Disk I/0 Request Service
(PDP-11 - PDP-1p Disk I/O Request Interface)

Enoch Wun
July 16, 1974

Technical Memo ™.74-28

1. Introduction

Part of the standard TENEX's proce551ﬁg time is spent in the supervision
of disk 1nput and output operations. The CPU time of the PDP- -10 is very'valuable
therefore, it is wasteful to use the PDP-1@ to handle disk operations when the
same job caﬁ be done by a minicomputer. Hence, the PDP-1¢ of I4 TENEX employs
a PDP-11 to handle the disk operations; the PDP-11 acts like a mediator between
the disk controller and the PDP-1f. This memo illustrates the disk I/0 request
interface between the PDP-11 and the PDP-1f. The use of the PDP-ll is peculiar
to the I4 TENEX; it is not standard TENEX.

2. General Theory of Operation and Overall Data Organization

Figure 1 shows the general theory of the TENEX disk I/O request service.

The memory management and utility I/0 services place disk I/0 requests on
the swapper I/0 request queue and utility I/0 request queue respectively.
The memory management code calls DSKIO to place a request on the Swapper I/0
request queue while the utility service calls UDSKIO to place a request on
the utility I/0 request queue. The processor clock causes PIAPR to be invoked
every millisecbnd; PIAPR calls DSKSV, the disk interrupt ser#ice routine, to
see if a disk interrupt needs to be stimulated. See Section 3 - "Entry into
Disk Interrupt Service Routine (DSKSV)' - for further details. 'DSKSV does
three major functions to complete one disk intefrupt service. These three
functions are:

1) Clean up for the last data transfer done.

2) Check all drives for waiting requests, and call DSKRCK to dequeue

an I/0 request for each drive and send seek requests to the PDP-11.
3) Call DFTGO to send a read or write request to the PDP-11.

Note: The disk I/O requests are seek, read, and write requests.

All the disk I/0O requests are buffered in a preassigned area; the PDP-11
picks it up from there and then sends it to the disk controller. When the disk
has completed seek operations or data transfers, the disk controller tells the

PDP-11 to set some flags (these flags are also in this preassigned

buffer area) to S_ignal completion. The dotted line in Figure 1 infomrms us -that
the disk interrupt service can be triggered by DSKIO and UDSKIO to start the
periodic programmed disk interruption, see Section 3 again for a further detailed

explanation.

% *
— PIAPR Memory Management

- *
Processor clock causes User's file allocation Utility I/0
PIAPR to be invoked is done through Swapper request
every millisecond to Memory Management.

check the status of the
disk. If PDP-11 is

not busy, we dispatch : - UDSKIO
to the disk interrupt : DSKIO : Placing an I/0
L_):'outine DSKSV. Placing an 1/0 request request on the
' : — on the Swapper 1/0 Utility I/0
Request Queue. Request Queue.
\
\f . \ /,»
s DSKSV(-— - T - - - - k \\ //
1. Cleanup for the last data] e \ /
transfer done. , “\ \ 7
2. Check all drives for waiting <D /,’
requests, and call DSKRCK to N\ L
dequeue an I/0 request for N
each drive and send seek Wake up the periodic programmed
request to the PDP-11. disk interrupt service by triggering
3. Call DFTGO to start data ‘ - the disk interrupt (call DSKSV by
| tramsfer. N DSKIO or UDSKIO) when disk is idling

, : (not ready to transfer data).

seek requests

~ DFTGO
Pick a drive which has 1/0
request ready and whose se
request is completed and
|_start data transfer.

- PDP-11
Send I/0 request to disk

controller. If disk completed seek operations or data transfers
then set some flags to signal completion.

Disk controller

Figure 1: General Theory of TENEX Disk I/O Operation.

Comments: A)

B)

0

D)

E)

The I/0 requests are the seek, read, and write requests.

Utility disk I/O requests (UDSKIO) have higher ,pridrity

than the memory maliaganent disk I/0 requestsy (DSKIO) ; UDSKIO

| is used only by code which is in some way special or critical,

such as the ''disk operate' JSYS [.DSKOP], the periodic disk

update code [DDMP], the ''get swappable monitor" code [GETSWM], etc.
When a utility I/O request is complefed, bit @ of the |

second word of the corresponding Camnand word pair (Section 4.2)
is cleared and the page transfer flag (PSKED) is set to be nonzero

to indicate that the transfer is done.

~ When a memory management I/0 request is complete&, SWPDON is

called to set up for unblocking (wake up) of the process and
riotifying the memory manager that the page transfer has been
completed. |
Note: PSKED is a full word flag in the scheduler
= @ if transfer in progfess
@ when no transfer in progress
DSKRCK: This routine dequeues an I/O request and loads it
into the drive I/O request tables (see Fig. 2),
and the seek request queue (see Fig. 1 and 2).
DFTGO: This routine starts the data transfer for a drive by
sending an I/0 request to the PDP-11. The PDP'-lﬂ
puts the 1/0 re@est in a particular area in page f§
and page 1 (they both are logical core) in resident

monitor space, and the PDP-11

«5-

takes I/0 requests from there (i.e., we use this area

for the interface between the PDP-1§ and the PDP-11).

Figure 2 depicts the path through which the I/0 i'equests are sent to the
PDP-11 and through which the status of disk controller DSK11S is sent to the
PDP-10 after the completion of an I/0 request. First of all the I/0 request
is placed in the Swapper I/0 Request Queue or Utility I/0 Request Queue using
DSKIO or UDSKIO respectively; using DSKRCK we retrieve an I/0 request from
either one of the two queues mentioned above. The read or write request part
of the retrieved I/0 request is placed in the 3 Drive I/O Request Tables, and
the seek request part of the retrieved I/0 request is placed in Seek Queue; we use
DFTGO to get a read/write request and put it in DSK11D, DSK11S, and DSKCCM.
(These 3 words are part of the preassigned area mentioned in Section 2 for the
carmnmication‘wifh the PDP-11.) When the seek operation is done, the PDP-11
sets the seek done flag DSK1fF and seek hung flag SEEKH (if (SEEKH) = -1,
then no seek hung, else contains a drive mumber of a drive on which seek
has been timed out); hence, the PDP-1§ can be informed about the seek operations.
Similarly, when data transfer is done the PDP-11 will put the disk controller
status in DSK11S and the PDP-1§ will came and check the error bits and the
done bit of DSK11S. In Section 4 - 'Data Structures', we will dépic}: each queue,

each table, and each variable/flag in Figure 2 in detail.

Note: Just by looking at the code I suspect the disk controller can simultaneously
handle several seek operations, but it only can transfer data for one

drive at one time. We have only one controller for the TENEX disk.

controller status

Swapper
1/0 Request
Queue
r
. |
Memory e
Management | w
I o
|
l ~,
| CST1 CST3
|
® | 3 Drive 1/0 Request tables _ =y
' | DSKDAR DSKSTS |
——— = g & |
IS ;-<-»
] 3 [
-
Utility]
1/0 Request |
—— Queve L —
| — 1
le : v
- N\ e
I35 5
' = = Seek Queue .
| ! DSKSQ
I
e e e — e
; | Al
I 5 3 PDP-11
| DSKBCK - T (seek operation)
o/ | :
s
|
§ 1
' |
utility |
1/0 | | seek done seek hung when seek
‘ —— i —— - flag flag done
pop-19 r r_.nsuaz_|} : SEER I
ST
(I 4 U=—==J

word
DSKIIS
PDP-10 s § g
g
S
]
: ’ 3
The PDP-1f use these 3 words to commmicate F e
_ththe PP _
i DSKIID DSK11 DSKOOM] —
» i (data transfer)

o ===

Figure 2; The Overall Data Organization of TENEX Disk I/0 Request Service

3. Entry into Disk Inteérrupt Service Routine (DSKSV)

There are various hardware channels assigned among different devices.
Chamnel 3 receives arithmetic processor hardware interrupts, channel 4 receives
drum hardware interrupts, channel 5 receives interrupts from the disk, IMP,V
DEC TAPE, etc. Upon receiving a given interrupt, the corresponding interrupt
routine is invoked. '

Because interrupting the processor for various I/0 reasons creates costly
overhead, the trend is to have smaller peripheral processors (PDP-11's)
field the interrupts and process them. The PﬁP-lﬂ and PDP-11 then commmicate
by flag setting, and passing of requests. PDP-11's are used to service interrupts
for the IMP, terminal, disk, and others. |

Specifically for the disk, the following schéme is used. A‘proc:essor
clock regularly interrupts the processor via channel 3 every millisecond.

Frém this basic clock derive various statistical and measuring clocks, as

well as the time-of-day clock. Periodic routines are invoked at given times.
The interrupt routine for chamnel 3 is called PIAPR. One of the sections of
this routine (which is invoked every millisecond) checks the status of the disk.
Certain flags signal whether the disk is up, whether the PDP-11 wants another
disk request to process, or whether it has its hands full, etc. If the PDP-11
is busy, then no attempt is made to give it more work. If, however, it is not
busy, we dispatch to the disk interrupt routine by simulating the occur,rencé

of a hardware interrupt. This simulation- is affected by a software instruction

which is called a programmed interrupt. The routine DSKSV then takes the

appropriate action, making disk transfer requests, etc.
Some of the flags used to commmicate between the PDP-1§ and the PDP-11

are described below. DSKSV is discussed in further detail in a following section.

INTFLG -- This flag is just an interlock on the DSKSV routine.
It is set when DSKSV is in progress and is cleared when
DSKSV finishes its processing.
-1 means a disk interrupt service routine DSKSV is not
allowed.

means the call may be allowed.

DSKIfF -- It is a seek done flag set by the PDP-11 cleared by PDP-1§4.
(See Section 4.4 (A) for details.)
-1 means seek done.

means seek operation may be in pr_ogreés.
DSKLUN -- This flag contains the drive # of the last unit that was
transferring data, or equal to -1 if disk is idling (not

transferring data).

- Note: Only when we do not have any I/0 requests or all the I/0 requests
were completed, the disk is idling; DSKLUN is initialized to -1.

When we do not have any I/0 request or all the I/0 requests were completed,

we do not want to waste CPU time to execute the disk interrupt service routine

-10-

[DSKSV] every millisecond, since it would have nothing to do. DSKLUN is

the variable introduced to serve this purpose. DSKSV will not be executed
unless DSKLUN is greater than or equal to zero (drive #). DSKLUN is set to

-1 only when the disk interrupt routine checks that all the I/0 requests were
completed. Then there is a question, '"When will you set DSKLUN to greater than
or equal to zero to resume the periodical disk interrupt service?'" Do not forget
the dotted line in Figure 1, the disk interrupt service routine [DSKSV] can be
called by DSKIO or UDSKIO. After the periodic disk interrupt was stopped aﬁd
we have now an I/0 request placed on the queue by DSKIO or UDSKIO, DSKSV will
put the drive # of this I/O request in DSKLUN to resume periodic disk interrupt
servicing and to indicate for which drive we were last transferring data. DSKSV
will be subsequently triggered by periodic disk interrupts until all the I/O
requests have again been campleted. ,

The channel dispatch routine [PIAPR] is called every millisecond; PIAPR
calls DSKSV if the interrupt flag [INTFLG] is cleared, the PDP-11 "seek done"
flag [DSKIPF] is set to be -1 by the PDP-11, and disk is not idling [(DSKLUN) > #].
Hence, every millisecond we will perform disk interrupt servicing to_complete

one outstanding I/O request, if an interrupt is allowed.
The way to call DSKSV is:

1) Set INTFLG to -1 (-1 means a disk interrupt is not allowed to

be processed), because we do not allow another call of DSKSV when

-11-

one is already in progress.

2) Trigger disk interrupt [ISB DSKCHN]

-12-

4, Data Structurés

The data structures of all the queues, tables, and words shown in Figure 2

will be discussed in some detail in the following subsections.

4.1 The Swapper I/0 Request Queue

The data structure of the Swapper I/0 Request 'queue" is shown in Figure 3a.
This queue consists of 3 tables -- DSKQ, CST1, and CST3. CST1 and CST3 are
two of the four core status tables (CST@ to CSTS). CST@ contains the disk
addresses of core pages, while CST3 is used to store the chainpointer and the actual
(read/write) request. We store/retrieve the request by indexing into the core ‘
status tables (using the core page mumber és an index). Thus, we see that the
core status tables (CST@ and CST3) which are normally used to keep track of
real core pages, serve a second role as part of the Swapper I/0 Request Queue.
DSKQ table has the size of 8 words (the maximum # of drives is 8); egch nonzero.
(page #) entry of DSKQ contains a pointer to the head of a linked list of I/0 |
requests in CST3. o

When we are placing an 1/0 réquest on this queue, first of all, we use
the drive # of this I/0 request index into DSKQ to get the head pointer of the
list of the I/0 requests for the same drive, then we put the new I/0 request on
the head of this list, so that the I/0 requests in each list are in random order.

Although this queue consists of 3 tables, only DSKQ needs to be initialized

-13-

to zero. If an entry of DSKQ is equal to zero, then it means we do not have a
swapper-I/O request for the respective drive. .Otherwise, we do have at least
one swapper I/O request listed in CST3 for this drive. |

One should be aware of the fact that the retrieval of requests from this
queue is neither first in first out (FIFO) nor last in first out (LIFO).
For each drive, we have a list of I/O requests waiting to be sent to the PDP-11,
and the track # of the track at which the disk am is currently positioned.
We only retrieve the I/0 request for which the required track is the current
track or closest to the current track in one fixed direction to minimize arm
movement. |

DSKRCK is the routine which performs this dequeueing process. As depicted
in Figure 2, three drive I/O request tables (DSKbAW, DSKCAW, and DSKSTS)
are indexed by drive # (like DSKQ), and all the dequeued I/0 requests will

be stored in these three tables (indexed by the corresponding index of the

DSKQ) .

-14-

4 98ed axod

cST1 (Core Status Table 1)

Disk Adr

Disk Adr

Disk Adr

Disk Adr

Disk Adr

Disk Adr

Figure 3a:

-15-

OALID

4 93ed ax00

DSKQ

g p
g g
g 4
g O—
) p
p | ==~
g g TR
4 g
cST3 (Core Status Table 3)
N J
®
[]
rack # ~
[]
° ‘\\\;
®
Track # '7
Track #] H /
* !
. /
° Al
rack # i)
Track # - -
Track #)
[]
d .
®

The Data Structure of Swapper I/O Request Queue.

— s el

Lock Count
(must be = §
to be swapped)

(new page flag)
NEWFB

- Disk Linear Adr (Bit 14 = 1)

A,

- N

T1ZI31415] el 71 e slio[it]iz]i3 2] stial 7

18

131068121422

23{24]2512€]27

CST1 il 1

34/

__ Pager Lock

1 for write-

Disk Linear Address Flag

2 for read. Track # Pointer (Core Page #)
e]t]2131418161718]9e[nilizliz[:21:sTe17iie 13‘_2551-222324252627 S[2ol3e1 3132103
CST3 37
computed from CST1 .
Plgure 3b: An Entry in the éwapper I/O'Recp'.iest Queue
DSKQ g
, g
3
' g
3 p 10
The DSKQ is o= T8
initialized as: [maximm # o
drives
g
2
)

-16-

-

)

4,2 Utility Disk I/0 Request Queue ---- DSKUI and DSKUO:

The initialization of DSKUI, DSKUO, and DSKCL is described below:

(Utility quéue input headers)

‘(Utility queue output headers)
DSKUO

W\LLL’

DSKUI
g >-— >
g
e f o -
@
S ﬂ bt !
i o >
g - —>
‘L i o -
'] e >
[/ * >
(Utility I/0 command buffer)
~ DSKCL
DSKFCL
(free list head ptr.) - ===
18g - - =
DSKCCT
(Utility command word = o —
pair free count)

LU

poen . o— c— c—

Figure 4a: The Initialization of Utility Disk I/O Request Queue

-17-

| 18

maximum # o
drives

1

20g

lg

%

Note: Possible TENEX bug
DSKUO entries should be initialized to zero because the TENEX code
A checks whether we have at least one utility I/0 request for a drive by
checking whether the corresponding DSKUO entry is equal to zero. This
entry is indexed by the drive #. If DSKUO is not initialized to zero,
then the system will think that some utility I/O request for this drive
is waiting to be sent to the PDP-11, when in fact we do not have an I/0

request.

The picture on the next page illustrates the structure of the utility
I/Oyrequest queue. Again, in the utility request queue, for each drive we
have a list of I/0 requésts. DSKUI contains the pointers to the tails of a
linked list, and DSKUO contains pointers to'the heads. We put the utility
I/0 request of a drive at the tail of the list and retrieve it from the head,

on a first in first out (FIFO) basis.

-18-

DSKUO

[N W

DSKUI
g - - null list R
] — ' -
ﬂ .——-——
g - “ null list
” . \ " "
ﬁ . \ ‘ 17" "
ﬂ . \ 1t "
g %
(Utility I/0
command buffer)
DSKCL
———)
(free list head —— - E
pointer) -+
{

-SR-S A-NA_ SR h WA~ A1

3

DSKCCT
(Utility command
word pair free
count)

Figure 4b: The Data Structure of Utility I/O Request Queue

- Track #

Sgctor #
-Surface # : : list pointer
4 a X4 ~ N o : A — o
st ¢1112131415[81 78] oiejr1[12]13114715]1e]17]18]19]201 21{22]23124 25]°6]27]28] 29130 31 32[:_!35_4_];%4"
1— word
of DSKCL \ .
From caller ‘
The index
read-1p of this

write-11 word pair

o core address
_~ —— ~
nd BT AT R T a o a1 1o ad A6 | 171181 10]20] 21]22] 23]24]2526]27128] 20130} 31132133
2—word |& _] |
of DSKCL .
N | /
4
From caller -

| {1 if I/0 request in this word péir »
¢ indicates request completed with PSKED # g (see p. 3)

Figure 4c:

The Structure of an Utility I/O Request Queue Entry

-20-

DSKRCK is the routine which performs thisudequeueing procéss (retrieve an
I/0 request from this queue). As depicted in Figure 2, three drive I/O request
tables (DSKDAW, DSKCAW, and DSKSTS) are indexed by drive # (like DSKUO), and
all fhe dequeued I/0 requests will be stored in these 3 tables (indexed by the
corresponding index of the DSKQ).
| When a utility I/0 request is completed, bit @ of the second word of the

camnand word pair (Fig. 4c) is cleared to indicate done.

4.3 Drive I/0 Request Tables

We have four tables to store the current I/O request of each drive.
I have designated them as drive I/O request tables (this code does not have
an official name for this group of tables){' These four parallel tables are
indexed into by drive #. The I/0 request is redistributed into the first three
tables by DSKRCK, so that the I/0 request is ready after seek done.
A) DSKDAW - disk address for current operation.
B) DSKCAW - core address and word count for current operation,
C) DSKSTS - status of drive and current track # (the track where
the arm is positioned).
D) DSKLSV - time at which last seek or data transfer was started,
or -1 if inactive. (For time-out logic.) For instance,
DSKLSV is used by time-out logic to check whether seek

time has run out for each drive in order to set the seek

hung flag.

-21-

Note: I suspect the code of this time-out logic’ is in another package', but
I do not know where. |

-22-

DSKDAW andvDSKCAW need not be initialized. DSKSTS and DSKLSV are initialized

as below:

DSKSTS DSKLSV

OATID
OATIp

il
—
=
(=]

Figure 5: The Initialization of Drive Status [DSKSTS] table

-23-

and DSKLSV table

The data formats of these four tables are shown below:

Physical
A) , , (command word adr)
Track # Surface # S°°toT # Unit # DSKCP

/7 A \ - A -—-k—-q/
112131415161 7]8]1910]11]12]13l1811511A117]16 *s;‘e7.1'.\.22324252627_@293031?2‘\33-135
DSKDAW ‘ i ' éﬂ 71y

(This is the disk adr in DC1¢ hardware form)

Note: At this moment please do not worry about DSKCP. I will explain
it later in detail.)

B)

Negative of word count core address within a page

A,

A

4 A

eli1213]4]15]6]7]8]91e]11]12]13114}15118 VI13]aal2d) 21221 23124125 26]271261208]30] 31132 3|34

DSKCAW

-24-

utility I/0

command
buffer current error
index track # coynt

[)

G]1]12]13[4]516}718]9]10{11

12

el ia e [N2 vIe2| 232a[25]26] 27] 28] 20[30] 3132133]34

DSKSTS

1l 111

]

————DSKRCL
DSKUIO
DSKCMR
DSKSIP
DWRBIT

The state of a drive is

1 if utility I/0 operation, @ if swapping I/O
command ready

1 if seek in process

1 if write operation, @ if read operation

indicated by DSKSIP and DSKOWR flags.

DSKSIP DSKCMR states
['] [} that Drivé is free
1 [} Drive seeking inprogress
9 1 Drive positioned, transfer ready to be started
1 1 Transfer inprogress, or I/0 request~ is being
unqueued
D)

O11]12i314|516]7i819116{11]12

13

DSKLSV

1aJ1s[1e]17]1a]182¢]21[22]25]2a[2 5|26 27 20] 30 sel.yl;g 33134 %

(time of day in milliseconds, (same as TODCLK format), when seek or data

transfer was begun)

Figure 6; The Data Structure of the 4 Drive I/0 Request Table Entries

4.4 Words and Flags for Commumication with the'PDP-ll

. , . ,
Note: Found in the "JOHN'" area and logical core Page @ (both in resident monitor space).
A) Disk Seek Queue ---- DSKSQ: '

We initialize DSKSQ as below:

DSKSQ

oATIq

DSK1¢F

DSK11F
g

IS esivneoivn™
i
=
co

Figure 7: The Initialization of the Disk Seek Queue

. ;
This region in monitor space is known as the "JOHN'" area for
unknown reasons.

-26-

'DSKSQ

g

Track #

magnified as

g

’Track #

Desired track #

1123}415]8 89%“ﬂﬁﬂﬁﬂﬂmﬁ%hﬂﬂ“%2ﬂﬂﬂﬂvﬂn

[_ (set by PDP-1§ to indicate we have seek request in this word
cleared by PDP-11 if seek done

Figure 8: The Data Structure of the Diék Seek Queue (DSKSQ)

-27-

There are two flags, DSK11F and DSK1fF, which the PDP-1§ uses

to commmicate with the PDP-11 to perform seek operatidns.

DSK11F: 1is set to be -1 by the PDP-1¢ to tell the PDP-11 to
| complete all the seek requests in the seek queue DSKSQ,
and is cleared by the PDP-11 when the seek requests are
finished.
DSKIgF: is set to be -1 by the PDP-11 to tell the PDP-1§
all the seek requests in the seek queue DSKSQ are
finished, and is cleared by the PDP-1@ when DSK11F

is set to be -1.

B) The next three words described are used by the PDP-1§ to give
an I/0 request to the PDP-11 and to get the controller status
back from the PDP-11. Up tb ‘this point (refer back to Figure 2),
we have 1/0 i‘equests in the three drive I/0 request tables [DSKDAW,
DSKCAW, and DSKSTS] and the seek operation is completec}. The DFTGO
routine picks up one drive I/0 request, for which the drive is
positioned [DSKSIP flag is @ and DSKCMR flag is 1], and places the
request into the following three words [DSK11D, DSK11S, and DSKCQM].

A A
/ A

a) DSK11D is the DATAO word in the '"JOHN" area:

OP code

4 - read

6 - write
Sector #

Track # Surface # ! wmit+ psker- 244

1

el /

213141816718} 9l1di11)12113l18]1818]17]18]1s12e] 21]22]2 24125126/27]28129]30} 313213334

19
4

| set by PDP-1§ to tell PDP-11 we have I/0 request for you

cleared by PDP-11

"'Note: DSKCP (location 2'48 -of logical core page), contains the

address of the disk command word [DSKCCM + DRELOC] .

DRELOC is a relncation factor for the system :
[DRELOC: KIMAIN]. KIMAIN is memory displacement for disk.

b) DSK11S is the controller status wordv in the JOHN area,

which is cleared by the PDP-1f, assigned by the PDP-11.

- (not used)
Error bits attention bits

- ‘ _\/‘““‘\

1o

2[314a]51 el 718 s 1olt112]ta3N s] s]18117113] 18] 28] 21122 23[24]25[2627}2 8]29130131/32]33134

F

— . DTDON
The controller
sets this flag when
data transfer is
finished.

-29-

c) DSKCM is disk command word in page f#:
- (word count) core address + DRELOC -1

Bl T2]31 481671 8] s [ie[is[r2[s31a] 1516 7] 18] 18128 mFg 23124]25{26]27 2312930'}3132|33 uiss.
' 1

1
]

5) Words in the PDP-1§ tell us about the‘current status of the disk system.
A) DRMUSE ---- count of drum operations was done to disk.
| B) DSKLUN ---- contains the drive # of last unit that was transferring
data, or equal to -1 if disk is idling (not ready to
transfer data). -
C) DF1fLK ---- @ if disk owns DF1§; Job number of other owner if
DF1§ owned by other owner. (DF1§ is channel connecting
the disk and the PDP-14.)
D) SEEKHF ---- seek hung flag, -1 if no seek hung, drive no. of drive .
an which seek has been timed out if seek hung.

-30-

5. Disk Handler Packages

1) DSKIO - 1. puts the swapper disk I/0 request into the swapper 1/0
' 'request queue DSKQ (see Fig. 4.1). The reqﬁest is appended to the
head of a list, | |
2, trigger the disk interrupt if disk is inactive (DSKLUN = -1).

3. return + 1.

2) UDSKIO - 1. puts the utility I/O request into the utility I/O request
queue. (see Section 4.2)
2. trigger the interrupt if the disk is inactive (DSKLUN = -1).

3. return + 1.

3) DSKRCK - 1. first of all, we check whether utility I/0 request is waiting,
~ because it has highest priority. o

Yes, dequeue the utility I/O request queue, and put ihe request into
Drive I/0 request tables.

No, is memory management I/0 request waiting?
Yes, dequeue the swapper 1/0 request queue DSKQ, and put a request

into Drive I/0 request tables.

No, return + 1;
2. In drive status table DSKSTS set DSKSIP and clear DSKQWR (for
this drive) to indicate seek in process. - (A request was retrieved

from a disk I/O queue and is ready to be sent to the PDP-11.)

-31-

3.. send the seek request of this drive to the PDP-11 through seek
queue DSKSQ. '
4V. return + 1.
Note: ‘The PDP-11 clears bit @ of all the entries of the seek queue after the
seek is done; therefore, a drive with DSKCMR = f, DSKSIP =1, and DSKSQ > #

means the seek request of this drive is finished in the last seek done.

4) DSKSV - 1-.» save DSK11S and clear DSK11S
2.. if the disk system is active ((DSKLUN) > @), then do the
~ following, or else go to next sfep.
Mark the last unit data transfer finished by clearing DSKSIP and
DSKCMR flags of that unit (drive) .A And tell the scheduler the

data transfer is completed _
3', if the PDP-11 seek is done (DSK1¢F = -1), then check all drives;

then clear DSKSIP and set DSKCMR of a drive if the seek request of that
drive is completed (DSKCMR = @, DSKSIP = 1, and DSKSQ > M.

4.. check all drives for waiting requests. Send the waiting requests

to drive I/0 request tables and send seek requests to the PDP-11

by calling DSKRCK.

Sv., if seek hung, we only can seek one more time.

6 . call DFTGO to start the data transfer.

7. return + 1,

5) DFIGO - 1. starting from the last drive which was doing data transfer, pick a

-32-

drivé which has 1/0 request ready and no seek in process
(DSKCMR = 1 and DSKSIP- = ff).

.Zv. set bSKSIP and DSKCMR of that drive to indicate transfer in
process.

3; send the I/0 request of that drive to the place where we

- communicate with the PDP-11 (see Section 4.2).

4; put the current drive # into DSKLUN to remember which

drive was last doing a data transfer.

_S, return + 1.

-33-

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33

