TENEX Scheduler
An

Overview

_ Wrenwick Lee
Technical Memo : ‘ June 7, 1974

- TM.74-19



Conment

The following is the skeleton of a more comprehensive document
which will analyze the scheduler more deeply. Each of the various
points will be expanded to greater detail. Specifically, the emphasis
of the later document will be on the problems of having a separate
management procéssor do scheduling. Encapsulation will then be

considered also.

However, it is felt this document will be of interest and use

to those who want/need a basic understanding of the scheduler.



TENEX Scheduler - An Overview

The TENEX Scheduler's primary function is to run processes for

quantums of time; to allocate the processor (according to some policy)

among various processes. Processes compete for the processor resource;

some with higher priorities than others.

The actual implementation of a scheduler, however, involves various

gyrations that tend to conceal the basic simplicity of the scheduler.

The scheduler will be described in terms of the following functions

it performs:

(1) Time-dependent system services

@)
3)
@)
©
(6)
)
@)

a) Terminal handling
b) Status checks (IMP, disk, magtape)
c) Job averages

Blocks and Wakeups

Scheduler Requests

Reservation constraints

Clocks

Balance Set Control

Flies in the ointment

Scenario: a user process being scheduled, run,
rescheduled, etc.



- Time-Dependent System Services

Periodically, the scheduler must run certain system service
code. " | |
The first of these is the terminal handler. Currently, a
PDP-11 acts as a concentrator for various terminals. The PDP-11
receives the characters and loads them into a ring buffer; Aloﬁg with
the character is a tag that tells which line it came from. The |
terminal handler routine that the scheduler must run periodicaily
(between 15-33 ms) retrieves the characters from the ring buffer
(affectionately known as thé big buffer), and packs them into the
'ﬁéﬁépp}ég}iate individual line input buffers. Similarly, it takes
characters from the line output buffers and stores them into PDP-10/
PDP-11 interface buffers. The PDP-11 takes these characters-and sends
them to the appropriatevternﬂnals. The reader is veferred to the terminal
1/0 document for further details.
Status checks on certain devices are also run periodically. ,
The IMP is checked frequently (between 15-33 ms), having thé same periodicity .
as the terminal handler. If it is found that things are not well
with the IMP, various corrective actions are taken. Similar
checks are done on the magnetic tape units and disk, but these are
at intervals of 100 ms.
Runnable job averages are taken every second. . Information such as
the numEer of jobs that are runnable at any given moment, etc. are

updated.



Blocks and Wakeups

Ideally, it would be easiest to think of giving a process a
quantum of processor time and that the pfocess would then fully
execute in this amount of time, whereupon we would do the same for
the next process in line. Realistically, this is not usually the
case. Processes have to wait for pages to be swapped in, wait for
input, and wait for critical cells to be set. If is inefficient to have
the processor wait along with the process. So we block the process
and Tun a different process. There are two routines that set up
the blocking. These are the routines EDISMS, and DISMSE (ocated
in the scheduler), which are called from many different .
parts of the operat:mg system. Corresponding to blocking the

process we must at a later time unblock or wakeup the process,

Wakeup does not mean allocating the processor to the process, it

wakeup in TENEX is done by routines which decide if the process
can now be unblocked. The address of a test routine is given to

EDISMS or DISME when a process is blocked. These addresses are saved
in a system fork (process) table: FKSTAT. There is one entry

in the table for each fork (process) in the system.



FKSTAT

Toutine
process 1 address
2 routine
address
L4
o
[
)
»
[}
'l
¢
r 4
[ 2
routine
n address

The entry is actually in use only when the fork is blocked. When
it is not bloc’ked, there is a slot reserved for it. Periodically,
‘the scheduler will execute the wakeup tests for all the blocked forks.
(TENEX 1.32 has a modified version of this scheme, see Appendijc on changes
to scheduler in TENEX 1.32) The flag ISKED is the switchused to signal
the scheduler that it should go through the test routines. At worst it
is set every 100 ms by a system clock (CLKS) but othgr events may
have it set also. e.g. a pseudo-interrupt request will céuse ISKED
to be set. . t

The test routines take the form of testing if a bit has been
set, or a certain time elapsed, or for positive or negative, etc.
For a routine that is blocked indefinitely (e.g. by a HALT or FREEZE
in the fork control mechanisms), the test defaults to an immediate
failure to meet the wakeup conditions. There is also a gallery of
wakeup test routines provided by the scheduler for the othe;' parts

of the operating system. However many parts of the operating system



use their own tailored tests.

Scheduler Requests

Various requests for service can be made to the scheduler. These
come in at random. from various forks, terminals, etc. These are
placed on a request queue and are serviced (if there are any) at worst,
every 33 ms when the basic 33 ms scheduler clock interrupts. (This
is described in more detail in the section on clocks). The priority of
servicing these requests is low. All other time-dependent system

services are done first. These requests are:

JOBSRT LOGIN, start a new job
ASSFK , Assign a Fork

P70V Overflow, Floating Overflow
P7FOV Floating Overflow Mel
P7POV PDL Overflow

P7PI1

MPEINT Gives I/0 error interrupt



Reservation constraints

The ILLIAC version of TENEX imposes a reservation system upon
the normal TENEX scheduling scheme. At pfesent, time is split up into.
two minute intervals. Within each interval, a process (more correctly
the job of which the process is a part) has a maximum percentage of
the processor time that it can use. This is given in variable
JOBQNT (msec) corresponding to that job. Every two minutes, r_egardless
of whether the job has used all its processor allbcation , the processor
is redistributed again. Under the reservation system, two classes
of users are designated: Heavy and light. Heavy users can be

allocated up to 50% of the processor time, light users approx. 5%.

Clocks

In order to properly initiate the time-dependent routings »
time the running process, and maintain various functions involving |
time, the scheduler is given the responsibility of maintaining’
certain system clocks. o

The basic system clocks are derived from two hardware clocks:

a 1 ms clock, and a 16 2/3 ms (60 cycle) clock. These cause processor

interrupts at their respective periods. The primary system clock is



TODCLK - (to-date clock)

which is incremented every 1 ms (when the.l ms hardware clock interrupts)
The scheduler is givén control every 33 ms to update specific

other system clocks. At every other tick of the 16 2/3 ms (60 cycle)

clock, an interrupt to the Ascheduler is generated. This is a forced

transfer of control to the scheduler via the interrupt system. Of

course, the process running may block first, andAthus the scheduler

will regain control before the 33 ms are up.

The following clocks are updated at least every 33 ms or earlier

if the running process blocks. These clocks are initialized (in

appropriate places) with a negative ms value. The scheduler will add
the appropriate elapsed time (since the lést updaté). When one of
thesé clocks turns positive, it is time tb perform the time-dependent
service or whatever function needs to be performed. ,Thes¢ clocks,

and their descriptions are:

1) RJQNT - running job quantum. The TENEX scheduling policy
uses 5 queues with.diffevrent priorities.
A job is put on the highest priority queue
(lowest numbered) to begin with. This queue has
the smailest quantum. It is believed that

interactive jobs will tend to migrate to this




queue. If a job shows need for greater amounts
of computation (compute-bound characteristics),
it is moved to successively higher numbered

queues which are of lower priority but have

larger quantums. This clock is loaded when the
process is started on the processor. Initially
it is given a full quantum from one of the
priority queues. RJQNT itself will not time 6ut
unless the process uses up all its compute time.
If, however, for some reason the process is
temporarily blocked (e.g. the scheduler had to
run some system service routine) then when it
returns, the unused portion of the quantum is put
into RJQNT. A compute bound process will use up
the quantum on a high priority queue, and move to
queues with succeedingly larger quantums but lower
priorities. Heuristics have been‘added to allow .

~ movement back up to higher priority queues.

The quantums for the queues are:

100 ms - A {
500 ms
2500 ms high T large
_priority . quantum
4500 ms
14500 ms v



2) ISKQNT - Running job remaini interval quantum. Under
—ming joo ining

3)

4)

the reservation system, a job camnot have used
more than a given percentage of the processor
resource in a gi\}en interval of time. Currently

this interval is set at two minutes. Notice that

-this restriction is over and above any TENEX

quantum policies. Regardless of what RIQNT

has in it, if a job has used up its allotted

ISKCLK -

TTBTIM -

percentage in the two minute interval, it will
not be granted any more processor resource.
At two minute intervals, ISKQNT is reset to

allow a new full percentage for the job.

Related to the clock in 2), this clock is the
principal clock of the reservation system.

It has a time out every two minutes. At this
time out, all the job clocks are reset to allow
a full percentage quantum for the nex; two
minute interval. The percentage is taken from
JOBISK, while JOBQNT is loaded with the then

computed quantum.

This is a 15 ms clock that initiates two actions.

The first is to check on the status of the IMP.

-10-



5) TIMZ -

Balance Set Control

This is one of the time-dependent system services
mentioned earlier. The other is to dispatch <object?>
to the terminal handling routine that retrieves
characters from fhe ring buffer loaded by the

PDP11, etc. Note that this is a 15 ms clock

while the forced control to scheduler is a 33 ms
clock. If there are no blocks of processes, then
the actions controlled by this clock will take

place 33 ms apart. If there are blocks by processes,
then the various clocks will be updated in shorter
than 33 ms intervals (dependi_ﬂg on how quickly the
processes block) and the actions to be performed

will be closer to the 15 ms time out period.

This is a 100 ms clock that’ periodically checks

the status of the disk and magnetic tape.

The scheduler must implement a policy concerning which process,

out of the many possible, will be allocated the processor. (According

to the basic policy mentioned earlier in the description of the

RIQNT clock.) It also must be aware of the state of core memory regarding

-11-



fullness. The word balance indicates an attémpt to balance the
number of processes with pages in core. If core gets too full, then
a process may have to be removed to make room for one with higher
priority. Thrashing‘occurs if the pfoceéses get swapped too much,
while poor response results if certain processes hog the memory.
Starting or stopping processes involves overhead such as

updating certain process-related clocks, changing status entries in
fork tables, setting up the pager to accomodate this process, etc.

These routines are part of the scheduler code.

Flies in the ointment

There are certain system quirks that deserve mention. Previous
to this section, the functions of the scheduler have been given
with a specified raison d'etre. The following is given as a

'Well, that's the way it is."

1)  NOSKED, OKSKED - Certain critical sections of monitor
code are sandwiched between NOSKED, OKSKEDs.
This prevents the scheduler from scheduling
another piocessl This is because critical

- structures are currently being handled on

-12-



2)

3)

behalf of a single process. However,

updating of the process clocks (RIQNT,

ISKONT, etc.) may take place.

Pager Simulation Code - If ».when the clocked interrupt to

the scheduler (the 33 ms clock)
occurred, we had happened to be

in the pager simulation code, we

‘immediately return to the pager

simulation code. Not even the
process clocks (RJQNT, ISKQNT,
etc.) are updated. We do, however,
set a flag to tell the pager simu-
lation code that there waé an
attempt to schedule, and want

to do so as'soon as we are out

of the simulation code.

RSKED - Similar to the Pager Simulation Code situation,

if there was a clocked interrupt to the scheduler

(the 33 msec clock) when we were in a NOSKED

situation, no scheduling decisions were allowed

to be made , but process clocks do get updated.

When the process comes out of the

NOSKED situation, it then has the option to

execute ARSKBD which will cause us to enter the

-13-



scheduler if there had been an attempt to schedule.
Otherwise RSKED is like a no-operation (NOP).
4) Pager Trap Starting - A pager trap has been initiated for
the current process, then we can
be considered to be in a NOSKED
situation. RSKED can similarly be
. used to enter.the scheduler ét»a
later’opportunebtime. (Process
clocks are updated similar to RSKED.)
5) INSKED - The clocked interrupt to the scheduler may have
come while we happened to be in the scheduler
already. The clocks are updated, and we

continue the scheduling as if no interrupt had
occurred. INSKED is a flag that tells us

whether we are in the scheduler.

6) Priority Interrupt system - Somewhat hidden, but nonetheless
vying for the Pprocessor resource,
are various hardware interrupts.
These are associated with various
devices such as the disk; drum,
displays, etc. Evidence of this
shows up when we find that not only
is NOSKED invoked, but the interrupts
are turned off for some or all
devices in some critical data
structure handling.

-14-



1 ms:

1.
2, 1 ms:
3. 15 ms:
4, 16 ms:
5. 33 ms:
6. 100 ms:
7. 100 ms:
8. 100 ms:
SOO ms
2500 ms
4500 ms
14500 ms
9. 1 sec:

10. 2.min * n$%:

11. 2 minutes:

System Clock Periods

hardware clock

TODCLK (to-date clock)

TTBTIM (IMP check, terminal handler)

60 cycle hardware clock

Interrupt to scheduler clock

TIM2 (check on disk, mag tape)

ISKED flag; (max) time before wakeup tests performed.

RIONT queue quantum clocks (maximum for each queue)

RJTIM runnable job averages
ISKONT (per job) per cent of 2 minutes that a job
under the reservation system can run within the 2

minute interval.

. ISKCLK time to reset quantums for jobs under the

reservation system

-15-



Scenario: A user process be‘ing scheduled, run, ‘rescheduled,‘ etc.

In the following scenario, we shall follow a user process as
it is being scheduled, run, and rescheduled. The scenario is intended
to illustrate the various workings of the scheduler and does not claim
to show the typical behavior of the scheduler.

| The process, being newly introduced to the system, is put on
the highest priority scheduler queue (with a short quantum). It has
a (maximum) specified amount of time (with respect to the reservation
system) that it can run within the reservation system's two minute
intervéls.

The process being of high priority, it is decided by the schediler
balance set control that the process should be run. Then comes a s'erie§ of
page faults, as the process accesses virtual addresses that aren't in core.
For a given page fault, the process will block. It will give the |
scheduler a test routine to check a word that will be set (by the page
manager) when the page is read in. The scheduler thén can update
. the process clocks, possibly having to do some terminal hanciling,
checking the status of various devices, etc. When the scheduler
executes the wakeup test for the process, and finds that the page
is in, then the process is awakehed, and available to run. It must
wait for the scheduler to let it run, however. When it is again
running, it is being interrupted (really quite unnoticeably to the

process) each msec because TODCLK (to-date clock) is constantly

-16-



being updated. Assuming the process did not block by itself, the
system clocks now indicate it is time to interrupt to give the scheduler
control (this is the 33 msec scheduler clock). ‘The scheduler finds it
must do the terminal handling servicé, and perhaps some scheduler
requests.

At this point we see that the process hardiy ever uses the

processor in an uninterrupted continuity. The scheduler regains

always looks to see if some time-dependent service must be done.
Now we have a picture of a process running, interrupted at times
by the scheduler to see if time-dependent services need to be done.
If the process needs input, it will block until the input comes in.
Then when the input comes in, it will be awakened again. If the process
times out (i.e. runs out of its quantum) then it is placed on a higher
queue with larger quantum but lower priority. It may also time out
if it has used up its quantum with respect to the reservation system
and can't run until the next two minute interval.
The process remains in core as long as theré is enough_éore to
accomodate other processes coming into the balance set. If, however,
another process coming into the balance set is of higher priority,
and there is not enough core to fit all of the processes' requirements
with respect to the balance set, then it is possible that our subject

process might be removed from the balance set. If it is the lowest

priority among the processes in the balance set, it will be removed.

-17-



There are other intricacies that can be mentioned here, but
it suffices to stop at this point. The reader can easily add

other complications described in the previous sections.

-18-



	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18

