XDS 940

REFERENCE MANUAL

EE 466

BCC 500 Computer

Department of Electrical Engineering
University of Hawaii

Issued September 15, 1977

Page 1

1.6 INTRODUCTION

The XDS 940 is a medium-sized, general purpose computer
accessed from terminals in a time-sharing mode. The 948 is
a good machine for a study of assembly-language programming
technigues and machine organization. It is sufficiently
large that a user does not have to confuse himself with
various tricks reguired to avoid the hardware limitations of
typical minicomputers; yet it is simple enough that the user
can write, assemble, load and run a small program without
having to learn a huge number of details. (This is not true
of the IBM 370, for example.)

The 940 is at the upper end of a family of “midi*
computers built beginning in 1961 by Scientific Data Systems
(SDS), which later became Xerox Data Systems (XDS) . The
family, not ©produced since 1968, consists of the 916, the
920, the 930, and the 9494. These machines are made of
discrete components and are thus physically large and expen-
sive compared to their capability (and with machines which
are being built today.) Several hundred were built and
marketed over a ten-vear period, however, and many are still
in use.

In terms of computing power, the machines are very
little better, if any, than present-day minicomputers. In
fact, it would be no problem to make them today as minicom-
puters and sell them at competitive prices. Where they
differ from the minis, however, 1is 1in their longer word
length (50% longer than the standard 16 bits). This shows
up not just in terms of numerical ©precision and storage
efficiency, but in certain simplicities in the instruction
set and addressing modes which result from instructions not
having to be encoded into shorter lengths.

The 940 is a time-shared version of the 930. It is
equipped with a special operating system (hardware and soft-
ware) which provides to several users simultaneously the
services of a virtual machine. A virtual machine appears to
the user to be a complete machine over which he has full
control, even though he 1is in fact time-sharing slightly
different hardware with other users. The user may load the
virtual machine, examine its state, start it, stop it, and
do any operation he could do if he had his hands on a
physical equivalent.

Page 2

The means by which the wuser communicates with the
machine and exercises his control over it is a Teletype or
similar on-line terminal. The terminal may be used for
input and output when the user’s programs are running; and
it is used for the inspection of memory locations, register
contents, etc. which on an actual machine usually involves
lights or indicators. The terminal permits the wuser to
reset or clear his (virtual) machine, start it at a certain
location, stop it, etc. Instead of pushing actual buttons
and switches, the user types special commands on his termi-
nal. The terminal may also be used to prepare input for a
program in advance of its operation, much like the use of a
keypunch when preparing program source language or data; and
it can display (perhaps selected portions of) the program’s
output after its termination. The terminal, then, 1is a
multi-use device and assumes different roles at different
times and in different contexts.

Aside from its virtues of simplicity and straightfor-
wardness, we use the 940 in this course because the BCC 540
system, as a special feature, emulates the 948 system with
reasonable efficiency. We can thus provide a number of
students the opportunity to use an on-line system simultan-
eously. This 1is advantageous to the students not only in
terms of how much work can be done but also in providing
some experience in on-line computing.

2.0 940 ORGANIZATION

From his BCC 508 terminal, the user (if he wishes) sees
a 940 system, i.e., a complete computer system consisting of
memory, processor, input/output device(s), and operating
controls and indicators. Figure 1 1is a diagram of the
machine, with emphasis on its registers and data paths.

2.1 Memory

The memory contains 16384 addressable cells 1in which
information consisting of instructions or data can Dbe
stored. (16384 is often referred to as "“16K," where 1K =
1024.) Each cell contains 24 bits -- binary zeros or ones
-- ot storage. It is up to the user to determine where 1in
the memory and in what form the information is to be stored.
There are essentially no restrictions as to how the memory
may be used (although there are some conventions).

Page 3

] A] I
A
. [A +
arithmetic/logic X
unit it
\ mkke%%br
I \
I P
0 .|
i Y
M S

FIGURE 1. 948 Processor.

Figure 2 gives the format of and bit naming conventions for
a memory cell in the machine. Each location is identified
by a unique address, which 1is a number ranging from #
through 16383. As seen in the figure, the bits in a cell

are numbered from the most significant to the 1least begin-
ning with @. '

g12 345 678 91011121314151617181920 212223

FIGURE 2. Memory Cell Format.

Page 4

Since one octal digit is readily convertible into three
bits, octal notation is used to represent the contents of a
cell. Where it might otherwise be ambiguous we use the
convention of identifying octal numbers by terminating them
with the letter “B.“ A cell whose contents are as follow:

011j000j101j110{011j110f111j010

is said to contain 30563672B.

The memory permits both storing into and retrieving
information from any of its cells. Storing involves copying
a new value into the cell; retrieving copies the current
contents out without modifying the contents (i.e., non-de-
structively). Either of these operations is called a memory
reference or a memory access. In undergoing such a refer-
ence the memory must be provided with an address and with a
store or a fetch command, as shown in Figure 3. The memory
1s designed to operate rapidly, at speeds matching those of
the processor. The operating speed, or memory cycle time,
is independent of the address; and so the memory 1s termed
random access memory (RAM). The (strictly hardware) memory
commands are prepared and issued by the 1in its role of
executing the user’s program. The wuser, then, is never
explicitly concerned with operating the memory, but it 1is
important for each wuser at the very outset to correctly
visualize the memory, the appearance of its contents, and
the way it works. _

Page 5

memory - data memory address conFrols
register register fetch store
M S
16K
Storage
Array
address
election &
/ decoding
. /
. /
jatl}————F
2 "EL~— selected address

FIGURE 3. Detail of Memory Organization.

2.2 Processor

The processor is the entity which performs the oper-
ations required to execute the program. It fetches the
machine-language program steps (called operations or in-
structions) from memory and performs the indicated actions,
which 1include further fetching or the storing of operands.
The processor is thus divided 1into two parts called the
control section and the arithmetic section. The control
section iteratively:

1) fetches the next instruction,

2) interprets and executes it, (hands over control
to the arithmetic section)

3) determines the location of the next instruc-
tion.

The arithmetic section:

1) determines the address of any operand(s),
2) performs an operation on it (them).

Page 6

From the user’s point of view the control section per-
forms its work with no specific attention other than an
awareness on the user’s part from time to time of the con-
tents of a register called the program register or P. (A
register is identical in structure to the memory cell, ex-
cept that it is a constituent of the processor and plays a
specific role in the ©processor’s operation. Since the
register 1is dedicated to certain functions it does not have
to be addressed in the since of the many “registers" of the
memory.) P 1is used to hold the address of the instruction
currently being executed; at the end of the current instruc-
tion P will be modified to contain the address of the next
instruction. P may be thought of as a roving pointer which
ranges over the program as it executes and shows at any
point of interruption the instruction address to be next
executed. P thus provides the address required by the con-

trol section when it goes to the memory to fetch an instruc-
tion.

94¢ instructions each occupy one memory cell and are
connected together 1in sequence by the obvious expedient of
placing sequences of instructions into seauences of <cells,
i.e., <cells with numerically increasing addresses. Since P
most often increments in content value as *the program runs,
it is frequently referred to as the “P counter.” (This
counting action may be overridden by the use of branch or
control transfer instructions which serve to change the
contents of P altogether). As instructions can be fetched
only from the 16K memory, P is only a l4-bit register. If
the machine should attempt to fetch an instruction located
in the next cell from 16383, P will overflow and the fetch
will be made from location # instead.

2.3 Instruction Format

The format of an -instruction 1is shown below. Each
instruction is divided into ©portions called fields which
indicate various aspects of the instruction.

e P Trr
S |X{P kop c!ode >4 T i~ adc?.re?s§ ffileld
¥ i

g123 9 10 23

Y

The fields are:

- Bit @: System Call.

If Bit @ = 1 and Bit 2 = 1, the instruction
is a system call, i.e., a type of instruc-
tion which causes a branch into a specific
entry point in the operating system (see
Section 2.9). Input/output, for example, is
performed by means of system calls. If Bit
2 = @, the Bit @ field 1is meaningless; it
may have either value.

Bit 1: 1Index Designator.

If Bit 1 = 1, the address calculation known
as indexing 1is to be done. Indexing is
described later. It is applicable only to
certain instructions.

Bit 2: Programmed Operator Designator.

If Bit # = 0 and Bit 2 = 1, the 1nstruction
is of a special type known as a programmed

operator. This is described in Section 2.3.

Bits 3 - 8: Operation Code.

This field holds a six-bit number designat-
ing one of 64 possible instructions. The
949 does not use all of these combinations.
A few are thus termed illegal instructions.
The field is also used 1n conjunction with
programmed operators to designate which one
of 64 possible operators is being invoked.

Bit 9: Indirect Address Designator.

If Bit 9 = 1, a different mode of addressing
called indirect addressing, or indirection,
is invoked.

Bits 10 - 23: Operand Field.

This field contains 14 bits and, like the P
counter, is capable of naming any one of the
16K memory locations. The field 1is most
frequently used to refer to the address of
an operand in memory. Some instructions,
however, use it to hold the operand itself;
and some do not use it at all.

Page

7

Page 8

2.4 Processor Registers

The arithmetic section of the processor contains three
registers labeled A, B, and X. These registers play unigue
roles in the processor and are addressed implicitly 1in the
instructions. The wuser must maintain awareness of their
contents, however, since it is he who manages the wuse of
these registers within the program.

A is called the accumulator. It is used by almost all
the arithmetic and logical instructions and is central to
the operation of any program. B is the auxiliary accumula-
325' used with A in a few arithmetic instructions and 1in
shifting. The X register is called the index register and
is used to hold a quantity--termed the index--for offsetting
the operand address. Although the indexing operation is an
address calculation--a <calculation on a 1l4-bit quantity--X
also contains 24 bits.

2.5 Overflow Indicator

The overflow indicator in the computer ©permits the
ready detection and signaling of overflow conditions which
might otherwise go undetected or require additional software
overhead to detect during arithmetic operations in the exe-
cution of a program. The overflow indicator is set to 1
(turned on) if any of the following occurs:

1. A sum or difference resulting from an addition
or subtraction cannot be contained within
the A register.

2. Multiplication of 40000@00B (also written 4B7)
by itself. (The A and B registers cannot
contain this product.)

3. A division with the absolute wvalue of the
numerator equal to or greater than the abso-
lute value off the denominator. (The A
register cannot contain this quotient.)

4. An arithmetic left shift changes the value of
the bit in the sign position of the A regis-
ter.

5. Bit 14 of the index register is not equal to
Bit 15 of the index register when the in-
struction RECORD EXPONENT OVERFLOW (ROV) is
executed.

Page 9

The 940 instruction set «contains instructions to reset,
test, or test and reset the state of the overflow indicator
(see Section 3, "Overflow Instructions®).

2.6 Data Formats

The 940 has various instructions which are designed to
work on data assumed to be in different formats as follow:

2.6.1 Integers

Integers are represented as 2%24°s complement numbers
having the format:

14+

Bit @ indicates the sign of the number, negative numbers
having a 1 bit and positive numbers having a @ bit in this
position. The assumed binary point is to the right of Bit
23, the least significant bit. In this form the range of
representation is from -2%23, or -8,388,608, to +2723-1, or
8,388,607. All of the arithmetic instructions except multi-

ply (MUL) and divide (DIV) can be used on integer quanti-
ties.

2.6.2 Fixed-point Fractions

The arithmetic instructions are designed ©primarily to
operate on fixed-point fractions haveing the following ap-
pearance:

H

Page 140

The assumed binary point is between Bits # and 1 at the more
significant end. Negative numbers are handled as comple-
ments with respect to 2 (two’'s complements). The range of
representation is from -1.8 to +1-27(-23). These numbers
have the equivalent of more than 6 decimal digits of ac-
curacy. Fixed-point scaling (a forgotten programming art)
is used in working with such numbers during computation.

2.6.3 Extended-precision Fixed-point Numbers

Several instructions greatly facilitate the use of
multiple precision data. None, however, operate on such
data directly. A double-precision fraction, for example,
would look like:

In memory such a datum would be stored in two consecutive
memory locations.

2.6.4 Floating-point (Real) Numbers

While not having true floating-point instructions, the
948 has several (rather odd) instructions designed to
greatly reduce the software overhead of subroutines to per-
form calculations on reals. These instructions assume the
following real-number format:

l mantissa ‘ , . | exponent

I;l +

7T 23 7 14135 23
] 4@)

The mantissa is a 39-bit, two’'s complement, normalized
fixed-point fraction (giving about 11 decimal digits of
accuracy). The exponent is a 9-bit, 512 °s complement inte-
ger, permitting an exponent range of 21-256 to 2t255, or
about 10%-77. 1In memory, the real number is stored in two
consecutive memory locations and is addressed by the former
(i.e., smaller) address. The virtual 940 (the basic in-

Page 11

struction set augmented by system calls -- see Section 2.9)
does have arithmetic "instructions” which deal directly with
reals.

2.6.5 Character Strings

The virtual machine adds other capabilities not found
in the hardware instruction set. An important one is the
ability to fetch and store individual 8-bit bytes from mem-
ory, according to the following format:

Q|3

S H| s

S | P H

This ability makes the machine well suited to deal with
character strings -- variable 1length sequences of bytes.
For this purpose it is imagined that all of memory can be
byte addressed, as well as word addressed. Since there are
three bytes/word, the byte address is roughly three times in
value the address of the word in which it is stored. The
precise correspondence is

word addr = byte addr / 3, ©, 1, or 2 remaining)

and the byte position within the word is

") . 1 © 2

Byte memory thus looks like the following:

Word @: Byte # 1 2

1: 3 4 5

2: 6 8

3: 9 19 11

4: 12 13 14
,_,/f-—"‘“——‘”"“'“\v-,~,\'_\4

Page 12

2.7 Address Modification Rules

Most machines provide some means for modifying at exe-
cution time the effective address of an instruction from
that which it actually contains. “This is done a) to reduce
the run-time overhead of programs dealing with simple data
structures and/or b) to avoid the program’s having to mod-
ify itself. The 948 provides 1indexing and indirection
(indirect, or deferred, addressing) for these purposes. The
two features may be used Jjointly or singly in the same
instruction.

2.7.1 Indexing

The machine contains an index register (X register) for
address modification, the wuse of which does not increase
execution time. If Bit 1 in an instruction which addresses
memory (some don't) is 1, the 940 adds Bits 10-23 of the X
register to the address field of the instruction to produce
a different effective address (the address actually refer-
enced). The addition 1s done strictly modulo 2714, com-
pletely ignoring any overflows which may occur. If Bit 1 is
a zero the X register is not added; the effective address is
merely the address found in the instruction.

The instruction set provides instructions for modifying
and testing the X register.

2.7.2 1Indirection

When Bit 9 of an instruction (which permits it) is 1,
indirection is invoked. The machine fetches the contents of
the address found in the instruction (or the address offset
by Bits 10-23 of the X register if the instruction word’s
Bit 1 = 1) and begins the entire address modification cycle
again using Bits 1 and 9 of the newly-fetched location as a
guide to further action. This process can repeat many
times, depending on the contents of memory.

2.7.3 Simultaneous Indexing and Indirection

It is correct to say that for each instruction executed
an effective address is always calculated, the results de-
pending on the X and I bits according to the following
algorithm executed by the hardware:

In the following, P is the 14-bit program register, S
the 1l4-bit memory address register, M the 24-bit memory data
register, 1 the 24-bit instruction register, O the 6-bit
operation code register, and X the 24-bit index register.

Page 13

The algorithm is expressed in terms of an informal program-
ming language.

* 9490 EFFECTIVE ADDRESS CALCULATION:
* FIRST WE HAVE TO FETCH THE INSTRUCTION.
START: S-P & FETCH;

* AT THE END OF THE MEMORY CYCLE THE FETCHED DATA IS IN M.

O«M(3,8); /*CAPTURE THE OP CODE BITS*/
FOREVER DO; :
I+M; /*ADDRESS CALC BEGINS HERE*/

I« (I+X)MOD 2%14 IF I(1)=1;

GOTO DONE IF I(9)=0; :

S<I(10,23) & FETCH; /*DO INDIRECT STEP*
ENDFOR;

DONE: Q-I(10,23); /*Q IS THE EFFECTIVE ADDR*/

(The reader will note that this algorithm accurately des-
cribes the behavior of the machine for all four combinations
of the X and I bits.)

2.8 Programmed Operators

‘Most arithmetic machine instructions require in some
way three addresses: those of two operands and that of the
result. The 940, like most one-address machines, addresses
the A register by implication for the first operand and for
the result. 1Its instructions, then, explicitly address only
the second operand.

It is not infrequent that a similar situation develops
when a programmer is designing a subroutine: the subroutine
is to perform some operation on two 24-bit quantities and
return a single result. The problem is how to convey to the
subroutine the two arguments and receive the result. The
obvious choice for a machine of this type is to use A for
the first operand and for the result. But the address field
of the subroutine call instruction 1is occupied with the
address of the subroutine, forcing some other <choice (such
as the use of B, perhaps). This is not really bad, but it
makes the use of the subroutine a little awkward, especially
if we would like to apply address modification to the second
operand.

Page 14

The 940 Programmed Operator (POP) feature permits a
programmer toO pack: into a single instruction both which
subroutine is to be entered and a 14-bit address of an
operand. The subroutine can with great efficiency and ease
retrieve this address and apply the same address modifica-
tion rules as the bare hardware uses. This makes the POP
subroutine look for all subsequent programming purposes very
much like a machine instruction.

The basis of the POP is as follows: An instruction 1is
either a POP, or it 1is not. Therefore only one bit is
required in the instruction word to specify whether the
feature 1is to be used. Bit 2 = 1 is used for this purpose.
The remaining 6 bits of the operation code field are used to
specify the subroutine entry point. 6 bits cannot, of
course, directly point to an arbitrary l4-bit address. But
the field can direct the machine to an arbitrary location
through a 64-word linkage table.

When the 940 fetches a new instruction and detects a 1
in Bit 2 of that instruction (and a @ in Bit @), it does not
interpret Bits 3-8 as an opcode. Instead it:

1. Stores current value of overflow indicator in
Bit 0 of memory location 4.

2. Resets the overflow indicator.

3. Stores zeros in Bits 1-8 of memory location @
and a 1 in Bit 9.

4., Stores current contents of P register into
Bits 10-23 of memory location #.

5. Loads Bits 2-8 of the instruction word into P
register. ‘

The machine does not apply the address modification rules to
a POP, nor does it refer to Bits 10-23 of the POP instruc-
tion.

The effect of the steps just outlined 1is to store a
normal (except that Bit 9 is always set) subroutine return
link (see BRM instruction in Section 3) in memory location @
and to transfer control to a memory address in the range
100B - 177B. There it is expected that the programmer will
have placed an unconditional control transfer to the actual
subroutine entry point. A given program may include up to
64 (160B) such subroutines.

Page 15

The subroutine can access the operand specified back in
the POP instruction, along with any address modification
specified in the POP, merely by referring to memory location
@ indirectly. Because of Bit Y's previously having been
set, the indirect reference is propagated one more level and
the effective address is then formed as if the pPOP had been
a machine instruction. This means that any POP can use
indexing and/or indirection for any meaningful purposes.

2.9 System Calls

An operating system such as that required in
time-sharing cannot ©permit the user to execute every in-
struction known to the hardware. Some instructions, such as
I/0 instructions for example, would bring the (independent)
users into serious conflict with each other and with the
system. Instead the system must perform the I/O on the
user ‘s behalf with due regard for checking his authorization
for such 1I1I/0, for scheduling considerations, device allo-
cation, etc. The user communicates his wishes to the system
(obtains/gives data from/to the system in the case of I/O)
by means of system calls, transfers of control through care-
fully protected entry points of the system software.

The system software is placed in a different area of
memory from that addressable by the user. This is made
possible by the 948 virtual memory features, not discussed

here. Since the user cannot address this memory, there is
no way he can fetch improper information (such as someone
else’s password) or store data into it, thereby possibly

destroying or altering the system. All he can do 1is enter
it, and then only at known locations with valid parameters.

The POP mechanism is ideal for this purpose since it
provides for protected entry (e.g., only through the POP
transfer vector, or linkage table) and makes parameter re-
trieval so natural. If the 940 detects a 1 in Bit 2 of an
instruction word and also sees a 1 in Bit @, then before
proceeding to perform the steps detailed in Section 2.8
above it first shifts memory addressing to include the sys-
tem code. When the 1link return word is saved in memory
location @, it is placed in the system’s 1location @; and
when the branch is made to the POP transfer vector in 1068 -
177B, it is to the system’s transfer vector in the system's
19eB - 177B. POPs with Bit ©® set to 1 thus all branch to
memory invisible to the user and are termed SYSPOPs.

Page 16

Because of their great resemblance to machine instruc-
tions (now not even requiring the loading of a subroutine
into visible memory and the placing of the <correct branch
into the visible transfer vector), SYSPOPs are indis-
tinguishable from machine instructions, except that they may
take a little longer to execute. In effect there are 64 new
“instructions®” now available to a user.

Through this means all of the instructions denied a
user because their execution might bring him in conflict
with someone else (the priviledged instructions) have been
replaced. In addition, a great number of subroutines which
might be called frequently by a typical programmer have been
installed 1in the system and are immediately available via
SYSPOPs. This reduces considerably the necessity for a user
to have to retrieve a simple library subroutine and install
it in his program. It is already there (in system space):
all he has to do is call it.

. Of the various system calls, many fall into the cate-
gory ideally suited to the POP: a single parameter (and
possibly the A register) is involved. Accordingly such
SYSPOPs 1look 1like normal machine instructions, and each is
assigned its own position in the transfer vector and has its
own mnemonic code for use with assembly language. Others,
however, either take no parameter or take several. These
cases all use the same SYSPOP code, BRS (branch to system);
and use the address field to further specify which action to
take. Hence it is possible to have many more than 64 system
calls.

3. MACHIRE INSTRUCTIONS

This section contains a description of SDS 940 instructions,
grouped by functional category. With the description of
each instruction is a diagram representing the format of the
instruction. Preceding this diagram is the assembler mne-
monic code that identifies the instruction and the name of
the instruction,

Within the instruction diagram, the following conventions
are used.

1. The letter "X" in bit position 1 indicates that the in-
struction invokes indexing if bit position 1 contains a

1 (indexing adds no additional time to instruction exe-
cution). If the diagram contains a O in bit position 1,
indexing does not apply to the instruction and an un-

- predictable operation occurs if indexing is attempted.

2., Bit positions 3-8 contain a 2-digit octal number that
is the operation code of the instruction.

3. The letter "I" in bit position 9 indicates that the in-
struction invokes indirect addressing if bit position 9
contains a 1 (indirect addressing adds 1 memory cycle
for each level). If the diagram contains a 0 in bit po-
sition 9, indirect addressing does not apply to the
instruction and an unpredictable operation occurs if
indirect addressing is attempted.

Following the description of the instruction is a symbolic
list of all registers, indicators, and memory locations that
can be affected by the instruction. The following symbols
are used:

A Aregister

B B register

AB Combined A and B registers
X Index register

P P (program counter) register
Of Overflow indicator

EL Effective location

Parentheses are used to denote "contents of'. For example,
"(A)" denotes "contents of the A register". The contents of
registers and the addresses and contents of memory locations
are expressed, in this manual, as octal numbers followed by
the letter "B". All numbers(except in instruction diagrams)
not followed by the letter "B" are decimal base.

Subscripted numbers identify inclusive bit positions. For
example, "(A)g_11" indicates "the contents of bit positions
0 through 11 of the A register",

Page

LOAD/STORE INSTRUCTIONS

LDA LOAD A

17

0}x|o 76

1

Reference address

0123 ’ 8

910

LI]

LDA loads the effective word into the A register.

Affected: (A)

I
L

23

Timing: 2

STA STORE A

Oixlo 35 I Reference address

0123 890t f f 2
STA stores the contents of the Aregister in the effective lo-
cation.
Affected: (EL) Timing: 3
LDB LOAD B

Oixlo 75 I Reference address

0123 8910 B t T

LDB loads the effective word into the B register.

Affected: (B)

Timing: 2

STB STORE B
Ojlx|o 36 I Reference address

Jd 1 — L. L
0123 8910 N N 23

STB stores the contents of the B register in the effective lo-

cation.
Affected: (EL)

LDX.

LOAD INDEX

Timing: 3

Oixlo 71

I

Reference addres:

i

H

0123 ' 8

o

9210

1 T

i
¥

23

LDX loads the effective word into the index register.

Affected: (X)

STX

STORE INDEX

Timing: 2

0l xlo 37

Reference address
i

Iy

01223 T8

L]

910

Al L]

23

STX stores the entire contents of the index register in the

effective location.

Affected: (EL)

Timing: 3

EAX COPY EFFECTIVE ADDRESS INTO INDEX

Reference address

0l xlo 77 1
5123 850 y t %

EAX copies the effective vir-
tual address into bit positions 10-23 of the index register.
The ten most significant bits of the index register (0-9) are
unaffected in the normal and user modes.

The process of computing an effective address for this in-
struction operates as in a LOAD A instruction, except that
instead of obtaining the contents of the actual location, the
effective virtual address is used as the operand. For exam-
ple, if execution of this instruction occurs with a zero
indirect address bit and a zero in the index field, then the
actual bit configuration in the address field of EAX is
copied into bit positions 10-23 of the index register.

Affected:

(x)0,10-23 Timing: 2
XMA EXCHANGE MEMORY AND A
“10]x|o 6'2 1 . Relierence ?ddress
0123 8910 ' ' T23

XMA loads the effective word into the A register and, si-
multaneously, stores the contents of the A register in the
effective location,

Affected: (A), (EL) Timing: 3

ARITHMETIC INSTRUCTIONS

ADD ADD
Ojxio 5'5 ! Reference address)
0123 ' 8910 ° ' ' o230

ADD algebraically adds the effective word to the contents »

of the A register and loads the sum into the A register.

After execution of ADD, bit position 0 of the index (X) reg~
ister contains the carry from bit position 0 of the 24-bit
adder. Therefore, the programmer should be careful when
attempting to hold a full word quantity in X while perform-
ing an ADD, '

If both operands have the same sign but the sign of the sum
is different, overflow has occurred, in whichcase the com-
puter sets the overflow indicator; otherwise, the overflow
indicator is unaffected.

Affected: (A), (X)o, Of Timing: 2

-Affected: (A), (X)o, Of

Pa 1
ADC ADD WITH CARRY ge 18

”

Oixjo 57 I Reference address
0123 8910 | ' ' T 23

ADD WITH CARRY is used to perform multiprecision addition.
Using the instruction ADD, the program addsthe 24 low-order
bits of the numbers (ADD automatically retains the carry in
the sign position of the X register). Then, the program adds
the next 24 bits of the numbers, using ADC, which also adds
the carry bit (previously generated) into the low-order posi-
tion of the adder. The program then continues with as many
ADC instructions as ore necessary to add the numbers.

After execution of ADC, bit position O of the index (X) reg-
ister contains the carry from bit position Oof the 24-bit adder.
Therefore, the programmer should be careful when attempting

to hold a full word quantity in X while performing an ADD
WITH CARRY.

If both operands have the same sign but the sign of the sum
is different, an overflow has occurred, in which case, the
computer sets the overflow indicator to 1; otherwise, the
computer resets the overflow indicator to 0,

Timing: 2
Example:

Assume the Aand B registers contain a double-precision num-
ber to which the double-precision number in locations

M (15034166B) and N (12300000B) is to be added. The less
significant halves of the numbers are in the B register and in

location N,

The program is:

Instruction (ﬁ____,B) (X)o
(Prior to execution) ~ 20314624, 715104268 -
XABY . 71510426,203146248 -
ADD N 04010426, 203146248 1
XAB 20314624, 040104268 1
ADC M 35351013, 040104268 O

ADM ADD A TO MEMORY

Reference address

Olxlo 63 I
01 2'3 ' 8910 ° ' ! 23

ADM adds the contents of the A register to the effective word
and stores the result in the effective location,

If both operands have the same sign but the signofthe result
is opposite, an overflow has occurred, in which case the
computer sets the overflow indicator to 1; otherwise, the
overflow indicator is unaffected.

Affected: (EL), Of Timing: 3

'XAB is the mnemonic for the instruction EXCHANGE A

AND B (see "Register Change Instructions"),

MIN MEMORY INCREMENT

O}x|o 61 I Reference address

i L 1] Iy
v

0123 8910 ° ’ ’) 23

MIN adds 1 to the value of the effective word and stores
" the resulting sum in the effective location.

Overflow occurs with this instruction if and only if the ef-
fective word is 377777778 before execution, in which case
400000008 is the result in the effective location and the
overflow indicator is set to 1. If no overflow occurs, the

overflow indicator is unaffected.
Affected: (EL), Of Timing: 3

suB SUBTRACT

0lx|o 54 1 Reference address

0123 ! 8910 ! ' T23

SUBTRACT inverts (forms the one's complement of) the ef-
~fective word, adds the inverted word plus 1 to the contents
of the A register, and loads the result into the A register,

After execution of SUB, bit position 0 of the index (X) reg-
ister contains the carry from bit position 0 of the 24-bit
adder. Therefore, the programmer should be careful when
attempting to hold a full word quantity in X while perform-
ing a subtraction,

If the sign of the value in A is equal to the sign of the in-
verted word but the sign of the result is different, overflow
has occurred, in which case, the computer sets the over-
flow indicator to 1; otherwise, the overflow indicator is un-
affected.

Affected: (A), (X)o, Of Timing: 2

suc SUBTRACT WITH CARRY

[0 X0 56 11 Reference address
o123 8910 ') 23

SUBTRACT WITH CARRY is used to perform multiple-precision
subtractions. The program uses the instruction SUBTRACT to
subtract the low-order 24 bits of the numbers first (SUB auto-
matically retainsthe carry inthe sign position ofthe X reg-
ister). The program then subtracts the next 24 bits of the
numbers, using SUC, which also adds the carry bit (previ-
ously generated in the sign position of the X register) into
the low-order bit position of the adder. The program then
continues withas many SUC instructions as are necessary to
subtract the numbers.

After execution of SUC, bit position 0 of the index (X) reg-

ister contains the carry frombit position 0 of the 24-bit ad-
der. Therefore, the programmer should be careful when

attempting to hold o full word quantity in X while perform-
ing a SUBTRACT WITH CARRY,

If the sign of the value in A is equal to the sign of the in-
verted word but the sign of the result in A is opposite, over=
flow has occurred, in which case the computer sets the

Page 19

overflow indicator to 1; otherwise, the computer resets the
overflow indicator to 0.

Affected: (A), (X)g, Of Timing: 2

Example:

Assume that registers A and B and memory location M contain
o triple-precision number from which the triple-precision num-
ber in locations L, L+1, and L+2 is subtracted.

(A, B, M)

361420708, 315670008, 100000018

(L, L+1, L+2)
142362138, 461200008, 100000008

The sign of one triple-precision number is in Ag, while its
71 binary digits are in Aj_23, Bp_23, and Mg_o3. Thesign
of the other number is in Ly, and its 71 digits are in L1_23,
L+lg.23, ond L+20-23.

Execution:
Instruction (A, B) after execution (X)o
XMA M 10000001, 315670008 -
SUB L+2 00000001, 315670008 0
XMA M 36142070, 315¢70008 0
XAB 31567000, 361420708 0
SUC L+1 63447000, 361420708 1)
XAB 36142070, 634470008 - 1
SUC L 21704654, 634470008 0
Answer:

21703654, 63447000, 000000018

MUL MULTIPLY

[0 X|o 64 I Reference address

i i L i
T

0123 ' 89]0:) ' 23

MULTIPLY multiplies the contents of the A register by the
effective word and loads the fraction product intothe A and
B registers, with the more significant portion in A, The orig-
inal contents of Bdo not affect the operation of the MULTIPLY
instruction and are destroyed. The sign of the product is in
Ag; thebitinBg is part of the product, not trected as a sign
bit. Since the product contains at most 46 significant bits,
the content of By3 is zero.

If the multiplier and multiplicand are both considered integers
(i. e., with abinary point to the right of bit position 23), the
binary point of the product is tothe rightof bit position 22
of the B register; thus, the entire result must be shifted 1 bit
position to the right to obtain the correct integer product.

If the multiplier and multiplicand both have the value
400000008, overflow occursand the computer sets the over-
flow indicator to 1; otherwise, the overflow indicator is not
affected.

Affected: (A),(B), Of Timing: 4

Example, multiplication of 3 by 3:

" Before exectuion After execution

(A,B) = 00000003, xxxxxxxxB 00000000, 000000228
EW = 000000038 000000038
Note that

00000000, 000000118 scaled at 47
is equal to

00000000, 00000022B scaled at 46

DIv DIVIDE
O|x|o 65 1 Reference address

| L 1 s 1
‘0123 8 910 23

DIVIDE divides the contents of the Aand Bregisters, treated
as a double-precision number, by the effective word, loads
the fractional quotient into the A register, and loads the
" fractional remainder into the B register.

During execution of the DIV instruction, the contents of the
AandB registers (dividend) taken asa double-precision num-
ber are divided by the single-precision contents of the effec-
tive location (divisor). If the dividend is a single-precision
number, the program should clear the B register prior to ex=
ecuting DIV, or erroneous results may occur. Although a
double-tength dividend is used, DIV is a single-precision
operation; it should not be confused with a double-precision
divide operation that uses a double-length divisor and pro-
duces a double-length quotient,

After execution of DIV, the single-precision quotient re-
places the contents of the A register, and the remaining
portion of the dividend that has not been divided (undivided
remainder) replaces the contents of the B register. The quo-
tient is signed in accordance with algebraic convention,
that is, positive if dividend and divisor signs are alike, but
negative otherwise. However, DIV generates only 23 mag-
nitude bits and, if the magnitude of the quotient is so small
as to require more than 23 bits to resolve, DIV may produce
a zero quotient regardless of the required sign; but the re-
mainder reflects the undivided portion of the original divi-
dend. The binary scaling of the quotient is equal to the
dividend scale factor minus the divisor scale factor,

The undivided remainder replaces the contents of the Breg-
ister and has the same sign as the original dividend. It is
scaled, in B, at dividend scaling minus 23.

. (A, B) /. ..
No overflow occurs if -1 < —E-W-d (if the quotient is
greater than or equal to minus one but strictly less than plus
one). If the quotient exceeds these boundaries, overflow
occurs and the computer sets the overflow indicator to 1. In
this latter case, the results are not orithmetically correct.

Affected: (A,B), Of Timing: 10

Page 20

Example 1:

Before execution " After execution

(A,B) = 00000000, 000000168 00000002, 000000018
EW = 000000038 000000038
Of = x x
Example 2:
(A,B) = 37777777,00000002B 40000000, 000000018
EW = 444333438 444333438
Of = x 1
| LOGICAL INSTRUCTIONS
ETR EXTRACT
Olxjo 14 I Reference address
5123 T 890" * ’ 73

ETR performs a logical AND between corresponding bits of
the A register and the effective word and loads the result in-
to A, This instruction performs the operation (bit by corres-
ponding bit) according to the following table:

A; Ew; Result in A;
0 0 0
0 1 0
1 0 0
1 1 1

Affected: (A) Timing: 2

Example:
Before execution After execution
(A) = 642315678 002314008
EW = 007776008 007776008
MRG MERGE
oixjo 16 1 Reference oddress
0123 ’ 8'910 ' ’ ' ! 23

MRG performs a logical inclusive OR between corresponding
bits of the A register and the effective word and loads the
result into A, This instruction performs the operation (bit by
corresponding bit) according to the following table:

._A_; .Eﬂ.l Result in Ai
0 0 0
0 1 1
1 0 1
1 1 1

Affected: (A) Timing: 2

Example:

, Before execution After execution
(A) = 064452548 067457568
EW = 023407128 023407128

EOR EXCLUSIVE OR

Olx|o 17 I Reference address
0123 8910 ; ' T 23

EOR performs a logical exclusive OR between corresponding

bits of the A register and the effective word and loads the

result into A, This instruction performs the operation (bit by

corresponding bit) according to the following table:

A; EW; Result in A;

0 0 0

0 1 i

1 0 1

1 1 0
Affected: (A) Timing: 2
Example:

Before execution

341650318
70077021B

(A)
EW

nn

After execution

441120108
700770218

The proper memory word configuration logically inverts se-
lected bit positions of the A register. If the effective word
is 777777778, a one's complement of A results.

REGISTER CHANGE INSTRUCTIONS

The facility to operate on and exchange data between the
A, B, and index registers is available within the set of
micro~-instructions in the register change group.

All instructions in the group use the same operation code,
46B. Bit positions 1 and 14 through 23 of the address field
specify the function to be performed by each micro-instruction.
The programmer may specify combinations of address bits to
perform simultaneous operations.

If the selected bits specify that the computer copy two reg-

isters into a third during one operation, a merge of the for- .

mer two registers into the latter results. If the selected
control bits specify that the computer copy into a register
and clear that same register, the clear operation has no ef-
fect. The function of each address bit is:

Bit Function

1 Clear X
14 - Copy -(A) into A
15 Copy (A) into X
16 Copy (X) into A
17 Bits 15-23 only'
18 Copy (X) into B
19 Copy (B) into X
20 Copy (B) into A
21 Copy (A) into B
22 Cleor B :
23 Clear A

'See STORE EXPONENT, LOAD EXPONENT, and EX-
CHANGE EXPONENTS

© Affected: (X)

Page 21

Indirect addressing and indexing do not apply to these in-
structions, :

These instructions require one machine cycle regardless of
the number of functions performed. As an aid to the pro-
grammer, the most useful combinations have mnemonic des-
ignations assigned to them that are recognized by standard
SDS 940 programming systems.

CLA CLEAR A

0 46 00001
i ' 3

0 23 K 8'9 ' 23

-

CLA clears the contents of the A register to zero.

Affected: (A) Timing: 1
| CLB CLEAR B
0‘ 46 00002
0 23 : 8 9 ; { ! = 23

CLB clears the contents of the B register to zero.
Affected: (B) Timing: 1

ClAB CLEAR AB

0 46 00003

1 l 1 i —
| T T T

o 23 89 23
CLAB clears the contents of boththe Aand Bregisters to zero.

Affected: (A), (B) Timing: 1

CLX CLEAR INDEX

2 46 00000
0 23 '

8'9 ' ’ N 23

CLX clears the contents of the index (X) register to zero.
Timing: 1

CLEAR CLEAR A, B, AND X

2 4'6 , 00003

T T T T T

0 23 89 23

CLEAR clears the contents of the A, B, and index (X) regis-
ters to zero,

Affected: (A), (B), (X) Timing: 1

CAB COPY AINTO B

0 46 00004
3 3 i
¥

0 23 ' 89 ' ' T 23

CAB copies the contents of the A register into the B register.

Affected: (B) Timing: 1

CBA COPY BINTO A

0 . 46 00010
s 3 il I

L
T Y T T L4

0 23 89 23
CBA copies the contents of the B register intothe Aregister,

Affected: (A) Timing: 1

XAB EXCHANGE A AND B

0

46

00014

1
v

0 2

3

' 89

] L
T T

23

XXA

Page 22

EXCHANGE INDEX AND A

0

46

00600

0 23

XXA copies the contents of the index register into the A
register and, simultaneously, copies the contents of the A

register into the index register,

89

Affected: (A), (X)

cBX

3 b
T T T

23

Timing: 1

COPY B INTO INDEX

XAB copies the contents of the A register into the B register
and, simultaneously, copies the contents of the B register
into the A register.

Affected: (A), (B) Timing: 1
ABC COPY AINTO B, CLEAR A

0 46 00005
0 23 ' 89 ' ' ' T 23

ABC copies the contents of the A register into the B register
and then clears the A register to zero,

Affected; (A), (B) Tfming: 1

- BAC COPY B INTO A, CLEAR B

1o 45
o 23 ' 89 '

00012
1 1

T T T

23

BAC copies the contents of the B register into the A regis-
ter and then clears the B register to zero,

Affected: (A), (B) Timing: 1

0

46

00020

0

23

89

23

CBX copies the contents of the B register into the index
register,
Affected: (X) Timing: 1

CXB8 COPY INDEX INTO B

0 46
0 23 23

¥ T L] L] {'
89

CXB copies the contents of the index register into the B reg-

ister,

Affected: (B) Timing: 1

XXB EXCHANGE INDEX AND B

0 46 00060
0 2'3 ' B ' 23

¥ 8 9 1
XXB copies the contents of the index register into the B reg~
ister and, simultaneously, copies the contents of the B reg-
ister into the index register.

Affected: (B), (X) Timing: 1

CAX

COPY A INTO INDEX

46 00400

0

e

0o 23 89

23

STE

STORE EXPONENT

0

46

00122

CAX copies the contents of the A register into the index
register,

Affected: (X) Timing: 1

CXA COPY INDEX INTO A

0 46 00200
0 23 89 ’ ' ' 23

®
CXA copies the contents of the index register into the A
register,

Affected: (A) Timing: 1

1
T

i
T

L
T

0

23

89

23

STE copies the 9 least significant bits of the B register into
the 9 least significant bit positions of the index register, ex-
tends bit 15 of the index register (the sign of the exponent)
into bit position 0 of the index register, and then clears the

-9 least significant bit positions of B,

Affected: (B)y5.23, (X) Timing: 1

Example:

Before execution After execution

(8)
(Index)

641527138 " 641520008
— 777777138

LDE

LOAD EXPONENT

0

46

00140

0

23

8¢9

d
T

L
] . A T

23

LDE copies the 9 least significant bits of the index register

into the 9 least significant bit positions of the B register.
The 9 least significant bit positions of B are cleared prior

to the transfer.

Affected: (8)15-23 Timing: 1 |
Example:
Before execution After execution

(8) = 347657128 34765151B
(Index) = 000001518 000001518
XEE EXCHANGE EXPONENTS

0 46 00160
0o 23 89 i ' T 23

XEE exchanges the 9 least significant bits of the B register
with the 9 least significant bits of the index register. The
exchange loses no information. The new bit 15 of the index
register (the sign of the exponent) is then extended into bit

position O,
Affected: (B)l 5-23)

Example:

Before execution

(B) = 671423558
(Index) = 777771338

Timing: 1

After execution

671421338
000003558

Page 23

BRU takes the next instruction from the location determined
by the effective address.

Affected: (P), highest-priority active
interrupt level

Timing: 1

BRX INCREMENT INDEX AND BRANCH
Ol xlo 4.] I Reference address
0123 ’ 8910 ’ ! t23

BRX adds 1 to the contents of the index register. If the re-

sultant index register value contains a 1 inbit position 9, the
computer transfers control to the effective location, If not,

it tokes the next instruction in sequence.

If a BRX instruction is indexed, any transferof control is to
the effective address determined by the value of the index
immediately prior to the execution of BRX, The test for
transfer is on the incremented value of the index register,
just as if the BRX instruction were not indexed.

The 9 most significant bits of the index register (bits 0-8)
have no effect on the execution of the instruction, but may
be affected by it.

Affected: (X), (P) Timing: 1, if branch

2, if no branch

CNA

COPY NEGATIVE INTO A

0

46

Y

10000

0

23

89

e S

I
L R aJ

23

CNA copies the two's complement of the contents of the A
register into the A register. .

Affected: (A) Timing: 1

BRANCH INSTRUCTIONS

Branch instructions conditionally or unconditionally change
the course of the program by altering the contents of the
program counter. The programmer should note that these
instructions branch to locations determined by the effective
address; this means that the branch can operate with all
levels of indirect and indexed addressing.

BRU BRANCH UNCONDITIONALLY
Oixio 01 I Reffrence c:ddress
0123 8910 ’ ' ©23

Example:
Location Instruction (X Register)
07778 STA 15008 777777768
10008 BRX 1006B 777777778
1001B LDA 20008
10068 _BRX 10018 000000008
10078 LDA 21008 000000008

The execution of these instructions is in the following order
as given by their locations:

07778

10008

10068

10078
BRM MARK PLACE AND BRANCH
0} Xx{o 43 1 , Reflerence address
0123 8910 i ' T 23

MARK PLACE AND BRANCH
performs the following operations:

1. stores the state of the overflow indicator in bit position
0 of the effective location

.

stores the contents of the P register (the address of the
BRM instruction) in bit positions 10-23 of the effective
location

BRM loads the value of

'the effective address plus 1 into the P register; thus, the

next instruction is taken from the next location ofter effec-
tive location. If the BRM instruction is executedasthe op-
erand of an EXECUTE instruction (see page 30), the stored
P register value is the address of the initial EXECUT‘E in-
struction rather than the address of the BRM instruction.

BRM is used to enter subroutines where a return to the main
program is desired after completing the subroutine. The sub-
routine can return program control to the main program by

executing a BRI instruction.

Affected: (EL), (P)
Example: BRM 1517B

Before execution

fimihg: 2

After execution

(P) = 522B 15188

(EM3) = 3 3

(EM2) = 2 2

(O9) = 1 1

(1517B) = xxxxxxxxB 532005228

Mode = wuser user

BRR RETURN BRANCH

,rO Xio0 51 1 Reference address
o123 ' 8910 ') v23

logical ORbetween bit 0 of the

RETURN BRANCH performs a

effective word and the overflow

indicator, places the result in the overflow indicator, and
“then loads the P register with a value equal to 1 plus the
"contents of bit positions 10-23 of the effective location.

‘ Affected: Of, (P)

Example: BRR 15178

(P)

(O
(15178)

wonon

Before execution

T'iming: 2

After execution

15408
0
532005228

5238
1
532005228

Page 24

TEST AND SKIP INSTRUCTIONS

SKE SKIP IF A EQUALS MEMORY
0l xlo 50 | Reference address

1 1 4 " i
0123 8910 i i Y

SKE compares the contents of the A register with the effec-
tive word. If the contents of A equal the effective word,
the computer skips the next instruction in sequence and exe-
cutes the following instruction. If the contents of A do not
equal the effective word, the computer executes the next
instruction in sequence.

Affected: (P) Timing: 2, if no skip

3, if skip
SKG SKIP IF A GREATER THAN MEMORY
Ol xlo 73 I Reference address
6123 T 890 1 ‘ t =23

SKG algebraically compares the contents of the A register
with the effective word. If the contents of A are greater
than the effective word, the computer skips the next instruc-
tion in sequence and executesthe following instruction. If
the contents of A are less than or equalto the effective word,
the computer executes the next instruction in sequence.

Affected: (P)’ Timing: 2, if no skip

012

" Affected: (P)

3, if skip
SKM SKIP IF A EQUALS MEMORY ON B MASK
0ix|o 70 I Reference address
3 ! 8'910 ? ' " 23

SKM compares selected bits of the A register with corre~
sponding bits of the effective word. I[f the selected bits in
A are all identical to corresponding bits of the effective
word, the computer skips the next instruction in sequence
and executes the following instruction. If the selected bits
in the A register are not all identical to corresponding bits
of the effective word, the computer executes the next in-
struction in sequence.

The programmer selects the bits in A to be compared by
placing ones in the corresponding bit positions of the B reg-
ister and zeros in the remaining bit positions of B.

SKM treats the contents of A, B, and the effective location
to be unsigned, 24-bit, nonnumeric quantities, anddoes not
alter them.

Timing: 2, if no skip
3, if skip

Example:
(A) ®) (EL)
000430078 001770008 576432408

Since SKM compares bit positions 8-14 only (as determined
by B), and (A) = (EL) in these positions, a skip occurs. Note

that if (B) =0, a skip occurs regardless of (A) ond (EL).
Note also that if (B) = 777777778, the operation of SKM is
identical to that of the instruction SKE.

SKA SKIP IF A AND MEMORY DO NOT COMPARE
ONES

0}x|o 72 I Reference address

Il L 1 [l
T

0123 8910 j ' 23

SKA compares the contents of the A register, bit by bit,
with the effective word. If the contents of the A register
and the effective word donot have ones in any corresponding
bit positions, the computer skips the next instruction in se-
quence and executes the following instruction. If the con-
tents of the A register and the effective word do have ones
in at least one corresponding bit position, the computer
executes the next instruction in sequence.

The instruction logically ANDs corresponding bits in A and
the effective word, based on the following table:

(__A) EW Result

0
0
1
1

- 000

0
1
0
1

If the result produces a 1 in any bit position, a skip does not
occur,

Note: Different configurations of the effective word result
in a wide variety of conditional operations for use
by the programmer. Some representative configu-
rations are:

Effective word

configuration Operation
400000008 Skip if (A) is positive
777777778 Skip if (A)=0
000000018 Skip if (A) is even

Contents of

A register

400000008 Skip if effective word is positive
777777778 Skip if effective word =0
000000018 Skip if effective word is even

Affected: (P) Timing: 2, if no skip

3, if skip

Page 25

SKB SKIP IF B AND MEMORY DO NOT COMPARE
ONES

0} x|o 52 I Reference address
t t { t t

0123 8 910 23

The oper_otion of SKB is identical to that of SKA, but uses
the contents of the B register instead of the contents of the
A register.

Affected: (P)

Timing: 2, if no skip
3, if skip

SKN SKIP IF MEMORY NEGATIVE

0|x|o 53 1 Reference address

0123 8910 ' ’ 23

If the effective word is a negative value (i.e., bit O of the
effective word is a 1), the computer skips the next instruction
in sequence and executes the following instruction, If the
effective word is a positive or zero value, the computer ex~
ecutes the next instruction in sequence.

Affected: (P) Timing: 2, if no skip

3, if skip
SKR REDUCE MEMORY, SKIP IF NEGATIVE
0} x]o 60 1 Reference address
0123 i 8910 ' i T3

SKR reduces the value of the effective word by one, places
the result in the same location, and then tests the effective
word for being a negative value. If the effective word is a
negative value after being reduced, the computer skips the
next instruction in sequence and executes the following in-
struction. If the effective word is a positive or zero value
after being reduced, the computer executes the next in-
struction in sequence.

An overflow occurs if the initial value of the effective word
is 400000008, in which case the resulting effective word is
377777778, and the overflow indicator is set. If no over-
flow occurs, the overflow indicator is unaffected.

Affected: (EL), Of, (P) Timing: 3

SKD DIFFERENCE EXPONENTS AND SKIP

Olx|o 74 I

L 1 1 i
T "t T T

0123 8 910 23

SKD subtracts bits 15 through 23 of the effective word from
bits 15 through 23 of the B register, and stores the absolute
magnitude of the difference in the X register. If the 9 low-
order bits of the effective word are less than or equal to the
9 low-order bits of the B register, the computef executes
the next instruction in sequence; otherwise, the computer
skips the next instruction in sequence and executes the fol-
lowing instruction,

Reference address

Affected: ()()15_23 Timing: 2, if no skip

3, if skip

SHIFT INSTRUCTIONS

The shift instructions operate on the contents of the A and
B registers and offer a complete facility for right and left
shifting, cycling, and normalizing the contents of these two
registers. The A and B registers, in combination, form a
double-length register whose double-length contents can be
shifted, cycled, or normalized. Thisdouble-lengthregister
is named "AB",

When the contents of the AB register shift right, bits from
bit position 23 of the A register shift into bit position 0 of
the B register. When the AB register shifts left, bits from
bit position O of the B register shift into bit position 23 of
the A register,

The 48-bit contents of the AB register may be cycled using
the shift instructions. When the contents of the AB register
cycle, the bits that shift from one end of the one register

copy into the other end of the other register.

These instructions use the instruction code to determine the
_direction of shift (66 = right; 67 = left); bits 10-1] (octal
position 3) of the instruction address determine the method
of shifting as follows:

Bits 10, 11 Function
00 -+ AB shift
10 AB cycle
01 Normalize (left only)

Since the type of shift and number of shifts are determined
by bits 10 through 23 of the effective virtuai cddress, indi-
rect addressing and indexing drastically alter the action spec~
ified in a shift instruction, When computing the effective
virtual address for a shift instruction,

14-bit indexing is performed with all indirectly ad-
dressed operands, and

9-bit indexing is performed with all directly addressed
operands.

That is, indexing with a direct address can affect only the
9-bit shift count.

When the computer decodes a shift instruction, bit positions
15 through 23 of the effective address of the instruction de-
termine the amount of the shift. The computer treats these
nine bits as an unsigned count, If the initial count is equal
to zero, no shifting occurs, If the initial count is greater
than 48, it is set to 48 prior to shifting. Once the shift be-
gins, the count is reduced by 1 for each position shifted, un-
til it reaches zero. The count Cin the following instructions
indicatesthe number of placestobe shifted. Shift timing is:

Left shift and Right shift

normalize count Cycles count
0-6 2 . 0-3
7-26 3 4-14
27 - 46 4 15-25
47 - 48 5 26 - 36
6 37 - 47
7 48

Page 26
RSH RIGHT SHIFT AB

Olxlo 66 1looooo C

'l 3 Il L
0123 8910 1415 T3
RSH shifts the contents of the AB register (that is, A and B
registers) right the number of places specified by bits 15
through 23 of the effective address. The bit in the sign po-
sition of A does not shift, but its value is copied into the
vacated bit positions of the shifted number. The bit in the
sign position of B is shifted as a magnitude bit. Bits shifted
out of A23 shift into Bg. Bits shifting past Bo3 are lost,

Affected: (AB) Timing: 2-7

Example:

The instruction is: RSH 18

Before execution After execution

(A, B) = 45261237,276512608 77777745, 261237278

Note: This instruction may be used to perform scaling of
floating-point numbers by use of indexing, where
the difference of the exponents is in the index reg-
ister as a positive quantity.

LRSH LOGICAL RIGHT SHIFT AB

0]X]o 66 24 C

0123 89 1415 23
LRSH shifts the contents of AB right the number of places
specified by bits 15 through 23 of the effective address. The
bits in the sign position of A and the sign position of B shift
with the rest of the number. Vacated bit positions on the
left are filled with zeros. Bits shifting out of Agsshift into
Bp. Bits shifting past Bog are lost.

Affected: (AB) Timing: 2-7

RCY RIGHT CYCLE AB
o|Xxjo 66 20 C

0123 - 89 1415 23
RCY shifts the cuntents of the AB register right the number
of places specified in bits 15 through 23 of the effective
address. The bits in the sign positions of A and B shift
like any other bits in the number. Bits shifting out of
A3 shift into Bp. Bits shifting out of Bp3 shift into AQ.
The computer treats the double-length register as if it

were circular and cycles it onto itself; it loses no bits,

Affected: (AB) Timing: 2-7
Example: e
The instruction is: RCY 15

Before execution After execution

(A,B) = 61235703, 415377018 37701612, 357034158

LSH

LEFT SHIFT AB
0] B0 &7 1100000 C
1 1 - 1
0123 ' 8910 ' 1415 T 23

LSH shifts the contents of the AB register left the number of

places specified in bits 15 through 23 of the effective ad-
dress, Bits shift left through the sign position of A, but
when a bit, different in value from the original sign, shifts
into the sign position, the computer sets the overflow indi-
cator. Bits shifting out of Bq shift into Ap3. Bits shifting
past position 0 in A are lost. Zeros fill the vacated bit po-
sitions on the right end of the B register. :

Affected: (AB), Of Timing: 2-5

Example:
The instruction is: LSH 18
Before execution

After execution

(A,B) = 46712370, 641327118

70641327, 110000008
LcYy LEFT CYCLE AB
olx|o 67 - 20 ‘ c
. 1 1 1
0123 89 T 1415 ' i 23

LCY shifts the contents of the AB register left the number of
places specified in bits 15 through 23 of the -:ffective ad-
dress. The bits in the sign positions of A and B shift like
any other bits in the number. Bits shifting out of Bg shift
into Ag3. The instruction copies bits that shift from bit
position 0 of A into bit position 23 of B, The computer
treats the double-length register as if it were circular and
cycles it onto itself; it loses no bits.

Affected: (A,B) Timing: 2-5

Example:
The instruction is: LCY 9
Before execution

After execution

(A,B) = 71432560, 341567238 32560341, 567237148

NOD NORMALIZE AND DECREMENT X
0{Xjo 67 10 C

i} i 3 4
0123 8 9 1415 23

NOD shifts the contents of the AB register left until (1) abit
appears in position 1 of A that is not equal to the bit in the
sign position of A, or (2) until C shifts occur, The computer
keeps count of the number of places shifted and when the
normalize operation is completed, it subtractsthe count from
the contents of the index register and places the result back
into the index. If, in the attempt to normalize, shifting
exceeds 48 places, the contents of the AB register were ini-
tially zero. In this case, the computer subtracts 48 fromthe
index renister. Zeros fill the vacated positions.

Page 27

The number C, placed in address bit positions 15 through 23,
is an upper limit forthe number of left shiftsthatwill occur. .
The programmer must ensure that C is sufficiently large to
permit a complete normalization.

Affected: (A,B),(X) Timing: 2-5
Example:
The instruction is: NOD 30

Before execution After execution

(A,B) = 00004632,761240358 23153705, 201640008
(X) = 00000000B 777777658
CONTROL INSTRUCTIONS
NOP NO OPERATION
0 20 00000
0123 89 1415 C 23

Executing NOP does not affect the A register, B register,
X register, or memory. Indirect addressing and indexing do
not apply to this instruction,

Affected: None ~ Timing: 1

EXU EXECUTE

Reference oddress

Ofx|o 23 1
0123 = 8910 — 3

EXU causes the effective word to be executed as an instruc-
tion without altering the contents of the program counter,
If the effective word is not abranch, skip, or another EXE-
CUTE instruction, the computer executes the next instruc-
tion, after it executes the effective word.

If the effective word is a branch instruction, program con-
trol goes to the effective address of the branch and not to

the next instruction in sequence following the EXECUTE

instruction. :

If the effective word is a skip instruction, then, depending
on the skip decision, program control returns to the next
instruction, or the next instruction plus one, following the

EXECUTE instruction,

If the effective word is another EXECUTE instruction, the

above process continues identically, with the normal return
being the location of the initial EXECUTE instruction plus
one. This process can cascade indefinitely.

Affected: Determined by executed
instruction

Timing: 1+executed
instruction

Page 28
REO RECORD EXPONENT OVERFLOW

0 22 00010

OVERFLOW INSTRUCTIONS
OVI OVERFLOW INDICATOR TEST AND RESET
0 22 00101
o 23 t 89 + s T

This instruction tests the status of the overflow indicator,
skips or not accordingly, and turns the indicator off. If the
indicator is off, the computer skips the next instruction in
sequence and executes the following instruction. If the indi-
cator is on, the computer turns the indicator off and then ex-
ecutes the next instruction in sequence.

In-the-normat-and-moniter-medes, the instruction SKS 200018

may be used to test and reset the overflow indicator,

Affected: (P), Of Timing: 1, if no skip

2, if skip

o1o OVERFLOW INDICATOR TEST ONLY (940 only)

0 22 00100
0123 89 T 1415 ' 23

This instruction tests (but does not change) the status of the
overflow indicator. If the overflow indicator is on, the com-
puter executes the next instruction in sequence; however, if
the overflow indicator isoff, the computer skips the nextin-
struction insequence and executes the following instruction.

Affected: (P) Timing: 1, if no skip

2, if skip

i 1 1 1 1
0 23 ' 8'9) ' ' T 23
This instruction causes the overflow indicatorto be turnedon
if the content of bit 14 of the index register is not equal to
the content of bit 15 of the index register; otherwise, the
overflow indicator is not affected.

In the normal and monitor modes, the instruction EOM 201008
may be used to record exponent overflow,

Affected: Of Timing: 1.
ROV RESET OVERFLOW INDICATOR

0 22 00001
o 23 89 ' ' T 23

Affected: Of Timing: 1|

