NOTES ON: v
PLACING THE FUNCTIONAL MODULES CF TENEX INTO MANAGEMEMT PROCESSORS

Wrenwick Lee
February 15, 1574

Technical Memo, T™.74=7

Notes on:

Placing the functional modules of TENEX into management processors,

Qua]ificatioﬁ

The fellowing notes areénot necessarily organized in » logical
manner. They represent many observations and thoughts ccﬁcefa%ng the
above topic. Several purposes are intended for these notes. 4 first
gathering of the various "loose® thoughts is intended. This will be |
worked into a more formal memo or report. A means of communicaticn %o
other members of the task as to the nature of moves to management
processors as I see it, In éonjunction with that, to receive comments
from others as to

'1) disagreements with my observations and thoughts

2) further development or insights into the topics mentioned

3) as a booster to others to pursue or plan towards certain aspects

of the topics mentioned.

Periodic Routines -

There are many cyclic, time-dependent routines that must be invoked
by the scheduier in its main loop. The scheduler usés the system clock
to update routine clocks to determine when to run these routines. These

routines can be placed in the management processors which maintain their

own querying cycles. Some of these routines are
1) TTCH7 to check for terminal transmission, etc. echoes.
2) IMpP
3} OSKCHK (?) specific function needs to be specified.
4} MTACHK | {7) specific function needs to be specified.

Page 2

Biocks and Wakeups

Presently the following scenario occurs far blocks and wakeups.
To block a process, a function in some other part of the uperating system makes
a well-defined entry into the scheduler. State is saved, «nd the process
is blocked. Blocking involves setting a word in a system fork table
for the fork being blocked. This word containing a test comlition and
a transfer address of a test routine. The scheduler in its main lecop
runs through these tests to see 1f a fork should be waken (pevindically
depending on the ISKED flag). Upon wakening, the scheduler mﬁ“és the
fork from the wait to the go list. Many of these tests are in ‘he
sch&du?er (the DISMISS tests, BLOCK teﬁts} but there are many ir the other
narts of the operating system.

These blocks and wakeups should be handled at the local wanicement -

processors, The tests should be maintained at the incal processor

iﬂg for modieles that will continue to share thé cpis with the scheduier,
scsuming the scheduier is not in a separate prbcessor, the current stheme

might be maintained}, Instead of the scheduler testing for wakeups,

the separate processors will reguest wakeups on a ring queue. DOresent);

jumps are made to certain routines in the scheduler {JSYS EDISMS, SCHEDP etc.)

to cause a biock. These should be changed to requests to biock.
We must find these routines and list them.

Re-Entrant Considerations

Current’y the TENEX system is re-entrant (to the grester extent).
fxplanation is given by the following example. When a process biocks
for a page fault, it might be in the memory manager. It calls the scheduler

via SCHEDP and’ the scheduler remembers the current lacation in memory

Page 3

manageéent that the call came from. Also the state of the system necessary
for that specific fork is saved in that process PSB (Process Storage Block).
Another fork with a different PSB is then started up. Later on, when the
page comes in for the original fork, and it reaches sufficient'priﬁrity,

the fork is continued where it left off in the memory manager.

There is no re-entrance into the management processor itself

since it is running independently of the CPU. Observations of memory
management imply that certain parts of the code muét remain cutside
of the processor itself, Thought must bea given as to how re-entrantiness ‘
(as currently implemented) affects the cut of code imtoc processor aﬁd |
that remaining in the monitor. A rule of thumb is that the more fork
related, the more it must remain in the monitor. Actually S good idea
is to push the re-entrantness out of the memory manager as much as
possibie. This may involve more state keeping im the local tables or
in the PS8. This problem and solution is a good one to study for one
module {e.g. memory management) because it is a case of the problem one
sncounters among ail the modules {éle. peripherals module, file system).
Currentiy Judy is working on Tooking at PAGEM; the memory manager.
Since] have studied the scheduler pretity thoroughly already, when she is
fairty familiar with PAGEM, then we can address ourselves to this problem
in actual implementation detail. From thic we will probably obtain

guidelines with respect to the cther management processors.

interrupts
The interrupt scheme presently employed is complicated. It would

he hard to convince oneself much less someone else of the security of the
code invoived. With the addition of management processors, much of the
interrupts can be removed. The (1SB SCDCHN) which is a form of

programmed interrupt is used perhapsstoo freely (from a security standpoint).

Page 4

Many times it is us=d to set up rescheduling and starting up of forks.
Because much of the complexity of the scheduler will be removed {e.g.
all the WAKEUP tests, periodic routines) it may be that the scheduier
need not he interrupt driven.‘

The clock does need to be updated éhough but this may be in an
encapsulated function. The scheduler might be request driven more than
interrupt driven, '

To the extent that time-dependentness is less a factor for the

CPU, the less role interrupts will take.

- Fork Tables
Farks being the key processing unit, there are important tables
that are maintained for active forks. These will probably come under

grotection. Protection mechanisms should te considered for these tables.

Pseudo~Interrupts

A fork table UKINT, and also FKINTE are definitely to be shared
amonig various processors. These perhaps would be important elements to
use in thinking of domain protection and control. {The fork tables in
general provide a gcod case). The terminal handiing processor will
probably set these tables as well as the échedﬁler. E.g. +C received
on a teletype wiil cause FKINT and FKINTB entries for that fork to be
set. Later the scheduler will see and handle the pseudo-interrupt accordingly.

Similarly, the APR processor overflows will generate such interrupts.

Hacro-scheduler and Micre-scheduler

it seems feasiile to have a macvo-scheduler {part of monitor} and a
micro-scheduler {in a processor). The micro-scheduler can handle the

more time-dependent stuff (i.e. update clocks) while the macro-scheduler

Page §

hendles the larger more general scheduling tasks such as LOGIN, LOCOUT.
In fact, the micro-scheduler might perform another task currently
reiegated to the macro-scheduler, that of determininy when processes

can be removed from the balance set.

Domains, Data Structures

The domains and data structures must be well choicn and the functions -
ar accesses to them well-defined in a multi-processor ervivorment. As
mentioned earlier, hardware or software fences must b: defined to limit

access (of various types) to these domains.

Relation to Critical-Non critical Code, Insertion of Protection sochanisms

These two topics are firmly tied in with that which
is the subject of this discourse. The right hand must know what the .ft
nand is doing. Discussions should be set up to coordinate efforts.
e.g5. What goes into a separate processor need not be worried as to whether

it is critical or non-qritical.

JSYS Considerations

#Movement into separate processors must be cognizaqt of the effect
on JSYSes. One of the inherent problems is the same s that discussed
in re-entrantness. The code the JSYS may want to execute may be in the
processor. Thus the value of the above proposed discussions. A memo
should be written concerning major problems of implementing JSYS caused
by separate processors. Several bases of information are needed.
A good understanding of the variou; JSYSes' implementation, an understanzing
of the probable partition into processors which is being described here,
and ability to combine JSYSes into logical groups so that major propzrties

and difficulties can be foreseen and thus worked on.

Page 6

Details
The actual implementation involves overwheliming detail. But for
the system to run practically, all this detail must be gleaned., A
comprehensive base of knowledge is an important requirement. fhis task
of moving TENEX into separate processors should include several subtasks.
come of these have been already mentioned. But for example, | |
1) concentrating on removing the peripheral stuff froh the standpoint
of the peripherals control processor. This is periaps the most
immediately fruitful and practical area. |
2) similar for the memory manager
3) general coordination, and problems to be encountered with all
| " processors. Setting up protection mechanisms and domain,
4) concentrating or simplifying and formalizing the interfaces between

processors. Creating feasible protection mechanisms.

Protection Mechanisms

perhaps the least developed, but most interesting aspect is to be
able to protect the important structures. This topic will be pursued soon.
Yarious ideas (general in nature) have been proposed. At this point it
is feasible to consider some of these proposals and discuss them. Already,
simplicity is & key. By making;TENEx simpler, we can define it, formalize
it hatter. Protection mechanisms to be inserted into this new design

can be considered.

File System
I haven't given much thought to the file system. But the following should

be pursued. Should we, and how could we put the file system under separate

control? Various terminal things have tQ be broken out of the file system.

Rainer mentioned a high level cut. 1 would appreciate a memo on this.

The file system stuff perhaps will be more involved in critical-non critical
than separate management processor. But lets not assume a priori that this

is so.

Preotection Processor

Really this relates to the protection mechanism: mentioned earlier.
But it is worthwhile to consider the possible role (also economics) of
having such a processor. What kind of things could it do (both to
prevent as well as signal violatiens of security). Actually it might
be in the nature of a SYSDOT type processor except with different functions.
Or like the HISMIMP process that checks queues, etc for ralidity, scme
of this can be in microcode. From others experience and nur ideas, 5uch

a processor might be very important.

mapping, SPT, User/Monitor Modes, Fast Monitor Routine, Siow Monitor

This whole area seems like a bag of worms resulting 1 many gory
special case checks and_unbelievably messy code. We must iialyze this area
carefully because there's a lot of broken glass arcund. Jugy is initially

working on this stuff.

LOLC Processor

What anticipated problems can we expect with the LOLC pri.essor?

The word size is 16 bits while TENEX addresses in general are 12 bits.

Startup, Initializaticn

The startup code will be different in the new scheme since Tiere is
a major recrganization. Conventions need be set up to COLD START the

jarious processors, and the necessary tables. Similar problems nust be

~cnsidered for system checkpoint/crash recovery. How is sucurity

Page 8

maintained in such an 1n$tance?

Formal Definitions, Procedures

As part of securing the system, sloppiness mist be avoided. It is a
cardinal sin. Procedure must be set up that cleurly state, i.e., how
data structures are accessed, who accesses them, eC. Further, constructions
such as that of the protectiocn domains (Spier) whith force implementation
to follow strict procedures will be used. Part of the implementation of

security means prevention of sloppy programming.

Seminar Proposition

It is a good time to have a seminar or how tte TENEX operating system
functions. This would probably help many people jrasp the system, [have
scme knowiedge from the scheduling standpoirt. Conbine this yith the
file system and memory management, we can perhaps present the attivity

going on when a job is run on the system.

