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_ ABSTRACT

The BCC 500 System was désigned.to be a large-scale interactive
computing utility supporting up to several hundred on-line users. To
achieve this goal, a multi-proceésor architecture was chosen. Central
processors were designed to conpile and run user code, while the operating
'systcm was designed to be run by several dedicated proceéssors. This
paper dctails the system memory management function which was‘aésigned
to one of these processors.

With this architecture, memory managcment takes on a different
dimension. Techniques and capabilities beyond the reach of those‘attainable

by time-sharing memory managment functions on a CPU with other system and

user tasks may be employed. The memory manager is continuously active,
monitoring the memory system and taking appropriate action more quickly

and morc often.
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-1 INTRODUCTION

Memory management for the BCC 500 was designed to be controlled by
a single dedicated processor. As a result, thé central processors do
not run mcmofy management tasks. The memory mahagcmcnt processor con-
tinuously monitors ‘the memory system and quickly responds to events that
are important to the mcenory system. » | '

This report 1is a téchhical des:cription of the memory management
system. Hardware componcnts., data structures, imi:lementation code,

and comunications conventions are described in detail.

1.1 Organization

The following parts of the memory management system will be described.

1.1.1 System Structures (Section 2)
This describes the system enviromment in which the memory
manager operates. Concepts such as page, unique name, context

blockv,_process table, etc. are discussed.

1.1.2 Hardware (Section 3)

The hardware has been specially adapted to attain the high
_swap rates desired. The processor, drum, disk and auxilary memor'y
controller are extensively discussed. One can see the differences

such as position monitoring, unique name checking, and other fecatures

of the hardware.

1.1.3 Data Structures (Scction 4)

The fundamental data structures of the mamory manager are



detailed. The queuc which is used extensively in the memory manager

is illustrated. Also the core and drum page tables are explained.

1.1.4 Microcode (Scction 5 § Section 6)

¢

The role of microcode is explained. Various examples of

microcoded routines are given.

1.1.5 APU Code (Section 5 § Section 7)

The role of APU code is explained. The APU instruction set -

is given.

1.1.6 Communications, Error Handling (Section 8)

Comnunications, and error conventions are explained.

1.1.7 Concluding Remarks (Section 9)

Looking in retrospect, comments are given on the relative
merits and difficulties of the implementation. Recommendations and,

questions are also mentioned.



2 INTRODUCTION - SYSTIT STRUCTURES

The following are the important system structures involving the
membry manager. An overview of the various structures involved in paging
is given and one is introduced to the environment of the memory manager.
The number of structures presented is essentially quite small, yet suf-

ficient to give a fair insight into’ the role of the memory manager.

2.1 Pages

The memory system of the BCC 500 consists of 128K words of core,
4 million words of drum, and 125 million words of disk. The BCC 500 System
super-imposes a page structure on thisvstoragé space. All three levels of
storage are sub-divided into ZK—yord blocks, called pages. Pages are units
of information as well as units.of storage space. Vhen we speak of pages
of code, pages of data, etc., we mean an amount of code, data, etc., that
may be stored in a page of'storage. This is just to say that 'page" is
used in a manner completely analogous to that in vwhich ﬁbyte” and "word" are
used; When we usc "page' to refer to a unit of storage space, we speak of
“"core pages", 'drum pages', and ''disk pagesJ depending on which of the.three
levels of memory we arc referring to. Storage pages have an "origin" é;
well as an extent (2048 words). Pa,es of coré are 2048 word blocks startihg
at an address which is congruent to 0 modulo 2048. Simiiarly, drum and disk
pages have fixed "starting addresses' built iﬁto the hardware. They are a

little different from core pages in that we don't speak of word addresses in

conncction with these storage devices.,



2.2 Page Types
Pages can be of the followihé types:
1) MIB (Multiple Indéx Bloék) - the file directory for one user. It
| also contains the disk addresses of the data pages for small files.
2) 1B (Index Block) - cohtains the disk addresses of the data pages =
for a large file.
3) CB (Cohtcxt Block) - contains the definiﬁg information for a process.
4) FP (File Page) - contains data and occupies a definite position in a
file.
The pages of a file are nmumbered from 0, up to a maximum value MAXFA.
The number for a page is called its file address and specifies its position
in the file, which may'not be the same és the number of pages preceding it,
siﬁce some file addresses may have no corresponding pages.
5) PP (Private Page) - contains data and belongs to a process, Private
pages are not ordered in any way, but each one can appear in just one
- PMT* byte. ‘ | - '

The relationships of the various types of pages are shown in Fig. 2.1.

2.3 Unique Names

Associated with every page is a 48-bit mumber called its unique name.

This number has the following format:

#PMT is a table of pages belonging to a given process. This is cxplained
further in Section 2.5.1 on the PMT.

-4-
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Bits Name . Contents

0-1 UNTAG 0 = MIB or small file data page
1 = lJarge file IB or data page (FP)
2 =CBor PP

3 = not used _
2-17 UNUSER - User nuinber‘_of the owner of the page
18-36 UNID ‘A number different for each object (.fi]:e‘or
process) with the same owner. For a MIB this
| field is 0.
37-47 UNADR | ‘Page nunber + 1 for a privatec page or a file
| page. For a MIB, IB or CB this field is 0.

Some conments on the implications of this format are appropriﬁte.

1) 'I;he number of distinct users is limited to‘\_'6/4§§v. Each user who
exists has exactly one MIB. Every page except a MIB belongs to a MIB, and
hence' every pageA belongs to sor.ne user. The user to whom a page beiongs can
be determined from the UNUSER field of the page's uni‘que name.

2) Every object (file or process) has an entry in a MIB. This entry
specifies the UNID field of the object. This field is the same in the unique
name of every page of the object; It is thercfore possible to find the object
which a ‘given page is part of, starting from the unique name of the page, 'by
exanining the UNUSER field to find the MIB and then comparing the UNID fiéld
with cach object in the MIB. VWhen a ncwv ol'chct. is created it is given a new

-UNID, which is the UNID of the last object i;rcatcd in tﬁat MIB, + 1. This

ensures that all pages of the new object will be distinguishable from any

;'6-



page of any old objcct, whether or not the old object still exists. When
the last UNID value (219-1) is assigned‘toha new iject in some MIB, it is
not possible to create any more objects in that MIB. This situation can be
remedied only by rcassigning the UNIDs for all the presently existing objects
in fhat MIB and updating §ll_6ccurrences of ﬁnique names for pages bélonging
to that MIB anywhere in the system. 7

3) A file cannot have more than 2047 pages because of the size of the -
UNADR. It is not possible to move a page to another position in a file with-
out changing its unique name. It is, however, possible to completely recon-

struct a file from a complete scan of the disk. .

Unique names have the following basic property: no two differcnt pages

ever created by the system can have the same unique name. This observation

requires some clarification: ,

1) If the UNID reassignment mentioned above is carried out, it must be
thought of as the creation of a new system into which some information from
the old.systqm is copied. il

2) 1f a file page i§ destroyed, and a page with the same file addreSS‘“
in the same file is subsequently created, it is considcred'to be the séme
page. Thére is no difference between these two operatians performed in
sequence and the oeration of zeroing the page. It is not claimed that this
is the ;ﬁly possible interpretation of the meaning of recreating a file page,
but it is a reasonable one, and it is the onc adopted by the Mémory Managcmént
System (ADMS).

3) It is not possible to have more than one ;cfcrcnte to a private page

When the page is destroyed it is removed from all maps in the process

-7-



and therefore ccases to exist in the most complete sense possible.
1f another private page is created in the same PMTI byte, it makes no
whether it is regarded as the same page or different (though the latter

viewpoint seéms preferable): _ A

--if it is the same, the matter is academic since therc can be ns
references to the page at the time it is created and subsequent references
to it are under the‘control of the creator.

--if it is different, the matter is academic since no record of the
previous page exists anywhere in the system.

| Unique némes exist in the system in the following places:

1) Recorded on disk together with a pége |

2) Recorded on dfum together with a page

3) In the core hash table (CHT) entry for a page

4) In the entry for an object (and implicitly for each of its pages). in

a MIB
5) Ina PMT entry
6) In a PRT#* entr);

They also exist in the temporary storage of the MMS.

2.4 Physical Location of Pages

A page always exists on disk, and may also exist on drum, in core, both
or neither, where by 'exist' we mean that space is allocated for the page.

A valid copy of the page may exist in any combination of these thrce places.

*PRT is the Process Table -- This is explained further in Scction 2.6.

-8-



Since a page p always exists on disk, there is always a disk address
K(p) for it. This address is assigned by the monitor, which is responsible
for disk allocation, when the page is created. The unique name recorded |
at K(p) is eithér UN(p) or 0, the latter if and only if the.WUN (Write Unique Name)
bit for the page is set in the Drum lash Table (DHT). The recason for this is ‘
that when the page is created it is assignéd a free disk page which has
UN = 0 and the WUN bit for the page is set. The first time the page 1is
written on the disk, its unique name will be written and the WUN bit will be
cleared. When p is destroyed the unique name at K(p) is zeroed.

It is expected that pages will be moved on the disk infrequently, if étvl
all. The combination of unique name and disk address is therefore normally
sufficient to identify a page and permit it to be read from the disk; this
combination is called the real name (RN) of the page and occuﬁies three words.

If a page is moved and an attempt is made to acceés it using the old diskJ
address, a unique name error will occur, since it is not possible for the

same unique namé to be written on two different disk pages. The unique

name of the ﬁége can then be used to find the MIB entry for the object of

which it is a part, and from this enfry the correct disk address can be obtained.

, This works because of a second basic property of the system: the correct disk

address of a page is always recorded in the MIB entry (for small file page),

IB (for‘largc file page) or CB (for privatc page) for the object of which it
is a part. Hercafter we will suppress the IB and CB cases. |

It is possible for many occurrences of the rcal name of a page (ofher
than a private page) to exist in the system. Neaw occurrences are created

when a file page is put into a PMT entry, or when the monitor puts a MIB, IB

«9-



or CB into its map, or when a PRT entry is made for a process.

The subsct of pages in corc or oﬁ'tﬁe drum changes rapidly, as does
- the physical core or drum location of a page. Core and drum addresses are
thercfore kept in exactly one place in the system, so that only one change
need be made when a page is mo&ed. |

1) The corc address of a page is kept in the Core Hash Table (CHT),
which can be conveniently accessed by unique name., Every page which is in
core (the precise meaning of this phrase will be explained later) has a
CHT'entry, which contains all the information relevant to its sojourn in
core. _ .

2) The drum ad&ress of a page is képtiin the Drum Hash Table (DHT),
which in theory can aléo be'convéniently accessed by unique name.: Every
page which is on the drum or on its way there has a DHT entry, which contains
all the information relevant to its sojourn on the drum.

We are now in a position to explain roughly how a page p can be accessed
if its RN is known. First use UN(?) to access CHT. If this access is success-
ful the page is in core at the address given by CHT. Otheywise use UN(p) to
_access DHTf If this access is successful the page is on the drum at the
address given by DHT. Otherwise use K(p) to access the disk. If the unique
_ mame recorded there agrees with UN(p), the page is there dn the disk. Other-
wise use UN(p) to find the MIB entry for the page. This may reveal that the
page does not exist. Otherwise it is on the disk at the location given by |
. the MIB, and the RN may be updatcd accordingly.

It is a third basic pzopcrty of the systcm that the procedure described

above will aluavs yield a valid copy of thcgpaqc unless there is a failure of

;10-



the MMS. There are some built-in cross-chccksrto make detection of a failure
more likely. | .

1) When a page is read from drum, the UN which was recorded on the
drum may fail t6 agree with DHT. We give up this cross-check by accessing
DHT on disk address rather than unique name. Since it is possible for a
disk address to be réassigned (unlike a unique name), an attempt to access
a page p on the drum with an old RN r (i.e., K(p) = X(r)) may fail because -
UN(r) # UN(p). We can, however determine the facts. If the UN recordéd at
K(p) agrees with the onevon the drum, then we have an old RN and the MMS
“has not failed. If it disagrees thefé‘is indeed a MMS failure. To summarizez'
using UN(p) to access a DHT keyed on disk address musf include reading the
page from the drum and checking the recorded UN.

2) When a page is read from disk using a disk address obfained from the
MIB, the recorded UN must agree with the one in the MIB.

3) When writing on the disk, the recorded UN must agree with the one
obtained from DHT and the drum. This cross-check of the '(UN,X) pairing
defined by DHT and the drum is gained in return for cross-check (1) which

was lost by keying DHT on K.

2.5 Context Blocks (CB)

To define a process for the operating system requires a good deal of
information. This information is called the "state" of the process. When a

process is dormant, its state is defined‘by its entry in its owner's file
_directory (MIB). Such an cntry contains the symbolic name of the process, informa-

tion for controlling access to the process, and the Unique Name of a special

-11-



page of the process Eallcd‘its Context Block. This special page céntains
the information needed to intfoduce (or re-intro&uce) the process into the
operating system's job streaﬁ, that is, to activate the process.

When a process 1s active, its state is more coﬁplex. Some information
“about it is kept in tables, such as the Process Table and- the character 1/0
line tables, which are resident'in core. Information which is needed only
when the process is itself in core (or being swapped in or out) is kept in
the Context Block page. This page can be thought of as providing ten@orary
storage for the operating system in certain of its functions with respect to
the process.

Figures 2.2 and 2.3 detail the layout of the CB. Oé particular interest

are the MAP, PMI' and APT which involve the memory manager.

'_2.5.1 The Process Memory Table .(PMT)

One kind of information the operating system requireé about an active
process is a list of the Uniqﬁe'Names of all the pages which belong to the
process. These names (together with a mapping of the proéess‘ address space
into them) are necded by the CPU so that it ﬁay find the pages to which the
. process directs references when actually executing instructions. These‘page'
names are also required by the Auxiliary Mcmor§ Control (AMC) so that it
can identify the pages which it needs to swap into core pfeparatofy to the-
running of the process. x '

The page names, and some additional information about the pages, are

kept in a table called the Process Memory Table (PMT) in the Context Block

(CB). These tables begin in a standard place (loc. 3008) in ecach process'

Context Block for the convenience of the various parts of the operating
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CB CONTENTS

POP entry indirect address word

POP entry indirect address word
:  SP first unused sfack address

SL last word allocated for stack
P for Trap (ring.dependent)

PAR for Trap (ring dependent)

BRU for Trap (ring dcpendent)

T - Y TN U SO R C N S Y

BRU for Trap (ring dependent)
10-177: FREE (v
200-277: 'MAP - Map associating virtual aadresses with pages'(contains
| indices into PMT)
300-1277: PMT - Table of pages in use by this procéss
1300-1707: SPT |
1710-2027: SPCS
2030-2115: ICT
2116-2235: OFT
12236-2650:  STACK
2659-2751: APT - Table of active pages (contains indices into PMT)
2752-1763: TRSTATE = |
2764-2775: SWSTATE
2776: CIC
2777: IT

Figure 2.2
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CB STORAGE ALLOCATION

" SPT (42 words/entry) ' 264

OFT (5 words/cntry) 80
PMI (4 words/cntry) (128) 512
APT (1 word/entry) ‘ 65
SPCS (5 words/entry) 80
1011

MAP | o 64
STATE, ETC. . - 25
| 1090

Figure 2.3
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'systcm'which must reference them. They have room for 128 page names, but
can bc expanded to allow for up to‘ZSS. That is, the lﬁnif of 255 is
built into the systcem in a nunber of places, but the current 128 page limit
is imposed by only the software part of the system. We begin by giving
explanations of the contents of entries in PMT. Refer to Fig.. 2.4 for a
pi\cture of a PMT entry. '

Unique Name: These tw0'woras hold the Unique Name of a page of informa-
tion. This is the same Unique Name as iskwritten with the page on the
disk and drum and kept in the C01e Hash Table when the page is in core. It
is used by the CPU s map loader hhen it 1ooks up the page in CHT and by the
Swapper when it is swapping the pro;ess in or out.

Disk Address: This field holds the address at which the disk copy of
the page is stored. It is the address which will actually be sent to the
diék TSU (Transfer Sub-Unit) when it is'required to read the page into core
or to write it on the disk. Such addresses have to be kept because there
is no provision at the TSU level for addressing pages by their Unique Names.
However, the system does not depend on this disk aderSS'ﬁéing correct.

When the transfer of a page to or from the disk bégihs, the contents of the
Class Code field of the addressed page is checked-for equality with the Unique
Name of the page of information it iéldesired-to transfer. If this check
fails the transfer is aborted and a "Class Code Error" is repbrted to the
process-for which the transfer was being done. A page's Unique Name and Disk
Address are called together its "Rcai Name."

This is a good place to note an implementation’concession fpr the Drum
Hash Table. First we notc that the Corc Hash Table is a table cntered by

hashing the Unique Name of a page and containing for cach entry the Real Name

;15-



of a Daﬁe and the absolute address of.the core page in which the page is
currently stored. Ideally the Drum Hash Tablé,would be completely anélo-
gous and cach entry would contain a Reai Name and a drum page address of
the current drum copy of the page. This implementation was not possible,
simply because of the amount of core storage which such a table would
require. Instead, DHT entries contain only the Disk Address word of the
Real Name. Excépt for the loss in ‘eleganceethis seldom causes any
problems. It just means that in certain cases we have to do an otherwise
umnecessary read from the drum to compare a Class Code with a Unique Name.

(The Core Hash Table and Drum Hash Table are explained in greater
detail in the section on Data Structures.) '

Thus the Disk Address word in PMT entries is used to find the page
whose Unique Name appears in fhe entry both on the disk and on the drum,
but iﬁ neither case is it considered the final authority in the matter
since we always make the comparison between Class Code and Unique Name.

RF (Reference Flag): The systenm trieé to make sure that the pages
in the Core and Drum Working Sets of a process are the ones that the process
is referencing most frequently. In order to do this, it must somehow be kept
informed as to what pages the process is referencing. The CPU's Map Loader
ﬁrovides this information by setting-the RF flag in PMT whenever it loads
the corresponding page into its map.

| SF tSChCGUICd Flag): When a program causes the Map Loader to load a
page into the CPU's map. the Map Loader looks up the page in the Core Hash
Table using the Unique Name in the appropfiatc PMT entry. It is possible

that the page is in corc for sonc other process but not supposcd to be
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available to the process in which the program is running. Giving the
program access to the page under these conditions will in gencral lecad to
chaos, since the core storage management system depends on knowing how
many proccsscs have access to the pages in core. The SF bit is used to
prevent this'illcgal access. It is set by the core management system if
the process is authorized to access the page, and the CPU will trap if it
is asked to load a page with SF = 0 into its map. |
CCE {(Class Code Error): When the pages of a process' Core Working
Set are being read into core the Unique Names in PMT are compared with the
Class Codes on the pages read. If the cémparison £ail$, the read is aborted
and the CCE flag in the P$H‘entry is set. The SF bit is; of course, reset.
If the process tries to reference_the page, it will get a trap from the
CPU, at which time CCE can be tested to determine the source of the problem.
RDB.(Read Error): If a page of the Core Working Set cannot be
swapped in because of a "hard" error encountered in trYiﬁg to read the
page from the drum, the RDE bit in the pages PMT entry is set. Like the
CCE Bit, this error indication is for use in analyzing tﬁe page fault which

will result if the page is referenced.

2.5.2 The Active Page Table (APT)

When it is time to bring a process into core so that it may execute -
instructions on a CPU, a request is sent to the Swapper to bring in the
pages the process needs in order to run. -The Swapper is given a pointer to

the process' entry in PRT.* In the PRT entry the Swapper finds the Real Name

*Section 2.6 describes the Process Table (PRT).
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of the process' Context quék. It brings this pagé into core. In the

Context Block (CB) is a table, called the Active Page Table (APT), which contains
pointers intolthc Process Memory Table (PMI). Entrics in APT are marked

as to whether the pages they point to are to be swapped in or not. The

set of pages which are marked to be swapped in 1is calleq the Core Working

Set (CWS) of the process. The Swapper scans APT and reads all CWS pages

into core. When these reads are completed the process is said to be ioaded;

and is available to be run on a CPU. |

Figure 2.5 gives the format of aﬁ entry in APT. We now explain the
various fields shown in the figure.

Use History; This field is used by the systém to keep a history of
references the process directs.to the page the entry points to. It is up-
dated periodically from the RF flag in PMT and used by the routines |
which maintain the Core Working Set. |

Page Lock: It is possible. to lock pages into core, that is, to exempt
them from the algorithms which cause DIRTY pages to be written back on the
drum and pages not in any Core Working Set to be released from core. The
operating system can lock pages directly by turhiﬁg on bits in the pages'
entries in thé Core Hash Table. Certain privileged User Programs will
also need to insure that pages are kéff in core. The Monitor provideé
a MCALL which can be used to do this. Uthen a process exccutes this MCALL,.
the PAGE LOCK field of its CUS entry for thg page will be set to a code

identifying the lock bit in CHT for which the process is responsible.

-18-



Keep: .
Lock: These fields are intended to allow a program to designate

elements of its Core Working Sct as more important th:m. others. No
opérations on them are implemented in the current version of the
Process Memory System, however.
DWS: In addition to the Core Memory Sct there is another subset of
APT called the Drum Working Set (DWS). It is the set of pages which are
being kept on the drum for the process. It is a superset of the Core
Working Set and is maintained entirely by the software parts of the operating'
system. The DWS bit in an APT entry is set if the page pointed to is in
the process' Drum Working Set.
| CWS: This is the bit the Swapper uses to determine 1«.’1iethcr an APT
entry points to a page to be sivapped 1n It is set if the page is to Be swapped
in (i.e.,. is in the process' Core Working Set) and reset if it isn't. '
PMT Index: This is an index into the Process Memory Table and points

to a Real Name of a page.

2.6 The Process Table (PRT)

A Process Table entry is kept for each active process in the system.
The first three words of thi.s entry give the real r_lamAe (unique name + cﬁsk
address) of the context block (CB) for the proéess. As described in.
section 2.5, the context block contains various tables: The PMI , a table-
of pages known to the process and the APT, a set of indices into PMTI of |
currently actiye pages. |

Thus if the swapper is given a process table index, it can (and does)

detemnine which pages to swap.
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Format of an Entry in a Process Memory Table

o |0 23
UNIQUE NAME -
1 9 - (UN) ﬂ
0112 ) 23
2 |=1]= DISK ADDRESS (DKA)
0 {172 11f12]1381 4 15 23
3 f= QY ACCESS ciy/ [ CONTROL
£ LOCK (AL)* Al ook cL) #
RDE - Read Error
RF - Reference Flag
SF - Scheduled Flag
CCE - Class Code Error

Figure 2.4

* Not used by the Memory Manager
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" Format of an Entry in an Active Page Table
\ * .

0 718 11}171514315! 16 23
‘ pAGE | DY CIKIL |
0 |usE HISTORY (UID) rock  |wlvitlo Py
oLy |s S;E C (PNT)
| pix

An Example of an APT Entry

01234567}8910 11§13 1314§1581617181920212223

1101001214000 0f211'0t0; 01 0007307

The entry tells us that the page whose Real Name appears in PMT[69] is
in the process' Drum and Core Working Sets.. The page is not locked in
core for this process. Nor is it XEPT or LOCKed in the working sets. The
process has made references to the page during

the last interval,

the next to the last interval,

the 3rd from the last'intcrval,

the 6th from the last interval,

the 7th from the last interval,

Figure 2.5
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Figures 2.6 and 2.7 detail the process table. Of pdrticular interest

to memory management are:

1) PRUN1
PRUN2
PRDK

which give the real name of ‘the context block for the process

2) PRSE

which is an error word that the memory ianager returns to indicate

some problem.vhich prevents it from swapping the process

3) In the Process Status Word (PRST) y |

SHQ;

| CBC:

LDD:

a request for swappmrr in has been put on the Tnemory.manager
queue. When the memory manager considers it, this bit is reset.
creating a request to read in a context block accompanies the
setting of this bit (original rcquest is a swapping-in quéue request).
aftér the context block has been read in, this bit accompanies
the recading in of the individual pages of the process CWS. The
CBC bit is turned off. : |

Last leg of swapping in, this bit is set uhen all the pages have

been read into core; PQ bit is turned off.



PRUN1
PRUN2
PRDK

PRPIW

PRSE

PRSW
PRRTP

PRRT

PRST

PRCO

PRPTR

FORMAT OF THE PROCESS TARLE

~ (PRT)

[ @ OB b OB U B S0 D TN BE GH B P B S SuE G GR B E Cm CE w8 s OF G v

UNIQUE NAME 1

UNIQUE NAME 2
AR
C /'< DISK ADDRESS
EUA Do & |
ClE AlC RIR
Cit PjIl]

SWAPPER ERROR WORD

LAST READ TIME

DISK TRANSFER DRUM TRANSFER

(LRT) COUNT (KTC) COUNT (DTC)
O\é”}\gw\, RTI POINTER (PRT POINTER)

)(} TIME OF NEXT REAL TIME INTERRUPT

12 13]41516171819 20 212223

[ B ’ ‘ at ML R’K C
L{Als sin| gluip
MCT PRI} ¢ qlclri® {Qin stniu
T
LR SCHEDULER FIELDS
n

SCHEDULIER FIELDS

QUEUE POINTER (SC!/EDULER,
u-SCHEDULER, EIC.)

*Bits only looked at by seftware

Figure 2.6
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DESCRIPTION OF PRT BITS

0: " Carrier Off-Interrupt
ES: Escape Interrupt
QT: Quit Interrupt
CHI: CHIO Interrupt
AMC: AMC Interrupt
RAP: Reduce Active Page Set
RSI: Run Scheduler Initially
RT: Real Time Interrupt
MCT: Millisecond Compﬁte Time
PRI: Micro Séheduler Priority
BLK: Blocked
WAQ: Wake-up Queue
CBC; Conteﬁt Block Considered

PDK: Process Delayed ‘for Disk Transfers (No longer used)

PQ: Process Queued on Sector Read List

SWQ: On Swapper Request Queue

SCQ: On Scheduler Queue
‘MSQ: On Micro Scheduler Queue
LDD: Process loaded

RUN: Process Running

CPU: CPU Number

RES: Resident Process

NIN: Non-Interactive

PRD: Process to be Destroyed -

ACT: Active Process in PRT

Figure 2.7



3 INTRODUCTION - THE HARDWARE

This scction describes thé characteristics of the hardware used by
the memory manager. We shall diséuss first the processor, then the
drum and disk, and finally the controllers. Figure 3.1 shows the logical

relation between the various components.

3.1 The Processor

The processor that runs the memory manager is a microprocessor
designed to provide a flexible and wide-ranging ability to perform varied
processing and control functions in the system. The BCC 500 uses five of
these processors,.one of which is fully dedicated to memory management.
The memory manager is also known as the Aﬁxiliary Memory Contrdl (AMC), processor.
This processor eﬁecutes 90-bit microcode instructions, allowing a
large mmber of possible functions to be carried ocut. Its cycle time is
100 nanoseconds. Basic bqblean, shifting, and arithmetic functions are
provided by the microprocessor. In addition to ten accumilator-like
registers in the processor's aritﬁmetic unit there are 64 scratchpad
registers vhich allow quick access to variables vhich are referenced
frequenfly.
Most of ﬂnankmwry'management functions are implemented directly in
the management processor's microcode, resuiting in immensc processing
power for this (dedicated) purpose. Each of the other systcm microprocessors
is similarly dedicated to one or more major system functions {including
two that are "dedicated" to general calculation i.é., the CPU's). Ixcept
for the microcode and some easily wired special fﬁnctions and coﬁditions, each

microprocesser is identical in construction. (The two CPU's are slightly diffcrent.)
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-3.2 Dfum and Disk Hardware

This section is concerned with the characteristics of the auxiliary
memory hardwarc used by the memory manager. It is intended to describe
everything about this hardware which can be observed from the vantage

of the AMC,

3.2.1 Data and Address Formats

The AMC is conneccted to a block transfer unit, or controller called

an auxiliary memory transfer unit (AMIU). Figure 3.1 shows the AMC,

the AMIU, and their connections with the Central Memory. The AMC uses
its own path to Central Mamory to access system tables and APU instruc- |
tiqris (elaborated on in Sections 5 and 7). The AMTU's path to Central
Memory is used only for block transfers of data between Central Memory and _
the rotating devices. The path between the AMC and the AMIU is used for
control: AMIU commands coming from the AMC and status information returning
to the AMC. |

‘The AMTU consists of four logically similar block tréﬁsfer devices
called Transfer Sub-Units (TSUs) and a Transfer Unif Inte_rface Multiplexer
(TUIM). Each TSU is capable of accepting a singlhe command from the AMC
to perform a specified block transféf to monitor the many types of errors
whlch my occur during a transfer, to report on the status of a transfer
after completlon and to report certain other status mformatlon——cspccnally
rotational position information for the devices--required by the AMC.
The TSUs are independent of cach other and may perform transfers simulta-

neously. They share a single Central Memory port; and the TUIM scrves
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AMC
Central «— (Processor) T e
: = DRUM TSU
Memory ’
[
Y - ~»  DRUM TSU
Central <
Memony-[% TUIN FE—=
=~ DISK TSU
| > DISK TSU
w

ifils

R

s
sjujils

|
1

Figure 3.1:

| OO0 QD)

(4 $ 1 ;1

AMTU (Controller)

—

1 TUIM Transfer Unit Interface Mulitplexer
TSU's Transfer Sub-Units. <2 for drums, <2 for disks.
Units, drum or disk, per TSU

<4
<4
<4
<8

simultaneous data transfers, 1 per TSU
simultaneous seeks, 1 per disk

Auxiliary Memory System Configuration



VWA
48-bit UN 2048 word data record
Drum Page Format
HEADER 48-bit UN 2048 word data record
VWV
Disk Page Format
Fig. 3.2 Drum and Disk Page Formats
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to multiplex fhcir (indcpendent) requests‘to the Ccntfal Manéry, resolving
conflicting requests within it; The TUIM also scrves as a routing and
‘gathering point for control and status information passed from and to the
AC.

There é%c two types of rotatinglﬁanory; drum and disk. ‘The terms
druﬁ and disk refer primarilf to fixed—heqd and moveable-head deviceg
respectively, rather than to actual details of construction. (In the
present hardware, drums are drums and disks are disks, however.) Drmné
have a higher transfer rate and no track selection latency (seek time).

The TSUs are consequently of two types: drum and disk. Each can
haQe four devices or units comnected to it. Each unit is a iogically
independent device which rotates and pésifions its arms independently
of the other units (tﬁat is, if it has arms). A TSU can perform data
transfers for only one of its attached units at a time.

Data is recorded on both drum and disk in units of 2048, 24-bit-word
records called pages. Recorded with each page is a 48-bit unique name (UN).
Also'aséocia?cd with each disk page is a header which contains the physical
address of the page. Figure 3.2 illustrates this. Note Fhat on the disk,'
header, UN and data are three separate records; while on the drum, UN
and data éorm a single record. Each data record has a checksum. A drum
checksum is of length 24 bits and a disk checksum is of 1ength'48 bits.
Finally, each word is recorded on disk with an additional parity bit.

The drums were designed specifically to transfer at a high rate.

The disk is not reqﬁircd to be quite so fast as the drum, as its main purpose

in the systam is bulk storage. When processes become active or files are
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accessed their pages primarily reside on the drum; they move into core to
be accesscd and then back out onto the‘d;um! When they are no longer
actively being accesscd‘thcy return to:the disk. a

Along with the discussion of the drun and disk, varibps terms thatr
relate to them will be defined.

‘ Drum: A page on a drum is defined byAits sector and band pos{tion.

A sector is an angular segment of the druﬁ required to hold one page. As
the drum rotates,‘succeoding sectors come under the heads. There are 24
sectors or pages around the drum. Information is transferred to/fromn
drum in 24 bit-parallel fashion, i.e., 24 heads are used simultaneously.
Since the drum is equipped with apprqximately 1100 heads, it is necessary
to specify vhich grouping ofA24 heads to use dufing a given transfer. |
This grouping is called a band. -Thefe are 42 bands on a drum, allowing
for storage of 42 X 24, or 1008 pages (i.e., a total of 1008 X 2048 =
2,064,384 vords) per drum. o N

.With a rotation period of 33.3 msec, the drum transfers information
at the‘rate_of 750 pages/scc (1.5'-106 words/sec). AThis is a rather
high rate; however one must recall that this is a potential rate and
not necessarily an actual one. It is the responsibility of the'memofy

manager to make the most of this potential rate.

Disk: The disk is even more unconventional than the drum. .it is a large
file ﬁith 13 disks cach 4% feet in diamcter. Like the drum, it transfers using
a group of hcads in parallel to define a logical "band". Since only six
heads arc uscd for the 24-bit words being transferred, however, the

transfer is partly scrial. The heads of a given band are locatcd on a
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3 5 8 1012 12 Bits
Logical Track
(6-Track Parallel Reads)

Radial Head Movement,Cylinder’Positioning
(256 Possible Positions)

Figure 3.3c
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radius of onc side of one of the disks. On a disk the head nearest the outer
edge moves over a greater cifojnfcrcnce than the inside head. (The disk is
depicted in figures 3.3b and 3.3c) Thus more bits can be storcd under the.
outside head than the inside head, and the bit rate per head is thus a function
of the head's radius. Figure 3.3c shows the relative number of bits transferred
during a unit of time. Notc that these numbers add up to 50 bits, 2 for parity
and 48 for two words. Most disks read words sequentiallf off tracks, as well'
as use worst case (low) densities that are the same no matter where fhe head
positions is. The 500 method allows more density and greater transfer rate.

Whereas on the drum the heads arc fixed,ron the disk they are moveable.
On the 500 disk there is an angular positioning arm which moves the heads
over the correct logical track, or cylinder. |

There are 256 angular positions. For components of the disk address,
we use the terms band, sector, -and cylinder. A sector is tﬁat'angular
portion of the disk necessary to store one page. ‘There are five sectors
per revolution on the disk.' Figure 3.3b depicts the organization of the
disk. The disk has 13 platters with 26 surfaces. Each surface corresponds.
to a band. A cylinder is one of the 256 angular positions. (The téfm
cylinder - reminiscent of a drum - derives from the fact that for each
track positioning the disk addressing structuie otﬁerwise rcsembles'a drum?)
In alli therec are 30,720 pages (or 63 x 106 words) on a disk unit. The disk
has a 50 ms rotation time, with an average 4.8 usec. to transfer a (double) word

A1l BCC 500 rotating memory paramcters are summarized in Figure 3.4.



Drum: = 24 sectors/revolution

42 bands
" 1;008 pages/unit or 2,064,384 words/unit
2 units (Hawaii configuration)
33.3 ms rotation time
1.5 wprds/usét transfer rate
“30 us sector gap
Disk: 3 sectors/revolution
24 bands
120 ' pages/q;iinder or 240,000 words/cylinder
- 256 cylinders/unit
30,720 pages/unit or 62,914,560 words/unit
2 units (Hawaii configuration)
50 ms rotation time
.21 words/psec transfer rate
=50 us sector gap
65-225 ms seck time. This subject is discussed in

“detail elsewhere

Figure 3.4 Parameters of BCC 500 Rotating Memories
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AMC Disk addréss internal form:

The disk unit has 5 sectors per band, 24 bands per cylinder, and 256

cylinders. There are two TSUs which may control disks (the Hawaii configuration

has only onc, however). Each TSU may have up to four disk units attached

to it. This information has bcen packed into one word in order to keep

tables small.

TSU TRACK NUMBER

11

BAND

SECTOR

A

4

A
UNIT

L/

MAMC Drum address internal form:

The two million word drum has 24 sectors per band and 42 bands. Since

space in the address word is not as critical in the drum address, the

~ fields have been adjusted to correspond to the device address fields in

the TSU.

10

16

SECTOR

21

- i oy

The address of a page, as accep* ed by the TSU, is contained in one

word with the following format:

2-9 cylinder (disk only)

10 - 16 band

17 - 21  sector

The other bits in the word are not used. This format is shown in Fig. 3.5a.

-36-



AMC BUS
CIECK ¢
CHECK 1
STATUS*

UN §

PAGE ADDR.
CORE ADp{z.
INSTR.*

- WORD COUNT

UNIT NO.

tgi1j21z3lalstelvis ]smnhm:31314;131(!17119{19120[21]32]23]

ﬁ

f 23
7 23
\  an
13 23
)
i 23
4 23 /
CYLINDER BAND SECTOR
2 9}1p 16117 21}
?m
5 23
TAG
4] 3 15 21
12 23
22 23

*Amplificd on next page

Fig. 3.5a
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INSTRUCTION

STATUS

13 14 151160171181191 21211221 23]  [BILL

POSITION ONLY
DRUM POLICY

DISABLE CHK. CODE CYCLE

213 ]15!16{17118{19]2ﬂ321{22|23

DEVICE NOT AVAILABLE
DRUM POLICY VIOLATION
DATA TRANSFLR LATE
MI240RY PARITY ERROR
CHECKSUM NOT ZERO
EXCESSIVE TIME CONSUMED
UN NOT EQUAL

DEVICE PARITY ERROR
HEADER NOT EQUAL

v% =
s e oA
2l BlE e
UNUSED g EzZgREE
<o
[om) 2] — = i
TAG FIELD &
i w o} -4 ey
e W,
5 5
REGISTER LOADING VIOLATION & X

TSU Registers

" Figure 3.5b:
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3.2.2 Position Counters

Each TSU has four registers called position comnters (PCs), one for each

unit. The format of a PC is shown in Fig. 3.6a. The four bits marked * show
the same in all four PCs; they are identical copies of indicators and are discussed
in Section 3.2.4. The rest of the PC gives information about the amm position

and rotational position of its unit, as follows.

+the sector number teils which sector is currently under the heads
«for the disk, the cylinder number tells which cylinder is curreﬁtly under .
the heads or being sought for. For the details of how to interpret this
field and the related CYLINDER VERIFIED bit, see Section 3.2.10.
V-the‘position within the sector (PWS) fielé tells approximately where in

the sector the heads currently are.

Figure 3.6b tells how to interpret the PWS field for the drum. The reasons

for the st%ange intervals are historic.

Note especially the definition of the end of sector (EOS) time as the

time the PWS field goes from 15 to f. This is the reference point from which

most activity in the TSU is measured.

If the POSITION NOT VALID bit is on, the information in the PC is.meaning-
‘less because it is being incremented. If this bit is on, the PC is merely _'
reread until its bit goes off.
The PC for a disk unit is not affected in any way by a seek taking place

for that unit.



3.2.3 TSU Control Registers

A TSU (cach TSU operates émmletely indcpendently of the others) has two
sets of control registers. One set, called the functional registers (FR),
contains the instruction currently being exccuted. The other set, called the
holding registers (HR), can be read or written by the A‘\iC. Wlléllf:\@l‘ an
instruction is completed, and at certain other times, the FR are -exchanged or
swapped with the HR. Precise details of this process are presented below.
Figure 3.5a sumarizes the r.egiste‘r‘ formats and should be referred to while
reading this section.

Timing in the TSU is geéred to the transfer of pages between a rotating
device and ccnfral memory. The time at which most things happen is the EOS
time (see Section 3.2.2), the time at which all the data of a sector, and any
auxiliary informatiocn (checksums, étc.) which the hardware may suffix to
the data, has passed by the heads. At this time the inter-sector gap is
under the heads; after it has passed by, information related to the next sector
begins to come under the heads. We will call this time T, sometimes with a
subscr‘ript to denote the sector which has just passed by. An EOS time occurs
in each unit at regular intervals. The unit éddressed by the functional
UNIT NO (the selected unit) provides the EOS time for the TSU. A TSU EOS
occurs at regular intervals except wnen a new ﬁnit is sel~ected; this case is
discussed below.

The TSU works in the following way. The AMC loads the control registers
in the order: instruction register, coré address, word count, page address,

UN, and unit number, into the HR (FR are not generally accessible to the AMC).



" POSITION COUNTER (3-11 UNUSED IN DRUM TSU)

$12345678910 11 12 13 14 15 16 17 18 19 20 21 22 23

L J — I J
i N~ ~
\\ ~~
HIE 3 = 2 ZS  POSITION
rgg %E 5 @ é% ‘é; WITHIN
Qggb = c 0w a g
X-S'Hﬁ Z g'; O (@}
- 8 93 BB
=g 2oy
T kes! < o)
* ? %
g >
: o

Fig. 3.6a Position Counter (PC) Format
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Length of What is

Ticks - PWS " Interval Happening
p- 23 B - 24 Inter-sector gap
24 - 70 1 47 : Preamble, data starts
71 - 134 2 64
135 - 157 3 23
158 - 165 4 8
166 - 212 5 47
213 - 276 6 64  Data
277 - 299 7 23
300 - 307 8 8
308 - 354 9 47
355.- 418 10 64
419 - 441 11 23
442 - 449 12 . 8
450 - 496 13 47 .
497 - 560 14 64 Data, checksum, post-
: N amble, dcad time
S61 - 584 15 23 . , Dead time
One tick = 2.4 us. 584 ticks = 1.4 ms = 1 sector time

Transition from PWS=15 to PWS=f is End-Of-Sector (EOS)

Fig. 3.6b Drum Record Timing
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We assume sector i is now undef the heads. When the EOS time T, occurs,
the TSU swaps, the registers. This takes 5bout 1 psec. The TSU then starts
"executing" the instruction in the FR i.c., it attempts the indicated transfer
or amm positioning. . Let us say the indicated transfer is for sector j.
Then the TSU waits for seétor j to come under the heads and does the transfer.
At T5 the'registers are swapped again, and the AMC can then look at the
HR fo find out what happened during the instruction. At the same time, if
the HR were loaded again after Ti but before Tj’ the new instruction is being
executed by the TSU. The AMC thus has one sector time to examine the results
of the transfer done in the previous sector and set up an instruction for
execution in the next sector and caﬁ thus accémplish continuous ﬁransfer.
Matters are slightly complicated if the unit is changed since the units
are not rétaiionally synchronized. The swap occurs as usual at Tif Then
the-TSU starts to look for_an.ﬁOS on the newly sclected unit. This EOS is

called a synchronizing EOS, and until it occurs the TSU is suspended.

The synchronizing EOS serves only to aétivate the suspended TSU. When it
occurs, execution of the FR instruction begiﬁs, exactly as it would have at
Ti if there had not been a nnit change. The second LOS on the new unit is
the next effective EOS after T, - It follows that the ihtervél between TSU EOS
times will be a variable and as long as twice the normal.interval following
a ﬁnit'change. »

There is a special feature in the hardware to take care of a dual-
positioner disk, in which tﬁe two units rotate synchronously. When the TSU

switches from onec unit of the dual positioner to the other it behaves as though
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(Instruction register only).

1) during sector --

functional Read X

holding empty

2) shortly before sector ends --

functional Read X

holding Read Y S
3) end of sector (EOS) --

functional Read Y o~

holding Read X 4
4) before end of succeeding scctor --

functional "Read Y
holding Read Z el

loaded by memory manager fér:

next sector:

swap Registers; use information
from functional register (now in
holding register) to determine
success of last operation; Read Y
now ready for next sector

Instruction Y now being executed
Holding register loaded with
instruction for the sector to
follow

The above pattern is repeated with the functional register instruction

being executed while the holding register is loaded in preparation for the next

scctor.

Then between sectors, the registers are again swapped.

Fig. 3.7 TSU Register ‘Loading



no unit change had occurred, i.e. it never becomes suspended and no synchronizing
EOS is required. lIf this éase-were nof handled speciaily, a unit switch on
thc dual positioner would always cause the TSU to be suspended for a full sector-
time.

When the AMC loads the registers, it must load the instruction register
first and the unit number last. If the instruction register is not loaded

between Ti and Ti , no instruction will be executed during sector i+2.

+1
In this case the TSU is said to be idle. A swap occurs as usual at T,y to
bring the.results of the instruction which was loaded at T, back to the HR
for examination. If the HR arc not loaded during sector 1+2, however, no
swap occurs at T.4,. In this case the TSU remains idle during séctor i+3,
and continues to be idle until an instruction is loaded into MR. If this
happens during sector j, a swap will occur at Tj and the TSU will cease to be

idle at that point.

If a swap occurs after the instruction register has been loaded but before

the unit number has been loaded, a register loading violation occurs. The
instruction is taken as a NOP and the status register will indicate the violation
after execution of the NOP is complete. See Section 3.2.5 for details of

instruction timing, and Section 3.2.9 for how the loads are handled.

3.2.4 Indicators

The four indicator bits marked * in any position counter are cach copies
of four indicators (sce Section 3.2.2 for the significance of the rest of
the word) which record the progresé of an instruction through the cycle just

described. When the holding instruction register is loaded, the IHR LOADED

-45-



bit (bit @ of any position counter) is set. IR LOADED is cleared when the
registers are swapped, so it is set exactly when there ié. an instruction
loaded (or palltiall)' loaded) in the HR and axxfaiting execution.

The FR LOADED bit (bit 1 in the PCs) is set from HR LOADED when the
registers are swapped. It is therefore set exactly when there -is an instn;ction
in the FR being executed or awaiting ,exeCﬁtion. Note that this bit comes on
when an instruction enters the FR even if the sector addressed by the instruction
is not under the heads. It therefore provides. no information about whether
the data transfer is actually underway.. :

This information is provided by the INS CQMPLETING bit (bit 13 in the PCs)
which is on if FR LOADED is on and the -instru.ct'ion will complete at the
end of the current sector on the selected unit. More precisely FR LOADED may
be on and INS COMPLETING off only if o o
'1) the TSU is suspended, or
2) the instruction haé DRUM POLICY=f, and POSITION ONLY=§ and address
sector i is not néw under the heads (or; in the case of a disk write, CYLINDBR
VERIFIED is off).
In all other cases FR LOADED implies INS COMPLETING. " These cases may be
classified as follows: |
3) the instruction has DRUM POLICY=1
" 4) - the instruction has POSITION ONLY=1
5) the instruction has DRJM POLICY=§, POSITION ONLY=§, addresses sector i
and sector i is now under the hecads (and, in the case of a disk write, CYLINDER

VERIFIED is on).



6) there is a reglster loadlng violation

7) the instruction consumes exc0551ve time (sce Seétlon 3.2.7).

The definition implies that INS COMPLETING is always on for exactly one
sector per completed instruction.

Finally, the RESULT WAITING bit (bit 2 of the PCs) is set from FR
LOADED when the registers are swapped. It is cleared whén AMC reads the
STATUS register. It thus indicates that there is information waiting to Be.
collected about the fate of the last command. The TSU will not swap new
values from the FR into the HR if the RESULT WAITING bit is on. This situation
occurs if the AMC has not yet rcad the results of a previeus transfer which
would be clobbered by the results of the current transfer.

The three bits HR LOADED, FR LOADED and RESULT WAITING may be thought of
as resting places for a single bit indicating the presence of an instruction
which goes from AMC to HR to FR to HR and back to AMC

A1l four indicator bits may change state about 1 psec after a TSU EOS.
The INS CCBPLETING bit may be set about 1 pysec after a synchronizing EOS.

These are the only times that the indicators can change state

3.2.5 TSU Iﬁstructions

There are two instructions which may be given to a drum TSU. A1l drum
instructions have POSITION ONLY=§. Normally drum instructions have DRUM POLICY 1
and DISABLE CHECK CYCLE=§ (see below). | |

OP=g: Transfer WORD CNT uords from the bcglnnlng of drum page PAGE ADDR

to central memory locations CORE ADDR through CORE ADDR+WORD CNT-1. At the cnd
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of the rcad the UN of the page is left in UNp and UNI. A checksum for

the page (not including the'UN) is in CHECK@; if it is ﬁon-zero the data has
been read from the drum incorrectly, i.e., there hﬁs been a read error. In
this case the dIECKSUM NOT ZERO i)it in STATUS will be set. PACE ADDR will be
pointing to the next page, CORE ADDR to the first wnreferenced core location
and WORD CNT will be 77757776B (i.e., -2 in its context); these three
registers arc normally of little interest after tﬁe read. A variety of useful
information discussed in detail in Section 3.2.7 is left in STATUS. On a
read the checksum is computed for the entire page, regardiess of the WORD CNT,
as long as it is >f.

OP=1: Transfer the UN in UNf and UN1 and the contents of central memory_
locations CORE ADDR through CORE ADDR+WORD CNT-1 followed by 2048-WORD CNT zero
words to the drum page at PAGE ADDR. CHECK@ and CHECKL are of no value after
this instruction. STATUS reports unusual conditions asrfor a réad, and the
addresges and count are left as for a read. |

There are fiﬁe instructiong vwhich may be given to a disk TSU. Four are
data transfer instructions and have POSITION ONLY=f. These instructions may
have DRUM POLICY on or off (see Section 3.&.6). They normally have DISABLE
- CHECK CYCLE=§. .

OP=g: Read, which works exaétl;‘like druﬁ read, except that the disk has
two checksun words, CHECKf and CHECK1. A'disklrcad is not affected by
CYLINDER VERIFIED; but it will set CYLINDER VERIFIED if there is no error; see

Section 3.2.10.
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OP=1: Write, which works exactly like drun write, except that it is not
execuAtcd until CYLINDER \’ERIfIED for the selected unit is set; see Section 3.2.10.

' 0P=2: Write header, which is an jnstruction used only by hardware
maintcnance pérsonnel and is user1. only at disk maintenance times.

OP=3: Write with UN check. This instruction is like write except that
instcad of writing UNf and UN1 it compares them \»1th the valucs recorded on the
disk. If the disk values agree the write proceeds nonnally If not the write
is aborted and the UN NOT L[QUAL bit in STATUS is set. This is the only condition
which sets this bit. | |

The fifth-disk TSU instruction has POSITION ONLY=1. ' The value of OP is
ignored in this (.:ase. This instruction causes the disk to move the amnns ‘to
the cylinder specified by PAGE ADDR. The other registers are ignored. No data
is transferred This instruc'tion. requires one sector time for execution plus
any time during which the TSU is effectively suspended due to lack of cylinder
verification. DRU\I POLICY must be @ for this 1nstruct10n

The DISABLE CHK CODE CYCLE bit alters the method of computmg the checksum
words. Normally for the drum (disk) CHECKS (CHECKS and CHECK1) is computed by
starting with the first word (double word) arrd then as each word (double -word)
arrives doing an Exclusive OR of it with CHECKf (CHECK# and CHECK1) and cycling
the result left 1. The cycle is suppressed by this bit. The suppression of
the check code cycle diminishcs the effectivcness of the check code and is
intended for hardware check-out purposes only. All gther use of drum or disk
involving data must specify cycling of the check code.

The TAG FIELD is not used or modificd in any way by the TSU. It is



provided solely for the convenience of the AMC, which by using it may attach
a 4-bit tag to an instruction. The tag bits are copied, along with the rest
of the instruction, from HR to FR and back to HR. The tag is intended to

_help identify the loss of instructions due to register loading violations.

3.2.6 Instruction Timing

If DRUM POLICY=1 in any. instru'ction and thé unit is not changed, the
sector position of the page addressed must be the one which will be under
the heads immediately after the swap which brings the instruction into the FR,
the arm position must be the current arm position (only reievant for disk),
sand' CYLINDER \TERIfIED rmust be set for a disl; write. If thié is not the case,
the instruction is aborted and DRUM POLICY VIOLATION is set in STATUS. If
the unit is not changed the instruction requires exactly one sector time te
-execute.

If DRUM POLICY=1 in any instruction and the unit is changed, the page
.addressed must be the one which will be under the heads after the synchrorizing
ECS S\'ap In this case the instruction requires somewhere between one and
two sector times to execute.

If ‘DRUM POLICY=f, this restriction is not.enforced. In this case a transfer
instruction may require as much as one full device revolution, plus seek time
if the amm position for the page addressed differs from the current arm position
and the instruction is a write. The instruction will complete at the first EOS
time for the sector addressed after the amms have verified a new position, if

-required. A POSITION ONLY instruction rcquirés exz'zctly onc sector time to



execute regardless of the PAGE ADDR, unless units are switched, in which case
it requires between one and two sector tlmes.
A swap can occur only at a TSU EOS. A swap will occur at each TSU FOS

here
HR LOADED or (INS CQMPLETING and not RESULT WAITING)

'~ 3.2.7 Status Register

‘The STATUS register contains an assortment of bits which report on errors
which may occur during execution of an instruction. They are catalogued here,
together with an exhaustive descnptlon of the conditions which cause them to '
be set. The FR STATUS is cleared when a swap occurs. It may then accumulate '
-bits Qntil the next swap, at which time its contents are copied into HR
STATUS and it is cleared again. A successful instruction will have a cleared
STATUS register. |

Ih the absence of any other camment, an instruction which causes a STATUS
bit to be set does nothing and requires exactly one sector time (plus unit
change time). Such an instruction leaves WORD CNT = 77757777B and CORE ADDR
and PAGE ADDR unchanged. When a data transfer has started it can be aborted
by DATA 'IRA.\'SFIIQ LATE; memory parity errors do not abort the transfer. ‘

1) REGISTER LOADING VIOIATION is set if the mstru.ctlon register has been

loaded when a swap occurs but the unit nﬁmber has not. It appears in
FR STATUS after the swap which interrupts the .loading, and then in
HR STATUS after the next swap. See Sectien 3.2.9 for a discussion

of register loading. RLV will also occur if the AMC aftcmpts to



2)

3)

5)

6)

Joad the HR when they contain the results of a previous transfer
(RESULT WAITING=1). This will happen if, for example, a swap occurs
before the AVC can even attempt to load the instruction register.

The RLV will appear in the IR at the end of ‘the interval in which

~ this happens, or as soon as the RESULT WAITING bit is cleared

{STATUS is read).
DEVICE NOT AVAILABLE is set if the unit addressed by the UNIT NO register

is not connected to the TSU, has power turned off , Oor is in some
bad state. 4

DRUM POLICY VIOLATION is set if DRUM POLICY=1 and the page addressed
by PAGE ADDR is not under the heads whén the instruction arrives in
‘the FR. (See Section 3.2.6.) '
DATA TRANSFER LATE is set 1f the memory fails to deliver a word soon

-enough (write) or to absorb one soon enough (read). Vhen it is set

-the rest of the transfer is aborted; in a write zeros are written.

Timing is not changed.

MEMORY PARITY ERROR is self-explanatory. Tinﬁng is not changéd and the
‘-t:.cansfer is not abortéd.

CHECKSUM NOT ZERO is set at the end of a read if CHECKA (drum) or
QiECKf and CHECK1 (disk) are non-zero, 'indicating.‘that an error has

occurred. Timing is not changed. Note that the UN is not included in

the checksum.
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7) EXCESSIVE TIME CONSUMED_is sct if the iﬁstruction remains in the FR
for more than 1 second. This can happen if the'page address is for é
non-existent page or if the seek'mechanism‘on the disk fails. The
instruction does nothing. INS COMPLETING is set at the next TSU EOS
after the 1 sccond has elapsed, and the instruction completes at the
following TSU EOS as usual. ‘ ETC can only happen on an instruction with
DRUM POLICY=POSITION ONLY=f which has a PAGE ADDR whose sector nwnbér
js too large for the unit (or as a result of hardware failure).

8) UN NOT EQUAL (disk write with UN check only) is set if the UN recorded
on disk differs from UN§ and UN1. No data is’transferred, the disk is
:not changed, and timing is ﬁot chahged. |

9) DEVICE PARITY ERROR (disk read or disk write with UN check iny) is
4set if a word is read from the disk and has the wrong parity. Timing
is not changed. One parity bit is recorded with each word on disk, in
addition to the two word checksum at the end of the record. This
error can occur when reading the UN as well as whén‘reading daté{ The
case; cannot be distinguished. | o »

10) HEADER NOT EQUAL (disk transfer only) is get if the page address recorded
in tﬁe header for the page diéagrees with the address in the FR PAGE |
~ADDR register. This can‘happen only if the héadc; is wrong or was read
“incorrectly.

The following bits abort transfers before central memory or drum/disk is changed:
REGISTER LOADING VIOLATION, DEVICE NOT AVAILABLE, DRUM POLICY VIOLATION,

EXCESSIVE TIME CONSWMED, UN NOT EQUAL, HEADER NOT EQUAL.



DATA TRANSFLR LATE aborts transfers after core or dlsk is changed.

The following bits do not affect transfers (but the data is probably bad):
MPORY PARITY ERROR, DEVICE PARITY ERROR. |

The other STATUS bits do not affect the transfer.

Only the following blts can be set by a POSITION ONLY command REGISTER
LOADING VIOLATION, DEVICE NOT AVAILABLE, DRUM POLICY VIOLATION (always, unless

DRUM POLICY=§) .

-3.2.8 Attentions

The TSU sends an attention to the AMC shortly after every TSU EOS or
syhc]u‘onizing EOS if attentions are enabled fr® that TSU (see Section 3.2.9).
In other words, an attention is sent, if enabled, at every EOS on the selected
unit. An attention will occur on the EOS before the addressed sector, and
another one on the EOS after the addressed sector.

There is no way to tell‘wh.idl TSU sent an atténtion exc‘:ept' to go and look
at the various registers. It is of course possible for several TSUs to send

attentions at the same time.

3.2.9 Select Register in the TSU

This register (Fig. 3.8) is loaued from one of the AMC registers (Z register)
when an ALERT is executed (a microprocessér special function). There are
four select registers, one for eacﬁ TSU. Two bits in Z determine which TSU-
is addressed by the ALERT. - Any bit may be set in the Select Register. The

-select register bits correspond to TSU registers which are to be read or

written by the AMC, as performed to the EZ bus or from the Z register by PIN



or POT spccial functions. Data is sent to all registers for which a bit is
set. The data transferrcd to the A&E‘frém the TSU is the OR of all registers

for vhich a bit is set in the selcct register.

23

. ! I f12 ! |
3 EIDJIEIS|CICLPIP PPy P ’ .
/TSUAALTKKECICCinSSS%‘C‘EE‘\p’{,
__2fTiTipisjpiripintz) 3l AT
where TSU = TSU Number

EAT = Enable attention
DAT = Disable attention

ELD = Enable load
Figure 3.8: TSU Register Loading (Select Register)
The remaining bits are select bits. If Enable load is set, the register

will be loaded when a pot is executed. If Enable load is not set, the appropriate

registers will appear on the E2 bus.

STS = Status register

CKp = Check code A

CK1 = Check code 1

PCP = Position Counter §

PC1 = Position Coﬁntér«i'
Af?&?:ﬁ Position Counter 2

PC3 = Position Counter 3
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FU = Functiohal Unit register (the only functional
register that is addressable) |

HU = Ilélding Unit register

'c'ﬂ

Cl

Class Code (Unique Name) §

Class Code (Unique Name) 1
WC = Word Count
CA = Core address
m = Device address
MP = Map address
"IN = Instruction register
kegisters can be loaded only in the following order:
1) instruction régister |
2) any other registers except unit number

3) unit mumber. A

The rule is enforced in the fqllowing way: thei'e is a flag OKL which
indicétes that it is OK to load registers. This flag is

1) set by loading the instruction regiétcr when HR LOADED is off

2) reset by loading the unit number, or by a .swap.‘
If any attempt is made to load any register other than the instruction register
and OKL is off, thc load is aborted. A register 1oading‘ violation occurs if
OKL js set when a swap occurs. The most important conscquence of all this is
that if a swap occurs in the middle of register loading, the results of the old

. instruction, now in the IR, are not destroycd by subsequent loads.



3,2.10 Disk Sccks and Position Verification

-Whenever a disk unit is given an instruction for which the arm position
(cylinder) in PAGE ADDR differs frém the arm position in the last instruction
| to that unit, it will move the arms to the newly specified position.
The timing of ﬂle am movement operation ranges from about 65 msec to
220 msec depending on the arm displacement and on which of the eight positioning
pistons (one corresponding to each bit of the cylihder mmber) change state.
An estimate of the time required for the operation can be computed usix;g the

expression below:

56 + 4% }/ | new cylinder - old cylinder |
+ f(new cylinder,I old cylinder) msec

vhere f(x,y) is given by the following table:

Weight of most significant bit

vhich x differs from y Time
128 100

64 50

32 25

16 13
8 6.

4 3

2 1

1 0
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Each disk unit has a CYLINDER VERIFIED flag (CV) which is bit 3 of any of
its PCs. Whenever a scck is initiated. on unit u‘, CVu is. cleared. This is
the only way to clear CV,. It can be set under two circumstances:

1) A read is done from the unit without any errors.

2) The f:ime since the seek was started exceeds AV ms (currently 300 ms).
This time 1s called the‘ automatic verification interval. This method
of setting CV, is independent of whether u is selected.

The rationale behind all this is as follows: when a seek is done; .theré

is a period during which the arms move to a new position, and a subsequent period
during which they oscillate around the new position. AV is chosen large enough
to ensure that any seek will be completed in_that much tijﬁle. Faster position ¥
verification can be obtained by syccessfully reading a sector. Since a sector
is 710 ms long and has 48 checksum bits as well as a parity bit on each word, it
js possible to feel confident that the arms have settled down if no errors occur
in the read of thé sector. Note that any WORD CNT > § is sufficient to verify

the position.

A drawbéck of this scheme is that it becomes neceAssary to distinguiéh
between parity and checksum errors caused by bad data and t}.lose caused by
incomplete poéitioning. Since data errors are expected to be rare, it is qui.te
satisfactory to examine CV after the transfer. If it is sgt, the error is a
data error. As a consequence, an attempt £o read a bad page may take as mu.ch
as AV+R ms, where R is the read time. |

Needless to say, read instructions are not .affected by CV. A write, however,
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is not allowed to occur unless CV is on. The Teasons for this arc that
1) there is no parity or checksum error detection on a write
" 2) more important, if the arms are still moving a write may spread

destruction across several cylinders of a disk surface.

A DRUM POLICY=]1 write will cause a policy violation if CV is off; a DRUM

POLICY=0 write will wait until CV is on before executing.

3.2.11 TSU State |

When the Main Loop of the Memory Manager determines that a TSU needs servicing,
it pufs the state of the TSU into central memory. The routine also supplies
the pointer to the cleanup buffer (déscribed in-data structures sebtion) and the
TSU mumber as part of the state. The APU (software) is concerned with ‘

this information so that the state is put into the local address space of the

APU code. . ‘
56 Pointer to buffér (also in B register)
57 TSU # |
6f Instruction register )
61 Map register
62 Device address register
63 Central mcmory‘address register
64 Word Count register
- 65 Class code register #1
66 / Class éode régigtcr 5]
67 lolding Unit Register

79 Functional Unit-Register
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71
72
73
74

75
76

77

Position Counter for Unit 9
_Position Counter for Unit 1

Position Counter for Unit 2

Position Counter for Unit 3
Check word #1 register
Check word #f Tegister

Status register
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4, INTRODUCTION - DATA STRUCTURES
This section describes the main data structures used by the memory

‘manager.

4.1 Queues

The fUndamental data structure used in the Qrgéniiation of the AL is

the queue. A request will start off on a certain queue, and as it is partially
serviced, be passed along to succeeding queues until its corpletion.

~ Thus a "'general" requést such as "swap in a process' will be broken down
into requests for specific pages of the'pfdcess to be réad from the drum
and disk. If one were to freeze the AMC processing at a specific point,
by looking at the various queue entries,kone could get a fairly comprehensive
picture of the state of processing that the AMC was in at the time.

"To illustrate the fundamental role of the queue in the memory manager,
we shall follow the swapping in of a procéss beginning with a high level request
to read in a process. The request starts on the

| SWAP QUEUE

in the fom of a request node. Figure 4.1 shows the format of a request node
while Section 4.2 describes the request node in detail. ‘This is the same basic
format'that the AMC uses for all.its various request nodes. This request node

has the unique name of the context block of this process. As shown earlicr

in the section describing context blocks, the context block contains the unique
names of all pages belonging to the proccsé. We start by rcading in the context
-block. To get the context block in, we put the request on a

DRUM SLCTOR QUEUE
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REAL NAME

WARE- ]} 51 23
upP ERRCNT PTR TO PRT FOR PROCESS (EPRT)
(WAKF) 2 4l 18
. OWS INDEX ° 17} REQUEST CODE 23
~(ECKS) o (RCD) 6
TSU 3] 5 . 23
IDENT CODE / PTR TO NEXT ENTRY ON QUEUE (EQPY.
(IDCODE) {7 2 o 18

Fig. 4.1

Normal RequesthEntry
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There are twenty-four such identic_ally functioned queues, one for each sector

on the drum. .Depen"ding on vhich sector of ' thc.d.mm the Context Block is located,
(assuming it is on tlvme ‘drum), the reques't ‘wili be placed on the appropriate
sector queue. We recall ‘from our previous discussion that the drum signals

that it is between sectors (EOS) which allows position monitoriﬁg (PC) o)

that the request can be serviced (on the TSU) when the appropriate sector comes

up. As sectors on the drum come up, the corresponding sector queues are seérched
for requests. Having sent the request (now transformed to a TSU command),
the same request is placed on a

| _ CLEANUP QUEUE
'ihere is one such queue for each TSU. After the request has been completed by
the TSU at the end of sgétor time (Eosl; the AMC looks at the requests on the
cleanup queue. "Cleaning up" inciudes' checking for errors and abnormalities.
Assuming the context block was smoothly read in, the cleanup in this case will
put the requést on a

| -CONTEXT QUEUE

context block queue. This is a queue of processes whose context blocks only
‘have been read in. In time, the AMC accepts this request. - The AMC then looks

in the context block for the set of pages that are to be read into central memory

for this process (CI’S), and a numnber of requcsts are generated and placed on

the appropriate drum sector queucs. Thus if there are requests for two pages

on drum sector 2, there will be two requests on the qucue for drum sector 2.

In this way requests are scattered to the various queues. By doing this, as

the drum comes to cach succeeding sector, there will be requests quecued up

for that sector. Thus the drum will be kept busy transferring continuously.
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In the same way the context biock was rcad from tﬁe drum, és these pages
are read, th¢y go onto the clcanup queue, énd finally the request node is freed.
When the last gf the pages is read in, thc'process is considered to be loaded.
The scheduler is then signaled with a wakeup signal that it should now
consider the process ready~for assignment to a CPU.

In this illustration, one sees the major role played by qucues in the
implementation.

Figure 4.2 illustrates the various queues that the request nodelcan go

onto. Request nodes arc removed from the freelist when needed. Requests from

the outside world come via the general request queue, activate queue, and swap.
When looking at Fig. 4.2, notice that a request node for swapping in moves

from the swap queue to the context block queue once its context block has been

read in. At this point a whole flock of request nodes are put on the drum sector
queues to read in the process®t core working set. There is one queue for each |
sectof.on the drum, and note, also, one queue for each sector on the disk. The
memory manager loads the controller with a command for a sector hmnediétély
before thé heads pass over it, using the request node from the corresponding
lsector'queue. At this time the node is put on the cleanup queue. Upon success-
ful completion of the transfer, the néde is removed from the cleanup queuec.

There are 256 disk cylinder queues. VThe heads on the disk move to eaéh
succeeding cylinder in a round-robin fashion. As we move to succceding cyiinders,
the entrics in the cylinder'quoueé are ﬁortioncd out to the diffcrcnt sector |
queues for the disk. Sector queues are reloadcd cach time the disk moves to a

new cylinder.
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The write queue holds the rcﬁuests for those which necd to be written
onto the drum. In the process of transferiing pages, a ﬁfite is done for
a Séctor if there is no read to be done. When the page is written out,
the location on the drum where it had been before is freed. Thus it does not
have to return to the same (static) location. If we find that the page
needs to be loaded in.core, say for anOthe: process, then we abort the write
and remove the request from the write queue.

This concludes the discussion of the major queues and their uses.

4.1.1 General Request

The strategy for the CPU is to first get a free request node from the
free request entry list (FREL) thle protected by protect 2.* Then it
appends the completed request onto the General Request Queue (the appending
operation under protect 2). Finally it sends a request strobe to the AMC.
(Note: protects, strobes, etc. are discusSed in the section on communications).

The general requests are:

Request Code '-. Punction
1 Write process onto drum
4 Direct drum transfer
5 . Direct disk transfer
6 Return page to drum

A.process may be brought into core by a strategy similar to that of a general
Tequest, except that the entry is appended to the Process. Input Queﬁc. The

Tequest code is 1.

*Protocts are described in Section 8.1 on Communications
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4.1.2 Activate Request

The activate request combines a data structure with an algorithm to effcct
a call on the AMC. The basic idea is the CPU will send some data to the AMC and
then wait until ,tl.lc AC replies. The AMC must reply quickl);. Furthermore, the
AMC may return a word of data which deciares what action was taken by the AYC.
The CPU then reads the data and then ffees the activate port into the AMC.
There is only one activate port. It consisfs of two words for control and infor-
mation purposes, and two words which are the header of the activate queﬁe.

The CPU strategy is fo ‘first‘ lock out all other processors attempting to
sénci ac.tivates- (b); usihg PRbTECT 2). ‘fhen check the first Activéte Cell -
(100B absolute). If the cell is non zero, 'releaseb the protect and try .again.
Othervise set tlie cell to 1 and release the other processors (if desirable).
Now put the request on the Activate queue (which should be empi:y) and send
a request strobe to the AMC.

When the AMC has finished, it will have disposed of the enfry. It will
also succeed or fail return to the CPU. Success is indicated by the rrumber

"2'" in the firs'f Activate Cell. Failure is indicated by a negative number in
the first Activate Cell. In addition,’ when failure is indicated, the second |
.cell is set"to a non-zero value which has the following meaning:

1-TELL CPU TO WAIT, COME BACK LATER -

2-UNIQUE NAME ALREADY EXISTS

3-DISK ADDRESS IN USE

4-NOT IN DIT

$-DISK ADDRESS DID NOT COMPARE IN CHT



‘6-WAIT FOR WAKE-UP |

13-ACTIVATE REQUEST OUT OF BOUNDS |
For both succéss and fail Teturns tﬁe CPU will zero the two Activaté Cells
(100B § 101B).

The activate requests are as follows:

- Request Code Function
11 Transfer page from drum to diskv
12 Write Unique Name onto disk |
13 Transfer page from disk to drum
14 | - Make ne;v page
15 . Destroy specified page

4.1.3 Request Entry

“This is the basic data structure for the AMC queues. It mo\res about from
queue to qucue, being modified by the AMC as necessary. A Free List is maintained
of all entries not currently being used. The CPU (and others) rembve a free node
under 'protect 2. The six words then serve to keep the information as long as the
- request is in the realm of the AMC. The entry has two forms, one for normal
‘ requésts _éznd 6ne for Direct I/0 requests. Normal requests \&ill contain a subsct
of the following (see Fig. 4.1):

. a. Unique Name

b. Disk address

C. Wakeup condition (Wakeup is sent if field not zero)



Error count for re—trying comnand on déyice errors.*®
Pointer to Process Table for procééé making request.
Core Working Set index.*

Request code

TSU identification code®

Pointer to next entry

Direct I/0 requires more information to be sent with the original request. It

contains the following (see Fig. 4.3):

a.

b.

d.

e.

Unique Name

Disk or drum address in the compact internal form (which includes the

TSU #’and Unit #). Described at the end of Section 3.2.1.

Wakeup condition.

Error count for re-trying command on device errors.%

Pointer to the process table for fhe process making request.
Logarithm to the base 2 of the word céﬁnt. This défines avreasonéble
set of word counts: #, 1, 2, 4, ..., 223. |

Core page number in absolute core.

Timiﬁg (i.e., when to scnd re@hest: Correct, ahead by one sector,
behind one sector, or half drum revolution away from corrcct time).
Dump the TSU state at the end of the instruction.

Recover if an error was made during the transfer by doing the transfer

again.

*®These {iclds are not sct by CPU.



k. Request code.

1. TSU instruction exactly as sent to the TSU.

m. Pointer to next entry.

4.2 The Corc Hash Table

- 4.2.1 CHT Layout

Information about the current contents of core memory is maintained in the

'coi'e hash table, which is a chained hash table using the uniqile name as key.

plo | 23
UNIQUE NAME
11]o | 23
2 Drum or Disk Address (Internal Form)
1 WAKE- ! ’ 2
3w ERRCNT PTR TO PRT FOR PROCESS (EPRT)
(WAKF) 2 4 18
12 fT15{p1p 23
4 | 10G, WORD CORE PAGE é U|C| Request Code
COUNT (PGAD) .. I M1V (RCD)
N PR
7 1 G 2 6
5 }TSU Instruction PTR TO NEXT ENTRY ON QUEUE (EQP) 23
| 18

Fig.'4.3 Direct I/0 Request Entry
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The table comes in two parts: .

1) The @ndcx,' called CIT1, which is an array of 256 pointers to lists of
CHT entries. Each wordk of CHT1 is either END or t};e address of a CHTZ entry
wvith the property that H@SII (UN(e)) is the address of the CHT1 word. If there
are seV‘erahl pages in CHT with the same value of HASH (UN), the 'CHTl word points
to one of them, which poiﬁts to the pext ﬁsing the collision pointer field,
and so on until all are chained onto the list. The lastkone has END in its )
collision pointer. The ordering of pages on this chain is not significant.
Since there are only 64 core pages, chains of length >1 should be infrequent.
The hashing function HASH is to take the exclusive OR of the 6 8-bit bytes
of a UN and then the exclusive OR of this result with 364B. END is the
standard end-marker for chains in the MMS: it is 777777B in the last 18 bits
of -a word ;v the first 6 bits are ignored.

'2) The body, called CHI‘Z, which is an array of NCORE entries of 6 words
each. The index of an entry in CHT2 gives the physical page it describes. The

format of an entry is given in Fig. 4.4.

4.2.2 VWhen a Page is 'in CHT'

A page is said to be in CHT if it can be found by the hash table search.

If a page is in CIIT, it is gnarantecd to be the page spccifiéd by the UN in CHT

and if it got there by a drum or disk read, there was no detected error in the
transfer. To put this more precisely, there are threc ways for a page to get

jnto CIT:



1) by a drum rcad in which the UN in the P\II‘ entry which gave rise to the
read agrees with the UN read from the drum and no error was detccted durmg

the transfer.

§
UNIQUE NAME
N |
2 | |
2 DISK ADDRESS ;
2
pi1 22 51445 t6 12 116 23
3D} Ky UFRYETD CORE PAGE # LOCK sC
WEWRWES WL 8 3 &
16 25
4 FREE CORE POINTER (FCLP) 18
. 16 : 23
5 6 COLLISION PTR (CLP) | 18

D = DIRTY

U = UNAVL, unavailable to CPU
DW = DWIP, drum write in progress
KW = disk write

E = read error

SC = schedﬁlea.cougt

R = RIP, read in progress

The free corc pointer holds the page on the free core list. The
collision pointer holds the page on the CHT hashing structure.

Pigurc 474 Core Hash Table (CHIT2) Entry
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255 6 word entries

(sce Fig.4.4 )

chain

L

CHT1 CHT2 (for 128K core)

The figure shows physical pages P and 63 with hash code 1,
physical page 1 with hash code 255

Fig. 4.5 QIT Hashing Structure
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2) by a disk rcad in which the UN in -thc read rcduest agfces with the UN
<xead from the disk and no error 1;'as detected during the transfer. |

3 ) by creation of a new page. Ih”chis case the UN is the one given in
" the crcate request. |
In cases (1) and (2) the page goes into [odiy when the read has been successfully
completed, in case (3)'.1-:}1en the request is gatisfied. |

Recall that every physical page has an entry in CHT2. This entry describes
the status of the page whether or not the page is in CHT. Pages not in CHT
-are of the féllowing types: “

'1) empty pages. Thesé come into existence only at initjialization, when
a page is destroyed, or when a read fails.

2) pages involved in a read actually in progress from drum or disk. A
page js allocated for this pur;gose when the read is given to the TSU. At the
completion of the transfer it is either put in CHT (if the read was successful
according to (1) or (2) above) or becomes empty. A page camnot remain in this
state for more than 2 disk sector times. A page has the RIP bif set if and only

if it is in this state.

4.2.3 CHT Page Status Information

In addltlon to the RIP bit mentioned above, several other bits record tﬁe
status of a CHT page. They are all quite mdcpendent except as stqtcd
) DYIP is set when a drum write is in progress. It is exactly analogous
to RIP. VWhen DWIP is set the page becomes clean. When DWIP is cleared the page
goes onto the free core list, unless the write fails.
. 2) KW is set when the page is brought into core to be written on the disk.

It rcmains ‘set until the disk write is su_c':écssfully completed or abandoncd. Note
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that it is not analogous to DWIP.

3) DIRTY is on when the page in corc is potentially different from the
copy on drum DIRTY is set by t]ﬁe CPU whoﬁcver it does a store. DIRTY is
cleared when a drum write is started, a’t‘.the time DWIP is set. - If DIRTY is off,
the i)age ig said to be clean; a clean page with § scheduled count mvay.be removed
from CHT and allocated to some other purpos‘e.

4) UNAVL prévents CPU access to the page. It is never changed or referenced
by the M. | -

5) LOCK prevents the page from being rembved from CHT if it i.s #Pp. It is
not'set or cleared by the MS. It must not be cleared when SC=f§, or the page*

removal algorithm will not work.

' 4.2.4 Scheduled Count (SC) and Accessibility of Pages

“The SC field of CHT counts the number of loaded context blocké in which the

page appears in the core‘workinq set and has SF on, plus 1 if KW=1. It serves
two purlﬁoses:‘

' 1) A page should be removed from core when there are .rio loaded working
sets which refer to it. Since the SC field counts the number of loadea wo;*king
sets referfing to the page, the right time to remove the page is when SC=f.

2) VWhen a page is read from drum or ciisk, a comparison of the recorded
UN with' the requested UN is always made. When a page is in core and being
referenced by a CPU, on the other hand, .its physical core address sits in tHc

physical map (PM)* and is used directly; no check for the proper UN is made when

#The physical map is a map between physical and virtual pages kept for cach CPU.



the page is referenced. It is therefore important to be able to control CPU
access to a page and to know whether a CPU could have the page in its PM or not.

We will say that a CPU can access a page if the page (specified by its UN)

1. The CPU will load

is in CHT, UNAVL=f, and the SF bit in the CPU's PMT entry
the ﬁhysical address of a page into its I$Ioniy if it can access the ﬁége. Once
the page is in the PM, of course, the CPU cén reference the page regardless of
the state of QIT. The map-clearing maéhinery described belowApermits control

to be exercised over a page which is in a PM. |

We now observe that if SC is correct fﬁerehcahnot be a CPU which can access
a pége with SC¥ﬂ,ksince for such a page-thére is no PMT byte with SFEI. This g
means that if SC=p a page can be removed from CHT (or its DIRTY bit can be
cleared) with the assufance,that ény subsequent attempt to refgrence the page
from a CPU will not find the.page (or will discover that the DIRTY bit is ﬂ),
since any CPU reference to a page not in the PM must go through CHT.

The SC is maintained in the following way:

1) 'When.a context block has been read, the working set is séanned. Each
page is looked up to see if it is in CHT. If it is, SC for the page is incre-
_mented and the SF bit is set. Otherwise a read is qucued for the'page.‘ No .
account isltaken of other reads which may be queued for the same page (at least
not for the purpoées of this discussion).

2) When the read is considered (for dectails on when this happens see the
discussion of swapping bclow) a sccond attempt is made to find the.pagc in er.
If it is‘found, again SC is incremented and the SF bit set, and the recad is
abandoncd. Otherwise the read is éerfbrmcd. If it is successful the page is

put into QIT, its SC is sct to 1 and the SF bit sct.
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3) When a process is written out, the working set is scanned again. TFor
each page with SF=1, SC is decrcmented by 1 and SF set to .
4) VWhen a page is released to the dnum, its SF bit is cleared (the réQuest

is an error and is aborted if SF=#) and SC decrcmented.

4.2.5 Remnoving a Page from QIT, or Clcaring DIRTY

These operations can be performed only when SC=f, hence only when no CPU

.can access the page. Since there is no entry in any PM for this page, 511
that is required is to remove it from the hashing list structure, or to reset
DIRTY.

Since the consequences of a mistake at this point are extremely serious,
:imwevér, a very powerful (and expensive) cross-check is provided to ensure that

a page being emptied or cleared is in fact not in any PM.. The MMS has an

operation called selective map clearing which puts both physical maps in a

state which will cause the CPU to perform avlocal selective map clearing the
next time the'x_nap is accessed. The local clearing proceeds as follows:

1) The CPU picks up from a fixed core location peculiar to it a physical
page nunber. A'I'his number is set up By the MMS to the number of the f)age being
emptied or cleared before the MS does the selective map clearing. When setting
up the location, the M\S waits for it to bécome p first.

2) - The CPU then tells the PM to scan for a non-empty entry cdntaining the
specified physical page number. '

3) If no such entry is found, the CPU zeros the core location and procceds

on its way.
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4) If the entry is found, the page being empticd or cleared was in the PM.
This indicates a failure of the M\S. The CPU empties tjle PM entry and procecds |
wii':h' the local clearing. When it is finished, the CPU generates a fixed trap
“to the monitor, which can cope with the situation as it sees fit. In this case
the core location is left untouched so the monitor can find out what happened.

The procedure jﬁst described cnsures that the PMs camnot get out of touch
with the CHT. It is carried out immediately after a page is removed from CHT
or the DIRTY bit reset, and before any action is taken which depends on the
fact that the page cannot be referenced. Once the selective map clear is done,
the amount of time which must elapse before the page is completely safe from €PU
-'references is therrlargest time which can elapse in the CPU between a reference
to the map and the use of a mapped address (not necessarily the same one).

The cost of a selective map clear is about 10us of CPU time. It is
necessary to do one for each page transfe;'red to or from the drum: in the case
of a read, because the transfer requires freeing a physical page, and in the
case of a write because DIRTY must be cleared. |

The contents of this section so far imply that sneak)-* writes (writés of |
dirty pages which are still 'in use) will never' be done, and this is indeed the
intention. It is, however, possible to handle sneaky writes at the expense of
complicating the trap routine in the monitor which receives the trap‘cause_d by

doing a sclective map clear while the page is actually in a PM.

The M\MS keeps a free .core list (FCL) of pages which are candidates for
reallocation. A pagc is pixt on this list, provided it is not there alrecady:
1) When its SC is decremented to B, LOCK=p, its drum address in DT is not

p and its DIRTY bit is f.



2) VWhen a write for the page is successfully conpleted.

-When a core page i's needed (for avdrwn or disk read, or to satisfy a create

new page request) onc is taken from ﬂlC FCL and treated as follows:

1) If SC?"ﬂ," it is ignored. This means that it has 51101'12;1 up in a core
'~working set being loaded since it was put on the FCL, which is quite
possible. If iOCK;Eﬁ, it is also ignored. :

2) If DIRTY#f, it is ignored. Cf (1). |

3 If LOCK#p or RIPZP or Ki#f, punt. This is a M\S error, since SC should
| never be § when the page is lockéd or being written on the disk, and
a page being read into should not be in CHT at all.

4) Otherwise it is removed from CHT and a s.elective map clear 1s done

for it. The physical page may then be put‘ to 1ts new use.

This is the only way in which a page may be removed from CHT.

4.3 Drum Hash Table

4.3; 1 General

Information about the current contents of the drum is maintained in the

~.drum hash table, which is a linear hash table using the disk address as key.

“The basic infomation in a DHT entry d'is

1) ‘a disk address K(d), used to scarch the table

2) é drum address D(d) which is the current drum location of the page at
the given disk address

3) a use count UC(d) which more or less counts the number of processes in

_ which the page appears in the DWS. .
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4.3.2 DHT Page Status Information

In addition to K, D and UC, a DHT entry céntains some additional information
-which keeps £rack of the status of the page.
;1) ONDK (On Disk); set if the disk copy of the page is valid. This bit
| ‘is set after a successful disk read when a DHT entry.is made, and just
before a write. It is cleared'khcn‘a page is created, after an
unsuccessful write and after a drum write if DIRTY is set. Note that
the first drum write for a page newly read'from disk normally is
done because ONDR (see below) is § and not because DIRTY—l this
7 write does not clear OXNDXK, hhlch is 1hat we want.
. 2) ONDM (On Drum), set 1f a copy of the page exists on the drum.
| This bit is set when the page is written onto the drum. It is
reset only when a DHT éntry is newly creéted for a page which is
beiné read from disk to drum or for a page which has just been
- created in core; .ONDM=ﬂ causes the pagé to be written out of core
onto the drum even tﬁough DIRTY=§ in the CHT eﬁtry for the pagéf
 3) WUN, set if the drum unique name should be written to the disk.
This bit is set oniy"by creation of a new page, and is cleared when
the write is successfully conpleted | A
4) DEST, set if a destroy request has been made for the page This
b1t can only be cleared by deletion of the DT entry.
S) DKT, set if a disk write is going on; This bit is set when the
decision isrmade to write, i.e., when the yrite request is put
»on the disk queues. It is clearcd when the write is»completed'

successfully.



DT is organized as two pél'a'llel tables called DHI1 and DIIT2.
DHT1 is the J‘.inear' hash table and has 1 word per en'tr)',l containing the
disk addresses. DHT2 isv’maintained parallel to Dﬁl‘ 1 and has 2 words per
entry, confaining all the other informétion about the bage in the following

format.

R 2 B ﬁ - | 23
DRUM ADDRESS (D)

g 1|2 15 {4 |5 | 14 23
o} W D
REULEL ; / | usE comnt wo)
LL’ . N : N

~o=0
-t g
e Rl

-ONDK - On Disk

ONDM - On Drum

WN - Write Unique Name

DEST - Page is being destroyed

KDT - Disk to Drum Transfer in progress
DKT - Drum to Disk Transfer in progresé

Figure 4.6: Drun llash Table Intry
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4.4 Standard Circular List Strﬁcture

The AMC must kecp a lot of data in queucs and stacks and lists. It was
considercd best to have oﬁc mechanism fermanipulating all of these structures.
Therefore a circular list structurc was developed. It has the following
“properties: | 7

a. A node mﬁy be attached to the front of the list preceding all other

'nodes.l This operation is known as stacking the node.

b. A node may be attached to the end of the list behind all the other

nodes. This operation is known as appending the node to the list.

c. A node may be removed from the front of the list. This is equivalent

- to unstackiﬁg the node if the entries are put on the front éxclusiVelf.
It is equivalént to removing a node from a queue if the nodes are put
) on the end exclusively. |

d. Only 18 bits of the node are used for the pointer, and the pointér may

be in any one of the words in the node. '

e;’.A special pointer (777777B) marks the eﬁd of the-iist.

Each 1ist must have a fixed starting point. This point is known as a
“header"Q In this design the header is composed §f two_wofds. The first word
points to the front of the list. The second header word points to the last-node on
the list. Each node contains one pointef for the list which points to the | -
first wgrd of the next node (see Fig. 4.7a). The pointer may be offset from |
the beglnnlng of the node by any amount . As a natural consequence of the data
structure, the empty list has a header w1th the first word CODt&lﬂlD" 777777B.

The second word of the header points to a pscudo-node in which the first word of

the header is in the same position as the'pointcr for that list (sce ?ig{ 4.7b).
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Header ‘  First Node ' ’ Last Node

header #1 (‘\ o o

header #2 |= offsct

Qi- A | | 777777

Fig. 4.7a Circular List Structure

' r G
iy l ‘
i | %
offset | :
a o
! I t-
. 777777

Fig. 4.7b Empty List
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4.5 State of A&KZhﬁcroptocessof

The statec of the microprocessof is loaded and stored when crashes and
breakpoints occur. Several memory locations participate in this operation.

The state is stored into cells 25008 to 2611B in the following format:

2500 ~ SKP QD
2501 sKi
2577 SK63
2600 RS
2606 R6
2607 0S
2610 Q
2611 Z

Of course SKp is the contents of M since this scratchpad register is
reserved for saving M. When the state has been saved, the cell Breakwait is
tested. For the AMC this is cell 255. The address of the instruction to execute

after the state has been restored is kept .in Break (20B).

4.6 Important Central Memory Locations

Since the system has many processing units, cach nceding some information
which is a subset of all the information nceded to opecrate the systcm, all the

system tables are in main memory. The AMC also requires information which is
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considered private to itscif (although certainlj' diagnostic or recovery routines
may wish to ‘look at it). In phase 1 the private tables arc also kept in main
memoTy. | |
The following is a map of the interesting memory:
5  SYSTEM RESTART REGISTER B
20  BREAK ADDRESS
25  BREAKWAIT CELL
100  ACTIVATE CELL
101  ACTIVATE CELL
102  ACTIVATE QUEUE HEADER START
103 ACTIVATE QUEUE HEADER END
104  GENERAL REQUEST QUEUE HEADER START
105  GENERAL REQUEST QUEUE HEADER END
106  PROCESS INPUT QUEUE HEADER START
107  PROCESS INPUT QUEUE HEADER START
110  FREE REQUEST ENTRY LIST HEADER START
111  FREE REQUEST ENTRY LIST HEADER END
112~ FREE CORE LIST HEADER START
113  FREE CORE LIST HEADER END
114 PROCESS READS IN PROGRESS HEADER START
115 PROCESS READS IN PROGRESS HEADER END
116  CONTEXT BLOCK QUEUE HEADER START
117  CONTEXT BLOCK QUEUE !EADLR D
120 WRITE QUEUE HEADER START
121 WRITE QUIUE ITADIR EAD



122
123
124
125
126
135
136

e d

151

152

153
154
155
156
157

NUMBER ON FREE CORE LIST

NUMBER ON FREE REQUEST EXTRY LIST

ERROR PROCESS TOR SWAPPER |

COUNT OF TIMES COULD NOT REMOVE NODE FROM FREL
CLEANUP BUFFER HEADERS

CLEANUP BUFFER HEADERS

DISK SECTOR QUEUE HEADERS

DISK SECTOR QUEUE HEADERS
NICT ERROR COUNT
NUMBER OF CONTEXT BLOCKS LOADED

NUMBER OF PROCESSES BEING LOADED

"BASE ADDRESS OF DRUM SECTCR READ LIST (DSRL)'

BASE ADDRESS OF DRUM FREE PAGE TABLE (DFPT)
BASE ADDRESS OF DISK'CYLINDER QUEUES (KCQ)

400 - 777 Qi1

1000 - 2377 CHTZ

PART OF STATE OF MICROPROCESSOR

2517
2520

BASE ADDRESS OF DHT1
BASE ADDRESS OF DHT2

2521  SIZE OF DHT



4.7 Statistics (Counters)

THE FIRST BLOCK IS COUNTS FOR VARICUS TYPES OF 1/0 TRANSFERS INITIATED
~ (STARTUPS) |

2¢fB CONTEXT BLOCK |

201B PAGE READ (BOTH CONTEXT AND PROCESS PAGE)

228 DRUM READ FOR DRUM TO DISK TRANSFER

2035 DIRECT DRUM TRANSFER

2§48 DIRECT DISK TRANSFER

2§58 WRITE FOR PAGE NOT ON DRUM

2068 WRITE FOR DIRTY PAGE

2678 GHECK UN ON DRLR{ FOR DESTROY PAGE

21¢B . NOTHING

211B WRITE ON DISK FOR DRUM TO DISK TRANSFER

212B GHECK UN ON DISK FOR DRUM TO DISK TRANSEER
 213B CHECK UN FOR WRITE UNIQUE NAME ON DISK

24E READ DISK FOR DISK TO DRUM TRANSFER

215B WRITE FOR WRITE UNIQUE NAME |

26B CHECK UN ON DISK FOR DESTROY PAGE

217B DESTROY ON DISK |

2203 READ DRUM TOR DISK TO DRUM TRANSFER

2218 READ PAGE KLUDGE

2228 PAGE FAULT READ

223B  PAGE FAULT WRITE

2248 PAGE FAULT WAKEUP



THE NEXT BLOCK OF COUNTERS ARE FOR COUNTING ACTIVATE ERROR RETURNS

IT BEGINS AT 225B

2258 WAIT CPU

2268 UNIQUE NAME ALREADY EXISTS
227B DISK ADDRESS IN USE

23p3  NOT IN DHT |
231B  DISK ADDRESS DID NOT COMPARE IN GHT
232B WAIT FOR WAKE-UP

233B  DISK ADDRESS REASSIGNED

2378 ACTIVATE REQUEST OUT OF BOUNDS
24pB NO REQUEST NODE

241B NO CHT ENTRY

2428 SCHEDULED COUNT OVERELOW

2438 PROCESS IN TROUBLE

THE NEXT BLOCK OF COUNTERS ARE FOR COUNTING 'AMC' ERRORS

IT BEGINS AT 246B

2468 REDO WRITE FOR ALL REASONS
2478 TAG FIELD ERROR
25¢B  REGISTER LOADING VIOLATION
251B TOTAL DEVICE ERRORS

2528 RETRY COMMAND



THE NEXT BLOCK OF COUNTERS ARE FOR COUNTING TIHE NUMBER OF LFRRORS

SENT TO A PROCESS. IT BEGINS AT 251B.

AMC FAIL RETURNS TO CPU

'251 CPWAIT  TELL CPU TO WAIT, COME BACK LATIR
252 $UNER UNIQUE NA'E ALREADY EXISTS

253 DKINU DISK ADDRESS IN USE

254 NINDHT  NOT IN DT |

255 DNCHT DISK ADDRESS DID NOT CQMPARE TN CHT
256 WAITWK  WAIT FOR WAKE-UP

257 DKRAS DISK ADDRESS REASSIGNED
26¢ HERDR HARD ERROR ON. DRUM READ

261 SERDR SOFT ERROR FROM DRUM
262 $HERDK HARD ERROR ON DISK

263 $UNERK  UNIQUE NAE ERROR ON DISK AFTER DRUM COMPARED
264 $SERDK SOFT ERROR ON DISK READ |
265 $ARQOB  ACTIVATE REQUEST OUT OF BOUNDS

266 NOREQ NO REQUEST NODE |
267 NGIT NO CHT ENTRY

27f SQHOVF  SCHEDULED COUNT OVERFLOW

271 PRIRBL PROCESS IN TROUBLE



4.8 Table Manipulations

Time is not measurcd in milliseconds- in the swapper but rather by relation
-to the events taking place. The‘following times are the important times in ”
| refcrqnciné events: | . |
‘1) The time when a request is considered. Let me call this Requesf Time
Q. | |
2) The beginning of a transfer, i.e., é node is removed from a queue and
commands sent to the TSU. Let me call this Start-up Time (STPT).
3) ’I_'he end of a transfer when the node”ivs again perused to determine
.what to do next. Let me call this the End of Transfer Time (EOTT) .
45 The time that a process' context bidck' is scanned for the reads or
writes. This 6ccurs‘ as fréquently as required by the swapper to

maintain its flow. Let me call this Process Scan Time (PSNT) .

‘Core Hash Table

Pirty bit:
Set - by someone when page modified.
Reset - Start-up of write to drum.
‘Disk Write bit:
Set - (STPT) imediately bef(;re disk write command sent to disk TSU.
Reset - EOTT of disk write. | o |
Tested - When trying to determine if page is "in core”.
Page Status (4 bit field):
Set - Start-up of all transfers.
Set - EOTT and error in transfer.

Clear - At end of all transfers if transfer is successful.
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‘Scheduled Count:
Inc. - Context block read - at RQT if context block in bcore, otherwise at
Inc. - Page of a process - at time coﬁtext block is scanned if page in core,
otherwise at EOTT. | |
Dec - Conteit block read - after context block is scanned and it is put on
the Read in Progress Queue since it is in the Core Working Set. |
Dec - Page of a process - RQT, when context block scanned for‘pa'ges for a
write process request. | |
Dec - Page of a process - RQT, for return page to drum command.
Free ‘Core Pointer:

Set - When it is determined that a page must go onto the free core list.

Reset - Vhen it is determined that a page may be removed from the free
core list. |
Page Lock:
Set - ? Not by Swapper
Reset - ? Not by Swapper

Drun Hash Table

Disk address (field):
Set - when DHT entry made
Clt-aared - when DHT entry deleted
Location (two bit field):
Set - (EOIT) end of write onto dnnﬂ
Set - (EOTT) end of write onto disk

Clear - (RQT) rcquest ncw.‘ page



Write Unique Name:
.Set - (RQT) request new page
Reset - (EOTT) transfer from drum to disk
Reset - (EOTT) write Unique Name onto disk
Destroyed: A |
Set - (RQT) delete page on disk ’
Disk- to-Drum Transfer in Progress:
Set - (RQT) disk-to-drum transfer
Set - (RQT) write Unique Name onto Disk
Reset - (EOTT)Veither transfer completed:.
Drum-fo-Disk Transfer in Progress:
. Set - (RQT)'drum—tb-disk transfer
Reset - (EOTT) transfer completed
Unique Name Check:
Set - (RQT) destroy page
Hard Drum Error on Read for Destroy Page:
Set - (EOTT) destroy page
Use Count (field):
Inc - (RQT) transfer page from disk to drum
~Set - (RQT) request new page
Dec.- (RQT) transfer page from drum to.disk.'

Request Node

Error Count:
Inc - (EOTT) when an crror is detected in a transfer.

Reset - (EOIT) when transfer is successful.
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“CWS Index:
Set - (PSNT) when context block is scanned to queue rcads.
" IJdentification Code:
Set - (STPT) when TSU given instruction to aid in identifying the entry
in the buffer. '
Request Code:
Set - (EOTT) when necessary to requeue request as another request in
sequence.

Process Memory Table

‘Class Code Error:

Set - (EOTT) if class codes do not match on read for a process.

Scheduled Count Flag (SF):
Set - (PSNT) when context block is scanmed to queue reads.

Reset - (PSNT) when context block is scanned to queue writes.

Reset - when there are hard errors.

_Process Tablle‘

AMC Interrupt Bit:
Set - (EO’I'I‘) whenever the wakeup is requested in -the ori;ginal request. ‘
Swapper Error Word: |

Set - (EOTT) a hard error occurs.

Drum Transfer Count:
Inc - when the context block is scanned and a read is queued.

Dec - (EOTT) a process rcad is successful.
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Processed Quecucd:
Set - when process is put onv Read In Progress Queue
Reset - when process loaded
Swapper Queué: ’
~ Set - SKQ is set by u-Scheduler or CPU when they send a SWAPIN request for
the process to the AMC.
Reset - (RQT) when taken off queue for context block read.
-doaded:
Set - when process in core and wakeup generated.
Reset - LDD is reset by u-Scheduler when it sends a SWAPOUT request for

the process to the AC.



5. INTRODUCTION -- SOFTWARE AND FTRMWARE

Having looked at the hardware aspects of the system, and quite a bit of
data structures, we come now to the actual code in the system. As has been

alluded to carlier, we have both microcode and an implementation language
(assemblyish code) called APU code. The implementation language instruction

set is actually implemented in microcode. This overall organization is

shown in Fig. 5.1.
The obvious advantage of microcode is its high computation rate. The -micro-

processor cycle time is 100 ns. Because we are using ROM, the disadvantage‘ .is
difficulty in modifying the code. The APU code has an inverse characteristic,
easily modifiablé , but Cdnsiderably slower than microcode.

What has been coded in microcode are those functions that are well-defined
and called frequently. Most primitive functions are microcoded. Codedln
APU code are the more policy depenc:ient, less often called functions. Because
this was a first attempt at putting memory management into a separate
processor, it was not clear as to what should go into microcode and APU code.
A proposed later version of the memory manager, in fact, puts into micro- ,

code many APU functions of the present version.

The subroutine mechanism of the memory manaéer is a powerful and flexible
one. As usual the APU code has a sﬁ‘broutine call mechanism to other APU
rqutines. But it also has a subroutine call mechanism to call microcode subroutines.
Likewisc 'micro'code routines can call other microcode routines. The mechanism is
not fully symmetric in that microcode cannot call APU routines (though it can
branch to them). Using this structurc, the memory manager code is a powerful

mix between microcode and APU code. APU routines make use of calls to

very fast microcoded routines to perform many tasks.
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... various memory management
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*frequently called
*well-defined
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; «.. Main Loop
Microcode <
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| / APU Code
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e ... various memory management
functions
] -+ policy-dependent
APU Code < » high level
-

Fig. 5.1 AMC Code Organizatidn'



It should be pointed out that in order for the memory manager

ta perform cffectively, 1t mist do its work subjectlto various time constraints.
For exaﬁple,'bctween the time of ohc end of sector (EOS) when the registers
swap (HR and FR, sce Fig.‘3.7) and next EOS, the meméry manager nust
analyze the results of the last swap, chcc% for and handle errors, énd
also set up the transfer for fhe next sector to come. This it must do for
each TSU. On the side, it mist fina time tb read context blocks and queue
up page reads, nove the heads on the disk, etc. It is clear why CPUs are riot
assignéd this type of memory management funﬁtion. They would never have time
to run user processes! The use of microcode‘is very important to. the effective-
ness of the systah. " Poor performance is mafked by less than continuous
swapping of pages (that is, if there is enough work) mainly attributable to
t@e memory manager not being able to handle its workload, i.e. being too slow.

- The first of the two following sections,déscribes the microcode. We
turn first to the main\loop, for this is where the memory manager starts.

From here it dispatchcs to various microcode and APU routines.
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6. MEORY MANAGER FIRMAARE

This scction describes the firmware portion of the mcmory manager.

6.1 The Memory Manager's ;\hin J.oop

‘Figure 6.1 shows the main loop, the center of activity for the memory '~
manager. Onc; of the basic acti\rities of the main loop is checkingthe
attention flag. TSUs set this flag wheﬁ they come to their EOS's. Notice
in the main loop the various places .that’A’I"I'E‘\"I‘IO.\‘S are checked for.

Receiving an ATTENTION we look for CLEANUPs that need to be done. As
discussed in the datar structures (Section 4.1), there is é cleanup qucue f;)r-
‘each TSU. The memory manager checks to make sure that all went well in the
last transfer, taking appropriaté action for error cases. Depending on what
the request code was (Fig. 4.1 shows requeé.t.code a.s part of request entry) :
we dispatch to ‘one of several APU cleanup routines. For example, the cleanup
for a coptexf block read involve.s setting various flags that a cleanup for a
regular page read d‘oésn't. |

Having done all possible cleanups, wé then d-o STARTUPS fpr the various
TSUs. This involves packing the various TSUs with the correct transfer
cormn-ands for the forthcoming sector. Microcode functions search the
appropriate drum/disk sectqf queue for the node and then dispatch to one
of several APU startup routines.

| The different cleanups and startups wili be discussed in more detail in

the section on APU code. A

If we have time, we try to queue up page reads of the CWS for a context
block that has becen read in, and then try to read in a new context block for
another process.

Much of the memory manager's attention is devoted to simply managing

the just mentioned activities.
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Other than ATTENTIONS 'the'memory manager also handles activate and general
requests. The request flag is set by the monitor or another processor to
signify a request for the memory manager. We dispatch.to an APU routine via a
geﬁeral request transfer vector or activate request transfer vector.

.If at this point there is no ATTENTION, we move the disk to the ﬁext
cylinder (round-robin fashion) so that transfers for that cylinder can commence.

We continue to service general and activate requests until an ATTENTION comes.

Note that flag-setting rather than interrupt is used to cormunicate to the

memory manacer. The assumption is that the speed at which the memory manager

does its assignments permits attentions and requests to set flags which will Be
serviced in an appropriately short tﬁne; |

Note alsb,théfﬁihé queue structure allows the memory manager to perform
its work in small packets. There are many places in which the memory manager
can be diverted to other tasks because of a signal coming in (e.g. ATTENTION).
This can be done because the state is maintéined in the request nodes and
passed from queue to queue.

Thus we have the organization of the main loop. It is mainly a dispatther
to various discrete routines that will finish their tasks quickly and return

to the main loop.

6.2 Microcode Descriptions

Following is a list of microcode routines and structurcs given in
-chronological order as they occur in the microcode.

The presence of patches makes certain parts a little messy. lowever, a
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general perusal of the microcode gives onc some insight into the microcode

part of the mecmory managér.

More detailed descriptions of routines marked with an.astcrisk are

given in the sections indicated.

Loc

0

45
46

102
107

121

141

143
156
171

200

Routine or Striucture

When the Zap signal is sent, the
APU is brealpointed with state saved
if desired, or else initialized
Part of APU main loop

Field logic for APU Code

Punt (fail) return setup for AMC

Save State of AMC
*(6.3.19) ‘

Load State of AMC

Exchange scratchpads with memory

Stack Link Subroutine; saving return

goints, state, for subroutine calls
(6.3.1)

Subroutine Call, Return Mechanisms

PUNT (fail) logic

CHT Scarch
*(6.3.6)

Enter CHT Enti‘y
*(6.3.7)

Put Page on Free Core List
*(6.3.11)

CHIT Hashing
*(6.3.5)
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SWAPR

R2PNT

SAVST

LOADST
XSKPD
STKLK

ECHT

PPFCL

CHTHSH



Loc
213

222
235
270
311
321

340
347
357

362
400
640
665
725

752
763

771
1000

Structure Name

*(6.3.2)

Routine or
Delete CHT Entry DCHT
*(6.3.8)
Clear CHT Entry CCHTE
*(6.3.9) ’
Get Frce Core GFC
*(6.3.10) .
DHT Search DHTSCH
%(6.3.13)
Make DHT Entry EDHT
*(6.3.14)
-Delete DHT Entry DDHT
*(6.3.15) : '
Append Entry to List ~ AEL
*¥(6.3.16)
Stack Entry on List SEL
*(6.3.17)
Remove Entry from List (1) RTEQP
#(6.3.18)
Remove Entry from List (2) REL
APU Instructions Table _ .
Fail Return Table for Calls ‘ FTABLE
APU Instruction Fetch Main Loop ILg
Area for APU instructions that take
more than the table to implement
Call Micro-code subroutines -(from APU) CALL
Return from Routine CALL3
Fail Return {rom Routine
Patch Space
MAIN LOOP MAIN
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Loc
1023

1027

1033

1045
1057
1076

1103
1125
1141

1160
1175

1202

1216
1220

1277
1333

1346

Routine or Structure

Copies from cylinder to sector queues

for disk

Process Attentions
*(6.3.3)

Call APU Cleanup Routine-part of
attention processing

Search for TSU needing cleanup
Search for TSU needing startup

Start APU routine

*¥(6.3.4)

Dump TSU state -
*(6.3.20)

Generate Wakeup

Send TSU Instruction
*(6.3.22)

Various test routines

Stack Entry on Free List
*(6.3.23)

Remove Entry from Free List
*(6.3.24)

12-Bit Multiplication Routine

Initialization s~quence
*(6.3.25) '

Get Selected Position
*(6.3.27)

Get Position
*(6.3.28)

Continuing Startup, decide to go to
STDRUM (1460) or STDISK (1471)
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COPYK
PATTN
PATN2

PATN1
PATN3
SAPU

DPTSU

WAKUS
STSUI

SETFL
REFFL

MVLP
GO

FSTR

GETPOS

PATNS



Loc " Routine or Structure Name

1352 New Page Request , _ NPAGE
1400 , Get First Device ( GIFDV
1427 Begins APU Code for Startup . DOSTART
1460 Drum Startup STDRUM
1471 Disk Startup - STDISK
1500 Find Drum Page Table Entry FDPTE
1512 Find Band in Free Drum Page Table FBFDPTE
1523 Make Drum Address MDRM
1531 Parse Drum Address PDRM
1536 Clear/Set Drum Free Page Table CSFDP
1546 Check for page in core routine . INCOR
1563 Execute command (used to set up for - EXEC

~ TSU commands to channel)

6.3 Detailed Microcoded Routines Descriptibns

The following pages contain descriptions of major routines which
are microcoded. By referring to the description of the appropriate data
structure, one should be readily able to read thé microcode.

Control is retained in the main loop (microcodéd) until there is
something for the AMC to do, then control is passed to an APU routiné.
Each of these APU routines has a real time constraint of about one‘ quérterl

millisecond in order to run the AMC at full speed.
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6.3.1 Subroutine Linkage

Due to the complex naturc of the swapper, scveral ievels of subroutines
were necessary. A stack mechanism was designcd for savin'g the link. The
_stack begins in the highcst numbered scratchpad rcgistér (77B). The subroutine
affects three holding registers. STKP is rescrved for the stack pointer.

It is initialized to 77B in the main loop. The registers ilS and R4 are also
used by the stack link (STKLK) subroutine. Other registérs are preserved

(although not without some effort).

6.3.2 Main Loop (MAIN)  (Also described in Section 6.1)

Control remains in this loop as long as there is nothing for the AMC
to do. While the AMC is idle, no memory queues are generated. Thé AMC has two
types of requests which can originate from another proceséor. Each request 1is
accompanied by a request strobe which sets the request latch in the AMC
m:i.c::m:)processor.1 ‘The TSU requires periodic processing by the AMC. The TSU
sends an ATTENTION signal every time it needs another instruction. The AMC
then determines if there is an instruction in the holding register which
has just been executed. If there is, it dces the necéssafy cleanup for it.
Then it attempts to find tranhsfers for the devices. In addition, this loop
calls two other APU-coded routines. One of these routines will copy entries
from the disk cylinder queues to the disk sector qucues incrementally. It
will not execute longer than about 200 microseconds. The other routine wi'll
maintain the requests to bring a process into core. It is so located in the

loop that it will be called about once é sector time (1 millisecond).

Sce discussion of Requests in Section 4.2.
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The main loop consists of two large routincs and some small ones. The

large routines arc called MAIN and PATTN (process attentlon) We begin at MAIN:

‘a.

b.

Set the scratchpad stack p01nter and the ng_gore stack pointer.

Proccss Attention by calling PATIN. This routine will test the

attention signal and take the appropriate action.' If no attention
is set, it tests the request strobe latches and returns a value to
signify that request latch 1 is set or reset.

If request latch 1 is not set and if either the number of entries on
the disk sector queues equals zero or the flag register bit p is set,
start the APU routine which will copy entries from the cylinder
queues to the sector queue, then go to a.

If request latch is set, reset it.

1f the activate cell is one, start the APU on the Activate Request
. 2 .

" routine by calling SAPU.” Punt if the Activate Queue is empty and

the activate cell is one.

If the General Request Aueug is empty, gé to a. Othervise stért
tthAPU on the General Request routine by calling SAPU.

Process Attention by calling PATTIN. ~(See~b above)

If either the number of entries on the disk sector queues equals
zero or the flag register bit # is set, start the APU routine which

will copy entries from the cylinder queues to the sector queue.

2Sce Start APU in Section 6.3.4.
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i. Process Attention by calling PATIN. This routine returns a value
which indicates that request latch 1 is sct or reset. If set, go

to d, otherwise go to f£.

6.3.3 Process Attention (PATIN)

The idea of this routine is to determine whether any TSU necds servicing.

As a convenience, when the attention latch is not set it returns a value

dependent on Reqﬁest latch 1. It will also save the state and wait until the
Breakwait cell becomes non-zero if Request 1atch 2 is set.

If an attention latch is set, it begins by looking for a TSU which needs
cleanup. The position counter ﬁas a bit specially designed to aid this scarchk3
.When a TSU is found needing cleanup the APU is given control. When the APU
returns the search is begun again: When the search fails another search is
‘jnitiated, this time for a TSU needing a transfer. Again there is a bit in the
position counter (holding register awaiting execution) specially désigned for
this purpose. When a TSU is found needing an instruction (startup), another
APU routine is begun. When the APU returns, the search for a TSU needing an
instruction proceeds. When the search fails the attention latch is testéd. |
If it is set, we begin both searches again. Otﬁcfwise an AfU routine is called
'vdﬁﬁh decides whether another process is required. Then control is sent to the
beginning of this routine.

a. Go to c if attention set (it is reset by the test).

-3Scc TSU Position Counter discussion in Section 3.2.2.
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- Save the state and wait on Breakwait Cell if request latch 2 is

set. Othervwisc refurn -1 if no request latches.set, otherwise
return . |

Set TSU # to @.

Go to f if the TSU tested does not hold an instruction which has

finished exccution but has not been read by AMC.

Compute the clean-up buffer pointer and store it into the first
word of the TSU étate. Store the rest of the TSU state in core
and then start the APU on the clean-up routine by calling SAPG
(which will punt if the clean-up buffer is empty). Control is
returned to c.

Add 2 to the TSU #, i.e., search only TSU § and 2. 1f the TSU #

is less than 4, go to d. (Currently, only two TSUs exist:

nunber P for the drums and number 2 for the disks)

Set TSU # to f.

Go to j if TSU tested does not need an instruction.

Set core stack and determine whether the disk or drum routine
should be called. If an instruction is sent to the TSU, control
is returned to g. Otherwise, control goes to j.

Add 2 to the TSU number. If the TSU number is less than 4,

go to h.

If attention latch set, goAto c tattcntion latch reset by test).
Call the APU routine which detennines when to start bringing

another process into core. Then go to a.
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-+ 6.3.4 Start Auxiliary Processing Unit (SAPU)

) This is a short routine which does some common things before going to
the APU code. It takes an address to begin thb APU and a pointer to a
request. The routine fails if pointer to the requést is an end of list
(7777778) word.

‘a. Put address of APU routine in Program Counter.
b. Put address of node in B. Fail return if it is an end of list.

c. Fetch the request code from the request and put in A and X.
d. Stack the link and go to APU.

6.3.5 CHT HASH (CIITHSH)

This routine computes a pointer to .a pseu&o-node, the last entry of
which is a pointer in CHT1l. It takes the 48 bit Unique Name as input.
These two words are EOR'edltogethér to form a single word. This word is
then split into 3 separate 8-bit bytes. Eaﬁh byte is EOR'ed together and:
the Tesult EOR'ed with 264B. The resulting word is masked to leave the -~

low order eight bits which are added to the appropriate base address.

6.3.6 CHT Search (CHTSCH)

This routine searches CHT for an entry which contains the Unique Name
presented. This routine finds the first entry (if there is one) by calling
the subroutine CHTHSH which computes the address of a pséudo-node in CHT1.
The collision pointer5 of this pseudo-node is a pointef (or end of list,
777777B) into ClIT2. The collision poiﬁtcr list is followed until the last

entry is found or thc Unique Name presented compares with the Unique Name

5The‘CHT data structure is discussed in Section 4.2.
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in onc of the entries. If the search succebds, the routine returns with
the address of the entry. Otherwise, it fail returns with a pointer to the
last node on the collision chain. A |
If the Unique Name is zero, it is a failure, otherwise: .
o a, Find the pointer to the first'pseudp—node in CHT1 by calling CHTHSH.
b. Check the pointer for being an end of list; if it is, fail.feturn.
c. Compare the Unique Namc in the entry with the one given. If they
are equal, return.
d. Get the new pointer from the collision pointer field

(word 5 of entry) and go to b.

6.3.7 Enter CHT Entry (ECHT)

This routine does all the chain patching such that the entry presented
répfesents a page in core with the given Unique Name. A CHT entry (in CHT2)
may only represent a page if it can be reached from an entry in CHT1 by following
the collision pointer chain.6 The entry must not be on another collision
chain wﬁen presented to this routine. It is a.fatal error to present a Unique
Name which already exists as a page‘of memory, i.e., may be found by CHTSCH.
The Unique Name and disk address are placed in the entry. |

a. Pass the Unique Name to CHTSCH. If it succeeds in finding
‘the Unique Name, PUNT.

b. Store Unique Name and disk address into node.

c. CIHTSCH rcturned the pointer to the last entry on the

collision pointer chain for the given Unique Name. Replace

ﬁrhe CHT data structurc is discussed in Seétion 4.2.
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the collision pointer in this entry with a pointer to the
new entry.

d. Put End of List (777777B) into the ncw entry's collision

p01ntcr field.

6.3.8 Delete CHT Entry (DCIIT)

The effect of this subroutine is to remove the page with the given
Unique ! Vame from core. This is accomplished by removing the entry with the
given Unique Name from the collision cha1n7 which begins in CHT1 for the |
given Unique Name. If such an entry does not exist the subroutine fail
returns. A pointer to the entry is returned if it is found and removed;
Only the collisién pointer field in the-preceeding.entry is affected.

a. Find the entry by ca111ng CHTSCH. 1If the enfry is not
found fail return. B

b. Get the collision pointer from the node found. This
pointer points to the next entry on the collision chain.

c. Put the pointér into the collision pointer field in the entry
pzéceeding the entry found by CHTSCH. CHTSCH'returns a pointer.

to the prececding entry.

6.3.9 Clear‘CHT Entry (CCHTE)

The entry is cleared in all fields except for the page number which
always remains the same, and the free core list pointer field which if non-
zero indicates the entry is on the Free Core List. Prefetches are used to

prepare memory so that this routine will execute in a minimum time.

. . . . o
The CIIT data structure is discussed in Section 4.2.
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6.3}10> Get Free Core(GFC).

“The goal of this routine is to return a free page of core by returning
a pointer to a CHT entry. The éntry returned will have been removed from
ahy collision chain it may have been on, and clecarcd to zero. In the process
of attempting to find a page which is free, it follows thé free core list
pointer chain, removing fhose entries which are not free from the Free Core
List. The Free Core List is a standard circular list.8 If no free entry can -
be found the routine fail returns.
a. Set protect 2 and initialize search by getting pointer to
pseudo-node which points to first entry. Go to lower ¢a§e.
b. Remove entry from Fre§ Core List which is not free. Decrement
number of entries on free core list counter (NFCL); .Confinue
‘ search at the entry pointed to by the one thus removéd.'
c.  Get pointer to next node. If it is the End of List (777777B)
unprotect 2 and faii return. l |
d. Test all pertinent fields for zero. If any of the fields are non-
zero go to b. The fields tested are: -
1. Scheduled count
2. Dirty Bit
3; Disk Write Bit
4. Bits 3-5 of the Page Status word
5. Lock ficld

e. Remove the entry from the Free Core List. Decrement the number

8Scc dcs;ribtion of standard circular list in Scction 4.5.
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of entries on the Free Corc List. Remove the entry from the
collision chain it may be on. Clear the maps of the CIUs if the
Unique Name is not zero. Clear the CHTZ entry and clecar the Frec

Core List Pointer field in the entry.

6.3.11 Put Page on Free Corec List (PPFCL)

Given a pointer to a CHT entry, the entry will be placed on the Free
Core List provided that the Frée Core List pointer is zero. This proviso
is necessary because a page may be used, written out, used again and written
out again, all while the page 1s on the'free Core List. Whether the entry
“is putwbﬁ Ehé.ffée Core List or not, the routine returns successfully.
a. Return if the Free Core List ?ointer not equal to zéro.
b. Increment the mmber of entries on the Free Core List.
c. Stack the entry on the Free Core List by calling the subroutine
- SEL.
1) a

6.3.12 DIT HASH (DHTHSH)

The purpose.of this routine is to compute the index of the entry in
DHT from the given disk address. DHT is organized4as two tables (which must
be adjacent and ordercd DIT1, DIT2). The first table has one word per entry
and the second two. The hash code (address) is computed as follows:
a. Zcro the top two bits of thc.word given as the disk address.
b. Rotate the rcsult so that thc top half of the word is in the
placc of the bottom half.

" ¢. [IOR the rotated word with thc'original disk address.
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d. Extract the bottom 13 bj.ts of the address to form an index into
DHT. The size of DI is normally smaller than 8K, therefore
perform a modulo operation. - |

e. Return in.dex if index is less than size of DHT.

f. Set index to index minus size of DHT. Go to e.

6.3.13 Search DHT (DHTSCII)

The goal of this routine is to 1ocate the preserted disk address in the-
Drun Hash Tabl,é.9 The Drum Hash Table is composed of two parts, DHT1 and
DHI2. DHI1 has bﬁe word per entry (thé diskb address) and DHT2 has two. If
during the search a zer6 is found instead of the presented disk address, the
search fails. ’I'he search will aiso féil (after a long time) if the table is
Cfull, It wil.l fai:1 immediately if the presented address is zero.
| a. Fail return if address equals zero.

b. Compute the index by Hashing the disk addressA.A .This amounts to
a call on DHTHSH.

c. Set up pointers into the two- tables. Set the top two bits of
the disk addfess. This will allow the search to succeed |
independent of the top two bits in the DHT1 entry probed.

‘d. Fetch the first entry at the starting address.

e. Fail if the word fetched is zero.

f. Set the top two bits of the word fetched.

g. .Return if the disk address just fetched matches the one preparcd

in c.

9 . ’ . L .
Sce Drum Hash Table discussion in Section 4.3.
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h. Increment the two pointers. If the pointers overflow the tablc,
reset the pointers to the beginning of the table.
i. Incroment the counter of the muber of probes. If it exceeds

the size of the table fail return.

f. Fetch the next word from the table and go to e.

6.3.14 Make DHUT Entry (EDHT)

The objett.of this routine is to make a complete entry into bHT1< It
will fail if an entry with the same disk address is in DHT already. ‘It will
also fail if -the disk address presented is zero.

Va. Faii return if the disk addressAis Zero.

b. Find the pointers into DHT by searching fof the disk addresé
presénted. If the $éarch succeeds we cannot make the entry,
therefore fail return.

c. Copy the three-word entry from scratchpad to the appropriate

places in DHT.

6.3.15 Delete DHT Entry (DDHT)

Given a disk address, this routine will find it and delete it from the
Drum Hash Table. However, it is'hét through yet, for the method of handling
collisions is to scan lincarlyvthrough the table for an empty spot. This
implies more work nceds to be done. Suppose disk addresses a, b, c all produce
thp same address with the hashing algorithm (see Fjg.l6.é). Then they would

‘occupy sequential locations in the table corresponding to the order in which’
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they were entered into the table. Suppose we delete the second entry (Fig. 6.2b).
It is now impossible to find the third entry with the search mechanism
described; the third entry is no longer correctly placed in the table.

It is thercfore necessary to re-enter all entries which occur between the

Fig. 6.2a Three Hash Table Entries

Fig. 6.2b b is Deleted

C

p

Fig. 6.2c Corrccted llash Table if a,b,c lash into same Location
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c

p

Fig. 6.2d Corrected Mash Table if c Hashes into Location it is in

deleted entry and the next free entry (§) (Fig. 6.2c). It is not sufficient
to move them up one slot, for suppose only the first two hashed into the
same address and the third hashed into the address in‘thch it now rcside§
(Fig. 6.2d).
' a. Search for entry by calling DHTSCH. If search fails, fail
return. |
b. Delete entry, set up scan, go to £.
€. Return if entry.deleted.
d. .Copy entry into scratchpad, delete eﬁtry.
e. Reenter entry into DHT.
f. Fetchkthe first word of the next entry in DHT. »
g. Increment the pointers intb DHT. If tﬁe pointers overflow the
table boundaries, reset them.to the beginning of the table and

fetch the first word of entry. Go to c.

6.3.16 Append Entry onto.List (ALL)

This routine appends a node onto a list. It takes as arguments

-117-



- pointers to the lisp headerland the node and the offset of ?hellist pointer
'ih the node. It affects only the pointer fields. The second word of the
list header points to the last node on the list. A pointer to the node to
be appended is placed in the current last node and in the second word of the

list header. The cnd of list mark (777777B) is placed in the new last node.

6.3.17 Stack Entry on List (SEL)

This routine puts the node presented onto the ‘given list.10 Offset must

be given by the)caller. The first entry of the header points to thé~5eginn{hg
of the list. The second entry points to the end. The pointer in the node is
located at the beginhing of the nede ﬁlus fhe offset. If the list is émpty
the node presented becomes the first and last node.
a. Fetch and save the first word of the header. Store the pointer
to the‘node into the first word of the header.
b.  If the first word was the end of list, store a pointer to the node
into the second word of the header.
~ €. Store the pointer'fdund in the first word of the header into the

pointer field of the node.

6.3.18 Remove Entry from List (REL)

The.purpose of this routine is to remove an entry from the list preseﬁtéd.
The 1list strﬁcture haskonly one-way pointers, i.e. only one pointer ﬁer entry.
Therefore this routine also requires a poihter to the entry preceediﬁé the entry
to be removed. If no entry follows the entry given the routine fails. This
allows this routine to be Qery general. Specifically, another enfry point igu

called Remove top entry. If it fails it implies that the list is empty. The

loScc diScussibn of Standard List Structurc in Scction 4.5.
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roﬁtine moves the 1ist pointer from the node to be removed to the preéeeding
node and returns a pointerAto the node removed. Only the pointer fields are
affected.

a. Fetch the pointer node of the node preceeding the node to be
removed. ‘ ,

b. Fail return if it is an end of 1ist mark (777777B).

c. Fetch the pointer word of the node to be removed. If the pointer.
is an end of list mark it is the last node on the list. Therefore
set the second header word with the pointer to the node preceeding
the one to be removed. ‘

d.v Sforé the pointer obtained from the node to be removed into the

pointer field of the preceeding node.

f6.§.19 Save State (SAVST)

This routine is entered with M in a scratchpad register and R@ in M.
It saves the state of all main registers, the holding registers, and all but
éne scratchpad register (the one holding the contents of M). As if'stores
the state it zeros the Bre;kwait Cell. When the state is stored it fetches -
Breakwait until it becomes non-zern. The state is then loadéd. Every |
reglster is restored except the scratchpad register holding M and the effect

of a DGOTO in the instruction prccecd:ng the one where the break occurrcd

(OREG).

6.3.20 Dump TSU Statc (DPTSU) -

This subroutine requircs the address of the place to store the state .
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and‘the TSU #. It stores tﬁe'TSU #, then stores the state. The routine is
thrcé loops, for getting the bosition‘counter requires some extra logic which
is in the routine GETPOS.

a. Stote the TSU #.

b. Setup to get the first 9 registers. This loop slides a bit to the
left once each time through the loop. The low order 16 bits in the
select register are addrésses of registérs in the TSU.

c. Setup to get the position counters in the order #, 1, 2, 3. This
loop uses a counter for the Unit # as required by the GETPOS routine.

d; Finallf setup to get the lgst 3 registers using the sliding bit
technique.

3

6.3.21 Generate Wakeup

This routine is the primary communication with the microscheduler. It
takes-a-pointer to the process table and a data word. The microscheduler
maintains alétack into which these two words may be put. The stack is full
if the stack pointer (USIBTOP) plus 2 has § in the low order five bits.

a. = Set protect lﬂs,
b. 'Fetch USIBTCP and add 2 to it. If the result exceeds the top of
the stack (five low ordér’bits are zero) unprotect 1ﬂ8 and go to a.
c. Store the new value into USIBTOP.
d. Store the pointer to the process table mcrgca with the wakeup
* conmand into the word pointed to by USIBTOP. Storc the data
word into the next word.

c. Unprotect 1pg-
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6.3.22 Send TSU Instruction (STSUI)

The purposc of this subroutine is to do all the work of-scnding a
complete list of TSU insfructions.11 It also returns to the next highest
level on the staék.' Severél arguments are expected to be in the Main and
' Holding registers of the microprocessor. Only the Z register is changed by
this routine. |

a. Send instruction from R1.

b. Send device address from R2.

c. Send page and map address from R3.

d. Send word count from Z (effectively).
e. Send Unique Name word § from M.

f.  Send Unique Name word 1 from Q.

'g. Send Unit number from R1. |

h. Return to next higher level on stack.

6.3.23 Stack Entry on Free List (SETFL)

12

This function keeps track of unused request entries. When the entry is

no longer useful to the AMC, it must be explicitly placed.on the Free Request
Entry List by calling this routine. "It must not be put.on by merely appending
it to FREL. The CFU uses the free féqucsts on this list, so a protect nust be
set before the entry can be appended. Furthermore a count of the number of
entries is maintained by this routine.

a. Protect 2.

" b. Increment NFREL (Mumber of frece requests).

11, . . . . .
Sec discussion of sclect register in Scction 3.2.1.
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c. Stack entry on Free List.

d. Unprotect 2.

6.3.24 Remove Entry from Free List (REFFL)

13 If no

If possiblc,Athis routine returns a pointer to a Free Entry.
entry cXists, a counter (ROFN) is incremented and the routine fail returns.
Free IEntries contain six words. They are kept on a standard circular list

whose header is called fhe Free Request Entry List (FREL).

a, Protect 2.

b. Remove the top entry from Free Request Entry Llst
If no entry exists go to e.

c. Decrement number of free requests (NFREL).
d. Unprotect 2 and return.
e. Increment ROFN.

f. Unprotect 2 and fail return.

6.3.25 Initialization Sequence for AMC

| When th¢ AMC microprocessor executes the instruction at zere, it mgkes _
the choice of saving the state and waiting for a breakpoint, or initiélizing
enough core for the system to get started. The initialization sequence begins
in instruction 1. One cell in memory called the Switch Register in Memorf
G§3H§014 contains a few bits whichvihis routine interprets to obtain the .
following information: | |
a. Whether the AMC is to f£ill core from a device.

b. Whether the AMC‘is to save core.

12, 1 |
! 3Scc d15cuss:on of Request Fntries in Section 4.2.

Sce dcscrxptlon of Crash and System Arcas on Dlsk and Drum 1n Section 3.3.
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C.

The type of device (i.e., drum or disk) on which the system will

be found.

The unit number of the device.
The addresses of the place to put the saved core (i.e., old

system) and the place to get the, new system.

Sixty four thousand words are saved and read into core. There are four

possible sets of addresses on the device selected. Eight devices may be selected

(one from each TSU, either unit § of 1).

Reset both request strobe latches.
Hang until a request strobe is received.

Reset request latch 1.,

If the CHIO is doing thé.lnitialization, go to q.

Set up loop for-drum or disk depending on TSU field in SRMEM.
Set up unit number.

Wait until device has become idle by calling RDST.

Go-to 1 if not supposed to store old system.

Send commands to TSU by calling STSUI. The registers are not
changed by that routine.

Wait for drum to idle by calliﬁgrRDST.

Check for any errors in transfer. If any crfors occurred, go to h.
Update addresses in holding register. In updating the dévice
address, if it is found to be on the last sector (depends on fhe
device), add an appropriate value which will add onc to the band

and zcro the sector field.
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m. Increment a down-counter. If it is not zero, go to h.

n. Compute the address from vhich the system will.be read. This involves
zeroing the sector field and adding one to the band field of the
devicé address.

o. If the instruction sent to the TSU is not a read, go to h;

p. Send request strobe 1 to microscheduler.

q. Wait for request latch 1 to be set.
r. Reset request strobe latch 1 and load state by branching to

LOADST.

6.3.26 Wait Until Device Idle (RDST)

This routine is used to wait until the selected device is idle. It
reads the position counter and keeps réading it until certain conditions'
‘are true.

a. Read position counter zero of selected position counter.
b. Go to a if the position is not valid.
c. Return if all of the following conditions are true:
1) There is no instruction awaiting execution in the
holding registers.
2) Therc is no instruction Being executed in the functional
register. .
3) The position of unit f is in the gap or first third of 222

record (512 word).



6.3.27 Compute Next Scctor on Selected Unit (FSTR)

It is necessary for the AMC to knﬁw the next sector on any unit at any
time. While a transfer is taking place, the holding registers must be loaded
for the next transfer. Since there is more than one unit attached to one TSU
we must be able to dctermine what sector of the desired unit will follow the
sector currently being processed by the functional side of the TSU.

The routine may fail to produce a sector for one of two reasons.. It may
be that there is less than one record time until the swapping of the registers
(256 usec). This would not give the AMC enough time to select the proper

transfer. It may be that the TSU contains an instruction, but is delaying

its execution for a period exceeding one sector time (1 millisec). In this
case we do not wish to load the‘hblding Tregisters since the total situation
may change by the time the instructiéﬁ is executed.
a. Read SP, the position of the selected unit, by calling GETPOS.
See Fig. 6.3a for the format of a position.
b. Read FP, the position of the functional unit, by reading the
functional unit nunber and calling GETPOS.
c. Fail return if the functional unit contains an instruction but is
. delaying execution, i.e.. the registers will not swap at the next
énd of sector. |
d. Fail return if the remaining time before the swapping of-the
registers is less than or cqual to one record. This insures that
we have 250 us to figurc out what to do before the registers swab.

e. Computc the distance to the swapping of the registers. This is
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D=20B- (FP A 17B), since the registers swap at the end of the sector
and FP A 17B gives the position within the current sector. Add D-1
to SP. Now SP tells us where the sclected unit will be just before
the registers swap. We arc interested in the first sector after the
registers swap. We get this by adding one sector (20B) more to SP,
which now contains an address somewhere in the first sector which
will come up after the registers sﬁap, except for

the fact that a comparison of positions for two different units may

be off by 2. To correct for this (conservatively) add 2 to SP if

‘the éelected unit differs from the functional unit.

Now SP points somewhere into the sector we want. We extract the
address of the sector,-discarding irrelevant record and PWR bits,

and take it modulo the size of the unit (24 for drum, 5 for disk).

6.3.28 Get Position of Rotating Device (GETPOS)

This routine will return the valid position register for the TSU and

unit selected. It must compute from the unit number the bit to set in the

Select Word of the TSU.

15 1t does this by shifting a bit appropriately. If

the position returned by the TSU is not valid, the TSU is asked again.

a.
b.

C.

Compute select word
Request TSU to send position counter sclected

Return if position valid, go to b if not.

15 . . ’ e
See dJS;USSlon of Select Register of TSU in Section 3.2.9.
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| 7. MEMORY MANAGER SOFTWARE

This section describes the software portion of the memory manager.

7.1 APU Code - Overview

As shown in the main loop, (Figure 6.1) there are dispatches to the
APU code-at various points. Basically, the APU code routines handle five
categories of tasks: | |

1) éeneral requests

2) Activate requests

3) Cleanups

4) Startups

S) Miscelianeous
General requests and activate requests were described in SectionsA4.1.1
and 4.1.2 reSpectively. Using'the request code, one dispatches via a
trahsfer vector to the specific APU routine that handles that case and then
returns to the main lbop. |

Cleanups and sta%tﬁps were discussed in Section 6.1. ' A cleanup checks.
to see if the TSU properly executed thé last command and handles possible
errors, while a startup prepares and then sgnds commands to the TSU. As
with general and activate requests, there are different cases for startups

and cleanups. The request code fieid of the node is used as an index into

transfer vectors to the correct startup or cleanup routine.

The miscellaneous catcgory includes other things shown in the main loop
such as reading in context blocks, reading in process core working set
pages, and several other things the memory manager does. These are invoked
through a primary (main) transfer vector.

The dispatching structure is shown in Fig. 7.1.
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‘Note:

Primary Transfer
Vector (TV)

General Request

0000000

l

Activate Request

e

Cleanup Request

Startup Request T

W
//////////

shaded areas are miscel-
laneous requests. Desig-
nated slots in the Pri-
mary Request Transfer
Vector point to general,
activate, cleanup, start-
up transfer vectors.

7 /// / / // /A._.\,. foned . General Request TV

(indexed by request

code field of request

, node)

= APU Routine

Activate Request TV

et APU Routine

et e APU Routine

‘-—-,b-
Cleanup Request TV

=S
Startup Réquest TV

——n—-u-———%)

e fre e APU Routine

LR XY

Fig. 7.1 Dispatching Structure
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We have alrcady seen how a process is loaded in the section on

queucs (Section 4.1) but it was from a perspective of queue use. We shall
now use the same sample but view it from a different vantage point, that of
secing how different startups and cleanups are invoked.

The sequence starts when the memory manager has time to read in a
process' context block. It disf)atches» via the prinary transfer vector to
the APU routine that handles context block reads (miscellaneous request).
This APU routine finds out where the context biock is (for example, drum
sector 4), and puts a context block read request on drum sector queue 4.

(If one is not familiar with Section 4, Section 4.1 should be read before»

proceeding.)

Drum Sector
Queue 4

l——a CB Page

1 pe—— Request Code

The request code value '"1'" denotes "eontext block read." This completes the
APU routine task.

Later, while the heads are over drum sector 3, the memory manager does
a startup for drum sector 4, to setup the TSU holding registers prior to
coming to scctor 4, It indexes into the startup transfer vector using
the request code which in this case is 1, Thus in this example the APU
routine corresponding to an index of 1 in the startup transfer vector is

the startup for context block rcad. The command is sent over to the TSU
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(TSU #) for the drum. Also, the request node is put on the cleanup queue

for the TSU. The routine then returns to the main loop.

TSU g
Cleanup Qucue

1 CB Page

1 |e——Request Code

After drum sector 4 has passed, the memory manager responds to the ‘
ATTENTION delivered by the TSU by performing a cleanup. Similar to startup,
it indexes into the cleanup transfer vector using the request code. The
APU routine corresponding to an index of 1 in the cleanup for the context
block read. As part of cleanup, a request node is put on the context
block queue (CBQ). This is a queue of context blocks that have been read in,
but need to be scanned to queue up page reads for the core working sets
of these.context blocks. |

When the memory manager has time to read this CBQ, and upoﬁ finding
the entry for the coﬁtext block just read, it dispatches via the primary
transfer vector to the APU routine that queues up reads for the different
pages belonging to the core working set of the process. (This is a
miscellancous request.) Suppose there were (for simplicity's sake) only
two pages to be read in, on drum séctor 7 and drum sector 15. |

Thus we have:

~130- -



Drum Sector 7 . Drum Sector 15
Queue Queue .
. Page 1 o L Page 2

2 }g— Request Code 2 <= Request Code

Note that the request code in the nodes have a diffefent number from R
context block read, |

| In the same manner in which we did startup and cleanup for context
block read, we do it for these pages at the appropriate time. Thé dif-
ference is that the APU routines‘ dispatched to correspond to indexes of
2 in the startup and cleanup transfer vectors. |
| The reading of the last page (page 2 in this case) of the process
core working set means that the manager has completed rcading in the

process working set, It then notifies the scheduler.

7.2 Major Transfer Vectors

The following are the five major transfer vectors found in the memory manager.
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7.2.1 Primary Transfer Veetor TV Index/Request Code

PUNT . | 0

1> General Request

General RCQUCSt Transfer Vector

Activate Request

Activate Request 2 » Transfer Vector
Read Drum ‘ : » 3
Startup New Page A 4
: Cleanup

Cleanup 5> Transfer Vector
Queue Process Pages » 6 |
Read Context Block ; 7
Copy from Disk Cylinder to Sectors 8

. | Startup
Startup ~ _ 3~ Transfer Vector
Write Page Startup . 10 .

7.2.2 General Request Trans_fef Vector TV Index/Request Code

Remove General Requesf 0

Write Process onto Dram
Remove General Request

Write Process onto Dram

1
2
3
Direct Drum Transfer 4.
Direct Disk Transfer 5

6

Return Page to Drum
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7.2.3 Activate Request Transfer Vector TV Index/Request Code

Reserve Page Request 0
Release Page to Drum
Drum + Disk Transfer
Write Unique Name |
Disk + Drum Transfer
Get f‘ree page

Destroy page

PUNT

PUNT

(T- 2 - B - T 7, I U 7. B o I

Read Page (for diagnostic purposés)
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7.2.4 Clcanup Transfer Vector ' TV Index/Request Code

PUNT - 0
Drum Cleanup for CB read 1
Drum Cleénup for process pages read 2
Drum -+ Disk.transfef (drum cleanup) 3.
Drun Cleanup for direct I/0 ‘ 4
Disk Cleanup for direct I/0 5
Drum Write Cleanup 6
Drum Write Cleanup 7
Drum bleanup for Destroy page 8
New page cleanup . 9
Drun -+ Disk transfer (disk cleanup),

write page ' 10
Drum -+ Disk transfer (disk cleanup),

UN=0 check . 11
Write Unique Name (disk cleanup),

UN check for 0 12
Drum -+ Disk transfer (disk cleanup) 13
Write Unique Name (disk cleanup) 14
Disk Cleanup for destroy page

(UN match check) 15
Disk Cleanup for destroy page |

(no UN match check) 16
Disk -+ Drum Transfer (drum cleanup) 17

Clecanup for read page diagnosfic

Cleanup for disk cylinder scek
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7.2.5 Startup Transfer Vector

PUNT

Context Block Reéd

Process Pages Read

Drum + Disk Transfer (drum)
Direct Drum Transfer
Direct Disk Transfer

PUNT

PUNT

Destroy Page (drum)

PUNT

Drum -+ Disk Transfer (disk)
Check UN

Check UN

Disk -+ Drum Transfer (disk)
Disk Write Unique Name
Check UN

Destroy page (disk)

Disk + Drum Transfer

Read Page
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7.3 The Auxiliary Processing Unit (APU)

The following is a description of the APU part‘of the memory manager.
The microcodéd main loop calls APU coded subroutines to perform the necessary
processing. Conventions are made so that APU routines may call microcoded

subroutines.

An APU instruction has the format

0 1 2 9 23
EiX1tS 0 I W
where:

E = ENVIRONMENT

X = INDEXING

S = Scratchpad - Memory operation

0 = Opcode or scratchpad address
I = Indirection or Load/Store
W = Address
and if
E = P, effective address local
E = 1, effcctive address absolute
S =@, 0 is opcode, I is indirection
S =1, 0 is a scratchpad address,

I detemnines Load/Store,
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Indirection

~ There are two Indirect Address Words (JAW). A local TAW
g 1 2 9 10

23
1| X}|s / I W
An absolute IAW:
1 2 5 23
pIx ﬂ‘///// Long word address LW
Field Pointer =
A field pointer is placed in B whenever a field operation (LDF,STF,
ADF, MGF,ZRF) is to be done. It has the following format:
p 1 5 23

E}X

/l v

E = ENVIRONMENT

X = Indexing
IF E =.,0, W is an absolute address
E =1, W is relative
X =1, Q «W+X mod 218
X =p, Q «W

Resisters

—_—

There are three central registers A, B, X, a 14 bit program counter
P, memory relocation and bounds registers REL and BOUND, and a control

stack CSTK. In addition all scratchpad registers are directly addressable
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using either an RCH-1ike instruction (see below), or directly frdm core
by setting S. |
| A1l of these registers are maintained in scratchpads. Before executing
APU instructions fhe Main loop of the swapper initializes the CSTK to
REL + 100B. It is advisable to avoid changing P, REL, BOUND, and CSTK
with scratchpad instructions. |
Addressing
Addressing is the same in all instructions except for Load and
Store scratchpad. In the single exception there is no indirection.
Indexing is moaulo 218 for all instructions. The effective address is
computed as follo&s:
Let I be an instructioh,
E(I) be the environment bit,
IX(I) the index bit,
IN(I) the indirect bit,
Q the absolute effectiveAaddress,
QL the relative effective address, and
X'the index register. o
T« 1;
Q + I AND 37777B; ‘
LOOP: Q <« (Q + X) AND 777777B IF IX(T) # 8;
QL<«~Q _
Q « Q + REL IF E(T) = §;
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*Indirection
IF IN(T) # p DO;
T « CONIENTS (Q)
(T +.T‘AND'37777777B §Q« T AND 37777B §
GOTO L0OP) IF E(T) # f;
*Absolute Indirection
Q+T;
Q< (Q+ X) AND 777777B IF IX(T) # #;
QL < Q;
ENDF;

Instruction Set

This section describes allfinstructions. The symbols A, B, X, P

stand for registers, O stands for opcode field, Q for the absolutekeffective
.address, QL for the relative effective address. $L indiéates the contents
of L on the right hand éide of a left arrow and $L inditates a store into
location pointed to by L on the left hand side of a left arrow. Certain
fields within QL will be defined when appropriate. They will be used by
saying F(L) which is to be interpreted as Field F (right adjusted) of L.

The notation L

SK
scratchpad address.

is to be interpreted as one symbol whose value is a

Data Transfer:

LDA: A « $Q;
LDB: B « $Q;
LDX: X « $Q;

EAX: X « (X AND NOT 777777B) OR (QL AND 777777B);
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LSK: « (S =1, I = p) $0 « $Q;
BEWARE: LSK MAY OCCUR IN AN IAW

STA:  $Q « A;
SIB: $Q +« B;
STX: $Q <« X;

XMA: T« $Q; $Q«A; A<T;

SSK: (S =1, I=1) §Q <« $0g;
BEWARE: SSK MAY OCCUR IN AN IAW

LDI: A+ QL; _
A< A OR 7774B4 IF (QL AND 209fB) = 0;
Note: allo\;vs loading of constants between

 _2pgPgB and 17777B;
Arithmetic Operations:

ADD: A<« A+ $Q;

AM:  $Q « $Q + A;

SUB: A« A - $Q; ‘

MUL: A+« A * (§Q AND 7777B);
Note: a result >224 is not modulo 224, but-is funny

MIN: $Q « $Q + 1;

MDC: $Q <« $Q - 1;

ISK: SKP(QL) a six bit scratchpad address
$SKB(QLY g + $SKPQLI gy *+ L

DSK:  $SKB(QL)gy <« SSKn(QL)SK' - 1
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Logical:
ETR: A « A AND $Q;
MRG: A <« A OR $Q;
EOR: A « A ECR $Q;
Field Operation:

B contains a field pointer, QL is a field descriptor as follows:

10 15 , 20 33

where:
L: is the left bit (mumbered from ieft to right)
R: is the right bit |
D: is the displacement
The addfess of the field word is computed from B, X, and D:
- FADR <« B;
., FADR « FAIR + REL IF E(B) = 1;
FADR « FADR + X IF IX(B) = 1;
FADR <« FADR AND 777777B;‘
FADR + FADR + D;
(unreasonable as this seems)
The following field opcrations are defined (let FD be the specified
field, i.e., bits L through R of $FADR):
LDF - Load field: 'loads}thc specified ficld right adjusted into A.
All other bits in A arc clearcd.

A+«FD
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Storc field: takes the number of bits specified by the

field descriptor out of the lcast significant
portion of A and stores them into the field.

FD <A

Add to field: adds the contents of A to the .specified field.

A is unchanged.

FD« A+ FD

Merge field: Merges the (R - L + 1) low order bits of A into

Zero field::

STF -
ADF -
MGF -
ZRF -
Conditionals:
SKE: P~<+P
SKNE: P <« P
SKG: P <« P
SKGE: P « P
SKL.: P<«?P
SKLE: P « P
SKA: P <« P
SKNA: P «P
SKB: P<«P
SK\B;. P < P
SKM: P+«P

+ o+ o+ o+
N NN N NN

+

+

+ o+ +

+

the specified field, A is unchanged.

FD « A ORFD

zeroés,the Bits in the field as specified in tihev
R-L+1) low order bits of A,

FD « FD AND NOT A

IF A = $Q;
IF A # $Q;
IF A > $Q;
IF A >= $Q;

IF A < $Q;
IF A <= $Q;

IF A AND $Q = 8;
IF A AND $Q # §;
IF B AND $Q = §;
IF B AND $Q # §;
IF A AND B = $Q AND B;
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SKUM: P <P+ 2 IFAAD B # $Q AND B;

SKR:  $Q « $Q -1;
P«P+2IF$Q<f;

SKI: $Q« $Q + 1;
P«P+2IF $Q<f;

2 IF $Q < g;

2 IF $Q >=f;

SKEL: P « P + 2 IF ($Q OR 77B6) = -1

+

SKN: P <P
SKP: P<«P

+

+

SNEL: P « P + 2 IF (§Q OR 77B6) # -1;
BRQ: CALL‘RZPNT IF Request 2 set;
P « QL IF Request 1 set;
BRX: X<«X+1;P<«QLIFX<f;
BRPX: X« X+ 1; P« QL IF X >= §;
Unconditional branches:
BRU: P <« QL;
BRM: $Q <« P; P« Q+1;
BRR: P « $QL + 1 mod 214
BSR: P <« $QL + 2 mod 214
BSL: $CSTK « P; CSTK + CSTK + 1; P « QL;
BSX: X + P; BSL;
BVR: CSIK « CSTIK -1;
P « $CSTK + QL mod 214;
CALL; The intent of this instruction is .to call microcoded

subroutines. These may have a fail return, in which case no

skip indicates failure and skip indicates success. The .
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register loaded with the APU fail address is given by bits
19-12 of QL as follows:

$ - No fail return (no skip from subroutine)
i - Fail return loaded already

2 - 7 « fail return |

3-Q ;-fail return

4 - M « fail return

S - RS « fail return

6 - FAP « fail return

7.- not defined
The state of M, Q, Z and Rf-RS is maintained by this insﬁruction
in scratchpad, The state is loaded from scratchpad before
executing the subroutine aﬁd returned to scratchpad when the
subroutine has concluded. The correspondence 15 given by the

following table:

M = A(SKS) R1 = SK9

Q= B(SK6) R2 = SKig
Z = X(SK7) . R3 = SKil

Rf = SK8 R4 = SKI2

RS = SK13

When the state is loaded, the microcoded subroutine at QL

mod 211 is executed.
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SCALL: (SSTKP)SK < (N\OT P) OR 7774B4;
STKP <« STRKP -1, |
CALL;
GOTO: OREG « QL
1/0 To Devices on E Bus:
PIN: 2 +~ A, Alert;
A « E1, PINSC;
POT: 2 « A, Alert;
Z + B, POTSC;
Cycle:
‘ IOY: A<ALLY _QL;
Locafe Lgéding one:
L10: Left cycles the contents of A until
1) a one(1) appears in bit position.zero(ﬁ) or
2) the shift count goes to zero.
"I‘he shift count is QL.
The index register is set to the shift count
minus the bit position (the sign bit is bit position #).
Special functions:
S'I'ROBE:QL, Strobe;
UNPRO: QL; UNPRO;
~PRO:  QL, PRO, RETURN IF PROTECT SUCCEEDS;
QL, UNPRO, GOTO *-1;
‘CLNW“? CLEARMAP;
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Scratchpad to Scratchpad Opcraiions
Let SKP(QL) be one addresg, and
' SK1(QL) be another |
CSS:  $SKAQL)gy < $SKL(QL) g3
CLS:  $SKE(QL)g + #;
CSSI: $SKA(QL)gy « $SK1(QL)gx +1;
CSSD:  $SKA(QL) ¢ + $SK1(QL) sK -1;
CSA: A <« $SKﬂ(QL)SK
CSB: B « $SKAQL)gy
CSX: X < $SKA(QL) gy
CAS:  $SKB(QL)gy « A;
CBS:  $SKAQLgy * B;
CXS:  $SKPQLIgy + X;

Register to Register Operations:

CLA: A<« f;
CLB: B <« §;
CLX: X« §;

CLAB: A <« p; B « f;
CLEAR: A « ; B « f; X « §;
CAB: B <« A;

CBA: A « B;

XAB: T <« B; B+«A; A«T;
CBX: X « B;

CXB: B« X;

NB: T+«B;B+«X; X«T;
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A+ X;
X +A;
T«A A«X; X+T;
A+;A;
X <« -X;
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8. COMUNICATIONS AND ERROR HANDLING

This section discusses the communications and the error handling aspects

of the memory manager.

8.1 Communications - The Memory Manager and the "Outside" World

Up to this point, we have concentrated primarily on the memory manager
and emphasized its ability to perfénn mmerous tasks. We turn now to the
conventions that exist between it and other components of the operating
system.

Figure 8,1 illustrates the communications of the memory manager.
Notice the use bflqueues, tables, and strobes. The strote signals turn
on latches (flagS) in a processor. It is in this manner that the memory
manager is notified that there is an activate or general request for it
to service. Notice that it can strobe other processors as well.
| The queues and tables’are used by several processors, often to pass
information between each other, There is a hardware ptocessor interlock
system for these data structures. When a processor is modifying one of
tﬁese structures, it turns on the PROTECT associated with that structure.
Other processors query the PROTECT and avoid handling the structure on

' finding the PROTECT set. Since PROTECTS are implemented in hardware, there
is no race condition as occurs in sctting software flags.

Different protects are assigned (by convention) to different structures.
Thus a simple, convenient, but nonethcless powerful means of communication

exists betwcen the memory manager and other prbcessors. Tables that are
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handled include the QIT (core hash table) which has entries for every pége
in core. Both the AMC and the CPU handle CHT entries. The PRT (process
table) which contains information relevant to eéch process in the system,
is similarly protected. Various queues are used by processors to pass
assigmments to each'other; One such queue is the general request queue
into which other processors put nodes requesting work by the Aﬂc; Such
queues also are covercd by the protection mechanis&. )
The communications between the memory manager (AMC) and controller (AMIU)
has already been discussed at length in the section on hardware. (Section 3.1,
3.2.9). Actually the controller (AMIU) is to be considered an '"insider" withv
respect to its cioée relationship to thé meméry manager.
Thus, the commmication of the AMC is conceptually really quife

simple yet affords the necessary communications capability of a multiprocessing

environment.

8.2 Exrror Handling

. 8.2.1 General Error Philosophy

' Insofar as possible, hard read errors are left to be handled by the
process vwhich requested the data. Wfite errors are not considercd to be
the responsibility of the process which ihitiated the write, and are 
handled more-or-less automatically by the MMS. It is assumed that hard
errors, i.c. those that camnot be corrected'by a rcasonable number of

Tetries, are infrequent and that clumsy and expcnsivé ways of handling them
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are therefore acceptable, although not actively sought after. The data is
therefore discarded in this case. It may be retrieved using a direct

1/0 request.

8.2.2 Types of Error's_

By 'error' we mean some fault in the process of reading or writing a
page which is detected by the 'transfe'r hardware, oi"by code in the MS
which is very close to the hardware. We distinguish the following typés:

1) ON errors; which occur when the unique name recorded on drum or
disk does not agree with the one provided by the transfer request. All
transfers read the UN and check it before tré.nsferr‘ing any data with the
exception of drum writes. The c‘heck is for P rather than equality in the
czése of a disk write when the unique name is written. A nommal disk
write does not write the unique name.
| Since the N is not included in the checksum generated by the hardware,
~checksum errors have nothing to do with UN errors, and a UN error therefore -
-always takes precedence. _ |

. 2) Rate errors, (DATA TRANSFER LATE) occur when the. memory
cannot provide or accept data fast egough to keep up with the rotating
device. A transfer which results in a rate error is always retried.

3) Memory system parity errors, other than parity on the data in core,
are treated like rate errors.

4) A checksum error on data from the rotating device is called a soft
read error. The transfer is retried until some mumber of soft errors have

occurred. It then becomes a hard rcad error,
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‘Only UN errors and hard read errors will be discussed in the Test

-of this section.

8.2.3 Errors During Smﬁping

These errors cannot’ oécur during a write.

Read errors differ depending on whether it is the context block or
a data page which is involved.

A W or hard error on CB read is passed on to a special process

which is responsible for such things, since the process is obviously unable

to help itself,

8.2.4 Disk Read Errors

UN and hard recad errors are handled in exactly the same way: they are’
reported to the process which requested the transfer (with a bit indicating
which kind of error occurred), No DHT entry is made and any data read is

discarded.

8. 2.5 Disk Write Errors

There is no such thing as a soft write error.
A UN error on writing is reportéd to a special process, never to the
process which initiated it. These erroré are of three varieties:
1) UN on disk # UN in request, for simple write request
2) UN on disk # 0, for write request with WUN
" 3) UN on disk # UN in request, for destroy request
_The DT entry, if any, is left untouched. ﬂlése crrors are always

M failures, since the UN in the rcquest is always the one on the drum.
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8.2.6 Drum Errors for Non-Swapping Transfers

Drum errors can occur only for reads. There is only one kind of
non-swapping read: a dnum to disk transfer request. A hard read error

is reported to the special process. This is disastrous, but it is rather

aunclear vhat to do.
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9. CONCLUDING REMARKS

‘The preceding scctions detailed the implementation of the memory
mzihager. The major arcas observed were hardware, microcode, software,
system structures, data structures, and .comnmnications. Each had its role
in fulfilling the goals as stated in the strategy.

The memory management system is conceptually.quité straightforwvard.

The hardware provides more information and éapabilities than generally found.
The microcode provides speed and efficiency. The APU codé (software) is
partitioned into discrete ‘functions accessed by transfer vectors. The system
structures and data structures are simple and few in type, while communications
are quite clear. However, this organization is not typically found in systems,
especially the incorporétion of _memofy management into a separate micro-
coded processor. Thus its very ;‘tmiqueness" may make it appear complex.

The system is currently ming quite well. Unfortunately, we do
not have quite as many drums and disks as were originally plarned. We have
two drums and two disks, which allows less swapping.

The co;xcept of memory management being assigned to a separate proce_s's'or
has been shown to be viable. A fuller understanding of what constitutes
memory management functions has resulted. Some of the shortcomings of the
memory manager resulted from not having a precedent to follow in designing
the memory management functions.

It is doubted that the present memory manager would be able to fully:
handle all the swapping that was intended. Having to read context blocks
and queuc up a lot' of pages causes hicc:ups' in Athe swapﬁing. Activates

have a similar effect. Possible alternatives are to make the basic memory
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manager concerncd with only‘startups and cleanups or put the swapper in
yet another processor. Also, a lot more APU code could be put into
microcode,

A problem with the microcode was that it was read-only, rather than
read/write. It is difficult to modify and one tends to avoid changihg it
very much. In fixing bugs, it would have‘been ten-fold better to have
writable microcode.

Debugging was enhanced with the use of a breakpoint box that could
breakpoint in the microcode. The APU code could also be breakpointed. A
system DDT allowed us to monitor various tables as well as look at the data
structures at will, |

| At one point there was major difficulty when queues were being
clobbered. Since there were only forward pointers, it was hard to recon-
Struct the situation. The use of backward pointers as well would certainly
enhance the integrity of thé queue structures. (It was later found that
the queues were being clobbered by a hardware bug). Checks to ensure the
iﬁtegrity of the queue could thus be inserted. |

The statistics providca are very few. But what little there are
prove very useful. By varying system load, one caﬁ tell how often the AMC
skips swaﬁs}because there is not eﬁough time to set up (startup). A
larger emphasis on statistics would provide much improved measurement
capability.

The prescent implenentation of the memory manager is not capéble of
supporting 500 users. But it has gonc a long way towards that goal. Most

important,” it confirms that that goal is attainable. The use of a powerful
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memory management processor (and probably a swapping processor) in a
multiprocessor organization holds great promise in achieving a large-

scale utility supporting 500 users.
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Appendix I ABBREVIATIONS FOR MODEL I MEMORY MANAGEMENT SYSTEM

AC .auxiliary memory controller

AMTU auxiliary mémory transfer unit

BLK proéess status bit: process blocked
cB context block

CBC proéess status bit: context block read is queued
CHT core hash table

CHWS core working set

DEST this DHT entry is being destroyed

BT drum hash table ‘

DIRTY dirty bit in CHT

DKT drum to disk transfer _

m&w‘ this DHT entry is being written on disk
DSQ drum secior queue

DWIP drum write in progress bit in CHT

DWS drum working set

EC error count in AMC node

]?CD error code for disk transfers, in PﬁT
EOS end of sector

ERR | error field in PMT

FCL free core list
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F?

HNE

IB

LY

"KVALID
LDD
MIB
MS
MSQ
OKL
opP

M
PMT

PP

PRT

file page

functional registers in TSU

general request qucuc

header not equal flag

holding registers in TSU

index block

disk address

disk cylinder queue

disk to drum transfer

dﬁsk sector queue

disk copy of this I¥T entry is valid
disk write bit in CHT |

process status bit: Proceés loaded
multiple index block

memory management system

process status bit: on pscheduler queues
OK to load TSU registers

operation code for TSU instruction

position counter in TSU

' physical.map of a CPU

process memory table
private page
process status bit: page reads are qucucd

process table
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PWS position within sector

R rotation time for drum or disk in ms

RIP read in progress bit in CHT

RN real name

RUN . process status bit: process running

SC scheduled c¢ount in CHT

SF scheduled flag in PMT

SWAPQ - swapping request queue

SWQ process status bit: read request is on S]\LAPQ.
TSU transfer sub-unit |

TUIM transfer unit interface multiplexer‘

UC use count

UN imique name

UNAVL unavailable bit in CHT

UNID object identification field of unique name
UNTAG tag field of unique name

UNUSER user field of unique name |

WL write list

WUN this DHT entry needs to have its UN written on disk
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Appendix II MICROPROCESSOR GENERAL THEORY OF OPERATION

A. Introduction

‘The BCC Microprocessor is a synchronous, 24-bit digital computer.
The flow of data between the functional elanents of the computer is con-
trolled by terms génerated by the microprocessor 90-bit instruction word.
Tabl‘e Al, below, is a listing of the bits in Athe instruction word and a
definition of their function.

1. Data Flow. (See Fig. 1)

The X-bus and the Y-bus are the two principal intra-processorj
data transfer busses. Data transfer between the microprocessor and ancillary
deﬁces is accomplished by the El-bus and thé E2-bus for a parallel-inﬁut
(pin), and by the Z-bu§ for a parallel;output transfer (pot). Data .
ti‘ansfer between the microprocessor and. the core memory is accbmplished
by the Ml-bus and the M2-bus for input data, and by the M-busA for output
data. The data busses are 24-parallel transfer lines gated by terms

derived from the microprocessor instruction word.

.2.A Read-Only Memorv (ROM). (See Fig. 2)
| The ROM is a diode memory ;ontaining the 90-bit instruction
words. The ROM is addressed by the O register’and outputs the selet:ﬁéd
90-bit :'m-struction word to the I register. |
3. 1 Reg ister. |
The I register 4s a 90-bit register and contains the current

microprocessor instruction being executed. The I register is normally

loaded at the end of each machine cycle, from the ROM.
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4. 0 Recister.

| The 0 rcgister is a 10-bit régister WHiéh holds the address of
the instruction word to be executed in the next éycle. It can be loaded
from the B-field of the instruction wofd, the least significant 10 bij:s
of the X-bus; the incremented contents of thé 0 recgister; or the 0S

-wegister.
5. OS Register.

The 0S register is a 10-bit register used to save the return
~address for subroutine calls. The contents of the 0S register can be
transferred to the Y-bus. |

6. M, Q, and Z Registers.

Y

The M, Q, and Z régisteré are 24-bity kregisters, and are loaded
.from the X-bus or the Y-bus. The M I‘egistefis also loaded, independently,
from the local or central memory under control of the central memory inter-
face. The buffered outpﬁts of the Z register are used for parallel-output-
mmfers (pot) to ancilliary devices via buffers on the I/0 interface
-card. Two boolean (bool) boxes associiéted with the M, Q, and Z registers
provide inputs to the adder/cycler. The output of the left bool box is
.aﬁy éne of the sixtéen 16gica1 ﬁﬁc;iéﬂs -oi.? M and Q; .thé;.outpﬁt_ of .fhé
Tight bool box is any one of the sixteen logical functions of Z and Q.
The logical functions to be perfonmed are specificd by ;che BR and BL fields

of instruction word. Sce Table A4 for details.
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7. Holding Registers.

Th§ holding registers, RP thru R6, are 24-bit registers which
are loaded from the X-bus or the Y-bus. The output of the holding register
| can be incremented, and is gated by the‘instruction word to the Y-bus.
8. 'Scratchpad.
The scratchbad.is a 24-bit by 64-word IC memory, lcaded from the
X-bus, and read into the Y-bus and addresse& either by a field in the -

-dnstruction word or by the least significant six bits of the Z register.

9. Adder/Cycler.

The adder portion of the addef/tfciér is a 24-bit full-adder wifh
an anticipated carry. 'The adder sums the”output of the left and right
bool boxes. The resultant sﬁm_is transferred to the X-bus. A low-order-
carry input.to the adder may be generafedbdirectly by a bit in the N
.instruction word. The cycler portion éf thé adder/cyéler is controlled
by the instruction word or by the Z registér, ana left cycles the output
of the left bool box to the X-bus. - n |

10. Typical Instruction Cycle.

Every instruction in the microprocessof is a conditional branch.
“The MCONT field (2 bits) of the insfructionkword specifies the location of
the branch address as cither the Branch Address field of the instruction,
the X-bus, or the OS register. The MC field of the instruction word
specifies one of 64 conditions which, if Satisfied, will cause a branch to
-occur. If the branch conditidn is not satisfied, rhe‘contents of the

O register (present address incremented) are used as the address  of
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the next instruction word; and at the end of fhe machine cycle, the

next instruction is fetched from the ROM and the O register is incremented.
When the br.anch‘condition is satisfied, the O fegister is not incremented
at the end of the machine cycle; the régister clocks are inhibited. The
cycle time of a successful conditional branch is, therefore, extended in
the sense that the normal ovcrlap of instruction execution with instruction
fetching is abrogated. A success causes the O register to be loaded from
the source specified by the MCONT field of the instruction word. During
the extended interval, the O register fetches the word in the brahch desti~

nation address.

B. Microprocessor Instruction

A microprocessor instruction may require one, two, or three machine
cycles to be executed. The con;crol logic contains two flip-flops, XXB and
XXC, which comprise the state counter. The state counter determines from
VCY, DGO, and BRANCH in tﬁe instruction whether an instruction will take
one, two, or three machine cycles. The three possiblé states are state A
(XXB'-XXC'), state B (XXB-XXC'), and state C (XXB' XXC). The length of
time required to complete an instruction depends on the  type of

- instruction.

1. Unsuccessful Branch Instructions.

These instructions do not branch and do not have the VCY bit in
the instruction set. Execution of the instruction occurs in state A and
requires only one machine cycle.

2. Stretched Unsuccessful Pranch Instructions.

These instructions do not branch and have the VCY bit in the
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“jnstruction set. Execution of the instruction oécuré at the end of state
B and, therefbré, Tequires two'macﬁinc cycles. State A is a waiting period
that allows signals to propogate through long paths such as scratchpad,
adder, and tests of X.

3. Successful Branches.

These are instructions whefé the branch condition is satisfied.
They require two machine cycles and, therefore, use both state A and state Bf
Register loading is done at the»end éf stéte B, Bﬁt the O register is.
‘loaded with the branch destination address at the end of state A. At the
end of state B, the O register is loaded again, this time with the branch
desiination address plus one. Simultaneously, the I register is loaded
with the instruction contained at the branch address.

4, Stretched Successful Branch Instructions.

These are instructions for which the branch condition is satis-
fied, and the VCY bit in the instruction ié set. These'in;tructions use
three machine cycleé and, therefore, require states A, B, and C. This type
of instruction is used when the branch address orAcbnditipn requires the
time to be generated. loading of any register specified in the instruction
occurs at the end of state C. R

5. Subroutine Calls.

A subroutine call stores the contents of the O register (fhé
address of the instruction being executed plus 1) in the OS register, and
loads the O register with the subroutine address. This instruction
requires two machine cycles, statc A and state B{ and must, thcrcfore, have

the VCY bit set in the instruction,
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6. Deferred Branch Instruction.

Deferred Branch instrﬁctions cause the instruction after the
deferred branch instruction (current address plus 1) to be executed before
t'he branch occurs. In order to exccute a dgferred branch, the DGO bit in
the instruction is set. This instruction uses state A only and requires
one machine cycle. If the VCY is set in the instruction, an additional
machine cycle will be avai_lab.le to _prcpare the branch condition or
address, and the instruction will use state A and state B. In a deferred”
branch, the O register is loaded from the B-field of the instruction, the
least significant ten bits of the X-bus,vor the OS register at the end of

state A if VCY-is set.
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Table Al. 90-bit Microinstruction Word

Signal

Position

Clock

Function

MCP-MC5

MCONTf, 1

B, Bl, B2
B3, B4, B5
B6, B7, B8
B9 .

0-5

6,7

8,9,10

11,12,13

14,15,16
17

K2

X3

K3

Branch Condition field (6 bits).
(Sec Table A2).
Branch control field (2 bits):

p

branch conditionally to the-
address specified by the con-

tents of BP thru B9.

N
i}

branch conditionally to the

address specified by‘the con-

tents of Bf thru B9. Store
the contents of the 0 Register

(return address) in the OS

Register.

2 = branch conditionally to the
address specified by the con-
tents of the OS Register.

3 = branch conditionally to the

address specified by thelcon—

tents of the X-bus ten 1sb.

- Branch address field (10-bits).
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90-bit Microinstruction Word, (cont'd)

Table Al.
Signal  Position Clock Function

cg, C1, C2 18,19,20 K3 Constant Field (24-bits).

c3, C4, CS 21,22,23

ce6, C7, C8 24,25,26

c9, C10, 27,28,29

C11, Ciz, 30,31,32

c13, cl4, | 33,34,35

C15, C16, 36,37,38

C17, C18, 39,40,41

C19, C20, -

-C21, C22,

C23

IHR 42 K2 Increment holding registér.

TCX 43 K3 Transfer the contents of C-field
to the X-bus.

TCY 44 K3 Transfer the contents of C-field
to Y-bus. |

TSPY 45 X3 Transfer the contents of the
selected scratchpad address to
the Y-l?us.

THY 46 K3 Transfer the contents of the

holding register to the Y-bus.
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Table Al. 90-bit Microinstruction Word. (cont'd)

Signal .| - Position Clock Function

™ 47 K3 Transfer the data in the X-bus to
the holding register,
YW a8 K3 Transfer the data in the Y-bus to

the holding register,

TAX 49 K3 Transfer adder output to the
X-bus. '
1.0C 50 K2 . Low order carry to adder.
SSPﬁ:S 51-56 K2 Select the contents of scratchpad
-address ﬂ-77(8). N
- TOSY 57 K3 Transfer the contents of the 0S

register to Y-bus (bits 14-23).

IR . S8 K3 Load holding register Rf.

LSPX 59 K3 Load the selected scratchpad

address from the X-bus.

MS$-MSS. 60-65 K2 Special functions field.

| (See Table A3.)

RRNg-2 66-68 K2 Holding register select read field
(enables selecfed holding register,

‘ RA thru RG, output),

LRNg-2 69-71 K3 Holdiﬁg register select load field

(clocks selected holding register,

R1 thru R6, input).
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Table Al. 90-bit Microinstruction Word. (cont'd)
Signal Position Clock Function

IMX 72 K3 ‘Loads the M registef from the
X-bus.

1MY 73 X3 | Loads the M register from the
Y-bus.

1QX 74 K3 Loads the Q register from the
X-bus,

QY 75 X3 Loads the Q register from the
‘Y-bus.

LZX 76 Kg . Loads the Z register from the
X-bus. |

LZY 77 X3 Loads the Z register from the
Y-bus.

BL#-BL3 78-81 K2 Left bool box control field
(See Table A4).

BRA-BR3 82-85 K2 Right bool box control field
(See Table A4).

veYy'! 86 K3 State counter set-term.

DGO 87 K3 State counter set-term,

TELY &8 K3 Transfer data from the E-1 Bus to
the Y-bus.

TE2Y 89 K3 Trénsfer data from the E-2 bus to
the'Y-bus;

-171-




Table A2. Branch Conditions

MCA-MCS Branch Conditions
_ ﬂb | Never branch

[} Always branch

p2 X=p

p3 X79

pa X<

g5 X>8

g6 - X>p

#7 Y>§

1p Y<p

11 Rp<p

12 Rp>p

13 X<p

14 X'~777777B=9, (X(6)-X(23)=777777B)
15 X'~777777B#p, (X(6)-X(23)#777777B)
16 2>p |
17 Z<p

Zﬂ Always Branch

21 Y~7#p, (Y(23)Y(22)+Y(21)=1

22 BL=p

23 BL7p

24 ] Y(23)=p

25 Y(23)#8
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_Table A2, - Branch Conditions (cont'd)

MCP-MCS Branch Conditions
26 Attention latch 1=ﬂ&
27 Request- Strobe .latch 1 = @ and Request
s | provecesr 0!
31 Request Strobe latch 2 = §
32 Special flag A=f
33 Special flag A9
34 Attention latch 2=j5A
35 -Attention latch Z’>=,(?)A
36 Attention latch l#ﬁ&

- 37 Not decoded
48 Undefined
4 Undefined
42 Local memory parity er-ror=1A
43 Undefined o
44 Central memory parity error=1A
45 Breakpoint#g |
677 | A

Z]L Resets latch.
& 46 thru 77 not decoded.
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Special Functions

Each microprocessor has several special functions, principally
concerned with I/0. These functions are controlled by the MSP-MS4
field of the microinstruction, Some have branch conditions associated with
them vhich may be tested with the MCP-MC4 field of the instruction.
POT/PIN

The POT/PIN System allows theAmicroprocessor to communicate with
external devices. When a microprocessor wishes to transfer data to an
‘external register, it puts the address of the external register to be
loaded (hardware defined) into the Z Register and sends‘an.Alert'strobe to
all external devices. The external device takes the address from the
Z bus, and uses it to set up a éath from the Z bus to the specified
~ register. The microprocessor will then load Z with the data to be sent,
and send a ‘POT; strobe. The external device will usé this POT signal to
Joad the selected reéister from Z. When an external device wishes to send
data to a microprocessor, it sends an 'ATTENTION' signal to the micro- .
pfocessor. This signal is létched in the microprocessor and may be ﬁested
by a branch condition. The'microprocessor can then read a register in the
external device by sending an 'ALERT' to the device. The device will set
up a path bétween the selécted register and the E bus. The microprocessor
will then transfer the E bus to the Y bus, use the data, and send a 'PIN"
strobe signifying that it has read the data.

Request Strobe

‘Each microprocessor has one latch which can be set by the other micro-

processors in the system. This latch may be tested by a branch condition.
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A unit can also selectively'éct the latches in all the other micro-
processors by gating the contents of the X bus to the request strobe lines.
X will contain an 8 bit mask which will determine which of the other
microprocessors are to be strobed, It is legal for a microprocessor to

strobe itself,
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Table A3, Spccial Functions

MSp-MSS Function
o No activity
gl LcYl
g2 LCY2
g3 LCY3
g4 LCY4
g5 1LCY8
p6 LCY12
p7 LCY16
19 LCY2p
11 LCL Z (CCFZA)
12 LCH Z (CCFZB)
13 SKZ (SPFZ)
14 ALERT
15 POT -
16 PIN
17 Request Strobe #1
2p Unprotect
21 Unusable
22 LPF o
23 Reset Request Strobe Latch #1A
24 Reset Central Memory RequestA
' 25 Request Protect
26 Reset T.U.
3p Set special flag A
31 Reset special flat A
32 Reset Request Strobe Latch #2
33 Request Strobe #2 |
34 Undefined
4p Relcas
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Table A3. Spccial Functions (cont'd)

MSg-MS5 Function
41 Prestore&
42 Stor
43 Store § Hold&
44 Fetch
45 Fetch § Hold&
47 Prefetch
6P Set Bank B
61- Set Bank A
62 Clear all CPU Maps
64 Fetch
65 Izg:ch.& HoldA

A Occurs at end of instruction

A Local and Central Memory

& Memory Reference

/A\ ODDWORD FETCH

/A Sspecial functions 27, 35, 36, 37
77 are not decoded ' ‘
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Bool Box Functions

The bool boxes generate the 16 possible functions.of 2 variables
iJ:l response to their control fields. BLP-BL3 controls the left bool box
(functions of M and Q), BR#-BR3 controls the right bool box (functions of
Z and Q). The functions are:

BLP-BL3 or BR-BR3 Left Bool . Right Bool

Box Output ‘ Box Output
0 MQ z"-Q
1 M=Q Z=Q
2 Q Q
3 MQ Z+Q
4 M Z
5 Mq Q.
6 ©MQ 2+Q
7 1 1
10 p [/
11 MQ ZQ
12 M«Q Z.Q
13 M zZ
14 MQ Z.Q
15 3 q
16 M(EOR)Q Z(EOR)Q
17 MQ ZQ
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Table A4, Bool Box Control

BLA-BLS | 5o, Conomn
Jif] M-Q
1 M=Q
g2 Q
$3 MQ
P4 M
g5 - M+Q
p6 MQ
#7 1
19 g
1 MQ
12 M-Q
13 M |
14 MQ
15 Q
16 M(EOR)Q
17 Wq
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o3 | B0
[y Z.Q
g Z=Q

- P2 Q
g3 Z+Q
p4 y/

5 Z+Q
$6 Z+Q
#7 1
1 g
11 ZQ
12 Z+Q
13 Z
14 2-Q
15 q
16 Z(EOR)Q
17 Z+Q




Appendix IIT AMC Startup

There is a convenient facility for starting up the AMC. Instead of
loading from paper tape or magnetic fapé, the AMC can be initialized with
information kept on reserved arcas on the drum and disk. This startup
procedure is controlled by the use of a Switch Register. It is one,&ord
which is located at-5 in absolute memory. It contains fields which give
the following information (sce Fig. AS):

a. A or CHIO initialization.

b. Store memory ento crash area.

c. TSU number.

d. Choice of 2 devices attached to TSU.

e. Two bits which are interpréted as described below to give the

band address on the device.

213 4 6 8
2115 D | TSu
c|s |7 [pARa| #2

Figure AS. AMC Startup Fields on Switch Registers

There are two algorithms for computing the starting address for the crash
area. This one address then determines both the crash and systém areas.
One of the algorithms pertains to the drum and one pertains to the disk.

The critical thing is that the two devices have a different number of sectors
on onc band. It takes two bands on the drum to store the system (32 scctors)
and two more to keep the virgin system.' On the disk it will take 6 bands for

the crash arca and 6 for the systen all'oﬁ cylinder (track) zecro:

-180-



7.

 BIBLIOGRAPHY

Denhing, P.J., "The Working Set Model for Program Bechavior,' Comm. of
the ACM, Vol. 11, No. 5, 1968.

“BCC Microprocessor Manual'', BCC Corporation, 1970.

Freeman, Jack, "Process Memory System,' Manual, Internal Documentation,

- BCC Corporation, 1970.

Lampson, B.W., 'Memory Management Sysfem," Specifications, Internal
Documentation, ECC Corporation, 1970.

""Specifications for a High-Performance Auxiliary Memory‘ System," -
BCC Corporation, 1969. '

Van Tuyl, R.R., "AMC Phase 1 Notes,' Working Papers, Internal

Documentation, BCC Corporation, 1970.

Van Tuyl, R.R., "An Algorithm for Swapping Data from Drum to Core,'
Master's Thesis, University of California, Berkeley. 4

-181-



	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181

