last portion of the pipe stores results

in the operand location which may be in central memory. It is this portion

of the CPU that can respond to the rare event that the fast memory cannot

accept a store request.

-12-

THE SOLUTION - A PRRCISE DESCRIPTION

To make the fast memory description more precise the inboard a~d

outboard algorithms will be refined. Special attention will be paid to:

1. ramifications of the fact that core modules transfer double words

2. the inboard priority selection algorithm (used to determine for

which register a core transfer is to be performed)

3. the register assignment algorithm

4. the special handling of sequential devices.

As noted earlier the
/\ core modules accept or provide a double word of data at a time.

Memory locations N and N-1-1 (N even) are in module N mod16. Consequently a

fast register also holds a double word of data. We now revise our earlier

sketch of the structure of the fast registers. The 76 bits of a fast regis-

ter are divided into the fields shown below:

26-----....) 1 1 111~~ __ 26--> I 11 1 f

DATA.
0

The DATAQ and DATA1 fields hold the contents of the double word (in the associ­
DATAo (JATA1) holds the left (right) half of a double word.

ated core module) indicated by ADDR.A The status of the DAT'\) (DAT~.) field is

recorded in :LU and GJ (RJ and Ci) • 1b and ~ indicate whether the correct

value is in the associated data field. Co and C1 indicate whether the

correct value is in core. Thus these four bits together compose what we

called DATASTATE earlier.

The objective of the inboard logic is to maintain every register in its

normal state -- i.e. one in which RiJ, Rt, CQ, '1 are set meaning that both

-13-

the fast memory register and the assigned core locations (the double word)

are correct. A transfer between a fast register and core is required if

the boolean expression CORETRAl'JS is true when COR.t!.-"TRANS = FETCH V (STORE/\. H).
. A fetch is required
Ajust in case FETCH is true, where

A store is required just in case STORE is true, where

H is used in conjunction with prefetch requests to insure that in most cases

the requested location will be held in fast memory until the fetch request

is made. It is used in conjunction with fetch requests to hold a double word

in a fast register until each half has been fetched and in conjunction with
to core

stores to defer the store of a wordAuntil both halves of a double word have

been stored into the fast register. Thus H is usually set when the first of

two references to a double word is made or when a prefetch is made. A timer

Jis associated with each fast register hold bit. It is used to limit the time
a processor can attempt to force the fast memory to maintain a particular
register assigIL~ent. Each time H is set, the associated timer is set. After
an interval measured by the timer elapses (approximately 4 psec if the Q bit
is set and 2 1-sec if it is reset) the hold bit is reset.

Shortly after a core cycle begins the inboard logic computes the boolean
CORETRANS

expression A and selects the first register of highest priority (consulting

the P fields) encountered in a cyclic scan of the registers beginning with

the register indicated by the SCAN pointer. Functionally this can be de-

scribed as a boolean procedure SELECT which, if successful, determines a

register for which a core transfer is to be performed and places the name

of the register in a variable X accessible to all the inboard logic. We

-14-

assume SCAN points to a register and will not change during the execution

of SELECT.

boolean 2rocedure SELECT •

begin local I,J ,PRIOR; PRIOR~ -1; I+ -1;

for I ~ 0 to S do - - -
begin J ~ (SCAN + I) mod 6;

if J.CORE'l'RANS A PRIOR>J.P ~(PRIOR+ J.P; X~ I)

end -
if PRIOR:> -1 ~ (I.IP~ true; return true)

else return false

end

'l'.h~ major portion of the inboard logic can now be described. If

SELECT returns a value of true, the X. IP 'in progress' bit is set so that register

X will not be considered by the outboard register assignment algorithm.

All core transfers are via a single high speed memory register M

associated with the core module and containing five fields:

The A field contains the address (within the module) of the double word being

accessed during a core cycle. So (S,) is true if the corresponding data field

lb (DJ) has been loaded from a fast memory register.

-15-

Functionally, the main inboard logic can be described by the following

program when { and J act as begin and end block delimiters and in addition

indicate that the bracketed statements can be executed in parallel:

nrocedure INBOARD =
repeat if SELECT then·

begin { Do +- 0; D1 +- 0; SI) +- false; S1 +- false; A +- ADDR 1
{!! x. R

0
A x. c

1
; then {D0 ... DA'fAo; s0 ... true 1

end

if X.R1 /\ X. c1 then {D1 +- DATA1.; s1 +- true}}

fif s0 then load D0 from core location A;

if s1 then load n1 from core location A+l }

{DATA0 ... D0 ; X.Ro +- true; load core location A from n0 ; x.c0+-true

DATA1 +- D1 ; S.~ +- true; load core location A+l from Dt;

X.C +- true J
I.IP~ false

After a register is SELECTed, the core module high speed register M is initi-

alized. If the value of the locations A and A+l are correctly represented in

the fast registers X, but not in core the fast register is used to load M.

Loading of Mis completed using core values (readout is destructive). Mis

used to update core and the fast register X.

REGISTER ASSIGNMENT ALGORITHM

We now consider the fast register assignment algorithm. When a memory

request specifies an ADDRESS not currently assigned to a register, an attempt

* is made to find a register to be assigned to the ADDRESS • The assignment

* ADDRESS is 19 bits in length and the ADDR field is 15 bits in length. The
least significant bit in ADDRESS selects half of a double word. The next
three least significant bits select one of the eight core modules and thus
it is the remaining 15 most significant bits which are compared to ADDR in
a fast register for assignment purposes. We will write this ADDRESS[l-:15].

-16-

named ASSIGN
algorithmAcyclically scans the registers up to three times searching for a

to ADDRESS.
register to assign~ The only registers to be considered are free registers,
i.e. those for which FREE • 'IP A CORETRA1rn /\ H is true.

{\ Stated more intuitively, a free register

is one which is not involved in the current core transfer (IP), is not a
(coRETn.ANS)

candidate for a core transfer .A and for which no deferral has been speci-

fied (H}. The assignment algorithm reads and sets the cyclic SCAN pointer

(also used by the inboard selection algorithm). The assignment algorithm

can be functionally described by:

*

boolean urocedure ASSIQN •

begin local I, J;

if ~X, X.ADDR = ADDRESS[l:l5]

then (Y +- X; return true)

else begin

for I+- 0 to 5 do begin J +- (SCANt-I) mod 6;

* if J .FREE A J. Q then FOUND (J)

end

for I+- 0 to 5 do begin J +- (SCANt-I) mod 6;

if J .FREE then (SCAN~ (J t1)mod 6;
end FOUND(j))

if REQUEST.Q A CPRIORITY = high

then for I +- 0 to 5 do begin J +- (SCAN+!) mod 6;

end

return false

if J.Q A J.IP A J.STORE
then FOUND(J)

macro FOUND(X) =
begin Y ~ J; J (1 :76] ~ O; J .c0~ truej J .c1 ~ true;

return true
end

Recall that the Q bit indicates that a word in that register was last used by a
sequential device (e.g. a drum). If the hold bit His not set, then the register
is a prime candidate for assignment since the sequential device which last used it
will probably not do so again for a long while.

-17-

The algorithm first tries to locate a register which was used temporarily
·(FREE I\ Q is true),

by a sequential deviceA for it is unlikely to be used again. This increases

the probability that a word recently referenced by a non-sequential device

(like a CPU) will remain in a· register for awbile. The algorithm insures

that Q request9.Jmade almost exclusively by disks and drums
1
will almost always

be assigned a register. The algorithm takes cognizance of high priority (as

opposed to low or medium priority requests) from sequential devices to prevent
drum or disk overrun. The algorithm i;-.rill not reassign a register with the
hold bit set unless overrun is impending (as~ndicated by CPRIORITY • high).

The mainline outboard algorithm responds to requests. There are six

types of requests encoded in the F, S and H bits:

Type of Request F s H

fetch 1 0 0
fetch and hold 1 0 1
pre fetch 1 1 1
store 0 1 0
store and hold 0 1 1
reserve 0 0 1

We do not treat any other combinations here.

We ·now define . the mainline outboard algorithm

with more precision. Each clock cycle (100 nanoseconds), the outboard logic

* functionally executes:

*Note that we state that the program functionally describes the corresponding
logic. No promises of precise implementation are to be inferred.

-18-

procedure OUTBOARD •
begin local T;

if ADDRESS in range of this module

end

then

.!f. ASSIGN then begin Y.ADDR .._ ADDRESS[l:lS]; Y.H ._ REQUEST.H;

end

Y.Q .._ REQUEST.Q; if CPRIORITY>Y.P then Y.P.-CPRIORITY;

ACCEPT.._ true;

case

prefetch request: SATISFY ._ true;

store request: (T '9 ADDRESS mod 1;

Y.DATAT ~ DATAIN; Y•Rrr<'- true;

Y.CT~ false; SATISFY~ true)

fetch request: (T~ ADDRESS mod 1;

if Y.Rtr then (DATAOUT~ DATAT;

SATISFY~ true)

. ~ (Y.H ~ true; SATISFY ~false)

else ACCEPT .._ false

The outboard logic invokes ASSIGN to find an existing or new register to
updates the

assign to ADDRESS. If ASSIGN is successful the outboard logic J\ status
in the assigned register Y

information~from the reques~

For example, the register priority P should reflect the highest priority ascribed

to it by either the current or a previous request.

Setting the hold bit in the iast ret;ister to haYe the sam.e value as
RE~UEST.H is
hsufficient to handle the 'hold' portion of fetch and hold, store and hold,

and reserve. Note that if a fetch request fails, the hold bit is set so
that when the request is repeated, the register will not have been reassigned and
the data uill probably be available in the fast register. The rem2.ining three
types of re·~uests are handled separately. Note again that though the memorJ
request was not R&JZCTed in the last cloc:.: cycle, it mav still
fail to be honored in two ways: failure of

ASSIGN to find a register in which case the request is not ACCEPTed and failure

to find data to be fetched correctly recorded in the fast register in which

case the request is not SATISFYed.

-19-

SEQUENTIAL DEVICES

Drums and disks generally access memory sequentially. Consequently they

. can accurately predict and issue prefetches or reserves far ahead of the

actual operations. This permits the fast memory to schedule core transfers to

minimize interference with transfers related to other requests.

For the purpose of allocation and scheduling of core transfers there exist

* three priorities: low, medium and high. A fourth priority, warning, is used

by processors and controllers to forewarn a memory module of an inuninent high

priority request. A warning is treated as a low priority except that when a

warning priority request is accepted by a module any warning priorities already

present are changed to high priorities. This tends to reduce the frequency

with which a module has multiple high-priority requests to process, reducing

the number of times a high priority fetch or store cannot be satisfied. Again it is
in particular,

critical that drum requestsjfe satisfied to prevent overrun. The dynamic

priority scheme allows processors to make low priority requests which will not

interfere in the more important high priority requests, but to increase the

priority when response becomes critical.

EPILOGUE

The fast register memory has been implemented in the BCC500 running rou-

tinely since 1972. Unfortunately due to the press of finances, only two fast

registers are connected to each of the eight core modules. Experience shows

that

* A memory request carries two types of priority PPRIORITY to be used to adjudi-
cate port entry conflicts and the core request priority (CPRIORITY) we are now
discussing.

