ABSTRACT

This document provides a complete description of the
BCC-500 CPU from a machine language programming point of view.
It is expected that most programming will be at a level well
above machine language, since the Systems Programming Language
(SPL)vis completely adequate for most of the‘systems develop-
ment. This document represents an updated, edited and revised
version of two working documents originally written by Butler
Lampéon and Charles Simonyi. This manual reflects the changes
made to the CPU at the University of Hawaii.

TABLE OF CONTENTS

Page

l. INTRODUCII'IONI.....‘.‘......Q...‘........ 3
2. GENERAL CHARACTERISTICS AND STATE

3. ADDRESS SPACE AND MAP ...vvveenoonnn

LK I A I 7

4. ADDRESSING FROM INSTRUCTIONS ..veeeeevoeeeees 16
- INDIRECTADDRESSING % &6 © & 0 P P S PSS 0O S O e ST O OO 34

. USE OF ADDRESSES BY INSTRUCTIONS A45

5

6

7. FUNCTION CALLS t'vveurenneennenneennneannenns 47
8. PROGRAMMED OPERATORSccceveeoeeccscecsees 62
9

. SYSTEM CALLS ..uuevvneevneernnsenneennnnnneen 63
10. TRAPS;.,..;...........,.... 64
11. CpU INTERRUPTABILITQ N -1
12. ORDINARY INSTRUCTIONS Y X

13, FLOATING POINT tuvvuusennevnnenneennsenneenns 92
14, APPENDIX CONTENTS ..ueunnnnnnnnnnnnnnnnnnnnss 102

DEFINITION OF INSTRUCTION CODES .v.veeeaeeesss 103
DEFINITION OF OPR ADDRESSES seeececescsensess 104
SUMMARY OF ADDRESSING ..¢csescecsncscscesecsss 105
SUMMARY OF INSTRUCTION ADDRESSING ...eeeesv.. 106
FIXED TRAPS tveeevecssennsosossanssssanasnass 108
RING-DEPENDENT TRAPS ..¢.ieeeccocasancacesess 109
RING-DEPENDENT TRAP I@: BLLERR ceeesseeceees 110
SUMMARY OF IMPORTANT CORE ADDRESS eeeveceesss 111
SPL PROGRAM TO DEFINE BLL +vveeevescesaseeses 113
WORD FORMATS ..iuveeeeetoacsoressossnsssnansess 118
SOME FIELDS IN OCTAL FORM .4:ieveseeseccnceees 127
CHT HASHING ALGORITHM ...iceeevconceceseesass 128

1. Introduction

This is a reference manuél for the BCC 5@@ central processor
unit (CPU). It is intended to be a compiete and self-contained
description of the characteristics of the processor from the
point of view of a machine language programmef (although it is
hoped that few programmers will ever have occasion to descend to

machine language).

TQO considerations have dominated the design of the CPU. They
are étated here in the hope that they will make clearer the
rationale for some of the machine's characteristics.

1) The CPU will be implemented on a éomewhat modified version
of a BCC microprocessor. This implied that peculiar instruc-
tion and addressing sequencing can be used freeiy.

2) The CPU will be programmed almost entirely in SPL or FORTRAN.
It is therefore essential that the common constructs of these
languages have efficient hardware counterparts. Most notable
among them are array referencing, function calls and returns,

part word field accessing and string processing.

2. General Characteristics and State

The CPU is a 24-bit, word 6riented, two's complement machine.
It has 64 instructions and a variety of éddressing modes. Bits
are numbered § to 23 with bit @ on the left (most significant)
end of the word. Both single (48-bit) and double (96-bit) pre-

cision floating point arithmetic are implemented in hardware.

A process, which may be defined as a program in its executién
‘environment, is called an active process if it is running on
the CPU. All the information necessary to define a process is
contained in a single page of its virtual memory and is called
its context block. When an active process is blocked the
following objects must be saved:. |

® All pages in the prbcess‘that have been modified;

® The context block;

e The state of the CPU.
The staﬁe of the CPU is saved in a fixed Location in thé con-
text block and consists of 12 registers as illustrated in fig-

ure 2.1

WORD NAME
g 4 216 Program Counter 3 »p
1 ¢ A - register 231 a
2 g B - reyister 23 B
3 9 C - register 23 c
4 ¢ D - registgr 23 D
5 v Floating point exponent 112 23 E
€ a Index register 23 X
7 p Local environment register 23 L
8 4 Global environment register 23 ¢
9 g 415 Status register (see below) 23] SR
10 g Compute Time Clock 23 CTC
11 g Interval Timer 23 17

The status register contains the following fields:

4 5 6 8 9 11 12 1314 15 16 17 18 19 20 21 22 23
F o |s|u ;i oo NEINE
D | TRMOD | PRMOD | CC |4 |U|T| |F}F{ 10 s
P OlF Il LlLig|V T
m| |2lc|E[5}y D
Bit Name Contents
5 FDP Full double precision flag
6-8 TRMOD Temporary rounding mode
9-11 PRMOD Permanent rounding mode
12-13 cc Condition Code
14 940M 940 Mode
15 SUF - Soft underflow flag
le XUTILT Utility exit trap flag
17 XMONT Monitor exit trap flag
18 TDFLAG Temporary double-precision flag
19 PDFLAG Permanent double-precision flag
20 CARRY Carry bit
21 TOV Temporary overflow bit
22 ov overflow bit
23 INSTD Instruction terminated bit

FIGURE 2.1 CPU STATE

Note that it is convenient in the notation used in the manual
to refer to some registers by affixing an "R" to their name.

So you will see the following names referring to the same re-

gister,

A AR A-register
B Bﬁ B-register
C CR C~-register
D DR D-register
E ER E-register
X XR X-register

3. Address Space and Map

The CPU considers itself at any particular time to be running a
process which is defined by its context block. Each process

has a 256K address space. The CPU uses 18-bit addresses to

specify memory locations. The address space has two signifi-
cant characteristics:

1) it is divided into three rings as follows:

addresses @-377777B user ring (lowest)
. 49gp@EB~-577777B utility ring

6gpaEEAB~7777778 monitor ring (highest)

The rings are protected from each other according to certain
rules. Every memory reference is said to have a source. The
source for any references generatéd by an instruction up to

and including a fetch of4an indirect word is, for examplé, the
program counter; the source for any reference generated after a
fetch of an indirect word up to and including a fetch of the
next indirect word is the address of the first indirect word.
Every reference also has a target, which is the address being
referenced. The following matrix defines those combinations of

“source and targets which are legal.

Target
User Utility Monitor
User Yes No No
Source Utility Yes Yes No

Monitor Yes Yes ~ Yes

To summarize:

a) References from one ring to a higher one are forbidden.

b) If indirection leads to a lower ring, it is forbidden

to return to the same or higher ring during the same instruction.

This fact makes it easy, for example, for monitor routines to

enforce the user's protection rules when storing into a table

provided by thé user: they need only do their stores indirect

through an address in the user ring, and the fing protection

hardware will do the checking automatically.

A forbidden reference causes trap MACC (Memory ACCess error).

The target is passed as a parameter to this trap. See figure

3.1 for the two representations of the virtual address space.

VIRTUAL ADDRESS SPACE

& g

USER
AREA

37771778

40ppp0B

UTILITY
AREA

266K

5777778

6232pPB

'MONITOR
AREA

A 4 7777778

USER RING

UTILITY RING

MONITOR \
RING

FIGURE 3.1 VIRTUAL ADDRESS SPACE AND PROTECTION RINGS

2) The address space is organized into 2048 (2K) word
pages, and the precise collection of pages‘which make up the
address space is specified by the map. Pages are named in a
manner independent of their location in core, and the mapping
hardware uses this iocation4independent name, together with a
table called the core hash table (CHT), to determine the physi-
cal core location of a page. The page number (the top 7 bits)
of every memory reference thus requires two levels of transla-
tion: | |

from page number to location-independent name

from location-independent name to physical page address

The various mechanisms for performing this translation will now

be described.

10

Locdtions 200B-277B in the context block contain the map of the
virtuai address space for the process. These 128 half-word en-
tries specify the contents of the corresponding 128 pages of
the address space of the process. Each half-word is interpre-

ted aé follows:

1 - 34 11l

R P
0 MTI

Bit Name . Contents

2} MAPRO Read-only bit. This bit is merged
with the RO bit in PMY to make the
read-only bit interpreted by the

hardware
1-3 ———— unused
4-11 PMTI ‘a PMT index

FIGURE 3.2 MAP ENTRY

The process memory table (PMT) provides enough information about
each page accessible to the process to permit the hardware

to access the page. The PMT starts at location 300B in the
context block. Eabh entry is 4 words long; the address in the

context block of PMT entry i is therefore 4(i-1) + 300B.

A PMT entry has the form

11

UNIQUE NAME —_—

Disk Address .

SF

R
o PREF
Word Bits
"} g-23
1 g-23
2 2-23
3 g
3
3 12

Name

UN1

UN2

DA

PMTRO

PREF

SF

Contents

First 24 bits of unique name for
the page (Location-independent
name)

Second 24 bits of unique name for
the page

Disk address of the page
Read-only bit

Page has been referenced

Page is écheduled for the process

(i.e., in core working set and
the process is active)

The other bits are not used by hardware. The unique name is

refered to as UN in the text.

FIGURE 3.3

PROCESS MEMORY TABLE ENTRY

12

Note that there is no provision for execute-only pages, since
this device by itself is not sufficient to protect proprietary
programs. The sub-process structure of the monitor is supposéd

to be used for this purpose.

The central processor contains a physical map (PM) which has

128 registers of 11 bits each. One of the registers has the

form:
g 1 2 3 19
EF | DB |PMRO PAa
Bits Name Contents
g EF Empty flag
DB Dirty bit, set if the page has

been stored into since it was read
from the drum

2 PMRO Read-only bit
3-10 PA Physical address of page in a real
core of up to 512K.

FIGURE 3.4 PHYSICAL MAP REGISTER

When é new process starts to run on the processor, the empty flag.
is set in each PM entry. Every address generated by the pro-
gram must be mapped to convert it from virtual to real so that

an access can be made to the real core. This is done by taking

the top 7 bits of the 18-bit address and using them to select

one of the 128 PM entries. If the empty flag is off, the re-

13

malnduf of the entry is returned. The PA fleld is prefixed to
the last 11 bits c¢f the virtual addre s to make a read address.
If the access is a store and PMRO = 1, the store is aborted and
the PRO (Pace Read Only) trap is caused. If the access is a
store, PM = ¢ and DB = @, the dirty bit in the CHT entry for

the page is set and DB is set to 1.

If the empty flag.is on, the PM entry must bé loaded. Let its
index be i. PFirst, entry i of the ﬁap (i.e. half-word 4ﬁQB + 1

in the context block) is fetched. If PMTI is §, trap PNIM (Page
Not In Map) occurs. Itbit is not ¢ MAPRO [i] is saved. Then

the PMT entry specified by PMTI [i] is fetchea.. Call it entry n.
If SF[n] = @, trap PNIC (Page Not In Core) occurs. PMTRO is
saved; if PREF [n] = g, it is set to l; the UN found in PMT [n] is

‘then looked up in the core hash table.

The Core Hash Table contains information about the current contents
of core memory. It starts at location 4gﬂB in real core and is
organized as a chained hash table. The table comes in two parts:

1) The index, called CHT1 which is an arrgy_of 256 pointers
to lists of CHT entries. Each word of CHT1l is either IEND or ﬁhe
address of a CHT2 entry e with the property that HASH (UN(e)) is
the add ess of the CHT1 word. If there are several pages in CHT
with the same value of HASH (UN), the CHT1 word'points ﬁo one of
them, which points to the next using the collision pointer field,
and so‘on until all are chained into the list. The last element
has END in its collision peinter. The hashing function HASH is
to take thé exclusive or of the six 8-bit bytes of the Unique

Name (UN) and then the exclusive or of this result with 264B.

Revision 3/4/74

14

2) The body, called CHT2, is an array containing a 6 word

entry for each page of real core. Each entry has the form:

UN1

UN2

\\\ DA
ol o

D
é U § PST CrA PL SCHED
FCLP
CLP
Word Bits Name Contents
g g-23 UN1 First 24 bits of uniqué name
1 @g-23 UN2 Second 24 bits of unigque name
2 - 2-23 DA Disk address of page
3 '] DIRTY Dirty bit
3 1 U Unavailable bit-
3 2-4 PST Page status
3 5-12 CPA Core page addréss
3 13-15 PL - Page lock
3 16-23 SCHED Number of occurrences of page
in loaded working sets
4 6-23 FCLP Free core list pointer
5 ' 6-23 CLP Collision PTR

FIGURE 3.5 CORE HASH TABLE ENTRY

15

If (U OR PST) # @ or the page is not in CHT, trap PNIC occurs.
If the page is found, CPA and DIRTY are copied into the PM and

PMRO is set to MAPRO OR PMTRO [n].

All the traps (PRQ, PNIM, PNIC) which can be generated by the
mapping operation are given the virtual address being mapped as

a parameter.

To make sure that a particular page is not being used by the
- CPU, an external processor may request a scan of the physical
map. When such a request is received, the PA field of all nén-
empty registers in the physical mép is»matched against the con-
tents of cell 2455B + CPU ﬁumber *4., If any of them matches,
the MAB (Map ABort) trap occurs. The message cell is set to

4B7 upon completion of the scan, regardless of the outcome.

lé6

4, Addressing from Instructions

The machine has a rather complex addressing struéturé} The

address calculation is performed in the same way for every in-

struction, and it may yield either an operand OP or an effec-

tive address Q. The format of an instruction and of an indirect

address word (IAW) is as follows:

a) Instruction word format

Jo} 2 3 8 9 1¢g ’ . 23
p

TAG’ OoPC g W

Bit Name Contents

g-2 TAG Address TAG field

3-8 OPC Op code

9 POP Programmed operator bit

19-23 W Address field

b) Indirect address word format

12 - 23
IAT BODY
Bit Name Contents
g-1 IAT Tag field which defines the meaning

of the rest of the word

2-23 Body The meaning depends on IAT

FIGURE 4.1 INSTRUCTION AND INDIRECT ADDRESS
WORD FORMAT

17

Since the addressing is rather complex, it seems worthwhile to
explain in some detail what the various features are for, before
describiné them precisely. There are a number of points wnich
influenced the design: |

l) It is necessary tovbe able to conveniently address a
256K (18-bit) address space, even though an instruction has
only a l4-bit address field.

2) Programs are normally written in relatively small
units, each of which references some private storage of its
own and some global storage.

3) Array references are very common. Sinée there is on-
'ly one index register for holding subscripts, it would be very
nice to have a convenient way of using core.locations for in-
dexing. Since the 1angua§es which are expected to account for
a majority of the load on the ﬁachine require subscripts to be
checked for size before being used, it would be nice to have a
cheap and convenient way of doing this. Furthermore, we have
to deal with arrays having elements which may 6ccupy 1 (inte-
Vger), 2 (real), or 4 (double) words. To have to multiply the
index by the element size is a great annoyance.

4) References to fields which occupy whole words or parts
of words relative to a poinfer are also common, especially in
system code.

5) It is essential to have an effective mechanism for
handling strings of 8-bit characters. If other byte sizes can

also be accommodated, so much the better.

18

All of these goals are achieved in a fairly economical way by
the addressing system. In particular, arrays, strings, and
part-word fields are handlea by indirect addressing, which al-
lows an absolute 18-bit address to be supplied. The addressing
modes available in an instruction allow for immediate operands,
addressing relative to the instruction word for referencing the
program, and addressing relative to two base registers whiéh
are intended to reference the local storage of the subroutine
(called the local environment, L) and the global storage of the
whole program (called the global envirohment, G). They also
permit indexing to be specified from the X—registef or from the

first few cells of the local or global environment.

It should be obvious by now thatche addressingvsystem is de-
signed to be used by programs whiéh are organized in a very de-
finite way, i.e., into a collection of subfcutines or functions
(of less than 4K words each), each with local storage (of less
than 2K Qords for scalars), and all with access to a single
global storage and communications area (of less than 16K words).
The first 128 words of the local and global environments are
special; this is because there are 8—bit fields in certain ad-
dfesses in which the top bit specifies L or G and the remaining
7 bits address one of the first 128 words. The first 32 words
are even more special, because there are 6-bit fields in which
the top bit specifies L or G and the remaining 5 bits address

one of the first 32 words. With this introduction, we proceed

19

to describe the addressing in detail, together with comments on
the intended use of each feature. A reader unfamiliar with
this material will find it helpful to read the text following

the description of each mode first.

The 3-bit TAG field of an instruction determines one of 8 ad-

dressing modes.

) 2 3 8 9 1p 23
TAG OPC W

TAG Name Addressing Mode
) D Direct orvG—relative
1 I Indireét or G-Indirect
2, , X | Indexed
3 BX 4 Base-Index
4 PD Pointer—Displacement
5 PDI Pointer—DisplaCement—Indirect
6 BXD ’ Base-Index-Displacement

7 REL Relative. This one has 6 sub-cases.

FIGURE 4.2 ADDRESSING MODES SPECIFIED
BY TAG FIELD

The relative mode has 6 sub-cases, L-relative, source~-relative,
. immediate, indirect L-relative, indirect source-relative and

immediate indexed.

20

The relative words are formatted aé follows:

A}

2 3 8 9 1p 12 13 , ' 23

TAG=7 OPC REL wll3,23]
REL Name , ' Addressing Mode
g ' LR L-relative
LRI L-relative Indirect
6 IMX Immediate-Indexed
7 7 M Immediate
2 3 8 9 1g 1112 ‘ 23
TAG=T7 oPC SREL wl12,23]
SREL Name Addressing Mode
1 SR Source-relative
2 SRI ' Source-relative Indirect

FIGURE 4.3 RELATIVE ADDRESSING MODES SPECIFIED
BY REL AND SREL

Notice that we have represented the 6.sub—cases of the relative
mode by introducing two fields called REL and SREL. This is
because in the source relative modes of addressing bit 12 is
used as part of the address field. Also we have introduced some
new nbtation. The W[13,23] indicates that we are referring to
bits 13 through 23 of the instruction word and that those bits

are contained within the address field W of the instruction.

21

Most of the modes depend on the existence of an indexing regis-

ter IR, and a source register R. The IR register is not to be

confused with the index register X. 1In fact, it is not part of
the state at all; i.e. its value does not have to be preserﬁed
from one §nstruction to the next. The IR is used to hold the
18-bit value which will be used when an indexing operation is
called for by the addressing system. It is initialized from X
at the beginn;ng of each instruction. Thereafter, it may be
loaded from a word specified by a BX or-Bxﬁ mode or an array in-
direct word (see below). The source register is initialized to
the addressvof the word from which the instruction has been

fetched (normally P).

Some addressing modes compute Q directly from the information in
the central registers, the instruction and possibly one memory

word used for indexing. Others (the indirect modes) compute di-

rectly the!location of an indirect address word, and the con-
teﬁts of this word then determines how the addressing computa-
tion is to proceed. If indireét addréssing is specified, only
the valﬁes of the IAW address and IR affect the subsequent ad-
dress computation. We will therefore confine ourselves to spe-
cifying those values which describe instruction addressing, and

leave the details of indirect addressing for later treatment.

22

Before we describe the various addressing modes in detail, we

define some notation that will be used in defining the various

modes.

- CONTENTS (N)

IA(N)

Wi, 3]

SIGNED (W[1i,3])

will be used to denote the contents of the
memory location with address N. Ring check-
ing is performed with R as source and N as
target. “

implies that the indirect addressing segquence

"is initiated by:

FUNCTION IA(N);
IAW <« CONTENTS (N) ;
R « N;

*PROCEED TO PROCESS IAW

By the time it is finished, the IA function
will set the value of Q or OP.

Note that special cases of the IA(N) function
may be specified for each of the 4 indirect
addressing modes where we may want to indi-
cate a particular mode. We may have any one
of the following:

NORMAL'IA(N) ;
FIELD'IA(N) ;
STRING'IA(N) ;
ARRAY'IA(N) ;

means bits i to j of W (the address field
of the instruction) considered as a 24-bit
number. W[i,i] is represented by W[i].

means W[i,j] interpreted as a two's complement
number of (j - i + 1) bits.

23

All instructions start with IR « XR & R <« P; in the notation
used, the "$" indicates indirection and "'" (e.g. G'[w]) is used
‘n the sense of a delimiter between symbols. We now define in

detail all the addressing modes with indirect addressing dis-

cussed in a separate section which follows.

Direct (D) or G-relative:

@ 2 3 8 9 1¢ 23

TAG=f OPC W.

Q¥ W+ G;

OP < CONTENTS (Q) ;

In the direct or G—relativé mode, the effective address ié given
by the l4-bit address field relative to G. 'This permits direct
addressing of the first 16K of the globél environment. The
notation in SPL is | |

OPC G'[W];

24

Indirect (I) or G-relative Indirect:

g 2 3 8 9 1p 23
TAG=1 oPC
IA(W + G);

In the indirect mode, any of the first 16K words of the global

environment can be used as an IAW {(indirect address word) that

may point anywhere in the virtual address space.

The notation is

OPC $G'[W];

Indexed (X):

g

2

3

8 9 19

23

TAG=2

orC

Q <« W + IR;

OP + CONTENTS (Q);

Since IR is initialized by XR, the effective address is the

(18-bit) sum of

The notation is

OPC X'[W];

the indexing register and the address field.

25

Pointer-Displacement (PD):

) 2 3 8 9 1g 15 16 | 23
TAG=4 0PC * DISPLACEMENT i POINTER ADDRESS

Where the pointer field is one of the following:

16 23
PTR < IR; ‘ i) o
| 16 17 23

PTR + CONTENTS (G + W[17,23]);] W[17,23]
16 17 23

PTR < CONTENTS(L + W[17,23]); 1 W[17,23]

and the address calculation is:

PTR « IR IF W[16,23] = @ ELSE
PTR « CONTENTS (G + W[17,23]) IF W[16]
PTR « CONTENTS(L + W[17,23]);

¥ ELSE

DISP + SIGNED(W[1f,15]);:
Q « PTR + DISP;

OP < CONTENTS(Q) ;

In this mode the address field is divided into an 8-bit pointer
address field and a 6-bit signed displacement field. Similar
arrangements are used in several other modes; they will be explain-
ed here in detail. The top bit of the 8-bit pointer address speci-
fies the environment (l=local, f=global) and the remaining 7 bits
address one of the first 128 words in the local or global environ-
ments. If pointer address is @, the contents of IR, rather than
of word # in G,.is specified. The calculation of DISP speéified
the conversion of a 6-bit ndmher wﬁich is fo be interpreted as

two's complement into a 24-bit two's complement number.

26

Finally, the effective address is the sum of the pointer (PTR)
specified by pointer address and the displacement (DISP). The
typical use of this mode is in addressing the nth word of a'ta-
ble entry given a pointer to the start of the entry. If the
pointer P is in the first 128 words of either environment, then
the word is loaded into A, say by
LDA P[D]

which is the notation fof PD addressing with pointer address P
and displacement D.
‘The notation is

OPC P[D];
where P may be one of the following:

g or G'[ﬂ] for PTR <« IR;

G'[N] where @§ < N < 127 for PTR + CONTENTS(G + N);

I A

L‘[N] where §

A

N < 127 for PTR « CONTENTS(L + N);

and -32 < D < 31

Pointer-Displacement~Indirect (PDI):

g 23" 8 9 1¢g 15 16 : 23
+ e]]
TAG=5 OPC _ DISPLACEMENT 1, POINTER ADDRESS

Q <« PTR + DISP as for PD mode;

IA(Q);

This is just indirect addressing in PD mode.
The notation is

OPC $P[D];

27

Base~Index:

a 2 3 8‘ g 1¢ 15 16 23
TAG=3 OPC N]Ci INDEX ADDRESS (I;. BASE ADDRESS
Where the index address field is one of the following:
' ‘ 19 15
INDEX <« IR; g g
1g 11 15
INDEX <« CONTENTS(G + W[11,15}); 2 W[1l,15]
1g 11 15
INDEX < CONTENTS(L + W[11l,15]); 1 W[11,15]
and the base address field is one of the following:
' 16 23
BASE « IR; 19 g
16 17 23
BASE <+ CONTENTS(G + W[17,23]); g W[17,23]
1617 23
BASE < CONTENTS (L + W[17,23]); W[17,23]

and the address calculation is:

BASE <« IR IF W[16,23] = g ELSE
BASE < G + W[17,23] IF W[1l6] = @ ELSE
BASE « L + W[17,23];

——

IR « IR IF W[1@,15] = § ELSE

IR < CONTENTS(G + W[11,15]) IF W[1l¢] = ¢ ELSE

IR « CONTENTS(L + W[11,15]);

IA (BASE) ;

28

This is the array and part-word field mode and is written

OPC B[I]
where B is the base and I the index. The 8-bit and 6-bit index
are both treated as local or global environment addresses, ex-
actly like the pointer address in PD mode. The index is put in-
to IR and the base specifies an indirect word. If an array is
being acceséed, B will addresg an IAW which has the 18-bit base
address of the array and specifies indexing. The contents of
IR, which was loaded from I, will thus be added to the base ad-
dress of the array to determine the final 18-bit address, which
is just what we require for array referencing. This is not, how-
_ever, the whole story; the rest will be told when we come to con-

sider the indirect addressing type used for arrays.

29

Base-Index-Displacement (BXD) :

g 2 3 8 9 1¢ ' 15 16 23

+ G
TAG=6 OPC __ DISPLACEMENT 1, INDEX ADDRESS

Where the index address field is one of the following:

16 23
INDEX <« #; ' g g
16 17 23
INDEX < CONTENTS (G + W[17,23]); o w[17,23]
16 17 23
INDEX <« CONTENTS (L + W[17,23]); 1 Ww[17,23]

and the base address is in the indexing_registef.
The address calculation is:
BASE <« IR;
INDEX <« @ IF W[1l6,23] = @§ ELSE
INDEX <« CONTENTS (G + W[17,23]) IF W[l6] = @§ ELSE
INDEX <« CONTENTS(L + W[17,23]);
DISP <« SIGNED(W|1f#,15]);
IR « INDEX + DISP;

IA (BASE);

This mode is similar to BX. It assumes that the base address
is in the IR. The field thus freed is used to provide a displace-
ment (anything from -32 to +32) of the index. Thus to load
B[I + 5] we would write

EAX B

LDA ($X")[I + 5];
where I is the index address, 5 the displacement. See the dis-
cussion of érrays in section (5) for more details on the BX and

BXD addressing modes.

The notation is

30

oPC ($x')[I + DJ];

where X' is X-register and I the index.

Relative

(REL) :

There are 6 sub-cases, depending on the first three bits of W.

We describe each relative mode separately

L-relative (LR):

g 2

3

8 9 1¢g 12 13

23

TAG=7

OPC

RTAG=f

W[1l3,23]

DISP <« W[13,23]:

Q <« L + DISP;

OP <« CONTENTS (Q)

The L-relative mode simply addresses a location in the 2K local

environment.

The notation is

oPC L'[D];

31

L-relative indirect (LRI):

2 3 8 9 19 12 13 23

TAG=7 OopC RTAG=1 wW[1l3,23]

DISP « W[13,23];

Q + L + DISP;

IA(Q) ; |
This is simply the indirect counterpart for the L-relative mode.
The notation is |

OPC $L'[D];

Source-relative (SR):

g 2 3 8 9 1¢ 1213 23

TAG=7 OorC RTAG=2, 3

causes the instruction to be interpreted as

g 2 3 8 9 1¢ 11 12 23

TAG=7 OPC ngﬁ w[12,23]

DISP « SIGNED (W[l2,_23]) H

Q <« R + DISP;

OP <« CONTENTS (Q);
This mode allows location up to 4g@@B on either side of the in-
struction to be addressed. Remember R is initialized to the

.program counter at the start of the address calculation.

32

Source-relative-indirect (SRI):

4] 2 3 8 9 1¢ 12 13 23

- TAG=7 OPC RTAG=4,5

causes the instruction to be interpreted as

2 3 " 8 91p 1112 . ‘ ‘ 23

| SRTAG
TAG=7 OPC - w[1l2,23]

DISP <« SIGNED(W[12,23]);
Q « R + DISP;
IA(Q);

- This is just the indirect counterpart for source relative.

The notation is

OPC’$R'[D];

All the relative modes allow routines to be placed anywhere in
memory without modification and to address themselves without

difficulty, as long as they are not more than 2@48 words long.

33

Immediate (IM):

%4 2 3 8 9 1¢ 12 13 23

TAG=7 OPC RTAG=7 W[13,23]

OP « SIGNED(W[13,23]);
The immediate mode permits signed constants in the range -2g@@gB
to 1777B to 5e provided as operands without an additional memory
reference. Stores are not allowed and the opérand must not be
larger than Il-bits.
The notation is

OPC I;

Immediate-indexed (IMX):

2 3 8 9 10 12 13 ' 23

TAG=7 OPC RTAG=6 . W[13,23]

OP < IR + SIGNED(W[13,23]);
This adds the contents of IR to the immediate operand.
The notation is

OPC X' + I;

5. Indirect Addressing

34

To prevent infinite loops of the indirect mechanism, a trap, ILIM

(Indirect LIMit exceeded), will occur if indirection through more

than 16 levels is attempted.

There are four types of indirect addressing: normal, field,

string, and array.

The type is selected by the first two bits

of the word. The intended use of each type is suggested by its

name and will now be explained in detail.

Normal: the IAW has the form

g 12 45 6 23
R LW
IAT=§| TAGA7 |p
or
g 12 45 67 1 23
TRIRE
IaT=g| TAG=7 |ap{Lx| RTAG LWR
Bits Nam Contents
0-1 IAT Indirect Address Type zero
2-4 TAG interpreted exactly like an instruc-
tion TAG
5 TRAP causes trap IATRP if set’
6 RELX causes indexing for relative modes
1¢g-23 LWR long address for the relative modes
6-23 w long word address

35

If TRAP is set, the IATRP trap is caused, and R is péssedvas its
argumént. Otherwise, TAG and W are interpreted és in an instruc-
tion word, with three_exceptions:

1) if TAG =D, I, or X, LW is used in place of W, and G is
not added. In other words, an 18-bit absolute address
is supplied.

2) if TAG = REL, IR is added to the addresseélcomputed by
L and R-relative modes if RELX is set. I.e., indexing
is possible with these modes. Also, the 3-bit subtag’
is found in bits 7-9, thus allowing the LR, LRI, SR,
and SRI offsets to be 3 bits longer. |

3) if TAG = PD or PDI, the mode is read-only direct (ROD)

or réad—only X-relative (ROX) respectively. These
behave exactly like D and X modes except that an attempt

to store will cause the ROIA trap with R as parameter.

Normal type permits any word in the aadress séace to be address-
ed directly. t is generally used for pointers and for the ad-
dresses of arrays. Note that although the capabilities are al-
most identical to those provided by an instruction address, the
format is quite different. It is not possiblé to use an instfuc—
tion as an indirect word. It also permits indexing of'a L-rela-
tive or source-relative address, so that arrays in the program

of the local environment can be addressed conveniently.

36

Field: the IAW has the form

12 3 7 8 1213 22
" v
IAT=1iSE SIZE FB _ DISP
Bits Name : Contents
0-1 IAT 1
3-7 SIZE size of field in bits
8-12 FB address of first bit of the field
2 SE causes sign extension of the field
if set
13-23 DISP 2's complement signed displacement

FIELD: Q < IR + DISP;

U <« CONTENTS (Q) ;

OP « U [FB, FB + SIZE - 1];

OP « OP - 2#x (24-FB) IF SE = 1 AND OP [FB,FB] = 1;
The field which is SIZE bits in length and which starts at bit
FB in word DISP + IR is referenced. Both FB and FB + SIZE - 1
must be < 23. If they are not a TI trap will occur. If SE is
set, the leftmost bit of the field (bit FB at DISP + IR) will be
extended into bits @ through 23—SIZE.of the resulting operand.

DISP is taken as a 2's complement number, in the range -1024 to

1023,

Revision 3/4/74

37

The idea here is that IR contains a pointér to a table entry,
and that the field descriptor (the IAW) specifies a group of
bits at some definite locaﬁion in the entry. Typically, the
pointer might be in PTR within 32 wordsvof L and the field

descriptor in F within 128 words of G. Suppose the contents

of F is

FIELD 3: 6, 12
or in octal " DATA 21640003B °
then we might write

LDA | F [PTR]

using base-~index addressing} Since PTR‘appears in the index
field, its contents is put into IR. Then F is taken as an

IAW. Since it is of type field, it aécesses the word at IR.+ 3,
which is CONTENTS (PTR+3) ; i.é., ﬁhé fourth word of the object
pointed to by PTR. Bits 6 - 12 of this object will be loaded
into A. If the word addressed was 012345678, then A will contain‘
47B. The field can be used as an operand in any instruction
which accesses a single-word operand, this includes both load

and store types. Note that fields cannot cross word boundaries.

38

String: the IAW has the form

23

-

Contents

character size: @ = 6 bits, 1 = 8,

character position in word

g 12 34 56
JIAT=21CSIZE}] CPOS WA
Bits Name
g-1 IAT 2
2-3 CSIZE
2 =12, 3 = 24
4-5 CPOS
6-23 WA word address

‘The character at the indicated position in the word addressed by

"WA is referenced.

The following table defines what bits are re-

ferenced by the 16 possible combinations of CSIZE and CPOS.

CSIZE/CPOS g 1 2 3
g ' g-5 6-11 12-17 18-23
1 g-7 8-15 16-23 X
2 g-11 12-23 X X
3 g-23 X X X

Combinations marked X in the table will cause a TI trap.

The bits referenced are treated exactly like the bits selected

by a field IAW.

This type of indirection allows one byte in a string to be re-

ferenced. The instruction ISD increments the descriptor to point

to the next byte, which may then be referenced. It has the

39

additional feature of setting‘the condition code depending on
whethef the descriptor is equal to the next word or not. The
string type and this instruction are intended to be used with
four-word string descriptors. The first WOrd points just
before the first byte allocated for the string. The second word
(read pointer, RP) points to the first character of the string,
the third word (write pointer, WP) to the laét character. The
fourth word points to the last byte allocated for the string.

To read the first chafacter, increment RP with ISD, then indirect
through it. The case of no characters left can be detected by
the abnormal CC setting. To write a character, inérement WP
with ISD and then store indirect through it. Overflow of

available storage can be detected by the CC setting.

40

Array: an array descriptor is two words long. Its form is:
LEB = ¢
g 12 3 45 617 23
T L |
TAT=3{L.B % E | MULT UB
PiB
PTR
or
LEB = 1
1 2 3 45 1g 11 23
gl
IaT=3|LEBl R} E MULT UB
A1B
P
PTR
Word:Bit Name Contents
g:g-1 IAT 3
g2 LB lower bound for IR (g or 1)
g:3 ATRAP array trap bit
g4 LEB large element bit
g:5-6 MULT IF
LEB = @ multiplier for IR
g:5-10 MULT IF
LEB = 1
@:7-23 UB IF
LEB = § upper bound for IR
#:11-23 UB IF
LEB = 1
" 1:6-23 PTR P pointer to array

41

A multiplier of one is coded in the descriptor as zero, two
as one, etc. If IR<LB or IR>UB, trap ABE occurs, with R as

parameter. If ATRAP

1 in IAW and the instruction is not LAX,
or ATRAP = @ and the instruction is LAX, trap IATRP occurs with

R as parameter.

otherwise, IR « (IR - LB) * (MULT + 1); T « R + 1;

NORMAL'IA(T);

Where NORMAL'IA indicates IA(T) of type normal. This is the
most ccmplicated of the IAW types. It is inteﬁded to accomplish
the following fuﬁctions connected with array acceséing:
l) Allow # or 1 aé lower bound |
2) Perform a bounds check on the subscript
3) Multiply the subscript by the size of the array
element, allowing for sizes up to 64
4) Check that the number of subscripts supplied is
the number expected (see below) |
5) Provide an 18-bit absolute base address fo£ the

array.

42

Arrays are intended to be stored with marginal indexing. Thus

the 2 x 3 one-origined integer array A would appear as follows:

A=

(1,1)

LB=1, ATRAP,MULT=(,UB=2 /;y LB=1, MULT=§, UB=3 /}g

(1,2)

LB=1, MULT=@, UB=3 (1,3)

(2,1)

(2,2)

¥
bl B e i o

(2,3)

(The three 2-word descriptors are array indirect words.)

The LAX instruction works just like EAX, éxcept that it merges
an X tag in XR[2,4] (leavihg é normal IAW which specifieé
indirection) and treats the TRAP bit in én array descriptor

as though it were complemented.
Then to do B « A[K,L] we would write
LAX A[K] (BX addressing)

which leaves the address of the descriptof for the Kth row in

X followed by

LDA (sx") [L] (BXD addressing)

STA B

43

The second subscript can have a constant displacement without
complicating things:

B « A[K,L-4] becomes

LAX Al K]
LDA ($X*)[L-4]
STA B

If the first subscript has a displacement, there is a complica-
tion, since there is not enough room for three operands in one
instruction.

B «+ A[K+1,L] becomes

EAX , A,
LAX ($X')[K+l]
LDA (sx')[1]

STA B

44

A single subscripted array can be accessed without any extra
instructions at all provided the subscript is a variable which
can be accessed with an index field of the BX mode. If M is

a l0-element integer array, it is allocated thus:

M =

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

LB=1, MULT={, UB=lﬂ.””,—’4r

RIRNRRRIRRIR|IZ =

and N « M[J] becomes
LDA M[J]

STA N

If the array is integer {1 word items) and bounds checking
is not required, the descriptors can be changed to normal
indirect words which specify indexing, and no change is

required in the instructions of the program.

The purpose of the peculiar'behavior of LAX in the case of
traps'is to check that the proper number of subscripts is
provided to an array. The trap bit should be set in the
array deécriptors excépt at the last level (the descriptors

which point directly to the data) and clear there.

45

6. Use of Addresses by Instructions

All the instructions compute an effective address Q and/or an
operand OP as described above. The use of these quantities once
they have been computed, and in particular the error conditions

which may arise, depend on the address type of the instruction.

There are four address types:

1) Fetch type (F)
These instructions will accept any kind of address. They make
use of the 24-bit OP value and possibly Q. |

2) Effective-address type (E)

These instructions makevuse only of the effective éddress Q, ig-
noring OP. Immediaté addressing causés-a TIitrap if used with
these instructions. Q is ring-checked with R as a source before
use; if the check fails a trap MACC will occur.

| 3) store type (S)

These instructions make use of the effective address Q and the
operand OP. If the address caléulatién terminated with indirec-
tion through a field or string descriptor, the FB and SIZE (for
a field) or CPOS and CSIZE (for a string) define a group of bits,
.say bits i to j. ~An S type instruction puts bits 23-j+i to 23
of the word to be stored into bits i to j of fhe word addressed
by Q, leaving the rest of this.word untouched. Immediafe ad-
dressing causes a TI trap and indirection through a read-only
direct or read—dnly indexed word causes a RO trap.

4) Double-store type (D)

These instructions make use only of the effective address Q.

They trap under the same c¢onditions as S-type instructions.

46

Note that they are not affected by field or string indirection.

Legal combinations of instructions and addresses are sumarized
in the following table:

F E S D

Immediate ok TI TI TI
Indirection through ROD or ROX ok ok RO RO
Anything else ok ok ok ok

Instructions of types S or D will give a PRO trap if Q (or Q+i‘
for instructions which reference double (i=1) or quadruple

(i=1,2,3) words) addresses a read-only page.

47

7. Function Calls

A rather elaborate mechanism for calling functions and returning
from them is provided in the hardware of the machine. The pur-
pose is to include all the capabilities required by the FORTRAN
énd SPL lénguages directly in the hardware, so as to make soft-
ware interpretation unnecessary. This is considered extremely
important, since programs are expected to be written in small
modules, and function calls and returns are consequently expect-

ed to be very frequent.

The basic features of the call instruction, BLL, are as follows:

1) The old P-counter and locai environment are saved and
new ones are picked up.

2) The new local environment may occﬁpy a fixed area, or
it may be allocated space at the end of a stack defined by two
locations in the global envirénemnt. There is a check for stack
overflow. |

3) The caller provides a list of parameter addresses.

The called function specifieg for each parameter whether it
wants the address or the value.copied into its local environ-
ment. If he requests_copying the value, he specifies whether
it ié 1, 2, or 4 words.

4) He also Specifieé whether or not a parameter is an ar-
ray. The calling program tells whether it is passing a scalar
variable, a scalar value (stores are not legal), an array or an
array element (subscripted array). These distinctions permit

all the checking for proper matches of arrays with scalars re-

48

quired by FORTRAN to be done automatiéally. The case of an ac-
tual parameter which is an array element cérresponding to a for-
mal parameter which is an array requires software handling and
is trapped so that this may be acqomplished.

5) Provision is made for an argument to be passed in the

central registers.

4

A number of these points are somewhat subtle and cannot be pro-
perly understood unless explained in complete detail, which we

now proceed to do.

49

The BLL instruction addresses a branch descriptor, which is a

two-word cbject with the following form:

Word

HF e wm e =

Bit

g-23

6-23

Name
NEWPW

SREL
TRAP
SRW
LW

CLL

STK

CPA

CPR IF
CLL =1
UWSTK IF
CLL = §

REL

FTN

Meaning

This word looks like an IAW.
Its effective address is computed.

c.f. REL + SR in Normal IAW

- Causes IATRP if set

Signed diéplacement if SREL is set
Long word addresses

Call bit. The dld P and L are
saved if the bit is set.

The local environment is allocated
from the stack if this bit is set.

Arguments are copied if this bit
is set

The CPA bit in the return des-
criptor is turned on if this bit
is set. .

Unwind stack on return.

Source relative label is supplied
1 FORTRAN type function
This number determines the new L;

precisely how it does so depends
on STK and REL.

50

When BLL is executed, the first step is to compute the effective
address of NEWPW (which is LW if SREL is ﬂ; otherwise the sign-
extended SRW + the address of the NEWPW). This 18-bit number is
saved in a temporary register called NEWP; after undergoing fur-
ther processing it will become the new P-counter. The following
stepé remain to be performed:

1) Obtain new local environment.

2) Cgpy arguments.

3) Compute return descriptor (fér CALL) and save it in

first two words of new local environment.

4)V Transfer control.

We treat them in the order written, which is also the Qrdér in

which they are pefformed. In describing what happéns, we shall
make use of a number of temporary régisters or variables (such

as NEWP, which was introduced above)..

1) . If STK=g, the E field of the descriptor is taken as
the ﬁew value of L, which we call NEWL. In this case, the func-
tion being called is said to have a fixed local environment.
Such a function cannot bebrecursive,.énd space must be allocated
for its local environment at all fimes. On the other hand, the
éontents'of such a fixed environment is normally presefved be-
tween function calls. A FORTRAN function has a fixed environ-
ment, for example. Since a call (CLL=1) saves the current L in
the E field of the return descriptor, the return (CLL=@) handles

E exactiy as the call of a fixed function does.

51

If STK=1, space for the environment is alloéated on a stack.
Two words are required to describe the stack, which grows toward
increasing memory addresses: |
| SP, the addreés of the first unused word, kept in G'[2],
the third word of the global environment
SL, the.address of the }ast word allocated for the stack,

kept in G'[3].

If the environment is stacked, different actions are required

for calls and returns.

On a call (CLL=1); we compute SP+E. If it is > SL, the STKOV
trap occurs. Otherwise, NEWL+SP and SP«SP+E. In other words,
E locations are taken from the top of the stack. The situation

before and after is shown in figure 1.

On a return (CLL=§) what ordinarily héppens if STK is set is
SP;L; NEWL<E;
in other words, the old L at thé time of the call (which was
saved in the E field of the return descriptor, as we will see)
becomes the new L, and'SP is reset to the value_it had before
the call} which is the current L. The before and after pictures
of figure 1, looked at in the bpposite order, should help to
clarify this. ,With these rules, calls can be made freely from
fixed.environment functions to stacked environment ones and

visa-versa. The industrious reader may check the four cases.

52

3}oe3s JoO 3aIE3S:

S3IUSWUOATAUS
snotasxd x0J
posn aoeds

TMHEN

JUSWUOITAUD
MaU JIOJF
SUOT3RO0T T

ds

ooeds
}yoels pasnun

1S

dHLAY

ddI10

1aTI0

yor3s JO 3IB3S

SJUSWUOITAUD
snotasxd 103
pasn 20eds

T

JUSWUOITAUS

3JUSIIND

xo3draosap ds
uInlax

sords

jyoe3ls pasnun

1S

Jgoddd

ALLOCATING A LOCAL ENVIRONMENT ON THE

FIGURE 7.1

STACK DURING A CALL

53

SL ' SL
non—local label
passed by Fl:

STK, UWSTK L2 Local

P in F1 : " | environment
for Fn

L(n-1)
P(n-1) Ln

Local
environment
for F2

return descriptor| STK Ll
from call of F2 L2 L2 Sp

environment
for Fl

Ll Ll

Start of
stack

BEFORE AFTER

FIGURE 7.2 RETURN TO NbN—LOCAL LABEL IN F1
PASSED AS A PARAMETER

54

Unfortunately, if the return is to a function which is not the
one which called the current one, SP is not reset correctly.
This is expected to happen only as the result of a branch to a
label which has been passed as a parameter (i.e. an error return).
When such a parameter is passed (see below) from function Fl
with L=L1 to Fé with L=L2, and'the descriptor for the call has
STK set, the parameter appears in F2 as a BLL descriptor with
STK set, UWSTK set and L2 in E (see figure 2). The return (BLL)
sees CLL=@g, STK=1l, UWSTK=1 and does.

SP « E; NEWL = the E field of the descriptor addressed
by E. This trick allows both SP and ﬁ to be set correctly while

carrying only one number in the descriptor.

It works regardless of whether Fl1 and Fn have fixed or stacked
environments, but.requires‘Fz td have a stacked environment.
When a label is passed to a routine ﬁhich has a fixed environ-
ment, theréfore, E is set to L1 and STK, REL turned off. If
additional space is allocated 6n the stack after the call, it
will not be freed when a branch is made to this label. It is
believed that this deficiency is not very serious.

2). If CPA=1l, arguments are éopied whenever a BLL is exe-
cuted. If a function has multiple results, it will have CPR on
in its descriptor. This will cause CPA to be turned on in the
return descriptor, and the multiple results will be returned by
the arguments - copying process when the return is executed.

If CpA=g, the BLLERR (2) trap occurs. A‘summary of all BLLERR

traps and their parameters is given in the appendix. The BLLN

55

instruction should be used if no arguments are being passed; in

this case the trap will occur if CPA=l.

The address of (actual) arguments to be copied are specified in

the calling program in a list of actual argument words (AAWs)

following the BLL instruction. These have a one-to-one corres-

pondence with a list of formal argument words (FAWs) which starts

at NEWP.

An argument word is formatted like ar instruction. The address-

ing is interpreted exactly like the addressing for an instruction,

but the 7-bit opcode field is treated differently, as follows.

Bits Name
3-4 STR

3 CADDR

4 FSTR
5-8

9 ENDF

Contents

(actual argument oniy) structure

1 = variable

3 = computed scalar
2 = array element

g = array

(formal argument only) copy value
1 = copy address of actual argu-
ment '
g = copy value of actual argument

(formal argument only)

1l = scalar
g = array
type #§ = jump (actual argument only)
1 = integer (1 word)
2 = long (2 words)
"3 = real (2 words)
4 = double (4 words)
5 = complex (4 words)
6 = longlong (4 words)
7 = string : (4 words)
8 = label (2 words)
9 = pointer (1 word)
14 = unknown
end flag

g = not last argument word
1 = last argument word

56

Argument copying proceeds as follows: two pointers are initial-
ized:

next formal argument word (NFW) initialized to NEWP

next actual argument word (NAW) initialized to P+l
Then FAW < CONTENTS (NFW), and FAW is treated as an instruction
word for the purpose of compuﬁing its effective address, which
is put into FQ. Only D or LR addressing is permitted; anything

else will cause the BLLERR trap with class 4.

If ENDF (FAW) = @, NFW « NFW + 1 and copying continues. Other-
wise, copying stops. If the instruction is BLL, the BLLERR(2)

occurs. If it is BLLN go to step (3).

We treat NAW as we treated NFW: AAW < CONTENTS (NAW), R<«NAW and

its effective address is computed. The address type is F if

Type = 1 (integer) otherwise E. BLLERR (5) will occur if the

address type is not computable.

If type (AAW) = @, the AAW is a jump and its address specifies
the next actual argument. Repeat from AAW <« CONTENTS (NAW<Q) ,

etc.

If the AAW specifies G-relative addfessing with an address of §
it isitaken to refer to the central registers. If CVAL # # then

BLLERR(5) or if TYPE > 6 or STR = @ then BLLERR(4)'will occur.

57

Next the types are checked. If TYPE(FAW) # TYPE (AAW) , the
BLLERR (3) trap occurs, unless one and only one of them is un-

known. FSTR and STR are checked according to the following

table:
oy % R S T S TR R T 3 S S S Ry L i SR P R e o AR SRS B R iy g TSN
ST F Computed
HF'STR Variable Element Scalar
S . ‘; P e N A T S Rt
2 3
Array o OK BLLERR (3) FTNAT BLLERR (3)
Scalar § 1 FTNAT OK OK OK

FTNAT means that if FTN = @, BLLERR(3) occurs, otherwise the
FTNAT bit is set, which will inhibit the skipping of one word in

step (4).

The idea here is that if A[I] appears as an actual argument in
FORTRAN and the corresponding formal B is dimensioned,'an array
descriptor for B must be computed, or if A appéars as an actual
argument and the formal is a scalar, the first elemént of the
array must be found. A software routine is supposed to do this.
It needs access to the descriptor for A; the extra incrementing

of NAW is to leave room for the address of the descriptor.

Now copying takes place. If CADDﬁ(FAW) =1, Q is stored at FQ
as an absolute IAW, except in the following two cases.

If the AAW supplied and immediate operand it is stored into
FQ as an IM type Normal IAW,

If Q is the result of ROD or ROX add:essing or STR(AAW) = 3,

Q is stored as a read-only absolute (ROD) IAW.

58

Otherwise, (CADDR(FAW) = §) the value must be copied. The
details of this depend on the type:

If TYPE = 1 and STR(AAW) # @, OP or the A register (in the
special case) is copied to FQ. |

For TYPE < 6 and STR(AAW) # ¢, the number of words specified
above‘is copied from Q to FQ, of from the central registers (A,
B, C, and D) to FQ if appropriate.

If TYPE = 3 or TYPE = 4, the floating point number address-

ed is examined. If it is undefined (see Floating Point) the

trap UFN will occur. In case the central registers are used,
storing is performed as in the floating point store (STF) in-

struction. (Refer to Floating Point)

For TYPE = 7 and STR(AAW) # @, the four-word string descrip-

tor is copied. If the BLL being executed is a system call (as

described later), four ring checks are done, with P as source
and each of the four word addresses as target. Fufthermore, the
word addresses must be non-decreasing from one word to the next,
and the CPOS and CSIZE fields of the first word are copied into
the others. Finally, 2 is forced into the top two bits of each
‘word to ensure that it is a string aescriptor. |

For TYPE = 8 and STR(AAW) # § a label is copied as follows:

The first word is made absolute, i.e. Q added to the

sign—extended’SRW becomes the new LW if SREL is set, then SREL
is cleared.

In the second word, if bits 6-23 are §, the word is

replaced by L if STK = §, else

59

NEWL + the STK and UWSTK bits, if STK = 1.

The basic idea is to supply the proper context, so that the cur-
rent local environment will be ;estored if the label is branched
to. Refer to the discussion of how to unwind the stack to see
why NEWL is used when STK = 1.

If the label is passed by a system call, the absolute ad-
dress in the first word is ring-checked. Before copying the se-
cond word CLL, STK and SREL are cleared and bits 6-23 are check-

ed. If they are not @, BLLERR(6) occurs.

.For STR(AAW) = @ the type is ignored. An array descriptor is
"also copied like a two-word scalar, except that the second word
W2 is replaced by an X or ROX IAW with address equal to the éf—
fective address which results from treating W2 as an IAW. This
permits an array aescriptor which uses relative addressing to be
passed as a parameter,»since the relative address is automatic-
ally converted to absolute. If BLL is a system call, in addi-
tion two ring checks are done with P as source and both the first
and last words of the array as targets. This means that if an
array descriptor is paSSed to a higher ring, the highe; rihg can
use it without fear of accessing stérage which the calling pro-

gram could not have accessed.

When the address or value has been copied, ENDF (AAW) is compared
with ENDF (NAW). If théy differ, BLLERR(2) occurs. If both are
@, copying continues with

NAW <« NAW + 1; NFW <« NFW + 1;

60

otherwise it stops. In the latter case NEWP <« NFW + 1

3) If the CLL bit.is on, a return descriptor is computed
and stored at NEWL. It consists of 2 words: NAW + 1

Note that this is the return address |

(2B7 * STK) + (1B7 * CPR) + L

i.e., the o0ld local environment, with STK bit on if it is
on in the descriptor, and CPA bit on if CPR bit is on in the
call descriptor. Note that if STK = 1, then 2B7 * STK sets
the STK bit (bit 1) of the return descriptor on.

4) Set L to NEWL, P to NEWP, and continue execution. If
the FTN bit is set, skip one word unless the FTNAT flag is on.
The instruction skipped presumably will contain a subroutine
call to take care of the special éases in FORTRAN mentioned

earlier.

In order to state precisely and concisely how this instruction
works and to describe the details of ring—checking)van SPL pro-
gram is presented in the Appendix which duplicates its function-
ing. This program uses some special fgnctions. (Those not men-
tioned here refer to fields or functions defined elsewhere in
this document.) |

1) The construction $X<« implies a ring check with R as
source and X as target. As the access is a storé, the trap PRO
may also occur.

2) ° RINGCHECK(X) performs a ring check with R as source and

X as target. If the check fails, trap MACC will occur.

61

3) RING(X) produces a number depending on the ring which
contains X, say
1l if X is in the user ring
2 if X is in the utility ring
3 if X is in the monitor ring
4) MENTER(), MEXIT () and INTERRUPT () designate the places
where the actions described under "CPU Interruptability" are ta-
ken.
5) EA(X) initiates the effective address calculation simi-
lar to IA(X), but the format of CONTENTS(X) is like an instruc-

tion (or an AAW) rather than an IAW.

62

8. Programmed Operators

If the POP bit of an instruction is 1, it is interpreted as a
rather peculiar kind of subroutine call rather than an ordinary

machine instruction. Execution proceeds as follows:

the OPC field of the instruction is put into the indexing

register (IR) and the instruction:
BLL $G'[@]:
is executed

Presumably word # of G will contain the address of a transfer
vector. 1If desired, it may contain an array descriptor which
limits the number of programmed operators and supplies a multi-

plier of 2.

There is one additional feature: BLL will ‘nitialize NAW to P,
rather than to P + l} so it will use the instruction word as the
first AAW. STR, TYPE and ENDF will be taken from the correspond-

ing bit positions of the first FAW.

63

9. System Calls

Two versions of the OPR instruction provide protected entry
points into the system. The MCALL instruction works as follows:
8 bits provided by the OPR are put into IR
a BLL $BA is executed, wifh BA = 604000B.
When the BLL is completed,
G « NEWG, where NEWG = 600000B.

The intention is that 604000B should contain an array descriptor

with
1B = ¢ »
UB = total number of defined sYstem calls
MULT = 2

which points to an array of BLL descriptoré for the various pro-
tected entry points. Note on any calls to the system from a lo-
wer ring, G is saved in ﬁEWG[l4]. G is restored from G'[14] by
any BLL (BLLN, POP, etc.) which cfosses the ring bdundary into

a lower ring.

For calls into thec utility the UCALL version of OPR works the
same way, eXcept that BA = 400016B and NEWG = 400000B. Note
that this is the beginning of the utility ring. Variants of
these OPRs exist which execute a BLLN instead of a BLL. (MCALN,

UCALN)

The PDFLAG, TDFLAG bits in the status register are cleared by
both MCALLs and UCALLS,
MCALLs also set the locked bit of the CPU as described under

"CPU interruptability".

64

1o0. TfaES

A machine trap is a forced transfer of control which may occur
as a result of a variety of untoward events which may arise du-

ring the execution of a program. It does not involve a switch

to a new process.

A trap may be fixed or ring-dependent. All fixed traps save the

first 1§ words of the state in the 1§ words starting at 6@g2752B.
They then set G to 6§gg@pB and do X < n; BRU 6840@2B, where n is
the trap number. They all have a one word pafaméter which is'
put into the A register after the state is stored. The value of
the parameter depends on the trap. Like MCALL-s, fixed traps

also clear PDFLAG, TDFLAG, 94fM and set the LOCKED bit.

A table of all fixed traps is given in the Appendix. Each one

is described more fully in its proper place in the manual.

The ring-dependent traps differ in that they send control to a
location determined by the ring that P is in. They store P and
the parameter at G'[4] and G'[5] respectively and then clear the

949M bit in the status register and do IR « n; BRU $G'[6].

In 940 mode, if the S bit (bit @) of an instrucfion and the P
bit (bit 2) are set, the instructionkis called a SYSPOP. The
first 10 words of the state are-stored starting at L[3], then A
is set to the efféctive address of the instruction, clear 94¢M

and do X « OPC, BRU L'[2].

65

11. CPU Interruptability

The CPU described in this manual is expected to run as part of
a system which includes, among other things,
1) Two physical CPUs, which are identical except for a

number called the CPU number attached to each CPU. The CPUs are

numbered from ¢ to 1.

2) a separate processor called the pscheduler which is re-

sponsible for allocating CPUs to processes.' The uscheduler also
has facilities for causing the CPU to operate in a single-step
mode; in which it stores the state, waits and then reloads it
after each instruction execution, and for telling the CPU to
stop execution at once (crash). | |

3) A protect mechanisﬁ which allows the various processors
in the system to be interlocked or synchronized. There are
éight protect lines, any of which may. be seizéd by any processor.
A line may be seized by only one processor at a time; anyone
else attempting to seize the line is refused until'the current

owner lets it go.

This section describes the behavior of thevCPU with respect to
1) A STROBE signal, which the pscheduler sends when the
CPU is to switch processes
2) The single-step and crash signals
3) Protect 4, which is used to interlock the CPUs, keep-
ing more than one from being in a locked state.
4) The timer trap, which occurs when thé interval timer

in the state becomes negative

5)

6)

66

The XMON and XUTIL traps

Initialization

The relevant information is:

a) Some
1)
2)
3)
4)

b) Some
the

1)

2)

3)
4)

information in the state

The ring in which the P-counter is contained

The XMON trap bit in SR

The XUTIL trap bit in SR

The sign bit of the interval timer, which we call TO

flip-flops in the micrOproceSSor which-are not part of

CPU state

STROBE, which may be set by another microprocessor,
normally the puscheduler

STEP, which may be set by some external device to make
the CPU operate iﬁ a single-step mode

LOCKED, which isvnot accessible to external devices

ALARM, which is set when a system crash is impending

c) The state of Protect 4, which will be called CPUPRO

d) A location in absolute core called CPUWAIT which is used toc

keep the CPU icdle after the system has crashed or between

STEPs.

67

A. Idle State

When it is initialized (by setting the 0 register in the micro-

processor to @) the CPU goes into idle state.

IDLE:

PWAIT:

Clear map scan request;

GOTO IDLE IF NOT STROBE;

Clear STROBE.

T < contents of absolute call (6 + CPU number)

(T is the process' PRT index)

Goto PWAIT if T = §;

Clear absolute cell (6 + CPU number);

Clear LOCKED; Clear the map; |

Find the page with the néme in (T) and (T+1)
Take it as a context block and load the state
from location 2764B-2777B in it (called the SAVE
area) . |

If the page is not found in CHT, send a STROBE2 to

the uscheduler with a message 4B7 in absolute cell 2454B + CPU

number *4 then do like ABORT.

Start executing instructions at' the location given

by the P~counter;

The CPU returns to the idle state whenever it dumps the state of

a process.

B. Interruption of Program Execution

At the start of every instruction, the truth of any of the fol-

lowing conditions will stop execution and cause the indicated

68

action to be taken. The conditions ére treated in the order in
which they are listed.

1) NOT LOCKED AND TO: cause timer overflow trap.

2) NOT LOCKED AND STROBE: dump the state into the SAVE area,
send a RETURN messagé to the uscheduler and go into idle
state. |

3) STEP OR ALARM: dump the state into the SAVE area, clear
STEP. Clear the wait location (23B + CPU number) and
wait until it becomes 1234321¢B, then reload the state

from the SAVE area and proceed.

At every step of indirection, every startrof an instruction

which is the target of EXU, every parameter of a BLL and in all
other places where the CPU might be held up for more than a few
microseconds, (MVB, MVS, CPS), conditions 1 and 2 are fested and

their indicated actions taken.

'C. Setting the Bits

XMONT and XUTILT are part of SR and may be set or cleared with

SRS, LOADS or XSA.

LOCKED is set by MCALL or fixed trap. It can also be set by
SLOK. It is cleared by any BLL or LOADS which leaves the moni-
tor ring (BLL, here, includes all variants: UCALL, MCALL, POP),

and can also be cleared by RLOK.

TO can be changed by loadihg a state from the SAVE area or by

the OPR to set the interval timer.

69

D. The X Traps

At every BLL or LOADS a check is made for transition into a lo-
wer ring. If there is a transition from monitor to utility or
user rings, the XMON trap is caused if the XMONT bit is set.
Then if there is a transition from utility to user ring, the

XUTIL trap is caused if the XUTILT bit is set.

E. The CPUPRO Signal

This protect is seized automatically at -each point where LOCKED
is set and cleared at each point where LOCKED is cleared. The
programmer can set it himself with the PRO operate, but this is

probably unwise.

70

12. Ordinary Instructions

This section contains a complete description of the behavior of
the machine when interpreting an instruction word, with the fol-
lowing exceptions:
| instructions with POP = 1 are described under "Programmed
Operators"
the BLL instruction is describédrunder "Fﬁnction Calls"
the floating point instructions are treated in a separate
section
effective address computation for all instructions is des-

cribed under "Addressing"

~ Each instruction is specified in terms of its operands, its ef-
fect on the state of memory of the running érocess, and any un-
usual traps it may cause. Traps which are caused by the address-
ing system are fhe same for ail instructions and are not consi-
dered. iraps~caused by the map are the same except for the
read~-only trap. Its occurrence depends on whether the instruc-
tion attempts to modify memory; this should be obvious from the
instruction description and will not be further mentioned. The

address type is S or D for instructions which modify memory.

Part of the state is a 2-bit condition-code. This code is set

by the RESULT of most instructions as follows:

g if RESULT < @

g

1 if RESULT

V .
=

2 if RESULT

71

The RESULT is indicated in the description of each instruction.
Unless some other change in P is indicated, all instructions end
with

P «P + 1

The INSTD bit in the status register is set to § at the end of

every instruction, except for LOADS.

The address type of the instruction is indicated for every in-
struction, e.g.,

" LDA (F)

Iﬁ the description some special notation is used: STORE(X,Y)
stores X in the memory location addressed by f. The storing in-
cludes some spec1al logic for (S) type instructions if a field
or character is specified as operand (refer to Use of Addresses
by Instructlons); ABS(T) is the absolute value of T.

ABS(4B7) = 4B7.

72

Summary of Abbreviations

AR A register
BR B register
CR C register (uséd only for doﬁble-precision floating-
DR D register point and quadruple loads and stores)
XR X register
P Program counter
L Local environment register
G Global environment register
cC Condition Code, equivalent to RESULT:
cc =@ RESULT < §
cc =1 RESULT = ¢
CC =2 RESULT > ¢
SR Statﬁsyregister |
ov SR[22] Overflow Eit
TOV = SR[21] Temporary Overflow bit
CARRY = SR[20] Carry bit
PDFLAG = SR[19] Permanent double-precision flag. Used
| to set TDFLAG after STF, STD or FCP
.TDFLAG = SR[18] Temporary double-precision flag. Makes

all floating-point instructions double-

precision.

A. Data

LDA

LDB

LDX

LDD

EAX

73

Transfer Instructions (12)
(F) Load A register
AR + OP;

RESULT <« AR;

(F) Load B-register
BR <« OP;

RESULT < BR;

(F) Load X-register
XR < 0P;

CC is unchanged

(F) Load double
AR <« CONTENTS (Q); BR + CONTENTS (Q+1) ;
CR « CONTENTS (Q+2) & DR <« CONTENTS (Q+3)

RESULT < AR;

(E) Effective address to X
XR + Q;

CC is unchanged

(F) Load array index

IF TDFLAG=1;

XR <« Q OR 4B6; (sets TAG to 2 for indirection)

CC is unchanged

Treats bit ATRAP in an array descriptor opposite to

all other instructions

74

LNX (F) Load negative to X
XR <« -0OP; two's complement negation

CC is unchanged

STA (S) Store A register
STORE (AR, Q) ;

'CC is unchanged

STB (S) Store B register
STORE (BR, Q) ;

CC is unchanged

SsTX (S) Store X register
STORE (XR,Q);

CC is unchanged

STD (D) Store double
STdRE(AR)Q); STORE (BR, Q+1) ;
STORE(CR,Q+2) & STORE(bR,Q+3) & TDFLAG + PDFLAG
IF TDFLAG = 1;

CC is unchanged

XMA (S) Exchange memory and A
TEMP <« AR; AR <« OP; STORE (TEMP,Q);

RESULT + AR;

75

B. Integer Arithmetic Instructions (i0)
ADD (F) Add memory to A

AR <« AR + OP; (two's complement)

CARRY <+« carry from bit ﬂlof adder, i.e., set if the
sum of AR and OP taken as unsigned 24-bit inte-
‘gers, is > 224, and cleared otherwise;

TOV « 1 if the add causes ovérflow, i.e., if AR and oP
have the same sign but the sum has a different
sign, else 4; | |

OV « OV or TOV;

RESULT + AR;

SUB (F) Subtract memory from A
Proceed exactly like ADD except that (-OP) replaces OP.

This is a two's complement negate, i.e., (NOT OP + 1)

~ADC (F) Add memory and CARRY to A
ov < g
AR < AR + OP + CARRY;

Then proceed exactly like ADD

SUC (F) Subtract memory from A + CARRY
ov <« ¢;
AR <« AR + CARRY + (NOT OP);

Then proceed exactly like ADD

MIN

ADM

ADX

MUL

76

(S) Memory increment
RESULT « AR « OP + 1;

STORE (RESULT, Q) ;

(S) Memory decrement
RESULT « AR « OP. - 1;

STORE (RESULT, Q) ;

(S) Add to memory
RESULT < AR <« OP + AR;

STORE (RESULT, Q) ;

(F) Add to X
XR « XR + OP;

CC is unchanged

(F) Multiply memory and A
TOV « @;
TOV « OV « 1 IF OP = AR = 4Q@@ggggB;

PROD « AR * OP; as two's complement numbers, yield-
ing a 47-bit two's complement result

'AR[#,23] « PROD[f,23] ;

BR[§,22] « PROD[24,46];
BR[23] <« #; |

RESULT « (AR OR (BR RSH 1));

The product, consisting of a sign bit and 46 magnitude bits, is

left—justified in the AB registers. If integers are being mul-

tiplied, an ASHD -1 is réquired to obtain the integer product in

B.

77

DIV (F) Divide memory into AB
TEMP « OP; TOV < §;
DIVIDEND <« AB[f,46];

QUOTIENT <« DIVIDEND/TEMP;

a 47 bit two's complement
integer treating both o-
perands as fractions in
the range -1 < £ < 1, and
obtaining a quotient with
23 fraction bits

TOV « OV « 1 and proceed to next instruction
unless -1 < QUOTIENT < 1

AR < QUOTIENT;
TEMP <« QUOTIENT * TEMP;
BR + (DIVIDEND - TEMP);

RESULT <« AR;

yielding a 47-bit product

as for multiply
this is the remainder

The quotient of the 47-bit dividend and the 24-bit divisor, both

taken as signed two's complement fractions, s put into A and

the remainder into B. Overflow occurs if the dividend is larger

than the divisor, since the quotient cannot be represented as a

fraction; in this case, the central registers are unaltered.

To divide an integer in A by one in memory,.do ASHD -23 first.

78

C. Test Instructions (5)

Icp

CPZ

CMZ

(F) Integer compare

RESULT « AR - OP;

(F) Compare with zero

RESULT + OP;

(F) Compare-A and memory with zero

RESULT « AR AND OP;

The following two instructions operate on string descriptors,

which are pairs of indirect address words of type string. The

intended interpretation is that the first points to the first

character of the string, the second to the last character.

ISD (S) Increment string descriptor

TEMP < CONTENTS (Q);
CSIZE < TEMP[2,3]; CPOS <+ TEMP[4,5];
RESULT < TEMP - CONTENTS(Q + 1);
Proceed to next instruction if RESULT = §;
IF CPOS + CSIZE < 3 DO;
CPOS + CPOS+1;
ELSE DO; |
CPOS <« 0; TEMP <« TEMP + 1;
ENDIF: |
TEMP[2,3] « CSIZE; TEMP[4,5] <« CPOS;

STORE (TEMP, Q) ;

79

If the string is empty (the two IAWs are equal) the instruction
sets CC to 1 and exits. Otherwise it sets CC to ¢ or 2, and in-
crements the first IAW by one character position in the string.
| DSD (S) Decrement string descriptor

TEMP < CONTENTS (Q+1);

csIZE +~ TEMP[2,3] ; CPOS + TEMP[4,5] ;

RESULT < TEMP - CONTENTS (Q);

Proceed to next instruction if RESULT = §;

IF CPOS > # DO;

| CPOS <« CPOS -1;
ELSE DO;
CPOS + 3-CSIZE; TEMP <« TEMP -1;
ENDIF% |
TEMP[2,3] < CSIZE; TEMP[4,5] « CPOS;

STORE (TEMP ,Q+1) ;

The idea is the same for ISD, but the second IAW is decremented

by one character position.

D. Logical Instructions (3)
ETR (F) And A and memory
AR <« AR AND OP;

RESULT < AR;

IOR (F) Or A and memory
‘AR <« AR OR OP;

RESULT <« AR;

80

EOR (F) Exclusive or A and memory
AR <« AR EOR OP;

RESULT < AR;

ﬁ. Shift Instructions (6)
All shift instructions interpret the absolﬁte value of OP MOD 64
as the number of shifts to be done. The sign of OP specifies
the directidn: positive for left shifts, negative for right.
SHIFTC <« ABS(OP MOD 64);
right shift as specified IF OP < § ELSE
left shift as specified; |

RESULT < AR;

ASHD (F) Arithmetic shift double (A and B registers)
A and B taken as a single 48-bit register are shifted. On a
right shift, the original sign bit ig copied into vacated bit
positions. On a left shift, OV < 1 if any of the bits shifted
out differ from the final sign of A. TOV-is set to 1 when OV

is set, otherwise it is set to 4.

ASHA (F) Arithmetic shift A

Identical to ASHD except that only AR is shifted

LSHD (F) Logical shift double

A and B taken as a single 48-bit register are shifted. Vacated

bit positions are filled with zeros.

LSHA (F) Logical shift A

Identical to LSHD except that only AR is shifted

81

CYD (F) Cycle double
A and B taken as a single 48-bit register are cycled. 1i.e.,
they are shifted, but bits which are shifted out one end fill

the vacated positions at the other end.

CYA (F) Cycle A

Identical to CYD except that only AR is cycled.

F. Branch Instructions
BRU (E) Branch unconditionally
P « Q;

CC is unchanged

Six instructions test the condition code
BLT (E) Branch on less than
P+« QIF CC =@; (RESULT < §)

CC is unchanged

BLE (E) Branch on less than or equal
P+« QIFCC=4g@gORCCS=1; (RESULT < L8]

CC is unchanged

BEQ (E) Branch on equal
P« QIF CC = 1; (RESULT = §)

CC is unchanged

BNE (E) Branch on not equal
P« Q IF CC # 1; (RESULT # §£)

CC is unchanged

82

BGE (E) Branch on greater than or equal
P+ QIFCC=1orCC=2; (RESULT > §)

CC is unchanged

BGT (E) Branch on greater than
P <« Q IF CC = 2; (RESULT > §)

CC is unchanged

Two branch instructions affect the X register
BRX (E) Branch on index |
XR <« XR + 1;
P < Q IF XR < @;

CC is unchanged

BSX (E) Branch and set X
XR + P + 1;
P« Q;

CC is unchanged

BLL (S) Branch and load L

is described elsewhere

G. Miscellaneous Instructions (5)
HLT (F) Halt

Always causes the TI trap

EXU (F) Execute
Initializes IR «+ XR & R « Q, then interprets CONTENTS (Q) as an

instruction and executes it.

83

EAC (E) Effective address computation
This instruction computes the effective address of CONTENTS(Q)
interpieted as an instruction word. Similar to EXU, IR énd R
are initialized to XR and Q respectively. The results of the
computation ére given in registers as follows:
_xR[ﬂ,S] « RESULT « 1 & AR <« OP
| if the address is Immediate
XR[#,5] « RESULT « 2 & XR[6,23] « Q
if the address is ROD or ROX read only
XR[#,5] « RESULT « 3 & XR[6,23] « Q & AR < MASK & BR < SHIFT
if the address refers to a field or character
MASK has bits (24-SIZE), 23 on, the rest off.
SHIFT equals to 24-(FB + SIZE)
XR[#,5] < RESULT < # & XR[6,23] < Q

in all other cases

Note that Q - whenever given - is ring checked against R in the
final phase of the address calculation. (Refer to "Addressing

from Instructions")

SRS (F) set or reset status bits
The opérahd is used to set or reset the status register in the
state in the following way:
SR « (SR OR OP IF (OP AND 1) = 1 ELSE

SR AND NOT OP);

84

TSB (F) Test status bits
RESULT <« SR AND OP;
i.e., 1 bits in the operand select bits of SR. The condition
code is set depending on whether all the selected bits are § or

not.

H. OPR-(F) Operate (1)
If the éperénd is negative, the instruction is a system call.
Bits 14-15 in the absolute value of the Opérand select one of
four alternatives:

UCALL

1 UCALN

2 MCALL

3 MCALN
Bits 16-23 in the absolute value is the address for the system

call. (as described in a separate section)

85

If the operand is positive, it is decoded to determine what is

to be done:
CAB
XAB
CBA
CBX
XXB
CXB
cax
XXA
CXAa
CNA
CNX
Z0A
ZAB
Z0B
CGA
XGA
CLA
XLA
CSA
XSA

cTA

CCA

NOP

Copy A to B
Exchange A and B
Copy B to A
Copy‘B to X
Exchange B and X
Copy X to B

Copy A to X
Exchange X and A
Copy‘X to A
Negate A

Negate X

Cleér A

Clear AB

Clear B

Copy G to A
Exchange G and A
Copy L to A
Exchange L and A
Copy SR t?,ﬁ"
Exchange Séiand A

Copy interval timer
to A

Copy compute time
clock to A

No operation

BR « AR;

T « AR; AR « RESULT < BR; BR + T;
AR « RESULT < BR;

XR <« BR;

T + BR; BR < XR; XR < T;

BR <« XR;

XR < AR;

T < AR; AR + RESULT <« XR; XR < T;
RESULT + AR * XR;

AR %_RESULT < -AR;

XR + -XR;

AR « RESULT < §;

AR < BR « ER < §;

BR « §;

AR « RESULT + Gj;

T < AR; AR < RESULT < G; G *+ T;
AR < REQULE « L

T « AR; AR « RESULT <« L; L < T;

AR < RESULT < SR;

- T <« AR; AR * RESULT < SR; SR « T;

A + RESULT < IT;

A € RESULT < CTC;

86

MVB Move block
The block of AR words starting at XR is moved to the AR words
starting at BR. The words are moved one at a time, and the re-
gisters ére updated after each word is moved to reflect the num-
ber of words remaining to be moved. This iﬁstruction is inter-
ruptable. The move is done in sucﬂ a way that no word is over-

written until it has been moved.

MvC Move constant
XR is stored into the AR words starting at BR. This instruction

is interruptable.

MVS Move string - (Not presently implemented)

The string of AR bytes starting at the byte specified by BR ta-
ken as a string IAW is moved to the AR bytes startiné at the
byte specifigd by XR taken as a string IAW. /The bytes are moved
one at a time, and the registers are updated after each byte is
moved to reflect the number of bytes remaining to be moved. If
the source énd target strihgs oveilap, the move is done in such
a way that no character is overwritten until it has been moved.
If the strings do no£ 6ver1ap, after executiéanR and XR Qill |

always point to the first characters after the source and tar-

get strings respectively. This instruction is interruptable.

CPS Compare string - (Not presently implemented)
The string of AR bytes starting at the byte specified by BR ta-

ken as a string IAW is compared with the AR bytes starting at

87

the byte specified by XR. RESULT is set to indicate whether
the first string is smaller, equal to, or greater than the se-
cond. The registers are updated every time a byte is compared.

This instruction is interruptable.

CLS Compute length Qf string
AR and BR are taken as string IAWs. The number of bytes in the
string starting at the byte specified by AR and ending at the
byte specified by BR, -1 is put into AR. The CéIZE field of BR
is used to determine the byte size.

RESULT < AR;

ASP Add to string pointer
AR is taken as a string IAW. Into XR is put a string IAW which

poinis to the XRth byte beyond the one pointed to by AR.

LLT Locate leading transition
The bit number”(counting from @ on the left) of the ieft—most
bit in AB which differs from the sign bit of A is put into XR.
If no bits differ, @# is put into XR:

RESULT <« XR;

COB Count one bits
The number of one bits in the A and B registers is put into XR.

RESULT + XR;

88

LOADS Load state
Lbads the first 10 woxds of the state (not including the compute
time clock or the interval timer) from the 10 words addressed
by XR. An MACC trap will occur if the new P is in a higher ring
than the current P. This instruction does not clear the INSTD
bit. An XMON or XUTIL trap may occur if the new P is in a lower
ring than the current P and the XMONT or XUTILT bits are set in

the current SR as described under "CPU Interruptability".

STORS Store state
Stores the first 10 words of the state into the 10 words address-
ed by XR, but does not store P and XR; the corresponding loca-

tions are left unchanged.

LsC Load string constant
The word addressed by XR is fetched and used to form a 4-word
string cénstant in A, B, C, and D as follows:
TEMP < CONTENTS (XR) ;
CSIZE < TEMP[2,3]; CPOS <« TEMP[4,5];

AR <« BR <« 4B7 + CSIZE * 4B6 +

(3 CSIZE) * 1B6 + XR;
CR « DR « 4B7 + CSIZE * 4B6 +
CPOS * 1B6 + XR + TEMP[6,23];
This means that the XR points to a word used to generate é string

descriptor and that this word is immediately followed by the

string constant specified.

89

The following OPRs are privileged. If P < 6¢¢§¢ﬁ, the TI trap
will occur.

SLOK Set CPU lockr

RLOK Reset CPU lock

ALD Absolute load A

Loads AR with the contentsiof the core location whose absolute

address (i.e., unmapped address) is contained in XR.

' AST Absolute store A
Stores AR into the core location whose absolute address is con-

tained in XR.

AAX Absolute address to X
Loads XR with the absolute address éorresponding to the virtual
address in XR. Bit @ is set if the physical ﬁap’entry was emp-
ty. Bit 3 is set if PMRO was on in the physical mép entry, bit

2 is set if bit 3 is set or the dirty bit was clear.

PRO Protect

Attempts to set PROi if AR[24-i] is on. If all the selected

PROs are set successfully CC « f; else CC <« 1.

UNPRO Unprotect

Clears PROi if AR[24-i] is set.

ATTN Attention

Sends a STROBE signal to microprocessor i if AR[24-i] is set.

90

USCL pscheduler call
This OPR initiates a switch-processes sequence. The state of
the machine is dumped at the SAVE area (éﬁ2764B)f The interval
timer, shifted 7 to the right so that the least significant bit
counts milliseconds, is stored into the MCT field (8:8,7) of

the process' PRT entry.

The pscheduler is called with AR{f,5] as an opcode, the CPU is

put into the IDLE state.

CMAP Clear map

Sets all EF empty flags in the map to 1.

CMAPS Clear maps

Clears the maps of both CPUs in the system.

CAT Copy A to timer

Copy A& to interval timer IT + AR;

CAC Copy A to clock

.Copy A to compute time clock CTC <« AR;

. RUN Read unique name
A unique name is read from the uhique name generator and put

into AB.

BR <« low order bits of unique name;

AR + high order bits of unique name;

91

LDMP Load physical map
An entry is loaded into the physical map by placing a 7-bit page
number into bits 6-12 of the XR and the entry in bits 13-23 as

follows:

TEMP <+ CONTENTS (XR) ;

MAP'REG « TEMP[6,12];

MAP'REG[@,f] « EF « TEMP[13,13];
MAP'REG[1,1] <« DB <« TEMP[14,14];
MAP'REG[2,2] < PMRO < TEMP[15,15];

MAP'REG[3,10] +« PHYSICAL'PAGE'NO <« TEMP[16,23];

92

13. Floating Point

A. Number Representation
A 48-bit single precision floating point datum represents a ra-
tional number in the following way:

1) Positive numbers

g1 11 12 47

X: g M : N

M is the biased exponent E:

E « M - 20p0B;

positive number X = N * 2(E_35)‘
where 235 <N < 236 -1 and _2lﬂ < E < 21¢ -1
E.g + 1.¢ is represented as‘
gl 11 12 47
pl1g pos g
.2l 36
Largest number is 2 * (1 - 2)2
g 1 1112 : 47
gl {11 | | 1
Smallest éositive number is (except for un-normalized
numbers, see below) 2_2lﬂ:
1 1112 - * 47

41 A) ~ g

The sign

2)

93

Negative numbers

is given in two's complement form:

bit (bit g) indicates that the number is negative. N

negative number X = (N - 236) * Z(E_BS), 1 <N < 235
g1 1112 47
-1.9: 1l1g gl 1.0 g
' e 36
Lowest negative number is -2° * (1 - 2)
g1 1112 47
1j11 1106.98 1
_,10
Maximum negative number is -2
1 1112 47
1|pg gl 1.00 g
3) Zero
g1 1112 47
21 gg 21 9.98 g
4) Un-normalized numbers
The only un-normalized numbers allowed are these:
g 1 11 12 ‘ 47
: ' 35
X: 2129 '] N L <N<2
_o18 18
and their negatives, i.e., |X| < 2 . Note that + 2 are

both normalized and un~normalized.

94

5) Infinity
g1 1112 ' 47

- oz l1f11 1lg.¢ g

The symbol - = is treated as the single point at infinity in the
one-point (projective) closure of the reals. _Operations on = ®
are summarized in the Appendix.

6) Undefined floating point numbers

Data of the form
g1 11 12 , 47

0: ') M N

with § < M & § < N < 235

....l,
and their negatives are not floating point numbers. If such a
number appears as an operand for any floating point operation,

the trap UFN will occur.

B. Algebraic Closure Properties of Normalized Numbers
Numbers of the form A.l, A.2 and A.3 are normalized numbers.
(n.n's)
1) If X is an n.n, so is -X.
218
2) If X is an n.n not zero nor +2 , so is 1.8/X.
The smallest possible n.n whose réciprocal is an n.n is

18 -
2727 1+ 2739,

95

C. Double Precision
The 96-bit double precision data have an additional 48 fraction

bits. For example a DP positive number:

g 1 11 12 | | 47
'} M N
48 ' ' 95
Nl
represents X = (N + N' * 2_48) * Z(E_35), g < N' < 248 -1.

D. Floating Point Instructions (8) and OPRs

All flbating point operations have single (SP) and double (DP)
érecision variants, bit TDFLAG in SR selecting the one to be
used. Bit PDFLAG is used to set TDFLAG after a compare (FCP)

or store (STr).

Floating operations set CC to indicate if the result is less or

greater than or equal to §. (STF and FIX leave CC unchanged.)

FLD (E) Floating load
An SP or DP floating point number statting at Q is copied into
the floéting point accumulator. (The A, B, C, D, and E central
register)
STF (D) Floating store
SP: The floating point accumulator is rounded at bit 35 of

the fraction and copied to (Q) and (Q+1).

96

DP: Four words are copied from FA to the locations starting
ét Q. A double floating store causes no rounding if the FDP bit
in SR is set. Otherwise it rounds at bit 71 of the fraction and
zeros the last 12 bits. The FDP bit thué determines whether DP
Vnumbers are stored with 72.or 84 bits of fraction. Overflqw may
occur because of the rounding. In all cases TDFLAG + PDFLAG af-
ter the store.

FAD (E) Floating add

SP: The operand is extended with 48 zeros on the right. A
DP is then done.

DP: Let the operands be a * 2b, c * Zd. The two exponents
are compared. Suppose b > 4. Then4c is shifted right by b - d.
An 87 bit register is provided to hold c, which is loaded
(srgn + 84-bit fraction) into the 85 ﬁost significant bits. The
two least significant bits are cleared. The 86 most sigrificant
bits pafticipate in the right shift in the usual way. The least
significant bit is 'sticky': if a 1 is evef shifted into it, it

remains 1 from then on.

After ¢ has been shifted, it is added to a in an 85-bit adder,
yielding a result r of 87 bits. Bits 85:86 of ¢ do not partici-

pate in addition.

Now, if an overflow has occured (a[f]

c[@] # r[P]), r is shift-
ed right by 1. r[86] is treated as a sticky bit in this shift
just as it was in the shift of c¢. b is incremented by 1 if this

shift occurs and r[@#] <« NOT r[d];

97

The result is normalized by left shifting until either:
1) the sign bit differs from the next bit or

2) the fraction is 1109 .. @
The exponent b is decremented by 1 for each left shift.

Lastly the result, rounded at bit 83 of the fraction (i.e.,
r[84], since when we say 'bit 83 of the fraction' we don't count
the sign bit)<in accordénce witﬁ the rounding mode in force, is
assigned to the floating point accumulator. See the discussion
of rounding below for details. Both overflow and underflow may
occur.
FSB (E) Floating subtract
Identical to additién except that the negative.df the second
operand is taken first. This cannot cause any abnormal condi-
tions. .
FMP (E) Floating ﬁultiply

SP: The accumulator is rounded to single precision, then the
two 36-bit fractions are multiplied to yield a 72—bi£ result.
The exponent which goes with the result is the suﬁ of the expo-
nents of the operands plus one, to corfect for the placement of
the bina;y point in the product. The 72-bit fraction is shifted
left if required for normalization. No rounding is requiied
since the accumulator can hold this entire product. Overflow or
underfloﬁ may occur.

DP: The two 84-bit fractions and the two signs are multiplied

to yield an 86-bit result (sign plus 85 magnitude bits) and an

98

87th bit which is the union of the 82 least significant bits of
the full 168-bit product. The resﬁlting 87-bit number and the
exponent obtained by the procedure described for single precision
are normalized and rounded like the result of an add. |
FDV (E) Floating Divide

SP: The 36-bit divisor fraction is divided into 38 bits of
the accumulator fraction to produce a 37-bi£ quotient. To this
is appended a 38th bit which is set if the division is not exact
or if the other 46 bits of the accumulator fracgion are non-zero.
The resulting 38-bit number is put into the accumulator'and fill-
ed out with 46 zeros on the right. The exponent of the result
is computed by subtracting the divisor exponent from the dividend
exponent. ,

DP: The 84-bit divisor fraction is divided into the 84-bit
accumulator fraction to produce an 85-bit quotient. The exponent

is compﬁted as for SP and the result is rounded in the usualvway;

Overflow or underflow may occur. Division by @ produces its own

trap:. (DIZz)

‘If the divisor is an un-normalized number it is normalized prior

to division. It may or may not cause overflow as explained above.
FCP (E) Floating compare

Identical to floating subtract, but the result is not assigned

" to the floating accumulator. CC will be set as usual to indicate

the sign of the result. TDFLAG « PDFLAG

99

FLX (E) Fix and load X
XR is assigned a 24-bit integer which is the floor oﬁ the float-
ing operand. If the floor is > 223 -1 in magnitude, the trap
FLXO occurs. The result does not depend on SP of DP mode.

FNA (OPR) Floating negative
‘The number in the floating point accumulator is replaced by its
negative. | .

FIX (OPR)
Similar to FLX, but the operand is taken from the floating point
accumulator and the result is put into RESULT and AR.

FLOAT (QPR) |
A FLOAT operation produces a (normalized) floating point number
in the floating point accumulator which when FIXed will restore
the integer operand in AR. (unless it is 4B7) Nothing can go

wrong with FLOAT.

E. Rounding |

There is a three-bit field (TRMOD) in SR which specifies how
rounding is to be done (the field PRMOD is used to set TRMOD
after every FAD, FSB, FMP, FDV, STF or FCP). The descriptions
of instructions above state explicitly each point where rounding
is done. The phrase 'round at bit n of the fraction' means that
bit n of the fraction (numbering the magnitude bits from g and

not counting the sign) is the least significant bit retained.

100

The rounding modes are:

TRMOD Name Rounding
@ N nearest number
2 | F floor (towdrd ")}
3 C ceiling (away from §)
4 P) away from - o
5 | M toward - «

Rounding involves three bits. The first is the least significant
bit to be retained and is called Q. The one following Q is call-
ed R. The third is the union of all the bits following R (some-

times only 1, none for double divide) and is called T.

The rounding rules are as follows (call the sign 8):
N: +1 (add 1 to least significant retained bit)
if R= 1 unless Q =@ and T = @

F: +1 if S

l]and Ror T 1

C: +1 if S =g and Roxr T 1l
P: +1if Ror T =1

M: no action

F. Overflow and Underflow
overflow and underflow occurs if at the end of a floating point

instruction, the exponent is outside the permitted range.

Overflow always causes a trap (FLO). It leaves a correct result

except for the exponent, which must be read as a 12-bit twa's

101

complement number with sign bit the complement of the high-order

bit preserved.

Underflow action depends on the SUF bit in SR. If it is set, no
trap occurs and a suitable un-normalized number of zero results.
~ Otherwise, trap FLU occurs and the result is correct (and normal-

ized) with the same rule for the expdnent as was stated for over-

flow.

102

-APPENDIX CONTENTS

DEFINITION OF INSTRUCTION CODES

DEFINITION OF OPR ADDRESSES . . .

SUMMARY OF ADDRESSING

SUMMARY OF INSTRUCTION ADDRESSING

FIXED TRAPS . . . « . . .
RING-DEPENDENT TRAPS . .

RING-DEPENDENT TRAP If:

SUMMARY OF IMPORTANT CORE ADDRESS

SPL PROGRAM TO DEFINE BLL
WORD FORMATS
SOME FIELDS IN OCTAL FCRM

CHT HASHING ALGORITHM . .

BLLERR

.

Page

103
104
105
106
108
109
110
111
113
118
127

128

103

DEFINITION OF INSTRUCTION CODES

code mnemonic a.type code mnemonic a.type
[’} HLT F 49 ASHD F*
1 LDA F* 41 ASHA P*
2 LDB F* 42 LSHD F*
3 LDX F 43 LSHA F*
4 1LDD F* 44 CYD F*
5 EAX E 45 CYA F*
6 LNX F 46 TSB F*
7 XMA S* 47 , LAX F
1g ETR F* 59 BRU E
11 IOR F* 51 BLT E
12 EOR F* 52 BEQ E
13 STD D 53 ‘ BLE E
14 STF D 54 BGT E
15 STA S 55 BNE E
16 STB S 56 BGE E
17 STX S 57 BLL S
29 ADD F* 6y BLLN S
21 SUB F* 61 BRX E
22 ADC F* 62 BSX E
23 sucC F* 63 SRS F
24 ADM S* 64 EAC E*
25 ADX F 65
26 MIN S* 66
27 MDC ‘ S* 67
39 MUL F* 78 FLX F
31 DIV F* 71, FLD F*
32 Icp F* 72 FCP F*
33 CPZ F* 73 ~ FAD F*
34 CMZ F* 74 FSB F*
35 ISD S* 75 FMP F*
36 DSD ' S* 76 FDV F*
37 EXU F? 77 OPR F?

* indicates that CC is set by the instruction

104

DEFINITION OF OPR ADDRESSES

OPR‘address mnemonic

g CAB

1 XAB *
2 CBA *
3 CBX

4 XXB

5 CXB

6 CAX

7 XXA *
1g CXA *
11 CNA *
12 CNX

13 ZOA *
14 ZAB

15 ZOB

16 CGA *
17 XGA *
20 CLA *
21 XLA *
22 CSA *
23 XSA *
24 - CTA *
25 CCA *
26 NOP
27 MVB

3g MVC

31 MVS

32 CPS *
33 cLs *
34 ASP '
35 LLT *
36 COB *
37

* indicates that CC is set by the OPR

OPR address

4p
41
42
43
44
45
46
47

58
51
52
53
54
55
56
57

60
61
62
63
64
65
66
67

70
71
72
73
74
75
76
77

mnemonic

LOADS
STORS
LsC
FIX
FLOAT
FNA

SLOK
RLOK
ALD

AST
PRO

UNPRO
ATTN
USCL
CMAP

CMAPS
CAT
CAC
RUN

LDMAP

*

105

SUMMARY OF ADDRESSING

Notation used in defining addressing modes.

wli,j] means bits i to j of W (the address field of
the instruction) considered as a 24-bit number.
W[i,i] is represented by W[i].

CONTENTS (N) means the contents of the memory location with
address N. Ring checking is performed with
R as source and N as target.

IA(N) means that the indirect addressing sequence
is initiated by:

FUNCTION IA(N);
IAW <+ CONTENTS (N) ;
R + N;
*PROCEED TO PROCESS IAW

By the time it is finished, the IA function

will set the value of the address (Q) or the
orerand (OP).

All instructions start with IR <« XR & R +« P;

106

¢ (dSvd) VI

£{dSIA + XIANI -+ HI
(([sT’ATIM)QINDIS + 4SId
£([ez’LT]IM + T)SINZINOD + XIANI
253 4 = [9TIM 4T ([€2’/LTIIM + D)SINIINOD + XIANI
as1a g = [€z’'9TIm AT ¢ + XxHIANT

1M1 » dsvd

! (asvd) ¥vI

L([ST’TTIM + T)SINIINOD + ¥I

4513 g = [#TIM AT ([ST/TTIM + D)SINIINOD + ¥uX
© 3573 # = [ST'ATIM 3T 91 » uI

t{€Z/LTIM + 1 » ASvd

513 4 = [9T]m AT [gz’LT]IM + D » FAsSvd

4574 F = [€2/9TIM AT ¥I - ASvd

L (D)VI
JAOW dd ¥0d SY * !dSId + ¥ld +~ O

$ (D) SLNILNOD + dO

. {3sSIC + ¥914d - O

t([sT’'BT]IM) aaANDIS » dSIa

t(fezLTIM + T)SINAILNOD + ¥Ld

as1a # = [9TIM aT ([€2'LTIM + D) SINILNOD + ¥Id
FSTd # = [€T’9T]IM 4T ¥I » ¥id

${0) SINIINOD + JO
I + M+ 0

£(® + M)VYI

£ (D) SINAINOD + dO
5+ M+ D

t[{a+1] (L, X$) Dao0

-¢[1]e dao

{{alas 040

{{ala odo

¢{[M].x 240

t[m].9¢ odo

£{M].9 dao

unwewomammaclxwvculmmmm

Xopul-ased

3091TPUI JuswaoerdsTd-T03UTOq

juswasetdsTg-I33UTOd

QI XIANI

LOTYIANT

LOTIIa

axg

Xq

Ia4d

ag

uoI3VINAOY 882JpPY

uoIDIoN

"ONISSIYAQY NOILOMNIULSNI J0 XIYWWAS

sumy

Jqqy

3/4/74

ision

Rev

107

3 (L) YX , TYWION
T+ ¥ + 3

{ITIaNT

L(T+TIINW) * (g71-¥I) » uI
TEQ < ¥YI AT (¥) Y, IVEL
f0a 3514
(T+SI10W) * (8T-¥I) + ¥T
isgn < ¥I J1 (Y)IAV,dViL
‘0d g = 931 ax
£ (XYT=HLSNY) aNY (f=dVvelV¥) JI (9) d4IvI
(XVTAMLISNI) ONY (T=dVdl¥) JII (d) dYIVI

-~

(€z’T1)18n “(£2‘L)Sdn
C(BTYS)TION Y (9°6) sIInN

‘4T > ¥I JI (Y)EEV,dVHl ‘(p)gaT ‘ (g£)avdrvy ‘ (2)91 Kexay
. -butays - (gg'9)uM
3O YM PIOA WOIY HZISD JO $020 93Lq 3097098 '(s’y)s0ad ‘(g’z)azISD butaas
: [84/€3]d0 QNY T = 38 4TI (gJ-9Z) %2 - dO + 4O
!{[T-dzis+ga’qadln + do
{(0) SINALNOD + N (€T‘€T)ds1Ia ‘(z1‘8)ad
‘4SIa + ¥I + O ‘(L’g)A2IS ‘(2)aS PIaTd
{1 (B)vY1
‘3sT@ + 1+ O
‘fez’erlm » dsia t[al 1% dao 3IO2ATPUI-BATIRTOY—T 1871
{ (D) SINTINOD + &0
igs1d + T + O
t{ez’eTIM - dSIa ¢{{al,1 odo SATIRTIY~T w1
uUoIIDINAWOY) 8S2IPDY Uo13D08 aumpy 199y

(PanUT3UOD) DHNISSHYAAY NOILOMUISNI IO XUYWHAS

3/4/74

ision

Rev

108

FIXED TRAPS

Number Name Caused by Parameter
1 MACC Memory access error - attempted Q+ (RING (R) =1) *1B6
access to monitor from below M
or utility from below U
2 PRO attempted write of RO page Q
3 PNIM attempted reference to page not Q
in map
4 PNIC attempted reference to page not Q
in core '
5 TO timer overflow - not in monitor ---
mode
6 - PI privileged instruction -
7 TI trapped instruction -
8 XMON on exit from monitor via any —-——
BLL or LOADS if XMONT is set in
the state ~
-9 XUTIL on exit from utility via any —-——
BLL or LOADS if XUTILT is set
in the state
11 ILIM indirect limit exceeded address of IAW
12 MAB map abort -—=

Number

[3S)

LT %]

o

10

Name

ABE

FLO

FLU

RO

IATRP

UFN

FLXO

DIZ

STKOV

BLLERR

109

RING-DEPENDENT TRAPS

Caused by

array bound exceeded

floating overflow

floating underflow

read only trap

indirect address trap bit

undefined floating number

overflow on FIX or FLX
instruction

floating divide by zero
stack overflow

function call error

described in separate table

on the next page

Parameter

‘address of IAW

address of ROD
or ROX IAW"

~ address of IAW

NAW+CLASS* 1B6

Class

110

RING-DEPENDENT TRAP If: BLLERR

address type error in A
wrong number'of apguments
argument type mismatch
inadmissible argument
address type error

array, label or string
descriptor format error

Parameter
1B6
2B6 + NAW
| 3B6 NAW
4B6 + NAW
5B6 + NAW
6B6 NAW

111

SUMMARY OF IMPORTANT CORE ADDRESS

g Start at the user ring

G'[#] POP entry IAW

G'[1] | 2nd word of POP entry IAW

G'[2] SP - Stack Pointer

G'[3] SL - Stack Limit

G}[4] Ring dependent trap - P is stored here

G'[5] Ring dependent trap - parameter is stored here
G'[6] Ring dependent trap service entry IAW

G'[7] (may be used as 2nd word of IAW)

G'[31] ‘Last word which can be used as‘an index in BX
G'[127] Last word which can be used as a éointef in PD

or IPD or as a base in BX :

G'[37777B] Last word which can be accessed by D, I addressing

L'[9] lst word of the return descriptor - P

L'[1] 2nd word of the return descriptor - L, STK, CPA
L'[2] SYSPOP transfer address

L'[31] Similar to G'[31]

L'[127] Similar to G'[127]

L'[2947] Last word which can be addressed by L, LI addressing

112

SUMMARY OF IMPORTANT CORE ADDRESS (continued}

4AppegeB
40@g14B
49@PF16B
69pppsB
60p8@14B

6027528
60827648
6948008
6949928

7777778

Start of utility ring, G for utility

G may be stored here

UCALL entry IAW

Start of monitor riﬁg, G for monitor, context bloék
G may be stored here

State is stored here if a fixed trap occurs

Start of the SAVE area

MCALL entry IAW

Fixed trap entryv

Maximum virtual address

*

BLL: N«f@; SPEC+@; MCAL+@; NEWG+G; GOTQ BLLl;
BLLN: N<«1; SPEC<{; MCAL+@; NEWG+G; GOTO BLLl;

*

113

SPL PROGRAM TO DEFINE BLL

SPL PROGRAM TO DEFINE BLL

OPR WITH NEGATIVE OPERAND:

OPR: OpP« =-0P;

N«OP $§ BIT15; SPEC+<{;"
MCAL+<~OP $ BIT14+1;

(NEWG<+4g82330B & R+4¢ﬁ¢l4B) IF MCAL= 1 ELSE

(NEWG+60P@FIB & R<6P4QPPB) ;
IR<OP $ BIT16THRU23; IA(R); GOTO BLL1;

POP: POPW+CONTENTS (P) ; IR+POPW $ FOPC; N+« -

SPEC<1; MCAL<f; NEWG<G;
IA(G); TI() IF IMMEDIATE=1l; GOTO BLL1;

"BLLl: NEWPW<«CONTENTS(Q):

BLLERR(1l) IF NEWPW $ BITS5;

NEWP+ (NEWPW $ FLW IF NEWPW $ BIT4=0
ELSE Q+NEWPW $ FSRW);

BRD+CONTENTS (Q+1) FTNATF«{;

CLL+BRD § BIT@; STX<«BRD $ BIT1;

CPA<+BRD $ BIT2;

CPR<+BRD $ BIT3 IF CLL=1 ELSE UWSTK<+BRD

REL<BRD $ BIT4; FTN<BRD $ BITS5;

NEWL<E<BRD $ FE;

IF RING (NEWP)<RING(P) DO;
NEWG+G[14]; RET<1;

ENDIF;

OBTAIN NEW LOCAL ENVIRONMENT

IF STK=1 DOC;
IF CLL=g¢ DO;
IF UWSTK=§; SP+L;
ELSE DO; SP<E; NEWL<E.FE;
ENDIF;
ELSE DO;

$ BIT3;

SP«NEWG[2]+E; STKOV() IF SP>=NEWG[3] ;

NEWL<+NEWG][2] ;
ENDIF;
ELSE DO;
NEWL+L IF NEWL=§;
ENDIF;

RINGCHECK (NEWP) ;

114

*
* COPY ARGUMENTS
*
BLLERR({2) IF N=CPA;
NAW<+P+1;
IF CPA#§ DO;
FOR NFW<NEWP BY 1 DO;
R<NEWP; FP<«CONTENTS (NFW) ;
FTYPE<FP $ TYPE;
IF SPEC=1 DO;
SPEC+{; AP<+POPW; NAW<NAW-1;
ATYPE«FTYPE; ASTR<«FP § FSTR; AENDF<FP $ ENDF;
. ELSE DO; .
Lg: R<P; AP+CONTENTS (NAW) ;
ATYPE«<AP $ TYPE; ASTR<AP $ STR;
AENDF<AP $ ENDF;
ENDIF;
IF ATYPE=J DO;
* JUMP IN ACTUAL ARGUMENT LIST
R<P; IR<XR; EA(NAW):
BLLERR(5) IF IMMEDIATE;
- NAW<Q;
GOTO Lg;
ELSE DO;
BLLERR(2) IF AENDF#FP $ ENDF;
IF ATYPE#FTYPE DO;
* TYPES DISAGREE. ERROR UNLESS ONE IS JOKER, JOKER IS CHECKED

FOR BELOW UNLESS CADDR=1 OR FSTR=ARRAY, IN WHICH CASE IT IS
* NOT CHECKED. :

E

IF ATYPE#14 DO; :
BLLERR(3) IF FTYPE#14;
FTYPE«ATYPE;
ENDIF;
ENDIF;
NAWP<NAW; ,
IF ASTR=¢ OR ASTR=2 DO;
NAW<NAW+1 IF ASTR=2;
IF FP $ FSTR=0J AND ASTR=2 OR FP $ FSTR=1
AND ASTR=@ DO;
BLLERR(3) IF FTN=g; FTNATF<l;
TEMP<NAW+1B6;
GOTO L1;
ENDIF;
ELSE DO;
BLLERR(3) IF FP $ FSTR=§;
, ENDIF;
* CHECK FOR ACTUAL ARG IN ACCUMULATOR
IF (AP AND 70@37777B)#¢ DO;
R+P; IR<+XR; EA(NAWP); ARGADR<«Q;
IF FP $ CADDR=1 DO;
IF IMMEDIATE=1 DO;
* CONSTRUCT IMMEDIATE IAW
' TEMP«OP AND 3777B OR 1634B4;
ELSE DO;
RINGCHECK (ARGADR) ; TEMP<«ARGADR;

115

* MAKE THE IAW READ-ONLY IF NECESSARY —
TEMP<+TEMP+1B7 IF READONLY=1 OR ASTR=3;

ENDIF;
x*x FIX UP SO THE COPY VALUE CODE WILL COPY THE ADDRESS IN TEMP
Ll: FTYPE<«1l; FP $ FSTR+1l;
ELSE DO;

IF IMMEDIATE=1 DO;

BLLERR(5) IF FTYPE#1l OR FP $ FSTR={;
ENDIF; .
TEMP+ (OP IF FTYPE=1 ELSE CONTENTS (ARGADR)) ;

ENDIF;
OLDR<R; .
CPYADR+ ((FP AND 3777B)+NEWL IF FP<@ ELSE
(FP AND 37777B)+NEWG) ;
GOTO ARRAY IF FP $ FSTR={;
COUNT« (1 IF FTYPE=1 OR FTYPE=9 ELSE
2 IF FTYPE=2 OR FTYPE=3 ELSE
4 IF FTYPE=4 OR FTYPE=5 OR FTYPE=6
ELSE GOTO STRING IF FTYPE=7
ELSE GOTO LABEL IF FTYPE=8
ELSE BLLERR(4));
UFN'TRAP () IF(FTYPE=3 OR FTYPE=4)
AND UNDEFINED (TEMP) ;
L2: R«NEWP; SCPYADR<«TEMP; COUNT<«COUNT-1;
IF COUNT#¢ DO;
R<~OLDR; Q<«Q+1;
CPYADR<«CPYADR+1;
TEMP<CONTENTS (Q) ; GOTO L2;
ENDIF;
ELSE DO;
BLLERR(5) IF FP $ CADDR=1 OR FP $ FSTR=§;
CPYADR« ((FP AND 3777B)+NEWL IF FP<@ ELSE
(FP AND 37777B)+NEWG) ; .
IF TYPE=3 OR TYPE=4 DO;
STF (CPYADR);
ELSE DO;
COUNT« (1 IF FTYPE=1 OR FTYPE=9 ELSE
2 IF FTYPE=2 ELSE
4 IF FTYPE=5 OR FTYPE=6 ELSE
BLLERR(4));
R«NEWP;
STORE (CPYADR, A);
IF COUNT#1 DO;
STORE (CPYADR+1, B);
IF COUNT#2 DO;
STORE (CPYADR+2, C);
STORE (CPYADR+3, D);
ENDIF;
ENDIF;
ENDIF;
ENDIF;
NAW«NAW+1;

lle6

L3: ENDIF;
INTERRUPT'CHECK() ;
GOTO L4 IF FP $ ENDF=1;
ENDFOR;
L4: NEWP<+NEFW+1;
ENDIF;
*
* COMPUTE RETURN DESCRIPTOR
IF CLL=1 DO;
R«NEWP;
NEWL[/] «NAW;
NEWL[1]+«L+2B7%STK+1B7+*CPR;

NEWG[14B]+G IF MCAL>@ AND RING (NEWP)>RING(P) ;

ENDIF;
IF STK=1 DO;
IF CLL=1 DO
_R<NEWP; NEWG[2]<SP;

ELSE DO;
R«<P; G[2]+«SP;
ENDIF;
ENDIF;
IF MCAL=2 DO;
MENTER: PROTECT (4) ;
SET'LOCK () ;
ENDIF; :

SR $§ TDFLAG+«SR $ PDFLAG+f@ IF MCAL>{;
L+<NEWL; G<NEWG; OLDP<+P; P+NEWP;
IF RET=1 DO;
IF OLDP>=6B5 DO;
MEXIT: UNPROTECT (4) ;
RESET'LOCK() ; ,
XMON'TRAP () IF SR $ XMONT;
‘ELSE DO
XUTIL'TRAP() IF SR $ XUTILT;
ENDIF;
ENDIF;
P<P+1 IF FTN=1 AND FTNATF={;
*
* EXIT FROM BLL
’ GOTO NEXT'INSTRUCTION;
*
STRING: COUNT<«4; GOTO L2 IF MCAL=(
FORM<TEMP AND 14B6 OR 4B7; OLDT+f;
FOR I+@ BY 1 DO;
R<«P; RINGCHECK(TEMP) ;
BLLERR(6) IF OLDT $ WA>TEMP $ WA OR
OLDT $§ WA=TEMP $ WA AND
OLDT $ CPOS>TEMP $ CPOS;
R<NEWP; $(CPYADR+I)<«TEMP AND NOT 74B6 OR
GOTO L3 IF I=3; R+«OLDR; OLDT<«TEMP;
TEMP<CONTENTS (ARGADR+I+1) ;
. ENDFOR;

FORM;

117

LABEL: Q<«(TEMP $ FLW IF TEMP $ BIT4=g
ELSE ARGADR+TEMP $ FSRW);
RINGCHECK (Q) IF MCAL>{;
R<NEWP ;
STORE (CPYADR, Q AND NOT 75B6 OR TEMP AND 75B6):
R<OLDR; BRD<CONTENTS (ARGADR+1) ;
IF BRD $ FE=g AND BRD $ FSTK=¢ DO;
BRD<BRD AND NOT 4B7 IF MCAL>{;
BRD<+BRD OR (L IF STK=¢ ELSE NEWL+2B7+4B6);
ELSE DO;
BLLERR(6) IF MCAL>{;
ENDIF;
R<NEWP;
STORE (COPYADR+1,BRD) ; GOTO L2;

ARRAY: R<«NEWP; S$SCPYADR<«TEMP;

BLLERR(6) IF TEMP $ IAT#3;

IF MCAL>@ DO; :
IF«(TEMP $ UBl IF TEMP $ LEB=g ELSE TEMP $ UB2);
IA (ARGADR+1); RINGCHECK (Q);

ENDIF;

IR+f@; R+ARGADR; IA(ARGADR+1l);

BLLERR(6) IF IMMEDIATE=1;

RINGCHECK (Q) IF MCAL>f;

R+NEWP;

$ (CPYADR+1)+« (Q+ (4B6 IF READONLY=@ ELSE 12B6));

GOTO L3;

118

WORD FORMATS

A. Instruction Word

'] 2 3 8 9 1p 23
TAG OP_C § W
Bit Name Normal Mode
g-2 ' TAG Addressing mode for TAG field
3-8 OPC Opcode
9 POP Pop bit
19-23 W Address field
TAG Name Addressing Mode
g D Direct
1 I Indirect
2 X Indexed
3 BX Base-index
4 PD Pointer—displaeement
5 PDI Indirect—péinter—displaceﬁent
6 BXD Base-index-displacement

7 REL Relative. This one has 6 sub-cases

119

B, Relative Addressing

. 2 3 8 91 1213 23
TAG=7 OopC RTAG w[13,23]

RTAG Name Addressing Mode

g LR L-relative

1 LRI ' L-relative indirect

2 SR Source relative¥*

4 SRI Source relative indirect*

6 IMX Immediate indexed

7 M Immediate

* these modes use bit 12 in the address field (e.g. W[12,23})

C. PD, PDI Addressing

g 23 8 9 1g 15 16 : 23
TAG=4,5 OPC t DISPLACEMENT g POINTER ADDRESS
16 23
POINTER = IR g — g
16 23
POINTER = CONTENTS (G + X) g X
16 23
POINTER = CONTENTS (L + X) 1 X

120

D. BX Addressing

g 23 8 9 1¢ 15 16

23
TAG=3 orcC g INDEX ADDRESS g BASE ADDRESS
Where the index address field is one of the following:
1p 15
INDEX « IR;) g
1g 11 15
INDEX < CONTENTS(G + W); g X
1g 11 15
INDEX <« CONTENTS(L + W); 1 X
and the base address field is one of the following:
16 23
BASE + IR; |y g
1617 23
BASE <« CONTENTS (G + W); g X
16 17 23
BASE <« CONTENTS(L + W); 1 X

121

E. BXD Addressing (Base in XR)

[} 2 3 8 9 14 15 16 ‘ 23
TAG=6 OPC iDISPLACEMENT g INDEX ADDRESS

Where the index address field is one of the following:

16 23
INDEX « §; . g g
16 17 23
INDEX < CONTENTS (G + W); g X
16 17 23
INDEX <« CONTENTS(L + W); 1 X

" and the base address is in the indexing register.

F. Normal Indirect Address Word (IAW)

g 12 . 45 6

23
TR '
IAT=p| TAG#7 |Ap W
/] 12 4 5 6 7 9 1¢ 23
_- |TR|RE '
IaT=g| TAG=7 | ol x| RTAG LWR
Bits Name Contents
g-1 IAT g
2-4 TAG interpreted exactly like an instruction
TAG
5 TRAP causes trap IATRP if set
6 RELX causes indexing for the relative modes
7-23 LWR ldng address for the relative modes
6-23 LW long word address
19-23 W word address

122

G. Field IAW

g 1 2 3 7 8 12 13 23

IAT=1|SE SIZE FB * DISP
Bits Name Contents
g-1 IAT 1
3-7 - SIZE size of field in bits
8-12 FB address of first bit of the field
2 SE causes sign extension of the field if
set
13-23 DISP 2's complement signed displacement

H. String IAW

J4) 12 3 4 5 6 23
IAT=1]CSIZ |CPOS , WA
" Bits Name Contents
g-1 IAT 2
2-3 CSIZE character sign: @ = 6 bits, 1 = 8,
2 = 12; 3 = 24
4-5 CPOS character position in word
6-23 WA word address

Bits assigned by CSIZE and CPOS:

CSIZE/CPOS @ 1 2 3
[} g-5 6-11 12-17 18-23
1 g-7 : 8-15 16-23 X
2 g-11 12-23 X X
3 g-23 X X X

123

I. Array IAW

g 1.2 3 45 67 | 23
T
IAT=3|LB g g |MULT UB
g 1 2 3 45 19 11 23
iy
IAT=3LB IA{ 1 MULT UB
A A
Bits Name Contents
g:g-1 IAT 3
g:2 LB ' lower bound for IR (g or 1)
g:3 ATRAP array trap bit
g:4 LEB - large element bit
g:5-6 MULT IF LEB = ‘multiplier for IR
g:5-1g MULT IF LEB = 1
g:7-23 UB IF LEB = @ upper found for IR
g:11-23 UB IF LEB = 1 '
J. String Words
5 6 11 12 17 18 23
POosSg POS1 POS2 " POS3
) 7 8 15 16 23
POS@ POS1 - POS2
J4] 11 12 23
POSg POS1
g 23
POSH

K. BLL Branch Descriptor

3 4 5 6 8 9

124

2 23
SR|TR
ELIAP SRW
g 1 2 3 4 5 6 23
CL{STICP{CR|RE{FT E
L}JKJjAJUWIL|N
Word Bit Name Meaning
4 SREL c.f. REL + SR in Normal IAW
5 TRAP Causes TRP if set

'] 9-23 SRW Signed.displacement if SREL is
set

'} 6-23 Lw Long word addresses

[} CLL Call bit. The o0ld P and L are
~saved if the bit is set.

1 1 STK The local environment is
allocated from the stack if
this bit is set.

1 2 CPA Arguments are copied if this
bit is set .

1 3 CPR IF CLL=1 The CPA bit in the return des-
criptor is furned on if this
bit is set.

1 3 UWSTK IF CLL=§ Unwind stack on return

1 4 REL Source-relative label supplied

1 5 FTN 1 FORTRAN type function

1 6-23 E This number determines the new

L; precisely how it does so
depends on STK

125

L. Actual Argument Word (AAW)

] 2 3

4

5

8 9 1p | 23

TAG STR

TYPE

EN
DF

M. Formal Argument Word (FAW)

% 2 3

4 5 8 9 1¢ | 23
CAIFS EN '
g or 7| tlrm TYPE |on W
Bits Name Contents
3-4 STR (actual argument only) structure
1 = variable :
3 = computed scalar
2 = array element
g = array
3 CADDR (formal argument only) copy value
1 = copy address of actual argument
g = copy-value of actual argument
4 FSTR (formal argument only)-
1 = scalar
g = array
5-8 TYPE type
‘§ = jump
1l = integer (1 woxrd)
2 = long (2 words)
3 = real (2 words)
4 = double (4 words)
5 = complex (4 words)
6 = longlong (4 words)
7 = string (4 words)
8 = label (2 words)
2 = pointer (1 word)
14 = unknown
9 ENDF end flag
= not last argument word
1 = last argument word

N.

126

State and Status Register

8 9

g 4 5 6 11 12 1314 15 16 17 18 19 20 21 22 23
FD 94 SUKUIXMITD|PDICA|TO IN
p | TRMOD} PRMOD | CC pyu|p fr1fon|F | F EY v PVirp
CC =g A <
1 A=g
2 A >
Trap State Save Reiative
addresses addresses addresses Name
6027528 602764B gB P
682753B 6027658 1B A
6027548 682766B 2B B
6027558 6827678 3B C
6027568 6927798 4B D
6@2757B 6827718 5B E
6027648 6@2772B 6B X
6@32761B 6@2773B 1B L
602762B 6@2774B 198 G
602763B 692775B 11B SR
6027768 12B CTC
6027778 13B IT
0. Absolute Value of Negative OPR Operand
] 14 1516 23
TYPE SYSCALL #
Type Meaning
g UCALL
1l UCALN
2 MCALL
3 MCALN

127

SOME FIELDS IN OCTAL FORM

3g9PPPEaB X
799333998 LR
799190098 SR
789203398 SRI

- 7198340308 ™
g2000@F08B I in IAW
FAgogpEgB X
161p0p0pB SR
1669330 0B SRI + RELX
1640300308 LR + RELX
d1pgpaagB TRAP
200p0339B FIELD IAW
10ppppp9B SE
B76¢3P3IB SIZE
@P1740p9B FB
ApPEPEARB STRING IAW
140003 @0B CSIZE
g3g4appeB CPOS
6ggPPAgeB ARRAY IAW
199008030338 LB
pAgEPEEEB ATRAP
p14ppgpgn MULT .if LEB =
2208033 PB LEB
gl76g000B MULT if LEB = 1
AppPEAPIB CLL bit in BRD
2000993098 STK
199000008 CPA
gagapaagB CPR / UWSTK
gopgpganB variable AAW
gegpgppgB scalar
RAPREEPIB array element
gARPIRIRB _copy address, array FAW
G2833099B copy value, scalar
26ppppppEB copy address, scalar

pEPAPPAEB ENDF

128

CHT HASHING ALGORITHM

In this hashing algorithm consider a byte to be 8-bits. Also

consider the unique name as being composed of six 8-bit bytes

(BYTELl - BYTEG6).

The algorithm is:

HASH'UN1 « BYTEl E' BYTE2 E' BYTE3;
HASH'UN2 « BYTE4 E' BYTE5 E' BYTES;
HASH'UN « HASH'UN1l E' HASH'UN2;
HASH'UN + HASH'UN E' 264B;

HASH'UN < HASH'UN A' 377B;

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128

