JEN Protection

Jack Freeman
June 12, 1974

Technical Memo ‘ T™.74-23

JFN Protection

I. Changes to Data Structures

As a minimal change to the current protection of JFNs, we

suggest a simple extension of the ''restricted to this fork" feature.

We add a '"'protection field'" to the JFN data structure.
Assuming a limit of 18 forks per job, this requires one additional

half-word of storage per JFN. The protectioﬁ field thus looks like

protection data

and is interpreted as follows:

Fork i can use JFN j only if bit i is set in JFN j's protection
field.

We could always consult the protection field, in series with
the current protection algorithms, but it will make things easier
if we allocate a bit (in FILSTS, perhaps) whose value determines

whether or not the new protection data is to be looked at.

Modified JFN Storage Structure

— s ——

{ >

L FILSTS | H

FILUSE foo

;’— o ___ New FILSTS bit

% r<.
f/ _

B New Protection
field

JINi } FILSTS

FILUSE r—

FILUSE £

— —

II.

Changes to Code

A.

C.

GIJFN is unchanged except that it must make sure the new

FILSTS bit is set to #.

A new JSYS called GIPJEN will be provided for getting a
""private’ JEN. It should be simple to implement this as
another entry point into the GIJFN code. It works just like

GTJEN except:

1. It sets the new FILSTS bit to 1;
2. It sets the JFN's protection field to have exactly
one bit set, namely the one corresponding to the

calling fork.

Two new JSYSes are required for reading/setting the protection

field of a JFN:

RJFNP (Read JEN Protection) returns the protection field

of a specified JFN. It fails if the designated JFN is

“not accessible by the calling fork or if the designated

JEN is not a "private" JEN (i.e., if the new FILSTS bit
is #.)

SJFNP (Set JFN Protection) sets the protection field of
a specified JFN to a specified value. It fails if the
designated JFN is not accessible to the callipg fork
and if it isn't a "private'" JFN. It is not allowed to

set the protection field to f.

I1I.

Use

The idea is that a "protected" pfﬁgrém will use its
"private" directory number to get at files. To make sure these
files aren't also available to its superiors, it will use
GTPJFN. If the program likes, it can share these JENs selectively
with other forks (e.g. inferiors that it creates), still keeping

them safe from use by "outsiders."

	00
	01
	02
	03
	04

