BCC 500
CPU REFERENCE MANUAL

Chuck Wall

Jack Freeman

THE ALOHA SYSTEM
University of Hawaii

Document No. BCC/M-1
December 31, 1973

Contract NAS2-6700
Department of Defense
Advanced Regearch Projects Agency
ARPA COrdexr No. 1956

ABSTRACT

This document proVides a complete description of the
BCC-500 CPU from a'machige language programming point of view.
It is expected that most programming will be at a level well
above'machine language, since the Systems Programming Language
(SPL) is completely adequate for most of the systems develop-
ment. This document represente an updated, edited and revised
version of two working documents originally written by Butler
Lampson and Charles Simonyi. This manual reflects the changes

made to the CPU at the University of Hawaii.

ADDRESS SPACE AND MAP

TABLE OF CONTENTS

INTRODUCTION e
GENERAL CHARACTERISTICS AND STATE .
ADDRESSING FROM INSTRUCTIONS
INDIRECT ADDRESSING «.vevvvnnnnnrnennn..
USE OF ADDRESSES BY INSTRUCTIONS
FUNCTION CALLS . .vvnssernsnnsnnennnn.,
PROGRAMMED OPERATORS . .vsun......
SYSTEM CALLSeovnn....
TRAPS . vvnvevnnnnennns
CPU INTERRUPTABILITY
ORDINARY INSTRUCTIONSnwnononnn....
FLOATING POINT titeeeeeeenneennennnnnnss
APPENDIX CONTENTS ©.vvunevnnennnnn..

DEFINITION OF INSTRUCTION CODES

DEFINITION OF OPR ADDRESSES +iveeeeveenn

SUMMARY OF ADDRESSING tvueeeeenonnsenen
SUMMARY OF INSTRUCTION ADDRESSING
FIXED TRAPS ittt iternnernenoneoanancons
RING-DEPENDENT TRAPS +.uivveon.. cececece
RING-DEPENDENT TRAP If: BLLERR +.ev...
SUMMARY OF IMPCRTANT CORE ADDRESS
SPL PKOGRAM TO DEFINE BLL &iveveeecennn
WORD FORMATS tiiteeeononennnennnonennes
SOME FIELDS IN OCTAL FORM ceeeeen
CHT HASHING ALGORTTHM ' vueeeenn .

16
34
45

47

63
64
65
70
92

102

103

104
105

- 106

108
109
110
111
113
118
127
128

1. Introduction

This is a réference manual for the BCC 508 central~processorb
unit (CPU). It is intended to be a complete and self-contained
- description of the charactéristics of the processor from the
point 6f view of a machine 1anguage}prdgrammer (although it is
hoped that few programmers will ever have occasion to descend to

machine language).

Two considerétions have dominated the design of the CPU. They
are stated here in the hope that they will make clearer the
raticnale for some of the machine's charactefistics.

1) The CPU will be implemented on a somewhat modified version
of a BCC microprocessor. This implied that peculiar instruc-
tion and addressing sequencing can be used freely.

2) The CPU will be programmed almost entirely in 'SPL or FORTRAN.
It is therefore essential that the common constructs of these
languages have efficienE hardware counterparts. Most notable
among them are array referencing, function calls and retﬁrns,

part word field accessing and string processing.

2. General Characteristics and State

The CPU is a 24-bit,bword oriented; two's complement machine.
It has 64 instructions and a vafiety of addreséing modes. Bits
are numbered g to 23 wiﬁh bif g on the left (most significant)
end of the word. Both'single (48-bit) and double (96-bit) pre-

cision floating point arithmetic are implemented in hardware.

A process, whiéh maf be defined as a progfam in its execution
environment, is called an active. process if it is running on
the CPU. All the information necessary to define a piocess is
contained in a single page of its virtual memory and is called
its context block. When an active process is blocked the
following objects mﬁst be saved: | |

€ All pages in the process that have Lkeen modified;

¢ The context block;

e The state of the CPU.
The state of the CPU is saved in a fixed location in the con-
text block and consists of 12 registers as illustrated in fig-

ure 2.1

WORD NAME
g 4 >1® Program Counter 23
1 £ A - register 23 A
2 g B - register ‘ 23 B
3 g C - register 23 C
4 g D ~ register 23 D
5 ¢ Floating point exponent 1112%‘__“--~"‘““-~4—:ijj:§? E
6 @ Index register 43 X
7 p Local environment register 23 L
8 g Global environment register , 23 G
9 j:_ 4> Status register (see below) 23 SR
10 g Compute Time Clock 23 cTC
li g Interval Timer 23 o
The status register contains the following fields:
‘ 4 5 ¢ 89 1112 1314 15 14 17 1€ 10 20 a1 22 23
; IRHHERRNRE
D | TRMOD | PRMOD CC 14 U T 0 F FlR O vis
P 01lF i N ;.. f\ , v 7
wi |rlr|a ny D
Bit Name Contents
5 FDP Full double precision flag
6-8 TRMOD Temporary rounding mode
9~ll PRMOD Permanent rounding mode
12-13 cc Condition Code '
14 940M 940 Mode
15 SUF Soft underflow flag
16 XUTILT Utility exit trap flag
17 XMONT Monitor exit trap flag
18 TDFLAG Tempeorary double-precision flag
19 PDFLAG Permanent deuble-precision flag
20 CARRY Carry bhit
21 TOV Tenporary overflow bit
22 ov Overflow bit
23 INSTD Instruction tcrminatéd bit

FIGURE 2.1 CPU STATE

Note that it is convenient in the notation used in the manual
to refer to some registers by affixing an "R" to their name.
So you will see the following names referring to the same re-

gister.

A AR A-register
B BR , .‘E—register
C CR C-register
D DR D-register
E ER E-register
X XR X-register

3. Address Space and Mag

The CPU considers itself at any particular time to be running a
process which is defined by its context block. Each process

has a 256K address space. The CPU uses 18-bit addresses to

specify memory locations. The address space has two signifi-
cant characteristics:

1) it is divided into three rings as follows:

addresses @-377777B user ring (lowest)
AGp@a@AAB-577777B utility ring
- 6@PREEB-77771178B monitor ring (highest)

The rings are protected from each other according to certain
rules. Every memory reference is said to have a source. The
source for any references generated by an instruction up to

and lncludlng a fetch of an indirect word is, for example, the
program counter; the source for any reference generated after a
fetch of an indirect word up to and including a fetch of the
next indirect word is the address of the first indirect word.
Every reference also has a target, which is the address being
referenced. The following matrix defines those combinations of

source and targets which are legal.

Target
User Utility Monitor
User Yes No No
Source Utility Yes Yes No

Monitor Yes Yes Yes

To summarize:
a) References from one ring to a higher one are forbidden.
b) If indirection leads to a lower ring, it is forbidden
to rethrn to the same or higher ring during the same instruction.
This fact makes it easy, for example, for monitor routines to
enforce the user's pfotection rules when storing into a table
pfovided by the user: they need dﬁiy do their stores indirect
through an address in the user ring, and the ring protection

hardware will do the checking automatically.

A forbidden reference causes trap MACC (Memory ACCess error).
The target is passed as a parameter to this trap. See figure

3.1 for the two representations of the virtual address space.

VIRTUAL ADDRESS SPACE

26

6K

g

USER

USER RING
AREA i A

UTILITY RING

3777778
4ppp0pB

UTILITY
AREA

{ MONITOR)
RING

5777778
68p0PEB

MONITOR
AREA

7777778

FIGURE 3.1 VIRTUAL ADDRESS SPACE AND PROTECTION RINGS

2) The address space is organized into 2048 (2K) word
pages, and the precise collection éf pages which make up the
addreés spgce is specified by the map. Pages are named in a
manner ihdependent of their location in core, and the mapping
hardware uses this location-independent name, together with a
table called the core hash table (CHT), to determine the physi-
cal core location of a page. The page number (the top 7 bits)
of every memory feference thus requires two levels of transla-
tiont |

from page number to location-independeﬁt name

from location-independent name to physical page address

The various mechanisms for performing this translation will now

be described.

10

Locations 200B-277B in the context block contain the map of the

virtual address space for the précess. These 128 half-word en-

tries sbecify the contents of the corresponding 128 pages of

the address space of the process. Each half-word is interpre-

ted as follows:

- 34 ‘ 11

q PMTI

1
R
O
Bit Name
7 MAPRO
1-3 ————
S 4-11 PMTI

- Contents

Read-only bit. This bit is merged
with the RO bit in PMT to make the
read-only bit interpreted by the
hardware

unused

a PMT index

FIGURE 3.2 MAP ENTRY

The process memory table (PHMT) provides enough information about

each page accessible
to access the page.
context block. Each

context block of PMT

to the process to permit the hardware
The PMT starts at location 300B in the
entry is 4 words long; the address in the

entry i is therefore 4(i-1) + 3008.

11

A PMT entry has the form

e ~ UNIQUE NAME —

Disk Address

R N
o ,M&F SFE
Word Bits Name Contents
Jo] g-23 UN1 First 24 bits of unique name for
‘ the page (Location-independent
name)
1l g-23 UN2 -Second 24 bits of unique name for
the page
2 2-23 DA Disk address of the page
3 g PMTRO Read-only bit
3 1 PREF Page has been referenced
3 12 SF Page is scheduled for the process
(i.e., in core working set and

the process is active)

The other bits are not used by hardware. The unique name is

refered to as UN in the text.

FIGURE 3.3 PROCESS MEMORY TABLE ENTRY

12

Note that there is no provision for execute-only pages, since
this device by itself is not sufficient to protect proprietary
prograﬁs. The sub-process structure of the monitor is supposed

to be used for this purpose.

The central processor contains a physical map (PM) which has

128 registers of 11 bits each. One of the registers has the

form:
3 1 2 3 10
EF f DB [PMRQG PA
Bits Name Contents
g EF Empty flag‘
1 DB Dirty bit, set if the page has

been stored into since it was read
from the drum

2 PMRO Read-only bit
3-10 PA Physical address of page in a real

core of up to 512K.

FIGURE 3.4 PHYSICAL MAP REGISTER

When a new process starts to run on the processor, the empty flag
is set in each PM entry. Every address generated by the pro-
gram must be mapped to convert it from virtual to real so that

an access can be made to the real core. This is done by taking
the top 7 bits of the 18-bit address and using them to select

one of the 128 PM entries. If the empty flag is off, the re-

13

mainder of the entry is returned. The PA field is prefixed to
the last 11 bits of the virtual address to make a read address.
If the access is a store and PMRO = 1, the store is aborted and
the PRO (Page Read ghly) trap is caused. 1If the access is a
store, PMR& = ¢ and DB = g, the dirty bit in the CHT entry for'

the page is set and DB is set to 1.

If the empty flag is on, the PM entry must be loaded. Let its
index be 1i. First, entry i of the map (i.e. half-word 4UPB + i

in the ;ontext block) is fetched. If PMTI is @, trap PNIM (Fage
Not In Map) occurs. It it is not £ MAPRO [i] is saved. Then

‘the PMT entry sPecified by PMTI [i] is fetched. Call it entry n.
If SF[n] = @, trap PNIC (Page Not In Core) occurs. PMIRO is
saved; if PREF [n] = &, it is set to 1l; the UN found in PMT [n] is

then looked up in the core hash table.

The Core Hash Table contains information about the current contents
of core memory. It starts at loéation 4998 in real core and is
organized as a chained hash table. The table comes in two parts:

1) The index, called CHT1 which is an array of 256 pointers
to lists of CHT entries. FEach word of CHT1l is either END or the
address of a CHT2 entry e with the property that HASH (UN(e)) is
the address of the CHT1 word. If there ére several pages in CHT
with the same value of HASH (UN) ; the CHT1 word points to one of
them, vhich points to the next using the collision peinter field,
and so on until all are chaincd into the list. The last elenment
bas END in its collision pointer. The haching function HASH is
to take the exclusive or of the six 8-bit bytes of the Unigue

Name (UN) and then tho exclusive or of this result with 2641,

Revigion 3/4/74

14

'2)° The body, called CHT2, is an array containing a 6 word

entry for each page of real core. Each entry has the form:

UN1
UN2
_ \ . DA
R U} PSSt Ccpra PL SCHED
T) .
Y)
FCLP
/,., - cLp

Word Bits Name ' ngtents'
g g-23 UN1- First 24 bits of unigue name
i g-23 UN2 .Second 24 bits of unigue name
2 2-23 ba Disk address of page
3 g " DIRTY Dirty bit
3 1 U Unavailable bit.
3 2~4 PST Page status |
3 5-12 cpa Core page address
3 13-15 PL Page lock
3 l6-23 SCHED Number of occurrences of page
in loaded working scts
4 6-23 FCLp Free core list pointer

5 6-23 CLP Collision PTR

FIGURE 3.5 CORE HASH TABLE ENTRY

15

If (U OR PST) # @ or the page is not in CHT, trap PNIC occurs.
If the page is found, CPA and DIRTY are copied into the PM and

‘PMRO is set to MAPRO OR PMTRO [n].

All the traps (PRO, PNIM, PNIC) which can be generated by the
mapping operation are given the virtual address being mapped as

a parameter.

To mdke sure that a par£icular page is not being used by the
CPU, an externai processor may request a gggg of the physical
map. When suéh a requést is received, the PA Field of all non-
empty registers in the physical map is matched against the con-
tents of cell 2455B + CPU number *4. If any of theh matches,
the MAB (Map égott) trap occurs. The message cell is set to |

4B7 upon completion of the scan, regardless of the outcome.

16

4, Addressing from Instructions

The machine has a rather complex addressing structure. The

address calculation is performed in the same way for every in-

struction, and it may yield either an operand OP or an effec-

tive address Q. The format of an instruction and of an indirect

address word (IAW) is as follows:

a) Instruction word format

[2 3 , 8 9 1p " 23
: P

TAG OPC g W

Bit Name : Contents

g-2 TAG 2ddress TAG field

3-8 | OPC Op code

9 POP Programmed operator bit
1g~-23 w Address field

b) Indirect address word format

1l 2 ’ 23
IAT | BODY
Bit Name Contents
g-1 IAT Tag field which defines the meaning

of the rest of the word

2-23 Body The meaning depends on IAT

FIGURE 4.1 INSTRUCTICN AND INDIRECT ADDRESS
WORD FORMAT

17

Since the addressing is rather complex, it seems worthwhile to
explain in some detail what the various features are for, before
describing them precisely. There are a number of points which
influenced the design:

l) It is hecessaryAto beiable to conveniéntly address a
256K (18-bit) address space, even thougﬁ an instruction has
‘only a 14-bit address field.

2) APfoérams are hormally writﬁén in relatively small
'unité, eachAof which references some private storage of its
own and some global storage.

3) Array references afe Very comnon. Sinée there is on-
ly one index register for holding subscripts, it would be very
nice to have a convenient way of using core locations for in-.
dexing. Since the languages which are expected to account for
a majority of the load on the machine require subscripts to be
checked for size before being used, it would be nice to have a
cheap and convenient way of doing this. Furthermore, we have
to.deal with arfays having elements which may occupy 1 (inte-
ger), 2 (real), or 4 (double) words. To have to multiply the
index by the element size is a great annoyance.

4) References to fields which occupy whole words or parts
of words relative to a pointer are also common, especiélly in
system code.

5) 1t is essential to have an effective mechanism for
handling strings of 8-bit characters. If other byte sizes can

also be accommodated, so much the better.

18

All of these goals are achieved in a fairly economical way by
the addressing system. In particular, arrays, strings, and
part-word fields are handled by indirect addressing, which al-
lows an absolute 18-bit address to be supplied. The addressing
modes available in an instruction allow for immediate operands,
addressing relative to the instruction word for referencing the
program, and addressing relative to two base registers which
are intended to reference the local storage of the subroutine
(called the local environment, L) and the global storage‘of the
whole program (called the global environment, G). They also
permit indexing to be specified from the X-register or from the

first few cells of the local or global environment.

It Should be obvious by now that the addressing system is de-
signed to be used by programs which are organized in a very de-
finite way, i.e., into a collection of subroutines or functions
(of less than 4K words each), each with local stgrage (of 1less
than 2K words for scalars), and all‘With access to a single
global storage and communications area (of less than 16K words).
The first 128 words of the local and global environments are
special; this is because there are 8-bit fields in certain ad-
dresses in which the top bit specifies L or G and the remaining
7 bits address one of the first 128 words. The first 32 words
are even more special, because there are €-bit fields in which
the top bit specifies L or G and the remaining 5 bits address

one of the first 32 words. With this introduction, we proceed

19

to describe the addressing in detail, together with comments on
the intended use of each feature. A reader unfamiliar with
this .material will fingd it‘helpful to read the text following

the description of each mode first.

The 3~-bit TAG field of an instruction determines one of 8'ad-

dressing modes.

g 23 8 9 1g | : 23
TAG oPC , : W

- TAG Name Addressing Mode
g D Direct or G-relative
1 T Indirect or G;Indirect
2, X Indexed)
3 BX : Base~Index
4 PD Pointer-Displacement
5 - PDI Pointer-Displacement-Indirect
6 - BXD Base—Index-Displacement
7 REL Relative. This one has 6 sub-cases.

FIGURE 4.2 ADDRESSING MODES SPECIFIED
BY TAG FIELD

The relative mode has 6 sub-cases, L-relative, sourcewrelative,
immediate, indirect L-relative, indirect source-relative and

immediate indexed.

20

The relative words are formatted as follows:

[’ 23 8 9 13 . .12 13 ' o ' 23
TAG=7 OPC REL wl13,23]
REL Name - Addressing Mode
) LR - L-relative
1 LRI ’ L-relative Indirect
6 CIMX Immediate-Indexed
7 M Immediate
g 23 8 918 1112 23
[TAG=7 orc | X|SREL wl12,23]
SREL Name Addressing Mode
1 SR Source-relative
2 SRI Source-relative Indirect

FIGURE.4.3 RELATIVE ADDRESSING MODES SPECIFIED
BY REL AND SREL

Notice that we have repreéented the 6 sub-cases of the relative
“mode by introducing two fields called REL and SREL. This is
because in the source relative modes of addressing bit 12 is
used as part of the address field. Also we have introduced some
new notation. The W[13,23] indicates that we are referring to

bits 13 through 23 of the instruction word and that those bits

n
oJ)

are contained within the address field W of the instruction.

21

Most of the modes depend on the existence of an indexing regis-

ter IR, and a source register R. The IR register is not to be

confused with the index register X. 1In fact, it is not part of
the state at all; i.e. its value does not have to be preserved
from one instruction to the next. The IR is used to hold the
18-bit value which will be used when an indexing operation is
called for by the addressing system. It is initialized from X
at the beginning of each instruction. Thereafter, it may be
loaded from a word specified by a BX or BXD mode or an array in-
direct wbrd (see below). The source register is initialized to
the address of the word from which the instruction has been

fetched (normally P).

Some addressing modes compute Q directly from the information in
the central registers, the instruction and possibly one memory
word used for indexing. Others (the indiréct.modes) compute di-

rectly the location of an indirect address word, and the con-

tents of this word then determines how the addressing compﬁta—
tion is to proceed. If indirect addressing is specified, only
the values of the IAW address and IR affect the subsequent ad-
dress computation. We will theréforé confine ourselves to spe-
cifying those values which describe instruction addressing, and

leave the details of indirect addressing for later treatment.

22

Before we describe the various addressing modes in detail, we

define some notation that will be used in defining the various

modes.

CONTENTS (N)

IA(N)

W[i,j]‘

SIGNED (W[i,3])

will be used to denote the contents of the
memory location with address N. Ring check-
ing is performed with R as source and N as
target. '

1mplles that the indirect addre351ng seguence
is initiated by:

FUNCTION IA(N);
IAW <« CONTENTS (N);
R <« N;

*PROCEED TO PROCESS IAW

By the time it is finished, the IA function
will set the value of Q or OP.

Note that special cases of the IA(N) function
may be speciried for each oi the 4 indirect
addressing modes where we may want to indi-
cate a particular mode. We may have any one
of the following:

NORMAL'IA(N) ;
FIELD'IA(N) ;
STRING'IA(N) ;
ARRAY'IA(N) ;

means bits i to j of W (the address field

of the instruction) considered as a 24-bit
number. W[i,i] is represented by W[i].

means W[i,j] interpreted as a two's complement
number of (3 - 1 + 1) bits.

23

All instructions start with IR <« XR & R < P; in the notation
used, the "$" indicates indirection and "'" (e.g. G'[w]) is used
La the[sense of a delimiter between symbols. .We now define in
detail all the addressing modes with indirect addressing dis-

Cussed in a separate section which follows.

Direct (D) or G-relative:

g 2 3 8 9 1p ' 23
TAG=§ | = opC | | W

Q* W + G;

OP + CONTENTS (Q) ;

In the direct or G-relative mode, the effective address is given
by the 14-bit address field relative to G. 'This permits direct
addressing of the first 16K of the global environment. The
notation in SPL is

OPC G'[W];

24

Indirect (I) or G-relative Indirect:

@ 2 3 8 9 1p 23
TAG=1 " 0BC | W
IA(W + G);

In ﬁhe'indirect mode, ahy'of the first 16K wo:ds'of the global
environment cén be.used asvan IAW.(indirect address word) that
may point anywhgfe in thé virtual address space.

The notation is

OPC $G'[W];

Indexed (X):

g 2 3 8 9 19 23

W

TAG=2 opC

Q «+ W + IR;

OP <« CONTENTS (Q);

Since IR is initialized by XR, the effective address is the
(18-bit) sum of the indexing register and the address field.

The notation is

oPC X' [W];

25

Pointer-Displacement (PD) :

%) 2 3 8 9 1p , 15 16 23
TAG=4 OPC /-+DISPLACEMENT g POINTER ADDRESS

Where the pointer field is one of the following:

16 2.3
PTR <« IR; . g g

16 17 23
PTR « CONTENTS (G + W[17,23]); g W[17,23]

16 17 23
PTR <« CONTENTS (L + W[17,23]); 1 W[17,23]

and the address calculation is:
PIR « IR IF W[16,23] = g ELSE
PTR « CONTENTS(G + W[17,23]) IF W[16] = ¢ ELSE
PTR < CONTENTS (L + W[17,23]);
DISP « SIGNED(W[lﬂ,lS]);
Q <« PTR + DISPp;

OP « CONTENTS () ;

In this mode the address field is divided into an 8-bit pointer
address field and a 6-bit signed displacement field. Simiiar
arrangements are used in several othef modes; they will be explain-
ed here in detail. The top bit of the 8-bit pointer address speci-
fies the environment (1=local, #=global) and the remaining 7 bits
address one of the first 128 words jin the local or globsl environ-
ments. If pointer address is , the contents of IR, rather than

of word ¢ in G, is specified. The Ccalculaticn of DISp specified
the conversion of a 6—bitvnumber which is to be interpreted ag

two's complement into a 24-bit two's comploment numbeoy .

26

Finally, the effective address is the sum of the pointer (PTR)
specified by pointer address and the displacement (DISP). The
typical use of this mode is in addressing the nth word of a ta-
ble entry given a pointer to the start of the entry. If the
pointer P is in the first 128 words of»either environment, then
the word is loaded into A, say by | -
. LDA P[D]

which ié the notation for PD addressing with pointer address P
and displacement D.
The notation is

OPC P[D];
where P may be one of the following:

g or G'[#] for PTR <« IR;

G'[N] where @ < N <'127 for PTR <« CONTENTS (G + N) ;

L'[N] where g 127 for PTR < CONTENTS (L. + N);

A

N

i

and -32 < D < 31

Pointer-Displacement~Indirect (PDI):

@ 23 8 9 14 : 15 16 23
N/} + _ , G) N :
TAG=5 OPpC - DISPILACEMENT L POINTER ADDRESS

Q « PTR + DISP as for PD mode;

IA(Q);

This is just indirect addressing in PD mode.
The notation is

OPC $P[D];

27

Base~Index:

] 2 3 8 9 1g 15 16
,TAG=‘3 OorC g INDEX ADDRESS g BASE ADDRESS

Where the index address field is one of the following:

1
INDEX < IR; - g
o . 16 11
INDEX <« CONTENTS (G + W[11,15]); g W[11,15]
_ 15 11
INDEX < CONTENTS(L + W[11,15]); 1 W[11,15]

and the base address field is one of the following:

16
BASE + IR; g
16 17
BASE <« CONTENTS (G + W[17,23]); o] ©W[17,23)
1617
BASE <« CONTENTS (L + W[17,23]); 1 W[17,23]

and the address calculation is:

BASE « IR IF W[16,23] = g ELSE
BASE « G + W[17,23] IF W[l6] = ¢ ELSE
BASE « L + W[17,23];

IR < IR IFP W[1g,15] = ¢ ELSE
IR « CONTENTS (G + W[1l,15]) 1Fm W[1g] = @ ELSE
IR <« CONYWENTS (L + W[11,15]);

IA(BASE) ;

28

This is the array and part-word field mode and is written

OPC B[I]
where B is the base and I the index. The 8-bit and 6-bit index
are both treated as local or global environment addresses, ex-
actly like the pointer address in PD mode. The index is put in-
to IR and the base specifies an indirect word. If an array 1is
being accessed, B will address an IAW.which has the 18-bit base
address of the array and specifies indexing. The contents of
IR, which was loaded from I, will thus be added to the base ad-
dress of the array to determine the final 18-bit address, which
is just what we require for array referencing. This is not, how-
ever, the whole story; the rest will be told when we come to con-

sider the indirect addressing type used for arrays.

29
Base~Index-Displacement'(BXD):

@ 2 3 8 9 1g 15 16 : ' - 23

+ G
TAG=6 OPC _ DISPLACEMENT . INDEX ADDRESS

Where the index address field is one of the following:

16 23
INDEX <« §; . g : 7}
| o 16 17 23
INDEX_+_CONTENTS(G + W[17,23]); 2 W[17,23]

16 17 23
INDEX: < CONTENTS (L + w(i7,23]); 1 W[17,23]

and the base address is in the indexing register.
The address calculation is:
BASE +« IR;
INDEX + § IF W[16,23] = g ELSE .
INDEX < CONTENTS (G + W[17,23]) IF W[16] = § ELSE
INDEX < CONTENTS (L + W[17,23]));
DISP « SIGNED(W[lﬁ,lS]);
IR « INDEX + DISP;

IA (BASE) ;

This mode is similar to BX. It assumes that the base address

is in the 1IR. The field thus freed is used to provide a displace-

ment (anything from -32 to +32) of‘the index. Thus to load

B[I + 5] we would write

EAX B

LDA ($X")[1 + 5];
where I is the index address, 5 the displacement. See the dis-
Cussion of arrays in section (5) for more details on the BX and

BXD addressing modes.

30

The notation is
OPC ($X")[I + D];

where X' is X-register and I the index.

Relative (REL):
There are 6 sub-cases, depending on the first three bits of W.

We describe each relative mode séparately

L-relative (LR):

2] 2 3 8 9 1p 12 13 23

TAG=T7 orC RTAG=g W[13,23]

DISP <« W[13,23];

Q <« L + DISP;

Oop <« CONTENTS(Q)f
The L-relative mode simply adaresses a location in the 2X local
environmenﬁ.
The notation is

OPC L'[D];

31

L-relative indirect (LRI) :

2 3 8 9 1¢g- 12 13 A 23
RTAG=1 W[13,23]

TAG=7 OPC

DISP + W[13,23];
| Q « L + DISP;'
IA(Q); .

This is simply the indirect counterpart for the L-relative moge.

The notation is

OPC $L'[D];

Source-relative (SR) :

2 3 8 ¢ 1p 12 13 23
TAG=7 opPC RIAG=2, 3
Causes the instruction to be interpreted as -
) 2 3 8 9 1¢ 11 12 23
TAG=7 | opc SRIAG

o W(12,23]

DISP « SIGNED(W[12,23])

.
4

Q « R + DISP;

op <« CONTENTS (Q) ;

This mode allows location up to 4¢3¢B on either side of the in-

struction to be addressed. Remember R is initialized to the

Program counter at the start of the address calculation.

32

Source-relative-indirect (SRI):

) 2 3 . 8 9 1p 12 13 N - ' 23

TAG=7 OPC RTAG=4,5

causes the instruction to be interpreted as

2 3 ~ 8 91¢ 1112 ' 23
N SRTAG| -
TAG=7 opc - wi1l2,23]

DISP < SIGNED(W[12,23]);

Q « R + DISP;

IA(Q); |
This is just the indirect counterpart for source relative.
The notation is | | |

OPC $R'[D];

All the relative modes allow routines to be placed anywhere in
memory without modification and to address themselves without

difficulty, as longbas they are not more than 2¢48 words 1ong.'

33

Immediate (IM):

[o] 2 3 ~ 8 9 1¢ 1213 ' 23

TAG=7 oPC RTAG=7 | W[13,23]

OP « SIGNED(W[13,23]);
The immediate mode permits signed constants in the range —2gﬂﬁB
to 1777B to be provided és Qperands without an additional-meﬁory
reference. AStofes'are not allowed and the operand must not be
larger thanvll—bits.
The notation is

orC I;

Immediate~indexed (IMY):

") 2 3 8 9 1¢ 12 13 - ' 23

TAG=7 oPC 1 rRTAG=6 W[13,23]

OP <« IR + SIGNED(W[13,23]);
This adds the éontents of IR to the immediate operand.
The notation is

OPC X' + I;

34

5. Indirect Addressing

To prevent infinite loops of the indirect mechanism, a trap, ILIM
(Indirect LIMit exceeded), will'occur-if indirection through more

than 16 levels is attempted.

There are four tzEes of indirect addressing: normal, field,
stiing, and array The type - 1s selected by the first two bluS‘
of the word. The intended use of each type is suggested by its

name and will now be eXplained in detail.

Normal: the IAW has the form

g 12 45 6 23

TR
IAT=Qk ?AG#7A AD Lw
or
g 12 45 67 9 1g 23
, TR|RE ~
IAT=g| TAG=7 |apiLx| RTAG LWR .
Bits Name ' Contents
0-1 IAT Indirect Address Type zero
2-4 TAG interpreted exactly'like an instruc-
tion TAG
5 TRAP causes trap IATRP if set
6 RELX causes indexing for relative modes
19-23 LWR long address for the relative modes

6-23 LW long word address

35

If TRAP is set, the IATRP trap is caused, and R is passed as its
argument. Otherwise, TAG and W are interpreted as in an instruc-
tion wbrd, with three exceptions:

l) if TAG =D, I, or X, LW is used in place of W, and G is
not added. ‘In other words, an 18-bit absolute address
is supplied.

2) if TAG = REL, IR is added to the addresses computed by
L and R-relative modes if RELX is set. I.e., indexing
is possible with these modes. Also, the 3-bit subtag
is found in bits 7-9, thus allowing the LR, LRI, SR,
and SRI offsets to be 3 bits longer.

3) if TAG = PD or PDI, the mode is read-only direct (ROD)

or read-only X-relative (ROX) respectively. These
behave exactly like D and X modes except that an attempt

to store will cause the ROIA trap with R as parameter.

L]

Normal type permits any word in the address space toc be address-
ed directly. It is generally used for pointers and for thé ad-
dresses of arrays. Note that although the capabilities are al-
most identical to those provided by an instruction address, the
format is quite different. It is not possible to use an instruc-
tion as an indirect word. It also permits indexing of a L-rela-
tive or source-relztive address, so that arrays in the program

of the local environment can be addressaed conveniently.

36

Field: the IAW has the form

1 2 3 7 8 1213 22
' +
IAT=1 (SE SIZE FB N DISP
Bits Name _ Contents
0-1 IAT "1
3-7 ' SIZE 'size of field in bits
8~12 FB : address of first bit of the field
2 SE ' ‘causes sign extension of the field
: if set
13-23 DISP 2's complement signed displacement

FIEID: @ « IR + DISD;

U « CONTENTS (Q) ;

OP « U [FB, FB + SIZE - 1];

OP « OP ~ 2%%(24~FB) IF SE = 1 AND OD [FB,FB] = 1;
The field which is SIZE bits in length and which.starts at bit
FB in word DISP + IR is referenced. Both FB and FB + SIZE - 1
must be i 23. If they are not a TI trap will occur. If SE is
set, the leftmost bit of the field (bit FB at DISP + IR) will be
eéxXtended into bits g through 23-SIZE of the resulting operand.
DISP is taken as a 2's complement number, in the range =-1024 to

1023.

37

The idea here is that IR contains a pointer to a table entry,
and that the field descriptor (the IAW) specifies a group of
bits at some definite location in the entry. Typically, the
p01nter might be in PTR within 32 words of L and the field

descriptor in F within 128 words of G. Suppose the contents

of F is

FIELD 3: 6, 12
or in octal o DATA 216400038
then we miéht write

LDA F [PTR]

using base-index addressing. Since PTR appears in the index
field, its contents is put into IR. Then F is taken as an

IAW. Since it is of type field, it accesses the word at IR + 3,
which is CONTENTS (PTR+3) ; i.e., the fourth word of the object
pointed to by PTR. Bits 6 - 12 of this object %ill be loaded
into 2. If the word addressed was 01234567B, then A will contain
47B. The field can be used as an operand in'any instruction
which accesses a single-word operand, this includes both load

and store types. Note that fields cannot cross word boundaries.

38

String: the IAW has the form

12 34 56

23

IAT= 2} CSIZE} CPOS

WA

Contents

character size: g = 6 bits, 1 = 8,
2 =12, 3 = 24

character position in word

Bits Name

g-1 IAT 2
2-3 CSIZE

4-5 CPOS

6-23 WA

word .address

4

The character at the indicated position in the word addressed by

WA is referenced.

The following table defines what bits are re-

ferenced by the 16 possible combinations of CSIZE and CPOS.

CSIZE/CPOS 1 2 3
g g-5 6-11 12-17 18-23
1 - g-7 8-15 = 16-23 X
2 g-11 12-23 X . X
3 g-23 X X X

Combinations marked X in the table will cause a TI trap.

The bits referenced are treated exactly like the bits selected

by a field IAW.

This type of indirection allows one byte in a string to be re-

ferenced. The instruction ISD increments the descriptor to point

to the next byte, which may then be referenced. It has the

39

additional feature of setting the condition code depending on
whether the descriptor is equal to the next word or not. The
string type and this instruction are intended~t6 be used with
four;word string descriptors. Thé first word points just
before the first byte allocated for the string. The second word
(read pointer,'RPi éoints to the first character of the s;rihg,
the third‘word’(write pdinter, WP) to the‘last character. The
fourth word points to the iast byte allocated for the string.

To read the first character, increment RP with ISD, then indirect
through it. The case of no characters left can be detected by
the abnormal CC setting. To write a character, increment WP
‘with ISD and then store indirect through it. Overflow of

available storage can be detected by the CC setting.

40

Array: an array descriptor is two words long. Its form is:
LEB = @
g 1 2 3 45 6 7 23
| flL
IAT=3}LB % E | MULT UB
o Bls
PTR
or
LEB = 1
1l 2 3 4 5 1¢ 11 23
B1L
IaAT=3|LB E E MULT UuB ‘
B
P

PTR

Word:Bit
g:0-1
g:2

g:3

g:4
g:5-6

F:5-10
g:7-23

F:11~23

Name
IAT
LB
ATRAP
LEB

MULT IF
LEB = ¢

MULT IF
LEB = 1

UB IF
LEB = §

UB IF
LEB = 1

PTR P

Contents

3 .
lower bound for IR (g or 1)
array trap bit

large element bit

multiplier for IR

upper bound for IR

pointer to ayvray

41

A multiplier of one is coded in the descriptor as zero, two
as one, etc. If IR<LB or IR>UB, trap ABE occurs, with R as
parameter. If ATRAP = 1 in IAW and the instruction is not LAX,
or AfRAP = @ and the instruction is LAX, trap IATRP occurs with

R as parameter.

otherwise, IR <« (IR - LB) * (MULT + 1); T « R + 1;

NORMAL'IA(T) ;

Where NORMAL'IA indicates IA(T) of type normal. This is the
most ccmplicated of the IAW types. It is intended to accomplish
the following functions connected with array accessing:
1) Allow g dr 1 as lower bound
2) Perform a bounds check on the subscript
3) Multiply the subscript by the size of the array
element, allowing for sizes up to 64
4) Check that the'number of subscript§ supplied is
the number expected (see below)
5) Provide an 18-bit absolute base address for the

array.

42

Arrays are intended to be stored with marginal indexing. Thus

the 2 x 3 one-origined integer array A would appear as follows:

A =

(1,1)

LB=1, ATRAP,MULT=@ ,UB=2 / LB=1, MULT=g, UB=3 /Qy

(1,2)

LB=1, MULT=g, UB=3 (1,3)

(2,1)

(2,2)

R R b b

(2,3)

(The three 2—word descriptors are array indirect words.)

The LAX instruction Works just like EAX, except that it merges
~an X tag in XR[2,4] (leaving a normal IAW which specifies
indirection) and treats the TRAP bit in an array descriptor

as though it were complemented.
Then to do B « A[K,L] we would write
LAX A[K] (BX addressing)

which leaves the address of the descriptor for the Kth row in

X followed by

LDA (sx") [L] (BXD addressing)

STA B

43

The second subscript can have a constant displacement without
complicating things:

B « A[K,L-4] becomes

- LAX A[K]
Lba 0 ($x')[L1-4]
STA B

If the first subscript has a displacement, there is a complica-
tion, since there is not enough room for three operands in one
instruction.

B « A[K+1,L] becomes

EAX A
LAX ($X')[K+l]
LDA (sx")[L]

STA B

44

A single subscripted array can be accessed without any extra
instructions' at all provided the subscript is a variable which
can be accessed with an index field of the BX mode. If M is

a l0-element integer array, it is allocated thus:

M =

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

LB=1, MULT=g, UB=lg”;’/,;—8'

RIRIX|IX) R

=

RIRIRI=

and N <« M[J] becomes
LDA M[J]

STA N

If the afray is integer (1 word items) and bounds checking
is not required, the descriptors can be changed to normal
indirect words which specify indexing, and no change is

required in the instructions of the program.

The purpose of the peculiar behavior of LAX in the case of
traps is to check that the proper number of subscripts is
provided to an array. The trap bit shcould be set in the
array descriptors except at the last level (the descriptors

which point directly to the data) and clear there.

45

6. Use of Addresses by Instructions

All the instructions compute an effective address Q and/or an
operand OP as described above. The use of these quantities once
they have been computed, and in particular the error conditions

which may arise, depend on the address type of the instruction.

There are four address types:

1) Fetch type (F)
These instructions will accept any kind of address. They make
use of fhe 24-bit OP value and possibkbly Q.

2) Effective-address type (E)

These instructions make use only of the effective address Q, ig-

noring OP. Immediate addressing causes a TI trap if used with

[¢]
Fh
O
in]
1)

these instructions. Q is ring~checked.wiLh R as a source
use; 1f the check fails a trap MACC will occur.

3) Store type (S)V
These instructions make use of the effective address Q and the
operand OP. If the address calculation terminated with indirec-
tion through a field or string descriptor, the FB and SIZE (for}
a field) or CPOS and CSIZE (for a string) define a group of bits,
say bits 1 to j. An S type instruction puts bits 23-j+i to 23
of the word to be stored into bits 1 to 5 of the word addressed
by Q, leaving the rest of this word untouched. Immédiate ad-
dressing causes a TI trap and indirection through a read-only
direct or read-only indexed word cauvscs a RO trap.

4) Double-store type (D)

These instructions make use only of the effective address Q.

They trap under the same conditions as S-type instructions.

46

Note that they are not affected by field or string indirection.

Legal combinations of instructions and addresses are sumarized

in the following table:

F E S D

Immediate ok TI T1 TI
Indirection through ROD or ROX _ ok ok RO RO
Anything else ' ok ok ok ok

Instructions of types S or D will give a PRO trap if Q (or Q+i-
for instructions which reference double (i=1) or quadruple

(i=1,2,3) words) éddresses a read-only page.

47

7. Function Calls

A rather elaborate mechanism for célling functions and returning
from them is provided in the hardware ofAthe‘machiné. The puf—
pose is to include all the capabilities required by the FORTRAN
and SPL languages difectly in the hardware, so as to make soft-~
ware interpretation unnecessary. This is considered extremely
important, since prqgramS'arebeXpected to be written in small
modules, and function calls and returns are conseguently expect-

ed to be very freqguent.

The basic features of the call instruction, BLL, are as follows:
1) The old P-counter and local environment are saved and
new ones are picked up.

2) The new local environment may occupy a fixed area, or
it may be allocated spaCe at the end of a stack deiined by two
locations in the global environemnt. There is a check for stack
overflow. | |

3) The caller provideé a list of parameter addresses.

The called function specifies for each parameter whether it
wants the address or the value copied into its local environ-
ment. If he requests copying the vaiue, he specifies whether
Ait is 1, 2, or 4 words.

4) He alsé specifies whether or not a parameter is an ar-
ray. The calling program tells whether it is passing a scalar-
variable, a scalar value (stores are not legal), an array or an
array element (subscripted array). These distinctions permit

all the checking for proper matches of arrays with scalars re-

48

quired by FORTRAN to be done automatically. The case of an ac-
tual parameter which is an array element correspbnding to a for-
malbéérameter which is an array reéuires software handling and
is trapped so that this may be accomplished.

5) Provisioﬂ is made for an argument to be passed in ﬁhe

central registers.

. A number of these points are somewhat subtle and cannot be pro-
perly understood unless explained in complete detail, which we

now proceed to do.

49

The BLL instruction addresses a branch descriptor, which is a

two-word object with the following form:

" Word Bit
g g-23
g 5
g 9-23
9 6-23
1 g
1 1
1 2
1 3
1 3
1 4
1 5
1 6-23

Name

NEWPW

SREL

TRAP

SRW

LW

CLL

- STK

CPA

CPR IF
CLL =1

UWSTK IF
CLL = ﬁ

Meaning

This word looks like an IAW.
Its effective address is computed.

c.f. REL + SR in Normal IAW
Causes IATRP if set

Signed displacement if SREL is set
Long word addresses

Call bit. The old P and L are
saved if the bit is set.

The local environment is allocated
from the stack 1f {his bit is set.

Arguments are copied if this bit
is set

The CPA bit in the return des-
criptor is turned ,on if this bit
is set.

Unwind stack on return.

Source relative label is supplied
1 FORTRAN type function
This number determines the new L;

precisely how it does so depends
on STK and REL.

50

When BLL is executed, the first step is to compute the effective
address of NEWPW (which is LW if SREL is g, othefwise the sign--
extended SRW + the address of the NEWPW). This 18-bit number is
saved in a tempqrary register called NEWP; after undergoing fur-
ther processing itvwill become the new P-counter. The following
steps remain_to-bé pérformed:

l)‘ Obféin new iocal éﬁvironment.

2) Copy argﬁments.

3) Compute return desériptor (for CALL) and save it in

first two words of new local environment.

4) Transfer control.

We treat them in the order written, which is also the order in

which they are performed. 1In describing what happens, we shéll
make use of a nﬁmber of ﬁemporary registers or variables (such

as NEWP} which was introduced above) .

1) If STK=g, the E field of the descr;ptor is taken as
the new value éf L,_which we call NEWL. 1In this case, the func-
tion beiﬁg called is said to have a fixed local environment.
Such a function cannot be recursive, and space must be allocated
for its local environment at all times. On the‘oﬁher hand, the
contents of such a fixed environment is normally preserved be-
tween funétidn calls. A FORTRAN function has a fixed environ-
ment, for e#ample. Since a call (CLL=l) saves the current L in
the E field of the return descriptor, the return (CLL=g) handles

E exactly as the call of a fixed function does.

51

If STK=1l, space for the environment is allocatéd on a stack.
Two words are required to describe the stack, whiéh gréws toward
increasing memory addresses:
SP, the address.of'the first unused word, kept iﬁ G'[2],
7 the third word of the global environment
‘SL, the addréss of the last word allogaﬁed for the stack;'

kept in G'[3].

If the environment is stacked, different actions are required

for calls and returns.

On a call (CLL=1l); we compute SP+E. If it is > SL, the STKOV
trap occurs. Otherwise, NEWL«SP and SP+SP+E. In other words,
E locations are taken from the top of the stack. The situation

before and after is shown in figure 1.

On a return (CLL=$%) what ordinarily happens if STK is set is
SP<L; NEWL<E; |
in other words, the old L at the ﬁime of the call (which was
saved in the E field of the return descriptor, as we will see)
becomes the new L, and SP is reset to the value it had before
the call, which is the current L. The before aﬁd after pictﬁres
of figure i, looked at in the opposite drder, should help to
clarify this. With these rules, calls can be made freely from
fixed environment functiong to stacked environment ones and

Visa-versa. The industrious reader may check the four cases.

TIVD YV ONDMNA MOYLS

"

34N914

L/

MNOMIAND Y207 Vv ONILY20TIY

i
N

dHL NO IN

BEFORE

SL

unused stack
space

SP

current

environment |

L

space used
for previous
environments

start of stack

return
descriptor

OLDL

OLDP

AFTER

SL

unused stack
space

SP

E locations
for new
environment

NEWL

space used
for previous
environments

‘start of stack

Zs

53

SL SL

non-local label
passed by Fl:
SP

e Gnaws cmmp Gwen mw esmc eupwd

STK, UWSTK L2
P in F1

Local.
environment
for Fn

L(n-1)
P(n-1) Ln

® o Q0
eso 0

Local
environment
for F2

return descriptorf STK Ll
from call of F2 L2 L2___.__ —_— ' SP
Local
environment
for F1

Ll Ll

e s e Bam Cean eew o

Start of
stack

BEFORE AFTER

FIGURE 7.2 RETURN TO NON-LOCAL LABEL IN F}
PASSED AS A PARAMETER

54

Unfortdnatély, if the return is to a function which is not the
one which called the current ohe, SP is not reset correctly.
Thls is exXpected to happen only as the result of a branch to a
label which has been passed as a parameter (i.e. an error return),
When such a parameter is passed (see below) from function Fl
with L=L1 to F2 with L=L2, and the descriptor for the®call has
STK set, the parameter appears in F2 as. a BLL descriptor with ‘
STK set, UWSTK set and L2 in E (see figure 2). The return (BLL)
sees CLL=E; STK=1, UWSTK=1 and does. |
SP « E; NEWL = the E field of the descriptor addressed
‘by E. This trick ailows both SP and L to be set correctly while

carrying only one number in the descriptor.

It works regardless of whether F1 and Fn have fixed or stacked
environments, but requires F2 to have a stacked environment,
When a label is passed to a routine which has‘a fixed environ-
ment, therefore, E is set to L1l and STK REL turned off. If
addltlonal space is allocated on the stack after the call, it
will not be freed when a branch is made to this label., It is
believed that this deficiency is not very serious.

2) If Ccpa=1, arguments are copied whenever a BLL is exe-
-cuted. If a function has multiple results, it will have CPR on
in its descriptor. This will cause CPA to be turned on in the
return descriptor, and the multiple results will be returned by
the arguments - copying process when the return is executed.

If CPA=f, the BLLERR (2) trap occurs. A summary of all BLLERR

traps and their parameters is given in the appendix. The BLLN

55

instruction should be used if no arguments are being passed; in

this case the trap will occur if CPA=1.

The address 'of (actual) arguments to be copied are specified in

the calling program in a list of actual argument words (AAWs)

following the BLL instruction. These have a one-to-one corres-

pondence with a list of formal argument words (FAWs) which starts

at NEWP,

An argument word is formatted like an instruction. The address-

ing is interpreted exactly like the addressing for an instruction,

but the 7-bit opcode field is treated differently, as follows.

Bits Name
3~-4 STR

3 CADDR
4 FSTR
5-8

9 ENDI

Contents

(actual argument only) structure

1 = variable

3 = computed scalar
2 = array element

g = array

(formal argument only) copy value
1 = copy address of actual argu-
ment
g = copy value of actual argument

(formal argument only)
1l = scalar

g = array

type # = jump (actual argument only)
1 = integer (1 worad)
2 = long (2 words)
3 = real (2 words)
4 = double (4 words)
5 = complex (4 words)
6 = longlong (4 words)
7 = string - (4 words)
8 = label (2 words)
9 = pointer (1 word)
14 = unknown

end flag

g = not last argument word
1 = last argument word

56

Argument éopying proceeds as follows: two pointers are initial--
ized:
| next formal argument word (NFW) initialized to NEWP

next actual argument word (NAW) initialized to P+1
Then FAW <« CONTENTS (NFW), and FAW is treated as an instruction
4word for the purpose of computing its %ffective address, which
is put into FQ. Only D or LR addressingris permitted; anything

else will cause the BLLERR trap with class 4.

If ENDF (FAW) = @, NFW <« NFW + 1 and copying continues. Other-
wise, copying stops. If the instruction is BLL, the BLLERR(2)

occurs. If it is BLLN go to step {3).

We treat NAW as we treated NFW: AAW <« CONTENTS (NAW) , R<NAW and

its effective address is computed. The address type is F if

Type = 1 (integer) otherwise E. BLLERR (5) yill occur if the

address type is not computable.

If type (AAW) = g, the AAW is a Jump and its address specifies
the next actual argument. Repeat from AAW « CONTENTS (NAW«Q),

etc.

If the AAW specifies G-relative addressing with an address of g
it is‘taken to refer to the central registers. If CVAL # g then

BLLERR(S) or if TYPE > 6 or STR = # then BLLERR(4) will occur.

57

Next the types are checked. If TYPE (FAW) # TYPE (AAW), the
BLLERR(3) trap occurs, unless one and only one of them is un-
known. FSTR and STR are checked according to the following

table:

| 1 2 3
BLLERR (3) FTNAT BLLERR (3)
FTNAT OK . OK OK

FTNAT means that if FTN = g, BLLERR(3) occurs, otherwise the
FINAT bit is set, which will inhibit the skipping of one word in

step (4).

The idea here is that if A[I] appears as an actual argument in
FORTRAN and the corresponding formal B is dimensioned, an array
descriptor for B must be computed, or if A appears as an actual
argument and the formal is a scalar, the first element of the
array must be found. A software routine is supposed to do this.

It needs access to the descriptor for A; the extra incrementing

of NAW is to leave room for the address of the descriptor.

Now copying takes place. If CADDR(FAW) = 1, Q is stored at FQ
as an absolute IAW, except in the following two cases.

If the AAW suppliced and iLumediate operand it is stored into
FQ as an IM type Normal IAW,

If Q is the resull of ROD or ROX addressing or STR(AAW) = 3,

Q is stored as a read-only abcolute (ROD) IAW.

58

Otherwise, (CADDR(FAW) = f) the value must be copied. The
details of this depend on the type:

If TYPE = 1 ang STR (AAW) # g, OP or the A register (in the
special case) jisg copied to FQ.

For TYPE < ¢ ang STR (AAW) # #, the number of words specifiegd
above is copied from Q to FQ, or. from the central registers (a,
B, C, and D) to FQ if appropriate.

If TYPE = 3 oy TYPE = 4, the floating'point number address-

ed is examined. If it is undefined (see Floating Point) the
——=-lnea

trap UFN will OCcur. In case the central registers are used,

Struction. (Refer to Floating Point)

For TYPE = 7 and STR (AAW) # @, the four-word string descrip-

tor is copied. If the BLL being executed is a system call (as

described later), four ring checks arevdone, with P as source
and each of the four word addresses as target. Furthermore, the
word addresses must be non-decreasing from one word to the'hext,
and the CPOS ang CSIZE fields of the first word are copied into
the others. Finally, 2 is forced into the top two bits of each
word to ensure that it is a string descriptor.

For TYPE = g and STR (AAW) # ¢ a label is copied as follows:

The first word is made absolute, i.e. Q added to the

sign-extended SRW becomes the new LW if SREL ig set, then SREL
is cleared.

In the second word, if bitsg g-23 are @, the worgd is

replaced by L if STK = g, else

59

NEWL + the STK and UWSTK bits, if STK = 1.

The basic idea is to supply the proper conte#t, so that the cur-
rent local environment will be restored if the label is branched
to. Refer to the diséussion of how to unwind the stack to see
why NEWL is used when STK = 1.

If the label is passed byra system call,.the absolute ad-
dress in the first word is ring-checked. Before copying the se-
cond word CLL, STK and SREL are cleared and bits 6-23 are check-

ed. If they are not Q, BLLERR(6) occurs.

For STR(AAW) = f the type is ignored. an array descriptor is
also copied like a two-word scalar, except that the seconé word
W2 is replaced by an X or ROX IAW with address equal to the ef-
fective address which results from treating W2 as an IAW. This
permits an array descriptor which uses relative addressing to be
passed as a parameter, since the relative address is automatic-
ally converted to absolute. If BLL is a system call, in addi-
tion two ring checks are done with P as source and both the first
~and last words of the array as targets. This means that if an
array descriptor is passed to a higher ring, the higher ring can
use it without fear of accessing storage which'the calling pro-

gram could not have accessed.

‘When the address or value has been copied, END¥ (AAW) is compared
with ENDF (NAW). If they differ, BLLERR(2) occurs. If both are
8, copying continues with

NAW < NAW + 1; NFW < UFW + 1;

60

otherwise it stops. In the latter case NEwp <« NFW + 1

3) If the CILL bit is on, a return descriptor is computed
and stored at NEWL. It consists of 2 words: NAW + 1

Note that this is the return address

(2B7 =* STK) + (1B7 * CPR) + I

i.e., the ol4g local environment, with STK bit on if it is
on in the descriptor, and cpa bit on if CPR bit i1s on in the
call descriptor. Note that if STK = 1, then 2B7 * STK sets
thé STK bit (bit 1) of the return descriptor on.

4). Set L to NEWL, P to NEWP, and continue execution. If
the FTN bit is set, ‘skip one word unless the FINAT flag is on.
The instruction skipped presumably will contain a subroutine
Call to take care of the special cases in FORTRAN mentioned

earlier,.

In order to state precisely énd concisely how, this instruction
works and to describe the details of ring-checking, an SPL pro-
gram is presented in the Appendix which duplicates its function-
ing. This Program uses some Special functions. (Those not men-
tioned here refer to fields or functions defined elsewhere‘in
this document.)

1) The construction $X+ implies a ring check with R as
source and X asg target. As the access is a store, the trap PRO
may also occur.

2) RINGCHECK (X) performs a ring check with R as socurce and

X as target. If the check fails, trap MACC will occur.

61

3) RING(X) produces a number depending on the ring which
contains X, say
L if X is in the user ring
2 if X is in the utility ring
3 if X is in the monitor ring
4) MENTER(), MEXIT() and INTERRQPT() designate the places
where the actions described under "CPU Interruptability" are ta-
ken.
5)- EA(X) initiates the effective address calculation simi-
lar to IA(X); but the format of CONTENTS(X) is like an instruc-

tion (or an AAW) rather than an IAW.

62

8. Programmed Operators

If the POP bit of an instruction is 1, it is interpreted as a
rather peculiar kind of subroutine call rather than an ofdinary

machine instruction. Execution proceeds as follows:

the OPC field of the instruction is put into the indexing

register (IR) and the instruction:
BLL $G'[#];
is executed

Presumably word £ of G will contain the address of a transfer

- 4
vector. If desired, it may contain an array descriptor which
limits the number of programmed operators and supplics & multi-

plier of 2.

There is one additional feature: BLL will initialize NAW to P,
rather than to P + 1, so it will use the instruction word as the
first AAW. STR, TYPE and ENDF will be taken from the correspond-

ing bit positions of the first FAW.

63

9. System Calls

Two versions of the OPR instruction provide protected entry
points iqto the system. The MCALL instruction works as follows:
8 bits provided by the OPR are put into IR
a BLL $BA is executed, with BA = 604000B.
When the BLL is completed,
G « NEWG, where NEWG = 600000B.

The intention is that 604000B should contain an array descriptor

with
LB = ¢
UB = total numberx of defined system calls
VMULT = 2

which points to an array of BLL descriptorse for the various pro-
tected entry points. Note on any calls to the system from a lo-
wer ring, G is saved in NEWG[14]. G is restored from G'[14] by

any BLL (BLLN, POP, etc.) which crosses the ring boundary into

a lower ring.

For calls into the utility the UCALL version of OPR works the
Same way, exXcept that BA = 400016B and NEWG = 400000B. Note
that this is the beginning of the utility ring. Variants of

these OPRs exist which execute a BLLN instead of & BLL. (MCALN,

UCALN)

The PDFLAG, TDFLAG bits in the status register are cleared by
both MCALLs and UCALLs.
MCALLs also set the locked hit of the CPU as described under

"CPU interruptability".

64

10. Traps

A machine trap is a forced transfer of control which may occur
as a result of a variety of untoward events which may arise du-

ring the execution of a program. It does not involve a switch

to a new process.

A trap may be fixed or ring-dependent. All fixed traps save the

first 1¢ words éf the state in the 1g wordé starting at 6@2752B.
They then set G to 6@fg@pB and do X < n; BRU 6447028, where n is
the trap number. They all have a one word parameter which is
‘put into thé A register after the state is stored. Thé value of
the parameter depends on the trap. Like MCALL-s, fixed traps

also clear PDFLAG, IDFLAG, 94¢M and set the LOCKED bit.

A table of all fixed traps is given in the Appendix. Each one

is described more fully in its proper place in the manual.

The ring-dependent traps differ in that they send control to a
location determined by the ring that P is in. They store P and
the parameter at G'[4] and G'[5] respectively and then clear the

94gM bit in the status register and do IR < n; BRU $G'[6].

In 940 mode, if the S bit (bit #) of an instruction and the P
bit (bit 2) are set, the instruction is called a SYSPOP. The
first 10 words of the state are stored starting at L[3], then A"
is set to thé efféctivevaddress of the instruction, clear 94¢gM

and do X < OPC, BRU L'[2].

65

11. CPU Interruptability

The CPU described in this manual is expected to run as part of
a system which includes, among other things,

1) Two physical CPUs, which are identical except for a

number called the CPU number attached to each CPU. The CPUs are

numbered from @ to 1.

2) a separate prodeséor called the Hscheduler which is re-
sponsible forrailécating CbUs tovérocesses. The pscheduler alsé
has facilities for causihg the CPU to operate in a single-step
mode, in which it stores the staté, waits and then reloaas it
after each instruction execution, and for telling the CPU to
Stop execution at once (crash).

3) A protect mechanism which allows the various processors
in the system to be interlocked or synchronized. There are
eight protect lines, ény of which may be seized by any processdr.
A line may be seized by only one processor at a time; anyone

else attempting to seize the line is refused until the current

owner lets it go.

This section describes the behavior of the CPU with respect to
1) A STROBE signal, which the pscheduler sends when the
CPU is to switch processes
2) The single-step and crash signals
3) Protect 4, which is used to interlock the CPUs, keep-
ing more than one from being in a locked state.
4) The timer trap, which occurs when the interval timer

in the state becomes negative

5)
6)

66

The XMON and XUTIIL traps

Initialization

The relevant information is:

a) Some
1)
2)
3)
4)

b)‘ Some
the

1)
2)

3)
4)

information»in the state

The ring in which the P-counter is contained

The XMON trap bit in SR

The XUTIL trap bit in SR

The sign bit of the interval timer, which we call TO
flip~-flops in the microprocessor which are not part of

CPU state

STROBE, which may be set by another microprocessor,
normally the pyscheduler

STEP, which may be set by some external device to make
the Cpu Operate in a singie—step mode

LOCKED, which is not’accessible to external devices

ALARM, which is get when a system crash is impending

C) The state Of Protect 4, which will be called CPUPRO

d) A location in absolute Core called CPUWAIT whlch is used tc

67

A. Idle State

When it is initialized (by setting the 0 register in the micro-

processor to @) the CPU goes into idle state.

IDLE:

PWAIT:

Clear map scan reqﬁest;

GOTO IDLE IF NOT STROBE;

Clear STROBE. ,

T « contents of absolute call (6 ; CPU number)
(T is the prbcess' PRT index)

Goto PWAIT if T = @;

,Clear absolute cell (6 + CPU number);

Clear LOCKED; Clear the map;

Find the page with. the name in (T) and (T+1)
Take it as a context blcock and load the state
from locatioh 2764B~-2777B in it (called ﬁhe SAVE
area).

If the page is not found in CHT, send a STROBE2 to

the pscheduler with a message 4B7 in absolute cell 2454B + CPU

number *4 then do like ABORT.

Start executing instructions at the location given

by the P-counter;

The CPU returns to the idle state whenever it dumps the state of

a process.

B. Interruption of Program Execution

At the start of every instruction, the truth of any of the fol-

lowing conditions will stop execution and cause the indicated

68

action to be taken. The conditions are treated in the order in
which they are listed. 7 ‘

l)"NOT LOCKED AND TO: cause tiﬁer overflow trap.

2) NOT LOCKED AND STROBE: dump the state into.the SAVE area,
send a RETURN message to the uscheduler and gb into idle
state. o |

3) STEP'OR ALARM:.dump ﬁhe state into the SAVE area, clear
STEP. Clear the wait location (23B + CPU number) and
wait until it becomes 1234321¢B, then reload the state

‘from the SAVE area and proceed.

At every step of indirection, every start of an instruction

which is the térget of EXU, every parameter of a BLL and in all
other places where the CPU might be held uﬁ for more £han‘a few
microseéonds, (MVB, MVS, CPS), conditions 1 and 2 are tested and

their indicated actions taken.

C. Setting the Bits

XMONT and XUTILT are part of SR and may be set or cleared with

SRS, LOADS or XSA.

LOCKED is set by MCALL or fixed trap. It can also be set by
SLOK. It is cleared by any BLL or LOADS which leaves the moni-

tor ring (BLL, here, includes all variants: UCALL, MCALL, POP) ,

and can also be cleared by RLOK.

TO can be changed by loading a state from the SAVE area or by

the OPR to set the interval timer.

69

D. The X Traps

At every BLL or LOADS a check ie made for transition into a lo-
wer ring.l’If there is a transition froﬁ monitor to utility or
user rings, the XMONetrap is caused if the XMONT bit is set.
Then if there is a tran51tlon from utility to user ring, the

XUTIL trap is caused 1f the XUTILT bit is set.

E. The CPUPRO Signal

This protect is seized automatically at each pocint where LOCKED
is set and cleared at each point where LOCKED is cleared. The
-programmer can set it himself with the PRO operate, but this is

probably unwise.

70

12. Ordinary Instructions

This section contains a complete description of the behavior of

the machine when interpreting an inetruction word, with the fol-

lowing exeeptions:
instructions with POP = 1 are described under "Programmed
Operators"
the BLL instruction is described under "Function Calls"
the floating point instructioﬁs are treated in a separate
sectien |
effective address computation for all instructions is des-

cribed under "Addressing"

Each instruction is specified in terms of its operands, its ef-
fect on the state of memory of the running process, and any un-
usual traps it may cause. Traps which are caused by the addres
ing system are the same for alllinstruetione and are not consi-
dered. Traps caused by the map are the same except for the

read-only trap. Its occurrence depends on whether the instruc-
tion attempts to modify memory; this should be obvious from the
instrﬁction description and will not be further mentioned. The

address type is S or D for instructions which modify memory.

Part of the state is a 2-bit condition-code. This code is set

by the RESULT of most instructions as follows:
g if RESULT < ¢

1 if RESULT = g

4

2 if RESULT

v
=

S.—.

71

The RESULT is indicated in the description of each instruction.
Unless some other change in P is indicated, all instructions end
with

P «P + 1

‘The INSTD bit in the status register is set to g at the end of

every instruction, except for LOADS.

The address. type of the instruction is indicated for every in-

struction, e.g.,

LDA (F)

In the description some special notation is used: STORE(X,Y)
‘stores X in the memory location addressed by Y. The storing in-
cludes some special logié for (S) type‘instructions if é field
or character is spécifiedvas operand (refer to Use of Addresses
by Instructions); ABS(T) ié the absolute value of T.

ABS (4B7) = 4B7.

Summary of Abbreviations

72

AR A register
BR B register
CR C register (uséd only for double-precision floating-
DR D register point and quadruple loads and stores)
- XR X register
P Program'counter
L Local environment register
G Global-eﬁvironment register
CC Condition Code, equivalent to RESULT:
cC =g RESULT < ¢ '
cc =1 RESULT = (
CcC = 2 RESULT > ¢
SR Status registef
ov SR[22] Overflow bit
TOV SR[Zl] Temporary Overflow bit
CARRY = SR[20] Carry bit |
PDFLAG = SR[19] Permanent double-precision flag. Used
to set TDFLAG after STF, STD or FCP
TDFLAG = SR[18] Temporary double-precision flag. Makes
| all floating-point instructions double-

precision.

A, Data

LDA

LDX

1LDD

EAX

73

Transfer Instructions (12)
(F) Load A register
AR +* OP;

RESULT <+ AR;

(F) Load B-register
BR <« OP;

RESULT <« BR;

(F) Load X-register
XR * OP;

CC is unchanged

(F) Load double
AR <« CONTENTS(Q); BR % CONTENTS (Q+1) ;

CR = CONTENTS (Q+2) & DR < CONTENTS (Q+3) IF TDFLAG=1;

RESULT <« AR;

(E) Effective address to X
XR < Q;

CC is unchanged

(F) Load array index
XR « Q OR 4B6; (sets TAG to 2 for indirection)
CC is unchanged

Treats bit ATRAP in an array descriptor opposite to
all other instructions

74

LNX (F) Load negative to X
XR <« -OP; two's complement negation

CC is unchanged

STA (S) Store A register
STORE (AR, Q) ;

CC is unchanged

STB (S) Store B register
STORE (BR, Q) ;

CC is unchanged

STX (S) Store X register
STORE (XR, Q) ;

CC is unéhanged

STD (D) Store double
STORE(AR,Q); STORE(BR,Q+1);
'STORE (CR,0+2) & STORE (DR,Q+3) & TDFLAG < PDFLAG
IF TDFLAG = 1;

CC is unchanged

XMA (S) Exchange memory and A
TEMP <« AR; AR <« OP; STORE (TEMP,Q);

RESULT < AR;

75

Integer Arithmetic Instructions (10)
ADD (F) Add‘memory to A
[AR < AR + OP; (two's complement)

CARRY <« carry from bit g of adder, i.e., set if the
sum of AR and OP taken as unsigned 24-bit inte-
gers, is > 224,_aﬁdvcleared otherwise;

TOV < 1 if the add causes overflow, i.e., if AR and OP
have the same sign but the sum has a different
sign, else #; |

OV <« OV or TOV;

RESULT <« AR;

SUB (F) Subtract memory from A
Proceed exactly like ADD except that (~OP) replaces OP.

This is a two's complement negate, i.e., (NOT OP + 1)

ADC (F) adg memory and CARRY to A
oV <« g
AR < AR + OP + CARRY;

Then proceed exactly like ADD

SUC (F) Subtract memory from A + CARRY
ov <« g;
AR * AR + CARRY + (NOT ©oP);

Then proceeqd exactly like ADD

MIN

ADM

ADX

MUL

The product, consisting of a sign bit and 46 magnitude bits, is

76

(8) Memory increment
RESULT « AR < OP + 1;

"STORE (RESULT, Q) ;

(S) Memory decrement
RESULT « AR « OP - 1;

STORE (RESULT, Q) ;

(S) Add to memory
RESULT < AR < OP + AR;

STORE (RESULT, Q) ;

(F) Add to X
YR « XR 4 OP;

CC is unchanged

(F) Multiply memory and A

TOV « 4;

I

TOV « OV <« 1 IF OpP AR

AR[#,23] « PROD[f#,23];
BR[@#,22] « PROD[24,46];

BR[23] « g;

RESULT « (AR OR (BR RSH 1));

left-justified in the AB registers.

tiplied, an ASHD -1 is required to obtain the integer product in

B.

APPFPPIIB;

PROD <« AR * OP; as two's complement numbers, yield-
ing a 47-bit two's complement result

If integers are being mul-

77

DIV (F) pivide memory into AB
TEMP + OP; TOV <« g, |
DIVIDEND « AB[#,46];

QUOTIENT « DIVIDEND/TEMP; a 47 bit two's complement
integer treating both o-
bPerands as fractions in
the range -1 < f < 1, and
Obtaining a gUotient with

23 fraction bits

TOV « OV « 1 ang Proceed to next instruction
unless -1 < QUOTIENT < 1

AR <« QUOTIENT;

TEMP < QUOTIENT * TEMP; vielding a 47-bit product
, as for multiply
BR < (DIVIDEND - TEMP) ; this is the remainder

RESULT <« AR;

The quotient of the 47-bit divideng aﬁd the 24-pbit divisor, both
taken as signeq two's complement ffactions, is put into a and
the remainder into B. Overflow occurs if>the dividend is larger
than the divisor, since the quotient cannot be Tepresented as g

fraction; in this case, the central registers are unaltered.

To divide an integer in a by one in memory, do ASHD -23 first.

78

C. Test Instructions (5)

ICP

CP2

- CMZ

(F) Integer compare

RESULT <« AR - OP;

(F) Compare with zero

RESULT <+ OP;

(F) Compare A and memory with zero

RESULT + AR AND OP;

The following two instructions operate on string descriptors,

which are pairs of indirect address words of type string. The

intended interpretation is that the first points to the first

character of the string, the second to the last character,

ISD (S) Increment string descriptor

.Proceed to next instruction if RESULT = g

TEMP « CONTENTS (Q) ;
CSIZE « TEMP[2,3]; CPOS <« TEMP[4,5] ;
RESULT < TEMP - CONTENTS(Q + 1);
IF CPOS + CSIZE < 3 DO;
CPOS + CPOS+1;
ELSE DO;
CPOS « 0; TEMP < TEMP + 1;
ENDIF:
TEMP[2,3] <« CSIZE; TEMP[4,5] <« CPOS;

STORE (TEMP, Q) ;

79

If the stfing is empty (the two IAWs are equal) the instruction.
sets CC to 1 and exits. Othérwise it sets CC to # or 2, and in-
>creménts the first IAW by one character position in the string.
DSD (s) Decrement- string descriptor
TEMP < CONTENTS (Q+1) ;
CSIZE + TEMP[2,3]; CPOS <« TEMP[4,5] ;
. RESULT <« TEMP‘— CONTENTS(Q);
Proceed to next instruction if RESULT = g,
IF CPOS > @ DO;
CPOS < CPOS -1;
ELSE DO;
CPOS « 3-CSIZE; TEMP <« TEMP -1;
ENDIF;
TEMP[2,3] < CSIZE; TEM?[4,5] < CPOS;

STORE (TEMP,Q+1) ;

The 1dea is the same for ISD, but the second IAW is decremented

by one character position.

D. Logical Instructions (3)
ETR (F) And A and memory
AR <« AR AND OP;

RESULT <« AR;

IOR (F) Or A and memory
AR <« AR OR OP;

RESULT < AR;

80

EOR (F) Exclusive or A and memory
AR + AR EOR OP;

RESULT <« AR;

E. Shift Instructions (6)
All shift instructions interpret the absolute value of OP MOD 64
as the number of shifts to be done; The sign of OP specifies
the direction: positive for left shifts, negative for right.
SHIFTC < ABS(OP MOD 64);
right shift as specified IF opP < g ELSE
left shift as épedified;

RESULT < AR;

ASHD (F) Arithmetic shift double (A and B registers)
A and B taken as a single 48-bit regisfer.are shifted. On a
right shift, the original sign bit is copied into vacated bit
positions. On a left shift, OV « 1 if any of the bits shifted
out differ from the final sign of A. TOV is set to 1 when OV

is set, otherwise it is set to g.

ASHA (F) Arithmetic shift A

Identical to ASHD except that only AR is shifted

LSHD (F) Logical shift double
A and B taken as a single 48-bit register are shifted. Vacated

bit positions are filled with zeros.

LSHA (F) Logical shift A

Identical to LSHD except that only AR is sghifted

81

CYD (F) Cycle double
A and B taken as a single 48-bit register are cycled. i.e.,
they are'Shifted, but bits which are shifted out one end fill

‘the vacated positions at the other end.

CYA (F) Cycle A

Identical to CYD except that only AR is cycled.

F. Branch. Instructions
-BRU (E) Branch unconditionally
P « Q;

CC is unchanged

Six instructions test the condition code
BLT (E) Branch on less than
P« Q IF CC =g; (RESULT < §)

CC is unchanged

BLE - (E) Branch on less than or equal
P« QIF CC=gORCC=1; (RESULT < f)

CC is unchanged

BEQ (E) Branch on equal

P« Q IF CC = 1; (RESULT

g)

CC is unchanged

BNE (E) Branch on not equal
P« Q IF CC # 1; (RESULT # ¢)

CC is unchanged

82

BGE (E) Branch on greater than or equal
P+ QIFcCC=1orccs=ny; (RESULT > g)

CC is unchanged

BGT (E) Branch on greater than
P+~ Q IF CC = 2; (RESULT > a) .

CC is unchanged

Two branch instructions affect the X register
BRX (E) Branch on index
XR +« XR + l;
P« Q IF XR < g}

CC is unchanged

BSX (E) Branch and set X
XR « P + 1;
P+« Q;

CC is unchanged

BLL (S) Branch and load L

is described elsewhere

G. Miscellanecous Instructions (5)
HLT (F) Halt

Always causes the TT trap

EXU (F) Execute

Initializes IR <« XR & R < Q, then interprets CONTENTS (Q) as an

instruction and cXecutes it.

83

EAC'(E) Effective address computation
This instruction computes the effective addressvof CONTENTS(Q)
interpreted as an instruction wdrd. Similar to EXU, IR and R
are initialized to XR and Q fespectiVely. The results of the
computation are given‘in régisters as follows:
XR[g,sj « RESULT « 1 & AR <« OP
| if the'address is Immediate
XR[#,5] <« RESULT « 2 & XR[6;23] « Q
if the'address is ROD or ROX read only
XR[#,5] < RESULT « 3 g XR[6,23] « Q & AR < MASK & BR <« SHIFT
if thé address refers to a field or character
MASK has bits (24-SI1ZE), 23 on, the rest off.
SHIFT equals to 24-(FB + SIZE) -
XR[#,5] « RESULT « g & XR[6,23] « @

in all other cases

Note that Q - whenever given - is ring checked. against R in the
final phase of the address calculation. (Refer to "Addressing

from Instructions")

SRS (F) set or reset status bits
The operand is used to set or reset the status regiéter in the
state in the following wéy:
SR « (SR OR OP IF (OP AND 1) = 1 ELSE

SR AND NOT OP);

84

TSB (F) Test status bits
RESULT <« SR AND OP;
i.e., 1 bits in the operand select bits of SR. The condition

code is set depending on whether all the selected bits are g or

not.

H. OPR (F) Operate (1)
If the operand is‘negative, the 1nstructlon is a system call.

Blts 14~15 in the absolute value of the operand select one of

four alternatives:
g ucaLn
1 UCALN
2 MCALL
3 MCAIN
- Bits 16-23 in the absolute value is the address for the Sysﬁem.

call. (as described in a separate section)

85

If the operand is positive, it is decoded to determine what is

to be done:

CAB Copy A to B BR +« AR;
XAB Exchange A and B T « AR; AR <« RESULT < BR; BR <« T;
CBA Copy B té A AR < RESULT <« BR;
CBX Copy B to X " XR < BR;
XXB Exchange B and ¥ T < BR; BR +« XR; XR +« T;
CXB ‘ Copy X to B BR * XR;
CaAX Copy A to X XRk+ AR;
XXA Exchange X and a T = AR; AR <« RESULT <« XR; XR < T,
CXA Copy‘X to A RESULT « AR <« XR;
CNA Negate A | AR < RESULT < -AR;
CNX Negate X XR + —XR;
ZOA Clear A | AR + RESULT <« g;
ZAB Clear AB | AR * BR +« ER <« g
ZOB Clear B " BR <« g;
CGa Copy G to A AR < RESULT <« G;
XGA Exchange G and a T « AR; AR < RESULT < G; G « 7,
CLA Copy L to A AR * RESULT +« L;
XLA Exchange L and A T « AR; AR < RESULT <« L; L « T
CSA Copy SR to A AR + RESULT <« SR;
XSA Exchange SR and a T < AR; AR < RESULT <« SR; SR « Ty
CTA Copy interval timer A < RESULT < iT;
to A
CCa Copy compute time A * RESULT < CTC;
cleck to A

NOP No operation

86

MVB Move block
The block of AR words.starting at XR is moved to the AR words
starting at BR. The words are moved one at a time, and the re-
gisters are updated after»each word is moved to reflect the num-
ber of words remaining to be moved. This instruction is inter-
ruptable. The move is done in such.a»way that no word is over-

written until it has been moved.

MVC Move constant

XR is stored into the AR words starting at BR. This instruction

is interruptable.

MVS Move string -V(Not presently implemented)

The string of AR bytes»starting at the byte specified by BR ta-
ken as a string IAW is mo&ed to the AR bytes starting at the
byte specified by XR taken as a string IAW. Thé bytes are moved
- one at a time, and the registers are updated after each byte is}
moved to reflect the number of bytes remaining to be moved. If
the source and target strings overlap, the move is done in éuch
a way that no character is overwritten until it has been moved;
If the strings do not overlap, after execﬁtion BR and XR will
always point to the first characters after the source and tar-

get strings respectively. This instruction is interruptable.

CPS Compare string - (Not presently implemented)
The string of AR bytes starting at the byte specified by BR ta-

ken as a string IAW is compared with the AR bytes starting at

87

the byte specified by XR. RESULT is set to indicate whether
the first string is smaller, equal to, or greater than the se-
cond. The registers are updated every time a byte is compared.

This instruction'is‘interruptable.

CLS Compute lehgth of string
AR and BR‘afe-taken aé strinélIAWs. The number of bytes in the
string starting at'ﬁhe byte specified by AR and ending at the
byte specified by BR, -1 is pﬁt into AR. The CSIZE field of BR
is used to determine the byte size.

RESULT <« AR;

ASD Add to string pointer
AR is taken as a string IAW. Into XR is put a striﬁg IAW which

points to the XRth byte beyond the one pointed to by AR.

LLT Locate leading transition
The bit number'(counting from g on the left) of the left-most
bit in AB which differs from the sign bit of A is put into XR.
If no bits differ, g is put into XR.

RESULT « XR;

COB Count one bits
The number of one bits in the A and B registers is put into XR.

RESULT <« XR;

88

LOADS Load state
Loads the flrst 10 words of the ‘state (not including the compute
time clock or the interval timer) from the 10 words addressed
by XR. An MACC trap will occur if the new P is in a higher ring
than the current P. This-ihstruction does not clear the INSTD
bit.. An XMON or XUTIL trap may occur if the new P is in a lower
ring than the current p und the XMONT or XUTILT bits are set in

the current SR as descrlbed under "CPU Interruptability"

STORS Store state
Stores the first 10 words of the state into the 10 words address-
ed by XR, but does not store P and XR; the corresponding loca-

tions are left unchanged.

LSC Load string constant

‘The word addressed by XR is fetched and used to fo{m a 4-word
string constant in A, B, C, and D as follows:

TEMP <« CONTENTS (XR) ;

CSIZE <+ TEMP[2,3]; CPOS < TEMP[4,5];

AR < BR <« 4B7 + CSIZE * 4B6 +

(3 - CSIzZE) * 1B6 + XR; |

CR <« DR <« 4B7 + CSIZE * 4B6 +

| cpds * 1B6 + XR + TEMP[6,23];
This means that the %R points to a word used to generate a ﬁtrlnﬁv
deqcrlptor and that this word is immediately followed by the

string constant specified.

89

The following OPRs are privileged. If P < 60P@ggF, the TI trap
will occur. |

SLOR Set CPU lock

- RLOK Reset'CPU_lqck

ALD Absolute_load A

Loads AR with the contents ofvthe core locétion whose absolute

address (i.e., unmapped address) is contained in XR.

AST Absolute store A

Stores AR into the core location whose absolute address is con-

tained in XR.

ARX Absolute addxeés to X
Loads XR with the absolute address corresponding to the virtual
address in XR. Bit @ is set if the physical map entry was emp-
ty. Bit 3 is set if PMRO was on in the physical map entry, bit

2 is set if bit 3 is set or the dirty bit was clear.

PRO Protect
Attempts to set PROi if AR[24-i] is on. If all the selected

PROs are set successfully CC <« #; else CC < 1.

UNPRO Unprotect

Clears PROi if AR[24-i] is set.

ATTN Attention

Sends a STROBE signal to microprocessor i if AR[24-1] is set.

90

USCL uscheduler call
This OPR initiates a switch-processes sequence. The state of
the machine is dumped at the SAVE area (602764B). The interval
timer; shifted 7 to the right so that the least significant bit
counts milliseconds, is stored into the MCT field (8:¢4,7) of

the process' PRT entry.

The pscheduler is called with AR[f,5] as an opcode, the CPU is

put into the IDLE state.

. CMAP Clear map

Sets all EF empty flags in the map to 1.

CMAPS Clear maps

Clears the maps of both CPUs in the system.

CAT Copy A to timer

Copy A to interval timer IT < AR;

CAC Copy A to clock

Copy A to compute time clock CTC <« AR;

RUN Read unigue name
A unique name is read from the unique name generator and put

into AB.

BR « low order bits of unique name;

AR « high order bits of unique name;

91

LDMP Load physical map
An entry is loaded into the physical map by piacing a 7-bit page
number into bits 6-12 of the XR and the entry in bits 13-23 as

follows:

TEMP « CONTENTS (XR) ;
MAP'REG « TEMP[6,12];
MAP'REG[';J,}J] « EF « TEMP[13,13};

| MAP'REG[l,lj < DB ‘+~ TEMP[14,14];
MAP'REG[2,2] « PMRO < TEMP[15,15];

MAP'REG[3,1Q] “ PHYSICAL'PAGE'NO <« TEMP[16,23];

92

13. Floating Point

A. Number Representation
A 48-bit single precision floating point datum represents a ra-
tional number in the following way:

1) ‘Positive numbers A
g1 11 12 ' ' 47

X: |2 M - N

M is the biased exponent E:
E+« M- 2009R;

positive number X = N * 2 (E735)

where 235 <N < 236 -1 and -Zlﬂ < E< Zlg -1

E.g +'1.¢ is represented as
gl 1112 47
ohg 211.99 _ 4

217 -36
Largest number is 2 * (1 - 2) :
1 1112 Y

g1l 111.11 1

Smallest positive number is (except for un-normalized
) _ 19
numbers, see below) 2 2 :

1 1112 47

8199 gi1.60 g

93

2) Negative numbers
The sign bit (bit #) indicates that the number is negative. N
is given in two's complement form:

’

negative number X = (N - 236) * Z(Ei35), 1 <N< 233

g1 1112 47
-1.0: 1j1p g11.92 g
. .21 -36
Lowest negative number is -2 * (1 - 2)
1 1112 47
1j11 1{2.99 | 1
__ . . -21P
Maximum negative number is -2
g1 1112 47
1lgp gl 1.0 | g
3) Zero
g1 1112 . 47
g| 29 gl 9.00 | g

4) Un-normalized numbers
The only un~normalized numbers allowed are these:

g 1 11 12 47

x: |glgg 7 N <N 2P
and their negatives, i.e., [X| < 2 . Note that + 2 are

both normalized and un-normalized.

- 94

5) Infinity
g 1 1112 47

s f1f11 1|g. ¢ ' 8

The symbol - « jg treated as the single point at infinity in the
- one-point (projective) closure of the reals. Operations on - «
are summarized in the Appendix.

6) Undefined floating point numbers

Data of the form
g1 11 12 47

*H g M N

with §f <M & g <N <235 _
‘and their negatives are not floating point numbers. If such a

number appears as an Operand for any floating point operation,

the trap UFN will occur.

*

B. Algebraic Closure Properties of Normalized Numbers

Numbers of the form A.l, A.2 and A.3 are normalized numbers.

1) If X is an n.n, so is -X.

1g

2) If X is an n.n not zero nor 12—2‘ , SO is 1.@/X.

The smallest possible n.n whose reciprocal is an n.n is

o1 -
2727 (1 4 2735,

95

C. Double Precision

The 96-bit double precision data have an additional 48 fraction

bits. For example a DP positive number:

g1 11 12 ' ' 47

gl M = N

48 95
N'

Iepresents X = (N + N' * 27%°%) « 2(E_35), g <N' < 248 -1.

D. Floating Point Instructions (8) and OPR§

All floating point operations have single (SP) and double (DP)
precision variénts, bit TDFLAG in SR sclecting the one to be
used. Bit PDFLAG is ﬁsed to set TDFLAG after a compare (FCP)

or store (STF).

[

Floating operations set CC to indicate if the result is less or

greater than or equal to #. (STF and FIX leave CC unchanged.)

FLD (E) Floating load
An SP or DP floating point number starting at Q is copied into
the floating point accumulator. (The A, B, C, D, and E central
register)
STF (D) Fleoating store
SP: The floating point accuwmulator is rounded at bit 35 of

the fraction and copied to (Q) and (Q+1).

96

DP: Four words are copied from FA to thé locations starting
at Q. A dquble floating store causes no rounding if the FDP bit
in SR is se£. Otherwise it rounds at bit 71 of the fraction and
zeros the last 12 bits.” The FDP bit thus determines whether DP
nuﬁbers are stored with 72 or 84 bits of fraction. Overflow may
occur becauée of the roundiﬁg. In all cases TDFLAG <~ PDFLAG af-
ter the store,

FAD (E) Floating add

SP: The Operand.is extended with 48 zeros on the right. A
DP is then done.

ﬁP: Let the operands be a * 2b, c * 2d} Thé two exponents
are compared. Suppose b > d. Then c is shifted right by b - 4.
An 87 bit register is provided to hold c, which is loaded
(sign + 84-bit fraction) into the 85 most significant bits. The
two least significant bits are cleared. The 86 most significant
bits participaté in the right shift in the usual way. The least
significant bit is ‘'sticky': if a 1 is ever shifted into it, it

remains 1 from then on.

After c has been shifted, it is added to a in an 85-bit adder,
yielding a result r of 87 bits. Bits 85:86 of ¢ do not partici-

pate in addition.

Now, if an overflow has occured (a[g] = c[#] # r[@]), r is shift-
ed right by 1. 1r[86] is treated as a sticky bit in this shift
just as it was in the shift of c¢c. b is incremented by 1 if this

shift occurs and r[@] « NOT r[d];

97

The result is normalized by left shifting until either:
1) the sign bit differs from the next bit or

2) the fraction is 1189 .. g
- The exponent b is decremented by 1 for each left shift.

- Lastly the result, rounded at.bit 83 of the fractidn (i.e.,
r[84], since when we say ibit 83 of the fraction' we don't count
the sign bit) in accordance with the rounding mode in force, is
assigned to the floating pbint accunulator. See the discussion
of founding below for’details, Both overflow and underflow may
occur. |
FSB (E) Floating subtract
Identical to addition except that the negative of the second
operand is taken first. This cannot cause any abnormal condi-
tions. |
FMP (E) Floating multiply

SP: The accumulator is rounded to single péecision, then the
two 36-bit fractions are multiplied to yield a 72-bit result.
The exponent which goes with the result is the sum of the expo-
nents of the operands plus one, to correct for the placement of
the binary point in the product. The 72-bit fraction is shifted
left if required for normalization. No rounding is required
since the accumulator can hold this entire product. Overflow or
underflow may occur.

DP: The two 84-bit fractions and the two signs are multiplied

to yield an 86~bit result (sign plus 8% magnitude bits) and an

98

87th bit which is the union of the 82 least significant bits of
the full 168-bit product. The resulting 87-bit number and the
exponent obtained by the procedure described for single precision
are normalized and rounded like the result of an add..
FDV (E) Floating Divide

' SP: The 36-bit divisor fraction is divided into 38 bits of
the accumulator fraction to produce é 37-bit quotient. To this
is appended a 38th bit which is set if the division is not exact
or if the other 46 bits of the accumulator fraction are non-zero.
The resulting 38-bit number is put into the accumulator and fill-
ed out with 46 zeros on the right. The exponent of the result
is computed by subtracting the divisor exponent from the dividend
exponent.

DP: The 84-bit divisor fraction is divided into the 84-bit
accumulator fraction to produce an 85-bit qﬁotient. The exponent
is computed as for SP and the result is rounded inzthe usual way.
Overflow or underflow may occur. Division by § produces its own

trap. (DIZ)

If the divisor is an un-ncormalized number it is normalized prior

to'division. It may or may not cause overflow as explained above.
FCP (E) Floating compare

Identical to floating subtract, but the result is not assigned

to the floating accumulator. CC will be set as usval to indicate

the sign of the result. TDFLAG <« PDFLAG

99

FLX (E) Fix and load X
XR is assigned a 24-bit integer which is the floo; of the float-
ing operand. If the floor is > 223 =1 in magnitude, the trap
FLXO oécurs. The result does not depend on SP or DP mode.

FNA (OPR) Floating negative
A The number in the floéting point accumulator is repléced by ité
negative.‘ , | | |

FIX (OPR)
Similar to FLX, buﬁ the.operand is taken from the floating point
accumulator and the result is put into RESULT and AR.

FLOAT (OPR)
A FLOAT operation produces a (normalized) floating point number
in the floating point accumulator which wher FIXed will restere
the integer operand in AR. (unless it is 4B7) Nothing can go

wrong with FLOAT.

E. Roﬁnding

There is a threefbit field (TRMOD) in SR which specifies how
rounding is to be dohe (the field PRMOD is used to set TRMOD
after every FAD, FSB, FMP, FDV, ST¥ or FCP). - The descriptions
of instructions ébove’state explicitly each point where rounding
is done. The phrase 'round at bit n of the fraction' means that
bit n of’the fraction (numbering the magﬁitude bits from g and

not counting the sign) is the least significant bit retained,

100

The rounding modes are:

TRMOD Name Rounding
g N nearest number
2 F floor (toward f)
3 C A, | ceiling (away ffom 7)
4 P away froﬁ - «

5 M toward - «

Rounding involves three bits. The first is the least significant
bit to be retained and is called Q. The one following Q is call-
ed R. The third is the union of all the bits following R (some?

4

times only 1, none for double divide) and is called T.

The rounding rules are as follows (call the sign 8):
N: +1 (add 1 to least significant retained bit)
if R = 1 unless Q = gand T = g
F: +1 if S=1and Ror T =1

C: +1 if S=@g and Ror T 1l

P: +1if RorT =1

M: no action

F. Overflow and Underflow
Overflow and underflow occurs if at the end of a floating point

instruction, the exponent is outside the permitted range.

Overflow always causes a trap (FLO). It leaves a correct result

except for the exponent, which must be read as a 12-bit two's

101

complement number with sign bit the complement of the high-order

bit preserved.

Underflow action depends on the SUF bit in SR. If it is set, no
trap occurs and a suitable un-normalized number of zero results.
Otherwise, trap FLU occurs and the result is correct (and normal-

ized) with the same rule for the exponent as was stated for over-

flow.

102

APPENDIX CONTENTS

DEFINITION OF INSTRUCTION CODES-.
DEFINITION OF OPR ADDRESSES . . .
SUMMARY OF ADDRESSING e e e e
SUMMARY OF INSTRUCTION ADDRESSING
FIXED TRAPS e e e e e e e
RING~-DEPENDENT TRAPS ; e e e
RING-DEPENDENT TRAP If: BLLERR .
SUMMARY OF IMPORTANT CORE ADDRESS
SPL° PROGRAM TO DEFINE BLL
WORD FORMATS
SOME FIELDS IN OCTAL FORM

CHT HASHING ALGORITHM

Page
103
104
105
106
108
109
110
111
113
118
127

128

103

DEFINITION OF INSTRUCTION CODES

code mnemonic a.type code mnemonic a.type

g HLT F ag ASHD F*
1 LDA F* 41 ASHA r*
2 LDB F* 42 LSHD F*
3 LDX F T 43 LSHA F*
4 LDD F* : 44 CYD F*
5 EAX E _ 45 CYA F*
6 LNX F 46 - TSB F*
7 XMA S* 47 LAX F
1g ETR F* 50 BRU E
11 IOR F* 51 BLT E
12 EOR F* 52 BEQ E
13 STD D 53 BLE E
14 STF D 54 BGT E
15 STA s 55 BNE E
16 STB S 56 BGE E
17 STX S 57 BLL S
2g ADD F* 6g BLLN S
21 SUB F* .61 BRX E
22 ADC F* ' 62 BSX E
23 suc F* - 63 "~ SRS F
24 ADM S* 64 EAC E*
25 ADX F 65
26 MIN S* 66
27 MDC S* 67
39 MUL F* 78 FLX . F
31 DIV F* 71 FLD F*
32 ICP F* . 72 FCP F* .
33 CPZ F* 73 FAD F*
34 CMZ F* 74 FSB F*
35 ISD S* 75 FMP F*
36 DSD S* 76 FDV F*
37 EXU F? 77 OPR F?

* indicates that CC is set by the instruction

104

DEFINITION OF OPR ADDRESSES

OPR address mnemonic ' OPR address mnemonic

) CAB] 49

1 XAB * 41 LOoADS
2 CBA * 42 STORS
3 CBX : 43 LSC

4 XXB 44 FIX

5 CXB \ " 45 FLOAT
6 CAX 46 FNA

7 XXa * 47 ’
1g . CXA * 50

11 CNA * ' 51

12 : CNX ‘ 52

13 ZOA * 53

14 ZAB 54 ‘
15 . Z0OB 55 SLOK
) , CGA * 56 rLOK
17 XGA * 57 ALD
29 CLa * 69 AST
21 XLA * 61 AAX
22 csa * 62 PRO
23 Xsa * 63 ,

24 _ CTA * 64 UNPRO
25 CCA * 65 ATTN
26 NOP 66 USCL
27 MVE A 67 CMAP
34 MVC 78 CMAPS
31 MVS 71 CAT
32 CPS * 72 CAC
33 CLS * 73 RUN
34 ASP 74

35 LLT * 75 LDMAP
36 COB * 76

37 77

* indicates that CC is set by the OFR

*

105

SUMMARY OF ADDRESSING

Notation used in defining addressing modes.

Wli, 3]
CONTENTS (N)

IA(ﬁ)

means bits i to j of W (the address field of
the instruction) considered as a 24-bit number.
W[i,i] is represented by W[i].

means the contents of the memory location with

- address N. Ring checking is performed with

R as source and N as target.

means that the indirect addressing seguence

is initiated by: -

FUNCTION IA(N);
IAW <« CONTENTS (N);
R « N;
*PROCEED TO PROCESS IAW

By the time it is finished, the IA function
will set the value of the address (Q) or the
operand (OP). :

All instructions start with IR < XR & R « P;

vL/v/€ uotsTADYy

Abbr

Name

SUMMARY OF INSTRUCTION ADDRESSING

Notation

Address Computation

PD

BXD

DIRECT

INDIRECT

INDEXED

Pointer-Displacement

Pointer-Displacement Indirect

Base-Index

Base—Index-Displacement

OPC G'[W];

OPC $G'[W];

OPC X'[W];

orc pP[p];

OPC $P[D];

OPC B[1];

OPC ($X')[1+D];

Q+W4+gG;
OP + CONTENTS(Q);

IA(W + G);

Q « W + IR;
op « CONTENTS (Q) ;

PTR + IR IF W(16,23] = g ELSE

PTR + CONTENTS (G + W[l7,23]) IF W[l6] = g ELSE
PTR + CONTENTS (L + wi{l7,23]);

DISp « SIGNED(W[1#,15]);

Q +« PTR + DISP;

90T

OP + CONTENTS(Q) ;

Q « PTR + DISP; % AS FOR PD MODE
IA(Q);

BASE + IR IF W{l6,23] = g ELSE

BASE + G + w[17,23] IF W[16] = g ELSE

BASE « L + w[17,23];

IR « IR IF W[1g,15] = g ELSE

IR + CONTENTS(G + W[1l,15]) IF W[1g] = g ELSE
IR + CONTENTS (L + wlll1,15]));

JA (BASE) ;

BASE + IR;

INDEX + g IF W[16,23] = g ELSE

INDEX <« CONTENTS(G + W{1l7,23]) IF W{l6] = g ELSE
JNDEX « CONTENTS (L + W[17,23]);

DISP « SIGNED(W[1g8,15]);

IR + INDEX + DISp;

IA(BASE);

VL/%/€ UOTsTADY

SUMMARY OF INSTRUCTION®ADDRESSING {continued)

Abbr Name Notation Address Computation
LR L-Relative oPC L'([D]; DISP + W[13,23];
Q + L + DISP;
OP + CONTENTS(Q);
LRI L-Relative-Indirect OPC $L'[D]; DISP +« W[13,23];
- Q + L + DISP;
IA(Q);
Field SE(2), SIZE(3,7), Q + IR + DISP;
FB(8,12), DISP(13,23) U + CONTENTS (Q);)
OP + U[FB,FB+SIZE-1];
OpP + OP ~ 2%+ (24~FB) IF SE = 1 AND OP[FB,FB] = 1;
String CSIZE(2,3), CPOS (4,5), Select byte CPOS of CSIZE from word WA of
WA(6,23) string.
Array LB(2), ATRAP(3), LEB(4), TRAP'ABE(R) IF IR < LB;

MULTS (5,6), MULTL(5,.18),

UBS(7,23), UBL(11,23)

IATRP(R) IF (ATRAP=1} AND (INSTR#LAX) ;
IATRP(R) IF (ATRAP=8) AND (INSTR=LAX) ;
IF LEB = g DO;
TRAP'ABE(R) IF IR > UBS;
IR + (IR-LB) & (MULTS+1);
ELSE DO; .
TRAP'ABE(R) IF IR > UBL;
IR + (IR-LB) # (MULTL+l);
ENDIF; ‘
T+«R+ 1;
NORMAL'IA(T);

LOT

Number Name
1 MACC
2 PRO
3 PNIM
4 PNIC
5 TO
6 PI
7 TI
8 XMON
9 XUTIL

11 ILIM
12 MAB

108

FIXED TRAPS

Caused by

‘Parameter

Memory access error - attempted
access to monitor from below M
or utility from below U
attempted write of RO page

attempted reference to page not
in map

attempted reference to page not
in core

timer overflow - not in monitor
mode

Privileged instruction
trapped instruction

on exit from monitor via any

BLL or LOADS if,XMQNT is set in

the state

on exit from utility via any
BLL or LOADS if XUTILT is set
in the state

indirect limit exceeded

map abort

Q+(RING(R)-1)*1B6

address of IAW

Number

10

Name

ABE

FLO

FLU

RO

IATRP
UFN

FLXO

DIZ
STKOV

BLLERR

109

RING-DEPENDENT TRAPS

Caused by

array bound exceeded
floating overflow
floating underflow

read only trap

indirect address trap bit
undefined floating number

overflow on FIX or FILX
instruction

floating divide by zero
stack overflow

function call error

described in separate table

on the next page

Parameter

address of IAW

address of ROD
or ROX IAW

address of IAW

NAW+CLASS*1B6

Class

110

RING-DEPENDENT TRAP If: BLLERR

address type error in A

wrong number of arguments

. argument type mismatch.

inadmissible argument
address type error

array, label or string
descriptor format erroxr

Parameter
1B6

2B6 + NAW
3B6 + NAW
4B6 + NAW
5B6 + NAW
6B6 + NAW

g
G'[#]
G'[1]
G'[2]
G'[3]
G'[4]
G'[5]
G'[6]
G'[7]
G'[31]

G'[127]

G'[37777B]
L'[#]
L'[1]
L'[2]
L'[31]
L'[127]

L'[2§47)]

111

SUMMARY OF IMPORTANT CORE ADDRESS

Start at the user ring

POP entry IAW

2nd word of POP entry IAW

SP - Stack Pointer

SL - Stack Limit

Ring dependent trap - P is stored here

Ring dependent trap - parameter is stored here

Ring dependent trap service entry IAW

(may be used as 2nd word of IAW)

Last word which can be

Last word which can be
or IPD or as a base in

Last word which can be
lst word of the return

2nd word of the return

SYSPOP transfer address

Similar to G'[31]
Similar to G'[127]

Last word which can be

used as an index in BX

used as a'pointer in PD
BX

accessed by D, I addressing

‘descriptor - P

descriptor - L, STK, CrPA

addressed by L, LI addressing

112

SUMMARY OF IMPORTANT CORE ADDRESS (continued)-

40000898

4ﬂﬂﬂl4B-

49gP168
FLITL5
629914B
6927528
6927648
6242098
6§4gg2B

7777778

Start of utility riﬁg, Glfor-uﬁility

G may be stored here

UCALL entry IAW

Start of monitor ring, G for monitor, context bloék

G may be stored here

. State is stored here if a fixed trap occurs

Start of the SAVE area
MCALL entry IAwW
Fixed trap entry

Maximum virtual address

113
SPL PROGRAM TO DEFINE BLL

* SPL PROGRAM TO DEFINE BLL

BLL: N<«g; SPEC+f; MCAL+«g; NEWG+G; GOTO BLL1;
BLLN: N<«1; SPEC<f; MCAL+g; NEWG+G; GOTO BLL1;

* OPR WITH NEGATIVE OPERAND:
OPR: OP+« -QOp; | |
- N<OP $ BIT15; SPECeq;
MCAL<OP $ BIT14+1; o
(NEWG«4@F@PPB & R<4gFP14B) IF MCAL=1 ELSE
(NEWG+6400@gB & R«<604300B) ;
IR<OP $ BIT16THRU23; IA(R): GOTO BLL1;

POP: POPW+CONTENTS(P); IR+POPW $ FOPC; N<«g
SPEC<«1; MCAL+g; NEWG<G;
IA(G); TI() IF IMMEDIATE=1;}GOTO BLL1;

BLL1: . NEWPW«CONTENTS (Q) ;
BLLERR (1) IF NEWPW $ BITS;
NEWP< (NEWPW $ FLW IF NEWPW S BIT4=g
ELSE O+NEWPW $ FSRI);
BRD«<CONTENTS (Q+1) FTNATF«g;
CLL<BRD $ BITP; STK<BRD $ BIT1;
CPA<BRD §$ BIT2; :
CPR«BRD $ BIT3 IF CLL=1 ELSE UWSTK«BRD $ BIT3;
REL<BRD $ BIT4; FTN<«BRD §$ BIT5;
NEWL+E<BRD $ FE;
IF RING (NEWP)<RING(P) DO;
NEWG«G[14]; RET<1;
ENDIF;
. | A
* OBTAIN NEW LOCAL ENVIRONMENT
*
IF STK=1 DO;
IF CLL=g DO;
IF UWSTK=@; SP<L;
ELSE DO; SP<E; NEWL<E.FE;
ENDIF;
ELSE DO; | ’
~ SP«NEWG[2]+E; STKOV() IF SP>=NEWG[3] ;
NEWL<NEWG] 2] ;
ENDIF;
ELSE DO; -
NEWL<L IF NEWL=g;
ENDIF;

RINGCHECK(NEWP);

114

*

* COPY ARGUMENTS
*
BLLERR(2) IF N=CPA;
NAW<«P+1;
IF CPA#g DO;
FOR NFW+NEWP BY 1 DO;
R«<NEWP; FP+CONTENTS(NFW);
FTYPE<«FpP S TYPE;
IF SPEC=1 DO;
SPEC+{; AP<POPW; NAW<NAW-1;
ATYPE<FTYPE; ASTR«FP $ FSTR; AENDF<«FP $ ENDF;
_ ELSE DO; A
Lg: R«P; AP+CONTENTS(NAW);
ATYPE<«AP § TYPE; ASTR<AP $ STR;
AENDF+AP~$ ENDF;
. ENDIF;
. IF ATYPE=@ DO;
* JUMP IN ACTUAL ARGUMENT LIST
R«P; IR<XR; EA (NAW) ;
BLLERR(5) IF IMMEDIATE;
NAW=<Q;
GOTO Lg;
ELSE DO;
BLLERR(2) IF AENDF#FP § ENDF;
IF ATYPE#FTYPE DO;
* TYPES DISAGREE. ERROR UNLESS ONE IS JOKER, JOKER IS CHECKED
FOR BELOW UNLESS CADDR=] QR FSTR=ARRAY, IN WHICH CASE IT IS
NOT CHECKED.

* *

IF ATYPE#14 DO;
BLLERR (3) IF FTYPE#14;
FTYPE<ATYPE;

ENDIF;

ENDIF;
NAWP<NAW;
IF ASTR=@ OR ASTR=2 DO;

NAW<NAW+1 IF ASTR=2;

IF FP § FSTR= AND ASTR=2 OR FP $ FSTR=1
AND ASTR={ DO;

BLLERR (3) IF FTN=g; FTNATF<1;
TEMP<+NAW+1B6;
GOTO L1;
ENDIF;
ELSE DO;
BLLERR(3) IF FP § FSTR=(;
ENDIF;
* CHECK FOR ACTUAL ARG IN ACCUMULATOR
IF (AP AND TPE3TTTTB) #¢ DO;
ReP; Li¢XR; EA(NAWP) ; ARGADR+Q;
IF TP $ CADDR=1 pO;
IF IMMEDIATE=1 DO;
* CONSTRUCT IMMEDIAYE IAW
TEMP<OP AND 3777B OR 1634B4;
ELSE DO;
" RINGCHECK (ARGADR) ; TEMP<+ARGADR;

115

* MAKE THE IAW READ-ONLY IF NECESSARY
TEMP+TEMP+1B7 IF READONLY=1 OR ASTR=3;

ENDIF;
* FIX UP SO THE COPY VALUE CODE WILL COPY THE ADDRESS IN TEMP
Ll: . - FTYPE<«1; FP $ FSTR<l;
ELSE DO;

IF IMMEDIATE=1 DO; :
BLLERR(5) IF FTYPE#1 OR FP $ FSTR=g;
ENDIF;
TEMP+ (OP IF FTYPE=1 ELSE CONTENTS (ARGADR)) ;
ENDIF;
OLDR<R;
CPYADR« ((FP AND 3777B)+NEWL IF FP<@ ELSE
(FP AND 37777B) +NEWG) ;
GOTO ARRAY IF FP $ FSTR=(;
"COUNT<« (1 IF FTYPE=1 OR FTYPE=9 ELSE
2 IF FTYPE=2 OR FTYPE=3 ELSE _
4 IF FTYPE=4 OR FTYPE=5 OR FTYPE=6
ELSE GOTO STRING IF FTYPE=7
ELSE GOTO LABEL IF FTYPE=8
ELSE BLLERR(4));
UFN'TRAP () IF(FTYPE=3 OR FTYPE=4)
AND UNDEFINED (TEMP) ;
L2: R+<NEWP; $CPYADR+«TEMP; COUNT«COUNT-1;
: "IF COUNT#@ DO;
R«OLDR; Q<«Q+1;
CPYADR«CPYADR+1; .
TEMP«<CONTENTS (Q) ; GOTO L2;
ENDIF;.
ELSE DO; : ' y
BLLERR(5) IF FP $ CADDR=1 OR FP $ FSTR=(;
CPYADR+ ((FP AND 3777B)+NEWL IF FP<@ ELSE
(FP AND 37777B) +NEWG) ; .
IF TYPE=3 OR TYPE=4 DO;
STF (CPYADR) ;
ELSE DO;
COUNT+ (1 IF FTYPE=1 OR FTYPE=9 ELSE
2 IF FTYPE=2 ELSE
4 IF FTYPE=5 OR FTYPE=6 ELSE
BLLERR (4));
R<NEWP; '
STORE (CPYADR, A):
IF COUNT#1 DO;
STORE (CPYADR+1, B);
IF COUNT#2 DO;
STORE (CPYADR+2, C);
STORE (CPYADR+3, D):
ENDIF;
ENDIF;
ENDIF;
ENDIF;
NAW<NAW+1;

116

L3: ~ ENDIF;
INTERRUPT'CHECK() ;
GOTO L4 IF FP $ ENDF=];
ENDFOR;
L4: , NEWP<+NFW+1;
ENDIF;
« .
* COMPUTE RETURN DESCRIPTOR
: IF CLL=1 DO;
R<NEWP;
NEWL[@] <«NaW;
NEWL[l]+L+2B7*STK+lB7*CPR; .
NEWG[14B]«G IF MCAL>@ AND RING (NEWP)>RING (P) ;
ENDIF; '
IF STK=1 DO;
IF CLL=1 DO :
- R¢NEWP; NEWG[2]+SP;
ELSE DO;
R«P; G[2]<«SP;
ENDIF;
ENDIF;
IF MCAL=2 DO;
MENTER: PROTECT (4) ;
SET'LOCK () ;
ENDIF;
SR § TDFLAG+SR $ PDFLAG+g 1F MCAL>{;
L+«NEWL; G<NEWG; OLDP<P; P<NEWP;
IF RET=1 DO; '
' IF OLDP>=6B5 DO;"
MEXIT: UNPROTECT (4) ;
RESET'LOCK () ;
XMON'TRAP () IF SR $ XMONT;
ELSE DO
XUTIL'TRAP() IF SR S XUTILT;
ENDIF; ' ;
ENDIF;
P+P+1 IF FTN=1 AND FTNATF=(;
*
* EXIT FROM BLIL
GOTO NEXT'INSTRUCTION;
*
STRING: COUNT+«4; GOTO L2 IF MCAL=(
FORM<TEMP AND 14B6 OR 4B7; OLDT«f;
FOR I+«¢ BY 1 DO;
R«<P; RINGCHECK (TEMP) ;
BLLERR(6) IF OLDT $ WA>TEMP $ WA OR
: OLDT § WA=TLMP $ WA AND
OLDT $ CPOS>TEMP $ CPOS;
R<NEWP; §(CPYADR+I)<«TEMP AND NOT 74B6 OR FORM:
GOTO L3 IF I=3; R<OLDR; OLDT«TEMP;
TEMP<CONTENTS (ARGADR+I+1) ;
ENDFOR;

117

* .
LABEL: Q+«(TEMP $ FLW IF TEMP $ BIT4=¢
ELSE ARGADR+TEMP $ FSRW); .
RINGCHECK (Q) - IF MCAL>f;
R+NEWP; - - :
STORE (CPYADR, Q AND NOT 75B6 OR TEMP AND 75B6) ;
R<OLDR; BRD<CONTENTS (ARGADR+1) ;
IF BRD $ FE=¢ AND BRD $ FSTK=f DO;
BRD<BRD AND NOT 4B7 IF MCAL>{;
BRD«BRD OR (L IF STK=§ ELSE NEWL+2B7+4B6) ;
ELSE DO;
BLLERR (6) IF MCAL>g;
ENDIF;
R«<NEWP; .
STORE (COPYADR+1,BRD) ; GOTO L2;

ARRAY: R<«NEWP; SCPYADR<«TEMP; .

BLLERR(6) IF TEMP $ IAT#3;

IF MCAL>g DO; _
IF«<(TEMP $ UB1l IF TEMP S LEB=g ELSE TEMP $ UB2);
IA(ARGADR+1); RINGCHECK (Q) ;

- ENDIF;

IR<g; R<ARGADR; IA(ARGADR+1);

BLLERR(6) IF IMMEDIATE=]1;

RINGCHECK (Q) 1IF MCAIL>f;

R+NEWP; :

$(CPYADR+1)+(Q+(4B6 1F READONLY=fg ELSE 12B6));

GOTO L3; .

118

WORD FORMATS

A. Instruction Word

2 3 8 9 1¢ 23
TAG OPC § W

Bit» Name Normal Mode

g-2 ‘ TAG Addressing mode for TAG field
3-8 OPC Opcode

9 POP Pop bit

1g-23 W Address field

TAG Name Addressing Mode

] D Direct

1 I Indirect

2 X : Indexed

3 BX Base-index

4 PD Pointer-displacement

5 PDI Indirect«pointer"displacement
6 BXD Base-index-displacement

7 REL Relative. This one has 6 sub-cases

119

B. Relative Addressing

[/ 2 3 8 9 1¢ 12 13 23
TAG=7 opC RTAG W[13,23]

RTAG Name Addressing Mode

@ LR L-relative

1 LRI »Lérelative indirect

2 SR Source relative*

4 SRI Source relative indirect*

6 ’ IMX Inmediate indexed

7 M Immédiate

* these modes use bit 12 in the address field (e.g. W[12,23])

-

C. PD, PDI Addressing

g 2 3 8 9 1¢ , 15 16 ‘ 23

TAG=4,5 OPC t DISPLACEMENT g POINTER ADDRESS
16 23
POINTER = IR g g
16 23
POINTER = CONTENTS (G + X) g X
16 | 23
POINTER = CONTENTS (L + X) 1 X

120

D. BX Addressing

2 3 8 9 1p 15 16
TAG=3' oPC E INDEX ADDRESS g BASE ADDRESS

Where the index address field is one of the following:

1g

INDEX < IR; o —
1¢9 11

INDEX « CONTENTS(G + W); g X
1g 11

INDEX < CONTENTS (L + W) ; 1 X

- and the base address field is one of the following:

16

BASE <« IR; g
1617

BASE <« CONTENTS (G + W) ; g X
16 17

BASE « CONTENTS (L + W) ; 1 X

121

E. BXD Addressing (Base in XR)

2 3 8 9 1¢ 15 16 23
TAG=6 OPC ¥ DISPLACEMENT ® INDEX ADDRESS

Where the index address field is one of the following:

16 23

INDEX <+« §;) g
16 17 ' 23
INDEX « CONTENTS (G + W) ; g ' X
1617 23
INDEX < CONTENTS (L + W); 1 X

and the base address is in the indexing register.

F. Rormal Indirect Address Word (IAW)

g 12 4 5 6 23
IAT= TAG#7 iR LW.
=g TAGHT |yp o
2 12 4 5 6 7 9 1¢) 23
_- |TR|RE
IAT=g|] TAG=7 APILX RTAG LWR
Bits Name Contents
-1 IAT g
2-4 TAG interpreted exactly like an instruction
TAG
5 TRAP causes trap IATRP if set
6 RELX causes indexing for the relative modes
7-23 LWR long address for the relative modes
6-23 LW long word address

1g-23 W word address

122
G. Field IAW

g 1 2 3 7 8 12 13 23

IAT=1|SE SIZE FB * DISP

Bits Name Contents

g-1 IAT 1

3=-7 SIZE size of field in bits

8-12 "FB address of first bit of the field

2 : SE ~ Causes sign extension of the field if
’ set

13-23 DISP. 2's complement signed displacement

H. String IAW

12 34 5 6 23

IAT=1}CS1Z |CPOS WA
Bits ‘Name Contents
g-1 IAT , 2
2-3 CSIZE character sign: @ = 6 bits, 1 = 8,
2 =12; 3 = 24 - :
4-5 CPOS character position in word
6-23 WA word address

Bits assigned by CSIZE and CPOS:

CSIZE/CPOS 2 1 2 3
i g-5 6-11 12-17 18-23
1 g~7 8~15 16-23 X
2 g-11 12-23 X X

3 $-23 X X X

123

I. Array IAW

J5) 1 2 3 4°5 6 7 23
% _
IAT=3|LB g g {MULT UB
@ 1l 2 3 4 5 1¢ 11 23
A ,
IAT=3|L B § 1 MULT UB
' P
Bits Name Contents
g:0-1 IAT 3
g:2 LB lower bound for IR (f or 1)
g:3 ATRAP : array trap bit
g:4 LEB large element bit
g:5-6 MULT IF LEB = § multiplier for IR
ﬁ:S—lQ MULT IF LEB = 1
g:7-23 UB IF LEB = g upper found for IR
@:11-23 UB IF LEB = 1
J. String Words
5 6 11 12) 17 18 23
POSQ POS1 POS?2 . POS3
@ 7 8 15 16 23
POSg POS1 POS2
2 11 12 23
POSH POS1
% 23
POSH

K. BLL Branch Descriptor

J4) 3 4 5 ¢ 8 9 23
SRITR
ELIAP SRW
g 1 2 3 4 5 6 23
CL4ST|CPICR|RE|FT E
LIKJAUWILIN
Word Bit Name Meaning
4 .~ SREL c.f. REL + SR in Normal TAW
5 TRAP Causes TRP if set
9-23 SRW Signed displacement if SREL is
set .
g 6-23 Lw Long word addresses
1 CLL Call bit. The old P and L are
saved if the bit is set.

1 1 STK ‘The local environment is
allocated from the stack if
this bit is set.

1 2 CPA Arguments are copied if this
bit is set

1 3 CPR IF CLL=1 The CPA bit in the return des-
Criptor is turned on if this
bit is set. »

1 3 UWSTK IF CLL=g Unwind stack on return

1 4 REL Source~-relative label supplied

1 5 FTN 1 FORTRAN type function

1 6-23 E This number determines the new

L; precisely how it does so
depends on STK

125

L. Actual Argument Word (AAW)

8 9 1g 23

] 2 3 4
, EN
TAG | STR TYPE | . W

M. Formal Argument Word (FAW)

2 3 45 8 9 1g = ‘ 23
. 5 |calFs EN ~
g or 7 priTR TYPE DF W
~ Bits ‘Name Contents
3-4 “STR (actual argument ohly) structure
' 1 = variable

3 = computed scalar
2 = array element
g = array

3 CADDR (formal argument only) copy value

' 1 = copy address of actual argument

g = copy value of actual argument

4 FSTR (formal argument only)
1 = scalar .
g = array

5-8 TYPE type
g = jump
1 = integer (1 word)
2 = long (2 words)
3 = real (2 words)
4 = double (4 words)
5 = complex (4 words)
6 = longlong (4 words)
7 = string (4 words)
8 = label (2 words)
9 = pointer (1 woxd)

14 = unknown
9 ENDF end flag

g = not last argument word
1l = last argument word

126

N. State and Status Register

) 4 5 ¢ 8 9 11 12 1314 15 16 17 18 19 20 21 22 23

FD MO, 941SURU[XMITD|PDCAIT O, |IN
p | TRMOD | PRMOD | cC Lot u by ISuie [EY v PV

cC =g A<g
1 A =g
2 A>4g
- Trap State - Save Relative

addresses addresses addresses Name

6827528 6027648 gB p
602753B 6827658 1B A
682754B 682766B 2B B
6027558 6927678 3B C

6827568 6927798 4B D
642757B 6827718 5B E
€EA2764D0 6827721 68 X
6027618 6227738 7B . L
602762B 6827748 - 1¢B G
6327638 6927758 11B SR
6027768 12B CTC

6927778 : 13B IT

O. Absolute Value othegative OPR Operand
g ' 14 15 16 | 23
TYPE SYSCALL #

Type Meaning
g UCALL
1l UCALN
2 MCALIL

3 MCALN

382009098

188080008
189122998
7180203098
.718834009B

P200p20pB
gagpppees

16104p¢pB

166003 ¢4@B
ledgpggaen
ﬁlﬁﬁﬁﬂQﬂB

2008P0p0B
190ppEpIB
769300 8E
PEL74600B

4PARREAHE
140906058
B3FEBHLLL

6388 80AAB
1LEpApaIgB
BagpPEapB
gLAGOAPYB
B20B0303B
g17698p9B

49900 ppEB
200900595
166009 pB
BAGYBPEEB

B208p060B
RopRpanan
BLEpIsEye

BApPPEgEB
B20pa00 08
BePAgniiB

PEPAREEIE

127

SOME FIELDS IN OCTAL FORM

X
LR
SR
SRI
M

I in IAW
X

SR

SRI + RELX
LR + RELX
TRAP

FIELD IAW
SE

SIZE

FB

STRING IAW
CSIZE
Cros

ARRAY IAW

LB

ATRAP

MULT if LEB = §
LEB

MULT if LEB = 1

CLL bit in BRD
STK

CPA

CPR / UWSTK

variable AAW
scalar
array element

copy address, array FAW
copy value, scalar

copy address, scalar
ENDF

128

CHT HASHING ALGORITHM

In this hashing algorithm consider a byte to be 8-bits. Also
consider the unique name as being composed of six 8-bit bytes

(BYTE1 - BYTES6).

The algorithm is:

HASH'UN1 « BYTEl E' BYTE2 E' BYTE3;
HASH'UN2 « BYTE4 E' BYTES E' BYTES;
HASH'UN <« HASH'UN1 E' HASH'UN2;
HASH'UN « HASH'UN E' 264B;

HASH'UN <« HASH'UN A' 377B;

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128

