" PAGE NOT IN CORE TRAP

Judy Simon
April 8, 1974

Technical Memo ' ' ™.74-17

INTRODUCTION ‘
A page failure is first fielded by KISRV. Then PAGEM is called if

KISRV cannot build the hardware map using the software maps. Thus KISRV
(KIPIM, KIPTU) s~imu1ate$- the BBN pager which attempts to build the hardware
map trapping to PAGEM (PGRTRP) for various trap conditions and for page not

in core.

KISRV KIMPFW or KIUPFW

>

gl1]2]3Tals[6718 of1ofi1l1213(1a]15518117]18]19]2¢121]22[23]24[25] 26127128 293¢ 31{32]33134]5

-
—

write
o , ; requested

~
user or monitor VPN

LY

KISRY gets the virtual page number (VPN) of the trap from the Monitor
or User Page Fault Word. Using the VPN and whether the trap is from the
monitor br' user, KISRV determines the map wordk ta quify~ in KIEPT (monitor
" hardware page table) or KIUPT (user hardware page table). In the process
-of map word determination, KISRV may use UPTA (user software page table),
PSB (Process Storage Block), or MAP (Monitor Map). |

If the trap is for a map word not set, KISRV then tries to 19ad the
hardware map from ’the software page table (map). The page table can contain
three types of pointers: private, shared or indirect’. For a private pointer
which points to a page in core (indicated in the pointer), KISRV updates
CST@'s age field, sets the map half-word in KIEPT or KIUPT, and returns.

HARDWARE MAP HALF-WORD

of11213[als5ie]7i8]ol1of11]12liclidlisastz)se iniadlani2

22124125[26127}2€729{30[31)22]33134;35

N

| . ~" >
physical page address

KIAXB
read allowed

write allowed
if write reference

Page 2

A shared pointer- (shared file page) is an index into the SPT to a
pointer to the shared page. The SPT entry has the f'in core" bits and the
page address. If the page is in core; the hardware map is loaded as with
the private pointer. An indirect pointer allows one fork to access a
pége in another fork's page tablev.: In this case; the indirect pointer is
an index into the SPT + a page number. The SPT entry' contains the address
of the other fork's page table and the indirect pointer's Apvage number is used
as an index into this second page table to get the page's address. If both
the second page table and the page are in core (indicated in the SPT entry
and page table entry), then KISRV loads the hardware map as with the private
pointer.

If, in any of the above cases, the’ page table (indirect pointer) or

the page 1s not in core,. or the trap is for other than a map word not set
| (such as, an error), then KISRV creates TRAPS@ (Trap Status Word) and control

1s passed to PAGEM.

TRAPS§
[1¢ 2131415181713 911a[11f12113)14l15016 (17118119128 21{22]{23!24]{25[261 27|28} 2¢|30{ 31]32{323{34{35]
1
. 1llegal write ~ ~ —
|illegal read or VPN
execute ~ monitor mode
~access trap =write request
-user trap
~write copy trap
Lpage not in core
if = @ page status changing

1 bits 2-7 have meaning

Page 3

- "'PAGEM ' (PGRTRP)

PAGEM was originally intended to handle page traps directly ffqm the
hardware. Since some of the hardware work was taken over by KISRV and
KISRV does not completely simulate the hardware, » PAGEM has code which is
not used. Spec:Lflcally\, some of the bit conbinations possible in the
TRAPS@ are never set by KISRV and therefore , some of the branches in PAGEM
based on these bits are never taken.

PAGEM uses the TRAPS@ bits 1-7 to determine which routineA to execute.

“'BIT " 'ROUTINE
=0 TRPP ' page in transition
1=1 and
- 2=1 NIGC - 'page ’n(')t ‘in ‘core
- 3=1 WCPY write copy
4=1 UTRP ~ user trap
- - 5=1 NPG access (page not in existence)
- 6=1 IIRD illegal read or execute
7=1 ILWR illegal write

NIC Routine (See TM.74-16 for formats of entries in tables.)

The "not in core' trap can be caused eith.er‘ by the page not being in
core or by both the page and the page table for the page not being in core.
PAGEM first checks to see that the process has not overgrown its reserve.
(If it has, some pages must be removed from the process. See below.) It
then analyzes the trap address to determine the page (or page table) not in

core. As in KISRV, first the trap address is used to find the pointer in

Page 4

the software map where the trap occured. kIf the’pointer'is~fprivate"; the
pointer contains the current address~qf the missing page. For a shared
pointer, the SPT contains the current address. In the case of the indirect
pointer, the SPT contains the address of the page table which may not be
in core or which. contains the pointer to the page which is not in core.
Once the pointer for the missing page is 1ocated; in general it will
contain the drum or disk location where the page can be found. (If it
does not contain an address, it is a newly assigned page; If it is
intended for a file, it is given a disk address in the same general area as
the rest of the file,) Before the page (or page table) is brought in, the
‘replaceable queue (free list) of core pages is checkgd to make sure there

is a page available. If there is, a page is removed from the queue.

. | REPLACEABLE QUEUE (RPLQ)

@lvialalajslalslole e atfi2tialaTisia izl 1292122231241 251261 27 281 29]36]31132]32]3e[35

gl : N
backward pointer forward pointer

If the page table is missing, it is brought in first. Special measures
are taken to make sure that until the page table is in core; any~imdiréct
references through it are taken care of. The page is brought in nekt. (In

the case of a newly created page, the page is, of course,'not brought in, but

it is zeroed.)

Page 5

When the page (or page table) is brought in, the Core Status Tables
for that core page are updated. CST@ is given an age for the page, CST1
gets the storage address of the page (disk or drum) ,‘CSTZ_ gets the address
of the owning page table, and CST3 receives the owning fork nmumber. These
four tables describe the mnership of a particular core page. (If CST1 had
had the storage address of an old page;‘ this address would have been saved
in the old page's page table or SPT slot.A) The page table or SPT slot fqr |
the new page is given the new core address. |

Finally, when the page (and its page table) is in core and all of the

tables are set, the trap is "undone' and the process is resumed via SCHED.

Fork Overgrown its Reserve
) When t:he number of pages needed in a fork equals the reserve size of
1 the fork (working set limit), the reserve is increased until the maximum
I;w;lber of pages allowed is reached or until there is not enough room in core
for the Balance Set. When one of the last two conditions occurs, some Qf
the fork's pages must be removed.
The routine which removes pages scans for the oldest pages (least
recently used) by setting an arbitrary cut-off age and then scanning CST1
‘ ‘for all pages belonging to this fork which are older than the cut-off age.
The process of removing a page from core is complicated only by the desire
to put file pages back on the disk, unshared (not in use) pages on the disk,
and all other pages, including index blocks, on the drum. Pages which have
not been modified are not written out. If a page is goint to drum, the
Drum Status Table (DST) entry for this page (which contains the disk addréss

for the page) is marked. to indicate there is a new copy on the drum. If the

Page 6

storage address in CSTl for this page (on its way to the drum) had been a disk
address, a drum address would be assigned, placed in CST1 and the disk

address stored in the DST

DRUM STATUS TABLE (indeked by a function of drum address)

8j1j213lalsTel7]8 S 1 NS 1877 181 13128 23{n2]223024l25125/37125 2513213113 7435134{ 38

NN !

. N o
Disk Address
=written to drum since sent to disk

‘Pages headed fdr disk which have a disk address in CST1, have no special
procedures. For pages going to disk which have a drum address, the disk
address is gotten from the DST, the DST entry is released, and the disk
address 1s put in CST1. After the page is removed, control is returned to

the routine which scans core for another "old" page.

	00
	01
	02
	03
	04
	05
	06

