Overview of the Implementation

Jack Freeman
June 14, 1974

Technical Memo ™.74-21



Overview of the Implementation

Goal

Our -éoal is to add to TENEX, with a minimm of disruption to the cur-
rent code, a facility by which users may safely be allowed to run programs
which use capabilities not available to the users directly. A simple

| example to think about is SNDMSG. We would like to be able to allow users
to run this prograni without themselves having to have APPEND access to

their correspondents' MESSAGE.TXT files, as is now necessary.

Requirements

The following things are required in order to achieve this goal.

1. A means for associating capabilities (e.g., acé;ess rights to files)
with the programs to be run in this way.

2. A means for bringing a program's capabilities with it when it is
activated as a fork. |

3. A means for protecting a program during its execution so that any

“private' capabilities it has cammot be usurped by other programs.

Associating Capabilities with a Program

This requires a significant modification to the sharing and protection
mechanisms in the File System. Currently it is not possible to associate
capabilities with any single system entity in a generally useful way. This

needed facility can be gotten by the addition of an Access Control List



Page 2

mechanism to the File System,

For files, we;

1. Add to the FDB data structure for each file a variable length

list of Access Control Words (ACWs), each with the following

format,

g 17 {18 35

Access Directory
Bits Number

The Access Bits are the same 6 bits (READ, WRITE, APPEND, etc.)

TENEX now uses, and the Directory Number is a regular old TENEX

directory mmber,

Change the TENEX acceés determination algorithm to take the ACLs

into account. A reasonable choice is to first compute access

. according to the current scheme, then compute the access conveyed

by the ACL, and merge these two to get the fixl;;ll value. Computing

the access conveyed by the ACL means searching the ACL for a

directory number equal to the ''current 'directory" or “"LOGIN direct-
ory' of the fork making the access-and returning the left half of

the matching ACW if there is one. Note that the notion of "current” |
and "LOGIN'" directories per fork implies additional changes to TENEX.
A proposed implementation of this notion is given in an attached
document. (See the memo on 'Management and Protection of Directory Mnnbefs"
Add a JSYS (called, say, SETACL) by which ACLs may be -modified.
Protection on the use of SETACL should be analogous to the protect-
ion currently enforced for the operation of changing file protection

fields.



Page 3

With the additions just described, it becomes possible to assign
capabilities to individual "users' of TENEX. This can be used to get our
required assigmment of capabilities to programs by the e:éfpedient of
creating a user to correspond to each program (or closely related group
of programs) we're interested in.

To see how this can ﬁork, consider how we would set things up for
SNDMSG. We create a 'user'" and a directory named <SNDMSG>. In this
directory we put the SAV file for SNDMSG plus any other files it may need
as it executes. We set the regular old file protection field on the
SAV file to ailow EXECUTE access by ''the public'". (Any other files in
- <SNDMSG> would probably be made accessible only to <ShHJMSG> itself.) In
every user's directory we set the regular old file protection field on
MESSAGE.TXT to give whatever access is desired to the user himself and no
access via the Group and Public mechanisms. We use SETACL to put a si_nglé
ACW oﬁ the ACL of MESSAGE.TXT. This ACW will specify APPEND access and
have the directory number corresponding to <SNDMSG> in its right half.

Bringing a Program's Capabilities with It when It's Activated as a Fork

We have seen now how to give programs access to files (and by general-
ization to other system 6bjects).

The embodiment of a program in execution is a fork. Therefore, we must
provide a means by which a program can bring along its capabilities when itk
is invoked as a fork.

This means that we must allow the fork (an active entity) to go about
picking up the accesses which the program will need in order to perform its
job. The program is entitled to these accesses by virtue of having its name

on the ACL of various objects, but it is the fork which needs them.



Page 4

Hence, we must give the fork the ability to use the program's '"name"
so that it may acquire the needed accesses. One way to provide for this
requirement is discussed .in the memo on directory numbers. |

We will need a new JSYS, called, say, PGET, which will create a fork
and initialize it frém a SAV file. PGET should be a fairly simple variation
on the current GET JSYS. The variation we're interested in at the moment
is that PGET will take the "name" of the directory from which it gets the
program and give it to the process. /

It should be clear that we are getting close to our goal. There are more
things to be done, but we stop momentarily for a survey from the point of
view of our SNDMSG example. With things setup as described earlier, suppose
we now invoke SNDMSG using PGET.' After PGET finishes, SNDMSG will be run-
ning and will be "named" by the directory mmber corresponding to <SNDMSG>.

- It will therefore be able to append stuff to anybody's MESSAGE.TXT file
because the ACLs of these files convey APPEND ‘access to <SNDMSG>.

The remaining changes have to do with insuring that other forks run-
ning in the same job with our program aren't able to usurp, or force our

programs to misuse, their private capabilities.

Protecting Processes from Other Processes

There are two things to worry about in this area.

Other forks, including superiors, must be restxzicted from diddiing with
forks. There is already fork/fork protection in TENEX in the sense
that most fork JSYSes can only be used to diddle inferior forks. What we

have to do is extend this protection. An implementation of this protection



Page 5

extension is described in the fork protection memo.

The second thing to worry about is protecting the private capabilities
used by a private fork from use by other forks in the same j obr. For
example, when SNDMSG uses its own powers to open somebody's MESSAGE.TXT
file, we would like to make sure that only SNDMSG is able to reference

-this file. Protection of JFNs is discussed in the JFN protection memo.



	00
	01
	02
	03
	04
	05

