Fork Protection Memo

Chuck Wall
June 14, 1974

Technical Memo T™. 74-25



1. Introduction

In this memo we will outline our plans'for additional fork
protection in TENEX. We will specify the protection required, outline
the basic implementation and indicate the changes and additions
required. While our central concern is solving the I4 problems, we
will be attempting to specify a mechanism that will support a class of

fork protection policies.



2. Fork Access Control

The basic problem is to implement access control on forks that
will give more control than is currently available in TENEX. In
particular, a subsystem might demand to be completely isolated from
all other forks in the job.

The general solution (at the conceptual level) is of course to
specify in a three dimensional access matrix all the fork to fork
access types possible. (see fig. 2.1) This access matrix representation
contains enough information to provide protection for a graph structure.
« Since TENEX utilizes a tree structure for control it is not necessary
to consider such a general solution. In fact all that is necessary is
to control the access that superior and inferior forks have, and the
access it has to itself. The specification of who controls the access
information will depend on how the fork has been set up. kIf the superior
fork has created the fork, then control will reside with the superior.
If a PGET (protected subsystem GET) has set up the fork, then the control
will reside with the fork itself. In this way a subsystem c;n bring
with it abilities that the superior fork does not and should not have
and protect those abilities by controlling the access that the superior
has to it. (see fig. 2.2) With this scheme of access Control the fork
structure can change and the access from superior specified by.a subsystem
would still be enough to protect the subsystem. Also subsystems

can be protected at any level in the fork structure.



Access

Subjects;
(Forks)

Objects
(Forks)

If (I, J, K) = 1 allow fork I, access K to fork J

else protection error

Fig. 2.1: Fork Access Matrix

-3




Access from | Subsystem
Inferior
| ’
/7
/
Access from /
Superior /
/7
/

Superior t ///””—--’
Subsystem Aggizs fro
or Self

Access from superior or self would be set and controlled by either

the supérior or the subsystem depending on the situation.
Access from the inferior would always be specified by the superior.
Access from self may be specified by either the superior or the suﬁsystem

or control could be given to the fork itself.

Fig. 2.2: Fork Access Control

-4-



We have assumed in this solution that parallel forks are independent
entities in the sense that there will not be any operations that are
directly performed on them. Should this change for any reason it would

simply mean adding another access control list.



3. Implementation

Basically, the implementation of access control on forks will
be based on the current TENEX method of determining the relationship
of an object fork to a subjéct fork. This involves searching the
FKPTRS table in the JSB. All we need to do is insert the protection
in parallel with this search to ensure that at each fork in the structure
the access being attempted is to be allowed. - Exactly what information
needs to be encoded depends on the access types we identify.

Our first task then is to identify all the access types for each of
« . our access lists. The format for this list will be <JSYS> <ACCESS>
(<from>) where <JSYS> is the name of the JSYS in which the accéss occurs,
<ACCESS> is the access involved and <from> is a list of where in the .

structure the access is from (S=Superior, I=Inferior, C=Current or Self).
The code S=Superior means the access or operation tne immediate superior

has on the fork, "I=Inferior"(means the access an inferior has on a fork
and '"C=Current or Self" mean the access or operations it may perform on
itself. Since a fork can have multiple inferiors, the "From Inferior".
access will have to be associated with the individual inferiors involved.
An alternative way to look at this is ''to Superior' access. A ' * " ywill

indicate no access.



The relevent access types are as follows:

<JSYS>
PMAP

RPACS
SPACS

GPJFN
SPJEN

GETER
GTRPI

SIR
RIR
EIR
SKPIR
DIR
AIC
IIC
DIC
ROM.

SIRCM

<ACCESS>

Map page frqm fork

Map page to fork

Read the accessibility of a page
Sét the accessibility of a page

Acquire a handle on a page

Get primary JEN

Set primary JFN
Runtime of one process or whole job
Get most recent error conditions

Get trap information

Setup PSI table address

Read PSI table address

Enable PSI for process

Test PSI it see if it is enabled
Disable PSI for a process
Activate specified channels
Initiate PSI on specified channel
Deactivate specified channels
Read channel-activated word-mask

Read waiting channel interrupts
word-mask

Set inferior reserved channel mask

.(sfr9m>)

S, I, C)
@S, I, C)
S, 1, O
S, * Q)
S, I, O
S, *, 0)

(S, *, Q)
(S, *, C)
(S, *, Q)
S, *, C)
(S, *, C)
(S, *, )
S, I, O
(S, *, C)
(S, *, C)
(S, *, C)



<JSYS>
RIRCM
DEBRK
STIW
RTIW
CIS
RWSET
GTRPW

. RPCAP

EPCAP
KFORK
SPLEK

FFORK
RFORK
RFSTS
SFORK
- SFACS
REACS
HFORK
WFORK

GFRKH

<ACCESS>

Read inferior reservéd channel mask
Dismiss current PSI in progress
Set terminal interrupt word

Read terminal interrupt word

Clear interrupt system

Release working set

Get trap words

Read process capabilities words
Set process capabilities words
Kill one or more forks
Splice fork structure
fork to become new superior
fork to become new inferior
Freeze one or more forks
Resume frozen fork
Read fork status
Starts a fork
Set fork AC's
Set fork AC's
Halts one or more forks

Wait for one or more forks to
terminate

(<from>)

S, *, Q

16 *: Q)

S *, O
S, *, ©)

*, %0
6, 1,0

s, I, Q)

S, * 0

S, * %

S, *, O
S, *, %)
S, *, %)
S, *, *)
(S: I, )
S, *5 %)
(S, *, %)
S, *, %)
S, *, 0

S, *, %)

Get a fork handle not currently known (S, *, *)



<JSYS> <ACCESS> (sfrom>)

RFRKH Release a fork handle ’ .(;‘, * Q
GFRKS - Get fork structure (emmwemn)
DISMS ~ Dismiss this process for A t (*, "‘v, Q)
HALTF Halt this process (*, %, Q
BPT Currently HALTF (*, *, Q)
WAIT Dismiss this process indefinitely *, *, 0
GET Get a SAVE file @GS, *, 0
SFRKV Start fork using entry vector S, *, ¥)
SAVE Non-sharable SAVE . @S, *, 0
SSAVE Sharable SAVE (S, *, Q)
SEVEC Set entry vector : s, %, O
GEVEC Get entry vector @6, *, Q
SCVEC Set compatibility entry vector @S, *, 0
GCVEC Get compatibility entry vector G, *, Q



In the above list RUNIM, GETER, CIS and GFRKS do not fit into
the tree structure, but it is possible ﬁnder some circumstances
that these access types as they are associated with‘pérticular forks
would need to be protected. We have decided not to protect forks from
these access types. We have decided also not to protect forks from
themselves and to protect superior forks from inferiors by allowing
the superior to set bits associated with these operations in bits
9-17 of the capabilities word. This leaves us with the "from superior"
access control. Remember that the control on the "from superior' access
will be specified by either the superior or the '"protected subsystem'
.,‘when a PGET is issued.

In order to implement access control on the superior then all we
need do is set up a table that is>para11e1 to FKPTRS and put into SETLFK,
SETJFK and MAPFKH in SWPMON code that will check the protection information
in the parallel table. If we let a bit stand for access allowed and
initialize this table to -1 (e.g. all bits on) then this will be
équivalent to the current TENEX except for the small amountnof}code we
need for the protection test. If the bit is off then the access by the
superior is not allowed and current error returns can be utilized. It
would be convenient if we could specify less than 36 access categories,
since that would mean an increase of only NUFKS words in the JSB.

We will need one bit to indicate control by superior. We will attempt

a tentative specification of access groups and bit assignments as follows:

-10-



Bit # " 'Access ‘Group " Access ‘types included

Bp Superior Access Control SFACL: Set fork access control
: RFACL: Read fork access control

Bl Map from PMAP: Map page from fork
RPACS: Read accessibility of page
RMAP: Acquire a handle on page
SAVE: Non-sharable save :
SSAVE: Sharable save

B2 - Map to » PMAP: Map page to fork :
SPACS: Set accessibility of page
GET: Get a save file

B3 Get primary JEN ' GPJFN: Get prhnarf JEN
B4 Set primary JFN SPJFN: Set primary JFN
« . BS Get trap information GIRPI: Get trap information
B6 Read PSI information RIR: Read PSI table address
SKPIR: Test PSI system
RCM: Read channel-activated word-mask

RWM: Read waiting channel word-mask
RIRCM: Read inferior reserved channel
RIIM: Read terminal interrupt word
GIRPW: Get trap words

B7 Set PSI information. SIR: Set PSI table address
SIRCM: Set inferior reserved channel mask
STIW: Set terminal interrupt word

B8 Control PSI system EIR: Enable PSI system
: DIR: Disable PSI system

B9 Control channels AlIC: Activate channel
IIC: Initiate PSI on a channel
DIC: Disable a channel

B1g Read process capabilities RPCAP: Read process capabilities
B11 Enable process capabilities EPCAP: Enable proces§ capabilities
B12 Read state information RFSTS: Read fork -status

RFACS: Read fork AC's

-11-



Bit # Access Group - Access types ‘included

B13 Control state SPLFK: Splice fork
FFORK: Freeze fork
RFORK: Resume fork
- SFORK: Start fork
SFACS: Set fork AC's
HFORK: Halt fork
WFORK: Cause wait
GFRKH: Get a fork
SFRKV: Start fork using entry vector

B14 Read entry vector GEVEC: Get entry vector
GCVEC: Get compatibility entry vector

B1S Set entry vector - SEVEC: Set entry vector
SCVEC: Set compatibility entry vector

We note that, with a grouping like this that does not exceed 18

bits, the left half of the SYSFK table in the JSB could be used to

contain the protection information.

-12-



3. Additions Required

The following additions are needed to support fork protection:

. Additional assignment of bits (in the B9-B17 range) in
the capabilities word to allow the superior to protect itself

from the inferior for the following access types:

IIC - Initiate PSI on superiors channel
GIRPW -~ Get superiors trap words

RESTS -~ Read status of superior fork

. Provide a PGET and PSAVE (detailed in separate memo)
. Provide a SFACL (Set Fork Access Control List)
and a RFACL (Read Fork Access Control List) JSYS.

. Initialize the protection bits to ones

- Allow forks to commit suicide and send an interrupt to

the superior to indicate that they have

-13-



	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13

