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1.0 INTRODUCTION 

The XDS 940 is a medium-sized, qeneral ouroose comouter 
accessed from terminals in a tirne-sharinq mode. The 940 is 
a good machine for a study of assembiy-language programminq 
techniques and machine organization. It is sufficiently 
large that a user does not have to confuse himself with 
various tricks required to avoid the hardware limitations of 
typical minicomputers~ yet it is simple enough that the user 
can write, assemble, load and run a small proqram without 
having to learn a huge number of details. (This- is not true 
of the IBM 370, for example.) 

The 940 is at the upper end of a family of ·'midi'' 
computers built beginning in 1961 by Scientific Data Systems 
(SDS), which later became Xerox Data Systems (XDS). The 
family, not produced since 1968, consists of the 910, the 
920, the 930, and the 940. These machines are made of 
discrete components and are thus physically large and expen­
sive compared to their capability (and with machines which 
are being buiJ,t today.) Several hundred were built and 
marketed over a ten-year period, however, and many are still 
in use. 

In terms of computing power, the machines are very 
little b~tter, if any, than present-day minicomputers. In 
fact, it would be no problem to make them today as minicom­
puters and sell them at competitive prices. Where they 
differ from the minis, however, is in their longer word 
length (50% longer than the standard 16 bits). This shows 
up not just in terms of numerical precision and storage 
efficiency, but in certain simplicities. in the instruction 
set and addressing modes which result from instructions not 
having to be encoded into shorter lengths. 

The 940 is a time-shared version of the 930. It is 
equipped with a special operating system (hardware and soft­
ware) which provides to several users simultaneously the 
services of a virtual machine. A virtual machine appears to 
the user to be a complete machine over which he has full 
control, even though he is in fact time-sharing slightly 
different hardware with other users. The user may load the 
virtual machine, examine its state, start it, stop it, and 
do any operation he could do if he had his hands on a 
physical equivalent. 
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The means by which the user communicates with the 
machine and exercises his control over it is a Teletype or 
similar on-line terminal. The terminal may be used for 
input and output when the user's programs are running; and 
it is used for the inspection of memory locations, register 
contents, etc. which on an actual machine usually involves 
lights or indicators. The terminal permits the user to 
reset or clear his (virtual) machine, start it at a certain 
location, stop it, etc. Instead of pushing actual buttons 
and switches, the user types special commands on his termi­
nal. The terminal may also be used to prepare input for a 
program in advance of its operation, much like the use of a 
keypunch when preparinq program source language or data; and 
it can display (perhaps selected portions of) the program's 
output after its termination. The terminal, then, is a 
multi-use device and assumes different roles at different 
times and in different contexts. 

Aside from its virtues of simplicity and straightfor­
wardness, we use the 940 in this course because the BCC 500 
system, as a special feature, emulates the 940 system with 
reasonable efficiency. We can thus provide a number of 
students the opportunity to use an on-line system simultan­
eously. This is advantageous to the students not only in 
terms of how much work can be done but also in providing 
some experience in on-line computing. 

2.0 940 ORGANIZATION 

From his BCC 500 terminal, the user (if he wishes} sees 
a 940 system, i.e., a complete computer system consisting of 
memory, processor, input/output device(s), and operating 
controls and indicators. Figure 1 is a diagram of the 
machine, with emphasis on its registers and data paths. 

2.1 Memory 

The memory contains 16384 addressable cells in which 
information consisting of instructions or data can be 
stored. (16384 is often referred to as ''16K,'' where lK = 
1024.) Each cell contains 24 bits -- binary zeros or ones 
-- of storage. It is up to the user to determine where in 
the memory and in what form the information is to be stored. 
There are essentially no restrictions as to how the memory 
may be used (although there are some conventions). 
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Figure 2 gives the format of and bit naminq conventions for 
a memory cell in the machine. Each location is identified 
by a unique address, which is a number ranging from 0 
through 16383. As seen in the figure, the bits in a cell 
are numbered from the most significant to the least begin­
ning with 0. 

1111111111111111111111111 
~ 1 2 3 4 5 6 7 8 9 l0lll2 J.3J.4J.5J.6J.7l819 20 2122 23 

FIGURE 2. Memory Cell Format. 
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Since one octal digit is readily convertible into three 
bits, octal notation is used to represent the contents of a 
cell. Where it might otherwise be ambiguous we use the 
convention of identifying octal numbers by terminating them 
with the letter dB.d A cell whose contents are as follow: 

is said to contain 305636728. 

The memory permits both storing into and retrieving 
information from any of its cells. Storing involves copying 
a new value into the cell; retrieving copies the current 
contents out without modifying the contents (i.e., non-de­
structively). Either of these operations is called a memory 
reference or a memory access. In undergoing such a refer­
ence the memory must be provided with an address and with a 
store or a fetch command, as shown in Figure 3. The memory 
is designed to operate rapidly, at speeds matching those of 
the processor. The operating speed, or memory cycle time, 
is independent of the address; and so the memory is termed 
random access memory (RAM). The (strictly hardware) memory 
commands are prepared and issued by the in its role of 
executing the user's program. The user, then, is never 
explicitly concerned with operating the memory, but it is 
important for each user at the very outset to correctly 
visualize the memory, the appearance of its contents, and 
the way it works. 
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FIGURE 3. Detail of Memory Organ~zation. 

2.2 Processor 

The processor is the entity which performs the oper­
ations required to execute the program. It fetches the 
machine-language program steps (called operations or in­
structions) from memory and performs the indicated actions, 
which include further fetching or the storing of operands. 
The processor is thus divided into two parts called the 
control section and the arithmetic section. The control 
section iteratively: 

1) fetches the next instruction, 
2) interprets and executes it, (hands over control 

to the arithmetic section) 
3) determines the location of the next instruc­

tion. 

The arithmetic section: 

1) determines the address of any operand(s), 
2) performs an operation on it (them). 
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From the user's point of view the control section per­
forms its work with no specific attention other than an 
awareness on the user's part from time to time of the con­
tents of a register called the program register or P. (A 
register is identical in structure to the memory cell, ex­
cept that it is a constituent of the processor and plays a 
specific role in the processor's operation. Since the 
register is dedicated to certain functions it does not have 
to be addressed in the since of the many ·•registers·• of the 
memory.) P is used to hold the address of the instruction 
currently being executed: at the end of the current instruc­
tion P will be modified to contain the address of the next 
instruction. P may be thought of as a roving pointer which 
ranges over the program as it executes and shows at any 
point of interruption the instruction address to be next 
executed. P thus provides the address required by the con­
trol section when it goes to the memory to fetch an instruc~ 
tion. 

940 instructions each occupy one memory cell and are 
connected together in sequence by the obvious expedient of 
placing sequences of instructions into seauences of cells, 
i.e., cells with numerically increasing addresses. Since P 
most often increments in content value as ~he program runs, 
it is frequently referred to as the ''P counter.·• (This 
counting action may be overridden by the use of branch or 
control transfer instructions which serve to change the 
contents of P altogether). As instructions can be fetched 
only from the 16K memory, P is only a 14-bit register. If 
the machine should attempt to fetch an instruction located 
in the next cell from 16383, P will overflow and the fetch 
will be made from location 0 instead. 

2.3 Instruction Pormat 

The format of an -instruction is shown below. Each 
instruction is divided into portions called fields which 
indicate various aspects of the instruction. 



The fields are: 

- Bit 0: System Call. 
If Bit 0 = 1 an2rBit 2 = 1, the instruction 
is a system call, i.e., a type of instruc­
tion which causes a branch into a specific 
entry point in the operating system (see 
Section 2.9). Input/output, for example, is 
performed by means of system calls. If Bit 
2 = 0, the Bit 0 field is meaningless; it 
may have either value. 

- Bit 1: Index Designator. 
If Bit 1 = 1, the address calculation known 
as indexinq is to be done. Indexing is 
described later. It is applicable only to 
certain instructions. 

- Bit 2: Programmed Operator Desiqnator. 
If Bit 0 = 0 and Bit 2 = 1, the instruction 
is of a special type known as a programmed 
operator. This is described in Section 2.8. 

- Bits 3 - 8: Operation Code. 
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This field holds a six-bit number designat­
ing one of 64 possible instructions. The 
940 does not use all of these combinations. 
A few are thus termed illegal instructions. 
The field is also used in conjunction with 
programmed Operators to designate which one 
of 64 possible operators is being invoked. 

- Bit 9: Indirect Address Designator. 
If Bit 9 = 1, a different mode of addressing 
called indirect addressing, or indirection, 
is invoked. 

- Bits 10 - 23: Operand Field. 
This field contains 14 bits and, like the P 
counter, is capable of naming any one of the 
16K memory locations. The field is most 
frequently used to refer to the address of 
an operand in memory. Some instructions, 
however, use it to hold the operand itself; 
and some do not use it at all. 
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2.4 Processor Registers 

three The arithmetic section of the processor contains 
registers labeled A, B, and X. These registers play unique 
roles in the processor and are addressed implicitly in the 
instructions. The user must maintain awareness of their 
contents, however, since it is he who manages the use of 
these registers within the program. 

A is called the accumulator. It is used by almost all 
the arithmetic and logical instructions and is central to 
the operation of any program. B is the auxiliary accumula­
tor, used with A in a few arithmetic instructions and in 
shffting. The X register is called the index register and 
is used to hold a quantity--termed the index--for offsetting 
the operand address. Although the indexing operation is an 
address calculation--a calculation on a 14-bit quantity--X 
also contains 24 bits. 

2.5 Overflow Indicator 

The overflow indicator in the computer permits the 
ready detection and signaling of overflow conditions which 
might otherwise go undetected- or require additional software 
overhead to detect during arithmetic operations in the exe­
cution of a program. The overflow indicator is set to 1 
(turned on) if any of the following occurs: 

1. A sum or difference resulting from an addition 
or subtraction ·cannot be contained within 
the A register. 

2. Multiplication of 400000008 (also written 487) 

3. 

by itself. (The A and B registers cannot 
contain this product.) 

A division with 
numerator equal 
lute value off 
register cannot 

the absolute value of the 
to or greater than the abso-
the denominator. (The A 

contain this quotient.) 

4. An arithmetic left shift changes the value of 
the bit in the sign position of the A regis­
ter. 

5. Bit 14 of the index register is not equal to 
Bit 15 of the index register when the in­
struction RECORD EXPONENT OVERFLOW (ROV) is 
executed. 
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The 940 instruction set contains instructions to reset, 
test, or test and reset the state of the overflow indicator 
(see Section 3, ~overflow Instructions~). 

2.6 Data Formats 

The 940 has various instructions which are designed to 
work on data assumed to be in different formats as follow: 

2.6.1 Integers 

Integers are represented as 2t24's complement numbers 
having the format: 

1 
t 

Bit 0 indicates the sign of the number, negative numbers 
having a 1 bit and positive numbers having a 0 bit in this 
position. The assumed binary point is to the right of Bit 
23, the least significant bit. In this form the range of 
representation is from -2f23, or -8,388,608, to +2123-1, or 
8,388,607. All of the arithmetic instructions except multi­
ply (MUL) and divide (DIV) can be used on integer quanti­
ties. 

2.6.2 Fixed~point Fractions 

The arithmetic instructions are designed primarily to 
operate on fixed-point fractions haveing the following ap­
pearance: 
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The assu.med binary point is between Bits 0 and 1 at the more 
significant end. Negative numbers are handled as comple­
ments with respect to 2 (two's complements). The range of 
representation is from -1.0 to +l-2f(-23). These numbers 
have the equivalent of more than 6 decimal digits of ac­
curacy. Fixed-point scaling (a forgotten programming art) 
is used in working with such numbers during computation. 

2.6.3 Extended-precision fixed-point Numbers 

Several instructions greatly 
multiple precision data. None, 
data directly. A double-precision 
would look like: 

facilitate the use of 
however, operate on such 
fraction, for example, 

In memory such a datum would be stored in two consecutive 
memory locations. 

2.6.4 Floating-point (Real) Numbers 

While not having true floating-point instructions, the 
940 has several (rather odd) instructions designed to 
greatly reduce the software overhead of subroutines to per­
form calculations on reals. These instructions assume the 
following real-number format: 

I mantissa I exponent I 
l±I 231 l 1±1 1 
~ I I4is 23 
·~ 41 <P 81 

The mantissa is a 39-bit, two's complement, normalized 
fixed-point fraction (giving about 11 decimal digits of 
accur~cy). The exponent is a 9-bit, 512's complement inte­
ger, permitting an exponent ~ange of 21-256 to 21255, or 
about 101-77. In memory, the real number is stored in two 
consecutive memory locations and is addressed by the former 
(i.e., smaller) address. The virtual 940 (the basic in-
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struction set augmented by system calls -- see Section 2.9) 
does have arithmetic ''instructions'' which deal directly with 
reals. 

2.6.5 Character Strings 

The virtual machine adds other capabilities not found 
in the hardware instruction set. An important one is the 
ability to fetch and store individual 8-bit bytes from mem­
ory, according to the following format: 

T H I 
s J6 I 
s J6 A 

J6 s T 
R I N 
G ~ J[ 

This ability makes the machine well suited to deal with 
character strings variable length sequences of bytes. 
For this purpose it is imagined that all of memory can be 
byte addressed, as well as word addressed. Since there are 
three bytes/word, the byte address is roughly three times in 
value the address of the word in which it is stored. The 
precise corres?ondence is 

word addr = byte addr I 3, «.>, 1, or 2 remaining) 

and the byte position within the word is 

I 1 2 

Byte memory thus looks like the following: 

Word fa: Byte fa 1 2 

1: 3 4 5 

2: 6 7 8 

3: 9 lj;J' 11 

4: 12 13 14 
.-.. 

i---- ~ 
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2.7 Address Modification Rules 

Most machines provide some means for modifying at exe­
cution time the effective address of an instruction from 
that which it actually contains. 'l'his is done a) to reduce 
the run-time overhead of programs dealing with simple data 
structures and/or b) to avoid the program's having to mod­
ify itself. The 940 provides indexing and indirection 
(indirect, or deferred, addressing) for these purposes. 'rhe 
two features may be used jointly or singly in the same 
instruction. 

2.7.1 Indexing 

The machine contains an index register (X register) for 
address modification, the use of which does not increase 
execution time. If Bit 1 in an instruction which addresses 
memory (some don't) is 1, the 940 adds Bits 10-23 of the X 
register to. the address field of the instruction to produce 
a. different effective address (the address actually refer­
enced). The add1t1on is done strictly modulo 2~14, com­
pletely ignoring any overflows which may occur. If Bit 1 is 
a zero the X register is not added; the effective address is 
merely the address found in the instruction. 

The instruction set provides instructions for modifying 
and testing the X register. 

2.7.2 Indirection 

When Bit 9 of an instruction (which permits it) is 1, 
indirection is invoked. The machine fetches the contents of 
the address found in the instruction (or the address offset 
by Bits 10-23 of the X register if the instruction word's 
Bit 1 = 1) and begins the entire address modification cycle 
again using Bits 1 and 9 of the newly-fetched location as a 
guide to further action. This process can repeat many 
times, depending on the contents of memory. 

2.7.3 Simultaneous Indexing and Indirection 

It is correct to say that for each instruction executed 
an effective address is always calculated, the results de­
pending on the X and I bits according to the following 
algorithm executed by the hardware: 

In the following, Pis the 14-bit program register, S 
the 14-bit memory address reqister, M the 24-bit memory data 
register, I the 24-bit instruction regi~ter, O the 6-bit 
operation code register, and X the 24-bit index register. 
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The algorithm is expressed in terms of an informal program­
ming language. 

940 EFFECTIVE ADDRESS CALCULATION: 
FIRST WE HAVE TO BETCH THE INSTRUCTION. 

START: S-P & FETCH: 

* AT THE END OF THE MEMORY CYCLE THE FETCHED DATA IS IN M. 

O+M(3,8); /*CAPTURE THE OP CODE BITS*/ 
FOREVER DO; 

I•M; /*ADDRESS CALC BEGINS HERE*/ 
I•(I+X)MOD 2fl4 IF I(l)=l; 
GOTO DONE IF I(9)=0: 
S•I(l0,23) & FETCH: /*DO INDIRECT STEP* 

ENDFOR; 

/*Q IS THE EFFECTIVE ADDR*/ 

(The reader will note that this algorithm accurately des­
cribes the behavior of the machine for all four combinations 
of the X and I bits.) 

2.8 Programmed Operators 

Most arithmetic machine instructions require in some 
way three addresses: those of two operands and that .of the 
result. The 940, like most one-address machines, addresses 
the A register by implication for the first operand and for 
the result. Its instructions, ·then, explicitly address on! y 
the second operand. 

It is not infrequent that a similar situation develops 
when a programmer is designing a subroutine: the subroutine 
is to perform some operation on two 24-bit quantities and 
return a single result. The problem is how to convey to the 
subroutine the two arguments and receive the result. The 
obvious choice for a machine of this type is to use A for 
the first operand and for the result. But the address field 
of the subroutine call instruction is occupied with the 
address of the subroutine, forcing some other choice (such 
as the use of B, perhaps). This is not really bad, but it 
makes the use of the subroutine a little awkward, especially 
if we would like to. apply address modification to the second 
operand. 
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The 940 Programmed Operator (POP) feature permits a 
programmer to pacK· into a single instruction both which 
subroutine is to be entered and a 14-bit address of an 
operand. The suoroutine can with great efficiency and ease 
retrieve this address and apoly the same address modifica­
tion rules as the bare hardware uses. This makes the POP 
subroutine look for-all subsequent programming purposes very 
much like a machine instruction. 

The basis of the POP is as follows: An instruction is 
either a POP, or it is not. Therefore only one bit is 
required in the instruction word to specify whether the 
feature is to be used. Bit 2 = l is used for this purpose. 
The remaining 6 bits of the operation code field are used to 
specify the subroutine entry point. 6 bits cannot, of 
course, directly point to an arbitrary 14-bit address. But 
the field can direct the machine to an arbitrary location 
through a 64-word linkage table. 

When the 940 fetches a new instruction and detects a 1 
in Bit 2 of that instruction (and a 0 in Bit 0), it does not 
interpret Bits 3-8 as an opcode. Instead it: 

1. Stores current value of overflow indicator in 
Bit 0 of memory location 0. 

2. Resets the overflow indicator. 

3. Stores zeros in Bits 1-8 of memory location 0 
and a 1 in Bit 9. 

4. Stores current contents of P register into 
Bits 10-23 of memory location 0. 

5. Loads Bits 2-8 of the instruction word into P 
register. 

The machine does not apply the address modification rules to 
a POP, nor does-rt' refer to Bits 10-23 of the POP instruc­
tion. 

The effect of the steps just outlined is to store a 
normal (except that Bit 9 is always set) subroutine return 
link (see BRM instruction in Section 3) in memory location 0 
and to transfer control to a memory address in the range 
100B - 177B. There it is expected that the programmer will 
have placed an unconditional control transfer to the actual 
subroutine entry point. A given program may include up to 
64 (1008) such subroutines. 
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The subroutine can access the operand specified back in 
the POP instruction, along with any address modification 
specified in the POP, merely by referring to memory location 
0 indirectly. Because of Bit ~-s previously having been 
set, the indirect reference is propagated one more level and 
the effective address is then formed as if the ~O~ had been 
a machine instruction. This means that any POP can use 
indexing and/or indirection for any meaningful purposes. 

2.9 System Calls 

An operating system such as that required in 
time-sharing cannot permit the user to execute every in­
struction known to the hardware. Some instructions, such as 
I/O instructions for example, would bring the (independent) 
users into serious conflict with each other and with the 
system. Instead the system must perform the I/O on the 
user's behalf with due regard for checking his authorization 
fqr such I/O, for scheduling considerations, device allo­
cation, etc. The user communicates his wishes to the system 
(obtains/gives data from/to the system in the case of I/O) 
by means of system calls, transfers of control through care­
fully protected entry points of the system software. 

The system software is placed in a different area of 
memory from that addressable by the user. This is made 
possible by the 940 virtual memory features, not discussed 
here. Since the user cannot address this memory, there is 
no way he can fetch improper information (such as someone 
else's password) or store data into it, thereby possibly 
destroying or altering the system. All he can do is enter 
it, and then only at known locations with valid parameters. 

The POP mechanism is ideal for this purpose since it 
provides for protected entry (e.q.1 only through the POP 
transfer vector, or lirikage table) and makes parameter re­
trieval so natural. If the 940 detects a l in Bit 2 of an 
instruction word and also sees a 1 in Bit 0, then before 
proceeding to perrorm-tne--steps~deta1led in Section 2.8 
above it first shifts memory addressing to include the sys­
tem codee When the link return word is saved in memory 
location 0, it is placed in the system's location 0; and 
when the branch is made to the POP transfer vector in 1008 -
177B, it is to the system's transfer vector in the system's 
1008 1778. POPs with Bit 0 set to 1 thus all branch to 
memory invisible to the user and are termed SYSPOPs. 
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Because of their qreat resemblance to machine instruc­
tions (now not even requiring the loading of a subroutine 
in~o visible memory and the placing of the correct branch 
into the visible transfer vector), SYSPOPs are indis­
tinquishable from machine instructions, exceot that they may 
take a little lonqer to execute. In effect there are 64 new 
dinstructions~ now available to a user. 

Through this means al~ of the instructions denied a 
user because their execution might bring him in conflict 
with someone else (the priviledged instructions) have been 
replaced. In addition, a great number of subroutines which 
might be called frequently by a typical programmer have been 
installed in the system and are immediately available via 
SYSPOPs. This reduces considerably the necessity for a user 
to have to retrieve a simple library subroutine and install 
it in his program. It is already there (in system space): 
all he has to do is call it. 

Of the various system calls, many fall into the cate­
gory ideally suited to the POP: a single parameter (and 
possibly the A register) is involved. Accordingly such 
SYSPOPs look like normal machine instructions, and each is 
assigned its own position in the transfer vector and has its 
own mnemonic code for use with assembly language. Others, 
however, either take no parameter or take several. These 
cases all use the same SYSPOP code, BRS (branch to system): 
and use the address field to further specify which action to 
take. Hence it is possible to have many more than 64 system 
calls. 
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3. MACHINE INSTRUCTIONS 

This section contains a description of SDS 940 instructions, 
grouped by functional r:ategory. With the description of 
each instruction is a diagrom,representing the format of the 
instruction. Preceding this diagram is the assembler mne­
monic code that identifies the instruction and the name of 
the instruction, 

Within the instruction diagram, the following conventions 
are used. , 

1. The letter "X" in bit position 1 indicates that the in­
struction invokes indexing if bit position 1 contains a 
1 (indexing adds no additional time to instruction exe­
cution). If the diagram contains a 0 in bit position 1, 
indexing does not apply to the instruction and an un-

, predictable operation occurs if indexing is attempted. 

2., Bit positions 3-8 contain a 2-digit octal number that 
is the operation code of the instruction. 

3, The letter "l" in bit position 9 indicates that the in­
struction invokes indirect addressing if bit position 9 
contains a 1 (indirect addressing adds 1 memory cycle 
for each level). If the diagram contains a 0 in bit po­
sition 9, indirect addressing does not apply to the 
instruction and an unpredictable operation occurs if 
indirect addressing is attempted. 

Following the description of the instruction is a symbolic 
list of all registers, indicators, and memory locations that 
can be affected by the instruction. The following symbols 
are used: 

A A register 
B B register 
AB Combined A and B registers 
X Index register 
P P (program counter) register 
Of Overflow indicator 
El Effective location 

Parentheses are used to denote "contents or'. For example, 
"(A)" denotes" contents of the A register". The contents of 
registers and the addresses and contents of memory locations 
are expressed, in this manual, as octal numbers followed by 
the letter "B". Al I numbers (except in instruction diagrams) 
not followed by the letter "B" are decimal base. 

Subscripted numbers identify inclusive bit positions. For 
example, "(A)o-11" indicates "the contents of bit positions 
0 through 11 of the A register". 

LOAD/STORE INSTRUCTIONS 

LOA 

0 I 2 3 

LOAD A 

76 
I 

Reference address 
I I 

23 

LOA loads the effective word into the A register. 

Affected: (A) 

STA STORE A 

35 
I 

Timing: 2 

Reference address 

23 

ST A stores the contents of the A register in the effective lo­
cation. 

Affected: (EL) Timing: 3 

LOB LOAD B 

0 1 2 3 

75 I ' I 
8 9 10 23 

Reference address 

LOB loads the effective word into the B register. 

Affected: (B) Timing: 2 

STB STORE B 

0 1 2 3 

36 
I 

8 9 10 

Reference address 
I I 

23 

STB stores the contents of the B register in the effective lo­
cation. 

Affected: (EL) 

LOX, LOAD INDEX 

0 I 2 3 

71 
I 

8 910 

Timing: 3 

Reference address 
I I I 

23 

LOX loads the effective word into the index register. 

Affected: (X) 

STX STORE INDEX 

0 l 2 3 

37 
I I 1 I 

89 10 

Timing: 2 

Reference address 
I I 

23 

STX stores the entire contents of the index register in the 
effective location. 

Affected: (EL) Timing: 3 



EAX 

0 1 2 3 

COPY EFFECTIVE ADDRESS INTO INDEX 

77 
I I 1 I 

8 9 10 I 

Reference address 
I I I 

23 

EAX copies the effective vir­
tual address into bit positions 10-23 of the index register. 
The ten most significant bits of the index register (0-9) are 
unaffected in the normal and user modes. 

The process of computing on effective address for this in­
struction operates as in a LOAD A instruction, except that 
instead of obtaining the contents of the actual location, the 
effective virtual address is used as the operand. For exam­
ple, if execution of this instruction occurs with a zero 
indirect address bit and a zero in the index field, then the 
actual bil configuration in the address fie Id of EAX is 
copied into bit positions 10-23 of the index register. 

Affected: (X)01 10_23 Timing: 2 

XMA EXCHANGE MEMORY AND A 

0 1 2 3 

62 
I 8 9 10 I 

Reference address 
I I 

23 

XMA loads the effective word into the A register and, si­
multaneously, stores the contents of the A register in the 
effective location. 

Affected: (A), (EL) Timing: 3 

ARITHMETIC INSTRUCTIONS 

ADD 

(olxlol 
0 1 2 3 

ADD 

55 
I I 1 I 

89 10 

Reference address 
I 23 . 

ADD algebraically adds the effective word to the contents 
of the A register and loads the sum into the A register. 

After execution of ADD, bit position 0 of the index (X) reg­
ister contains the carry from bit position 0 of the 24-bit 
adder. Therefore, the programmer should be careful when 
attempting to hold a full word quantity in X while perform-
ing an ADD. . 

If both operands have the same sign but the sign of the sum 
is different, overflow has occurred, in which case the com­
puter sets the overflow indicator; otherwise, the overflow 
indicator is unaffected. 

Affected: (A), (X)O' Of Timing: 2 

ADC ADD WITH CARRY 
Page 18 

0 1 2 3 

57 
I 

Reference address 
I I 

23 

ADD WITH CARRY is used to perform multiprecision addition. 
Using the instruction ADD, the program adds the 24 low-order 
bits of the numbers (ADD automatically retains the carry in 
the sign position of the X register). Then, the program adds 
the next 24 bits of the numbers, using ADC, which also adds 
the carry bit (previously generated) into the low-order posi­
tion of the adder. The program then continues with as many 
ADC instructions as are necessary to add the numbers. 

After execution of ADC, bit position 0 of the index (X) reg­
ister contains the carry from bit position Oof the24-bit adder. 
Therefore, the programmer shou Id be carefu I when attempting 
to hold a full word quantity in X while performing an ADD 
WITH CARRY. 

If both operands have the same sign but the sign of the sum 
is different, an overflow has occurred, in which case, the 
computer sets the overflow indicator to 1; otherwise, the 
computer resets the overflow indicator to O. 

·Affected: (A), (X)0, Of Timing: 2 

Example: 

AssumetheAand8 registers contain a double-precision num­
ber to which the double-precision number in locations 
M {1503.41668) and N (123000008) is to be added. The less 
significant ha Ives of the numbers are in the 8 register and in 
location N. 

The program is: 

Instruction 

(Prior to execution) 
XABt . -

20314624,715104268 -
71510426,203146248 -
04010426, 203146248 1 
20314624,040104268 1 
35351013,040104268 0 

ADD N 
XAB 
ADC M 

ADM ADD A TO MEMORY 

0 1 2 3 

63 
I I 1 I 

89 10 

Reference address 
I I 23 

ADM adds the contents of the A register totheeffectiveword 
and stores the resu It in the effective location. 

If both operands have the same sign but the signoftheresult 
is opposite, an overflow has occurred, in which case the 
computer sets the overflow indicator to 1; otherwise, the 
overflow indicator is unaffected. • 

Affected: (EL), Of Timing: 3 

tXAB is the mnemonic for the instruction EXCHANGE A 
AND 8 (see "Register Change Instructions"). 



MIN 

0 1 2 3 

MEMORY INCREMENT 

61 
I 

Reference address 
I I 23 

MIN odds 1 to the value of the effective word and stores 
the resulting sum in the effective location. 

Overflow occurs with this instruction if and only if the ef­
fective word is 37777777B before execution, in which case 
40000000B is the result in the effective location and the 
overflow indicator is set to I. If no overflow occurs, the 
overflow indicator is unaffected. 

Affected: (EL), Of 

SUB SUBTRACT 

(olxloj 
0 1 2 3 

54 
I 

Timing: 3 

Reference address 
I I 23 

SUBTRACT inverts (forms the one's complement of) the ef-
. fective word, adds the inverted word plus 1 to the contents 

of the A register, and loads the resu It into the A register. 

After execution of SUB, bit position 0 of the index (X) reg­
ister contains the carry from bit position 0 of the 24-bit 
adder. Therefore, the programmer should be careful when 
attempting to hold a full word quantity in X while perform­
ing a subtraction. 

If the sign of the value in A is equal to the sign of the in­
verted word but the sign of the result is different, overflow 
has occurred, in which case, the computer sets the over­
flow indicator to 1; otherwise, the overflow indicator is un­
affected. 

Affected: (A), (X)0, Of Timing: 2 

sue SUBTRACT WITH CARRY 

~'O~'x~j~or.1::---5rt--~·~11~j-::--+--R-ef~er_en_ce_a~d-dr_es_s~__:_JI. 
0 1 2 3 8.9 1 O I I 23 

SUBTRACT WITH CARRY is used to perform multiple-precision 
subtractions. The program uses the instruction SUBTRACT to 
subtract the low-order 24 bits of the numbers first (SUB auto­
matica I ly retains the carry in the sign position of the X reg­
ister). The program then subtracts the next 24 bits of the 
numbers, using sue, which also adds the carry bit (previ­
ously generated in the sign position of the X register) into 
the low-order bit position of the adder. The prbgram then 
continues with as many sue instructions as are necessary to 
subtract the numbers. 

After execution of SUC, bit position 0 of the index (X) reg­
ister·contain's the carry from bit position 0 of the 24-bit ad­
der. Therefore, the programmer should be careful when 
attempting to hold a full word quantity in X while. perform­
ing a SUBTRACT WITH CARRY. 

If the sign of the value in A is equal to the sign of the in­
verted word but the sign of the result in A is opposite, over­
flow has occurred, in which case the computer sets the 
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overflow indicator to I; otherwise, the computer resets the 
overflow indicator to 0. 

Affected: (A), (X)0, Of Timing: 2 

Example: 

Assume that registers A and Band memory location M contain 
a triple-precision number from which the trip le-precision num­
ber in locations L, L+l, and L+2 is subtracted. 

(A, B, M) 

361420708,31567000B, lOOOOOOlB 

(L, L+I, L+2) 

14236213B,46120000B, lOOOOOOOB 

The sign of one triple-precision number is in AQ, while its 
71 binary digits are in AJ-23• Bo-23, and M0_23• The sign 
of the other number is in Lo, and its 71 digits are in L1-23, 
L+lo-23• and L+2o-23· 

Execution: 

Instruction (A, B) ofter execution (X)o 

XMA M 10000001,315670008 
SUB L+2 00000001,31567000B 0 
XMA M 36142070,31567000B 0 
XA8 31567000~36142070B 0 
sue: l+l 63447000,361420708 1 
XAB 36142070,634470008 1 
sue L 21704654,63447000B 0 

Answer: 

21703654,63447000,0000000lB 

MUL MULTIPLY 

0 1 2 3 

64 
I 

Reference address 
I I 23 

MULTIPLY multiplies the contents of the A register by the 
effective word and loads the fraction product into the A and 
B registers, with the more significant portion in A. The orig­
inal contentsofB do not affect the operation of the MULTIPLY 
instruction and ore destroyed. The sign of the product is in 
Ao; the bit in Bo is part of the product, not treated as a sign 
bit. Since the product contains at most 46 significant bits, 
the content of 823 is zero. . 

If the multiplier and multiplicand are both considered integers 
(i.e. / with a binary point to the right of bit position 23), the 
binary point of the product is to the right of bit position 22 
of the B register; thus, the entire result must be shifted 1 bit 
position to the right to obtain the correct integer product. 

If the multiplier and multiplicand both have the value 
40000000B, overflow occurs and the computer sets the over­
flow indicator to 1; otherwise, the overflow indicator is not 
affected. 

Affected: (A), (B), Of Timing: 4 



Example, multiplication of 3 by 3: 

Before exectuion After execution 

(A,B) = 00000003,xxxxxxxxB 00000000,000000228 
EW = 000000038 000000038 

Note that 

00000000, oopooo118 scaled at 47 

is equal to 

00000000, 000000228 scaled at 46 

DIV 

0 1 2 3 

DIVIDE 

65 
I 

Reference address 
I I 

8 9 10 23 
DIVIDE divides the contents of the Aand 8 registers, treated 
as a double-precision number, by the effective word, loads 
the fractiona I quotient into the A register, and loads the 

· fractiona I remainder into the 8 register. 

During execution of the DIV instruction, the contents of the 
Aand 8 registers (dividend) taken asa double-precision num­
ber ore divided by the sing le-precision contents of the effec­
tive location (divisor). If the dividend is a single-precision 
number, the program should clear the B register prior to ex­
ecuting DIV, or erroneous resu Its may occur. Although a 
double-length dividend is used, DIV is a single-precision 
operation; it should not be confused with a double-precision 
divide operation that uses a double-length divisor and· pro­
duces a double-length quotient. 

After execution of DIV, the single-precision quotient re­
places the contents of the A register, and the rema~ning 
portion of the dividend that has not been divided (undivided 
remainder) replaces the contents of the B register. The quo­
tient is signed in accordance with algebraic convention, 
that is, positive if dividend and divisor signs are alike, but 
negative otherwise. However, DIV generates only 23 mag­
nitude bits and, if the magnitude of the quotient is so small 
as to require more than 23 bits to resolve, DIV may produce 
a zero quotient regardless of the required sign; but the re­
mainder reflects the undivided portion of the original divi­
dend. The binary scaling of the quotient is equal to the 
dividend scale factor minus the divisor scale factor. 

The undivided remainder replaces the contents of the 8 reg­
ister and has the same sign as the original dividend. It is 
scaled, in 8, at dividend scaling minus 23. 

No overflow occurs if -1 s (~~) < 1 (if the quotient is 

greater than or equal to minus one but strictly less than plus 
one). If the quotient exceeds these boundaries, overflow 
accurs and the computer sets the overflow indicator to 1. In 
this latter case, the resu Its are not arithmetically correct. 

Affected: (A, B), Of Timing: 10 

Example 1: Page 20 

Before execution After execution 

(A, B) = 00000000,000000168 00000002,000000018 
EW = 000000038 000000038 
Of = x x 

Example 2: 

(A, B) = 37777777,000000028 40000000,000000018 
EW = 444333438 444333438 
Of = x 1 

LOGICAL INSTRUCTIONS 

ETR EXTRACT 

0 l 2 3 

14 
I 111 

8 9 10 

Reference address 

23 

ETR performs a logical AND between corresponding bits of 
the A register and the effective word and loads the resu It in­
to A. This instruction performs the operation (bit by corres­
ponding bit) according to the following table: 

Ai EWi Result in Ai 

0 0 0 
0 1 0 
1 0 0 
1 1 1 

Affected: (A) 

Example: 

Before execution 

(A) 
EW 

= 642315678 
= 007776008 

MRG MERGE 

. 0 1 2 3 

16 
I I 1 I 

8 9 10 

Timing: 2 

After execution 

002314008 
007776008 

Reference address 
I I 23 

MRG performs a logical inclusive OR between corresponding 
bits of the A-register and the effective word and loads the 
result into A. This instruction performs the operation (bit by 
corresponding bit) according to the following table: 

Ai 

0 
0 
1 
1 

Affected: 

Example: 

(A) = 
EW = 

EW· :.:.:..! Result in A; 

0 0 
1 1 
0 1 
1 1 

(A) 

Before execution 

064462548 
023407128 

Timing: 2 

After execution 

067467568 
023407128 



EOR 

0 1 2 3 

EXCLUSIVE OR 

17 
I 

8 9 JO 

Ref~rence address 
I I 

23 

EOR performs a logical exclusive OR between corresponding 
bits of the A register and the effective word and loads the 
result into A. This instruction performs the operation (bit by 
corresponding bit) according to the following table: 

A· I EW· -· Result in Ai 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

Affected: (A) Timing: 2 

Example: 

Before execution After execution 

(A) = 341650318 44112010B 
EW = 700770218 700770218 

The proper memory word configuration logically inverts se­
lected bit positions of the A register. If the effective word 
is 777777778, a one's complement of A results. 

REGISTER CHANGE INSTRUCTIONS 

The facility to operate on and exchange data between the 
A, B, and index registers is available within the set of 
micro-instructions in t~e register change group. 

All instructions in the group use the same operation code, 
468. Bit positions 1 and 14 through 23 of the address field 
specify the function to be performed by each micro-instruction. 
The programmer may specify combinations of address bits to 
perform simultaneous operations. 

If the selected bits specify that the computer copy two reg­
isters into a third during one operation, a merge of the for­
mer two registers into the latter results. If the selected 
control bits specify that the computer copy into a register 
and clear that same register, the c I ear operation hos no ef­
fect. The function of each address bit is: 

Bit 

1 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

function 

Clear X 
Copy -(A) into A 
Copy (A) into X 
Copy (X) into A 
Bits 15-23 onl/ 
Copy (X) into B 
Copy (B) into X 
Copy (B) into A 
Copy into B 
Clear El 
Clear A 

tSee STORE EXPONENT, LOAD EXPONENT, and EX­
CHANGE EXPONENTS 
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Indirect addressing and indexing do not apply to these in­
structions. 

These instructions require one machine cycle regardless of 
the number of functions performed. As an aid to the pro­
grammer, the most useful combinations have mnemonic des­
ignations assigned to them that are recognized by standard 
SOS 940 programming systems. 

CLA CLEAR A 

I 0 I 
0 2 3 

46 
I 

00001 
I I 

CLA clears the contents of the A register to zero. 

Affected: (A) 

CLB CLEAR B 

0 2 3 

46 
I 

8 9 

00002 
I 

CLB clears the contents of the B register to zero. 

Affected: (B) 

CLAB CLEAR AB 

0 

0 2 3 

46 
I 

8 9 

00003 
I 

23 

Timing: . 1 

23 

Timing: 1 

23 
CLAB clears the contents of both the A and B registers to zero. 

Affected: (A), (B) 

CLX CLEAR INDEX 

46 
I 

Timing: 1 

00000 
I I 23 

CLX clears the contents of the index (X) register to zero. 

Affected: (X) 

CLEAR CLEAR A, B, AND X 

46 
I 

Timing: 

00003 
I I 

23 

CLEAR clears the contents of the A, B, and index (X) regis­
ters to zero. 

Affected: (A), (B), (X) 

CAB COPY A INTO B 

46 
I 

Timing: 1 

00004 
I I 23 

CAB copies the contents of the A register into the B register. 

Affected: (B) Timing: 1 



CBA COPY B INTO A 

46 
I .I. 00010 

I I 
23 

CBA copies the contents of the B register into the A register. 

Affected: (A) Timing: 

XAB EXCHANGE A AND B 

I 0 I 
0 2 3 

46 
I 

00014 
I I 

23 

I 

XAB copies the contents of the A register into the B register 
and, simultaneously, copies the contents of the B register 
into the A register. 

Affected: (A), (B) Timing: 1 

ABC COPY A INTO B, CLEA!{ A 

0 J3 
46 

J9 
00005 

I I I 
0 23 

ABC copies the contents of the A register into the B register 
and then clears !he A register to zero. 

Affected: (A), (B) Timing: 1 

- BAC COPY B INTO A, CLEAR B 

46 
I 

00012 
I I ., 

23 

BAC copies the contents of the B register into the A regis­
ter and then c I ears the B register to zero. 

Affected: (A), (B) 

CAX COPY A INTO INDEX 

46 
I 

8 9 

00400 
I 

Timing: 1 

23 

CAX copies the contents of the A register into the index 
register. 

Affected: (X) 

CXA COPY INDEX INTO A 

46 
I .I. 00200 

I 

Timing: 1 

23 

CXA copies the contents of the index register into the A 
register, 

Affected: (A) Timing: 1 

XXA 

0 2 3 

EXCHANGE INDEX AND A 

46 
I J . 

00600 
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23 
XXA copies the contents of the index register into the A 
register and, simultaneously, copies the contents of the A 
register into the index register. 

Affected: (A), (X) 

CBX COPY B INTO INDEX 

0 2 3 

46 
I 

8 9 

Timing: 1 

00020 
I I 

23 

CBX copies the contents of the B register into the index 
register, 

Affected: (X) Timing: 

CXB COPY INDEX INTO B 

0 213 
46 

819 
00040 

0 
I I I 

23 

CXB copies the contents of the index register into the B reg­
ister. 

Affected: (B) Timing: 1 

XXB EXCHANGE INDEX AND B 

46 
I 

00060 
I I 23 

XXB copies the contents of the index register into the B reg­
ister and, simultaneously, copies the contents of the B reg­
ister into the index register. 

Affected: (B), (X) 

STE STORE EXPONENT 

0 

0 2 3 

46 

I 
8 9 

00122 
I 

Timing: 1 

23 
STE copies the 9 least significant bits of the B register into 
the 9 least significant bit positions of the index register, ex­
tends bit 15 of the index register (the sign of the exponent) 
into bit position 0 of the index register, and then clears the 
9 least significant bit positions of B. 

Affected: (B)J5-23t (X) 

Example: 

Before execution 

(8) = 641527138 
(Index)= 

Timing: 1 

After execution 

641520008 
777777138 



LOE LOAD EXPONENT 

0 2 3 

46 
I 

8 9 

00140 
I . I 

23 

LOE copies the 9 least significant bits of the index register 
into the 9 least significant bit positions of the B register. 
The 9 least significant bit positions of B ore cleared prior 
to the transfer. 

Affected: (B)15-23 Timing: 1 

Example: 

Before execution After execution 

(B) = 34765712B 34765151B 
(Index)= 00000151B 000001518 

XEE EXCHANGE EXPONENTS 

I 0 I 46 .I, 00160 
I I I 

0 2 3 23 

. XEE exchanges the 9 least significant bits of the B register 
with the 9 least significant bits of the index register. The 
exchange loses no information. The new bit 15 of the index 
register (the sign of the exponent) is then extended into bit 
position O. 

Affected: (B) 15-23' (X) Timing: 

Example: 

Before execution After execution 

(B) = 67142355B 67142133B 
(Index)= 777771338 000003558 

CNA COPY NEGATIVE INTO A 

'· 0 .I, 46 
I 

8 9 

10000 
I I 

1 

23 

CNA copies the two's complement of the contents of the A 
register Into the A register. 

Affected: (A) Timing: 

BRANCH INSTRUCTIONS 

Branch instructions conditionally or unconditionally change 
the course of the program by altering the contents of the 
program counter. The programmer should note that these 
instructions branch to locations determined by the effective 
address; this means that the branch can operate with all 
levels of indirect and indexed addressing. 

!RU BRANCH UNCONDITIONALLY 

0 1 2 3 

01 
i 

8 9 10 

Reference address 
I I 

23 
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BRU tokes the next instruction from the location determined 
~y the effective addr~ss. 

Affected: (P), highest..:.priority active 
interrupt I eve I 

BRX INCREMENT INDEX AND BRANCH 

Timing: 1 

41 
I 

Reference address 

0 1 2 3 I I 23 

BRX adds 1 to the contents of the index register. If the re­
sultant index register value contai,ns a I in bit position 9, the 
computer transfers control to the effective location. If not, 
it takes the next instruction in sequence. 

If a BRX instruction is indexed, any transfer of control is to 
the effective address determined by the value of the index 
immediately prior to the execution of BRX. The test for 
transfer is on the incremented value of the index register, 
just as if the BRX instruction were not indexed . 

The 9 most significant bits of the index register (bits 0-8) 
have no effect on the execution of the instruction, but may 
be affected by it. 

Affected: (X), {P) Timing: 1, if branch 
2, if no branch 

Example: 

Location l nstruct ion (X Re~ister) 

0777B STA 1500B 777777768 
lOOOB BRX 10066 777777776 
10018 LOA 2000B 

10068 .BRX 10018 OOOOOOOOB 
10078 LOA 2100B 000000008 

The execution of these instructions is in the following order 
as given by their locations: 

0777B 
10008 
10066 
10078 

BRM MARK PLACE AND BRANCH 

0 1 2 3 

43 
I I 1 I 

8 9 10 I 

Reference address 
I I 

23 

MARK PLACE AND BRANCH 
performs the following operations: 

1. stores the state of the overflow indicator in bit position 
0 of the effective location 



2. stores the contents of the P register (the address of the 
BRM instruction) in bit positions 10-23 of the effective 
location 

BRM loads the value of 
the effective address plus 1 into the P register; thus, the 
next instruction is taken from the next location after effec­
tive location. If the BRM instruction is executedasthe op­
erand of an EXECUTE instryction (see poge 30), the stored 
p register value is the address of the initial EXECUTE in­
struction rather than the address of the BRM instruction. 

BRM is used to enter subroutines where a return to the main 
program is desired after completing the subro.utine. The sub-· 
routine con return program control to the main program ·by 
executing a SRI instruction. 

Affected: (EL), (P) 

Example: BRM 1517B 

Before execution 

(P} = 5228 
(EM3) = 3 
(EM2) = 2 
(Of) = 1 
(1517B) = xxxxxxxxB 
Mode = user 

BRR RETURN BRANCH 

~ olxloj 51 I,, 
I 8 9 10 0 1 2 3 

Timing: 2 

After execution 

1518B 
3 
2 
1 
53200522B 
user 

Reference address 
I I 23 

RETURN BRANCH performs a 
log ice I OR between bit 0 of the effective word and the overflow 
indicator, places the result in the overflow indicator, and 

. then loads the P register with a value equal to 1 pfos the 
·contents of.bit positions 10-23 of the effective location. 

'Affected: Of, (P) Timing: 2 

Example: BRR 15178 

Before execution After execution 

(P) = 1540B 523B 
(Ot) = 0 1 
(1517B} = 53200522B 532005228 
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TEST AND SKIP INSTRUCTIONS 

SKE SKIP IF A EQUALS MEMORY 

0 1 2 3 

50 
I 

Reference address 

23 
SKE compares the contents of the A register with the effec­
tive word. If the contents of A equal the effective word, 
the computer skips the next instruction in sequence and exe­
cutes the fol lowing instruction. If the contents of A do not 
equal the effective word, the computer executes the next 
instructi_on in sequence. 

Affected: (P) Timing: 2, if no skip 
3, if skip 

SKG SKIP IF A GREATER THAN MEMORY 

0 1 2 3 

73 
I 

Reference address 
I 23 

SKG olgebraicol ly compares the contents of the A register 
with the effective word. If the contents of A ore greater 
than the effective word, the computer skips the next instruc­
tion in sequence and executes the following instruction. If 
the contents of A are less than or equo I to the effective word, 
the computer executes the next instruction in sequence. 

Affected: (P) · Timing: 2, if no skip 
3, if skip 

SKM SKIP IF A EQUALS MEMORY ON B MASK 

0 1 2 3 

70 
I 

Reference address 
I I 23 

SKM compares selected bits of the A register with corre­
sponding bits of the effective word. If the selected bits in 
A are all identical to corresponding bits of the effective 
word, the computer skips the next instruction in sequence 
and executes the following instruction. If the selected bits 
in the A register ore not all identical to corresponding bits 
of the effective word, .the computer executes the next in­
struction in sequence. 

The programmer selects the bits in A to be compared by 
placing ones in the corresponding bit positions of the B reg­
ister and zeros in the remaining bit positions of B. 

SKM treats the contents of A, B, and the effective location 
to be unsigned, 24-bit, nonnumeric quantities, anddoesnot 
alter them. 

Affected: (P) Timing: 2, if no skip 
3, if skip 

Example: 

(A) (B) (EL) 

00043007B 001770008 576432408 

Since SKM compares bit positions 8-14 only (as determined 
by B), and (A) =(EL) in these positions, a skip occurs. Note 



that if (B) = 0, a skip occurs regardless of (A) and (EL). 
Note also that if (B) = 777777778, the operation of SKM is 
identical to that of the instruction SKE. 

SKA SKIP IF A AND MEMORY DO NOT COMPARE 
ONES 

Reference address 

0 I 2 3 

72 
I I I I 

8 9 10 I 
I I 

23 

SKA compares the contents of the A register, bit by bit, 
with the effective word. If the contents of the A register 
and the effective word do not have ones in any corresponding 
bit positions, the computer skips the next instruction in se­
quence and executes the following instruction. If the con­
tents of the A register and the effective word do have ones 
in at least one corresponding bit position, the computer 
executes the next instruction in sequence. 

The instruction logically ANDs corresponding bits in A and 
the effective word, based on the following table: 

(A) EW Result 

0 0 0 
0 1 0 
1 0 0 
1 1 1 

If the result produces a 1 in any bit position, a skip does not 
occur. 

Note: Different configurations of the effective word resu It 
in a wide variety of conditiona I operations for use 
by the programmer. Some representative configu­
rations are: 

Effective word 
configuration 

400000008 
77777777B 
000000018 

Contents of 
A register 

40000000B 
777777778 
OOOOOOOlB 

Affected: (P) 

Operation 

Skip if (A) is positive 
Skip if (A) = 0 
Skip if (A) is even 

Skip if effective word is positive 
Skip if effective word = 0. 
Skip if effective word is even 

Timing: 2, if no ,kip 
3, if skip 
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SKB SKIP IF BAND MEMORY DO NOT COMPARE 
ONES 

0 1 2 3 

52 
I 

Reference address 

23 
The operation of SK8 is identical to that of SKA, but uses 
the contents of the 8 register instead of the contents of the 
A register. 

Affected: (P) Timing: 2, if no skip 
3, if skip 

SKN SKIP IF MEMORY NEGATIVE 

0 I 2 3 

53 
I 

Reference address 

23 

If the effective word is a negative value (i.e., bit 0 of the 
effective word is a 1), the computer skips the next instruction 
in sequence and executes the following instruction. If the 
effective word is a positive or zero value, the computer ex­
ecutes the next instruction in sequence. 

Affected: (P) Timing: 2, if no skip 
3, if skip 

SKR REDUCE MEMORY, SKIP IF NEGATIVE 

0 I 2 3 

60 
I I I I 

8 910 

Reference address 
I I 

23 

SKR reauces the value of the effective word by one, places 
the result in the some location, and then tests the effective 
word for being a negative value. If the effective word is a 
negative value ofter being reduced, the computer skips the 
next instruction in sequence and executes the following in­
struction. If the effective word is o positive or zero value 
after being reduced, the computer executes the next in­
struction in sequence. 

An overflow occurs if the initial value of the effectiveword 
is 400000008, in which case the resulting effective word is 
37777m8, and the overflow indicator is set. If no over­
flow occurs, the overflow indicator is unaffected. 

Affected: (EL), Of, (P) Timing: 3 

SKD DIFFERENCE EXPONENTS AND SKIP 

0 I 2 3 

74 
I 

8 910 

Reference address 
I I 

23 

SKD subtracts bits 15 through 23 of the effective word from 
bits 15 through 23 of the B register, and stores the absolute 
magnitude of the difference in the X regi~ter. If the 9 low­
order bits of the effective word are less than or equal to the 
9 low-order bits of the 8 register, the computet e;cecutes 
the next instruction in sequence; otherwise, the computer 
skips the next instruction in sequence and executes the fol­
lowing instruction. 

Affected: (X) 15_23 Timing: 2, if no sk:p 
3, if skip 



SHIFT INSTRUCTIONS 

The shift instructions operate on the contents of the A and 
B registers and offer a complete foci lity for right and left 
shifting, cycling, and normalizing the contents of these two 
registers. The A and B registers, in combination, form a 
double-length register whose double-length contents can be 
shifted, eye led, or normalized. This double-length register 
is named "AB". 

When the contents of the AB register shift right, bits from 
bit position 23 of the A register shift into bit position 0 of 
the B register. When the AB register shifts left, bits from 
bit position 0 of the B register shift into bit position 23 of 
the A register. 

The 48-bit contents of the AB register may be cycled using 
the shift instructions. When the contents of the AB register 
cycle, the bits that shift from one end of the one register 
copy into the other end of the other register. 

These instructions use the instruction code to determine the 
direction of shift (66 = right; 67 = left); bits l 0- lJ (octal 
position 3) of the instruction address determine the method 
of shifting as follows: 

Bits 10, ll Function 

AB shift 
AB cycle 

00 
10 
01 Normalize (left only) 

Since the type of shift and number of shifts are determined 
by bits 10 through 23 of the effective virtual address, Indi­
rect addressing and indexing drastically alter the action spec­
ified in a shift instruction. When computing the effective 
virtual address for a shift instruction, 

14-bit indexing is performed with all indirectly ad­
dressed operands, and 

9-bit indexing is performed with all directly addressed 
operands. 

That is, indexing with a direct address can affect only the 
9-bit shift count. 

When the computer decodes a shift instruction, bit positions 
15 through 23 of the effective address of the instruction de­
termine the amount of the shift. The computer treats these 
nine bits as an unsigned count. If the initial count is equal 
to zero, no shifting occurs. If the initial count is greater 
than 48, it is set to 48 prior to shifting. Once the shift be­
gins, the count is reduced by 1 for each position shifted, un­
ti I it reaches zero, The countCin the following instructions 
indicotesthe number ofplacestobe shifted. Shift timing is: 

left shift and Right shift 
normalize count Cycles count 

0-6 2 o·- 3 
7- 26 3 4- 14 

27- 46 4 15 - 25 
47- 48 5 26 - 36 

6 37- 47 
7 48 
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RSH RIGHT SHIFT AB 

c 
0 1 2 3 

66 
I 

8910 1415 23 

RSH shifts the contents of the AB register (that is, A and B 
registers) right the number of places specified by bits 15 
through 23 of the effective address, The bit in the sign po­
sition of A does not shift, but its value is copied into the 
vacated bit positions of the shifted number. The bit in the 
sign position of B is shifted as a magnitude bit. Bits shifted 
out of A23 shift into Bo. Bits shifting post B23 are lost. 

Affected: (AB) Timing: 2-7 

Example: 

The instruction is: RSH 18 

Before execution After execution 

(A,B) = 45261237,27651260B 77777745,26123727B 

Note: This instruction may be used to perform scaling of 
floating-point numbers by use of indexing, where 
the difference of the exponents is in the index reg­
ister as a positive quantity. 

LRSH LOGICAL RIGHT SHIFT AB 

0 1 2. 3 

66 
I 

8 9 

24 
I 

c 

1415 23 

LRSH shifts the contents of AB right the number of places 
specified by bits 15 through 23 of the effective address. The 
bits in the sign position of A and the sign position of B shift 
with the rest of the number. Vacated bit positions on .the 
left are filled with zeros. Bits shifting out of A23 shift into 
Bo. Bits shifting past B23 are lost. 

Affected: (AB) 

RCY RIGHT CYCLE AB 

0 1 2 3 

66 
I 

8 9 

Timing: 2-7 

20 c 

1415 23 

RCY shifts the c..;ntents of the AB register right the number 
of places specified in bits 15 through 23 of the effective 
address. The bits in the sign positions of A ahd B shift 
like any other bits in the number. Bits shifting out of 
A2J shift into Bo. Bits shifting out of B2J shift into Ao. 
The computer treats the double-length register as if it 
were circular and cycles it onto itself; it loses no bits. 

Affected: (AB) Timing: 2-7 

Example: • 

The instruction is: RCY 15 

Before execution After execution 

(A, B) = 61235703,41537701B 37701612,35703415B 



LSH LEFT SHIFT AB 

0 1 2 3 

67 
I 

1•10000~ .:. 10 I 115 
c 

23 

LSH shifts the contents of the AB register left the number of 
places specified in bits 15 through 23 of the effective ad­
dress. Bits shift left through the sign position of A, but 
when a bit, different in value from the original sign, shifts 
into the sign position, the computer sets the overflow indi­
cator. Bits shifting out of Bo shift into A23· Bits shifting 
past position 0 in A are lost. Zeros fi 11 the vacated bit po­
sitions on the right end of the B register. 

Affected: (AB), Of 

Example: 

The instruction is: LSH 18 

Before execution 

(A, B) 46712370,64132711B 

LCY 

0 1 2 3 

LEFT CYCLE AB 

67 
I 

20 
I 

Timing: 2-5 

After execution 

70641327, 11000000B 

c 
23 

LCY shifts the contents of the AB register left the number of 
places specified in bits 15 through 23 of the ·:ffective ad­
dress. The bits in the sign positions of A and B shift like 
any other bits in the number. Bits shifting out of Bo shift 
into A23· The instruction copies bits that shift from bit 
position 0 o.f A into bit position 23 of B. The computer 
treats the double-length register as if it were circular and 
cycles it onto itself; it loses no bits. 

Affected: (A, B) Timing: 2-5 

Example: 

The instruction is: LCY 9 

Before execution After execution 

(A, B) = 71432560, 34156723B 32560341,56723714B 

NOD NORMALIZE AND DECREMENT X 

0 1 2 3 

67 
I 

8 9 

10 
I 

c 

1415 23 

NOD shifts the contents of the AB register left until (1) a bit 
cippeors in position 1 of A that is not equa I to the bit in the 
sign position of A, or (2) until C shifts occur. The computer 
keeps count of the number of places shifted and when the 
normalize operation is completed, it subtracts the count from 
the contents of the index register and places the result back 
into the index. If, in the attempt to normalize, shifting 
exceeds 48 places, the contents of the AB register were ini­
tially zero. In this case, the computer subtracts 48 from the 
lnc!Px rPnidf'r_ z .. ro. fi II the vacated oositions. 
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The number C, placed in address bit positions 15 through 23, 
is on upper limit for the number of leftshiftsthatwill occur .. 
The programmer must ensure that C is sufficiently large to 
permit a complete normalization. 

Affected: (A, B), (X) 

Example: 

The instruction is: NOD 30 

Before execution 

(A, B) = 00004632, 76124035B 
(X) = OOOOOOOOB 

Timing: 2-5 

After execution 

23153705,20164000B 
77777765B 

CONTROL INSTRUCTIONS 

NOP NO OPERATION 

0 20 00000 
I I I 

0 1 2 3 8 9 1415 23 

Executing NOP does not affect the A register, B register, 
X register, or memory. Indirect addressing and indexing do 
not apply to this instruction. 

Affected: None Timing: 1 

, EXU EXECUTE 

23 Reference address 

0 I 2 3 I I 23 

EXU causes the effective word to be executed as on instruc­
tion without altering the contents of the program counter. 
If the effective word is not a branch, skip, or another EXE­
CUTE instruction, the computer executes the 'next instruc­
tion, after it executes the effective word. 

If the effective word is a branch instruction, program con­
trol goes to the effective address of the branch and not to 
the next instruction in sequence following the EXECUTE 
instruction. 

If the effective word is a skip instruction, then, depending 
on the skip decision, program control returns to the next 
instruction, or the next instruction plus one, following the 
EXECUTE instruction. 

If the effective word is another EXECUTE instruction, the 
above process continues identically, with the normal return 
being the location of the initial EXECUTE instruction plus 
one. This process can cascade indefinitely. 

Affected: Determined by executed Timing: 1 +executed 
instruction instruction 



OVERFLOW INSTRUCTIONS 

OVT OVERFLOW INDICATOR TEST AND RESET 

22 
I 

00101 

23 

This instruction tests the status of the overflow indicator, 
skips or not accordingly, and turns the indicator off. If the 
indicator is off, the computer skips the next instruction in 
sequence and executes the following instruction. If the indi­
cator is on, the computer turns the indicator off and then ex­
ecutes the next instruction in sequence. 

IA the RGFRla I and l'!'lenitor 1¥toees., the instruction SKS 20001 B 
may be used to test and reset the overflow indicator. 

Affected: (P), Of Timing: 1, if no skip 
. 2, if skip 

OTO OVERFLOW INDICATOR TEST ONLY (940 only) 

22 
I 23 

This instruction tests (but does not change) the status of the 
overflow indicator. If the overflow indicator is on, the com­
puter executes the next instruction in sequence; however, if 
the overflowindicatorisoff, thecomputer skipsthe next in­
struction in sequence and executes the following instruction. 

Affected: (P) Timing: 1, if no skip 
2, if skip 

REO 

·1 I 
0 ° 2 3 

RECORD EXPONENT OVERFLOW 

22 
I 

00010 
I I 
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23 

This instruction causes the overflow indicator to be turned on· 
if the content of bit 14 of the index register is not equal to 
the content of bit 15 of the index register; otherwise, the 
overflow indicator is not affected. 

In the normal and mo.,itor modes, the instruction EOM 201008 
may be used to record exponent overflow. 

Affected: Of 

ROY RESET OVERFLOW INDICATOR 

0 2 3 

22 
I 

Affected: Of. 

00001 
I I 

8 9 

Timing: 

23 

Timing: 1 


