TENEX Functional Parts and Formalization of their Interfaces

Wrenwick Lee
January 29, 1974

Technical Memo _ T™.74-2

1. Introduction
TENEX Documents
TENEX Memos
TENEX Monitor Manual

Documentation vs Implementation

2. Brief Functional Descriptions
Scheduler
Memory Management
Peripheral Control
File System
Interrupt, Trap Handler

System Services

3. Entry into a Functional Part
Data Structure Functions
Data Structures a}e manipulated in the following ways:
Domain, Local, Nonlocal

Uses of data structures
4, Functional Part Interface Identification

5. Movement of Functional Parts into Separate Processors
Security Effects
Interrupts
Local data structure protection
Nonlocal data structure protection

Processors

Memory management

Interface Formalization

Modularization

Random Comments
How does having two modes (user and monitor) affect interface specifications?
Probably Reorganization

File System, access checking stuff - how could they go onto a separate
processor?

(Anonymous Notes from an Anonymous Source)

TENEX SQURCES Classification

TENEX Functiona] Parts and Formalization of their Interfaces

1.1 Introduction
The TENEX operating system can be considered to be comprised

of six functional parts:

1) Scheduler

2) Memory Management

3) Peripheral Control

4) File System

5) Interrupt, Trap Handler

6) System Services (J5YS, Monitor Calls)

Taking the set of TENEX operating system files, one can logically

apportion them among the six functional parts.

1.2 TENEX Documents

1.2.1 TENEX Memos - The TENEX memos give a nice general overview of
several parts of the operating system:
Scheduler - TENEX Memo 12
Memory management - TENEX Memo 12

File System - TENEX Memo 4

Peripherals control and interrupt, trap handling are not described
very clearly. Information pertaining to them are found in:
Terminal Service TENEX Memo 5
Calls & Interrupts TENEX Memo 8
Pseudo-Interrupts TENEX Memo 7

1.2.2 TENEX Monitor Manual - This manual gives a brief description of
the functions of the different source files of the monitor. It
is incomplete and sketchy at points. However, it does provide

another overview of the operating system in addition to the memos.

1.2.3 Documentation vs Implementation - There are important differences
between the documentation and the implementation. The documentation

is basically for DEC PDP-10 KA processor with the BBN processor

modifications. The implementation we are working with is a

DEC PDP-10 KI processor without the BBN processor modifications.

2.1 Brief Functional Descriptions

2.1.1 Scheduler - The scheduler controls the running of processes.

In TENEX, process = fork. The data structures and functions

used by the scheduler are related to process handling.

The basic data structure for a process is a PSB (Process
Storage Block), containing various parameters and attributes of the

process. In addition there are various system fork (=process)

tables to which the scheduler refers to in scheduling processes.

FKPT Table
-.. . /‘/_\
*-: ::jj [- — |] | Ba]ggi?
I Running
o . '

v

| |]
GOLIST \-—/

WILST

The FKPT structure shown above is a table of active processes.
Within it are scheduler queues. WTLST is a queue of processes
in wait mode. GOLIST processes are ready to be loaded and run.
Balance set processes are mostly loaded except for a page or two.
The actual running process must belong to the balance set.

The scheduler makes decisions as to which process to load
and run. There are other system process structures that the
;chedu]er uses.

The operating system must perform certain real-time tasks. Echoing

terminal characters and display refreshing are two of these.
The operating system is interrupted by the system clock at
regular intervals and control is sent to the scheduler. The

scheduler thereupon dispatches to the task handlers.

2.1.2 Memory Management
TENEX is a virtual storage system. Pages are swapped into
core and out. This is the responsibility of memory management.

The data structures and functions used are related to page management.

The basic data structures used are the ¢sT (Core Status Table)
and the DST (Drum Status Table). These tables contain information
about the status of pages as they move about. A PT (Page Table)
is used to record the location of all pages of processes whether
in core or secondary memory.

Parameters and characteristics of the rotating devices
are known by the memory manager as it queues data transfers
between these devices and core.

It communicates mainly with the scheduler module. The
scheduler module tells it which process to swap in. At times,

it tells the scheduler that it should reschedule swaps.

2.1.3 Peripheral Control
TENEX documentation does not consider peripherals control
as a separate functional area as we are doing in this report.
The peripheral control in TENEX s found in a combination of
a part of the file system, a part of the interrupt handling, and
numerous device control modules.
Peripheral control is in two parts: terminal peripherals
and "others". Others include magnetic drum, disk, paper tape, etc.

The data structures and functions used are related to

input / output control and buffering. There are various buffers

for data transfers to / from peripheral devices. PTR (Paper Tape

Reader) and MAGTAP (Magnetic Tape) are two of the many drivers

2.1.4

2.1.5

used in peripheral control.

Peripherals are the primary cause of hardware interrupts.
Devices interrupt the processor to signal I/0 completion.
The processor is regularly interrupted by a clock to service
terminai peripheral data transmission. Terminal peripheral
handling involves an interactive element. Echo modes, break
characters and wakeup are several functions that must also be

handled.

File System
The file system organizes pages into functionally useful
ordered sets. It maintains, organizes and controls accesses to

files in the system. The data structures and functions used

are related to maintenance, organization and access control of files.

A FDB (File Descriptor Block) contains information describing
the file. A pointer in the FDB points to an IB (Index Block)
which contains locations of the pages of the file. FDB's are

combined in FD's (File Directories) to form a group of associated files.

Interrupt, Trap Handler

The data structures and functions used involve interrupt

and trap handling.

TENEX has two modes, user and monitor. Hardware interrupts
are handled by monitor mode. Fixed locations in the monitor EPT

(Executive Process Table) are used to dispatch to different interrupt

2.1.6

routines. The routines are of three types:

1) APrR (Arithmetic Processor) errors

2) Device I/0 completion

3) Clock
The clock interrupt causes the scheduler to be invoked to service
real-time processes.

There are two classes of traps. The first is APR originated.
The second is Pager originated. The Pager maps the virtual page
of a process to a physical page, looking in associative registers
and PT's,

The 4APR traps are page failure (page not in map), and overflows.
Fixed Tocations in the UPT (User Page Table) for usef mode and EPT
for monitor mode, are used to dispatch to different trap routines.

The Pager traps set the TSW (Trap Status Word) in the PSB

and then jump to a trap routine.

System Services - These are implemented as JSYSes (Monitor Calls).
Some JSYSes are contained in the other functional parts of the
operating system. Thus the JSYSes do not form an entirely independent
part. Both parts of the operating syétem and the user may make
JSYScalls. The JSYS manipulate various data structures. There

are many file system JSySes that read and set different parts

of the file descriptor block. The RESET JSYS initializes many things
about the current fork. In providing the user these services,

the system must prctect against the user's gaining illegal and

damaging access to system structures.

3.1 Entry into a Functional Part

There are three main entries into a functional part

Interrupt
Functional Part ‘,,,———“""“

\
\ T~ Call, Jump (JSYS included)

Trap

. Interrupt - e.g. The scheduler is entered whenever a periodic
clock interrupt occurs. Peripheral control is entered when device

interrupts occur.

. Call, Jump - e.g. File system routines dispatch to peripheral
controls when it finds out that a file it is to perform data
transfers on is actually a physical device. The scheduler calls

the memory manager to swap in processes.

. Trap - e.g. The CPU, not finding a page in the map, traps to

the memory management part to Tocate (and perhaps swap in) the page.

3.2 Data Structure Functions

3.2.1 Data Structures are manipulated in the following ways:

Data Structure

\\

Direct Manipulation
by Functional Part

\

JSYS
(possibly from user)

3.2.2 Domain, Local, Nonlocal
. A data structure manipulated by a functional part is said to be

in the domain of that functional part (FP).

. A data structure manipulated by only one functional part is said

to be_local to that functional part. If it is manipulated by more
than one FP, it is nonlocal.

Note: a data structure manipulated by a user via a JSYS is said to

be in the domain of the user.

Note: Later, we may further want to define domains of different types.

i.e. whether a FP reads, writes, modifies, etc the data structure.

3.2.3 Uses of data structures

A local data structure is used primarily for state information
needed dn]y by a single functional part. Data structures in the
domain of.several functional parts are often used to communicate
between the functional parts.

Examples: The memory manager is the only FP concerned with
the DST (Drum Status Table). This data structure is local to memory
management. The BALSET (Balance Set of Pages in Core) is
manipulated by both the scheduler and memory manager, being in
both domains. The PSB (Process Storage Block) is in the domains

of most FP's because the process is a fundamental element of the

operating system and manipulated by most FP's

4. Functional Part Interface Identification
Having our different FP's, the first task is to identify
the interfaces between them:
1) Identify the entries into each functional part (3.1)
2) Identify the domains of each data structure (3.2)
Identifying the entries and domains will give an exact picture
of the interfaces of the FP's. Currently, this is being pursued,

data structures domains and FP entries are being charted out.

5. Movement of Functional Parts into Separate Processors
It has been proposed that certain functional parts be moved
to separate processors. Prime candidates are the memory manager and

peripherals controller.

5.1 Security Effects

5.1.1 Interrupts - If the peripherals control is placed in a separate.
processor, then the interrupts due to Device 1/0 completion (2,1.5)
may be eliminated. Similarly, one would not need to cause a clock
interrupt to the scheduler to do I/0 (real-time) processing
because the peripheral control processor would be dedicated to this
task. The remaining APr (CPU) error interrupt can be changed to
a trap of some sorts. The elimination of interrupts on TENEX would
simplify the operating environment a great deal. The operating
system will be easier to define (# easy to define) and install

protection mechanisms.

5.1.2 Local data structure protection - See 3.2.2 Local domains can be
protected from illegal access. Techniques may be:
1) putting it'into a local memory
2) hardware enforcement
3) object protection a la Anita Jones'* style

Details are to be worked out at a future date.

* Jones, Anita "Protection in Programmed Systems" Dept. of Computer Science
Carnegie-Mellon

5.1.3 Nonlocal data structure protection - See 3.2.2 Nonlocal
data structures present a more difficult protection problem.
With more than one processor manipulating it, access must be given
to only one at a time. This can be controlled by a PROTECT mechanism
as used for the BCC 500.
A problem regardless of whether the functional part goes
into a separate processor or not, is control of manipulation of the
data structure. With the BCC 500, there were times a nonlocal
data structure was modified incorrectly but it was uncertain who did
it. Suggestions have been made to the effect of using a processor
to receive requests to modify a data structure, ensure the validity of the

request, and then do it. More thought needs to be put in this area.

5.2 Processors
The processors to be used would probably be of the nature

of Al Goodrich's LOLO processor.

5.3 Memory management
A question arises as to whether memory management should have
its own channel (built to specifications) or continue with the

standard DEC interface.

6. Interface Formalization
Whether the FP goes into a separate processor or not, the
interface (both entries and data structure manipulations) must

be formalized. It can take the form of request ncdes passed

between FP's, or controlled access to certain data structures, etc.

7. Modularization

The FP's might be physically separated in separate processors
or in core, running on the same APR (CPU). Barriers are erected around
each so that one FP cannot communicate with another except through
formally defined entries and controlled access to data structures
in the domain of both FP's. One cannot branch into the other's code
arbitrarily, nor modify some of his data areas arbitrarily. Hardware
or software fences are erected.

Secukity is then thought of in terms of the seéurity of the
individual modules. A secure module cannot be breached from one of the
other modules. Nor can it breach other modules.

Note: The importance of control over nonlocal data structures

~js shown here. Module 1 which shares a data structure with module 2
cannot be said to be secured as long as module 2 is not controlled
in what it can do to the data structure. A formalization of how
the data structure can be manipulated would probably best reside

in a module separate from 2. In that way, module 2 can't "cheat".

8. Random Comments

8.1 How does having two modes (user and monitor) affect interface

specifications?

8.2

8.3

8.4

Probably Reorganization
Indiv Device Modules

Part of File System P Peripheral Control

Interrupt System (most of)
have to find and decide how to slice peripheral control stuff out

of file system.

File System, access checking stuff - how could they go onto a

separate processor?

(Anonymous Notes from an Anonymous Source) (See Section 5)
Some thoughts about moving parts of the Tenex 0/S into separate
"management" processors.
I. A1l the modules moved out of Tenex will obviously have to be
re-written. This is anortunate in a way but has the advantages that
a) if we have our way, the new code will be writfen for
a processor which enforces with hardware the separation
of the code into small tasks lTimited in their ability
to screw things up.
b) an opportunity will exist to enforce by administrative
means the construction of programs in a way...
It will probably be desirable to design a language
which will strongly "suggest" the proper organization
of code and allow for the use of the new hardware
of (a) above. Hopefully, this can just be a modification

to an existing language.

II. A large problem to be solved is the design of the interface

between user programs running on Tenex and the services which have

been moved out of Tenex into the other processors. Some points:

1. The interface as seen by user programs musn't change.
This means theymust be able to continue using the JSYS
instruction (i.e., opcode 140, no matter how this gets
handled by the hardware), with arguments being passed
in the central registers. This has a bunch of implications.
Remember that in some cases arguments are pointers
into arbitrary places in the user programs virtual
address space. As the JSYSes now work, this causes
no difficulties (well...) because the JSYS code runs
on the CPU and has the benefit of all the elaborate
mapping and page-fault handling stuff implemented there.

What I'm trying to do is consider the possibility

of implementing (at least some of) the JSYSes entirely
on a separate processor. This has been given some
thought from time to time. It seems most feasible
(though maybe not reasonable) if the JSYS processor is
another X7-70 processor. One can imagine that when
a program running on a "user KI-10" executes a JSYS, this
causes it to be kicked off that processor and scheduled to

run on the JSYS processor.

9.

TENEX SOURCES Classification
The following is a first cut at classifying the various source
files of the TENEX operating system as belonging to functional parts.

As more information is known, reorganization will occur.

(Compiled by Alan Kam and Wrenwick Lee)

1) Scheduler
SCHED, SWEMON
2) Memory Management
DISKll, DISC, DRM, DSK, PAGEM
3) Peripherals Control
DECTAP, FILT?Y, IMPll, IMPDEV, MAGTAP, NETWORK, PTP
PTR, TTYSRV
4) File System
DEVICE, DIRECT, FILINI, GTJFN, 10
LOOKUP, STRING
5) Interrupt, Trap Handler
KISRV, PISRV
6) JSYS
FREE, FUTILI, IH, SWPMON
Others:
*) Macro, Data Structures
FILE, PARAMS, PROLOG, STENEX
*) Miscellaneous
ERRMES, SYSNAM, SYSSAV, VERSIO,

POSTLD y MR, MFEIN, MFLOUT, NATIME

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18

