- Overview of the LOLO Assembler and Functional Description

Charley Shapiro
May 21, 1974

Technical Memo ™.74-18

Overview of the LOLO Assembler

The assembler converts input (in the high level language Micro) ©
to binary output; it also generates files for expanded listings, error
listings, and identifier / keyword cross-reference listings.i

The asSembler consists of four modules -- the preprocessor, the
. parser, the code generator,‘ and the assenﬂaler-driver. in’ addition,
there is an unpreprocessor. |

Thé preprocessor converts input 'strings (in Micro) fo strings
of one-word tokens One token is generated for each identifier / keyword/
constant in the input line. In the case where the input hne is a
camnent‘, the output cansists of a comment token followed by the text
of the comment in packed form -- 3 characters to a word The output of
the breproces’sor, known as preprocessed text, is stored in the data
structure PP'TEXT'TABLE. | |

The Parser takes the preprocessed text (PREP'OUTPUT) as input
(INPUT'STREAM) and converts it to token s’trivngs‘of a differi;zg form. |
Arithmetic Statements are changed to reverse polish form. The legélity' of
Boolean expressions is checked and the LB and RB fields of the microword
are set. Macros are expanded, new idenfifiers are stored in the sjmboi
table. (Checks are made for syntactic errors and sxb-expressions are tagged
as 'being one of five types: assignment statements, branch st,atements,

special functions, field assignments, or memory operations. The output

of the parser consists of two-word tokens; the flI‘St word contains
type and value information, the second is a pointer to a previous
token (used during code genei‘ation) . |

The output (OUTPUI"STREAND of the parser is the input (QODE'GEN'INPUT)
to the code genérator. This module generates the 128 bit microwords
(one microword for ea&h source line except Macro, ORG, and Define statefnents ,
and conmeﬁts, for which no code is generated, and NONE statennsnts “for
which the specified number of no-op lines of code are generated. During
this process the code generator checks for semantic errors. } |

The assembler-driver opens and closes all necessary files, initializes
‘the» data structures, ré_ads in the source code, céilé' the preprocessor,
parser, and code generator; causes éxpanded listings and cross-references
to be generated, calculates the values of the parity bits, and arranges
the binary output in the form required by the LOIDproceSsor. |

" Furictional Description of the LOLO Preprocessor

Function Preprocessor is the driver for this package. It
| processeé the input line one character at a time, dispatching to a
- subroutine for each character. |

The function first clears TEMP'STRING, the sting in which
identifiers are collected. |

~ In the main'loop, the function reads the next chéfécter off source

line INPUT. If this is a multiple blank ¢haracter, it is converted to
a single blank. The character ‘type ACTNUM is then dete;fmined by using
the numerical value of the character as an index into éi‘fay ACTION'TABLE.
This character type is then used to select th@. proper subroutine to
process the character, which is then called. Upon return of the subroutine,
the character is sto:ed‘ into PREV'CHAR for refererice, kdm"ing proces's‘ihg |
of the next character. The actions of the loop are then repeated. |
o After the source line is exhausted, a check is made to insure that
the line en&ed properly (either with a Sémi—colon' orv,,l.i‘n’ the case of |
lines containing only .é 1abe1, with a cblon).

if it has been determined (by function Eval'identkifier) that this
statement is a macio declaration or an ORG or a NONE statement, Preprécessor
now calls the proper subroutine to process these statements.z " The ‘drivér |
.then returns to the assembler,

The individual character. processing routines are described in

the following paragraphs.

Function Space calls ident'or‘num_to handle identifier processing
if the space follows immediately after an identifier or number. No

token is generated for the space. Space then returns.

Function Operator calls Ident'or'mum if the operator follows
immediately after an identifier or number. A token is then generated

for the operator, stored into PREP'OUTPUT, and Operator returns.

Function Colon first checks to insure that no tokefis have been

. genefated so far for‘the current line (since the colon is assumed to

follow a label which should be the first thing on the line). It then

checks to make sure an identifier precedes'the colon and calls

Ident'or'num to process this identifier. A token for the colon is then

inserted into the token buffer, the symbol table,entry"fbr the label

jﬁ#t pfocéssed is initialized (type and value are'éetj“énd Colonrréfurns.‘
Function Semi calls Ident'or'num if the sémiéolon follqw§'immédié£ély

- after a number or identifier. A token is then generated for the semicolon =~

and inserted into PREP'OUTPUT. A check is made to insure fhat no characters

follow the semicolon in the source line and then Semi returns.

Function Skip'blanks simply looks for the first non-blank
qharacter in line INPUT; it FRETURNS if it’éoesn't find one,else$;'

it returns the character.

Function Dot determines whether the dot represents the current

- line humber or whether it indicates field assignment. The function
reads the next character from INPUT and if this character is one of

R L LR VA Wy Y, or ;'2 the dot is assumed to represent

the current line nunber and a constant token for this value is generated
and stored in PREP'OUTPUT; Otherwise the dot is assumed to indicate
field assignment and function Operator is called. The read pointer for

INPUT - is backed up one character and Dot returns;

Function Reltn generates tokens for relational operators
(=5 #, 2, <, >=, <=), It first‘calis Ident'or'num to process
any number or identifier that immediately preceded the~opeiator.
If the character which’caused Reltn to be called is *>' or '<', the
function checks the next character in INPUT to see. if it is '=' |
(thus making the relation f<=' orv'>='),'resetting'the'readlpointer S
if it is nbt. A token is then generated and stored in PREP’OUTPUT;

and Reltn returns.

Function Chrctr, called for alphanumeric characters, simply writes

the character on TEMP'STRING and returns.

Function None'init processes NONE statements from the preprocessed
text. It first checks to insure that the token'following the one for

NONE is for a constant. The variables CURRENT'LINE'NUM (which keeps

-5~

~ track of the control store address of the line of code that will be v’ ,
generated for the source line currently being procéssed) and CODE'LINES
"(which is the total mmber of lines of code that will be generated for
all source lines processed so far) are adjusted according to this

constant.

Function Store'macro stores the text of a macro definition away
in a data structure called MACRO'TABLE. It begins by checking the
syntax of the macroldefinition and initializing the symbol table entr_y
for the macro name -- symbol type is set to MAC and symbél value is

assigned to be the index in Macro'table of the header for the text
associated with this macro. The text, not including the final semicolon,

is then stored away. The number of tokens in this macro text is then
stored into the macro header, the word prei:eding the corresponding
stored text. The index in MACRO'TABLE indicating ‘the first free word

is updated and Store'macro returns.

Function Org! 1n1t processes ORG statements from the preprocessed
text. It first insures that the token followmg the one for ORG is
for a constant CURRENT' LINB'NUM is set equal to this constant.

Org init then returns.

Function Ident'or'mm simply looks at the first character in
TEMP'STRING (where identifiers and numbers were written by Chretr); |
'aftefbacking up TEMP'STRING's reader ‘pointer one character Ident'or'num

-6-

‘calls_the proper subroutine to finish processing the contents of
TEMP'STRING -~ Eval 'number if the first character is a digit else
Eval'identifier. After the subroutine returns, the pointers in TEMP'STRING

are reset (to zero) and Ident'or'num returns.

Function Eval ‘number first clears the octal/decimal flag OCT and
then calls Cnvrt'str'mm to convert the contents of TEMP'STRING into a
number. When this subroutine returns, Eval 'mumber creates the pre-
processor token for the constant (determining the type according to

whether OCT is set or not) and returns.

Function Cnvrt'str'num converts the contents of a specified string
into a number which it returns. When conversion begins it is not
known whether the number is to be octal or dec1mal so both forms are
calculated The function reads one character off thﬁ string at a time.
If the character is one of 'g',...., ', the follow1ng actions are
performed: The portion of the octal number previously calatlated igii
multiplied by 8 and the decimal form by 10; the character read from :

gg'strlng is converted to a digit by subtracting '¢' from it and

this d1g1t is added to both the octal and dec1mal forms. - If the dlgit is
8 or 9, only the decimal form is computed and flag IEC is set (ta indicate
that this must be a decimal number.

If the character read from temp'string is a 'B' (indicating that
the number is octal) the following'is done: a check is made to insure

flag DEC is off; if not, an error message is generated. The octal form

\7-

calculated is assigned to variable NUM, fiag OCT is set (for uée By :
Eval'number) and a check is made to see if a digit follows the ‘B'

in TEMP'STRING. If so, NUM is modliled by mult1ply1ng 1t by 8 the number
of t:mies specified by this digit. Checks are then made to insure that
' 'I'EMP’STRING is now empty and that the calculated number will fit in a
16 bit register. NUM is then returned. '

If the character read from temp'string is a 'D', actions similar to

 the above are taken except that the decimal form is returned.

If the character from temp'string is none of '0',...., 'g', 'B',

or 'D', an error message is output.

- Function Name'lookup performs the same function as the utlity call
Abr'lkp (abbreviated lookup). It searches for a specified string
(first argument) among the elements of a string array (second argument)
of a given dimension (third argument) . If successful, it retums the
index of the string in the array. Otherwise it FRETURNS. It 'w.orksifin this{? v
manner: Tl . ' A

It assigns each string in the string array, in turn, to S1. If the
length of S1 and TS (the string being searched for) differ, no further
comparison is performed between these two strings. If the lengths are the
same, the strings are compared charécter by character, As soorn as two
corresponding characters fail to match, the vconparisozl'x. is aborted and the
next element of the array is tested. If the strings match, the index is

returned.

Function Eval'identifier processes identifiers. First it checks |
to see if the identifier is a keyword by calling Name 'lookup with the
identifier being evaluated (in TEMP'STRING) and;KEYWﬁRD'ARRAY. If
it is found thét this identifier is a keyword, a check is made to see
if it is thé word MACRG, REGISTER, SFUNCTION, PARAMETER BCONDITION, ORG,
| or NONE. If this is the case and the word does not occur within a
macro definition, one of several flags is set to indicate special
processing is requ1red 1ater on. The token is then created for thevkeyword :
and the function returns.

If the identifier is not a keyword, a check is made to see if it-
is a register name and if so a token is created and the function returns.
If it is not a register name, then it is determined whether it is a
field name; if so, a token is created and Eval'identifier returns.

If the identifier is neitherva keyword, register name, ncf field
ﬁame,‘it is assumed to be a user defined word and a check is made to
see whether there is already a symbol table entry far this word. This
check is made by calculating a hash code for the 1dent1f1er and mdexmb
* into the symbol table through the hash table BUCKETS ‘The length of
the identifier being searched for is compared with each identifier
in the symbol table whichvhas the calculated hash code{ in turn.

If the lengths are not equal, ﬁhe next word is tried. If the leﬁgths
are equal, a word by word comparison is performed. As soon as corresponding
words fail to match,comparison with this particular word is aborted.

If the-identifier is found té be in the symbol table a check is made
on the type of the symbol. If it is a macro ﬁame; the first two tokens

-9-

in this macro's definition are checkedfto see if this macro expands
into DEFINE statement. If so, the proper flag is set to indicate special
processing is requifed later on. No mafter what ‘the symbol type was,
a tokeﬁ is created and the function returns. |

If the identifier being evaluated is not already in the symbol»
'téble, an entry is méde for it. This consists of entering the name
in table IDENT'STORAGE and setting the type of the corresponding
symbol'table entry to IDENTIFIER, A token is created and the function

returns.

-10-

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10

