Memorandum on the

Frotection Mechanisms and Policies in the BCC 500 QOperating System

Jack Freeman
January 18, 1974

Cnapmical Mewmg ™.74-1

Introduction

We stated in our recent proposal to ARPA that the protection facilities
i the BLC 500 Operating System provide the user with means for granting
or denying access to such objects as files, processes, resouce allocations,
and all other system-defined objects in a unified, flexible way. The
protaction mechanisms provide for specification of the accesses to be allowed
by eny single program, process, or user. They also permit any user to
zefine arbitrarily constituted groups of programs, processes, and users,
and to specify the kinds of accesses to objects to be allowed by each
of these groups.

The purpose of this report is to amplify and extend this general
description of the BCC 500's protection facilities. In particular,
we will talk about the foliowing sorts of things.

* How a user concerned about the security of his data and programs
would use these mechanisms.

- How the rights to access objects whicﬁ ?re}specified and
controlled by the protection mechanisms are moved into execution
environments where they can be exercised by programs. And how
the programs are consirained to work within these environments.

- Some general characterization of the implementation of the
protection mechanisms,

- A discussion of weaknesses and deficiencies of the 500's
protection schemes.

This report 4s not meant to be a thorough description of the

irity- -related features of the BCC 500 system. Such a description
i11 be issued within the next several weeks. The present report is
intended 3s a sort of introduction to the sub-set of these features
that explicitly provide for the controlied sharing of information stored
sithin tha system,

1. Using the Protection Mechanisms to Achisve Security

The protection mechanisms provided by the BCC 500 Operating
System do nrot and ave not intended to in themselves "secure” anything.
It is up to the users of the system to decide what restrictions
they wish to place upen accesses to the objects they keep in the system*.
The set of decisions one user makes can be called his “security policy.”
The proper function of the protaection mechanisms is to give the user
& way of stating the policy he decides on and to enforce it.

We-want to Tist some typical security decisions a user might wish
to make and to show that these decisions can be expressed as protection
rutes within the BLC 500's protection framework. ‘To this end we now give a
concise but imcomplete description of the 500's basic protection mechanisms.
A part of the {protected) description of every object kept within
the system is & list of the entities {users, etc.) authorized to
access the cbject. Each element in the list bbth names an authorized
entity and specifies the kind(s) of access the entity may exercise on
ifie ohbiect. On every attempted access to an object, the protaction
 system verifies that the entify attempting the accass appears in some.
Celement of tha object's 1ist and is authorized to make the specific kind
nf access it 1s attempting. '

fNow consider the following decisions a user might wish to make
ahout accesses by other entities to some file, XYi.

1. No-one is to have any access to XYZ. This {s clearly
implementable. If there are no entities currently authorized
to access XYZ, nothing has to be done. If there are some, the
list entrys which authorize them can be deleted.

* The notion of a user and of his relationship ¢f "ownership" to chjects
will be made more precise wkere necessary. Here we can think of a human
user and some object he naturally regards as Fis own, such as a text

#ile created by him.

dane 3

2. Everyone is to have some access (say READ) to XYZ. This
could be implemented by putting on the object's 1ist the names
of alil possible accessing entities, with READ specified as the
access allowed each one. This is absurd, and the system of
course contains a special provision for this case. Basically,
there is a standard element on every Tist which specifies
the access (if any) to be allowed by "the pudblic.”

i

An individual user (or whatever) is to have somé access
{say‘EXECUTE) to XYZ. This can clearly be implemented |

« by adding to XYZ's list an element naming the user and
specifying EXECUTE access. ‘

The above simple examples show the diversity of the levels of
"security” which a user may specify for a file or other object.
In more complicated cases, the strict limitation to a list of authorized
accessing entities would lead to inefficiency or clumsiness. Without
enumerating them, we state that the system includes various ways of
avoiding these unpleasantnesses, simitar to the provision for "public"
access mentioned above.

11, Protection During Program Execution

So far we have discussed the protection mechanism from the point
of view of the relatively static representation of the protection
information, together with a little about how this information is
conveyed to the system by a user and with an indication of the significance
the information has to the protection-impiementing algorithms. We
need now to relate this to program execution and to sketch the means
by which the authorization to access an object is brought into action
and used to actually manipulate the object.
The environment within which a program executes was called by
Lampson [L69] a "domain". A domain consists of a collection of

*capabilities", which are simply names of objects together with
specifications of the accesses which may be made to the objectis.

In a typical, simple case a domain might consist of a few EXECUTE
capabilities for pages containing the code of a program and of a
READ capability for an input file and a WRITE capability for an output
file.

Initiating the execution of a program involves creating a domain
for it to operate in. In some cases, all the capabilities a program
"will need are known ahead of time, and its domain can be completely
pre-established before contrel is given to it. For example, if the names
of a simpie program‘s input and output files are known, capabilities
for READing the first and WRITEing the second can be moved into the
domain being created for it. In such a case, it is natural to think
of the program as “"encapsulated" within the domain established for it.
During executicn, the program will be restricted to the realm of reference
defined by this domain. '

Before going on to consider more complicated cases, we must stop
and sketch the mechanisms by which capabilities are put intc domains.

Recall that every object known to the system has associated with
it a list of entities (e.g., users) which are aliowed to access it and
a specification of the accesses allowed by each entity. For reasons

that will become clear in a moment, th: elements of these lists are
called "access lecks™ and tie lists thamselves are called "lock lists".
Associated with every potentially actize entity is at Jeast one protected
object called an "access key™. To move a capability into a doméin,

a program makes a certain system call. The arguments to this call are

1. The name of the object for which a carability is wanted;
2. A specification of the access{es) wantad For the object; and
3. An access key. ‘ |

The last argument is presented in the form of a little number which selects
a capability in the domain of the program making the system call.
The system call uses the first argument to find the system's
internal representation of the named object. In particular, it locates
the object's Tock list., Then 1t compares the value of the access key
specified by the third arqgumert with the value of the lock portion
of each element of the Tist. Fither no lock will match the offered
key or exactly one will., In tie former case, the system call fails
and no capability is acquired. In the latter case, the access specification
part of the access lock matched by the calling program's key is ANDed
. _with the cailing program's specification of the access it needs, and
a capability for the selected abject with the access thus compb%ed i3
moved into the domain of the calling program.
Remember that the goal of the calling program, in the case
where it is initializing a domain for ancther program te vun in, is to
get the capability into the new program’s domain, not into its own.
Such a program would next use another system call which implements
the transference of capabilities between domains.
The arguments to this system call are:

1. The "name" of the capability to be transferred; and
2. The “"name" of the domain to which the capability is to be
transferred.

Page €

Both of these names are little numbers which select capabilities from
the domain of the caliing process. The implementation of this system
call is such as to ailow for a number of modes of transference of the
named capability. In particular, the following possibilities exist.

1. The capability may be completely turned over to the target
domain, being "erased" from the domain of the calling program;
2. The capability may be shared on an equal basis between the two
domains; or)
3. The new domain may be given only a subset of the current
. domain’s "rights" to the capability. For example, the new
domain might or might not be given the right to pass the capability

on to other domains.

Mow that we know the basic mecharisms through which capabilities
are moved into execution environments and transferred between them,
we can show how they may be used to de good things. As an interesting
and not cverly complicated example, we will consider how cne might
implement a message-handling program iike the TENEX program, SHDMSG.

First we describe some static things. We establish SNDMSG as
a system "principle”, similar to a human user in that it is an entity
possessing an identity known to the system and capable of directing
a computation. As was mentioned earlier, every such potentia?]y'active
entity has associated with it an “access key" which can be used to move
capabilities into domains.

So far, we have said nothing about where the representations of
protected objects are kept. We note at this time that there are protected
data structures called "directories" which serve as repositories for
the representations of cbjects. One way to fit directories in with the
concepts mentioned so far is to consider them as sort of “static domains®,
containing among other things, “static capabilities" which can be moved,
as was described above, into execution domains.

Page 7

2

Every system principle such as SNDMS: has a directory associated
with it. We continue our discussicn by erumerating the cbjects which
would appear in SNDMSG's directory. We cculd get by with only two such ohijects,
Nemely the access key assigned to SKDMSG as a system principle and a file
containing the code of the SNOMSG program together with instructions
about how to place tha code in a virtual address space.

Some users of the system may wish to 1ave the service of SNDMSG
and some may not. Those that do wish to mike it possible for messages
to be sent to them will cause to be created in their directory a file
with the name MESSAGE.TXT. On the lock list of the representation of
this fije, the user will put an access Yock which matches the access
key associated with SNDMSG. The accesses aliowed to SNDMSG by this Jock
would be READ an¢ WRITE. [Note that one really desires to give it
APPERD access instead. This could be maraged within existing
BCC 500 mechanisms, but not in a truly general way.] The only other
entry in the lock list of the file would be ane giving READ access to
the user himself. Thus the user can feel rejatively secure that no-one
can falsify or otherwise fiddle with his file of messages.

We have as yet said nothing about the accessibility of the objects
(an access key and a file) in SNDMSG's directory. In BCC 500 jargon,

_the file that contains the code of SNDMSG would be called a "program image
file", or PIF. All users who are to send messages need to have EXECUTE
access to this PIF. Thus the lock list for the PIF might be quite
extensive, containing an access lock for every participating user with

the specified access being EXECUTE in each case.

Now, some system principle is going to have to be able to create
a domain for SNDMSG to run in and to perform the important operation of
piacing the code pages of the PIF intc an address space. This system
principle is a program called "the Utility". Like SNDMSG, the Utility
has an access key. If we put on the lock list of SNDMSG's PIF an entry
which gives READ access to the Utility, this will allow the Utility to
get the'capabi?ities it needs to arrange SNDMSG's code in an address space.
Finally, if we also put on the lock list of SNDMSG's access key a lock
allowing the Utility to move the key intoc an execution damain, we have

Page 8
everything we will need tc allow the secure use of SKDMSG.

Now suppose user SMITH wishes to use SNDMSG to send a message to
user JONES. We assume that SMITH has EXECUTE access to SMDMSG and that
JONES has a file called MF3SAGE.TXT to which SMDMSG has APPEND acress
{actually READ and WRITE, as noted above). SMITH is using & program
that implements a command precessor. This program is operating in a
domain which contains some subset, probably small, of the capabilities
available to SMITH. Among the capabiiitéas in this domain will be
SMITH's access'key.

The command processor receives the command "SNDMSG" from SMITH.

It processes this enough to understand what is wanted and then makes
what it thinks of as a system call. This system call transfers control
into an otherwize inaccessible ring of the address space wherein resides
the code of the Utility. You may wonder how the Utility suddenly got
into the act. The fact is that it is always present in every process.
That is, when & process is initially created, a domain is set up in it for
the Utility. This domain contains of course, the Utility's access key.
when execution is initiated in a process, it begins in the Utility in
this (obviously quite powerful) domain. The Utility immediately creates
a domain such as that for the command processor which contains much

less extensive capabilities and passes control te that domain.

Though the Utility has a domain of its own, when it is entered
by a system call it continues to operate in the domain of the program '
wiich executed the call. So, in our. case, the Utility finds itself
in SMITH's domain {so to speak). It uses the system call {into the ring
which implements protection) described earlier to acquire an EXECUTE
capability for SNDMSG. Note that this capability is not needed by the
Utility itself. The exercise of acquiring it successfully merely
insures the Utility that the program from which it was calied is authorized
to execute SNDMSG.

The Utility now assumes its own identity (by another system call
to the basic protection module) so that it can use its own access key.
It creates a new domain, and acquires its capabilities to SNOMSG's PIF
and access key. Using these, it maps the code of SNDMSG into the address

Page §

space associated with the domain and transfers the capability for the
access key into the domain. It also gives the domain a Timited right
to use the capability for the terminal SMITH s using. It divests its
domzin of any capabilities it has now finished using. It transfers

a CALL capability for the new domain to the domain of the command
processor, re-assumes the identity of the command processor, and returns
control to that program.

We now have two separate domains {besides the Utility's} - that of
the commard processor and that of SNDMSG. Contrel is currently in the
command processor, which can now invoke SNDMSG by exercising its newly
acquired CALL capability. When it does so, SNDMSG will operate in a domain
which contains the capability it needs to communicate SMITH's message
to JONES. Strictly speaking, SNDMSG fnitialily finds itself with 2
capability only for its access key. It must exercise this capability
to acquire the capability actually need to access JONES' file.

- As an aside to the above discussion, we observe that with the

rights to EXECUTE SNDMSG and the rights to APPEND to message files
distinct, it is trivial to have send-only and receive-only participants
in the SNDMSG community. This might be useful for participants like
programs which record or analyze system performance or for “users"
which are only repositories for archived messages.

It should also be noted that the above is in no way a description

of how we feel SNDMSG should be implemented. It merely shows how the
current implementation could be wrapped in a security blanket. '

Page 10

I11. How thz BCC 500 Protec:ion Mechanisms Measure Up

Here we want to compare the BCC 500 mechanisms with the mechanisms
of other existing systems; to discuss them in the light of recent
research; and to point out the things about them that we consider

unsatisfactory.

Page 11

Comaarison with TENEX

There are at least two impcrtant features in the BCC 500 protection
scheme which are lacking in TENEC,

1. The lock lists of the 500 have no parallel in Tenex. This
means that there's no general way te grant access{es) to
an cbject to a single user or program, The TENEX “group"
mechanism can sometimes be used to get the desired effect,
It could, in fact, be used to give SNDMSG (and only SNDMSG}

. APPEND access to the MESSAGE.TXT files of users of a TENEX
system. We may describ2 later how this could be done, but
we ncte here that the solution is not really satisfactory
because it would preclude the use of the group mechanism
for any other purpose in the system.

2. As far as I can see, there is no implementation in TENEX,
except at the job level, of anything one could call a domain.
Although a job can consist of a number of independantly
executable processes (forks) it seems that the only
"capabilities” that are in any way private to a process are
those which it has to the pages of its own virtual memory.
This is not quite true. One of the arguments to GTJFN is.

a flag which means "no access by other forks". This '
would seem to mean that a process can acquire file capabilities
private to itself. For some purposes, this feature is

probably useful.

Perhaps the basic problem with respecf to domains in Tenex is that
there is no general way to set up a fork with an “access key" separate
from that of other forks of its job. Stating this in Tenex terminology,
there is no way for two forks of a job to be CONNECTed to different
directories.

We note that a projected version of Tenex (version 1.34, for release

Page 12

in March of 1975) is to have a new feature called "Access Control Lists”.
Presumably these lists will serve the same function as the similarly
named things in MULTICS end as the BCC 500's leck lists. We also note
that other projected changes to Tenex seem to indicate that Jobs and
protection domains will continue to be equated.

Page 13

Comparison with MILTIS

I don't know enough about MULYICS to say much about how it and
the BCC 500 are related. It should be noted ithat the access control
Tists of MULTICS are quite similar in function to the Tock lists of the
500. »
At the moment I am totally ignorant of hcw MULTICS implements protected

domains of execution.

Page 14

From Jones® Point of View

I believe it's correct to say that the terms "domain" and
“capehility” are exactiy equivalent to Jones' terms “envirorment”
and "right".

Without tco much effort we can think of the BCC 500 file directories
as "storage environments" and its sub-processes as "execution envircnments”,

Our representation of storage environments is relatively straight-
forward. It is a representation of the kind Jones discusses in connection
with "object site enforcement of protection® [J73, pp 23-24]. To
describe an access lock in Jones' terminology we would call the lock
£ield an environment name and the access field an access name. The access
field is “"bit coded" [J73, p 22].

Thinking about this, I wonder whether Jones' schema really fits our
system. In the normal, simple case it seems to. But remember that we have
these things calied access keys which are used in moving rights
from storage environments to execution environments. These keys are
the things that match the locks in lock lists. If we are to think of
these locks as environment names, then it seems that the keys mist be
thought of the same way. However, keys are themselves objects for which
rights exist in both storage and execution environments. It is possible
for an execution environment to contain rights to more than one access
key. Confusion,

Our representation of execution environments is basically as a
capability list as discussed under "Execution Site Enforcement” [J73, pp 20, 21].

Page 15

Other Characterizations of e BCC 500 Protection echanisms

Schroeder [$72, p 33] describe; a division of protectisn schemes
into two types called "list criented” mechanisms and "ticket oriented”
mechanisms,

List oriented schemes, are those in which "contrel of access to an
object is specified in 1ists mainlained by the protected subsystem that
is the custadian of the object". It seems to me that our stovage
environments (directories) fall into this category.

In ticket oriented schemes, "permission to access objects in the
system is embodied in unaltevable tickets which may be distributed to
the domains in the system“. it seems to me that the capabilities
that make up our execution emvironments must be thought of as such
"tickeis".

Page 16

I¥. Shortcomings of the BCC 500 Protecticn Mechanisms.

i, The mechanizms are complex and difficult to describe and therefore
| probably not very credible. Although the basic access key / access
lock schems is simple enough, the many variaticns of it provided
primariiy for efficiency obscure this. Also, there are some means
of access, besad on the notion of the "owner" of an object, which
are implemented outside of the key / lock mechanism.

One strange feature mentioned eariier in this report is
the ability of the special program called the Utility to switch
~between two domains of protection. While this and cother things
not described here may be good, they give the BCC 500's protection
system an unpleasantly motley appearance.

2. The representation of a procedure in Jones' sense {373, Chapter IV]
is costly in the BCC 500 system. The description of a possible
implementation of SNDMSG showed that one must create a system
principle so as to have a directory in which te record the
“declared rights" of the procedure. It would be much better
if the basic protection modules explicity knew about cbjects of
type procedure. ‘

3. The BCC 500's means for passing control from one environment
to another contain no provision for passing capabilities
(or any other parameters). Parameters, including the "names "
of capabilities, can be "passed" only through shared pages of
memory. Tnis deficiency is particularly irritating because it
could have been avoided at a mederate cost in the 530's micro-
coded CPUs.

4. The concept of "rights amplificatiea™ is foreign to the
‘basic design of the BCC 500. In the SNDMSG example, we saw how
the Utility somewhat clumsily got the effect of such ampiification
when it first checked to see that its caller had EXECUTE access
to SNDMSG, then switched into a much more powerful domain so it
could acquire READ access. This technique is not extendable to

Page 17

Jones ' kind of ampliticatioy since it depends on the nrz-existence
{in a divectory) of the reciived right to the specific file,

s v

SNDMSG. (Recall that in Jones® model, rights amplificition

-7

depends only on the type of the objecti.}

The BCC BG0 is severely restrictive as to the number of
different kinds of access which may be sppﬁified for &a chijact,
in fact, there are only four possible ki nes .

The creation of new type: of objects is not usefully
supported by the 500, A token effort was made in this direction,
but the protection system aliows the existence of only sixteen
distinct object types, approximately half of which have meanings
pre-assigned by the system,

[373]

LL52]

[s72]

Bibiiography

Jones, A, K., Frotection in Programmed Systems.
Ph.D. Thesis, Carncgie-Mellon University, 1973.

tenpson, B. ., Dynamic Pratection Structures.

Pros. AFIPS 1859 FJCC, Vol. 35, AFIPS Press,
Monivale, N. J., pp. 27-38.)

Schroeder, M. D., Cooperation of Mutually Suspicious
Subsystens in a Computer Utility.
Ph.D. Thesis, Mac Tr-104, M. I. T., 1972.

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18

