
DDT

INTERACTIVE MACHINE LANGUAGE DEBUGGING SYSTEM

REFERENCE MANUAL

BCC 500 Computer

Department of Electrical Enqineerinq
University of Hawaii

January 25, 1978

DDT Reference Manual Paqe 1

1. 0 General

DDT is a relocatinq, linkinq loader and debuqqinq
system for the XDS 940. It has facilities for symbolic
reference to and typeout of memory cells and central
reqisters. It permits the user to insert breakpoints into
programs, oerform traces, and search programs for specified
words and specified effective addresses. In addition, it
has a conditional breakinq facility that will allow the user
to specify the exact condition under which he wants the
program to break. Finally, DDT can load both absolute and
relocatable files in the format produced by the assembler.

The system has a language by which
controlled. The basic components of this
symbols, constants, and commands.

L 1 Symbols

it can
language

be
are

A• symbol is any string of letters, digits, and dots(.)
containing at least one letter. (However, a digit string
followed by B or D and possibly another digit is interpreted
as an octal or decimal number respectively). In symbols
more than six characters, only the first six are
significant: thus, ALPHABET is equivalent to ALPHAB. All
op codes recognized by the assembler are built-in symbols,
except for some I/O instructions. Dot (.) is a built-in
symbol with a special meaning explained in a later section.
There are also some constructs like ;A (the A-register)
which under most circumstances act exactly like symbols.
See the section on special symbols.

Every symbol may have a value. This value is a 24-bit
integer; for most symbols it will either be an address in
memory or the octal encoding of an operation code.

Examples:
ABC
AB124
12XYZ

The following are not symbols:
1358

(1)

AB*CD

Symbols may be introduced to DDT in two different ways:

They may be written out by the assembler and read
in from the binary file by DDT.

DDT Reference Manual Page 2

(2) They may be typed in and assigned values during
debugging.

It is possible for a symbol to be undefined. This may
occur if a program is loaded which references an external
symbol not defined in a previously loaded program. It may
also occur if an undefined symbol is typed in an expression.
In general, undefined symbols are legal input to DD~ except
when their values would be required immediate!¥ for the
execution of a command. Tnus, for example, the ;G (GO TO)
command would give an error if its argument is an undefined
symbol.

Undefined symbols may become defined in several ways.
Thay may be defined as external in the assembler (i.e., with
EXT or $) and read in by DDT as part of a binary program.
Alternatively, they may be defined by one of the symbol
definition commands available in DDT. When the definition
occurs, the value of the symbol will be substituted in all
the expressions in which the symbol has appeared.

If DDT types (U) after typing out the contents of a
cell in symbolic mode, it means that the cell contains an
undefined symbol. The cell is closed at once so that its
contents cannot be erroneously changed.

The only restriction on this facility is that, as for
NARP, the undefined symbol must be the only thing in the
address field of the word in which it appears. Incorrect
uses of undefined symbols will be detected by DDT and will
result in the error comment (U).

DDT keeps track of the references to undefined symbols
by building pointer chains through the address fields of the
words referring to the symbol. For each undefined symbol,
DDT will construct a different pointer chain for each 2K
page in the user's map which contains a reference to the
symbol. The pointers to the beginnings of these chains are
maintained in a 2K page acquired by DDT and not accessable
by the user. A chain pointer is stored in the right eleven
bits of the address field. Bit 10 marks the end of a chain
and bit 11 indicates whether the symbol should be patched up
on 14 bits or 24 bits when the symbol is defined.

From this description it should be obvious what will
happen if the pointer chain is destroyed. A probable
consequence is that a search down the pointer chain will not
terminate. DDT will often do such searches whenever it
pr in ts an address. If the chain it is searching has more
than 256 links, it will print the symbol followed by (U) and
continue. A chain may be destroyed by clobbering a word in

DDT Reference Manual Page 3

the chain or by removing a page containing undefined
references from the user map. A word of warning, DDT's
loader may become confused or go into a loop if a binary
program is loaded which attempts to define an undefined
symbol whose reference chains are not all in the map.
Fixing up an undefined symbol pointer chain which has been
clobbered is an exercise which we leave to the reader.

1.2 Block Structure

A limited facility called the block structure facility
is provided to simplify the referencing of local symbols
which are defined in more than one seperately loaded
program. Note that DDT's block structure has only a tenuous
connection with the block structure of ALGOL. The block
structure of a program is organized in the following manner:
every IDENT read by DDT as a part of a binary file begins a
new block. Any local symbol known to DDT has a block number
associated with it; global symbols do not have a block
number. Undefined symbols are always treated as a global.

The name of a block is the symbol in the label field of
the IDENT. If two IDENTs with the same symbol are read, the
message (ALREADY LOADED) is printed, and the local symbol
tables for the two IDENTs will be merged. Conflicting
symbol definitions will be overwritten.

If local symbols are defined in a binary program file,
with no preceeding IDENT, then DDT will assign an IDENT name
such as 03X. Global symbols must be unique within an en ti re
program and are recognized at all times. If a multiple
definition is encountered, the latest one takes precedence.
Local symbols are recognized according to the following
rules:

(1)

(2)

(3)

At any given time one block is called the
block. All local symbols associated
primary block will be recognized.

primary
with the

If a symbol is used which is neither global nor in
the primary block, the entire table is scanned for
it. If it occurs in only one block, the symbol is
recognized properly. If it occurs in more than
one block, the error message (A) is printed.

A symbol may be explicitly qualified by writing:
SYMA&SYMB. SYMA must be the name of a block.
SYMB is then referenced as though the block whose
name is SYMA were primary.

DDT Reference Manual Page 4

(4) When a cell is opened (see Section 2.1), the block
to which the symbolic part of its location belongs
becomes primary. Thus, NN&XYZ/ causes block NN to
become primary: if ABC is a unique local symbol in
block PQ, then ABC/ causes PQ to become primary.

1.3 Literals

Literals have the same format and meaning in DDT as in
the assembler, i.e., the two char act er s ' =' signal the
beginning of a literal, which is terminated by any of the
characters which ordinarily terminate an expression. In
contrast to the assembler, the expression in a DDT literal
must be defined.

The literal is looked up in the literal table. If it
is found, the address which has been assigned to it is the
value of the symbol. If it does not appear in the literal
table, it is stored at the address which is the current
value of the special symbol : F, and th is address is taken as
the value of the literal. :F is increased by 1. For
example, if the literal -1 does not already exist in the
literal table and :F is 10008, then typing LDA =-1 causes -1
to be stored at 10008, and is equivalent to LDA 10008. The
new value of :F is 10018. Exception: In patch mode (see
Section 2.10), literals are saved and not stored until the
patch is completed since otherwise they would interfere with
the patch.

When DDT types out a symbol whose value is an address
in the literal table, it will type it out in the same format
in which it would be input: that is, as = followed by the
numeric value of the literal. It should be noted that
addresses specified as literals in a binary program file
loaded by DDT will be printed as literals, however no entry
into DDT's literal table is made for these addresses.

1.4 Constants

A constant is any string of digits, possibly followed
by a B or D, in turn possibly followed by another digit.
The number represented by the string is evaluated, truncated
to 24 bits and then used just like the value of a symbol.
The radix of the numbers is normally 8 (octal), but may be
changed arbitrarily by the commands described in Section 2.4
below. If a number is terminated by a B or D, it is
interpreted as octal or decimal respectively regardless of
the current radix. A digit following a B or D is
interpreted as a power of 8 or 10 respectively by which the

DDT Reference Manual Page 5

number is to be multiplied. Thus 1750B=l75Bl=l000D=lD3.
Constants are always printed by DDT in the current radix.

1. 5 Commands

A command is an order typed to DDT which instructs it
to do something. The commands are listed and their
functions explained in Section 2 below.

1.6 Expressions

An expression is a string of numbers or symbols
connected by any of a large number of operators. These
operators have the following significance:

+

•* ,
;/
;&
;<
;=
; >
• 5l,
, 0

;+
;-.. , .
;$

addition
subtraction
(integer) multiplication
(integer) division
logical AND
less than
equal to
greater than
logical OR
X;+Y means X;*3+Y
X;-Y means X;*3-Y
remainder on (integer) division
logical exclusive OR

Expressions are evaluated strictly left to right. All
operators have the same precedence. Parantheses are not
allowed. The first symbol or number may be preceeded by a
minus sign. Blank acts like a plus (+), except that all
subsequent operands are truncated to 14 bits before being
operated on the accumulated value of the expression. This
allows one to compute a value which is loaded only into the
address field of an instruction. The value of an expression
is a 24 bit integer. An expression may be a symbol or
constant. The value of an expression after a relational
operation is either 1 or 0 if the relation is true or false
respectively.

Examples: LDA
LDA 10

LDA 10D

has the value
has the vlaue
if the radix is
has the value

7600000
7600010
octal
7600012

DDT Reference Manual

If SYM is a symbol with
SYM
SYM 10
LOA SYM

the value
has the
has the
has the

1212,
value
vlaue
value

then
1212
1222
7601212

Page 6

If this last expression were put into a cell and later
executed by the program the effect would be to load the
contents of SYM, register 1212, into the A register.

When DDT types out expressions, two mode switches
control the format of the output. Commands for setting
these modes are described in Section 2.4 below. The word
printout mode determines whether quantities will be printed
as constants or as symbolic expressions. In the latter
case, the opcode (if any) and the address will be put into
symbolic form. If the first nine bits of the value are all
zeroes or all ones, no opcode will be printed; in the latter
case a negative integer will be printed. If the opcode is
not recognizable as a symbol, it will be typed as a number
followed by 'as·.

The address printout mode controls the format in which
the address is typed. DDT types addresses when asked to
open the previous or next cell, when it reports the results
of word and address searches, and on breakpoints. In the
relative mode, addresses are typed in symbolic form, i.e.,
as the largest defined symbol smaller than the address plus
a constant if necessary. If the constant is bigger than 200
octal, or if the value of the symbol is less than or equal
to some minimum value (settable by the user, but normally
the lowest location of the program) the entire address is
typed as a constant. In absolute mode, addresses are always
typed as constants.

1.7 The Open Cell

One other major ingredient of the DDT language is the
open cell. Certain commands cause a cell to be "opened''.
This means that its contents are typed out (except in enter
mode, for which see the \ command), followed by a tab. If
the user types an expression followed by a carriage return,
it will be inserted into the cell in place of the current
contents, and then the cell will be closed. The current
location is given the symbol ".~ (dot) which is always has
as its value the address of the last cell opened, whether or
not it is still open.

Note:

DDT Reference Manual Page 7

(1) Comma and star (for indexing and indirect address)
may be used in expressions as they are used in the
assembler; e.g., LDA* 0,2 has the value 27640000.

(2) DDT will respond to any illegal input with the
character ? followed by a tab (if a cell is open)
or carriage return (otherwise) , after which it
will behave as if nothing had been typed since the
last the last tab or carriage return. The command
~?~ also erases everything typed since the last
tab or carriage return.

1.8 Memory Allocation and DDT

DDT may cause the Time-Sharing System to assign memory
for use either by DDT itself or by the user's program.
DDT's memory is used to hold the symbol tables, which starts
in page 0 and grows upward in memory. The symbol table
contracts at the end of each load of a binary file and when
symbols are killed; this contraction may cause memory to be
released.

DDT acquires program memory when it is required for
loading a binary file or when a ;U (execute) command is
given and the value of ;F is such that a new block is needed
to hold the instruction to be executed. For executing an
instruction, DD'r requires location ;F, ;F+l, ;F+2. Memory
is never grabbed for examination of a register. However,
entering information in cells which are in pages not in the
map will cause a block of memory to be assigned for that
page. If a cell is opened which is not assigned then DDT
will type a ? and a tab, but the cell will remain open.
Information may be filled into such a cell.

If an attempt to acquire or reference memory leads to a
trap, DDT types (M) and abandons whatever it is doing. This
can happen if the machine size is exceeded, or if an attempt
is made to change read-only memory.

DDT Reference Manual Page 8

2.0 DDT Commands

In the following description of DDT commands, <S> will
be used to denote an arbitrary symbol. <E> or <W> will be
used to denote an arbitrary expression which may be typed by
the user. <E> will be used when the value of this expression
is truncated to 14 bits before it is used by DDT, while <W>
will denote a full 24 bit expression. <A> will be used to
denote an optional 14 bit expression. If none is typed, the
last expression typed will usually be used; deviations from
this rule will be described under the individual commands.
<F> will denote a file name followed by a~.~ (dot}; DDT
will type a tab whenever it expects a file name.

2.1 Cell Opening Commands

<A>/ This opens the cell addressed by the value of <A>.

CR

DDT will give a tab, type an expression whose
value is equal to the contents of the register,
give another tab and await further commands. The
precise form of the expression typed is dependent
on the setting of the word and address printout
modes. If the user types in an expression, DDT
will insert this value into the cell. Typing
another command closes the cell, unless it is a
type value or symbol defintion command. If
another / is given as the next command with no
preceeding expression, the contents of the cell
addressed by the expression typed by DDT are typed
out. A further I repeats this process. Note,
however, that the original cell opened remains the
open cell; any changes made will go into that
cell. A floating point number may be inserted in
the open cell and the following cell by typig a
'%' followed by a floating point number and then
closing the cell.

Carriage Return. This command does not necessarily
have any efect. If the specified conditions are
present, however, any of the following actions may
occur:

(1} If there is an open cell, the cell is closed.

(2) If DDT is in enter mode, it leaves it.

(3) If DDT is in patch mode, the patch is
terminated (for a fuller description of this
effect, see the patch command in Section
2.10}

DDT Reference Manual Page 9

<A>]

<A> [

<A>$

<E> ,,

<E>@

<E>; ,

<E>%#

LF'

This command has the same effect as /, except that
the contents of the cell opened are always typed
in symbolic form.

This command has the same effect as /, except that
the contents of the cell opened are typed in
constant form.

This command has the same effect as /, except that
the contents of the cell opened are typed as a
signed integer.

This command acts like /, except that the cell
contents are typed in ASCII. Unprintable
characters, as in QED, are preceeded by &, e.g.,
141 (control - A) prints out as &A.

This command has the same effect as /, except that
the contents of the cell opened are printed in
formatted form. The format which is used is
determined by the values of the two special
symbols %M and %N. %M is a mask of bits to be
included in the fields. A bit turned on in %N
indicates the right-most bit of a field. The
formatting commands will act as though the
right-most bit of %N is turned on whether it is on
or not. For example, if cell 400 contains
543563218 and %N=l0101B and %M=77770777B, then we
get:

400@ 5435 3 21

Successive fields in the
following cells may be
expressions for the new field
ri j I -~ (i • e • I 3 3 3 j I 2 j I 11) •

open cell and the
changed by typing

values separated by

The contents of locations <E> and <E>+l are
treated as an SPS string pointer, and the string
is printed. Cell <E> is opened.

The contents of locations <E> and <E>+l are
treated as a floating point number which is
printed. Cell <E> is opened.

Line Feed. This command opens the cell whose
address is the current location plus one, i.e. the
cell after the one just opened. The output of DDT
on this command is carriage return, location
(format controlled by the address printout mode),
/, tab, value of the contents, tab.

DDT Reference Manual Page 10

;< > The brackets indicate a space. This is equivalent
to line feed except that nothing is printed. Its
main use is in entering programs or data, e.g.

\

1000\ l; 2; 3 (carriage return)

is equivalent to

1000\ 1 (carriage return)
1001\ 2 (carriage return)
1002\ 3 (carriage return)

This command opens the cell whose address is the
current location minus one, i.e. the previous
cell. The output is the same as for the line feed
command.

ABC/
ABC+!/
ABC+2/
ABC+!/

LDA ALPHA
STA BETA
LDB DELTA
STA GAMMA

STA GAMMA
(line feed)
(line feed)

This command opens the cell whose address is the
last 14 bits of the value of the last expression
typed. The output is same as for line feed.

This command is the same as /, except that the
contents of the cell are not typed. DDT goes into
the enter mode, in which the contents of cells
opened by line feed, ~, or (are not typed. Most
other commands cause DDT to go out of the enter
mode. In particular, carriage return has this
effect. When a cell has been opened with \, DDT
thinks that it has typed out its contents. The
type value command will, therefore, work on the
contents of the cell.

The type register special mode char act er s [,] , $,
also preserved by line feed, up arrow and (.

•• are

;\ This command supresses typeout of cell
during line feed, up arrow and (chains.
return cancels the command.

addresses
Carriage

DDT Reference Manual Page 11

2.2 Type Value Commands

= This command types the value of the last
expression typed (; Q) in constant form. It may
appear in the form <W>=, in which case the value
of <W> is typed. Otherwise, the expression
referred to is the one most currently typed,
either by DDT or by the user.

>

This command types the value of ;Q as a signed
integer.

This command types the value of ;Q in symbolic
form.

This command types the value of ;Q typed as a word
of text (see ·• command on page 9) •

This command types the value of ;Q in formatted
form. (see the <A>@ command).

Example:

LDA=
LDA 10=
LDA~

7600000~
-1=
-1#
10221043'

7600000
7600010
LDA 0
LDA 0
77777777
-1
ABC

This command types ;Q as a character address, e.g.
if the value of the symbol X is 1000, then 3002;~
yields X;+2. Also, the current location is set to
the word address of the character.

This command types the string pointed to by the
contents of the current location and the following
cell, considered as a SPS string pointer.

<E>,<E>;' This command types the string pointed to by the
pair of expressions considered as an SPS string

%#

pointer. ·

This command types the contents of the current
location and the following cell considered as a
floating point number.

<E>,<E>%# This command types the pair of expressions
considered as a floating point number.

DDT Reference Manual Page 12

2.3 Symbol Definition and Killing Commands

These commands all define the symbol as a global.

<S>: This command defines the value of the symbol <S>
to be the current location.

<W><<S>: This command defines <S> to have the value of <W>.

<W><<S>:O This command defines <S> as an opcode with value
<W>.

:K

<S>:K

<S>& :K

%K

(KILL) This command resets DDT's symbol
its initial state. DDT will type back
wait for a confirming dot. Any other
will abort the command.

table to
;'--OK·• and
character

(KILL) This command removes only the symbol <S>
from the symbol table.

(KILL) This command removes all symbols local to
to the block named <S> from the symbol table, as
well as removing the block name itself.

This command will remove all undefined symbols
from DDT's symbol table.~his implies that all
references to undefined symbols will be lost. DDT
will type '1 --0K" and expect a confirming dot.

2.4 Mode Changing Commands

..

:D

:O

<E> :R

This command is followed by a string of arbitrary
characters terminated by control-D. If a cell is
open, the string will be inserted into successive
locations packed 3 characters per word: otherwise,
characters beyond the third will be thrown away
and the result treated as a constant. For
example, if no register is open, "ABCDEcontrol-D=
yields H'J221043.

(DECIMAL) This command changes the current radix
to decimal. (see Section 1. 4).

(OCTAL) This command changes the current radix to
octal.

(RADIX) ·rhis command sets the cur rent radix to the
value of the expression, which must be greater
than or equal to 2.

DDT Reference Manual Page 13

; [

;]

. ,,
I

;$

;@

;R

;V

(CONSTANT) This command changes the word printout
mode to constant, i.e., makes /equivalent to [.

(SYMBOLIC) This command changes the word printout
mode to symbolic, i.e., makes I equivalent to].

(ASCII) This command makes / equivalent to ~

(SIGNED INTEGER) This command makes I equivalent
to $.

(FORMATTED) This command makes / equivalent to @.

(RELATIVE) This command changes the address
printout mode to relative (symbolic). This
determines the format for the output of addresses,
both in symbolic expressions and when generated by
line feed and up arrow.

(ABSOLUTE) This command changes
printout mode to absolute.

the address

;3 (3 CHARS/WORD) This sets the '' and ' commands . to
act on 8 bit characters packed 3 per word.

;4 (4 CHARS/WORD) This command sets '' and ' commands
to operate on 6 bit characters packed 4 per word.

2.5 Breakpoint Commands

There are four breakpoints in DDT. The first one is
called the special breakpoint. The remaining 3 are called
regular breakpoints. If a program attempts to execute the
instruction at an address at which a breakpoint is set,
control returns to DDT which will print a break message and
await further commands. The break occurs before the
execution of the instruction in the breakpoint location. ;L
is set to the location at which the break occured. The
break message will normally print the address of the break
followed by the contents of any of the central registers
which have changed since the last break. If it is the first
break after a ;G then all the registers will be typed.
Furthermore, if a register has not been printed in the last
ten break messages, then it will be printed anyway in the
form ;A=<expression>, instead of the normal form
;A~<expression> The contents of the break location will al~o
be typed in the break message if the special symbol %I is
set to a non-negative value. The typing of the break
address can be supressed by setting th: sp~cial symbol %P to
a non-negative value. If one instruction is executed by the

DDT Reference Manual Page 14

;N or ;S commands, then the break message will include the
address and new contents of any cell modified as a result of
executing that instruction. In addition to these
breakpoints there is the conditional breakpoint facility
(see the section on conditional breaking).

<E> ! (SET SPECIAL BREAKPOINT) This command sets the
special breakpoint to the value <E>. The previous
value of the special breakpoint will of course be
lost.

<E>; !

<E>% !

%!

• I , .

(CLEAR SPECIAL BREAKPOINT) This command clears the
special breakpoint.

(SET SPECIAL BREAKPOINT) This command sets a
regular breakpoint to the value <E>. If all the
regular breakpoints are already set then DDT will
type back ~FULL?~. If a breakpoint already exists
with that value then DDT will type a ~?~.

(CLEAR REGULAR BREAKPOINT) This command will clear
a regular breakpoint that has the value <E>. if
no such breakpoint exists, then DDT will type ~?~.

(CLEAR ALL BREAKPOINTS) This command clears all 4
breakpoints.

(LIST BREAKPOINTS) This command lists all
breakpoints, the special breakpoint first.

2.6 Conditional Breaking

Conditional breaking is a feature which allows the user
to run a program and have it break on the exact instruction
when a specified condition becomes true. Conditional
breaking is implemented by loading an interpreter at ;F when
control is transferred to the user program. Therefore, if
conditional breaking is used, approximately 200 cells
following ;F will be clobbered. Conditional break mode is
entered by setting the symbol %B to a non-negative number.
A negative value of %B returns DDT to normal break mode. To
use conditional breaking, put DDT in conditional break mode
and specify a condition to break on using the %E command.
Thereafter, any transfer of control to the user program will
cause conditional breaking to take effect. A user program
will execute about 15 times slower in conditional break
mode.

DDT Reference Manual Page 15

To specify a break condition type %E. DDT will then
type a carriage return and expect the user to type a logical
expression which obeys the following syntax. A conditional
expression is terminated with a Control-D. Control-A may be
used to delete characters typed. When the value of this
expression becomes true then the condition is satisfied and
DDT will cause the user program to break.

Syntax:

<expr> ~ any number of <term> separated by

<term> ~ any number of <primary> separated by *

<primary> ~ <operandl> <relational> <operand2>

<relatnl> ~ = or # or > or < or <= or >=

<operndl> ~ any number of <operand2> separated by <operator>

<operator>~ + or - or @ or blank

<opernd2> ~ [$] (<constant> or <symbol> or <special symbol>

<sp.symbl>~ ;A or ;B or ;X or ;L or ;E or ;O

A constant may be any legal DDT constant. A symbol may be
any defined symbol optionally preceeded by a block name and
&.

Semantics:

Expressions are compiled left to right.
of binding of operators is as follows:

The strength

<operators>,<relationals>,*,!.

@

$

blank

+

means CR

means AND

means MASK i.e. extract second operand from first
operand.

means literal as opposed to ~contents of~.

means address add, e.g. "B 3 ;• is the contents of
B+3

means add

DDT Reference Manual

means subtract

;A,;B,;X are the contents of the central registers.

;L is the program counter.

;E

;O

Examples:

is the effective
instruction.

address

is the 7-bit opcode field
instruction right justified.

A 3=;E*;0=$43!B+3=$123

of the

of the

Page 16

current

current

This expression will cause conditional breaking if the
contents of A+3 is equal to the effective address of the
current instruction at the same time that the opcode of the
current instruction is 43 or if the contents of B plus the
contents of 3 equals 123.

2.7 Program Execution Commands

<A>,<A>;G (GO TO) This command allows transfer of control to
the user program. The first argument, if given,
specifies the starting address. The second
argument, if given, specifies the number of
breakpoints the program will pass through before
the program halts. The first argument, if
missing, is assumed to be the current location.
The second argument, if missing, is assumed to be
one. If there are any undefined symbols in DDT's
symbol table, then DDT will type "--OK·• and expect
a confirming dot to be typed before it will allow
transfer of control to the user program. This is
true also of all the other program execution
commands.

<A>,<A>;P (PROCEED) This command also causes transfer of
control to the user program, but it is designed to
restart a program after a breakpoint. It is
identical to the ;G command, with the following
exceptions. The ;P command will not break on the
first instruction executed if a breakpoint is set
at that address, whereas the ;G command will
break. The arguments of the ;P command are
interpreted in the opposite order of the ;G
command. All central registers will be printed at
a break after a ;G command, while only the changed

DDT Reference Manual Page 17

central
command.

registers are printed after the ;P

<A>,<A>;V (ADVANCE) This command is identical to the ;P
command except that a break message is printed at
every breakpoint encountered during execution of
the program, whereas ;P will print a break message
only after the last breakpoint.

<A>,<A>;N (NEXT) This command causes the number of
instructions specified by the first argument to be
executed starting at the address specified by the
second argument. If the first argument is ommited
then ;L is assumed. A break message is printed at
the end of the execution.

<A>,<A>;S (STEP) This command is identical to the ;N command
except that a break message is printed after the
execution of every instruction.

<E> ;U (EXECUTE) This command causes the value of the
expression to be executed as an instruction. If
it is a branch, control goes to the location
branched to. In all other cases control remains
with DDT. A single carriage return is typed
before execution of the instruction. If the
instruction does not branch and does not skip, or
returns to the following location, a $ and another
carriage return are typed after its execution. If
the instruction does skip, two dollar signs ($$)
are typed followed by a carriage return.

DDT may be put in pop trace mode by setting the special
symbol %0 to a non-negative value. A negative value will
cause DDT to leave pop trace mode. In pop trace mode all
programmed operators together with their associated
subroutines will be treated like machine instructions for
the ;N and ; S commands, i.e., the break will not occur until
control returns to the location following the pop. Since
DDT determines when it should break by counting POPs, BRMs,
SBRMs, BRRS, and SBRRs, it can be fooled by POPs which do
sufficiently peculiar things.

DDT can be put in subroutine trace mode by setting the
special symbol %U to a non-negative value and removed from
this mode by setting %U to a negative value. In subroutine
trace mode BRMs and SBRMs together with their associated
subroutines will be treated as single instruction by the ;N
and ;S commands.

DDT Reference Manual Page 18

Attempts to proceed through certain instructions havinq
to do with forks will produce erroneous results, and
breakpoints encountered when the program is running in a
fork will not do the right thing. Attempts to proceed
through unreasonable instructions will cause the error
comment $>> to be typed by DDT. Also, when control returns
to DDT from a breakpoint or rubout, the interrupt mask for
the program is cleared.

2.8 Input/Output Commands

<A>;Y <F> DDT expects to find a binary program on the file
<F>. If the program is absolute, it is loaded in.
If it is relocatble, it is read in and relocated
at the location specified by <A>. If the
expression is omitted, relocatable loading
commences at location ;F. ;F is updated when the
file is loaded. After reading is complete, the
first location not used by the program is typed
out. Any local symbols or opcode definitions on
the binary file are ignored.

<A> ;T <F> This command is identical to ;Y except that it
also reads local symbols and opcode defintions
from the file and adds them to DDT's symbol table.
Any symbols on the file will be recognized by DDT
thereafter.

<A>%Y <F> This command is identical to the ;Y command except
that it will also read in opcode definitions and
put them in DDT's symbol table, but it will still
ignore local symbol definitions.

The following two points should be noted in connection with
;Y, %Y, or ;T commands.

(1) The use of an expression before ;T, or %Y or
;Y when the file is absolute (i.e. SAVE file)
is an error.

(2) The block read in becomes the primary block.

(3) Several files can be loaded in a row with
greater speed if a semi-colon is used for the
file name terminator instead of a dot. Using
a semi-colon causes the resorting of the DDT
symbol table to be supressed at the end of
loading.

DDT Reference Manual Page 19

;W <F>

;C <F>

Causes all global symbols with their values to be
written on the specified file, in a format which
can be read back in with ;T.

Causes all symbols to be written on the specified
file.

2.9 Search Commands

<W> ;W (WORD SEARCH) This command searches memory between
the limits ;l and ;2 for cells whose contents
match <W> when both are masked by the value of ;M.
The locations and contents of all such cells are
typed out.

<W><<W>;W Will perform the same search, and in addition

<W>;#

<E>;E

performs the following replacement:
address of a cell such that (Q) [AND]
then the masked part of lst<W> will
masked part of (Q).

if Q is the
;M=2nd<W>,

replace the

(NOT WORD SEARCH) This is the same as ;W
that all cells which do not match <W>
printed. This is useful, for example, in
and printing all non-zero cells in a given
memory.

except
will be
finding
part of

(EFFECTIVE ADDRESS SEARCH) This command searches
memory between the limits ;l and ;2 for effective
addresses equal to <E>. Indexing, if specified,
is done with the value of ;X. Indirect address
chains are followed to a depth of 64. The
addresses and contents of all words found are
typed out. When ;W or ;E is complete, is left
pointing to the last cell typed out.

2.10 Patch Commands

;) This command cause a patch to be inserted before
the instruction in the open cell. A cell must be
open for this command to be legal. DDT inserts in
this location a branch to the current value of ;F.
When the patch is done, ;F is updated. It then
gives a carriage return and a) and waits for the
user to type in the patch. Legal input consists
of a series of expressions whose values are
inserted in successive locations in mem~ry. Each
of these expressions should be terminated by a
line feed or ; (space), exactly as though the

DDT Reference Manual Page 20

; (

program were being typed in with the \ command
instead of as a patch. The ~ command may be given
in place of the line feed and has its usual
meaning, except that the contents of the previous
location are not typed. Two other commands are in
patch mode. They are:

(1) Colon, which may be used to define a symbol
with value equal to the current location.

(2) Carriage Return, which terminates the patch.
When the patch is terminated, DDT inserts in
the next available location the original
contents of the location at which the patch
was inserted. It then inserts in the
following two locations branch instructions
to the first and second locations following
the patch. This means that if the patched
instruction is a skip instruction, the
program will continue to operate correctly.
Any other command given in patch mode may
cause unpredictable errors.

This command is identical to ;) command except
that it puts the instruction being patched before
the new code inserted by the user instead of
after.

2.11 Miscellaneous Commands

;Z

%&

<s>; 1

(ZERO) <E>, <E>; Z Sets to zero all locations
between the value of the first expression and that
of the second. <E><<E>,<E>;Z sets to the value of
the first expression all locations betwen the
values of the second and third. ;Z alone releases
all memory accessible to the user's program. DDT
will type back ''--OK'' and wait for a confirming
dot. If this memory is returned, due to later
access by DDT or a program, it will be cleared to
zero.

(LIST BLOCKS) This command causes all blocks known
to DDT to be listed. If printing of symbols in
that block has been supressed, then a ;] will be
typed following the block name.

(SUPRESS) This command causes symbols in the given
block <S> to be ignored when DDT prints symbolic
addresses.

DDT Reference Manual Page 21

<S>; [

%F

%R

This command reverses the action caused by the
command.

; 1

This command allows the user to exit DDT,
returning to the executive command processor {@)
of the BCC 500.

{PRINT MAP) The current program map is printed.

<E>,<E>;R {SET MAP) The program map is set as indicated.

%A

This is equivalent to putting the expression in A
and B respectively and executing BRS 44.

This command lists all ambiguous symbols in the
DDT symbol table and lists the blocks that each
ambiguous symbol is in.

2.12 Special Symbols

DDT has built into it a number of special symbols.
These symbols can have their values set with the following
construct <E>;A where ;A is a special symbol. It is treated
like any other symbol in DDT. Whenever DDT executes any
command involving execution of instructions in the user's
program, it restores the values of all machine registers.
If _any of these values have been changed by the user, it is
the changed value that is restored.

;A

;B

;X

;L

;0

;l

;2

;Q

'I'he value of this symbol is the contents of the A
register.

Contents of the B register.

Contents of the x register.

Contents of the program counter.

Mask used by word search commands.

The value of this
address which DDT
symbolic form.

symbol +l is the smallest
will ever attempt to print in

Lower limit for searches using search commands.

Upper limit for searches

Value of the last expression typed by DDT or the
user.

DDT Reference Manual Page 22

;F

%N

%M

%V

The value of this symbol is the address of the
lowest location in core not used by the user's
program. New literals and patches are inserted
starting at this address. It is updated by
patches, literal definitions, and load commands.

The value of this symbol is the field descriptor
for type out and loading of cells in formatted
form.

The value of this symbol is the mask for type out
and loading of cells in formatted fo~m.

The value of this symbol is the opcode number
which will next be used in automatic opcode
definitions using the opcode linking feature of
the DDT loader. (see the manual on binary file
format for the DDT loader).

The remaining special symbols are used to control modes in
DDT. The specified action will occur if the symbol is set
to a non-negative value.

%B

%I

%P

%0

%0

Turn on conditional breaking

Print the instruction at ;L as part of a break
message.

Supress printing of the value of the program
counter as a part of the break message.

Supress tracing of POP subroutines.

Supress tracing of BRM and SBRM subroutines.

2.13 Panics

DDT recognizes four kinds of panic conditions:

(1) Illegal instruction panics from the user's
p~ogram.

(2) Memo:y allocation exceeded panics from the
user s program.

(3) Panics generated by typing the Control-K key.

(4) Panics generated by the execution of BRS 10
in the user's program.

DDT Reference Manual

For the first two of these conditions DDT
message, the location of the instruction at
occured, and the contents of this location.
are as follows:

(1) Illegal instruction panic I>>

(2) Memory allocation panic M>>

Paqe 23

prints out a
which the panic

The messages

{ 3) The other two types of panics cause
type a bell and carriage return. ;L
will both be equal to the location at
the panic occurred.

DDT to
and

which

If memory allocation exceeded panic is caused by a transfer
'to an illegal location, the contents of the location causing
the panic is not available and DDT, therefore, types a'?'.

Two other panic conditions are possible in DDT. -

{ 1) If the Control-K key is
intervening typing by
leaves DDT and returns
command processor. {@)

hit
the

to

twice with no
user, control
the executive

(2) If the Control-K key is hit while DDT is
executing a command, execution and typeout
are terminated and DDT types carriage return
and bell and then awaits further commands.

