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1. Introduction 

On mips and mops 
and megafl ops, 
and binary 
capacity. 

This report is an attempt to outline a formal structure for the 

study of computer capacity. Several traditional measures will be discussed 

and some new measures will be introduced. Our goals for the use of measures 

of computer capacity include: 

1) Quantification of upper bounds on a given machine's 

raw theoretical speed for various kinds of computations. 

2) Comparisons between diverse computer systems for some 

set of computations. 

3) Evaluation of the actual performance of a given machine 

on some job mix compared with its theoretical capacity. 

4) Guidelines for improving a given system's cost/performance. 

Traditionally, people have often qu,oted computer speeds in mips 

(.!J!i 11 i ans of ins tructi ans .Q_er ~econd). But the execution of an 11 instruction 11 

yields rather different effects on various machines. The range is from some 

simple indexing operation on a traditional machine to a vector inner product 

instruction on a modern pipeline processor. Thus, as computer organizations 

diverged from one another mops (.!J!illions of QPerations Q_er ~econd) became a 

more reasonable measure. But, in many numerical calculations, floating-point 

arithmetic operations are the raison d'etre for the computer and logical 

operations, shifts, etc., are 11 overhead 11
• Thus, megaflops (millions of 

floating-point operations per second)may be the important measure. 

Quoting megaflops is of course quite irrelevant for most computations 
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performed in the real world every day. In many computations, e.g., data base 

management, file processing, simulation, etc., almost no floating-point 

arithmetic is performed. The primary memory speed and often input/output 

speeds are the most important to quote in evaluating or comparing machines. 

Our formulation will include consideration of the type of computation being 

performed in terms of ratios such as primary memory to processor bandwidth 

used by a computation. 

We will attempt to bring together in a uniform way measures of the 

speeds of various parts of a computer as well as memory size. The two main 

measures which concern us are speed (of processor, primary and secondary 

memory) and size of primary memory. By definition, speeds are given in 

units per second and bits/second is the simplest such measure. It is 

traditional to call the bit rate of a communication channel its capacity. 

Similarly, sizes of memories in bits may be thought of as capacities. Since 

we shall be discussing speeds and sizes together, it seems reasonable to refer 

to the whole notion as "computer capacity". 

In addition to the above machine characteristics, our model will 

include characteristics of the programs being executed. In particular, we are 

concerned with the fractions of a.computation which use each of the three major 

parts of a system: processor, primary memory and secondary memory. Thus, our 

model could be used by independently measuring machine and program character­

istics, and relating them through the capacity surfaces we derive. 

One difficult question is how to deal with the control unit. It has 

the potential to allow the several major parts of a computer to operate 

simultaneously and thereby increase capacity in a major way. We shall briefly 

discuss 11 serial 11 control whereby only one function can be performed at a time. 
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Our major attention will be given to computer systems in which the processor, 

primary and secondary memory all can operate simultaneously in an overlapped 

way. The models we discuss can be thought of as assuming a perfect 11 lookahead 11 

control unit. Alternatively, any idleness due to the control unit may be 

considered to be lumped together with the processor. Degradations in system 

capacity due to variously constrained control units could be an interesting 

area for further study. In fact, the control unit could be treated as a fourth 

dimension in Figure 6 of Section 4. 

2. Capacity in Overlapped Machines 

In this section we define processor, memory and system capacity. These 

definitions are given in terms of machine parameters (our a.'s) and program 

parameters (our s's). There is a good deal of syrrnnetry in much of the following, 

and we illustrate this by displaying a number of equations. 

Let us consider a clocked machine with a processor, i.e., an 

arithmetic and logical unit, operating at maximum bandwidth (i.e., data rate) 

BP bits/second. Let the primary memory bandwidth be Bm bits/second. We define 

B B 
- m 0 a. - - > 

pm BP 
and a. = i > O • 

mp Bm 

For any given computation, the total available bandwidth of the 

processor or memory may not be used. Thus, we define Bu < B to be the p - p 

bandwidth of the processor which is actually used in some computation. Similarly, 

we define Bu < B as the used bandwidth of the memory for a given computation. m - m 

Also, for any given computation we define 
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Bu+Bu 

spm = Q m 
> 1 

Bu 
p 

and 
Bu+Bu 

smp = m Q > 1 
Bu 
m 

s 0 it f 011 ows that 
Bu 

- 1 m 
spm = - > 0 u- ' 

BP 

and 
Bu 

s - 1 = .=2_ > 0 
mp B~ -

We may interpret l/Spm as the fraction of some computation in which the processor 

is engaged. Similarly, s-1-- = 1 
mp 

which the memory is engaged. 

is the fraction of a given computation in 

If we assume thaf each memory cycle and each processor operation 

require the same amount of time, then the above can be interpreted as ·follows. 

For a machine with a control unit ~hi ch overlaps memory and processor 

operation, l/spm is the processor fraction of the total number of instructions 

executed or the processor fraction of the total bandwidth used for some 

computation. For a machine with a control unit which allows no overlap of 

processor and memory operation, l/spm is the processor fraction of the total 

number of instructions executed. Obviously, similar statements hold for l/smp· 

Next we consider the notion of the capacity of the processor, the 

memory and the combination of the two. We shall define capacities in bits/ 
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second. Since we are interested in maximum possible data rates, we shall 

assume that either the memory or the processor bandwidth is saturated in any 

given computation we discuss. Thus, all our discussions of capacity will 

assume that for the type of computation under consideration ·no faster data 

rate is possible on the machine we are considering. 

Let us define 

Bm 
Y = - > 1 m u - ' 

Bm 

and 

which we ca 11 the memory freedom and processor freedom, respectively. When 

Ym = 1, the computation is said to be memory bound and when yp = 1, the 

computation is said to be processor bound. As outlined in the preceding 

paragraph, our subsequent discussions of capacity will assume that either 

y m = 1 or y p = l , or both.· 

We can relate machine parameters (a's), program parameters (s's) and 

freedoms (y's) as follows. Since 

B Bu Bu 
Y m __ m p n 

= a __i::. 

Y p B Bu pm Bu 
p m m 

and since 
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we have 

Since apm = l/amp' we can derive a similar expression by interchanging m's and 

p's in this equation. 

Now we define, for any given computation on any given machine with 

overlapped processor and memory, the processor capacity 

a Em B 
cP = B -1 p if a < B - l pm pm - pm ( l) 

BP otherwise. 

Note that apm ~ spm - l is equivalent to 

so 

or 

But since we are assuming that either Ym = l or Yp = l, this implies that 

Yp = l. Thus, in the processor bound situation our definition sets CP =BP 

which is the maximu~ processor data rate. 

On the other hand, if apm ~ spm - l, it fo"llows that Ym ~ Yp , but 

since Ym = l or Yp = l we conclude that Ym = l, and we are memory bound. 
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Thus, B = Bu m m· Now the definition of CP can be rewritten in this case as 

But since Ym = 1, we have CP in the case of a memory bound computation. 

Thus, the processor capacity is defined to be the fraction of the processor 

bandwidth which can be used for this computation, given the fact that memory 

bandwidth is saturated. 

If we rewrite processor capacity as 

we can interpret it as BP if memory freedom is greater than processor freedom 

for some computations and as BP times the ratio of the freedoms otherwise. 

We emphasize that the processor only reaches· its maximum capacity BP when 

~Je can derive an expre~s ion for memory capacity Cm with ana 1 ogous 

characteristics to processor capacity. Thus, we write 

(2) 

otherwise. 
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terms of BP as follows 

cm ={lpm-l)BP if Bpm - 1 < a. - pm 

otherwise. 
(3) 

pm BP 

If we define system capacity Cs to be the total system bandwidth 

available for any calculation, by properly adding Equations 1 and 3 we obtain 

(l+B 
1
-l)a.pm BP if a.pm .::_ spm - 1 

cs = pm 

(l+s -l)B pm P otherwise, 

so 

a.pmBpm B if a < B - 1 
Bpm-1 p pm - pm 

cs = (4) 

otherwise. 

This can be expressed in terms of Bm as 

(5) 
otherwise. 

Note that maximum system capacity occurs when both the memory and processor 

are bound, i.e., yp = Ym = 1. Thus, from Equation 4, if a.pm= spm - 1 we have 

B 
= (1+-1-)B = (l+___Q_B )B = B + B 

a.pm m m m m p 



Thus, the maximum system capacity is the sum of the maximum processor and 

memory bandwidths. 
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To make matters concrete, we give in Figure 1 examples of capacities 

for apm = 2 and various Spm values. In Figure 1 we denote activity by X and 

inactivity by 0. We show two columns under the label 11 memory 11 to denote that 

the memory bandwidth is twice the processor bandwidth, i.e., apm = 2. The 

capacities are shown under the columns of activity. Overall results are 

plotted in Figure 2. 

In Figure 3 we plot system and processor capacity for various 

values of apm· Note that the processor can perform at its maximum capacity 

over a wider range of problems (spm values) for larger apm· Note also that 

the memory capacity which is available for memory to memory (or I/0) operations 

becomes greater for larger a. It should be remarked that as spm approaches l, 

reasonable system performance depends on a h'igh frequency of register to 

register operations (or cache to cache operations). 
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Figure 1. Overlapped Processor and Memory, a.pm= 2 
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spm = 4 spm = 5 

processor memory processor memory 

0 x x 0 x x 
0 x x x x x 
x x x 0 x x 
x x x x x x 
x x x 0 x x 
x x x x x x 
0 x x 
0 x x 
x x x 
x x x 
x x x 
x x x ~ + 2B = 5B 

2 2 

2B + 28 = 8B 
3 3 

Figure 1 (continued). Overlapped Processor and Memory, apm = 2 
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Figure 2. Capacity for apm = 2 
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Figure 3. Capacities '.or Various apm Values 
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3. Capacity in Non-Overlapped Machines 

To contrast the previous section with a simpler machine and 

demonstrate how capacities vary as a function of machine organization, we 

now disallow the simultaneous operation of memo~ and processor. However, 

we do assume a perfect lookahead control unit. Figure 4 illustrates the 

situation for a = 2. 

It may be seen that in the case of non-overlapped processor and 

memory, we have (using the notation of the previous section): 

cP = 
apmBp 

apm+spm-1 
(6) 

cm = 
apm(spm-l)Bp 
apm+spm-1 

(7) 

and 

= (8) 

We plot the capacity of a non-overlapped machine for apm = 2 in 

Figure 5. Note the contrast with Figure 2, an overlapped machine. Here the 

processor and memory capacities only reach their maximum bandwidth at the 

limits of l/Spm· Note also that a good deal less system capacity is left 

over for I/0 activities. 

We can easily show that an overlapped machine's capacities are all 

greater than or equal to a non-overlapped machine's. Thus, from Equations 

1 and 6 we see that 
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non-
over lapped = < = overlapped CP 

cP 

since apm > O in the first case, and spm ~ 1 in the second case. In similar 

ways we can show that 

non-overlapped Cm 2. overlapped cm 

and 

non-overlapped C < overlapped c s - s 



s = 2 

processor memory 

0 x x 
x 0 0 

x 0 0 

0 x x 
x 0 0 

x 0 0 

2B/3 + 2B/3 = j8 

s = 4 

processor memory 

0 x x 
0 x x 
x 0 0 

0 x x 
x 0 0 

0 x x 
0 x x 
x 0 0 

0 x x 
x 0 0 

s = 3 

processor memory 

0 

x 
0 

x 
0 

x 

B/2 + B = ~ 
2 

s = 5 

x x 
0 0 

x x 
0 0 

x x 
0 0 

processor memory 

0 x x 
0 x x 
x 0 0 

0 x x 
0 x x 
x 0 0 

~ + 4B = ~ 
3 3 3 

Figure 4. Non-overlapped Processor and Memory,' a= 2 
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Figure 5. Non-overlapped Capacity for a = 2 
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4. Processor-Memory-Disk Systems 

Now we turn to a complete system with three components--processor 

and primary memory as above, together with a secondary memory which we shall 

refer to as a disk. We shall assume at all times that one of these three 

components is operating at its highest data rate, i.e., its bandwidth is 

saturated. We also assume a control unit which overlaps the operation of the 

processor, the primary memory and the disk. We first give some definitions 

which are analogous to those of Section 2. 

Let Bd be the disk or I/O bandwidth. 

Then 

and 

We also define 

B 
- m 

adm - B · 
d 

with sdp and sdm being defined similarly. It follows that processor capacity 

may be written as: 
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a2m B2 
= 

Bm 
Spm-1 spm-1 

cP 
apd BP Bd 

= = 
spd-1 spd-1 

BP 

Similarly, we have for memory capacity: 

ampBm 
= 

BP 
smp-1 s -1 mp 

c = 
amd Bm Bd 

= m smd-1 smd-1 

Bm 

and for disk capacity: 

adm 8d 
= 

Bm 
·adm-1 sdm-1 

adp Bd B 
Cd = = p 

sdp-1 sdp-1 

Bd 

By summing these capacities for consistent conditions, we obtain 

saturated system capacities as follows: 
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( 1 + 1 + 1 ) 
BP if CL > f3 -1 and a.dp 2 sdp-1 s -1 s -1 ) pm - pm mp dp 

cs = ( 1 + 1 + 1 ) 
Bm if CL < f3 -1 and a.md ~ 8md-l spm-1 sdm-1) pm - pm 

( 1 + 1 + 1 ) Bd if a.pd 2 spd-1 and a.md 2 smd-1 
spd-1 smd-1) 

It should be noted that in each of these three cases, if the conditions are 

written as equalities then the maximum capacity is obtained. In each case 

this reduces to 

To make matters concrete, in Figure 6 we sketch a surface for 
B BP = B, Bm = 2B, and Bd = 2 . The processor capacity is shown as a plateau 

of height B which runs off to 0 along the memory-disk axis. The top surface 

is the system capacity. In the region labelled I, the system is processor 

bound, and in II and III it is memory and disk bound, respectively. Where 

these three regions meet, the max Sc = 3.5B point is located. 

. 



processor 

disk 

Figure 6. Capacity s pace 
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5. Primary Memory Size vs. Bd 

It is well known that there exists a trade-off between primary 

memory size and I/0 bandwidth. Our purpose here is to sketch an analysis 

of this trade-off and to relate it to our previous discussion of capacity. 

Let the primary memory size be N words of w bits each, for a total 

of wN bits. The time required to fill this memory from a disk of bandwidth 

Bd (assuming Bd < Bm) is wN/Bd sec. 

For simplicity, assume a given computation operates on the entire 

memory. Assume the computation requires Na time steps. For example, given 

an nxn matrix, an n3 step algorithm would give a = 3/2, since n2 = N if the 

matrix (or a single nxn partition) fills primary memory. Now the time 

required for the entire computation would be wNa/CP secs. 

On the average, the system would be balanced if the processing time 

were equal to the input time (assuming no output), that is: 

or 

which gives us 

wNa/C = wNB 
p . d 

tc\-1-
N _ _Q_ \ a-1 

- . Bd ! 
. I 

(9) 

as a relationship between memory size N, I/O bandwidth Bd' and processor 

capacity cp . 

The above model can be easily refined in various ways to provide 

for input an~ output of data arrays, to provide for multiple buffering, and 

so on. 
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6. Con cl us ion 

The point of this report is to provide a framework for the study 

of computer capacity. We have explored several aspects of the question and 

Figure 6 shows a system capacity surface as a function of processor, memory 

and disk bandwidth. For a given class of computations, this surface corre­

sponds to a memory size given by Equation 9 in Section 5. 

While we have glossed over many details, the model described here 

could be useful in the various ways mentioned in the Introduction. 

For example, if we were given a set of computations and a machine 

configuration we could easily determine a Figure 6 type surface from the 

machine parameters. From the computational algorithms, we could estimate 

the various s values as discussed in Section 2. This would allow a 

determination of our operating point in capacity space. While the ideal 

point is where Cs = CP + Cm + Cd , a prudent region is probably somewhere 

between that point and the processor corner- of Figure 6 for 11 numerical 11 

prob 1 ems. For 11 bus i ness '.'-type problems it may be between there and the 

memory corner of Figure 6. For the class of algorithms under consi~eration, 

Equation 9 could be used to make memory size trade-offs. 

Given some qualitative idea of the operating rules a user prefers, 

one could use this model to make quantitative sensitivity studies of capacity 

as a function of bandwidth and memory size. This could lead to improved 

system cost/effectiveness. 

Note that for any given capacity surface, degradation due to 

operating system overhead, etc., can be quantified by plotting actual 

performance data in capacity space. In this case, the surfaces shown will 

serve as theoretical upper bounds on system performance. 


