
*

* Computer System Capacity Fundamentals

This work was supported by the National Bureau
of Standards.

nus 2 7 t919

May 3, 1974

D. J. Kuck
Dept. of

Computer Science
University of Illinois

1. Introduction

On mips and mops
and megafl ops,
and binary
capacity.

This report is an attempt to outline a formal structure for the

study of computer capacity. Several traditional measures will be discussed

and some new measures will be introduced. Our goals for the use of measures

of computer capacity include:

1) Quantification of upper bounds on a given machine's

raw theoretical speed for various kinds of computations.

2) Comparisons between diverse computer systems for some

set of computations.

3) Evaluation of the actual performance of a given machine

on some job mix compared with its theoretical capacity.

4) Guidelines for improving a given system's cost/performance.

Traditionally, people have often qu,oted computer speeds in mips

(.!J!i 11 i ans of ins tructi ans .Q_er ~econd). But the execution of an 11 instruction 11

yields rather different effects on various machines. The range is from some

simple indexing operation on a traditional machine to a vector inner product

instruction on a modern pipeline processor. Thus, as computer organizations

diverged from one another mops (.!J!illions of QPerations Q_er ~econd) became a

more reasonable measure. But, in many numerical calculations, floating-point

arithmetic operations are the raison d'etre for the computer and logical

operations, shifts, etc., are 11 overhead 11
• Thus, megaflops (millions of

floating-point operations per second)may be the important measure.

Quoting megaflops is of course quite irrelevant for most computations

2

performed in the real world every day. In many computations, e.g., data base

management, file processing, simulation, etc., almost no floating-point

arithmetic is performed. The primary memory speed and often input/output

speeds are the most important to quote in evaluating or comparing machines.

Our formulation will include consideration of the type of computation being

performed in terms of ratios such as primary memory to processor bandwidth

used by a computation.

We will attempt to bring together in a uniform way measures of the

speeds of various parts of a computer as well as memory size. The two main

measures which concern us are speed (of processor, primary and secondary

memory) and size of primary memory. By definition, speeds are given in

units per second and bits/second is the simplest such measure. It is

traditional to call the bit rate of a communication channel its capacity.

Similarly, sizes of memories in bits may be thought of as capacities. Since

we shall be discussing speeds and sizes together, it seems reasonable to refer

to the whole notion as "computer capacity".

In addition to the above machine characteristics, our model will

include characteristics of the programs being executed. In particular, we are

concerned with the fractions of a.computation which use each of the three major

parts of a system: processor, primary memory and secondary memory. Thus, our

model could be used by independently measuring machine and program character­

istics, and relating them through the capacity surfaces we derive.

One difficult question is how to deal with the control unit. It has

the potential to allow the several major parts of a computer to operate

simultaneously and thereby increase capacity in a major way. We shall briefly

discuss 11 serial 11 control whereby only one function can be performed at a time.

3

Our major attention will be given to computer systems in which the processor,

primary and secondary memory all can operate simultaneously in an overlapped

way. The models we discuss can be thought of as assuming a perfect 11 lookahead 11

control unit. Alternatively, any idleness due to the control unit may be

considered to be lumped together with the processor. Degradations in system

capacity due to variously constrained control units could be an interesting

area for further study. In fact, the control unit could be treated as a fourth

dimension in Figure 6 of Section 4.

2. Capacity in Overlapped Machines

In this section we define processor, memory and system capacity. These

definitions are given in terms of machine parameters (our a.'s) and program

parameters (our s's). There is a good deal of syrrnnetry in much of the following,

and we illustrate this by displaying a number of equations.

Let us consider a clocked machine with a processor, i.e., an

arithmetic and logical unit, operating at maximum bandwidth (i.e., data rate)

BP bits/second. Let the primary memory bandwidth be Bm bits/second. We define

B B
- m 0 a. - - >

pm BP
and a. = i > O •

mp Bm

For any given computation, the total available bandwidth of the

processor or memory may not be used. Thus, we define Bu < B to be the p - p

bandwidth of the processor which is actually used in some computation. Similarly,

we define Bu < B as the used bandwidth of the memory for a given computation. m - m

Also, for any given computation we define

4

Bu+Bu

spm = Q m
> 1

Bu
p

and
Bu+Bu

smp = m Q > 1
Bu
m

s 0 it f 011 ows that
Bu

- 1 m
spm = - > 0 u- '

BP

and
Bu

s - 1 = .=2_ > 0
mp B~ -

We may interpret l/Spm as the fraction of some computation in which the processor

is engaged. Similarly, s-1-- = 1
mp

which the memory is engaged.

is the fraction of a given computation in

If we assume thaf each memory cycle and each processor operation

require the same amount of time, then the above can be interpreted as ·follows.

For a machine with a control unit ~hi ch overlaps memory and processor

operation, l/spm is the processor fraction of the total number of instructions

executed or the processor fraction of the total bandwidth used for some

computation. For a machine with a control unit which allows no overlap of

processor and memory operation, l/spm is the processor fraction of the total

number of instructions executed. Obviously, similar statements hold for l/smp·

Next we consider the notion of the capacity of the processor, the

memory and the combination of the two. We shall define capacities in bits/

5

second. Since we are interested in maximum possible data rates, we shall

assume that either the memory or the processor bandwidth is saturated in any

given computation we discuss. Thus, all our discussions of capacity will

assume that for the type of computation under consideration ·no faster data

rate is possible on the machine we are considering.

Let us define

Bm
Y = - > 1 m u - '

Bm

and

which we ca 11 the memory freedom and processor freedom, respectively. When

Ym = 1, the computation is said to be memory bound and when yp = 1, the

computation is said to be processor bound. As outlined in the preceding

paragraph, our subsequent discussions of capacity will assume that either

y m = 1 or y p = l , or both.·

We can relate machine parameters (a's), program parameters (s's) and

freedoms (y's) as follows. Since

B Bu Bu
Y m __ m p n

= a __i::.

Y p B Bu pm Bu
p m m

and since

6

we have

Since apm = l/amp' we can derive a similar expression by interchanging m's and

p's in this equation.

Now we define, for any given computation on any given machine with

overlapped processor and memory, the processor capacity

a Em B
cP = B -1 p if a < B - l pm pm - pm (l)

BP otherwise.

Note that apm ~ spm - l is equivalent to

so

or

But since we are assuming that either Ym = l or Yp = l, this implies that

Yp = l. Thus, in the processor bound situation our definition sets CP =BP

which is the maximu~ processor data rate.

On the other hand, if apm ~ spm - l, it fo"llows that Ym ~ Yp , but

since Ym = l or Yp = l we conclude that Ym = l, and we are memory bound.

7

Thus, B = Bu m m· Now the definition of CP can be rewritten in this case as

But since Ym = 1, we have CP in the case of a memory bound computation.

Thus, the processor capacity is defined to be the fraction of the processor

bandwidth which can be used for this computation, given the fact that memory

bandwidth is saturated.

If we rewrite processor capacity as

we can interpret it as BP if memory freedom is greater than processor freedom

for some computations and as BP times the ratio of the freedoms otherwise.

We emphasize that the processor only reaches· its maximum capacity BP when

~Je can derive an expre~s ion for memory capacity Cm with ana 1 ogous

characteristics to processor capacity. Thus, we write

(2)

otherwise.

8

terms of BP as follows

cm ={lpm-l)BP if Bpm - 1 < a. - pm

otherwise.
(3)

pm BP

If we define system capacity Cs to be the total system bandwidth

available for any calculation, by properly adding Equations 1 and 3 we obtain

(l+B
1
-l)a.pm BP if a.pm .::_ spm - 1

cs = pm

(l+s -l)B pm P otherwise,

so

a.pmBpm B if a < B - 1
Bpm-1 p pm - pm

cs = (4)

otherwise.

This can be expressed in terms of Bm as

(5)
otherwise.

Note that maximum system capacity occurs when both the memory and processor

are bound, i.e., yp = Ym = 1. Thus, from Equation 4, if a.pm= spm - 1 we have

B
= (1+-1-)B = (l+___Q_B)B = B + B

a.pm m m m m p

Thus, the maximum system capacity is the sum of the maximum processor and

memory bandwidths.

9

To make matters concrete, we give in Figure 1 examples of capacities

for apm = 2 and various Spm values. In Figure 1 we denote activity by X and

inactivity by 0. We show two columns under the label 11 memory 11 to denote that

the memory bandwidth is twice the processor bandwidth, i.e., apm = 2. The

capacities are shown under the columns of activity. Overall results are

plotted in Figure 2.

In Figure 3 we plot system and processor capacity for various

values of apm· Note that the processor can perform at its maximum capacity

over a wider range of problems (spm values) for larger apm· Note also that

the memory capacity which is available for memory to memory (or I/0) operations

becomes greater for larger a. It should be remarked that as spm approaches l,

reasonable system performance depends on a h'igh frequency of register to

register operations (or cache to cache operations).

spm =

processor

x
x
x
x
x
x

B +

spm =

processor

x
x
x

4/3

memory

x 0

0 0

0 0

x 0

0 0

0 0

B/3 = 4B
3

2

memory

x 0

x 0

x 0

B + B = 2B

spm =

processor

x
x
x
x

B +

Bpm =

processor

x
x
x

3/2

·I

B
2

3

memory

x
0

x
0

=

0

0

0

0

3B
2

memory

x x
x x
x x

B + 2B = 3B

Figure 1. Overlapped Processor and Memory, a.pm= 2

10

11

spm = 4 spm = 5

processor memory processor memory

0 x x 0 x x
0 x x x x x
x x x 0 x x
x x x x x x
x x x 0 x x
x x x x x x
0 x x
0 x x
x x x
x x x
x x x
x x x ~ + 2B = 5B

2 2

2B + 28 = 8B
3 3

Figure 1 (continued). Overlapped Processor and Memory, apm = 2

12

" ""-mem. capacity '-......... ,, ~ n • • • ' •• ,, __ . ~g

•
•

•
• •

proc. capacity ~
0_ .._ ~ ---v~----

• ' ' • ' • 4', ,.,.
'

• •
•

.....
'o. ',

•
• • •

processor~~----------+---+--------+-------~...-.-.~a-----r----- memory

I ~·~ Yt. .f~~X.
~
,,~

0

Figure 2. Capacity for apm = 2

13

38

B

fLt ~ A 0

1/ ff,..._

Figure 3. Capacities '.or Various apm Values

14

3. Capacity in Non-Overlapped Machines

To contrast the previous section with a simpler machine and

demonstrate how capacities vary as a function of machine organization, we

now disallow the simultaneous operation of memo~ and processor. However,

we do assume a perfect lookahead control unit. Figure 4 illustrates the

situation for a = 2.

It may be seen that in the case of non-overlapped processor and

memory, we have (using the notation of the previous section):

cP =
apmBp

apm+spm-1
(6)

cm =
apm(spm-l)Bp
apm+spm-1

(7)

and

= (8)

We plot the capacity of a non-overlapped machine for apm = 2 in

Figure 5. Note the contrast with Figure 2, an overlapped machine. Here the

processor and memory capacities only reach their maximum bandwidth at the

limits of l/Spm· Note also that a good deal less system capacity is left

over for I/0 activities.

We can easily show that an overlapped machine's capacities are all

greater than or equal to a non-overlapped machine's. Thus, from Equations

1 and 6 we see that

15

non-
over lapped = < = overlapped CP

cP

since apm > O in the first case, and spm ~ 1 in the second case. In similar

ways we can show that

non-overlapped Cm 2. overlapped cm

and

non-overlapped C < overlapped c s - s

s = 2

processor memory

0 x x
x 0 0

x 0 0

0 x x
x 0 0

x 0 0

2B/3 + 2B/3 = j8

s = 4

processor memory

0 x x
0 x x
x 0 0

0 x x
x 0 0

0 x x
0 x x
x 0 0

0 x x
x 0 0

s = 3

processor memory

0

x
0

x
0

x

B/2 + B = ~
2

s = 5

x x
0 0

x x
0 0

x x
0 0

processor memory

0 x x
0 x x
x 0 0

0 x x
0 x x
x 0 0

~ + 4B = ~
3 3 3

Figure 4. Non-overlapped Processor and Memory,' a= 2

16

17

f3. - CP - -
-... Proc

-..co esso,.
.....,. ca o._ Pac.

o_ 1ty
......
~

processor memory

I ~ {
,

l . ~, I) ...-.
3 ;{_, s-

'!{3

Figure 5. Non-overlapped Capacity for a = 2

18

4. Processor-Memory-Disk Systems

Now we turn to a complete system with three components--processor

and primary memory as above, together with a secondary memory which we shall

refer to as a disk. We shall assume at all times that one of these three

components is operating at its highest data rate, i.e., its bandwidth is

saturated. We also assume a control unit which overlaps the operation of the

processor, the primary memory and the disk. We first give some definitions

which are analogous to those of Section 2.

Let Bd be the disk or I/O bandwidth.

Then

and

We also define

B
- m

adm - B ·
d

with sdp and sdm being defined similarly. It follows that processor capacity

may be written as:

19

a2m B2
=

Bm
Spm-1 spm-1

cP
apd BP Bd

= =
spd-1 spd-1

BP

Similarly, we have for memory capacity:

ampBm
=

BP
smp-1 s -1 mp

c =
amd Bm Bd

= m smd-1 smd-1

Bm

and for disk capacity:

adm 8d
=

Bm
·adm-1 sdm-1

adp Bd B
Cd = = p

sdp-1 sdp-1

Bd

By summing these capacities for consistent conditions, we obtain

saturated system capacities as follows:

20

(1 + 1 + 1)
BP if CL > f3 -1 and a.dp 2 sdp-1 s -1 s -1) pm - pm mp dp

cs = (1 + 1 + 1)
Bm if CL < f3 -1 and a.md ~ 8md-l spm-1 sdm-1) pm - pm

(1 + 1 + 1) Bd if a.pd 2 spd-1 and a.md 2 smd-1
spd-1 smd-1)

It should be noted that in each of these three cases, if the conditions are

written as equalities then the maximum capacity is obtained. In each case

this reduces to

To make matters concrete, in Figure 6 we sketch a surface for
B BP = B, Bm = 2B, and Bd = 2 . The processor capacity is shown as a plateau

of height B which runs off to 0 along the memory-disk axis. The top surface

is the system capacity. In the region labelled I, the system is processor

bound, and in II and III it is memory and disk bound, respectively. Where

these three regions meet, the max Sc = 3.5B point is located.

.

processor

disk

Figure 6. Capacity s pace

21

22

5. Primary Memory Size vs. Bd

It is well known that there exists a trade-off between primary

memory size and I/0 bandwidth. Our purpose here is to sketch an analysis

of this trade-off and to relate it to our previous discussion of capacity.

Let the primary memory size be N words of w bits each, for a total

of wN bits. The time required to fill this memory from a disk of bandwidth

Bd (assuming Bd < Bm) is wN/Bd sec.

For simplicity, assume a given computation operates on the entire

memory. Assume the computation requires Na time steps. For example, given

an nxn matrix, an n3 step algorithm would give a = 3/2, since n2 = N if the

matrix (or a single nxn partition) fills primary memory. Now the time

required for the entire computation would be wNa/CP secs.

On the average, the system would be balanced if the processing time

were equal to the input time (assuming no output), that is:

or

which gives us

wNa/C = wNB
p . d

tc\-1-
N _ _Q_ \ a-1

- . Bd !
. I

(9)

as a relationship between memory size N, I/O bandwidth Bd' and processor

capacity cp .

The above model can be easily refined in various ways to provide

for input an~ output of data arrays, to provide for multiple buffering, and

so on.

23

6. Con cl us ion

The point of this report is to provide a framework for the study

of computer capacity. We have explored several aspects of the question and

Figure 6 shows a system capacity surface as a function of processor, memory

and disk bandwidth. For a given class of computations, this surface corre­

sponds to a memory size given by Equation 9 in Section 5.

While we have glossed over many details, the model described here

could be useful in the various ways mentioned in the Introduction.

For example, if we were given a set of computations and a machine

configuration we could easily determine a Figure 6 type surface from the

machine parameters. From the computational algorithms, we could estimate

the various s values as discussed in Section 2. This would allow a

determination of our operating point in capacity space. While the ideal

point is where Cs = CP + Cm + Cd , a prudent region is probably somewhere

between that point and the processor corner- of Figure 6 for 11 numerical 11

prob 1 ems. For 11 bus i ness '.'-type problems it may be between there and the

memory corner of Figure 6. For the class of algorithms under consi~eration,

Equation 9 could be used to make memory size trade-offs.

Given some qualitative idea of the operating rules a user prefers,

one could use this model to make quantitative sensitivity studies of capacity

as a function of bandwidth and memory size. This could lead to improved

system cost/effectiveness.

Note that for any given capacity surface, degradation due to

operating system overhead, etc., can be quantified by plotting actual

performance data in capacity space. In this case, the surfaces shown will

serve as theoretical upper bounds on system performance.

