
XDS 940

REFERENCE MANUAL

EE 466

BCX! 500 Conputer

Department of Electrical Engineering
University of Hawaii

Issued Septenber 15, 1977

Paqe 1

1.0 INTRODUCTION

The XDS 940 is a medium-sized, qeneral ouroose comouter
accessed from terminals in a tirne-sharinq mode. The 940 is
a good machine for a study of assembiy-language programminq
techniques and machine organization. It is sufficiently
large that a user does not have to confuse himself with
various tricks required to avoid the hardware limitations of
typical minicomputers~ yet it is simple enough that the user
can write, assemble, load and run a small proqram without
having to learn a huge number of details. (This- is not true
of the IBM 370, for example.)

The 940 is at the upper end of a family of ·'midi''
computers built beginning in 1961 by Scientific Data Systems
(SDS), which later became Xerox Data Systems (XDS). The
family, not produced since 1968, consists of the 910, the
920, the 930, and the 940. These machines are made of
discrete components and are thus physically large and expen­
sive compared to their capability (and with machines which
are being buiJ,t today.) Several hundred were built and
marketed over a ten-year period, however, and many are still
in use.

In terms of computing power, the machines are very
little b~tter, if any, than present-day minicomputers. In
fact, it would be no problem to make them today as minicom­
puters and sell them at competitive prices. Where they
differ from the minis, however, is in their longer word
length (50% longer than the standard 16 bits). This shows
up not just in terms of numerical precision and storage
efficiency, but in certain simplicities. in the instruction
set and addressing modes which result from instructions not
having to be encoded into shorter lengths.

The 940 is a time-shared version of the 930. It is
equipped with a special operating system (hardware and soft­
ware) which provides to several users simultaneously the
services of a virtual machine. A virtual machine appears to
the user to be a complete machine over which he has full
control, even though he is in fact time-sharing slightly
different hardware with other users. The user may load the
virtual machine, examine its state, start it, stop it, and
do any operation he could do if he had his hands on a
physical equivalent.

Page 2

The means by which the user communicates with the
machine and exercises his control over it is a Teletype or
similar on-line terminal. The terminal may be used for
input and output when the user's programs are running; and
it is used for the inspection of memory locations, register
contents, etc. which on an actual machine usually involves
lights or indicators. The terminal permits the user to
reset or clear his (virtual) machine, start it at a certain
location, stop it, etc. Instead of pushing actual buttons
and switches, the user types special commands on his termi­
nal. The terminal may also be used to prepare input for a
program in advance of its operation, much like the use of a
keypunch when preparinq program source language or data; and
it can display (perhaps selected portions of) the program's
output after its termination. The terminal, then, is a
multi-use device and assumes different roles at different
times and in different contexts.

Aside from its virtues of simplicity and straightfor­
wardness, we use the 940 in this course because the BCC 500
system, as a special feature, emulates the 940 system with
reasonable efficiency. We can thus provide a number of
students the opportunity to use an on-line system simultan­
eously. This is advantageous to the students not only in
terms of how much work can be done but also in providing
some experience in on-line computing.

2.0 940 ORGANIZATION

From his BCC 500 terminal, the user (if he wishes} sees
a 940 system, i.e., a complete computer system consisting of
memory, processor, input/output device(s), and operating
controls and indicators. Figure 1 is a diagram of the
machine, with emphasis on its registers and data paths.

2.1 Memory

The memory contains 16384 addressable cells in which
information consisting of instructions or data can be
stored. (16384 is often referred to as ''16K,'' where lK =
1024.) Each cell contains 24 bits -- binary zeros or ones
-- of storage. It is up to the user to determine where in
the memory and in what form the information is to be stored.
There are essentially no restrictions as to how the memory
may be used (although there are some conventions).

A

arithmetic/logic
unit

0

B

I

M S

FIGURE 1. 940 Processor.

Page 3

p

Figure 2 gives the format of and bit naminq conventions for
a memory cell in the machine. Each location is identified
by a unique address, which is a number ranging from 0
through 16383. As seen in the figure, the bits in a cell
are numbered from the most significant to the least begin­
ning with 0.

1111111111111111111111111
~ 1 2 3 4 5 6 7 8 9 l0lll2 J.3J.4J.5J.6J.7l819 20 2122 23

FIGURE 2. Memory Cell Format.

Page 4

Since one octal digit is readily convertible into three
bits, octal notation is used to represent the contents of a
cell. Where it might otherwise be ambiguous we use the
convention of identifying octal numbers by terminating them
with the letter dB.d A cell whose contents are as follow:

is said to contain 305636728.

The memory permits both storing into and retrieving
information from any of its cells. Storing involves copying
a new value into the cell; retrieving copies the current
contents out without modifying the contents (i.e., non-de­
structively). Either of these operations is called a memory
reference or a memory access. In undergoing such a refer­
ence the memory must be provided with an address and with a
store or a fetch command, as shown in Figure 3. The memory
is designed to operate rapidly, at speeds matching those of
the processor. The operating speed, or memory cycle time,
is independent of the address; and so the memory is termed
random access memory (RAM). The (strictly hardware) memory
commands are prepared and issued by the in its role of
executing the user's program. The user, then, is never
explicitly concerned with operating the memory, but it is
important for each user at the very outset to correctly
visualize the memory, the appearance of its contents, and
the way it works.

[

menory data
register

M

j

~

-

l

16K

Storage

Array

•
• ..
•
•
•

Page 5

rnercory address
register

controls
fetc..'-1 store

r

I.I

s

address
election &

/ decoding
I

I

~ selected address

FIGURE 3. Detail of Memory Organ~zation.

2.2 Processor

The processor is the entity which performs the oper­
ations required to execute the program. It fetches the
machine-language program steps (called operations or in­
structions) from memory and performs the indicated actions,
which include further fetching or the storing of operands.
The processor is thus divided into two parts called the
control section and the arithmetic section. The control
section iteratively:

1) fetches the next instruction,
2) interprets and executes it, (hands over control

to the arithmetic section)
3) determines the location of the next instruc­

tion.

The arithmetic section:

1) determines the address of any operand(s),
2) performs an operation on it (them).

Page 6

From the user's point of view the control section per­
forms its work with no specific attention other than an
awareness on the user's part from time to time of the con­
tents of a register called the program register or P. (A
register is identical in structure to the memory cell, ex­
cept that it is a constituent of the processor and plays a
specific role in the processor's operation. Since the
register is dedicated to certain functions it does not have
to be addressed in the since of the many ·•registers·• of the
memory.) P is used to hold the address of the instruction
currently being executed: at the end of the current instruc­
tion P will be modified to contain the address of the next
instruction. P may be thought of as a roving pointer which
ranges over the program as it executes and shows at any
point of interruption the instruction address to be next
executed. P thus provides the address required by the con­
trol section when it goes to the memory to fetch an instruc~
tion.

940 instructions each occupy one memory cell and are
connected together in sequence by the obvious expedient of
placing sequences of instructions into seauences of cells,
i.e., cells with numerically increasing addresses. Since P
most often increments in content value as ~he program runs,
it is frequently referred to as the ''P counter.·• (This
counting action may be overridden by the use of branch or
control transfer instructions which serve to change the
contents of P altogether). As instructions can be fetched
only from the 16K memory, P is only a 14-bit register. If
the machine should attempt to fetch an instruction located
in the next cell from 16383, P will overflow and the fetch
will be made from location 0 instead.

2.3 Instruction Pormat

The format of an -instruction is shown below. Each
instruction is divided into portions called fields which
indicate various aspects of the instruction.

The fields are:

- Bit 0: System Call.
If Bit 0 = 1 an2rBit 2 = 1, the instruction
is a system call, i.e., a type of instruc­
tion which causes a branch into a specific
entry point in the operating system (see
Section 2.9). Input/output, for example, is
performed by means of system calls. If Bit
2 = 0, the Bit 0 field is meaningless; it
may have either value.

- Bit 1: Index Designator.
If Bit 1 = 1, the address calculation known
as indexinq is to be done. Indexing is
described later. It is applicable only to
certain instructions.

- Bit 2: Programmed Operator Desiqnator.
If Bit 0 = 0 and Bit 2 = 1, the instruction
is of a special type known as a programmed
operator. This is described in Section 2.8.

- Bits 3 - 8: Operation Code.

Page 7

This field holds a six-bit number designat­
ing one of 64 possible instructions. The
940 does not use all of these combinations.
A few are thus termed illegal instructions.
The field is also used in conjunction with
programmed Operators to designate which one
of 64 possible operators is being invoked.

- Bit 9: Indirect Address Designator.
If Bit 9 = 1, a different mode of addressing
called indirect addressing, or indirection,
is invoked.

- Bits 10 - 23: Operand Field.
This field contains 14 bits and, like the P
counter, is capable of naming any one of the
16K memory locations. The field is most
frequently used to refer to the address of
an operand in memory. Some instructions,
however, use it to hold the operand itself;
and some do not use it at all.

Page 8

2.4 Processor Registers

three The arithmetic section of the processor contains
registers labeled A, B, and X. These registers play unique
roles in the processor and are addressed implicitly in the
instructions. The user must maintain awareness of their
contents, however, since it is he who manages the use of
these registers within the program.

A is called the accumulator. It is used by almost all
the arithmetic and logical instructions and is central to
the operation of any program. B is the auxiliary accumula­
tor, used with A in a few arithmetic instructions and in
shffting. The X register is called the index register and
is used to hold a quantity--termed the index--for offsetting
the operand address. Although the indexing operation is an
address calculation--a calculation on a 14-bit quantity--X
also contains 24 bits.

2.5 Overflow Indicator

The overflow indicator in the computer permits the
ready detection and signaling of overflow conditions which
might otherwise go undetected- or require additional software
overhead to detect during arithmetic operations in the exe­
cution of a program. The overflow indicator is set to 1
(turned on) if any of the following occurs:

1. A sum or difference resulting from an addition
or subtraction ·cannot be contained within
the A register.

2. Multiplication of 400000008 (also written 487)

3.

by itself. (The A and B registers cannot
contain this product.)

A division with
numerator equal
lute value off
register cannot

the absolute value of the
to or greater than the abso-
the denominator. (The A

contain this quotient.)

4. An arithmetic left shift changes the value of
the bit in the sign position of the A regis­
ter.

5. Bit 14 of the index register is not equal to
Bit 15 of the index register when the in­
struction RECORD EXPONENT OVERFLOW (ROV) is
executed.

Page 9

The 940 instruction set contains instructions to reset,
test, or test and reset the state of the overflow indicator
(see Section 3, ~overflow Instructions~).

2.6 Data Formats

The 940 has various instructions which are designed to
work on data assumed to be in different formats as follow:

2.6.1 Integers

Integers are represented as 2t24's complement numbers
having the format:

1
t

Bit 0 indicates the sign of the number, negative numbers
having a 1 bit and positive numbers having a 0 bit in this
position. The assumed binary point is to the right of Bit
23, the least significant bit. In this form the range of
representation is from -2f23, or -8,388,608, to +2123-1, or
8,388,607. All of the arithmetic instructions except multi­
ply (MUL) and divide (DIV) can be used on integer quanti­
ties.

2.6.2 Fixed~point Fractions

The arithmetic instructions are designed primarily to
operate on fixed-point fractions haveing the following ap­
pearance:

Page 10

The assu.med binary point is between Bits 0 and 1 at the more
significant end. Negative numbers are handled as comple­
ments with respect to 2 (two's complements). The range of
representation is from -1.0 to +l-2f(-23). These numbers
have the equivalent of more than 6 decimal digits of ac­
curacy. Fixed-point scaling (a forgotten programming art)
is used in working with such numbers during computation.

2.6.3 Extended-precision fixed-point Numbers

Several instructions greatly
multiple precision data. None,
data directly. A double-precision
would look like:

facilitate the use of
however, operate on such
fraction, for example,

In memory such a datum would be stored in two consecutive
memory locations.

2.6.4 Floating-point (Real) Numbers

While not having true floating-point instructions, the
940 has several (rather odd) instructions designed to
greatly reduce the software overhead of subroutines to per­
form calculations on reals. These instructions assume the
following real-number format:

I mantissa I exponent I
l±I 231 l 1±1 1
~ I I4is 23
·~ 41 <P 81

The mantissa is a 39-bit, two's complement, normalized
fixed-point fraction (giving about 11 decimal digits of
accur~cy). The exponent is a 9-bit, 512's complement inte­
ger, permitting an exponent ~ange of 21-256 to 21255, or
about 101-77. In memory, the real number is stored in two
consecutive memory locations and is addressed by the former
(i.e., smaller) address. The virtual 940 (the basic in-

Page 11

struction set augmented by system calls -- see Section 2.9)
does have arithmetic ''instructions'' which deal directly with
reals.

2.6.5 Character Strings

The virtual machine adds other capabilities not found
in the hardware instruction set. An important one is the
ability to fetch and store individual 8-bit bytes from mem­
ory, according to the following format:

T H I
s J6 I
s J6 A

J6 s T
R I N
G ~ J[

This ability makes the machine well suited to deal with
character strings variable length sequences of bytes.
For this purpose it is imagined that all of memory can be
byte addressed, as well as word addressed. Since there are
three bytes/word, the byte address is roughly three times in
value the address of the word in which it is stored. The
precise corres?ondence is

word addr = byte addr I 3, «.>, 1, or 2 remaining)

and the byte position within the word is

I 1 2

Byte memory thus looks like the following:

Word fa: Byte fa 1 2

1: 3 4 5

2: 6 7 8

3: 9 lj;J' 11

4: 12 13 14
.-..

i---- ~

Page 12

2.7 Address Modification Rules

Most machines provide some means for modifying at exe­
cution time the effective address of an instruction from
that which it actually contains. 'l'his is done a) to reduce
the run-time overhead of programs dealing with simple data
structures and/or b) to avoid the program's having to mod­
ify itself. The 940 provides indexing and indirection
(indirect, or deferred, addressing) for these purposes. 'rhe
two features may be used jointly or singly in the same
instruction.

2.7.1 Indexing

The machine contains an index register (X register) for
address modification, the use of which does not increase
execution time. If Bit 1 in an instruction which addresses
memory (some don't) is 1, the 940 adds Bits 10-23 of the X
register to. the address field of the instruction to produce
a. different effective address (the address actually refer­
enced). The add1t1on is done strictly modulo 2~14, com­
pletely ignoring any overflows which may occur. If Bit 1 is
a zero the X register is not added; the effective address is
merely the address found in the instruction.

The instruction set provides instructions for modifying
and testing the X register.

2.7.2 Indirection

When Bit 9 of an instruction (which permits it) is 1,
indirection is invoked. The machine fetches the contents of
the address found in the instruction (or the address offset
by Bits 10-23 of the X register if the instruction word's
Bit 1 = 1) and begins the entire address modification cycle
again using Bits 1 and 9 of the newly-fetched location as a
guide to further action. This process can repeat many
times, depending on the contents of memory.

2.7.3 Simultaneous Indexing and Indirection

It is correct to say that for each instruction executed
an effective address is always calculated, the results de­
pending on the X and I bits according to the following
algorithm executed by the hardware:

In the following, Pis the 14-bit program register, S
the 14-bit memory address reqister, M the 24-bit memory data
register, I the 24-bit instruction regi~ter, O the 6-bit
operation code register, and X the 24-bit index register.

Page 13

The algorithm is expressed in terms of an informal program­
ming language.

940 EFFECTIVE ADDRESS CALCULATION:
FIRST WE HAVE TO BETCH THE INSTRUCTION.

START: S-P & FETCH:

* AT THE END OF THE MEMORY CYCLE THE FETCHED DATA IS IN M.

O+M(3,8); /*CAPTURE THE OP CODE BITS*/
FOREVER DO;

I•M; /*ADDRESS CALC BEGINS HERE*/
I•(I+X)MOD 2fl4 IF I(l)=l;
GOTO DONE IF I(9)=0:
S•I(l0,23) & FETCH: /*DO INDIRECT STEP*

ENDFOR;

/*Q IS THE EFFECTIVE ADDR*/

(The reader will note that this algorithm accurately des­
cribes the behavior of the machine for all four combinations
of the X and I bits.)

2.8 Programmed Operators

Most arithmetic machine instructions require in some
way three addresses: those of two operands and that .of the
result. The 940, like most one-address machines, addresses
the A register by implication for the first operand and for
the result. Its instructions, ·then, explicitly address on! y
the second operand.

It is not infrequent that a similar situation develops
when a programmer is designing a subroutine: the subroutine
is to perform some operation on two 24-bit quantities and
return a single result. The problem is how to convey to the
subroutine the two arguments and receive the result. The
obvious choice for a machine of this type is to use A for
the first operand and for the result. But the address field
of the subroutine call instruction is occupied with the
address of the subroutine, forcing some other choice (such
as the use of B, perhaps). This is not really bad, but it
makes the use of the subroutine a little awkward, especially
if we would like to. apply address modification to the second
operand.

Page 14

The 940 Programmed Operator (POP) feature permits a
programmer to pacK· into a single instruction both which
subroutine is to be entered and a 14-bit address of an
operand. The suoroutine can with great efficiency and ease
retrieve this address and apoly the same address modifica­
tion rules as the bare hardware uses. This makes the POP
subroutine look for-all subsequent programming purposes very
much like a machine instruction.

The basis of the POP is as follows: An instruction is
either a POP, or it is not. Therefore only one bit is
required in the instruction word to specify whether the
feature is to be used. Bit 2 = l is used for this purpose.
The remaining 6 bits of the operation code field are used to
specify the subroutine entry point. 6 bits cannot, of
course, directly point to an arbitrary 14-bit address. But
the field can direct the machine to an arbitrary location
through a 64-word linkage table.

When the 940 fetches a new instruction and detects a 1
in Bit 2 of that instruction (and a 0 in Bit 0), it does not
interpret Bits 3-8 as an opcode. Instead it:

1. Stores current value of overflow indicator in
Bit 0 of memory location 0.

2. Resets the overflow indicator.

3. Stores zeros in Bits 1-8 of memory location 0
and a 1 in Bit 9.

4. Stores current contents of P register into
Bits 10-23 of memory location 0.

5. Loads Bits 2-8 of the instruction word into P
register.

The machine does not apply the address modification rules to
a POP, nor does-rt' refer to Bits 10-23 of the POP instruc­
tion.

The effect of the steps just outlined is to store a
normal (except that Bit 9 is always set) subroutine return
link (see BRM instruction in Section 3) in memory location 0
and to transfer control to a memory address in the range
100B - 177B. There it is expected that the programmer will
have placed an unconditional control transfer to the actual
subroutine entry point. A given program may include up to
64 (1008) such subroutines.

Page 15

The subroutine can access the operand specified back in
the POP instruction, along with any address modification
specified in the POP, merely by referring to memory location
0 indirectly. Because of Bit ~-s previously having been
set, the indirect reference is propagated one more level and
the effective address is then formed as if the ~O~ had been
a machine instruction. This means that any POP can use
indexing and/or indirection for any meaningful purposes.

2.9 System Calls

An operating system such as that required in
time-sharing cannot permit the user to execute every in­
struction known to the hardware. Some instructions, such as
I/O instructions for example, would bring the (independent)
users into serious conflict with each other and with the
system. Instead the system must perform the I/O on the
user's behalf with due regard for checking his authorization
fqr such I/O, for scheduling considerations, device allo­
cation, etc. The user communicates his wishes to the system
(obtains/gives data from/to the system in the case of I/O)
by means of system calls, transfers of control through care­
fully protected entry points of the system software.

The system software is placed in a different area of
memory from that addressable by the user. This is made
possible by the 940 virtual memory features, not discussed
here. Since the user cannot address this memory, there is
no way he can fetch improper information (such as someone
else's password) or store data into it, thereby possibly
destroying or altering the system. All he can do is enter
it, and then only at known locations with valid parameters.

The POP mechanism is ideal for this purpose since it
provides for protected entry (e.q.1 only through the POP
transfer vector, or lirikage table) and makes parameter re­
trieval so natural. If the 940 detects a l in Bit 2 of an
instruction word and also sees a 1 in Bit 0, then before
proceeding to perrorm-tne--steps~deta1led in Section 2.8
above it first shifts memory addressing to include the sys­
tem codee When the link return word is saved in memory
location 0, it is placed in the system's location 0; and
when the branch is made to the POP transfer vector in 1008 -
177B, it is to the system's transfer vector in the system's
1008 1778. POPs with Bit 0 set to 1 thus all branch to
memory invisible to the user and are termed SYSPOPs.

Page 16

Because of their qreat resemblance to machine instruc­
tions (now not even requiring the loading of a subroutine
in~o visible memory and the placing of the correct branch
into the visible transfer vector), SYSPOPs are indis­
tinquishable from machine instructions, exceot that they may
take a little lonqer to execute. In effect there are 64 new
dinstructions~ now available to a user.

Through this means al~ of the instructions denied a
user because their execution might bring him in conflict
with someone else (the priviledged instructions) have been
replaced. In addition, a great number of subroutines which
might be called frequently by a typical programmer have been
installed in the system and are immediately available via
SYSPOPs. This reduces considerably the necessity for a user
to have to retrieve a simple library subroutine and install
it in his program. It is already there (in system space):
all he has to do is call it.

Of the various system calls, many fall into the cate­
gory ideally suited to the POP: a single parameter (and
possibly the A register) is involved. Accordingly such
SYSPOPs look like normal machine instructions, and each is
assigned its own position in the transfer vector and has its
own mnemonic code for use with assembly language. Others,
however, either take no parameter or take several. These
cases all use the same SYSPOP code, BRS (branch to system):
and use the address field to further specify which action to
take. Hence it is possible to have many more than 64 system
calls.

Page 17

3. MACHINE INSTRUCTIONS

This section contains a description of SDS 940 instructions,
grouped by functional r:ategory. With the description of
each instruction is a diagrom,representing the format of the
instruction. Preceding this diagram is the assembler mne­
monic code that identifies the instruction and the name of
the instruction,

Within the instruction diagram, the following conventions
are used. ,

1. The letter "X" in bit position 1 indicates that the in­
struction invokes indexing if bit position 1 contains a
1 (indexing adds no additional time to instruction exe­
cution). If the diagram contains a 0 in bit position 1,
indexing does not apply to the instruction and an un-

, predictable operation occurs if indexing is attempted.

2., Bit positions 3-8 contain a 2-digit octal number that
is the operation code of the instruction.

3, The letter "l" in bit position 9 indicates that the in­
struction invokes indirect addressing if bit position 9
contains a 1 (indirect addressing adds 1 memory cycle
for each level). If the diagram contains a 0 in bit po­
sition 9, indirect addressing does not apply to the
instruction and an unpredictable operation occurs if
indirect addressing is attempted.

Following the description of the instruction is a symbolic
list of all registers, indicators, and memory locations that
can be affected by the instruction. The following symbols
are used:

A A register
B B register
AB Combined A and B registers
X Index register
P P (program counter) register
Of Overflow indicator
El Effective location

Parentheses are used to denote "contents or'. For example,
"(A)" denotes" contents of the A register". The contents of
registers and the addresses and contents of memory locations
are expressed, in this manual, as octal numbers followed by
the letter "B". Al I numbers (except in instruction diagrams)
not followed by the letter "B" are decimal base.

Subscripted numbers identify inclusive bit positions. For
example, "(A)o-11" indicates "the contents of bit positions
0 through 11 of the A register".

LOAD/STORE INSTRUCTIONS

LOA

0 I 2 3

LOAD A

76
I

Reference address
I I

23

LOA loads the effective word into the A register.

Affected: (A)

STA STORE A

35
I

Timing: 2

Reference address

23

ST A stores the contents of the A register in the effective lo­
cation.

Affected: (EL) Timing: 3

LOB LOAD B

0 1 2 3

75 I ' I
8 9 10 23

Reference address

LOB loads the effective word into the B register.

Affected: (B) Timing: 2

STB STORE B

0 1 2 3

36
I

8 9 10

Reference address
I I

23

STB stores the contents of the B register in the effective lo­
cation.

Affected: (EL)

LOX, LOAD INDEX

0 I 2 3

71
I

8 910

Timing: 3

Reference address
I I I

23

LOX loads the effective word into the index register.

Affected: (X)

STX STORE INDEX

0 l 2 3

37
I I 1 I

89 10

Timing: 2

Reference address
I I

23

STX stores the entire contents of the index register in the
effective location.

Affected: (EL) Timing: 3

EAX

0 1 2 3

COPY EFFECTIVE ADDRESS INTO INDEX

77
I I 1 I

8 9 10 I

Reference address
I I I

23

EAX copies the effective vir­
tual address into bit positions 10-23 of the index register.
The ten most significant bits of the index register (0-9) are
unaffected in the normal and user modes.

The process of computing on effective address for this in­
struction operates as in a LOAD A instruction, except that
instead of obtaining the contents of the actual location, the
effective virtual address is used as the operand. For exam­
ple, if execution of this instruction occurs with a zero
indirect address bit and a zero in the index field, then the
actual bil configuration in the address fie Id of EAX is
copied into bit positions 10-23 of the index register.

Affected: (X)01 10_23 Timing: 2

XMA EXCHANGE MEMORY AND A

0 1 2 3

62
I 8 9 10 I

Reference address
I I

23

XMA loads the effective word into the A register and, si­
multaneously, stores the contents of the A register in the
effective location.

Affected: (A), (EL) Timing: 3

ARITHMETIC INSTRUCTIONS

ADD

(olxlol
0 1 2 3

ADD

55
I I 1 I

89 10

Reference address
I 23 .

ADD algebraically adds the effective word to the contents
of the A register and loads the sum into the A register.

After execution of ADD, bit position 0 of the index (X) reg­
ister contains the carry from bit position 0 of the 24-bit
adder. Therefore, the programmer should be careful when
attempting to hold a full word quantity in X while perform-
ing an ADD. .

If both operands have the same sign but the sign of the sum
is different, overflow has occurred, in which case the com­
puter sets the overflow indicator; otherwise, the overflow
indicator is unaffected.

Affected: (A), (X)O' Of Timing: 2

ADC ADD WITH CARRY
Page 18

0 1 2 3

57
I

Reference address
I I

23

ADD WITH CARRY is used to perform multiprecision addition.
Using the instruction ADD, the program adds the 24 low-order
bits of the numbers (ADD automatically retains the carry in
the sign position of the X register). Then, the program adds
the next 24 bits of the numbers, using ADC, which also adds
the carry bit (previously generated) into the low-order posi­
tion of the adder. The program then continues with as many
ADC instructions as are necessary to add the numbers.

After execution of ADC, bit position 0 of the index (X) reg­
ister contains the carry from bit position Oof the24-bit adder.
Therefore, the programmer shou Id be carefu I when attempting
to hold a full word quantity in X while performing an ADD
WITH CARRY.

If both operands have the same sign but the sign of the sum
is different, an overflow has occurred, in which case, the
computer sets the overflow indicator to 1; otherwise, the
computer resets the overflow indicator to O.

·Affected: (A), (X)0, Of Timing: 2

Example:

AssumetheAand8 registers contain a double-precision num­
ber to which the double-precision number in locations
M {1503.41668) and N (123000008) is to be added. The less
significant ha Ives of the numbers are in the 8 register and in
location N.

The program is:

Instruction

(Prior to execution)
XABt . -

20314624,715104268 -
71510426,203146248 -
04010426, 203146248 1
20314624,040104268 1
35351013,040104268 0

ADD N
XAB
ADC M

ADM ADD A TO MEMORY

0 1 2 3

63
I I 1 I

89 10

Reference address
I I 23

ADM adds the contents of the A register totheeffectiveword
and stores the resu It in the effective location.

If both operands have the same sign but the signoftheresult
is opposite, an overflow has occurred, in which case the
computer sets the overflow indicator to 1; otherwise, the
overflow indicator is unaffected. •

Affected: (EL), Of Timing: 3

tXAB is the mnemonic for the instruction EXCHANGE A
AND 8 (see "Register Change Instructions").

MIN

0 1 2 3

MEMORY INCREMENT

61
I

Reference address
I I 23

MIN odds 1 to the value of the effective word and stores
the resulting sum in the effective location.

Overflow occurs with this instruction if and only if the ef­
fective word is 37777777B before execution, in which case
40000000B is the result in the effective location and the
overflow indicator is set to I. If no overflow occurs, the
overflow indicator is unaffected.

Affected: (EL), Of

SUB SUBTRACT

(olxloj
0 1 2 3

54
I

Timing: 3

Reference address
I I 23

SUBTRACT inverts (forms the one's complement of) the ef-
. fective word, adds the inverted word plus 1 to the contents

of the A register, and loads the resu It into the A register.

After execution of SUB, bit position 0 of the index (X) reg­
ister contains the carry from bit position 0 of the 24-bit
adder. Therefore, the programmer should be careful when
attempting to hold a full word quantity in X while perform­
ing a subtraction.

If the sign of the value in A is equal to the sign of the in­
verted word but the sign of the result is different, overflow
has occurred, in which case, the computer sets the over­
flow indicator to 1; otherwise, the overflow indicator is un­
affected.

Affected: (A), (X)0, Of Timing: 2

sue SUBTRACT WITH CARRY

~'O~'x~j~or.1::---5rt--~·~11~j-::--+--R-ef~er_en_ce_a~d-dr_es_s~__:_JI.
0 1 2 3 8.9 1 O I I 23

SUBTRACT WITH CARRY is used to perform multiple-precision
subtractions. The program uses the instruction SUBTRACT to
subtract the low-order 24 bits of the numbers first (SUB auto­
matica I ly retains the carry in the sign position of the X reg­
ister). The program then subtracts the next 24 bits of the
numbers, using sue, which also adds the carry bit (previ­
ously generated in the sign position of the X register) into
the low-order bit position of the adder. The prbgram then
continues with as many sue instructions as are necessary to
subtract the numbers.

After execution of SUC, bit position 0 of the index (X) reg­
ister·contain's the carry from bit position 0 of the 24-bit ad­
der. Therefore, the programmer should be careful when
attempting to hold a full word quantity in X while. perform­
ing a SUBTRACT WITH CARRY.

If the sign of the value in A is equal to the sign of the in­
verted word but the sign of the result in A is opposite, over­
flow has occurred, in which case the computer sets the

Page 19

overflow indicator to I; otherwise, the computer resets the
overflow indicator to 0.

Affected: (A), (X)0, Of Timing: 2

Example:

Assume that registers A and Band memory location M contain
a triple-precision number from which the trip le-precision num­
ber in locations L, L+l, and L+2 is subtracted.

(A, B, M)

361420708,31567000B, lOOOOOOlB

(L, L+I, L+2)

14236213B,46120000B, lOOOOOOOB

The sign of one triple-precision number is in AQ, while its
71 binary digits are in AJ-23• Bo-23, and M0_23• The sign
of the other number is in Lo, and its 71 digits are in L1-23,
L+lo-23• and L+2o-23·

Execution:

Instruction (A, B) ofter execution (X)o

XMA M 10000001,315670008
SUB L+2 00000001,31567000B 0
XMA M 36142070,31567000B 0
XA8 31567000~36142070B 0
sue: l+l 63447000,361420708 1
XAB 36142070,634470008 1
sue L 21704654,63447000B 0

Answer:

21703654,63447000,0000000lB

MUL MULTIPLY

0 1 2 3

64
I

Reference address
I I 23

MULTIPLY multiplies the contents of the A register by the
effective word and loads the fraction product into the A and
B registers, with the more significant portion in A. The orig­
inal contentsofB do not affect the operation of the MULTIPLY
instruction and ore destroyed. The sign of the product is in
Ao; the bit in Bo is part of the product, not treated as a sign
bit. Since the product contains at most 46 significant bits,
the content of 823 is zero. .

If the multiplier and multiplicand are both considered integers
(i.e. / with a binary point to the right of bit position 23), the
binary point of the product is to the right of bit position 22
of the B register; thus, the entire result must be shifted 1 bit
position to the right to obtain the correct integer product.

If the multiplier and multiplicand both have the value
40000000B, overflow occurs and the computer sets the over­
flow indicator to 1; otherwise, the overflow indicator is not
affected.

Affected: (A), (B), Of Timing: 4

Example, multiplication of 3 by 3:

Before exectuion After execution

(A,B) = 00000003,xxxxxxxxB 00000000,000000228
EW = 000000038 000000038

Note that

00000000, oopooo118 scaled at 47

is equal to

00000000, 000000228 scaled at 46

DIV

0 1 2 3

DIVIDE

65
I

Reference address
I I

8 9 10 23
DIVIDE divides the contents of the Aand 8 registers, treated
as a double-precision number, by the effective word, loads
the fractiona I quotient into the A register, and loads the

· fractiona I remainder into the 8 register.

During execution of the DIV instruction, the contents of the
Aand 8 registers (dividend) taken asa double-precision num­
ber ore divided by the sing le-precision contents of the effec­
tive location (divisor). If the dividend is a single-precision
number, the program should clear the B register prior to ex­
ecuting DIV, or erroneous resu Its may occur. Although a
double-length dividend is used, DIV is a single-precision
operation; it should not be confused with a double-precision
divide operation that uses a double-length divisor and· pro­
duces a double-length quotient.

After execution of DIV, the single-precision quotient re­
places the contents of the A register, and the rema~ning
portion of the dividend that has not been divided (undivided
remainder) replaces the contents of the B register. The quo­
tient is signed in accordance with algebraic convention,
that is, positive if dividend and divisor signs are alike, but
negative otherwise. However, DIV generates only 23 mag­
nitude bits and, if the magnitude of the quotient is so small
as to require more than 23 bits to resolve, DIV may produce
a zero quotient regardless of the required sign; but the re­
mainder reflects the undivided portion of the original divi­
dend. The binary scaling of the quotient is equal to the
dividend scale factor minus the divisor scale factor.

The undivided remainder replaces the contents of the 8 reg­
ister and has the same sign as the original dividend. It is
scaled, in 8, at dividend scaling minus 23.

No overflow occurs if -1 s (~~) < 1 (if the quotient is

greater than or equal to minus one but strictly less than plus
one). If the quotient exceeds these boundaries, overflow
accurs and the computer sets the overflow indicator to 1. In
this latter case, the resu Its are not arithmetically correct.

Affected: (A, B), Of Timing: 10

Example 1: Page 20

Before execution After execution

(A, B) = 00000000,000000168 00000002,000000018
EW = 000000038 000000038
Of = x x

Example 2:

(A, B) = 37777777,000000028 40000000,000000018
EW = 444333438 444333438
Of = x 1

LOGICAL INSTRUCTIONS

ETR EXTRACT

0 l 2 3

14
I 111

8 9 10

Reference address

23

ETR performs a logical AND between corresponding bits of
the A register and the effective word and loads the resu It in­
to A. This instruction performs the operation (bit by corres­
ponding bit) according to the following table:

Ai EWi Result in Ai

0 0 0
0 1 0
1 0 0
1 1 1

Affected: (A)

Example:

Before execution

(A)
EW

= 642315678
= 007776008

MRG MERGE

. 0 1 2 3

16
I I 1 I

8 9 10

Timing: 2

After execution

002314008
007776008

Reference address
I I 23

MRG performs a logical inclusive OR between corresponding
bits of the A-register and the effective word and loads the
result into A. This instruction performs the operation (bit by
corresponding bit) according to the following table:

Ai

0
0
1
1

Affected:

Example:

(A) =
EW =

EW· :.:.:..! Result in A;

0 0
1 1
0 1
1 1

(A)

Before execution

064462548
023407128

Timing: 2

After execution

067467568
023407128

EOR

0 1 2 3

EXCLUSIVE OR

17
I

8 9 JO

Ref~rence address
I I

23

EOR performs a logical exclusive OR between corresponding
bits of the A register and the effective word and loads the
result into A. This instruction performs the operation (bit by
corresponding bit) according to the following table:

A· I EW· -· Result in Ai

0 0 0
0 1 1
1 0 1
1 1 0

Affected: (A) Timing: 2

Example:

Before execution After execution

(A) = 341650318 44112010B
EW = 700770218 700770218

The proper memory word configuration logically inverts se­
lected bit positions of the A register. If the effective word
is 777777778, a one's complement of A results.

REGISTER CHANGE INSTRUCTIONS

The facility to operate on and exchange data between the
A, B, and index registers is available within the set of
micro-instructions in t~e register change group.

All instructions in the group use the same operation code,
468. Bit positions 1 and 14 through 23 of the address field
specify the function to be performed by each micro-instruction.
The programmer may specify combinations of address bits to
perform simultaneous operations.

If the selected bits specify that the computer copy two reg­
isters into a third during one operation, a merge of the for­
mer two registers into the latter results. If the selected
control bits specify that the computer copy into a register
and clear that same register, the c I ear operation hos no ef­
fect. The function of each address bit is:

Bit

1
14
15
16
17
18
19
20
21
22
23

function

Clear X
Copy -(A) into A
Copy (A) into X
Copy (X) into A
Bits 15-23 onl/
Copy (X) into B
Copy (B) into X
Copy (B) into A
Copy into B
Clear El
Clear A

tSee STORE EXPONENT, LOAD EXPONENT, and EX­
CHANGE EXPONENTS

Page 21

Indirect addressing and indexing do not apply to these in­
structions.

These instructions require one machine cycle regardless of
the number of functions performed. As an aid to the pro­
grammer, the most useful combinations have mnemonic des­
ignations assigned to them that are recognized by standard
SOS 940 programming systems.

CLA CLEAR A

I 0 I
0 2 3

46
I

00001
I I

CLA clears the contents of the A register to zero.

Affected: (A)

CLB CLEAR B

0 2 3

46
I

8 9

00002
I

CLB clears the contents of the B register to zero.

Affected: (B)

CLAB CLEAR AB

0

0 2 3

46
I

8 9

00003
I

23

Timing: . 1

23

Timing: 1

23
CLAB clears the contents of both the A and B registers to zero.

Affected: (A), (B)

CLX CLEAR INDEX

46
I

Timing: 1

00000
I I 23

CLX clears the contents of the index (X) register to zero.

Affected: (X)

CLEAR CLEAR A, B, AND X

46
I

Timing:

00003
I I

23

CLEAR clears the contents of the A, B, and index (X) regis­
ters to zero.

Affected: (A), (B), (X)

CAB COPY A INTO B

46
I

Timing: 1

00004
I I 23

CAB copies the contents of the A register into the B register.

Affected: (B) Timing: 1

CBA COPY B INTO A

46
I .I. 00010

I I
23

CBA copies the contents of the B register into the A register.

Affected: (A) Timing:

XAB EXCHANGE A AND B

I 0 I
0 2 3

46
I

00014
I I

23

I

XAB copies the contents of the A register into the B register
and, simultaneously, copies the contents of the B register
into the A register.

Affected: (A), (B) Timing: 1

ABC COPY A INTO B, CLEA!{ A

0 J3
46

J9
00005

I I I
0 23

ABC copies the contents of the A register into the B register
and then clears !he A register to zero.

Affected: (A), (B) Timing: 1

- BAC COPY B INTO A, CLEAR B

46
I

00012
I I .,

23

BAC copies the contents of the B register into the A regis­
ter and then c I ears the B register to zero.

Affected: (A), (B)

CAX COPY A INTO INDEX

46
I

8 9

00400
I

Timing: 1

23

CAX copies the contents of the A register into the index
register.

Affected: (X)

CXA COPY INDEX INTO A

46
I .I. 00200

I

Timing: 1

23

CXA copies the contents of the index register into the A
register,

Affected: (A) Timing: 1

XXA

0 2 3

EXCHANGE INDEX AND A

46
I J .

00600

Page 22 ·

23
XXA copies the contents of the index register into the A
register and, simultaneously, copies the contents of the A
register into the index register.

Affected: (A), (X)

CBX COPY B INTO INDEX

0 2 3

46
I

8 9

Timing: 1

00020
I I

23

CBX copies the contents of the B register into the index
register,

Affected: (X) Timing:

CXB COPY INDEX INTO B

0 213
46

819
00040

0
I I I

23

CXB copies the contents of the index register into the B reg­
ister.

Affected: (B) Timing: 1

XXB EXCHANGE INDEX AND B

46
I

00060
I I 23

XXB copies the contents of the index register into the B reg­
ister and, simultaneously, copies the contents of the B reg­
ister into the index register.

Affected: (B), (X)

STE STORE EXPONENT

0

0 2 3

46

I
8 9

00122
I

Timing: 1

23
STE copies the 9 least significant bits of the B register into
the 9 least significant bit positions of the index register, ex­
tends bit 15 of the index register (the sign of the exponent)
into bit position 0 of the index register, and then clears the
9 least significant bit positions of B.

Affected: (B)J5-23t (X)

Example:

Before execution

(8) = 641527138
(Index)=

Timing: 1

After execution

641520008
777777138

LOE LOAD EXPONENT

0 2 3

46
I

8 9

00140
I . I

23

LOE copies the 9 least significant bits of the index register
into the 9 least significant bit positions of the B register.
The 9 least significant bit positions of B ore cleared prior
to the transfer.

Affected: (B)15-23 Timing: 1

Example:

Before execution After execution

(B) = 34765712B 34765151B
(Index)= 00000151B 000001518

XEE EXCHANGE EXPONENTS

I 0 I 46 .I, 00160
I I I

0 2 3 23

. XEE exchanges the 9 least significant bits of the B register
with the 9 least significant bits of the index register. The
exchange loses no information. The new bit 15 of the index
register (the sign of the exponent) is then extended into bit
position O.

Affected: (B) 15-23' (X) Timing:

Example:

Before execution After execution

(B) = 67142355B 67142133B
(Index)= 777771338 000003558

CNA COPY NEGATIVE INTO A

'· 0 .I, 46
I

8 9

10000
I I

1

23

CNA copies the two's complement of the contents of the A
register Into the A register.

Affected: (A) Timing:

BRANCH INSTRUCTIONS

Branch instructions conditionally or unconditionally change
the course of the program by altering the contents of the
program counter. The programmer should note that these
instructions branch to locations determined by the effective
address; this means that the branch can operate with all
levels of indirect and indexed addressing.

!RU BRANCH UNCONDITIONALLY

0 1 2 3

01
i

8 9 10

Reference address
I I

23

Page 23

BRU tokes the next instruction from the location determined
~y the effective addr~ss.

Affected: (P), highest..:.priority active
interrupt I eve I

BRX INCREMENT INDEX AND BRANCH

Timing: 1

41
I

Reference address

0 1 2 3 I I 23

BRX adds 1 to the contents of the index register. If the re­
sultant index register value contai,ns a I in bit position 9, the
computer transfers control to the effective location. If not,
it takes the next instruction in sequence.

If a BRX instruction is indexed, any transfer of control is to
the effective address determined by the value of the index
immediately prior to the execution of BRX. The test for
transfer is on the incremented value of the index register,
just as if the BRX instruction were not indexed .

The 9 most significant bits of the index register (bits 0-8)
have no effect on the execution of the instruction, but may
be affected by it.

Affected: (X), {P) Timing: 1, if branch
2, if no branch

Example:

Location l nstruct ion (X Re~ister)

0777B STA 1500B 777777768
lOOOB BRX 10066 777777776
10018 LOA 2000B

10068 .BRX 10018 OOOOOOOOB
10078 LOA 2100B 000000008

The execution of these instructions is in the following order
as given by their locations:

0777B
10008
10066
10078

BRM MARK PLACE AND BRANCH

0 1 2 3

43
I I 1 I

8 9 10 I

Reference address
I I

23

MARK PLACE AND BRANCH
performs the following operations:

1. stores the state of the overflow indicator in bit position
0 of the effective location

2. stores the contents of the P register (the address of the
BRM instruction) in bit positions 10-23 of the effective
location

BRM loads the value of
the effective address plus 1 into the P register; thus, the
next instruction is taken from the next location after effec­
tive location. If the BRM instruction is executedasthe op­
erand of an EXECUTE instryction (see poge 30), the stored
p register value is the address of the initial EXECUTE in­
struction rather than the address of the BRM instruction.

BRM is used to enter subroutines where a return to the main
program is desired after completing the subro.utine. The sub-·
routine con return program control to the main program ·by
executing a SRI instruction.

Affected: (EL), (P)

Example: BRM 1517B

Before execution

(P} = 5228
(EM3) = 3
(EM2) = 2
(Of) = 1
(1517B) = xxxxxxxxB
Mode = user

BRR RETURN BRANCH

~ olxloj 51 I,,
I 8 9 10 0 1 2 3

Timing: 2

After execution

1518B
3
2
1
53200522B
user

Reference address
I I 23

RETURN BRANCH performs a
log ice I OR between bit 0 of the effective word and the overflow
indicator, places the result in the overflow indicator, and

. then loads the P register with a value equal to 1 pfos the
·contents of.bit positions 10-23 of the effective location.

'Affected: Of, (P) Timing: 2

Example: BRR 15178

Before execution After execution

(P) = 1540B 523B
(Ot) = 0 1
(1517B} = 53200522B 532005228

Page 24

TEST AND SKIP INSTRUCTIONS

SKE SKIP IF A EQUALS MEMORY

0 1 2 3

50
I

Reference address

23
SKE compares the contents of the A register with the effec­
tive word. If the contents of A equal the effective word,
the computer skips the next instruction in sequence and exe­
cutes the fol lowing instruction. If the contents of A do not
equal the effective word, the computer executes the next
instructi_on in sequence.

Affected: (P) Timing: 2, if no skip
3, if skip

SKG SKIP IF A GREATER THAN MEMORY

0 1 2 3

73
I

Reference address
I 23

SKG olgebraicol ly compares the contents of the A register
with the effective word. If the contents of A ore greater
than the effective word, the computer skips the next instruc­
tion in sequence and executes the following instruction. If
the contents of A are less than or equo I to the effective word,
the computer executes the next instruction in sequence.

Affected: (P) · Timing: 2, if no skip
3, if skip

SKM SKIP IF A EQUALS MEMORY ON B MASK

0 1 2 3

70
I

Reference address
I I 23

SKM compares selected bits of the A register with corre­
sponding bits of the effective word. If the selected bits in
A are all identical to corresponding bits of the effective
word, the computer skips the next instruction in sequence
and executes the following instruction. If the selected bits
in the A register ore not all identical to corresponding bits
of the effective word, .the computer executes the next in­
struction in sequence.

The programmer selects the bits in A to be compared by
placing ones in the corresponding bit positions of the B reg­
ister and zeros in the remaining bit positions of B.

SKM treats the contents of A, B, and the effective location
to be unsigned, 24-bit, nonnumeric quantities, anddoesnot
alter them.

Affected: (P) Timing: 2, if no skip
3, if skip

Example:

(A) (B) (EL)

00043007B 001770008 576432408

Since SKM compares bit positions 8-14 only (as determined
by B), and (A) =(EL) in these positions, a skip occurs. Note

that if (B) = 0, a skip occurs regardless of (A) and (EL).
Note also that if (B) = 777777778, the operation of SKM is
identical to that of the instruction SKE.

SKA SKIP IF A AND MEMORY DO NOT COMPARE
ONES

Reference address

0 I 2 3

72
I I I I

8 9 10 I
I I

23

SKA compares the contents of the A register, bit by bit,
with the effective word. If the contents of the A register
and the effective word do not have ones in any corresponding
bit positions, the computer skips the next instruction in se­
quence and executes the following instruction. If the con­
tents of the A register and the effective word do have ones
in at least one corresponding bit position, the computer
executes the next instruction in sequence.

The instruction logically ANDs corresponding bits in A and
the effective word, based on the following table:

(A) EW Result

0 0 0
0 1 0
1 0 0
1 1 1

If the result produces a 1 in any bit position, a skip does not
occur.

Note: Different configurations of the effective word resu It
in a wide variety of conditiona I operations for use
by the programmer. Some representative configu­
rations are:

Effective word
configuration

400000008
77777777B
000000018

Contents of
A register

40000000B
777777778
OOOOOOOlB

Affected: (P)

Operation

Skip if (A) is positive
Skip if (A) = 0
Skip if (A) is even

Skip if effective word is positive
Skip if effective word = 0.
Skip if effective word is even

Timing: 2, if no ,kip
3, if skip

Page 25

SKB SKIP IF BAND MEMORY DO NOT COMPARE
ONES

0 1 2 3

52
I

Reference address

23
The operation of SK8 is identical to that of SKA, but uses
the contents of the 8 register instead of the contents of the
A register.

Affected: (P) Timing: 2, if no skip
3, if skip

SKN SKIP IF MEMORY NEGATIVE

0 I 2 3

53
I

Reference address

23

If the effective word is a negative value (i.e., bit 0 of the
effective word is a 1), the computer skips the next instruction
in sequence and executes the following instruction. If the
effective word is a positive or zero value, the computer ex­
ecutes the next instruction in sequence.

Affected: (P) Timing: 2, if no skip
3, if skip

SKR REDUCE MEMORY, SKIP IF NEGATIVE

0 I 2 3

60
I I I I

8 910

Reference address
I I

23

SKR reauces the value of the effective word by one, places
the result in the some location, and then tests the effective
word for being a negative value. If the effective word is a
negative value ofter being reduced, the computer skips the
next instruction in sequence and executes the following in­
struction. If the effective word is o positive or zero value
after being reduced, the computer executes the next in­
struction in sequence.

An overflow occurs if the initial value of the effectiveword
is 400000008, in which case the resulting effective word is
37777m8, and the overflow indicator is set. If no over­
flow occurs, the overflow indicator is unaffected.

Affected: (EL), Of, (P) Timing: 3

SKD DIFFERENCE EXPONENTS AND SKIP

0 I 2 3

74
I

8 910

Reference address
I I

23

SKD subtracts bits 15 through 23 of the effective word from
bits 15 through 23 of the B register, and stores the absolute
magnitude of the difference in the X regi~ter. If the 9 low­
order bits of the effective word are less than or equal to the
9 low-order bits of the 8 register, the computet e;cecutes
the next instruction in sequence; otherwise, the computer
skips the next instruction in sequence and executes the fol­
lowing instruction.

Affected: (X) 15_23 Timing: 2, if no sk:p
3, if skip

SHIFT INSTRUCTIONS

The shift instructions operate on the contents of the A and
B registers and offer a complete foci lity for right and left
shifting, cycling, and normalizing the contents of these two
registers. The A and B registers, in combination, form a
double-length register whose double-length contents can be
shifted, eye led, or normalized. This double-length register
is named "AB".

When the contents of the AB register shift right, bits from
bit position 23 of the A register shift into bit position 0 of
the B register. When the AB register shifts left, bits from
bit position 0 of the B register shift into bit position 23 of
the A register.

The 48-bit contents of the AB register may be cycled using
the shift instructions. When the contents of the AB register
cycle, the bits that shift from one end of the one register
copy into the other end of the other register.

These instructions use the instruction code to determine the
direction of shift (66 = right; 67 = left); bits l 0- lJ (octal
position 3) of the instruction address determine the method
of shifting as follows:

Bits 10, ll Function

AB shift
AB cycle

00
10
01 Normalize (left only)

Since the type of shift and number of shifts are determined
by bits 10 through 23 of the effective virtual address, Indi­
rect addressing and indexing drastically alter the action spec­
ified in a shift instruction. When computing the effective
virtual address for a shift instruction,

14-bit indexing is performed with all indirectly ad­
dressed operands, and

9-bit indexing is performed with all directly addressed
operands.

That is, indexing with a direct address can affect only the
9-bit shift count.

When the computer decodes a shift instruction, bit positions
15 through 23 of the effective address of the instruction de­
termine the amount of the shift. The computer treats these
nine bits as an unsigned count. If the initial count is equal
to zero, no shifting occurs. If the initial count is greater
than 48, it is set to 48 prior to shifting. Once the shift be­
gins, the count is reduced by 1 for each position shifted, un­
ti I it reaches zero, The countCin the following instructions
indicotesthe number ofplacestobe shifted. Shift timing is:

left shift and Right shift
normalize count Cycles count

0-6 2 o·- 3
7- 26 3 4- 14

27- 46 4 15 - 25
47- 48 5 26 - 36

6 37- 47
7 48

Page 26
RSH RIGHT SHIFT AB

c
0 1 2 3

66
I

8910 1415 23

RSH shifts the contents of the AB register (that is, A and B
registers) right the number of places specified by bits 15
through 23 of the effective address, The bit in the sign po­
sition of A does not shift, but its value is copied into the
vacated bit positions of the shifted number. The bit in the
sign position of B is shifted as a magnitude bit. Bits shifted
out of A23 shift into Bo. Bits shifting post B23 are lost.

Affected: (AB) Timing: 2-7

Example:

The instruction is: RSH 18

Before execution After execution

(A,B) = 45261237,27651260B 77777745,26123727B

Note: This instruction may be used to perform scaling of
floating-point numbers by use of indexing, where
the difference of the exponents is in the index reg­
ister as a positive quantity.

LRSH LOGICAL RIGHT SHIFT AB

0 1 2. 3

66
I

8 9

24
I

c

1415 23

LRSH shifts the contents of AB right the number of places
specified by bits 15 through 23 of the effective address. The
bits in the sign position of A and the sign position of B shift
with the rest of the number. Vacated bit positions on .the
left are filled with zeros. Bits shifting out of A23 shift into
Bo. Bits shifting past B23 are lost.

Affected: (AB)

RCY RIGHT CYCLE AB

0 1 2 3

66
I

8 9

Timing: 2-7

20 c

1415 23

RCY shifts the c..;ntents of the AB register right the number
of places specified in bits 15 through 23 of the effective
address. The bits in the sign positions of A ahd B shift
like any other bits in the number. Bits shifting out of
A2J shift into Bo. Bits shifting out of B2J shift into Ao.
The computer treats the double-length register as if it
were circular and cycles it onto itself; it loses no bits.

Affected: (AB) Timing: 2-7

Example: •

The instruction is: RCY 15

Before execution After execution

(A, B) = 61235703,41537701B 37701612,35703415B

LSH LEFT SHIFT AB

0 1 2 3

67
I

1•10000~ .:. 10 I 115
c

23

LSH shifts the contents of the AB register left the number of
places specified in bits 15 through 23 of the effective ad­
dress. Bits shift left through the sign position of A, but
when a bit, different in value from the original sign, shifts
into the sign position, the computer sets the overflow indi­
cator. Bits shifting out of Bo shift into A23· Bits shifting
past position 0 in A are lost. Zeros fi 11 the vacated bit po­
sitions on the right end of the B register.

Affected: (AB), Of

Example:

The instruction is: LSH 18

Before execution

(A, B) 46712370,64132711B

LCY

0 1 2 3

LEFT CYCLE AB

67
I

20
I

Timing: 2-5

After execution

70641327, 11000000B

c
23

LCY shifts the contents of the AB register left the number of
places specified in bits 15 through 23 of the ·:ffective ad­
dress. The bits in the sign positions of A and B shift like
any other bits in the number. Bits shifting out of Bo shift
into A23· The instruction copies bits that shift from bit
position 0 o.f A into bit position 23 of B. The computer
treats the double-length register as if it were circular and
cycles it onto itself; it loses no bits.

Affected: (A, B) Timing: 2-5

Example:

The instruction is: LCY 9

Before execution After execution

(A, B) = 71432560, 34156723B 32560341,56723714B

NOD NORMALIZE AND DECREMENT X

0 1 2 3

67
I

8 9

10
I

c

1415 23

NOD shifts the contents of the AB register left until (1) a bit
cippeors in position 1 of A that is not equa I to the bit in the
sign position of A, or (2) until C shifts occur. The computer
keeps count of the number of places shifted and when the
normalize operation is completed, it subtracts the count from
the contents of the index register and places the result back
into the index. If, in the attempt to normalize, shifting
exceeds 48 places, the contents of the AB register were ini­
tially zero. In this case, the computer subtracts 48 from the
lnc!Px rPnidf'r_ z .. ro. fi II the vacated oositions.

Page 27

The number C, placed in address bit positions 15 through 23,
is on upper limit for the number of leftshiftsthatwill occur ..
The programmer must ensure that C is sufficiently large to
permit a complete normalization.

Affected: (A, B), (X)

Example:

The instruction is: NOD 30

Before execution

(A, B) = 00004632, 76124035B
(X) = OOOOOOOOB

Timing: 2-5

After execution

23153705,20164000B
77777765B

CONTROL INSTRUCTIONS

NOP NO OPERATION

0 20 00000
I I I

0 1 2 3 8 9 1415 23

Executing NOP does not affect the A register, B register,
X register, or memory. Indirect addressing and indexing do
not apply to this instruction.

Affected: None Timing: 1

, EXU EXECUTE

23 Reference address

0 I 2 3 I I 23

EXU causes the effective word to be executed as on instruc­
tion without altering the contents of the program counter.
If the effective word is not a branch, skip, or another EXE­
CUTE instruction, the computer executes the 'next instruc­
tion, after it executes the effective word.

If the effective word is a branch instruction, program con­
trol goes to the effective address of the branch and not to
the next instruction in sequence following the EXECUTE
instruction.

If the effective word is a skip instruction, then, depending
on the skip decision, program control returns to the next
instruction, or the next instruction plus one, following the
EXECUTE instruction.

If the effective word is another EXECUTE instruction, the
above process continues identically, with the normal return
being the location of the initial EXECUTE instruction plus
one. This process can cascade indefinitely.

Affected: Determined by executed Timing: 1 +executed
instruction instruction

OVERFLOW INSTRUCTIONS

OVT OVERFLOW INDICATOR TEST AND RESET

22
I

00101

23

This instruction tests the status of the overflow indicator,
skips or not accordingly, and turns the indicator off. If the
indicator is off, the computer skips the next instruction in
sequence and executes the following instruction. If the indi­
cator is on, the computer turns the indicator off and then ex­
ecutes the next instruction in sequence.

IA the RGFRla I and l'!'lenitor 1¥toees., the instruction SKS 20001 B
may be used to test and reset the overflow indicator.

Affected: (P), Of Timing: 1, if no skip
. 2, if skip

OTO OVERFLOW INDICATOR TEST ONLY (940 only)

22
I 23

This instruction tests (but does not change) the status of the
overflow indicator. If the overflow indicator is on, the com­
puter executes the next instruction in sequence; however, if
the overflowindicatorisoff, thecomputer skipsthe next in­
struction in sequence and executes the following instruction.

Affected: (P) Timing: 1, if no skip
2, if skip

REO

·1 I
0 ° 2 3

RECORD EXPONENT OVERFLOW

22
I

00010
I I

Page 28

23

This instruction causes the overflow indicator to be turned on·
if the content of bit 14 of the index register is not equal to
the content of bit 15 of the index register; otherwise, the
overflow indicator is not affected.

In the normal and mo.,itor modes, the instruction EOM 201008
may be used to record exponent overflow.

Affected: Of

ROY RESET OVERFLOW INDICATOR

0 2 3

22
I

Affected: Of.

00001
I I

8 9

Timing:

23

Timing: 1

