TENEX Protection Memo

Chuck Wall
June 14, 1974

Technical Memo TM.74-20

1. Introduction

This memo is é first draft of some ideas on how to provide a -
more general protection mechanism for TENEX users. We will review
the relevent access control models and implementations, consider some
applications that the present TENEX protection mechanisms do not
support in general, specify the basic approach to be used in providing
new protection mechanisms, analyze the TENEX system with respect
to the protection models and additional requirements and provide some
proposed solutions. All of these ideas are at best proposals at
thls stage. It is felt that it is appropriate at this time to expose
these ideas to both the BBN TENEX group and the I4 group in order to
provoke criticism which will provide us with a better framework and
guidelines for proceeding. '

‘ There wiil be some detailed implementation specification memos

that go along with this memo and extend the basic ideas covered here.

2. Review of relevent access control models and jmplementations

Wé consider "access control mechanisms' or "protection mechanisms'
to be those mechanisms (hardware, firmware or software) "which control
the access of a program to other things in the system." [L71] It
is usually the case that we treat a process (a program and ifs
operating environment) as subjects and the "other things' as objects.
[e.g. G68, J73, L69a, L69b, L71, WU73] |

A general model proposed in various forms by Graham and Denning,

Lampson, Jones et. al. is the access control model which specifies the

, following three components:

Objects - those entities to which access must be controlled;
Subject - an active entity whose access to objects must be controlled;
Access - the operation or the access a subject can potentially

perform on an object.

Jones [J73] describes access protection in terms of enforcement
..at.each of three sites: the "object site," the "éxecution site"
and the ''access site." ‘The three basic problems to be solved in

a specific implementation of this model are as follows:

1. Identify the subject and object types and specify the

set of possible accesses to each object type;

2. Specify representations for the protection information associated
with each object type;

3. Insure the enforcement of the protection rules; .

4. Specify the mechanisms and the rulesy under which subjects can

manipulate protection information.

We will assume that each object can be uniquely referenced, that subjects
and accesses can be considered object types in order that they may also
be protected and that objects are composed of constituent components

that may require access protection. |

. Two general conceptual representations of protection information

‘that allow the specification of alternative implementation representations
are the access matrix and tripleb. (see fig. 2.1) The access métri.x

is a three dimensional matrix representétion where the various subject,
‘obj ect and access types are associated with one dimension of the access

matrix. Clearly, not all subjects have access to all objects nor

do all access types apply to all object types. Indeed it is expected
that an access matrix would be quite sparse and not dii'ectl): implementable
since considerable space would wasted. Heﬁce, it is important to
consider alternative encodings. An encoding that would be equivalent

to the access matrix is the triple (Sub, Obj, Access). We could
implement a dynamically changing list of such triples. This would
conserve space but would be costly in terms of the time involved to

search the list and validate the access. It is convienent then to

nhOmGwacm .

Access Matrix:

Forks JENs Directories Files
FK1 FK2 FK3 J1 J2 D1 D2 F1 F2.

F , Halt Byte- Login Read
0 FK1 Kill Input Logout
R
K
S FK2

‘ Block Random Read

FK3 Wakeup 1/0 Connect Write
Triple:

(Sub, Obj, Access)

Alternative encodings:
Matrix partition Tuple " Enforcement at Typical Use
Row (Obj, Access) Execution site Capability
Col (Sub, Access) Object site Access control
Plane Access site Type checking

(Sub, 0Obj)

Fig. 2.1: Representation of Protection Information

-4-

consider'partitianing the access matrix. If we want to contro] the
abilities that a subject has we could épecify~an encoding of (Obj,
Access) pairs in the subject's environment commonly refered to as a-
“"capability list." In order to control access to objects that have
an existence independent of subjects we could encode the (Sub, Access)
pair in the object's environment. .This type of encoding is usually
refered to as an "access control 1list" and is associated with file
and directory types of object. Finally, we can associate protection
with the access the pair (Sub, Obj). A common use of this encéding
is typg checking. For ekample,;in the prologue for the code to do
‘a particular access it is usual to check that the object is of the
appropriate type.

Another popular mechanism that provides an extension to{the
encodings already presented is the key and lock<mechanism. [G68]
(see fig. 2.2) In this encoding a subject has access to a (Key, Obj)
pair which is used to attempt some access, k/B to the object
specified in the pair. The object has access to a (Lock, Access X)
pair which is used to verify the access. When some access ;5 is
attempted to an object, the acceSs is allowed if the key presented
is equal to a lock protecting that object and access ,43 is a subset
of access o{ . Note that we do not have to explicitly know who
the subject is in this encodihg, it is sufficient that the subject

has presented the correct key and access type.

Key and Lock Mechanism:

To allow sets of subjects access to sets of objects

Sub I + 0bj

(Key, 0Obj) ; 2 _ (Lock, Access =)

f

When a subject attempts Access & to an Object
If Key = Lock § /A € <{Allow access
~ Else fail.

Note:

Internal Keys and Locks must be unforgeable. A 'subject

must have access to a key by name only.

Fig. 2.2: Key and Lock Repmséntation

-6=

" The key and lock mechanism is useful in a mmber of ways. For exam-
ple; ' | '

. When a user is trying to login to a system there is usually
something like a "umiversal subject" with limited powers that
is acting on behalf of this as yet unidentified user. In this
case the user would typically supply a "password" as a key and
a "user name" in conjunction with the "login'' access. If the |
"password" key supplied by the user matches the "password' in
the lock location of the object associated with the "user name"
and the access associated with that lock is "login'" then the log-
in is allowed and the user is associated with a unique subject;

* When a set of subjects, each requiring the same access, must
be associated with an object;

* When a subject must have access to a set of objects.

| “Internally coded keys and locks must be .unforgable. ' .
‘The subject must not be able to manufacture keys and ‘
locks, but must request the system to supply them and give the subject
access by name only. In the "password" example used above the "'password"’
that is supplied by the user is an extemgl key. 1In general it is not
a wise idea to .allow programs to employ external keys for access

control.

Many of the applications problems posed here are fram the I4-TENEX
installation. Some of the problems have been cambined and reformulated
into a more general category. These problem areas will be useful in
determining which objects in TENEX will require more immediate
attention. Each problem will now be described in an individual
paragraph.

There is a need fo allow particular subsystems specified access

. to particular files. It is possible that the access could include
"delete". Currently subsystems that need this facility are SNIMSG,
SPOOLER, DUMPER and a SNOBOL program that is used to get mail for a
group of users.

When a subsystem is runnihg in an inferior fork of a job can we ;
provide a protected enviromment? That is, can we provide protection
up to and including the level that is currently associated with jobs? -
This question implies that it will be possible for a subsystem to
exercise abilities that the job under which it is running and all other
parallel or superior forks do not and should not have. (See Fig. 3.1)

Particularly at I4, there is a resource allocation assigmment
difficulty and I quote Dr. Pirtle on this: "Frequently a j’ob' with
minimal CPU allocation will need to use a service which needs a
large CPU allocation in order. to provide the service promptly. Gen-

‘erally, the service uses a non-pre-emptable gadget (the I4 or the B6700)."

-8-

This problem appears to me at’ least to be a difficult one in temms
' of the ém'rént TENEX implementation and in fact is currently being
handled by I4 code extensions. Dr. Pirtle has proposed three alternative

approaches to the solution of this problem:

« Create a fork that requests access to the gadget and a large
CPU allocation. When the access is granted provide the 14
service routine the required CPU allocation

« Have the service routine run in an independent job to which the
user passes access to files, connections to terminals, etc.

* Provide a way in which each process can identify itself, the
"owner" of the job of which it is a part, and other identifying
information to a centralized resource manager. This manager

will respond to requests for resource allocations.

When a user wants to submit an I4-Job he wants the I4-Job
executed by a TENEX job which has access to the minimum number of
' files necessary to do the job. Also, this TENEX job must have its
own CPU allocation, but the user's. disk allocation.

We would like to be able to set up an environment for subsystems
such that they cannot be misused or have their code analyzed. It is
possible now (in fact, DDT is always merged into the virtual address
space of the last subsystem fired up under the EXEC) to merge in code
that can either directly examine the subsystems code or if it is
protected in execute only pages to systematically execute every
instruction, analyze the results and attempt to construct the algorithm

or possibly the code involved.

-9-

Some Job:

Can F3, F7, F8 be given job like qualities:

. Isolated from other forks
. Be connected to different directories

. Have different abilities and restrictions.

Fig. 3.1: Fork protection for subsystems

-10-

4. Basic approach to the implementation of new protection mechanisms

The basic approach to be followed will be tb identify the subject,
object and access types. Evaluate each object type in terms of the
protection model and the problem areas in order to determine the general
profection mechanisms to be used. Determine the level(s) of protection
to be specified. The defailed specifications for each object type to be
considered will be covered in separate memos. These memos will specify
the protection mechanism implementation, the Tules under which subjects

can manipulate protection information and enforcement of the rules.

-11-

5. Analysis of TENEX with respect to protection

In this section we will attempt to identify all the relevant Subj ect
and object types in TENEX. In so doing, we will identify several basic
object types to be protected. | Each of these object types‘will be composed
of constituent components. For example, a JOB is an object which by
jtself mst be protected. A FORK is a constituent component of a JOB
which itself must be protected from illegal access. We could of course
consider forks as objects and specify a mechanism that would protect
FORK type objects. Since forks of one jdb are presen.tl}'r\ indepencl_ent
Forks in another job in TENEX we will cansider the notation JOB.FORK
to stand for the name of an object type, different from object type JOB.
To carry this a little further consider a PAGE as a conétituent component
of either a FILE or a JOB.FORK, then FILE.PAGE and JOB.FORK.PAGE would
be considered different object types.

 We note also that our determination of object types and access types

is an arbitrary one at best. If for instance we have the following:

Object type: Access

JOB.FORK: Kill
Freeze

‘Read fork AC's
Set fork AC's
Read fork PC
Set for PC

-12-

could just as easily be specified as:

Object type: Access
JOB.FORK: Kill
Freeze

JOB.FORK.STATE: Read fork AC's
Set fork AC's
Read fork PC
Set fork PC

or as

~ Object type: Access

JOB. FORK : Kill
Freeze

JOB. FORK.AC: Read
Set

JOB. FORK. PC: Read

~ or for that matter, a large number of alternative ways. The main point
of this is that while our selection of object and access types will be
arbitrary in the sense of what is possible,‘we will attempt to justify
it in temms of the current implementation and the problems that it
preseﬁtly presents,

The basic objective in adding new protection mechanlsms to TENEX
is to prov1de for more protection on objects and to provide a more flexible
environment with respect to the problems being experienced at I4. In
particular we want to allow subsystems to be protected as objects when they

are put into a fork, to be identified and to be able to specify capabilities

-13-

different from and perhaps "amplified" beyond the job's capabilities. -

To allow this we need the following services and abilities:

* A method of specifying "protected subsystems'. (See memb
on Protected Programs) »

* A set of two JSYSes that allow a protected GET (PGET) and a
protected SAVE (PSAVE).

* The ability for a protected subsystem to establish its
envirogment, protect itself from superior access (see memo
on fork protection), associate itself with
a directory that the job does not have access to (see memo
on directory ﬁumbers) and bring ﬁith it from
that directory DDBPRV word capabilities that
are different from and perhaps "amplify" the capabilities
the job has in general.

Since the only subject in TENEX is the JOB.FORK and since we will be
allowing "‘protected subsystem" to become subﬁects and to protect themseives
from their superiors, it is desirable to consider some extensions that
would allow the superior fork to be able to protect itself from the

subsystem. To this end we recommend the following:

* Extend the capabilities word by adding bit assignments in
bits B9-B17 as follows:

Blp - Allow fork to initiate PSI on superior channel;
Bll - Allow fork to get superior trap word; and
Bl2 - Allow fork to read status of superior.

-14-

* Allow the superior fork to specify the mask for bits B9-Bl7.

The basic objects to be considered for protection in TENEX are as

follows:

DEVICE

~ DIRECTORY |
DIRECTORY 'NUMBER
FILE i
JOB
JOB. ACCOUNT
JOB.JFN
JOB.FORK
JSYS
SYSTEM

We feel that the current protection on DEVICE, JOB, JOB.ACCOUNT, JSYS
and SYSTEM object types is sufficient at this time and will n.ot consider
them in this memo. We note however that BBEN has considered a form of
protection on JSYS object types. We also point out that CFORK and LOGIN
can be considered as operations on the SYSTEM since they crea;:e new objects
and subjects. | |

The protection mechanisms tor be implemented concern the remaining

objects:

DIRECTORY
DIRECTORY 'NUMBER
FILE

JOB.JFN

JOB.FORK

-15-

The access control list and the implementatioh is treated in detail in

a set of separate memos.

-16-

6. How do the proposed mechanisms solve the problems

Subsystems that need specific access to particular need only be
put on the access 1list for that file or be given an internal key. Sub-
systems such as SPOOLER, DUMPER, SNDMSG and the get mail SNOBOL program
should not contain 'password" keys.

Subsystems kcan be protected as we have specified 1n the fork
protection memo. . |

The resource allocation problem will be handled by a central resource

manager. .
Forks that need a CPU allocation could be allowed to set JOBBIT in
their PSB. Right now only forks that contain protected subsystems
would have the ability to do this. We have not completely specified
an implementation to handle this for other forks. -

Enviromments for subsystems will be set up by PGET.

-17-

BIBLIOGRAPHY

[GD72] Graham, G.S. and Demning, P.J., "Protection - Principles and
Practice,'" AFIPS 1972 SJCC Proceedings, Vol. 40, AFIPS Press,
Montvale, N.J., 417-429. |

[J73] Jones, Anita K., Protection in Programmed Systems, Ph.D. Thesis, _

Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Pa., 1973.

[L69a] Lampson, B.W. » CAL-TSS Internals Manual, Computer Center,
University of California at Berkeley, November 1969.

[L69b] Lampson, B.W., "Dynamic Protection Structures," AFIPS 1969
FJCC Proceedings, Vol. 35, AFIPS Press, Montvale, N.J., 27-38.

[L71] Lampson, B.W., "Protection," Proceedings of the Fifth Annual
Princeton Conference on Informatiqh Sciences. and Systems,
Department of Electrical Engineering, Princeton University,
Princeton, N.J., March 1971, 437-443.

[WU73] Wulf, W.A. et al, "HYDRA: The Kernel of a Mxltkiproces;or

| Operating System," Carnegie-Mellon University, Computer Science

Department report, Jume 1973.

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18

