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CHAPTER I

DIGITAL COMPUTERS AND NUMBER SYSTEMS

1.1 Analog Computers and Digital Computers

A computer is a calculating machine cepable of accepting numerical
data and performing upon them mathematical operations such as addition, taking
the square root, etc. The computer can also accept non-numerical data by
establishing, via a code, a correspondence between the information at its
inout and the numbers used inside. The mechanism involved in computation

can use any one of the common physical agents (mechanics, electricity, etc.).

The data inside the machine can be in the form of continuously
variable measurements, such as voltages in a given range, angles; we then

talk of an analog computer (example: slide-rule), If the data are in the

form of discrete numbers (assembly of a finite number of multi-valued digits),
we speak of a digital computer {example: desk calculator)v With such a computer

nearly unlimited precision can be obtained even when standard hardware is used,
while the results of pure analog computation are usually only known within a
fraction of a per cent. It should be remarked that combinations of the two
principles are possible and used in some installations.

General Organization of a Digital Machine

A digital computer can take the simple form of a desk calculator
using toothed wheels. In the decimal system these wheels would have ten
discrete positions, 0 ... 9. Individual operations are then controlled by a
human operator, customarily using a writing pad which contains the list of
instructions to be performed, the numbers to be operated on and the intermediate
results. The time for multiplying two numbe=s of 10 decimal digits each dis of
the order of 10 secondsy the time necessary to write down the result and for
pushiﬁg the keys can be almost neglected.

In an electronic computer the digits are represented by the electrical
states of electronic circuits, i.e., circuits using transistors. Usually these
circuits (called flipflops and assembled in registers) have two states (e.g., a
high voltage output or a low voltage output), which means that only two discrete
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values, O and 1, ere available per digit. We must then use the binary system
in vhich the numbers 1, 2, 3, 4, 5 etc. are represented dy 1, 10, 11, 100, 101
ete.

The time for multiplying two numbers of 30 binary digits (—in
precision to 10 decimal digits) is of the order of 10 - 100 microseconds;
manual control and the use of a pad to jot down intermediate results would be
very inefficient. The writing pad is replaced by g memory (in principle a great
number of flipflop registers) which stores fram the outset the list of instruc-
tions and which, by way of a control-unit, established the electrical connections
necessary to perform the operations. The memory is also used to store back the
intermediate results. An electronic machine will be automatic at the same time,
in the sense that it proceeds all on its own through the problem due to the
stored program. The part of the machine corresponding to the desk calculator is
called the arithmetic unit., The latter is usually connected to the input-output
equipment (tapes with holes or magnetic coating with reading and writing devices),
As the name implies, this input-output equipment allows the machlne €0 communicatg

with the outside world, e.g., store numbers in the memory after having read holes
punched in tapes (or cards), or punch hdles corresponding to the memory aontents
at the end of a problem. This general layout of the computer is the same for
installations as widely different as the "Illiac" and the IBM 650.

Figure 1l-1 below summarizes the general organization.

Memory ‘1! Control

Arithmetic
Unit ¢ '
K

Input-
Qutput

Figure 1-1
General Organization of a Digital Computer
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The "Thinking" Ability of Computers

The astonishing usefulness of a modern computer is due to the possibility
of having it make simple decisions. These are usually of the following form:

1. If number in register A > mumber in register B, follow
instructions stored in 1list 1 in memory (e.g:, locations

56, STy 58 «v.);

2. If number in register A < number in register B, follow
instructions stored in list 2 in memory (e.g., locations
82, 83, 84 ...).

The transfer from one list t_o another depending on the contents of registers is

called a conditional transfer, jump or branch.

Example 1

Take the numeri:al calculation of the value of a function expressed
as a series, The number of terms we have to take in order to obtain a fixed
precision varies with the value of the argument. We can decide that we are
going to calculate up to the nth term vhere this term is smaller than a given
quantity 8. After being through with the calculations of each term, we shall
test and see if it is bigger than 5§, 1f s0, we shall go on to the next term;
if not, we shall form the sum of‘ all the terms calculated up to this stage, and

then proceed with the rest of the problem.'

Example 2

Suppose that 4 numbers e.g. 19, 7, 12 and 17 are stored in memory
locations 1, 2, 3 and 4 respectively and that we want to put them in increasing
order. This is done by a process known as "merging". First 19 and 7 are ordered
by a command of the type "subtract memory location 2 from memory location 1 if
the result is positive interchange their contents, otherwise leave the order".
Similarly memory locations 3 and 4 are orderea. Now we have two ordered lists

7 12
- 19 17

We compare the top members: The smaller one is 7. This we put on top of the
"merged list" and strike out the corresponding number in the array, giving
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12
19 17

We know that 17 follows 12 (this list being partially ordered) so the only
question is: does 19 follow 12 or 17%? This can be decided by two more decisions
of the type used before and the problem is solved in a language sultable for a
computer.

The ability to exercise "judgment" and to choose between two alter-
natives saves a great amount of time, but, of course, the programmer must write
down the details of what to do in each case before the computation starts. It
is possible to extend this ability to judge in such a way that the computer
virtually assembles its own program (list of instructions) once the list of
subroutines is given and the general method of calculation is prescribed in

symbolic form. This is called automatic programming.

1.2 Fundamental Computer Vocabulary

Serial and Parallel Machines

As mentioned, the numbers are stored in register, i.e., sets of flip-
flops. In order to calculate, the digital computer shifts the digits from one
register to another, adds, subtracts, multiplies or divides the contents of
two registers and transfers the result to a third. We can see that all arith-
metic operations can be performed if we provide an adder, equipment which takes
the negative of a number held in a register (subtracting the digits means adding
the negative) and shift facilities which transfer into another register and
simultaneously give a displacement of digits by one digit position to the right
or left. Since multiplication is a series of additions and shifts, and division
a series of subtractions and shifts, such an arithmetic unit would be capable of

performing the four operations of arithmetic.

There are two fundamentally different methods for transmitting the
digits from one register to the other (or through the adder). If a separate
wire is used for each digit and all digits are transmitted simultaneously, we
speak of parallel operation. If the digits are "sensed" one after the other

and transmitted through a single wire, we speak of serial operation. To illus-
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trate the latter case, we can think of a selector mechanism which always connects
the flipflops having the same position in the order 1-1, 2-2, 3-3 ... n-n.
Telephone systems use serial transfer of information.

It turns out that parallel operation gives higher computation speeds,
while serial operation cuts down the amount of equipment used. It is difficult
to ascertain the proportion in which we gain speed or reduce equipment in going
from one system to the other. For n digitael positions the gain is certainly

less than a factor n.

Synchronous and Asynchronous Operation

In a synchronous machine there exists a central unit called a clock
which determines by its signals the moment at which the steps necessary to
perform an operation (such as addition, shifts, etc.) are initiated and ter-
minated. For each type of operation we need a fixed number of cycles of the
clock whether, in practice, the intermediate steps were long or short (the
length usually depends on the numbers involved).

In an asynchronous machine there is no clock to sequence the steps.

This can be attained by having each step send out an "end signal" which initiates
the next step (kinesthetic machine). There are systems of various degrees of

asynchronism, ranging from those in which the times of action of a set of circuité
are simulated in a delay device (i.e., in which the end signal or reply-back
signal is simply the previous end signal delayed by a sufficient amount of time
to allow the set of circuits to operate properly; this amounts to a local clock),
tb systems in which the operation of each set of circuits is examined by a
checking circuit which gives end signals if, and only if, the operation has
really been performed. A special type of asynchronous machine is the "speed-
independent" machine in which an element may react as slowly as it likes without
upsetting the end result. One way to obtaln speed independence is to build a
"totally sequential" machine in which only one element acts at a time; this

would have to be a serial machine.

It should be mentioned that often only a part of the computer is
aéynchronous° In "Illiac", for example, the arithmetic unit is asynchronous
while the (electrostatic) memory is synchronous. In the IBM 650, both the
arithmetic unit and the (drum) memory are synchronous.
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Two-level DC and Pulse Representation

Information, i.e., digit values, can be represented inside the machine
by two different methods. Suppose that we have agreed upon a binary machine
using only the values "O" and "1" for each digit. We can then decide to represent
these values by sending pulses (of approximately rectangular shape and a duration
of the order of 0.1 - 10 us) from one register to the other. In such a pulse
machine the presence of a pulse would mean "1", the aebsence, "O", (the inverse
convention could be made too). Usually these pulses are sent (or not sent) at
fixed intervals, i.e., a pulse machine is, in most cases, a synchronous machine
(example: IBM 650).

In a direct-coupled machine we would represent the values of a digit
by a given dc level. For instance, "1" would mean -20v and "O" would mean Ov

(Illiac system). Any other correspondence would, of course, be just as good.
The name "direct-coupled" stems from the fact that, contrary to pulse machines,
no coupling capacitors may be used in the circuits for these cannot transmit

de levels. Note that current levels can be substituted for voltage levels in a
de representation.

Which design philosophy is chosen in a given machine depends on whether
~we would like to have simple circuits which are harder to service (pulse machines)
or more elaborate circuifs whiéh afe very convenient when it somes to checking
their operation (de-coupled machines). 1In a pulse machine we must inject pulses
and observe their combinations and modifications as they go through the circuits,
In a dc-coupled machine we only have to check for the proper behavior of each
element using a voltmeter.

It is sometimes alleged that the two level dc representation allows
faster operation since the signal only has to change once in drder to transmit
one bit (= binary digit) of information, while in a pulse the signal has to go
up and down. This view is erroneous because the duty cycle of the active elements
(transistors, tubes) is as much as "1" in a de system (i.e., these elements can
be on all the time) and less than 0.5 in a pulse system (rise’timer~/fall time,
no tops and valleys in a fast system!). At equal average power dissipation, the
-speeds of the two systems are comparable.



1.3 Memory Systems. Single and Multiple Address Machines

At a first glance it may seem to be useful to have separate memories
for numbers and orders (instructions). But if we take account of the fact that
the memory stores also inltlermediate results and thal conditional transfers of
control often make the sequential read-out of orders impossible anywey, it seems
preferable to use the same memory for both orders or numbers (common neme "words").
Each order then has to specify the locations of the numbers it has to operate upon;
the numerical specification of a memory location is called an address. The storage
of orders and numbers in the same memory also makes possible modifications of orders

during the calculation.

These memories-or stores as they are also called,are divided into two

kinds: so-called "randoﬁ gccess" memories in which any word can be directly

attained and the "back-up" memories in which a given word is contained in a long
list which must be scanned:. Typically the random access memory consists of
magnetized cores (number of bits per word x number of word cores!) the state of
magnetization of which represents O or 1. Reading out such a memory consists

in setting the cores to a standard state and observing the change of magnetization
by induced voltages. Another way of storing information in a random access memory
is to transform each word into a sequence of dim or bright spots on a TV tube:
these cathode-ray-tube mémpries'(also called Williams-tube memories) must be
regenerated periodically because they are volatile.

Back-~up memories .consist almost invariably of magnetic drums or
magnetic tapes. In both cases each word is transformed into a sequence of
magnetized or unmagnetized spots.on a magnetic coating i.e. we have really a
glorified tape-recorder. It is evident that both these systems are sequential
in nature because we must wait for the drum (tape) to be in the correct position

in order to start reading by means of a series of fixed reading heads.

Many modern computers contain a buffer memory between the arithmetic
unit and the random access memory in which & certain amount of advanced processing
can be done. These "memofy plus simplified arithmetic unit" systems are called
"look aheads" or "advanced control". They use as their storage medium simplified
flipflops ("flow-gating'in Illiac II) or specially fast core memories.

Since all arithmetic operations involve two numbers, a and b, and give
a result, ¢, (c =a +b, a -b, ab, a/b), we would need in the general case five

pieces of information for each order:

-7~



1) the address of a;

2) the address of b;

3) the kind of operation to be performed;
4) the address to which ¢ shall be sent;
5) +the address of the next order.

For obvious reasons the above system is called a "k-address system".
One cen simplify the procedure enormously by introducing certain conventions:

1) +the address of a is a fixed register in the
arithmetic unit (which one msy depend on the
type of order);

2) the address of b is to be given as above;
3) +the kind of operation is specified as before;

4) ¢ is left in a fixed register unless the order
specifies that it 1s to be sent to the memory,
in which case a 1s taken to be in a fixed register;

5) +the address of the next order is the number
immediately following, unless a specific order to
"transfer control" is given. The only address
specified is then that of the next order; a, b
and ¢ are not involved.

A system which uses the above conventions is called a single-address

system. It 1s easy to see that making only part of these conventions, one can

obtain two-address and three-address systems. -

1.4 Past and Present Digital Computers

Calculators of the mechanical type date back to Pascal, who, in 1642
invented an adding machine using toothed wheels to represent numbers. Leibnitz,
in 1671, extended the principles used to obtain multiplication. The first time
desk calculator was produced by Thomas de Colmar in 1820.

At this time Charles Babbage in England conceived the idea of using
punched cards to direct a glant desk calculator in its efforts. The idea of
storing programs for looms on cards had been introduced by J. M. Jaccard in
180L4: patterns were produced by operating the weft selectors according to rows

of punched holes in an endless belt. This machine had such advanced features as
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transfers of control. On demand the machine would ring a bell an attendant
would present to it tables of logarithms, sines etc., again in the form of
punched cards. Unhappily the project was abandoned after having spent about
$200,000 on it.

The first working model of a stored program computer was built by
Howard Aiken at Harvard: The Harvard Automatic Sequence Control Calculsator
Mark I. It was used during World War II. It contained a 60' shaft to drive
the diverse mechanical units. Bell Laboratories then produced several computers
using relays rather than toothed wheels. All these were superseded by ENIAC,
built by the Moore School of Electronics at the University of Pennsylvania using
tubes exclusively (1946). .Remington Rand soon came out with & commercial machine,
Univac I and IBM, with some some delay, with its model 650 which is still widely
used. Meanwhile John von Neumann, Burks and Goldstine made plans for a very
comprehensive machine for the IAS in Princeton: 1Illiac I is a copy of this
machine.

Recently three still more ambitious projects have been completed.
IBM has designed its STRETCH computer (150,000 transistors), Remington Rand the
LARC (60,000 transistors) and the University of Illinois Illiac II or NIC
(30,000 transistors). All these machines have gone to the extreme limit of
speed where their dimensions (via the propagation time of electrical signals
of 1 mus/foot) set a bound to their times: All three machines can multiply
in‘less then 10 us.

Table 1-1 gives some characteristics of well-known machines,

1.5 Positional Notation

Integer Bases

Let b % 0, + 1 be the base or radix of the system. This means that

each digit can have n values @ ranging from O to n-1 vhere n = |b|. Denoting
by @ the value of @ in the kth position and by K the upper limit of k, we can

then represent
k=K

x= L o b
k=-00 k

k (1-1)
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Name

LGP 30
IBM 650

IBM 7Ok

‘Illiac

Univac 1103
Edsac II
Besm

Ermeth

Table 1-1

Characteristics of Some Well-known Computers

Country

U.S.A.
U'S.A.

U.S.A.

- U’SOA'

U.S.A.
Gr. Br.
UCSOSQRO

Switzerland

Manufacturer

Librascope

IBM

IBM

Univ. of Illinois
Remington-Rand
Univ. of Cambridge
Inst. Prec. Mech.

Polytechn., Zurich

Multiplication .o 7

Timing Time Memory Address A.U.
synchr. 24000 pus drum 1 serial
synchr. 19000 us drum 2 serial
synchr. 228 Hs cores 1 - parallel
asynchr. T00 ps el, st. 1 parallel
synchr. 290 us cores 2 parallel
synchr. 300 us cores - parallel
synchr. 270 us el. st} 3 parallel
synchr. 16000 us drum 1 parallel



by
axa(x_l) coe ao °~a(_1) coe | (1-2)

0

The "radix" point being immediately to the right of the b = 1 position.

Example

3,14 in base 10 is 3 x 10 + 1 x 1071 + 4 x 102, In order to distinguish

it from 3.14 in base 7 (i.e. 3 x T+ 1 xT' + Lk x 10.2) we can write 3.lltlo and
3.1k '

respectively.

1

The question comes up if any positive number x can be represented by an
expansion of the form (1-1) for any value of b (positive or negative) different
from O and 1. The answer to this problem is given by

‘Theorem 1: If b is integral (2 0) and |b| #:1,0, any positive number x has an
expansion of the form (1-1). ' ‘

Proof: If expansions exist for x' and x", there exists an expansion for the sum
x' + x" which is obtained by the well-known process of "adding each column and
taking account of the carries". This latter point is obvious for b > 0. If b
is < 0, we can observe that the signs of the terms in (1-1) alternate. Let us
take three terms

2n+1l 2n-1

<’ (ons1) [P * @' (o) Ib]** ' (2n-1) |v|

in the expansion of x' and

on+l 2 2n-1
" (one1) [Pl e " (o) 12 ? a"(on.1) [Pl

in that of x" and suppose that to the right of these terms no carries were
necessary, i.e. let |b|2n'l be the term in which for the first time a'(, )

+a" exceeds |b|. In order to carry we have to form

(2n-1) 2n-1 2n '

Ip] x (-|Dp] ) = -|b|®" out of terms to the left. This can be done by
observing that -|b|2n = -[b|2n+l + (|v| - 1) lb‘an. Therefore the carry only
influences the two terms to the left. This still holds if the three terms

chosen have the sequence of signs -, +, -. A step by step process allows us
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therefore to absorb all carries when we form x' + x", i.e., we can write down
explicitly the expansion of the sum. Now we only have to prove that there is
always an x* > 0 as small as we like in the set of all expansions of the form
(1-1): +this is quite obvious. By summing a sufficient number of these "small

*
x - expansions" we can then come as close as we like to a given x.

Positive Fractional Bases. The Most Economical Base

It is,not hard to proﬁe that we can extend the above arguments to

positive bases of any kind (rational or irrational) if we take

1) b > 0.5 (still excluding 1)

2) n = 2 minimum and generally n = 2 + [b] - [2 + [v] - v],
where [b] is the greatest integer contained in b. (The
above function gives the next highest integer!)

We can then supplement Theorem 1 by

Theorem 2: If b is any non-integral positive number, any arbitrary number x
has an expansion of the form (1-1).

Proof: We can always scale down x by division by b (m = integer) in such a
way that x < 1. Furthermore by the transformation B = 1/b we can reduce the
case b <1 to the case b > 1. Then the expansion will only start to the right
of the point and we can find the a's by multiplying both sides by b and com-
paring integral parts.

Example

Express 210 in base '% . We start by finding the expression in base

3 s giving us n = 2 i.e. the possible values of @, are O and 1. Let us first
2 k

m
scale 2 by division by (%) to obtain a quantity less than one: visibly m = 2
is sufficient. Our problem now looks as follows 4
-1

-ay (3)

- -3
3 3
+ a_g (5)“ + a_3 (5)

Polw}ro

(2)2

+ sves

By successive multiplication by (%) and comparing integer parts we find

o =l,a =0,C¥

-1 = 0, a, = 1 ete. 1i.e.

-3
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I

1 -2 -3 "
@1 +0@ 0D 2+
or
-1 0 1 2
2=1(-§') +O(§) +O(-23-)+l(%)+....
which means that
2 = eeee 100 ° 1
10 3

Note that for a base < 1 the smaller terms lie to the left of the radix point.

An important practical question is: which base b is such that the
minimum amount of equipment is necessary to express a given number of numbers
M. Let the number of digits be m, then M = b" (actually M = n", but we can
take b" as an approximation). Also bm (actually nm) is an estimate of the
amount of equipment necessary. The problem is thus: find b such that bm is
minimum subject to the condition T = M. .Setting bm = u we have

b v
TR

For the most economical b we have %% =0, i.e.

(b,%- 1nb) 1nM

=0
.(lnb)2

Thet is: 1n b =1, giving b = e = 2.71828... .

It is interesting to fix M = 106 and to calculate bm for b = 2, 3, 4, ... .

The results are given in
Table 1-2

bm
39.20
38.24

39.20
60.00

o FWN o
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We see therefore that base 2 is a good choice: for once the system dictated
by the electronic nature of the number representation is also nearly the most

efficient.

Arithmetic in Other Bases

One can show quite easily that all arithmetic operations can be
performed in other bases (see F. E, Hohn, "Applied Boolean Algebra") as long
as we take account of the modification of the addition and multiplication table.

Example

In base 5 these two tables look as follows:

+ 0 1 2 3 & x 0 1 2 3 4
O 0 1 2 3 4 O 0 0 0 0 o©°
1 1 2 3 Lk 10 1 0o 1 2 3 4
2 2 3 Lk 10 11 2 0 2 Lk 11 13
3 3 4 10 11 12 3 0 3 11 1k 22
Lk 10 11 12 13 L o L4 13 22 31

The multiplication of 1&32025 by 2&315‘can be done by multiplying 143202 by 2
(giving 341404 taking account of the fact that whenever the sum is more than
5, carries are generated), then adding to it - shifted by one digit position -

the product of 143202 by 4 etc.

Conversion of Positive Integers from One Integer Base to Another

It is possible to convert from a,bése b to a base d by successive
divisions by d: the remainders are retained, the first remainder being the

least significant digit.

To see this we consider the two equivalent representations of the'_

chosen integer:

k=K 1-L,
) b= % g, at
o % 1

1=0
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Suppose that the ai are known and that we want to calculate the Bl. Division by
d ylelds

k=K B
1 k L-1 a 0
-d.- k§o ak b = BL d + soe0 + Be + Bl + "'""d ’

showing that BO is the remainder after the first division. The same reasoning
applies to further divisions. After L + 1 divisions we have then found
BL cee Bl BO. Note that all operations are performed in the base b.

There is a special case if 4 = b (m = integer), e.g. if we convert
3) or sexadecimal (2h) bases. The digits can then be

arranged in groups of m and each group converted separately:

from binary to octal (2

o 2m-1 m m-1
e e +a(2m_l)b + ses +amb +a(m_l) b +ooo +alb+ao

m-1 m-1

m 0
= see T [a(em_l) b + ces +am] b+ [a(m_l) b 4 eeo +OtO] b

Conversion of Positive Fractions from One Integer Base to Another

The method for converting fractions is quite similar to that for
integers, except that successive multiplications by d are performed. To see

this we consider -the two equivélent representations of the chosen fraction:

k=K l=L
L oo pE. Y B, a-t
=1 1=1

Suppose that the ak.are known and that we want to calculate the Bl. Multipli-
cation by 4 yields

=K

-k -1 K+l
d.k§1 O D = Byt By AT+ e By d +

Showing that B(-l) is the integer part after the first multiplication. The same
reasoning applies to further multiplications.
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1.6 Representation of Numbers in Computers

Fixed Point and Floating Point Computers

If the base of the number system is b (integral), the registers in the
computer contain, for each digit, devices having either b states or a number of
combinations of states > b, b out of which are used., The important thing is to
have a one to one correspondence between the numerical value of a digit and the
states (or combination of states). If m is the number of digits used, all in-
tegers between O and b can then be represented by combinations of digit-values.
Usually of course, the representation is such that the successive devices indicate

the numerical value of the digits in positional notation.

Rational fractions could be represented by'indicating two integers in.a
given order., Practically this would not be éonvenient. Since irrational quan-
tities must be represented by approximations anyway, it is usual to use a limited
number of digits in the expansion of the rational or irrational quantity to the
base b,

Since the product of two numbers of m digits will have more than m
digits, the result of multiplications could not always be held in the registers;
To avaid the difficulty, all numbérs in a problem can be scaled down so that
their absolute value is less than one: this means that a "radix point" (decimal
point, binary point) is placed in a fixed position in the register and that .
all admissible numbers must be such that their non-zero digits lie to the right
of this point. It should be noted that "overflow" can still occur in division:
it is the task of the programmer to avoid this overflow by proper scaling. A
computer using the above system of representation is called a fixed point
éomputer for obvious reasons. Often it is possible to consider a given device

‘as an integral computer (representing only integers, point to the right of the

least significant digit) or as a fractional computer (with all numbers scaled

down, point to the left of the most significant digit) at will: only the
interpretation of the digits has to be modified.

In a floating point computer each number x (fraction or integer) is

divided into two parts and written in the form

x = zb’ with |z| < 1.
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The registers are then split up and hold z and y separately. Of course, there
are limits to the magnitude of the numbers one can represent, since y <m
(number of digits in the register). Note that the sign of y must be recorded
too.

Floating-point computers are most useful when the magnitude of the
numbers involved in & calculation varies widely or when this magnitude is not
too well known at the outset, meaning that accurate scaling becomes difficult.
Their disadvantage is that fundamental operations like addition or subtraction
become quite involved: augend and addend must first be shifted so that their

exponents are the same.

I1liac is a fixed-point computer, but it is possible to make it behave

like a (slower) floating-point computer by special programming.

Representation of Negative Numbers in Computers

There are two common ways of representing negative numbers in a
positive base-system (for negative bases the problem is trivial): as signed

absolute values or as complements.

The signed absolute value system is difficult to apply in computers
(especially of the parallel type). There are two reasons: in a subtraction
the computer has no means of recognizing which term has the higher absolute
value, meaning that the sign of the difference may have to be changed after
the operation. Furthermore the simple process of "counting down" becomes
awkward: one has to sense the passage through zero and then change from sub-
tractions to additions, modifying the sign indication. It is interesting to

note that the absolute value system implies a "schizophrenic zero™: + O = -0,

In the complement-system the fact is used that the numbers in the
registers are always finite, e.g. a lO-decimal—digif inﬁegral machine can hold
lOlo -1 = 9999 999 999 but not lOlO: it performs operations modulo lOlo. We
can therefore add lOlO to any number and the machine representation will not
change; to represent a given number -initially outside the range we can therefore
add or subtract integral multiples of lOlO. For example we can represent -3 by
-3+ lOlo = 0 000 000 007. .As can be seen easily all operations of addition and

subtraction can then be performed without contradiction.
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Instead of taking the complement with respect to 10'° (callea ten's
10 (called nine's
complement). This has some technical advantages: all the digits are treated

complement), we can take the complement with respect to 10

alike. We see that the ten's complement can be obtained from the nine's
complement by adding.one unit in the least significant digit. Using the nine's
complement introduces a "schizophrenic zero" since O 000 000 000 and 9 999 999 999
~ represent the same number.

When the sum of two numbers exceeds 1010 -1 the machine no longer
indicates the sum modulo 10%°
of affairs by adding one unit to the extreme right-hand digit. This procedure

is called end-sround carry.

-1 but modulo lOlO: we can correct this state

All reasonings in the preceding paragraphs can be applied in the binary
system. The two interesting complements are then the two's complement and the
one's complement. The latter again necessitates the end-around carry and a
schizophrenic zero. It has however the advantage that complemedtation simply
means changing zeros to ones and vice-versa: this can be done without going
through the adder.

. Specific Example of a 40-Digit Binary Fixed-Point Representation (Illiac System)

We shall assume that each register holds 40 binary digits and that the
binary points is between the first and the second digit on the left. We shall

call the digits Yo ¥1 then the numbers represented will have the form

c90a0 y39:

yo ¢ yl coe y39

We shall only represent numbers the absolute value of which is less than
one, All positive numbers will then have a machine representation equal to their

binary expansion:

9
-1
x=i§l xiE =09xlx2 0-0X39

will be represented by setting yb = 0 and yi = xi for i =1 ... 39. The highest
positive number we can represent in this way 1s equal to 1 - 2'39 i.e, slightly
less than one. ‘
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To represent negative numbers, we add 2. The negative number

X = -=l xig ="00 X1X2 eve X39

will therefore be first transformed into the two's complement which we shall
call x. Thenx =x + 2 1.e.

x+2% 42t 4 .. 42739, 07

%1
]

=204 (1 - Xl) 2l s (1 - x39) 2739 4 =39
39 .
=204 z zi2.l

i=1

The representation of this is obtained by setting Yo = 1 (20) and Yy =24 for
i=1... 3. The smallest number we can represent is -l1. It is now clear why
yo is called the sign digit: if yo = 0 the number 1s positive, if yo = 1 the

number is negative,

Let us examine the general relationship between x and the yi

representation of the machine. For this let us go back to negative numbers:

_ 39 39 -
x =x-2=204+ ¥ ¥, 2 1 o014 ¥ y, 2 1 s
, . i
i=1 i=1
while for positive numbers we have simple
39 s
x = 2 yi o™t
i=1l
therefore in all cases
39 -1
X = -yg+ 2 v 2 (1-3)

-19-



Finally it should be noted how the 2z 1'3 have been obtained in the case
of negative numbers:

9 9 :
% 2, 2. ¥ (1- %) 2™l 27
i=1 =1

39 ' ' ‘
X (1 - xi) 2 1 is the one's complement of x: this can be seen by remarking
i=1l , .

that one's are changed to zeros and vice-versa or by takirig the complement of x
with respect to 1 - 2'39. We can summarize by saying: the machine representation
of a negative number -0 . %) ees x39 is the one's complement

ln (l"x

l) ese (1 - x39) plus one added in the least significant digit.
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.CHAPTER II

IOGICAL ELEMENTS AND THEIR CONNECTION

2.1 The Fundamental logical Elements

We shall call "logical element" or "decision element" a circuit

having m inputs Xy eee X and n outputs Yy eeee¥po each input and each
output existing only at two possible voltage levels Vo and Vys which
will be called "O" level and "1" level respectively. It will be supposed
for the moment that all elements are dec-coupled and that the circuits are
asynchronous. All lines and nodes can then only exist at the "O" or "1"

level.

-Bach loglcal element can be defined in a static sense by glving
" its equilibrium table, i.e. the complete list of simultaneously possible

input and output values. This does not necessarily imply that different
input combinations give different output combinations or that the output
is uniquely determined by the input combination: +the element may be a

storage element and retain information.

If the equilibrium table contains all possible input combinations
and the outputs are uniquely determined by the inputs, we shall speak of
a "truth table" and of the element as a "simple logical element" (or

combinational element).

In practice the "O" and "1" levels for different lines may be
different and instead of associating "O" with the level vy and "1" with
level vy it may be necessary to associate "O" with a voltage range
(;g, vo) and "1" with a voltage range (;I, vl), the ranges being non-
overlapping. Also it may be necessary to speak of current ranges instead

of voltage ranges.
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AND-Circuit, OR-Circuit, NOT-Circuit and Flipflop

We shall examine in this section four fundamental logical
elements, three of them (AND, OR, NOT) being "simple logical elements";
the flipflop being of the storage element type.

AND Circuit - Truth Table
, s - T
R ,
Xy A X5 0 0 0
' 0 1 0
. - 1 0 0
1 1 1

Figure 2-1

AND Circuit

Description: 1In order for the output y to be a "1" both inputs x

must be "1".

and x

1 2

" Remark: Other symbols used for this circuit are:

7Ny VY
Xl ,(Al‘l\'f)} X2 Xl \If X2
y ) ¥y
Xy 'in\’ %5 Xy
4\I/P ) .
oy e

The generalization to multi-input AND’S is evident.
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OR Circuit Truth Table

o]

1 X ¥
xl 0 x2 0 0 0
0 1 1
1 0 1
y 1 1 1
Flgure 242
OR Circuit

Description: 1In order for the output y to be a "1" it is sufficient
mq 0
that either Xy 23 x2 be a "1,

Remark: Other symbols used for this circuit are:

OR b 4 X

The generalization is multi-input OR's is evident.

NOT Circuit Truth Table
X ¥
£
b4 >( N y 0 1
o/
1 0
Figure 253

NOT Circuit

Description: The input is the inverse of the output.
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Remark: Other symbols used for this circuit are:

X NOT ¥y X z:E:) y %:5)

Figure 2-5 below shows how the physical equivalent of these

three fundamental circuits can be obtained by the use of diodes, transistors,
tubes and relays. It is assumed that two-level dc voltage répresentation
is used with the more positive level corresponding to "1" (so-called
"positive logic"). Relays are usually equipped with a contact that is
made when the winding is energized ("make" contact) and with one that is
broken under these conditions ("break" contact). Figure 2-k shows these

two possibilities symbolically.

Break Make

\

/

Figure 2-L
Symbols Used for Relays

Note that a diode NOT is not available: This is due to the fact that

dc inversion is only possible in amplifiers. - It should also be néted
that by going from nositive logic to negative logic the circuits producing
AND now produce OR and vice versa except in the case of melays. The
symbol ++ is meant ﬁo indicate a.voltage in the 10v fange, the symbol +

a voltage in the 1lv range. A similar convention applies to -- and -.
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AND OR NOT

Diodes
i --iﬂ“-j¥-¥!-— NA
+ (PNP or NPN)
ansistors ++
++ (NPN) 4+ ot

4
(8]

£ l
)T

Figure 2-5
AND, OR and NOT and their Hardwere Equivalents
for Positive Logic
B



Flipflop Truth Tablé

e

1 %2 N1 Y2
%, 0 b— ¥, ("0 side Output") 0 1 o 1
Xy 1 v, ("L side Output") = 0 .9
] 0 0 Tast state
1 1 disallowed
Figure 2-6
. Flipflop

Description: If xl and X, are different, Yy = ¥ and Yy = %, (meaning
that x; =1y, =1 ete.)., If X, = X,
ceding state if this has been caused by xl # X2' If the input transition
is from 1 1 to O O the outputs will be different, but the two solutions

0 1 and 1 O are possible; applying the 1 1 input is therefore not recommended.

= 0, Yy and Y5 stay in the pre-

The flipflop is an element of fundamentalyimportance because it
is able to "remember" the state, once it is set: usually both x; and x,
are kept at "O". When X, goes to "1" and back again, the element will

remain in the state

v = 1
called "O" state of the flipflop.

1t
o

o

When x, goes to "1" and back again, the element will remain in the state

[
(@]

y
1
called "1" state of the flipflop.

]
=

Io

Practically the input combination 1 1 (and therefore the transition

1 1 — 0 O which leaves the flipflop in an indeterminate state) never
occurs. The state of the flipflop will therefore be "O" or "1"
(representing the two possible values of a binary digit), according to
the preceding combination.
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It is interesting to note that a flipflop of the sbove type can
be obtained by a cambination of two OR's and two NOT's according to Figure
2'7-

'Figure 2.7 *2
Possible Realization of a Flipflop

' 2.2 Gating - Shifting - Counting

Gating and Shifting

In order to transfer the digits held in one flipflop to another
one, we can use the system indicated in Figure 2-8: two AND circuits are
used to control the flow of information. For obvious reasons the procedure
is called double gating.,

FF1 ' FF2
0 A * 0
1 —~——
K 1 A > 1
Figure 2-8

Double Gating
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When u is made a "1" (gates enabled), the AND circuit connected
to the output of the left flipflop which is "1" will apply this to the
corresponding input of the right flipflop. When u goes back to "O", the
right flipflop stays set.

The other system uses only one AND circuit as a gate but sets
the right flipflop to a standard state (e.g. "O") before the gating begins:
v is made "1" for a short time and "clears" the right flipflop. After v
has gone back to "O", us is made "1"., If the state at the left is "1"

FFL FF2
0 vV—= 0
l (3 l
u
Figure 2-9.

Clearing and Gating

the output of the AND circuit becomes a "1" and sets the right flipflop
to "1™, If the state of the left flipflop is "O", the right flipflop
stays in its preceding (cleared) state, i.e. "O". .One can, of course,

clear to "1" and transfer "O".

The'opération of shifting moves the information contained in a
register one digital position to the left or to the right. A way to do
this is indicated in Figure 2-10, which repeats the pattern of Figure 2-8:

0 ( % ) ™ o
—O—
Shifting with a Single Register

-8

I_J
y
—
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The duration of the gating signal u must be carefully chosen: 1f it is
too short, no transfer oceurs, if it is too long, transfer over two
digital positions may take place.

In order to suppress the maximum duration condition, it is
feasible to shift in two operations; using an auxiliary register.
Figure 2-11 shows the layout. First v is made "1": this produces a
transfer of information “straight up". After v has gone back to "O",
u is made "1": this produces a transfer of information "right down".
The combined effect is that of a right shift. Illiac uses this double-
shifting system, i.e. the registers in which shifting is necessary have
an auxiliary or "temporary" register attached to them. Instead of using
double gating, Illiac uses clearing and gating.

Woee o

Principal
= |[Register

Figure 2-11
Double Shifting
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Counting

A binary counter is a frequency divider in the sense that each
stage has two inputs ("up" and "down") and two outputs ("up prime" and
"down prime") and that for a sequence of "1" signals applied successively
to down-up-down-up it glves just‘ggg "1" on "down primé“ and one on "up
prime" i,e, divides the number of applied "1l's" by two. With n cascaded
stages we can then divide the number of "1's" by ot

One stage of such an asynchronous binary counter is given in
Figure 2-12. At the beginning of the process both flipflops (called
"false toggle" -F and "true toggle" -T respectively) are set to 0. The
"up" pulse sets F to agree with T while the "down" pulse sets T to
~disagree with F, The sequence of states is thus 0 0, 01, 1 1, 1 0 and
back to 0 0, If we connect the O 1 and 1.0 output‘signais as "up prime"
~and "down prime" to & similar circuit, we will have achieved a frequency

- reduction by 2.

Up

e Down !

e U !

Figure 2-12
*One Stage of a Binary Counter
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2.3 Adding and Subtracting

When adding two binary digits Xs and vy we obtain a sum digit

s and a carry digit ¢y The relation between Xs5 Yi0 8y and cy is

1° -1

given by the table below.

Binary Addition Table

0% %1 G
o 0 o0 0
o 1 1 0
1 0 1 0
11 o0 1

Later on we shall discuss methods which permit us to find the combinations
of AND, OR and NOT circuits having given properties by deductive reasoning.
Here we shall simply give the result: Fig. 2-13 shows what is called a
"half adder." We see by direct inspection that (as required by the table)
c. is only "1" when both x. and y. are "1." s, is "1" when x, or y. is

i-1 i i i i i
"1," for then the inputs to the right AND circuit are both ones.

i-1 i

Figure 2-13. Half-Adder
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In order to obtain the logical diagram for one digital position
of a binary adder, we have to use 2 half-adders since we have to add in
the carry 4 from the preceding stage according to the adjoining table,
Figure 2-14 gives the layout: as can be seen, the sum output of the

Binary Addition Table with Carry-in

X Cc S C,

i i

o
1
‘,.-J

i

H - = H O O O O
H 2 O O - b O O W
H O m O - O = O
H OO M O I Mo
HoE e o m o o o

first half-adder and the carry-in are the inputs to the second half-adder.
ci 1 is taken from either one of the half-adders through an OR circuit
this corresponds to the two possibilities of formation of carries.

X

i .

|
S,
i

Figure 2-14

Logical Diagram for One Digital Position of a Binary Adder
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Complementation and Subtraction

The .inputs Xy and vy in the preceding section come from two
flipflops having the same digital position 1 but pertaining to two

different registers. More precisely: x, and yi are taken from the

"1 side output" of these flipflops. If ie want the digitwise complements --

which we shall denote by EE_ZL' and 5; respectively (x, = O 3':: =1, x =1 ;‘q =0!)--
we only have to teke the "O side output". We saw in Section 1.6 that negative
numbers ere represented in Illiac as complements of 2 and that all one has to

x39 is to take the digltwise

complement and then add one in the least significent position. Since

do to obtain the representation of -0, Xp oo

subtraction is the addition of a negative number, we can switch from the
addition x + y to the subtraction x - y by taking as inputs to the adder-
stages §; instead of Yie To add one in the least significent position we
provide the stage i = 39 with a carry input (which, of course, is not used
in addition). Figure 2-15 shows how, by the use of a complementing circuit
using two AND's and one OR per digit position, we can perform additions and
subtractions. One adder stage is represented by a box with 3 inputs and 2
outputs. If u = 1 the circuit adds, if u = O the circuit subtracts.

* - .-
0 0 O 0
X s X <3
i i 39 3
Adder ) Adder
Stage Stage
1 39
0
1l
‘ Correction
for
u ’® €38 | subtraction
Figure 2-15

Addition and Subtraction Using Complementing Circuits
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2.4 Decoding a’.nd Sequencing

In 2.2 we examined the clearing and gating procedure., It
happens very often in an asynchronous computer of the Illiac type that
a sequence of U signals "clear-gate-clear-gate" is required, these
signals being non-overlapping and the next step being initiated only
after we know that the preceding one has been completed. The four-step
sequencing circuit of Figure 2-16 shows how the desired result is obtained.

First consider the combination of flipflops and four AND circuits
Al ves Ah i.e. leave the NOT circuits aside. The flipflops give 4 different

combinations and for each combination one and only one AND circuit has a "1"

output:
FP T FF II fi fg f§ fﬂ
0 0 1 0] 0 0
1 0 0 1 0 0
1 1 0 0 1 0
0 1 0 0 0 1

This output goes out into other parts of the machine and comes back with

a "return-signal" or "reply-back-signal". .We can imagine that a certain

group of gates is enabled and that one of the gate outputs is used as a
return s1gnal. This return signal modifies one and only one fllpflop and
therefore produces the next combination, i.e. energizes the next AND
circuit. If we now put in the NOT circuits (making 3 input AND circuits
out of 2 input AND circuits) the next AND circuits can only give a "1"
output, if the return signal of the preceding operation has gone back to
"O": +this guarantees non-overlapping "1" signals at the output of the
AND circuits. Notice that connecting the returns to the outputs gives a

M"free-running" pulser with a 4 phase output.
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11
D D0
3
4
- 1 [
10 ? ol I 01 IT
0

00

Pigure 2-16
Four Step Sequencing Circuit

What is essentially done in the circuit of Figure 2-16 is that
the two flipflops are cycled through all combinations of states, that
each combination energizes one and .only one AND circuit and that this
signal (after some delay) steps the flipflops to their next state. This
detection of certain combinations of output signals was already encountered

in the last section in the asynchronous counter: such a detection of given
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combinations of signals 1s called decoding. The general problem of
detecting whether n wires Xy eee X have a given combination of zeros
and ones can be solved by the use of an n input AND circuit into which
are led directly all those wires where a "1" is required, while those
requiring a "O" a connected via a NOT circuit. Figure 2-17 shows a

decoder for the input combination 10110 on five wires.

box
0] N
1 x3
1 X),
0 x5

Figure 2-17
Decoder for a 10110 Combination

If it is desired to obtain a "1" output for several different
combinations, one can clearly design a circuit as the one shown in
Figure 2-17 for each combination and then combine the output of all
AND's by a multiple input OR circuit. Figure 2-18 shows a circuit
giving a "1" for the 3 input combinations 1111, 1101 and 0000.

Figure 2-18
Circuit Detecting Several Input Combinations
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Since visibly for n inputs Xy ees X the possible input lines
to the AND's are either direct or complemented (i.e. inverted), all
possible combinations n at a time can be formed by providing 2n lines
Xy ;;, X5 §; ++s €tc, and having one wire of each pair go to an n-input
AND circuit. It is customary to symbolize such a decoding circuit by a
matrix of 2n lines (the horizontal lines in Figure 2-19) connected to
X, §g sen i;.intersected by a second set of lines (the vertical lines
in Figure 2-19) which symbolize the AND function, which input being used
being determined by a dot at the sppropriate intersection. Such a circuit

is called a matrix circuit for obvious reasons.

Remark: Often the comblnation of the diverse AND outputs by an OR is
symbolized by a line parallel to the 2n lines with short segments
determining the choice of OR inputs. Figure 2-19 repeats 2-18 in this
notation.

T S
E{i <
X, ¢ $-
3?2' o
Xy ——
z t——t
4
Xh
BN ' - -»
h -
N N N (x_'lANszANDxasANth)
Figure 2-19 OR (x, AND x, AND X AND X,)
Matrix Circult OR (¥ AND X; ANp ¥ AND )
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Often 1t is useful to introduce the notion of complexity of
a circuit by the rule

complexity = total number of inputs. (2-1)

Supposing that we wanted to form all 2h input combinations in Figure 2-19,

we would visibly need Qh x 4 = 64 inputs i.e. the complexity for an n-input
circuit would be o x n. It turns out that for n > 3 it becomes advantageous
to decode by a tree or pyramid as shown in Figure 2-20, It is not too
difficult to show that here all input combinations can be formed with

2 _ 8 which is less than n2" if n > 3.

I
. X3 X
A < 4
A
*‘C( I
' *3 3

‘

complexity 2n+

|

;

x
[
&
"
w

AN Lg

Figure 2-20 »
Tree or Pyramid Forming all Combinations .of 3 Variables
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2.5 Complex Logical Elements

The preceding sections have shown that all the fundsmental
operations in a computer can be done using AND, OR, NOT and FF elements,
the latter‘being actually a feedback combination of OR and NOT. It is
easy to show that a single element, namely an AND-NOT or an.OR-NOT (NOR)
is sufficient to perform all functions: in order to do this we only
have to show that AND, OR and NOT can be constructed. Figure 2-21 shows
how AND-NOT's can be used. |

Figure 2-21
AND-NOT Equivalents of NOT, AND and OR

Usually it is not very wise to reduce all functions to
combinations of AND-NOT or OR-NOT. To the contrar;: designers often
introduce new elements which can be made up out of simpler ones but
which occur so often that a special name is given to them. We shall
introduce them byvtheir.truth table together with an equivalent
combination of AND's, OR's and NOT's.
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Equivalence Circuit

Truth Table

1 %2
* %Y
o o0 1
x, 0o 1 0
1 o0 o
1 1 1

Figure 2-22
Equivalence Circuit and Equivalent

Description: The output is "1" if and only if the two inputs agree,

Exclusive OR

: .Tﬁuth Table
Xy D ——

X, - |
X X ¥
¥y "0 0 0]
ARG 0
) 1 o} ‘1
(—)—® S

=
<
¢

Figure 2-23
Exclusive OR and Equivalent

Description: The output is "1" if one or the other but not both of the
inputs are "1", ‘
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Remark: It is easily seen that an eqnivalence clrcuit becomes an
‘exclusive OR or vice-versa if one of the inputs is inverted,

-Complementary Flipflop

Trufh Table

X1 ¥ 1 Y
0 1 o] 1
1 0 1 0
1 1 last state
0 0 disallowed

Figure 2-2k4 X

Complementary Flipfilop and Equivalent

Description: If xl and xeiare different, yl = xl and y2 = X5 If Xl = x2
yl and y2 stay in the preceding state if this has been caused by Xy % x2.
the input transition is from O O to 1 1 the outputs will be different, but
two solutions O 1 and 1 O are possible; applying the O O input is therefore

not recommended.
Remark: The complementary flipflop differs from the flipflop discussed in

2.1 by the interchange of 1 1 for 0 O for the "hold" condition and that of
0 0 for 1 1 for the disallowed condition.
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Engpment

Truth Table

S R c o | o e -
- 1 y 0
1 1 1
-0 1
o o ) 0 last state

(®) I

‘ Figure 2-25
C Element and Equivalent .

Deseription: When X, and x, égfincide » the output follows the input.
Vhen x, # x,, the last state ié.: remembered. '

F Element

Truth Teble

X xn Vv
y -0 1 1
o 1 1 1
0 0 :
} last state
1 0 .
Q
1 ———

 Figure 2-26
'F Element and Equivalent -
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Description: If X, = 1, the output follows the input x
last state 1s remembered,

"It will become apparent in the discussion of whole systems of
logical elements that'it‘is not possible to use great numbers of cascaded
AND's or OR's (i.e. such circuits connected in series) because in many
such circuits (diode circuits as shown in Figure 2-5) the signels are
slowly thrown out of the permissible bands due to voltage drops etc.

In order to "renormalize" such a signal it becomes then necessary to
insert an amplifier or "level restorer". This can only be circumvented -
if a NOT circuilt is present in the chain: we know from Figure 2-5 that
this implies amplification., The two symbols of Figure 2-27 represent
renormalizing amplifiers. It should be noted that logically these
circuits have the same propertles as a piece of wire, i.e..y = x.

; ll> y x_.®__y

Figure 2-27
Symbols for an Amplifier or Level Restorer

(Non-inverting)

A
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2.6 Sophisticated Adding, Counting and Sequencing

Separate Carry Storage

It is easily #erified that the 1/2 adder AND-NOT-AND-OR
combination of Figure 2-13 can be replaced by an exclusive OR in
parallel with an AND: the latter will give the carry while the
exclusive OR gives the sum. Figure 2-14 can therefore be redrawn
as in Figure 2-28. |

X,
i .
Iy : i

LT

Figure 2-28
One Digit Position of a Binary Adder Using Exclusive OB's'

Quite visibly cy influences Ci 1

to the well known fact that if we add O and 1 in a given stage and there

via the dotted path: this corresponds

is a carry from the last digit position, there will be a "propagated
carry". Under some circumstances a carry can possibly be propagated
through the whole register i.e. from the least significant digit to

the most significant digit. Such a propagation can take a great amount

=4l



of time and operations in which repeated additions occur (like multiplication)
are excessively slowed down. A way around this difficulty is to sever the
carry propagetion path in X and dump the output of the AND into a separate
flipflop. If we make the input to the OR "O" we shall then simply have a
"pseudo-sum" coming out of 8y vhile the carry is stored separately;
considering the whole adder and its registers we would then have a reglster
ho;ding xi's,-one holding yi's, a "pseudo-sum" register holding the si's

and finally a carry storage register holding the output - say bi-l ~ of the
lower AND. At each moment the read sum could be obtained by adding the
"pseudo-sum" to the separate carries.

In order to be useful in repetitive addition it is desirable to
have an adder which allows a number to be added to another one stored in
the separate-carry-pseudo~sum manner. It 1s clear that this can be
achieved by using the arrangement of Figure 2-29 in which the OR circuit
is used to absorb the carries from a previous addition. The signal Z 1
coming out of this OR visibly only affects the next stage since the carries
out of stage 1 (i.e. the signal bi-l) is again stored separately. Figure
2-30 gives the connections to be used if the number in X is to be added
again and sgain to itself. 'Initially registers C and Y are cleared and
then they hold successively (in pseudo-sum-separate-carry form) 2, 3 etc.
times the contents of X: They correspond to what is ordinarily called
the accumulator. Registers B and S are - together - the temporary
. accumulator. By alternating between the up and the down gates, we can
cycle through as many additions as desired. At the end the sum is
obviously obtained in two parts and more equipment is needed to "ebsorb
the carries". One way of doing this is to use the contents of C and Y
as the inputs to a classical adder. ' |

Borrow Storage Counter

It is easy to see that problems of carry propagation also
affect the counter of Figure 2-12, i.e. its speed of counting is limited
by a possible carry propagation over all stages. -D. E. Muller of the
University of Illinois has extended the idea of separate carry storage
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= :
ith stage

B s
o) .

* * Cyar X Yy
z v '

Figure 2-29
One Stage of a Separate Carry Storage Adder

X, - R 3
» { X o
v, '

Temporary Accumnulator

B iy R s

Down gates C) | : l ( _5_ IDown gateé

Adder
Y |
Up | Gstes
Y v
C X _ Y
\——m Accum.ula;tor ”...J
' Figure 2~30

Accumulator and Adder in a Separate Carry Storesge System
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to counters, Figure 2-31 shows the last two stages of such a counter.
There are again two principal flipflops per stage: The true toggle ti
and the false toggle fi
i.,e. a down shift (DN-pulse) sets fi to agree with t
(UP-pulse) sets t; to disagree with f,.

difference: no decoding is used to obtain frequency division and

and they are connected in the usual fashion,
1vwhile an up shift

There is, however, a major

furthermore the counter counts down from a number initially set in

PN b2 bl bo. This counting down would visibly necessitate borrows

at certain stages of the game: These borrows are stored separately
(or, after a down shift, in ... c5 ¢y .¢g)e The effect

into ti and simultaneously

in ... a.2 al ao
of such a borrow is to permit a shift from fi

;= O inhibits this transfer and sets ai to O, One can see

(see table below) that if to these rules we add an "unconditional” last

84y wvhile c

stage in which to and aq always receive the complement of fo on an up
shift, the result will be a counting operation in which the number held

at any given moment is

[ove By 8y t] -2 [ees 8, 8) 2]
At the beginning all registers are cleared to 0 and the number n to be
counted down from is set into ... t2 tl to. At the end (i.e. after n
UP and n DN pulses) the upper register indicate zero. One more down
pulse is sufficient to also clear the lower register to zero, thus
readying the counter for a new counting operation. In the table below
the state of all flipflops is shown in counting down from 3. The column

t indicates [..._tl to] while a indicates [... a, aO].
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Ll
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Figure 2-31}
Borrow Storage Couster




Table 2-1

Operations in a Borrow Storage Counter

a.l to ao t 2a
¢y £

0 1 0 3 0
0 0

0 1 0 3 0
0 1

0 0 0 2 0
0 1

0 0 0 2 0
0 0

0 1 1 3 2
0 0

0 1 1 3 2
1 1

0 0 0 0 0
1 1

0 0 0 0 0
0 0
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Interleced Sequencing

It is of'ten necessary to alternate a given operation (Op 3)
with two other (Op 1 and Op 2) in such a fashion that if and only if
both Op 1 and Op 2 have occurred it becomes possible to do Op 3. Vice
versa: Op 3 must be terminated before Op 1 6r Op 2 can even start. In
such circumstances we speak of interlacing and write

Op 1 op 1 -
' }’ Op 3 {' }' Op 3 : sove
Op 2 _ Op 2

Figure 2-32 shows a possible sequencing circuit having all the required
properties. It is "speed independent" in the sense that no requirements
whatsoever have to be placed on the relative speeds of operation of the
logical elements. We can think of the boxes marked Op 1 etc. as being
simply in-phase amplifiers introducing a certain time lag (equal to the
time required to do the corresponding operation).

Op 1

vy

[ s Op 2

Figure 2-32 ;
Circuit for Interlaced Sequencing
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The operation of this circuilt is as follows. Suppose that Op 1 and Op 2
have occurred, injecting two "1" signals into the C-element: The output
of this element now sets the flipflop into the "O" state thus making the
input to the lower NOT "1" and the input to Op 1 and Op 2 "O" (after some
time this makes the upper input to the flipflop "O" again). As the
flipflop changes state, its lower output becomes zero and this zero,
together with reply back zerc mentioned above, finally allows the upper
NOT to energize the input to Op 3. This sets the flipflop back into the
one state, thus cutting off the input to Op 3 and after the output of
Op 3 has also gone back to zero the lower NOT receives a zero input and
starts up Op 1 and Op 2 again.

2.7 Dynamic (Synchronous) Logic

Up to now no major difficulties resulted from the fact that
no information concerning the operation time of individual logical
elements was available: we talked essentially about asynchronous
circuitry. .Very often savings in both time and equipment can be
obtained by specifying the delays signals suffer in the logical circuitry,
at least to the extent of making sure that an ordering relationship is
known i.e. if two parallel signal paths are present it is known which
one is faster. Often such an ordering is obtained by inserting into
one of them suitably chosen delay elements. We shall discuss below

some of the more common dynamic circuits.

.Delay Element

D

Figure 2-33
Delay Element
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The delay element shown in Figure 2-33 1s essentlally an amplifier
which is slowed down by capacitive loading of the output or intermediaxy
points or it is a transmission line formed of lumped L and C elements
adjusted to give a glven delay between the input and the output. In the
following discussions we shall assume that delay elements have amplification.
Often A indicates the time delay in seconds.

Free Running Multivibrator (Clock)

——\/—-I

Figure 2-3k
Free Running Multivibrator

Figure 2-34 shows a flipflop whose outputs are coupled back to
the opposite inputs via delay elements (here we shall assume them equal).
Visibly the operation cycle consists of the following steps: suppose
that the flipflop has just been set into the "1" state. After a given
delay A the new outputs i.e. O 1 will arrive at the input in the form
1 0 and switch the flipflop back to the "O" state., This gives a 1 0
output which comes back - after the delay -'in the form O 1 which again

sets the flipflop to "1",
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If the setting time of the flipflop can be neglected, the
oscillations at either the "O0" or the "1" side of the flipflop are as
shown in Figure 2-35; they have the period 2 A . The fact that the

Vou‘b
A
- T
e LT —]
A A\
Figure 2-35

Symmetric Oscillations of a Free Running Multivibrator

pulses are of regular duration makes such a free running multivibrator
useful as a clock, i.e. a timing control for the operations in a computer,

In the circuits below we shall often assume the existence of such a clock.

Actually there is trouble in the circuit of Figure 2-34 if the

- two delays are different and since it is impossible to design these delays
to be exactly equal, it is better to make provision for the more general
case. Figure 2-36 shows a possible solution and Figure 2-3T7 the waveforms.
Note that this time the two outputs, X and Y, have no longer the same shape.
The operation of this circuit can be understood from the "interlaced
sequencing" circuit of Figure 2-32, except that Op 2 does not exist, making

the C-element useless.
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Figure 2-36

Asymmetric Free Running Multivibrator
v : :

A

2
—~—

S<

2

| H B
l 3

Figure 2-37
Asymmetric Oscillations of a Free Running Multivibrator (Positive Logic)
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Regenerative Broadening

A common problem is to lengthen a pulse to meke it as long as
a clock pulse, i.e. to design a circuit which, if at the beginning of
the clock pulse a "1" is present, stretches this "1" to the full extent
of the clock pulse even if the sampled pulse disappears during this
clock pulse., Figure 2-38 shows such an arrangement using an AND and en
OR. . Note that practically an amplifier is needed in the feedback loop.

A In
t
A Clock
%
o () e -
Out
A ' e
VAN -
, Loy t
cr00k ——( Y0 out ....._...

Figure 2-38
Regenerative Broadening

Latch Circuit

A more sophisticated version of the circuit deseribed above is
the latch, which differs in that the clock pulse cannot only "capture"
a "1" and hold it even if the input goes back to "0", but also "capture"
a "O" and hold it in the event that the zero actually changes to a one
during the clock pulse. Figure 2-39 shows the layout: note that here
g delay has to be used in order to make sure that the AND in the feedback

“55-



loop can receive a "1" from the clock and also a "1" frwm the input
sampled while the clock wes still "o" (clock =1 -» Clock = 0 and
vice«versa.) It should also be remarked that this delay should be
just long enough to allow sufficient overlap to staxt regeneration.
‘Often the delay is ‘obtained: ‘by a suitably deaignad amplifier (which
must be used in the feedback J.oop a8 we saw abwe)a ‘Jmig circuifc«y

"Clock

TFigure 2-39
Latch Circuit

which can therefore latch onto a "1" or a "OY conserves during the whole
clock pulse the information present at its beginning. A useful application
is shown in Figure 2-40 in which an accumulator register feeds information»
into an adder (the second input coming from a fixed number reglster). The
output of the adder goes into a latch ecircult. It is easily seen that no
gates are needed between the adder and thevlamches preceding the accumulator,
since the clock time can be chosen such that the output of the latches sets
the accumﬁlator, but that this new setting does notr"race" through the adder
to produce the next set of inputs, the latches having sampled the information
at precisely the instant at which the adder settles down for the first time,
The deiay A is chosen equal to the longest expected delay in the adder,
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- Adder «—— (Carries

Numnbe: Reg. 0 i 1 0 Accun,

elock —8 'T\ * (Clear)

Latch

Figure 2-40
One Clock Period Adder Using a Latch

2.8 Synchronous Serial Operation

The full advantages of synchronous logic can be reaped by
using a serial i.e. sequential processing of information pulses. This
implies in particular that numbers are sent "least significant digit
first". We shall discuss below some of the more frequently encountered
circuits for serial operation.



Delay Lines (Recirculating Registers)

It 1s possible to use a trensmission line of sufficlent length
to store sequences of pulses. Such a line can be thought of as a chain
of delay elements: in order toc store n pulses we need n times a delay
equal to the period of the clock. The chain usually contains at its end
a circuilt for regenerative broadening. This has for effect not only to
give to pulses a standard shape and length, but also to resynchronize
them with the clock, i.e. to make sure that all pulses are still equally
’ spaced after an indefinitely great number of passages through the line.
It should be remarked that delay lines are often of the accustic type in
order to circumvent size problems one would encounter with electric lines
storing 1000 or more bits. The accusilc delay line is simply a sound
propagating rod connected between a loudspesker and a microphone (calléd
"transducers") at megacycle frequencies; bursts of sine waves are used
rather than the modulating pulses themselves: This simplifies the design

of the transducers.

The two main problems with recirculating registers are 1) to
"load" the line by establishing in it a train of pulses conveying the
information initially present in a set of flipflops 2) to "unload" the
line by dumping into a set of flipflops the dynamic information "running
off the end" of the line,

Figure 2-41 shows a possible loading mechanism., .When both the
load signal and a clock pulse occur, the information in the flipflops is
made available to the line wvis the input OR in frant of (or as one can
see from Figure 2-38 actually part of) the regenerative broadening circuit
vwhich feeds the line (represented by a series of delay elements). Delays
equal to one, two etc. times the clock period are inserted between the
one-side output of the flipfiops and a common collecting OR circuit. The
latter goes into the input OR mentioned sbove via an AND which disconnects
the flipflops in case no loading signal is present: in the absence df the
load signal the upper AND closes the loop and mskes sure that no information
is lost. Note that more than one word can be stored and that a counter is
required to time the load signal correctly so that a new word does not

start in the middle of one already being recirculated.
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Clock

=0 l
Delay Line
o Regenerative | /AN /AN o _,@___
Broadening

0 1 o) € 0 1 Clock

o o A Load

Figure 2-41
Ioading of a Line from a Flipflop Register

The unloading of a recirculating register can be most easily
accomplished by tapping the line at one-clock-period intervals and
sending the signals present at these taps simultaneously (via AND gates)
into a set of previously cleared flipflops; Figure 2-42 ‘shows the
principle. In case of acoustical lines (or if one does not want to tap
the main storage line) the dynamic information is actually switched to

a separate (lumped -constant LC) delay line with taps, called a "staticizer".
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“"Staticizer"

s b
>

S i

| Figure Dl
Unloading a Staticizer into a Flipflop Register

Dynamic Flipflop

It is easily seen that a delay line giving a delay equal to one
clock period coupled to a regenerative broadening circuit is simply a
dynamic flipflop: once .a pulse is trapped in this loop it will resppear
periodically. It is usual to add an AND in the:loop fed by the inverse
of a clear signal in order to be able to set such a flipflop back to the
0 stéie in which no pulse ever appears, - Figure 2-43 shows the arrangement.
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Set 1 £i>>

Clock A ¢ Out

Clear
Figure 2-43
Dynamic Flipflop

Serial Adder

One of the main advantages of serial operation is that only
one adder stage 1s necessary in order to produce a pulse train giving
the sum of two pulse trains. Note that instead of speaking of the sum
s; in stage 1 we nov talk about the ;B pulsetz(i) counted from the
beginning of the train, or more exactly the i clock-period, since no
pulse occurs when the corresponding digit is zero. The same remark
holds, of course, for the inputs x(i), y(i) and the carries. Adding
in the carry from the preceding stage now is simply replaced by delaying
the carry of the previous clock period. Figure 2-L4 shows the extreme

simplicity of a serial adder.

x(1) —— - s(1i)
Full Adder
(1) —= Stags
c(i) - c(i-1)
&)
Figure 2-4k

Serial Adder. All pulse trains are injected with the least significant digit first.
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Counter

Figure 2-45 shows how counting cen be performed by using two
AND's in front of a flipflop end controlling the second input from the
opposite side of the flipflop output, Vieibly such en arvangement will
steay cach incoming pulse 4o that side of the flipflop input which will
produce a change - this means that for each incoming pulse the flipflop
changes state, If we sample one of its sides (after the transient dles
down, a delayed clock signal is used to control the oﬁtput AND) we shall
evidently obtain e pulse only for each second incoming pulse i.,e, we
actually have one stage of a binary counter,

TS . @
, Next

Stage

Clock

' Figure 2-45

- One 8tage of a Synchronous Counter
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Starting and Stopping a Seguence

One of the problems that occurs in gerial machines is to switch
the output of a clock onto a line in such a fashion that no "half-pulses"
occur, i.e. making sure that the switching occurs between two clock pulses.
Figure 2-46 shows how this can be done. The idea is to set a first flipflop
FF1 by the start/stop signals and to transfer this information on the next -
intervael between clocke-pulses to FF2; the latter cannot be chenged while
the clock pulse comes along since the input AND's cennot trensmit infor-
mation while the clock pulse is on. Note that the setting time of the
- flipflop may have to be taken care of by introducing a delay between the
clock and the output AND,

Clock
o
Shary ——— 1 o(? -l 1 o Out
Clock @
Clock
Figure 2-46

Stopping and Starting a Pulse Sequence



CHAPTER ITI

BOOLEAN ALGEERA

3.1 The Postulates of Boolean Algebra

Although Boolean Algebra is applicable to more than two values, it
is useful to think of the postulates below as summarizing the behavior of the
logical circuits disc?ssed in Chapter II. Symbolizing the output of an AND-
1 x2), the
output of an OR-circuit with inputs Xy and xe by X, VX, (i.e. writing

N

circuit with inputs xl and. e by xl R (i.e, writing y = x

VY =X,V xg) and finally by denoting the NOT-operation by a bar (i.e.

1
writing for a NOT-circuit y = E), we can define the three fundamental

operations ¢« v - in two-valued Boolean Algebra by truth tables.

TIruth Tables for Two-Valued Boolean Algebra

Yo=x 0%, Y =X VX, y=x
X X, Y X, %X, ¥ X ¥
o 0 o 0O 0 0 o 1
o 1 o o 1 1 1 0
1 0 o0 1 0 1
1 1 1 11 1

We can now easily verify that ° and v satisfy the postulates of

idempotence, commutativity, associativity and distributivity:

e X =X X VX =X (idempotence)  (3-1)

1 ~.x2 =X, % X, VX, =X, VX (commutativity) (3-2)

xl(x2 . x3) = (xl . x2) *xg X, v (x2 v x3) = (xl v xg) v X3 (associativity) (3-3)
x) (x2 v x3) = (xl , x2) v (xl . x3) (distributivity 1) (3-&)‘

X, v (x2 . x3) = (xl v xe) . (xl v x3) (distributivity 2) (3-5)
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We shall now introduce the "null-element" O and the "identity element"
1 respectively.* Then the following properties of intersection (°+) and union
(v) hold:

0*x=0 (O-intersection)

(3-6)
Ovx=x (0-union)
1 x=x (1-intersection)

(3-7)
lvx=1 (1-union)

Finally the NOT-operation, which we shall simply call complementation,
satisfies the laws of complementarity, duvalization (also called De Morgan's

Theorem), and involution:

X+ x=0 xvx=1 (complementarity) (3-8)
(21_7-25) = EI v §; (dualication 1) (3-9)
(v ) =% * %, (duslization 2)  (3-10)

X)) = x (involution) (3-11)

The notation in Boolean Algebra can be simplified to some extent by
leaving out the parenthesis in expressions involving operations °* or v only:
the law of associativity permits this., Furthermore 6ne can omit the symbol -
altogther :and write %) X, instead of Xt Xy Finally we can agree to
interpret expressions involving ¢, v and - in which parenthesis do not appear

in such a way that the ° operation is performed first and the -~ operation

last. E.g. we would interpret x, v Xo%3 to mean [xl v (x, - x3)] =X (x2x3) =

;]':' (;(;v;:;).
Inspection of the above postulates shows that there exists a certain

symmetry in the postulates. More precisely: when we take a postulate and

interchange * and v and O and 1 we obtain another postulate, called dual of the

't

* In the two valued algebra there are no other elements besides the null and
the identity element.
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first., For example 1 v x = 1 has as its dual O » x = O, Similarly any theorem
we prove from the postulates will have a dual: this dual is proved starting
with the dual postulates.

There is a startling analogy of the postulates of Boolean Algebra
with those of arithmetic when we replace ° by multiplication x and v by
addition + : postulates (3-2)-(3-k) are valid in arithmetic. (3-1) however
and (3-5) ere ebviously untrue, e.g. "multiplication is distributive over
addition" while "addition is not distributive over multiplication". It is
important to notice that there is no simple cancellation law in Boolean
Algebra. The existence of cancellation laws is always a consequence of
the existence of inverses with respect to multiplication in arithmetic:
xt = 1/%. Therefore xy = xz entails y = 2 when we multiply through by <k,

1

If there were inverses x — with respect to the operations v and °

of Boolean Algebra, we should have

xvxt=0"
xx'l = 1
‘This is clearly impossible, for the first equation would imply that
Xvxv x'l =%Xv0=%X ie.x=1v x'l = 1 which is certainly not generally
true. A similar argument holds for the second equation.

The nearest approach to & law of cancellation in Boolean Algebra,
is given by the

Theorem on Cancellation: If X, 2=% Y

and xl vz = xl vy

for an aribitrary Xy

then %

L}

y

Proof: Take x; V z = X, v ¥y and form Ei(xl v z) = Ei(xl v y). By the laws
of distributivity end cqmplementarity we then have ‘

-~

X, 2=X ¥

————————c

* Note that x T for v would be different from x
are generally different.

1 for « just as -x end 1/x
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therefore (xl v xl) z (xl v xl) y since x, z = x; ¥

i.e. z=Y by the law of complementarity.

Furthermore there is no such thing as a polynomial in Boolean Algebra
because by the ldempotence law all powers of x are equal to x,

It 1s useful to mention at this stage a particular case of the laws
of distributivity and idempotence, called law of absorption:

X, (xl v x2) =

I
o
=

(3-12)

#
o

Xl v Xl X2

To verify the second equation we can write it in the form xl(l v xa), while the
first one is reduced to the second by writing it in the form ‘

xlxl v X1X2 = Xl v xlxe.

To stress the analogy of Boolean Algebra with arithmetic, it is

customary to call the formation of xy "multiplying y by x" and that of x vy
"adding y to x",

Inclusion andConsis‘_bency° Exclusive OR and Sheffer Stroke

There is a certaln number of other symbols used in Boolean Algebra.
The first one is the inclusion symbol < which is defined as follows:

X X, = X (3-13)

x, < x, means that

1l 2

X, VX, = X, (3-14)

That the two definitions are equivalent is assured by the law of consistency:

we can prove that (3-14) follows from (3-13) and vice-versa:
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Assume X.X. = X

12 1
Then Xy V Xy = XX5 VX, by substitution
=X, by absorption
Assume X, V Xy = Xy
Then X Xy = Xl(xl v x2) by substitution
=X by absorption.

From the definition of < we can easily see that this operation
satisfies the laws of reflexivity, anti-symmetry and transitivity and that

of universal ‘bounds :

x <x (reflexitivity) (3-15)
Ifx<yandy<x, thenx=y (anti-symmetry) (3-16)
If x<yandy <z, thenx <z (transitivity) (3-17)

0<x<1 (universal bounds)  (3-18)

The first two equations are verified by applying the definition of <. The third
follows from the fact that we have simultaneously

Xy = X
YV Z=2z
o x2=x(yv2Z) =Xy vXZ=XVXZ=X,

The fourth equation finally simply restates (3-6) and (3-7).

Another operational symbol useful in Boolean Algebra is @ called

wo%

"exclusive or and defined by

* Often the -symbol /\ is used.
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x@y:‘iyvi?y (3'19)

The great usefulness of this operation arises from the fact that it allows us
to form binary sums. Another important point is that in equations involving

only @ the ordinary laws of cancellation hold, This is due to the fact that
every element x has an inverse x"l with respect to the @ operation such that

x (3 =0 (existence of an inverse) (3-20)

Before we prove this latter point, let us note that @ satisfies a
number of the properties discussed in the last section:

X & X, = X, ® X (commutativity) (3-21)
X ® (x2 @ x3)

%, (x.2 ©) ‘x3)

(x:L ® x2) ® X3 (associativity) (3-22)

]

X%y () X% (distributivity) (3-23)
These properties can be established from the definition of @ ¢ this definition
also glves us immediately the equation

0 () x=x (existence of a zero) * (3-24)

To prove (3-20) it 1s sufficient to verify that we can set 7t = x

XXV xx = 0 (3-25)

x (E) b'e
Sox(F y=x@® z—oy=2 (3-26)

for we can "add" (with the operation @) x to both sides, which leaves y = z,

It is useful to join to equation (3-24) and (3-25) the pair

x @ 1=% x @ %=1 (3-27)

* Equations (3-20) - (3-24) together with the commutative law for ¢ are the
postulaetes of a "ring"; (® 1is therefore often called "ring-sum",
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ad xC)ygic)iz (3-8

Ve shall finally introduce e last operation° ’whe Sheffer Stroke /s
by definition. ’ . -

1/xa = (xlxa) - C - (3-29)
Tt can then be eaaily seen that

Rewfx N € ®

X, %o =‘(xi/x2)/(xl/x2) : . (3-31)
xi VR, = (Xl/xl)/(xa/xe) | - (3-32)
7‘31 ® %, - [xl/(xa/xa)]/[#llxl)/xgl, o (33

which means that all the operations defined =Te] far can be deduced from the
Bheffer Stroke.

3,2 Canonical Expansions

The purpose of this section is to show that all Boolean functions of
& given number of variables X %,
form called "canonical expansion". Before we prove this let us extend the

e+ X, can be written in a certain standard

dualizatlon laws to n varilables.

DeMorgan's Theorem 1:

X) VE,Voeen V }fn:f;:”.’sif Xgeoss, jxn ‘ o A (3-34)

Proof: Call x2 Voese Xy for short x; then X VX= Ei X by (3—10).v This
‘process of reduction finally leads to (3-34).

* This corresponds, of course, to the well known fact that all logical networks
can be synthesized from AND-NOT c:chu:Lts°
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DeMorgan's Theorem 2:

xlx2 ver Xn-—-';;v-x;#oc‘v;n ) (3'35)

Proof: This theorem is the dual of the preceding one. The proof is the dual
of the preceding proof,

We shall now introduce the notion of minterm and mexterm. Given the

n variables x er X, 8 minterm is the product of all n variables, uncom-

X,
172
plemented, partially complemented or all complemented. Such a complemented
or uncomplemented variable is called a "literal". There are clearly 2" = N
ninterms which we shall call My My ees mN l. ‘We can order these terms by

the following:

Convention: ILet kl k2 ‘e kn be the binary expression for k. Then

m= (k% v R X)) (ky %, v RS X)) ee (k) % vE X)) (3-36)

n

For example the minterms of two variables x, and x., are, in the order

1 2
Mo My My Bgi Xy X5, X) X5, X Xy X Xy Slmilarly we can define the maxterms
of n variables: they are the sums of all n variables, uncomplemented, partially
complemented or all complemented. There are clearly 2 = N maxterms which we

shall call Mb Ml v MN-l‘ We can order these terms by the following
Convention: Let kl k2 oee k be the binary expression for k. Then

M o= (k % v k x ) v (K, %, Eu) v vk x vk x) (3-37)

nn nn

For example the maxterms of two variables Xy and X,

Mo M1 Mé M3: l v x2, Xl V X5, Xy v x, 51 X1 V X

These definitions being accepted, we can restate DeMorgan's Theorems

are, in the order

by the
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Theorem on the Relationshlp of Maxterms and Minterms:

m, = Mo | ,, (3-38)
ﬁi = m (3-39)
where E=2"-1-k (3-%0)

Proof: The binary expression of k is clearly the one's complement of that of
k. So Mi will have a complemented variable whenever 1, had an uncomplemented
one and vice-versa., Furthermore the passage from a minterm to a maxterm and
vice-versa replaced AND's by OR's and-vice-versa.This is therefore precisely

the process described in DeMorgan's Theorems.

Now let us look at all the possible sums of minterms, There is 1 = NCO
sum not involving any minterms, (i.e. the "sum" O itself) N = Ncl involving one
minterm, N02 involving two minterms etc. 'The number of different sums (1.e.
combinations) is therefore "G + MO + ... + Yoy = (1 + V22 222" e
shall call these EN sums the elemental OR forms.

Theorem on Elemental OR Forms:
n

No two of the 22 elemental OR forms are equal.

Proof: Let F and G be two different elemental OR forms. Then G (say) contains
at least one term mj not contained in F. Choose values of Xy e xn,sueh that
my =1, then all m, # m; will be zero, For these values therefore F # G,

Another way of stating this theorem is to write

my my = 0 | ‘ - (3-41)

In the same way we can discuss the possible products of maxterms: the
n .
number of different products is agein 2N = 22 s We shall call these QN products
the elemental AND forms. ‘ |
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Theorem on Elemental AND Forms:

n
No two of the 22 elemental AND forms are equal.

Proof: This theorem is the dual of the preceding one; the proof is dual.

Another way of stating this theorem is to write

M, v Mj =1 (3-42)

We can now prove important theorems on the sum of all minterms and

the product of all maxterms:

Theorem on the Sum of All Minterms:

my VI Voe..vm =1 (3-43)

Theorem on the Product of All Maxterms:

My M ... M 0 =0 (3-hk)

Proof: It will be sufficient to prove (3-43), since (3-Ul4) is the dual. Consider
n-1 s s
therefore My VI V..o Vg, =m (say). There will be 2 terms containing

x, and on-1 terms containing il i.e,

m=(Xl‘ .a.)V(Xl’ coo) ....V(xl' '.-) V(Xl" o-.)
= X Xl v Xy X2 collecting terms.

where Xl does not contain x. or X.. Pursuing this reduction process we shall

1 1
finally come tom = Xn_l where xn-l does nSE contain xl N xn-l or their
complements. This means that Xn-l =X VX = 1. This proves the theorem.

Before we ¢an discuss the central theorem of this section we need

two more Lemmas.
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Exponential Compositibn Theorem‘for Minterms:

Let f be an arbitrary function and ¥ an arbitrary number of variables.
Ehen the sum of the product of f with all the minterms fbrmed from the v
variables is f

fmo v fm1 v u.o‘v me)) 1= £ (3-45)

Exponentlal Composition Theorem for Maxterms:

Iet f be an arbitrary function and » an arbitrary number of
variables. Then the product of the sums of f with all the maxterms formed
from the » variables ig f:

(FvM)EvM) ... (FvMy 4)=f¢ (3-46)

Proof: It will be sufficient to prove (3-45), since (3-46) is the dual.
(3-45) is evident when we collect terms:

fmy v fm v ... v fmgy = f(mo VIV oo VI -l) =f,

since (3-43) can be applied.

-We now state the two theorems about canonical expansions.

Theorem on Canonical Expansions Using Minterms:

Every Boolean function f involving the symbols ¢, v and ~ can be
represented as one and only one product of maxterms, i.e. as one and only

one elemental AND form.
Proof: Again it will be sufficient to prove the first theorem of this dual
pair. Tb make things easier we shall consider a particular example: it is

easy to see how the process is applied in general. lLet

(x x ) v x ] (§~—Ff§_)
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The complementing bar can always be moved inside the parenthesis by applying
DeMorgan's Theorem. This gives

f = (ii VX,V Eé) (x, x3) (n = 3)

We can now "multiply out", i.e. apply the distributive laws. There will
result an expression which is a sum of products. In our example

f = xlxlx3 v xlx2x3 v xlx3x3 o

We can now apply the idempotence law and the law of complementarity:

Xy 5 XXg 0= 0

X.X i

i"i

This gives in our example

f = xlxex3 v xlx3
Now we can use the exponential composition theorem to "inflate" every term
which does not contain all n variables into 2% minterms, where ¥ 1is the
number of variables not contained in the term: we multiply this term by 1
in the form of the sum of all possible minterms of the  variables. In our

example X, is missing in xl§3. We multiply by X, V §é giving

xlx3 = X1X2X3 \'A XlX2X3

lx2x3 v XlX X, Vv X1X2X3

273

i.e. f=x

In this way f is expressed as a sum of minterms. We finally

replace the sum of all identical minterms by one minterm. In our example

—

f = xlxex3 v xlxex3 = m6 + mh

=T5=



It is now evident that this reduction of £ to & sum of minterms in.unique:'
if there were two different canonical expansions, two different elemental
OR forms would be equal. This is impossible by a theorem proved before.

It 1s very useful to know that the réduction process of f to an
elemental OR form is sufficient to find the elemental AND form and vice-
versa. The transformation from one to the other is given by the following
theorems,

Theorem on the OR-to-AND Transformation:

Suppose that f has been expressed as a sum.of minterms :E'm =X m,
(Z means of course applying the operation v!) and that we wish to express
f as a product of maxterms fM

=Tu 5 (7 means of course applying the
operation * !). Let L ¥ m, be the sum of minterms not in £ . Then

- 7
£ =7/’mj = Tug | (3-47)

In words: in the sum of minterms not in ‘fm’ interchange ° and v and reverse

the complementation.

Theorem on the AND-to0-OR Transformation:

Suppose that f has been expressed as a product of maxterms fM = W’Mi
and that we wish to express f as a sun of minterms £ = Zm s Let 7* M, be
the product of maxterms not in fmo Then

f =2M, =2 m
m 3 J

In words: in the product of maxterms not in fM’ interchange v and ° and

reverse the complementation.

-Proof: As usual it is sufficient to prove the first theorem. ‘ Now clearly
2 m, v ¥ my = 10y (3-43) i.e.

* _ - ———
ﬁm vy mj =1 = fm v %m
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Furthermore

because of (3-41). By the theorem on cancellation of Section 3.1 this means
that

— E—————— ﬂ_
f =T =(Z%m,) =7 m, =T
m (z J) J MH
by DeMorgan's theorem and (3-38), Since f = fﬁ (fm being the canonical
expansion!) this completes the proof: f = Zer.
It is appropriate to meke an important remark, Up to now we have

transformed given Boolean functions (of the ".v - type") into canonical
expansions. The question comes up: can one (in a way analogous to finding
a polynomial function passing through given points) determine a Boolean
function assuming given values O or 1 in given "points". To answér the
question, note that a "point" corresponds to a given combination of O and
1 in a binary number of n digits, where n is the number of variables we
allow ourselves. With n variables we have 2" minterms: If the function

is to be = 1 in "point" k = k1k2 ror ko, this can only be achieved by
including m, in the expansion fm of £f. If the function is to be = 0 in
"point" k = klk2 +++ k , this can only be achievedvby omitting m in the

expansion fm of £f. This leads to a new theorem:

Synthesizing Theorem: Suppose that the 2n combinations of n variables each

correspond to a definite value O or 1 of a Boolean function f(xlx2 sen xn);
then

f=2mk, k =Xk ooo K

where mk.are the minterms corresponding to the combinations k1k2 coe k.n
which give £ = 1.

We shall see later what happens when some of the 2" combinations

do not correspond to any defined value of f.
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It turns out that the synthesizing theorem is so easy to apply, that
it 1s often advantageous to calculate the values of f(x1 coe xn) for all
combinations of the variables and then form the sum of the minterms correspond-
ing to the "ones". :

Finally it is clear that the synthesizing theorem has a dual. It is
left to the reader to discuss the latter point.

3.3 Simplification of Boolean Expressions. Harvard Chart.

First of all we must define what we mean by "simplification": It
means reducing a given expression (for instance a canonical expansion) to a
form in which there is a minimum of variable occurrence. In this section
we shall show that any given f can be reduced to a "minimum v polynomial”
i.e. a sum of terms, each being the product of complemented or uncomplemented
variables, without being necessarily a minterm. The expression "minimum"
here means: each term having as few variables as possible and the polynomial

having as few v signs as possible.

It is evident that by dual considerations we could discuss "minimum
° polynomials". Again it will be left to the reader to generalize the

processes.

The reduction of a minimum v polynomial to simpler expression can
often be achieved by "collecting terms" 1.e. "undistribution": if f has
been reduced to xy v xz we can write f = x(¥ v z); visibly this latter
expression is not a v polynomial. This reduction of a minimum v polynomial
to an expression having fewer variable occurrences is by no means straight-
forward: skill and flair (meaning: expanding terms or adding terms which
do not change the function, so called "non-essential terms") are often

necessary. -This can be seen in the following:

H
i

Example: = tuy v tuwz v twxy v wxz
This can be written

f=tuly vwz) v wx (ty vaz)
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But using the idempotence law we can rewrite the first expression

H
fl

ttuy v tuwz v twxy v wwxz

tu(ty v wz) v wx(ty v wz)

(tu v wx) (ty v wz)

This second expression is certainly simpler. Therefore an apparent initial

complication leads to a simpler end result.

The reduction of f to a minimum - v - polynomial is, however, a
straightforward process and we shall discuss one method of reduction: the
Harvard Chart. It is often faster to use direct simplification, as described

later in this section, but the Harvard Chart is an easy way to accomplish the

first step in an automatic fashion.

To simplify, let us take the reduction of functions of three

variables xl x2 x3. The chart then contains:

1. 23 = 8 rows, each one corresponding to a possible

minterm of f.

2. 23

combination of variables one, two and three at a
time and to the values of f at the 8 "points"
000, 001 ,..., 111,

= 8 columns, the columns corresponding to a

Figure 3-1 gives the aspect of the three variables chart for the example

f = xlx2x3 v Xlx2X3 v xlx2x3 v xlx2x3

Remark: If f is not given as a canonical expansion, we can calculate
£(000), £(001l) etc. and use the synthesizing theorem of the last section.

The seventh column of the chart contalns the eight possible
minterms in order, the eighth column indicates by O and 1 which minterms

occur in the canonical expansion and which do not. Columns l1-6 are filled
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’

out as follows. In.1 we put x, or §i depending on whether the minterm in the

1
same row occurs in the expansion of xl or that of Eie Similarly for columms
2 and 3. In colum 4 we put X Xpy X Xpy XXy, OT xlx2~depending again on

whether the minterms in a given row is included in the expansion or not.
The same argument holds for columns 5 and 6. This process clearly puts
to the left of every minterm all the products of two variables or single
variables which can give rise to this minterm: 1f f does not contain this
minterm, the reduced v polynomial will certainly not contain any of the

terms in the same row.

1 2 3 L 5 6 7 8

Xy Xy Xq X1 X, X Xg XpXg X X Xq t

1 :T 322 SE3 ;1-322 3';'123 %&'3 :1;2:3 o
2 5{’ /;% }zg %iZ; Q%gg%g;} %éé; xlﬁéx 1
3| Ay o
e % i | e |GED t
> *T * S s Seiees e
6 .::'2 . % Xl§2 ¥ s 363 &

W

XX
¥
Bl

G
D | H
G2 s (@D

Figure 3-1

Harvard Chart for f = xlx?x3 v-xlxax3 v xlx2x3 v xlx2x3
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The Harvard Chart is now used by following the rules listed below:

1. Strike out the rows corresponding to the zeros in the f column. This
eliminates all minterms (and the "constituants") which could give rise

to them. In our example rows 1, 3, 5 and 6 are eliminated,

2. Strike out in each column all entries crossed out in Step 1 above.
This means: if a given constituent is not contained in f (being
in a cancelled row) it is no use trying to introduce it elsewhere.
In our example we thus cross out all entries in columns 1, 2 and 3.
In column 4 however two entries are left and the same holds for |
colums 5 and 6. In column 7 there are 4 uneliminated entries:

all these entries are marked with circles.

3. We must now find a minimum set of entries such that there is one
in each row for which a 1 is marked in column f; this means: we
search for a minimum set which (in a canonical expansion) will
give all the minterms in f. In our example inspection shows that
terms x.x., and x.x. (in shaded circles) form this minimum set.

173 172
We therefore have as the minimum v polynomial

T = xlx3 v xlx2

Remark: It is sometimes considered advantageous to replace the entries

in Figure 3-1 by numbers obtained as follows: a complemented variable
corresponds to O, an uncomplemented variable to 1. To each constituant

then corresponds a different binary number. This number is written in

the decimal system. The chart then takes the aspect indicated in Figure 3-2.
When the minimum set of entries has been found, one can easily go back to

the constituants.

We now have to discuss the second (and much vaguer) part of the
reduction process i.e. the reduction of a minimum v polynomial to an
expression having the least variable occurrences. This is done by "flair
and skill", "collecting terms" and by using the following (easily verified)

equations:
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Figure 3-2
Numerical Harvard Chart Corresponding to Figure 3-1

X X, V X Xy = Xy - (3-48)
X VX Xy = Xy (3-49)
N §ix2 =X, VX5, (3-50)
as well as the equation
xl*e v Eéx3 V X X3 = XX, V §éx3 (3-51)

or one of its equivalent forms. This latter type of reductible first member
is characterized by two variables multiplying an uncomplemented and a comple-

mented'variable and occurring again in product form: the last product then is

superfluous.
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It is sometimes useful to apply a test for a superfluous term by
applying the following Rule for Superfluous Terms: 1f a term is suspected

to be superfluous, take values of the variables which make this term equal
to one. 1Insert these values in all other terms: if the remainder of the

terms also gives a one, the term tested is superfluous.

Take for example equation (3-51) and set X = 1, x3 = 1 then

X Xy V x2x3 =1, ,". x,x, 1s superfluous.

173
Finally it should be remarked that eliminating terms may very well
lead to a "trap" situtation similar to that described at the beginning of
the section: an expression may contain no superfluous terms and appear no
longer reductible. Adding a superfluous term may permit further simpli-

fication.

3.4 Quine's Method

It is easily seen that a Harvard Chart for 4 variables has 16
rows (because of Eh minterms), excluding the one containing the headings.
It also has 16 columns for the constituants, excluding the two last ones
for the minterms themselves and the value of f: such & chart is obviously
cumbersome. For 5 variables the size gets entirely out of hand. MeCluskey
and Quine have developed a method in which an arbitrary Boolean function

given in canonical form is first reduced to prime implicants i.e. essentially

a possible set of constituants. The actual choice of the set to be used is
then made on a very much simplified Harvard Chart called "Prime Implicant
Chart". To simplify matters still further, a numerical shorthand is used
in which all terms are denoted by their corresponding binary number and
the notion of index is introduced: the index is the number of 1l's in the

binary number. The search for prime implicants then follows this pattern:

1. Write down all minterms in f (in binary shorthand) dividing them
into groups. The first group has the lowest index (not necessarily
O!), the second group the next highest index ete. This is done by
dividing the vertical list by horizontal lines where the index
changes.
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2. Compare groups of indices differing by 1 (i.e. neighboring groups)
to find terms differing in one digilt only. Write down in a second
column the "reduced terms" obtained by replacing the digit which
differs by a dash. Check off the terms used in this process,

(E.g. in a 3-varisble problem involving 1%0%3 and xliéié denoted
by 001 and 000 we write as the reduced term 00-) '

3. Divide the second column again into groups by horizontal lines,
the first group containing those reduced terms stemming from the
first two groups of the original list, the second group those
stemming from the comparison of group 2 and group 3 of the original
list etc. These new groups visibly have increasing numbers of 1's,

Lk, The second column again has its adjacent groups compared: now
doubly reduced terms appear (written with two dashes) when two
reduced terms only differ in one diglt. The doubly reduced terms
are put down in a third column and divided into groups according
to which combination of groups in column 2 they stem from. Again
the terms used in column 2 are checked off.

5+ The process stops when no new columns can be formed. All terms

which have not been checked off are the prime implicants.

Visibly we have done in & somewhat automatic manner what amounts
to the combination of terms of the form Xx v Xx into X until no further
reduction is possible. This is similar to the search for constituants in
the Harvard Chart. It can actually be shown that the two methods give

identical results.

The next step is to draw up a prime implicant chart having as
many columns as there are minterms in f (i.e. by no means corresponding to
all the minterms) and as many rows as there are prime implicants. The
problem is now to choose that set of prime implicants which is minimum
(in number of prime implicants) and at the same time gives rise to all

minterms used. Often this chart is drawn in the form of numbers giving
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the minterms connected to vertical lines and the prime implicants connected to
horizontal lines; a cross marks those minterms which occur in the expansion of

a gilven prime implicant.

It can happen that there are columns with one cross only: the
corresponding prime implicants are called basic prime implicants and their
row is called a primary basis row. If some minterms are left over, there
are often secondary prime implicants (and secondary basis rows) which account
for all minterms included in two other rows. The simplified expression then
contains the sum of the basic prime implicants plus the sum of the secondary
prime implicants plus a (sometimes arbitrary) choice of remaining prime

implicants to account for the remaining minterms.

The example below, taken from S. H. Caldwell, "Switching Circuits
and Logical Design" shows how a 5-variable situation is handled. It may be
interesting to note that the search for prime implicants can be programmed
for a digital computer with relative facility. |

Example: Consider a canonical expression for a function f of 5-variables

given by

f=movmlvm3vm8vm9vml3vml,+vmlsvml6vml7vm19vmgh

v m,

25

vV oI,

27

v m3l

or in a more convenient notation

f= ZO’ 1, 3 8, 9, 13, l)"’: 15, 16) 17, 19, 21+, 25, 27, 31

The search for the prime implicants then takes 4 colums. To simplify we
have indicated at the left the decimal subscript of m and in the reduced

terms the decimal subscripts of the terms used.
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0 00000 v
1 00001 v
8 01000 v

16 10000 v
3 0001l v
9 01001 v

17 10001 v

24 11000 v

13 01101 v

14 01110 v

19 10011 v

25 11001 v

15 0111l v

27 11011 v

31 11111 v

0,1. 0000- v
0,8 0-000 v
0,16 -0000 v
1,3 000-1 v
1,9 0-001 v
1,17 -0001 v
8,9  0100- v
8,2k  -1000 v
16,17 1000- v
16,24  1-000 v
3,19 -0011 v
9,13 01-Ol<«—A
9,25 -1001 v
17,19 100-1 v
17,25 1-001 v
2h,25  1100- v
13,15 01l-l1«—B
19,15 O0lll-«—C
19,27 1-011 v
25,27 110-1 v
15,31  -1111«—D
27,31 1ll-lle«—E

0,1,8,9 0-00- v
0,1,16,17 ~-000- v
0,8,16,24 - =-000 v
1,3,17,19 <001l «—F
1,9,17,25 ==001 v
8,9,24,25 =100~ v
16,17,24,25 - 1-00- v
17;19,25,27 - 1-0-1 «— G
0,1,8,9,16,17,2k4,25

(The last expression comes

about as the result of
several combinations!)

Calling the prime implicants in order A,B,C,D,E,F¥,G,H we have the chart .

shown in Figure 3-3.
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Minterms~\,

0 1 3 8 .9 iy 15 16 17 19 24 25 27 31

13 '
o] | .
ﬂ%* B

:  _ -

* —% D

fﬁ S Exx

*x—® X F*
T8 STk =

Figure 3-3
Prime Implicant Chart for a Special 5-Variable Function

* — Primary Basis Rows, ¥*¥* —» Secondary Basis Rows.

.8ince columns 0,3 and 14 have one cross only, C,F and H are primary basis rows,
When we strike out the columns that are covered by C,F and H we find that only
columns 13,27 and 31 remain. Visibly row E has crosses in both 27 and 31 which
means that the remaining minterm 27 of G and the remining minterm 31 of D are
taken care of by choosing E as a secondary basis row., Minterm 13 can be taken
care of by adding either A or B: which one is chosen is arbitrary (if the row
—>A contained more crosses, we would choose it, because by the construction
it would contain fewer literals!). -We thus arrive at the following form for f:

f=CvFvHVEVA

Going back to the meaning of these terms we have
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C — 0111~ —— xl x3xh

{
W
N
wN

L
=

F ——-00-1 —> x2x3 x5 = X X

H— -«00= — x3x)+

l
e
w
*
=

E ~—11-11 —x. X

1%o th = X, X, xux

5

A —> 01-01 ———9xlx2 _xl\Lx5 = X.X xhx

f = Elx2x3xu v xé)%x5 v §3xh v xlxthx5 v ;lx2§h§5

Remark: Note that since prime implicants are formed by combining 2,4,8 or 16

minterms etc., the number of crosses per prime implicant is a power of two!

3.5 Other Interpretations of Boolean Algebra

- The Algebra of Logic

When we make statements we use propositions: 1i.e., "Illinois has no
mountains" (P), or "There are 48 hours in a day" (Q), or "The barber shaves
 all men who do not shave themselves" (R). These propositions are either
true (P), or false (Q) or undecidable (R); the last proposition is of this
type, for it 1s not evident whether the barber shaves himself or not, Ex-
cluding undecidable propositions, there is attached to each proposition a
truth value p —»P,, ¢ —>Q etec, such that a true proposition corresponds to
1 and a false proposition to O. Above, visibly, p = 1 and q = O,

Often we form logical connectives by using modifications or com-

binations of propositions. In particular we can deny a statement i.e. form
its complement: if P is the statement "Illinois has no mountains", the
statement P is "Illinois has mountains". If S is the proposition "Illinois
has no natural lakes" we can form the "product" statement P - S "Illinois

has no mountains and Illinois has no natural lakes", If T is the proposition
"T am all wrong". then P v T is the "union" statement "Illinois has no

mountains or I am all wrong".
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The use of °* and v shows that there is a relationship between
Boolean Algebra and logic. One sees easily that this is the following:
if we call truth value x of a complex proposition X involving v and ¢ a
variable which is 1 if X is true and O of X is false, then

X =f (P QR involving v and *)
gives rise to

x = £ (p q r involving v and *)
Example: P = "Modern cars are slow"

Q = "Modern cars are underpowered"

=
i

= "Modern cars eat a lot of gas"

The statement X = (P v Q) R then reads:

"It 1s not true that modern cars are slow or that
modern cars are underpowered. Modern cars eat
a lot of gas.”

Let us examine x = (p v q) r. Looking at P § and R we see that p = O,
@Q=0, r=1, Therefore x = (0 v 0) 1=11i,e, X is a true true statement.
Note that here (P v Q)=P * Q!

There are other symbols for operations ("connectives") that we
have used that reappear in the algebra of logic. Especially P < Q means
"either P is false or, if P is true, Q is true". Now we remember that
p < q was defined as p * q = p (or by the consistency principle p v q = q!)
Quite visibly the proposition P < Q corresponds to the relationship p < g
between the truth values, We could similarly talk about (:) 3 /‘etc. but
a discussion would only lead to a reiteration of the postulates of Boolean
Algebra. We leave it to the reader to verify that these postulates are
satisfied by propositions,
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Subsets of a Set

_ A set is a collection of objects or elements having some ‘common
identifying property e.g there is the set of all humans. A subset is a set
included in a larger set: the set of all males is a subset of the set of
all humans. Note that there are "null sets" i.e. sets without elements:
the set of all humans having wings is a null set. The interesting thing is
now that Boolean Algebra can be applied directly to all subsets x, ¥y, 2
(e.g. x = males, y = children, z = females) of a given set S (e.g. S =
humans). The given set S is called the "universal set" and in this appli-
cation of Boolean Algebra is denoted by 1. Similarly null (sub-) sets are
denoted by O. Some subsets are complements of each other, i.e. in our
example X = z (and evidently x = z) meaning that all elements in one are
definitely not in the other and vice-versa. and that togéther they form
the universal set,

It is often convenient to represent the universal set by all
the points in a given closed curve and the subsets by smaller enclosed

areas inside. Such a figure is called a Venn diagram. Often the universal

3
set is taken to be enclosed in a rectangle. We could represent the set of
humans, males, children and females as in Figure 3-k. Note that the region

representing children must overlap both the male and the female region.

Set of all humans

males x females z

Figure 3-k4
Venn Diagram for the Set of All Humans
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The next step identifies the remaining fundamental operations v and -
with operations on sets. v is identified with the union of two sets. 1In our
example we can introduce a = set of male children D = set of female children,
Then a v b = y is the set of all children. Such united sets must not necessarily
correspond to adjacent regions in the Venn Diagram: 1let Xq = set of retired
males and z, = set of movie actresses; then x, v 2., do not have to touch. Of

0 0 0

course this means that there is no easily found common property of sets x. and

0
z, (except perhaps that of being "unhappy people"). The symbol - is used to

denote intersection: the intersection of two sets is a new subset containing

all elements simultaneously in both the sets intersected., Above xy = a (i.e,
the intersection of males and children are the male children), yz = b etec,
When the intersection is a null set, we say that the sets used are ‘disjoint;
visibly X, and zO are disjoint because no retired male is a movie actress
and vice-versa, We can write formally Xy 25 = 0.

We can now verify that all the postulates of Boolean Algebra are
verified by subsets of a set. In particular such statements as (3-18) become
quite intuitive: every subset is included in the universal set and can be
no smaller than the null set, The attractive feature of illustrating
Boolean Algebra by set theory is that Venn Diagrams give to the notion of
minterm an easily graphed significance. Figure 3-5 shows the minterms of

three variables xl x2 and x3.

Simplification of Boolean function can be obtained by drawing a

Venn Diagram. Take for instance

f = xlxzx3 v xlx2x3 v xlx2x3 v xlxex3

illustrated on Figure 3-5 by the shaded and dotted areas. Visibly all

these areas can be obtained by taking the union of Eixe and xlié. Therefore

Note that factoring on a Venn Diagram is made possible by the representation

of minterms differing in one literal only by adjacent areas.
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Figure 3-5

Venn Diagram for the Minterms of Three Variables

3.6 Karnaugh Maps

Veitch and Karnaugh have proposed a method of simplification of
Boolean functions which uses essentially a highly simplified Venn Diagranm.
Let us consider a 2-variable case: Figure 3-6 shows how the notion of
"adjacent regions" (i.e. regions having a common boundary line) can be
taken from a Venn Diagram and transferred to regions arranged in a ring.
It also shows how one can "cut open" this ring in order to form a 2-
variable Karnaugh map: in the latter the left and right edges are con-
sidered adjacent by definition. Note that §i§é is represented by 00 etc,
It is also possible to represent 2-variables in a square according to the
upper part of Figure 3-6.
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00 |01

10 {11
M Ad acent
00 a —_— o 00 01111 lS_]
Figure 3-6

Transformation of a Venn Diagram into a Karnaugh Map

Figure 3-7 shows a 3-variable Karnaugh Map. Again the convention
"left edge adjacent to right edge" gives us a layout such that adjacent squares
correspond to binary expressions differing in one digit only, 1.e. minterms
differing only in the complementation of one literal. Figure 3-8 extends the
map to U-varisbles: visibly we again differ in adjacent squares by 1 digit
of the binary number if we agree to not only consider the left and right edge

as adjacent but also the upper and lower edge.

X, X
[ 2L3 B
00 0l 11 10
0
X
1
Figure 3-7

3-Variable Karnaugh Map
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x3 Xh

1 )
00 ol 11 10
00
%% 01
172 3

11

. 10

Figure 3-8

h-Variable Karnaugh Map

Note that 1t is actually possible to transform these fictitious adjacencies
into real ones by drawing the L-variable map on a toroid (doughnut) as in
Figure 3-9. Obviously the practical wusefulness of s Kbrhaugh Map in space
in slightly doubtful.

To represent a function f on a map, we place 1l's in the squares
.for which the corresponding minterm is included in f and O elsewhere. The

function

f = xlxex3 v xlxex3 v xl 2x3 xlxex3

b

v

is thus represented by the map of Figure 3-10. The operations to be
performed to find that f = Elxe v xl§é are to examine the map for the
presence of 1's in adjacent squares. Two such squares can be combined to
give a term with one variable less, Four such adjacent squares would be

combined to give a term with two variables less.
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Figure 3-9

2 Ksrnaugh Map Without Fictitious
Ad, acencies Drawn on a Toroid
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xx3

00 0ol 11 10

0 [' 1 1 }v

Figure 3~10
Karnaugh Map for xl o 3 v xlx2x3 v xlx2x3 v xlx2x3

(i.e. 010 v 011 v 100 v 110)

in our example we can combine 0ll and 010 into Ol- —» xlx2 and 100 and 110
into 1-0 - xl 3¢

Figure 3-1l1 gives an example for a h-variable map. Here

f= xl }x3xu v X x x3xu v :vclx2x3xlL v xl 5 3xu

v xlx2x3xh v Xl XSXu v xl x3xh

is drawn on the map. Remembering again that the 4 edges must be considered
asjacent by pairs, we see we can form two b-square combinations and a 2=
squere combination to cover all 1l's. This leads to a simplified expression

f-xthvxzx vxlsxh.

This last case is a good illustration of how we can also use
negatives on maps. It is easily seen that T would be representéd by
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interchanging O and 1 on all squares: This 1s & consequence of the fact
(see the "Theorem on AND to OR Transformation" of Section 3.2) that T
contains all the minterms which are not in f. It is possible that the
pattern formed on the "negative map" (usually drawn by grouping the zeros
on the original map!) is much cimpler. In our example this is certainly
the case, since all O's can be covered by three 4-square combinations, i.e.

f= xgxh v x3xh v xlxz .

This is shown in Figure 3-12,

00 01 11 10
p——
00 1 1 g] 0

o
o1 0 1 l 0 0
1 0 0 0 0
' 1

%1 %
PR
10 ( 1 1 ] 0
Figure 3-11
Karnaugh Map for f = mo v m1 v m2 v m5 v m8 v m9 v mlO
x3 X
00 0l 11 10
[ ———
00 1 1 0 1
[, r————-—————-—-———
01 0] 1 0 0
¥ %
11 0 0 0 L 0
10 1 1 0 1
Figure 3-12

Karnaugh Map for the Negative of Figure 3-11
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When we desire to drew maps for more than h-variables, we still
would like to draw adjacent to each square the five or more minterms that
only differ in one digit. Short of drawing such & map in space (over 6-
-variebles this falls too!) we can only introduce new conventions, calling
"adjacent" squares which are either physically adjacent (including the use
of the edge-convention) or which fulfil some other easily verified eriterion.
Tt turns out that for both 5 end 6-varisbles such & criterion is symmetry
with respect to certain lines as shown in Figure 3-13 and 3?lh. That in the
S5-variable case, squares symmetrically placed with respect to the vertical
center-line differ by one digit only, can be verified by noting that the
column-headings 000, 001, 011, 010, 110, 111, 101, 100 have this symmetry:
000 is paired off with 100 etc. In other words: it is the fact that the
column headings can be arranged to show this symmetry and to differ by one
digit from left to right that makes a 5-varieble mep feasible, For 6
varisbles we shall obviously use row headings similar to the column headings;
this time two lines of symmetry have to be taken account of in all decisions
about adjacency.

1
1

Xs. xh‘ Xs
000 001 011 010 110 111 101 100
00
01
Xl x2
11
10

Figure 3-13
' S-Varisble Karnaugh Map
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Xh XS x6
000 001 011 010 110 111 101 100

000

001

011

010

110

111

101

100

Figure 3-1k
6-Variable Karnaugh Map

As an example let us consider a 6-variable case in which f

contains the following minterms:

9 —> 001 001
11 — 001 011
13 —> 001 101
15 — 001 111
16 — 010 000
18 — 010 010



Figure 3-15 shows the map.

20 —— 010 100
22 — 010 110
25 — 011 001
29 — 011 101
43 — 101 001
43 ——>101 011
45 —101 101
47— 101 111
48 —— 110 000
50 —>110 010
52 —110 100
54 —> 110 110

It is easy to see that because of the high

degree of symmetry complete coverage can be obtained by grouping together

the 1's marked

( 001
001
001
001
101
101
101
L 101

— |

001
011
001
0l1

b—>

o
=

'_-l
|_J

=
=

001 0-1

001 --1
001 1-1

-01 --1 ——-—>x2x3x6

101 0-1

101 --1
101 1-1
0-1 001

0-1 -01 —éxlx3x5x6

0-1 101
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(010 000
010 0-0 ‘
010 010 - 010
10 --0
010 110
010 1-0
010 100j: : —_—
C — { 110 OOO} t -10 --0=9 x2x3x6
~110 0-0
110 010 :
110 --0
110 110
110 1-0
( 110 100

Therefore f = x2x3x6 v xlx3x5x6 v x2x3x6

000 001 011 010 110 111 101 100
000 0 0] 0 0 0 0 0 0]
‘8 a
001 0 [V[llb la 0 0 la l b—] 0
011 0 l 1b 0 0 0] 0] 1b l 0]
—
010 I le 0 0 lc lc 0 0 lc
110 I lc 0 0 lc lc 0 0 lc
111 0 0] 0 0 0 0 0 0]
101 0 l1a la 0 0 la 12| o
100 0 0 0] 0] 0 0] 0 0
Figure 3-15

Example of a 6-Variable Karnaugh Map
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Multi-Level Factoring

The simplification (or "factoring") on a Karnaugh map yields a
minimum - v - polynomial, It is often possible to obtain further simpli-
fication by abandoning the minimum - v « form: +this is the process referréd
to in 3.3 as involving "skill and flair", The Karnaugh mep itself can be &
useful tool for this further simplification as an example will show. Take

f‘~==mlvmsvmg*\rml(?v'mllvmlsvml,.L

This function is represented on the map of Figure 3-16aand leads to the
gimplified form

f= 233{1‘_ v x1§2x3 v xlx3ﬁx-u

~ which can be further simplified to give the'(non v-polynomial) form

f = ;3X)+ v xlx3 [;Ee v ;(.24-]

00 0l 11 10

00 o {[1)] o} o
01 o 1]l o o
11 0 1 o | 1)
10 o | 1]){{2 |La))

Figure 3s163

Karnaugh Map for f = m v m5 v m9 v, v mll v ml3 vom,)
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The reduction of x,X 2x3 v xl 3xh to X X3 [x v xh] can be done directly by
observing that xl 3 [= x (x v X )(xh v xh) = X XpXoX) v xl 2%3%),

v xlx2x3xh v xl 5 3xh] covers the four squares in the bottom left-hand corner
of 3-16a, Not all of these squares are included (1111 has a zero in it) but
it is obviously possible to include all four - neglécting this zero - if we
make sure to multiply xlx3 by an expression which is zero for X Xy, = 1;

this expression should be as simple as possible. The important thing is that
we can draw an X,x), map directly on the map of Figure 3-16at it will not be
in the form of the standard Karnaugh map but rather in the form shown in the
upper part of Figure 3-6 as an alternate. Figure 3-16b shows this "sub-map"
separately: from it we see that a way of covering the 2-variable function
f(x2xu) which is 1 everywhere except in 1l is Eé v §L. This result could,

of course, be obtained directly if - after covering 1111, 1110, 101l and

1010 - we interpreted the lower right-hand corner of Figure 3-16a in terms
of Figure 3-16b. One way to do this is shown in Figure 3-17: we include

O's in our covering, but mark them with an asterisk and eliminate them

by multiplying the term covered by the expression read from this covering
interpreted as a sub-map.

(11 6‘] 0 1
2
(1)0 <r—l [_L___d_,

Figure 3-16b
Sub-map of the Map in Figure 3-15
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00 o [[1)] o | o

o1 o || 1] o | o

11 o || 1 roT ﬁ] <—— Submap
10 o ]|

Figure 3-17
Multi-Level Factoring for the Problem of Figure 3-16a

3.7 Don't Care Conditions (Optional Terms) and Multi-function Problems

Optional Terms in Karnaugh Maps

It often happens that the output of a combinational circuit is only
defined for a limited number of input combinations. A typical example of
such a situation would be a base which has inputs from two flipflops and
which gives a "1" output if the flipflop states agree. In Figure 3-18 we

can, therefore, never have x and x), equal. This means

1 and X, §qpal or x3

*
0

X
1 2 =

Combination,
Circuit p}—— T (x1x2x3x,+)

x
0 |3 need not be defined

xh for x) = %, = g simult.
1 =%, =)0

or X3=3%, =19 simut,
Figure 3-18

Don't Care Condition Circuit
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that we can list the properties of f in a table as follows:

xl x2 x3 xu T
0 0 0 0 0 D.C.
1 0 0 0 1 D.C.
2 0 0 1 0 D.C.
3 0 0 1 1 D.C,
L 0 1 0 0 D.C.
5 0 1 0 1 1
6 0 1 1 0 0
T 0 1 1 1 D.C.
8 1 0 0 0 D.C.
9 1 0 0 1 0
10 1 0 1 0 1
11 1 0 1 1 D.C.
12 1 1 0 0 D.C.
13 1 1 0 1 D.C.
1k 1 1 1 0 D.C,
15 1 1 1 1 D.C.

The idea is now to simplify f to the utmost (using for instance Quine%
method or a Karnaugh map) using the fact that we can assign to f an
arbitrary value for certain input combinations. Our problem could be
stated by writing

f£f=2X5, 10

a=20,1, 2, 3, & 7, 8, 11, 12, 13, 14, 15
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This gives us a Karnaugh map with a 1 in squares 5 and 10, a O in squares 6
and 9 and an x elsevhere. As shown in Figure 3-19 it is obvious that if we
assume that the circled x's are O and the others 1, we obtain a high degree
of symmetry and consequently a simple form for f. In our example

£=x% v Eéih. This was, of course, evident from the outset, since the
state of the flipflop could have been sensed by 2 wires rather than four.

00 01 11

10
o ]
0
®
--

Figure 3-19
Don't Care Condition Karnaugh Map

<)
01 ® "if"“*??}
u @ |lx | =)

10 o | ®

® | @

Optional Terms in Quine's Method

The treatment_of‘optional terms in Quine's method is excéedingly
straightforward. Let f and d be respectively the sum of the minterms
producing a certain pattern of 1's and the sum of the minterms producing
a certain pattern of x's ( — don't care conditions). Then we search for
the primé implicants of all terms in f and 4 (this will give usually more
prime implicants than if we had taken f only). The prime implicant chart,

however, is made up using only the minterms in f: one of the consequences

of this is that the number of intersections (or crosses) per prime implicant
is no longer a power of two. Since we have more prime implicants and fewer
minterms to make up, it is evident that usually simplification beyond that

for f alone can be obtained!
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Example:

Let us take a Y-variable problem with

f=22,3,7 9, 11, 13

d=2x1, 10, 15

Successive reduction gives:

O W N

10

11
13

15

Prime
Implicants<
of T
and &

0001 v 1,3 00-1v 1,3,9,11
0010 v 1,9 -001 v 2,3,10,11
0011 v 23 00l-v 3,7,11,15
1011 v 2,10 -0lo v 9,11,13,15
1010 v 3,7 O-11 v
o111 v 3,11 -0ll v
1011 v 9,11 10-1 v
1101 v 9,13 1-01 v
10,11 101- v
1111 v
7,15 -111 v
1,15 1-11v
13,15 11-1 v
The prime implicant chart is shown in Figure 3-20. Visibly
2 3 7 9 11 13
X X A
*
— X ][ B
*
*—R— c
*
%0

v

¥
Minterms of f only

Figure 3-20

--11

Prime Implicant Chart for a Don't Care Problem
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the function can be formed by taking B, C and D only 1.e.

f = Eéx3 vV XgX) VX)X

Simultaneous Simplification of Several Functions

A very common problem is to design a box having inputs Xy oo X
and several outputs f (xl cos xn), £, (xl e xn) vor £ (xl cee xn).
Again we would like the contents of thls box to be as simple as possible.
Unluckily no general methods are known. A method which is sometimes quite

useful is the method of assumed form in which one assumes that fl voo fm

contain a common factor ¢ such that

£f,=0(x; voox) - Fo (%) e=» %)
£, = ) (xl ceo xn) " F, (xl oeo xn) ete.

The problem is then to find a set ¢ Fl 0o Fm which makes all functions very
simple. The obvious diffilculty is that in most cases ¢ can be simplified at
the expense of Fl 0ee Fm and vice-versa: vwhich choice is best can only be

determined by trial and error.

The idea is now to represent f, ... fm ¢ and Fl °'°'Fm by Karnaugh

1
maps. Those for fl soo fm are determined by the problem. In order to find

the other ones we use the following

Theorem: If fi has a zero in a given square, then either ¢ of Fi must have
a zero in the corresponding squares. If fi has a one in a given square, then

both ¢ and Fi must have a one in the corresponding squares.
Proof: The theorem is evident, since all it says is that fi =@ - Fi implies

that for a given combination of inputs (—to a square on the map) fi =1
means both ¢ = 1 and f, =1, vhile £, = 0 is satisfied if § = O or F, = 0.
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This theorem then says that the @-map must have the 1's of all the
fi-maps combined. Once these 1's are drawn in, we can add optional l's if

we are careful to "block them out" on the F, maps by O's. Furthermore we

i

can add optional 1's on the F, maps once we have made sure that the O's of

i

fi are secured by appropriate blocking of 1's in ¢ not in f This Jjuggling

i.
process finally leads to relatively simple maps for all functions and

therefore solves the problem. An example will illustrate the method.

Example: Simplify simultaneously

f. = xlxex3 v xlxh

f2 = xlxexu v lx2x3xh

We draw first Karnaugh Maps for fl
and F2, the latter three for the moment without entries. Figure 3-21 gives

and f, and three further ones far §, F;

a convenient layout. The rules are as follows:

4

1. Fill in the J-map with the 1's of both f, and f,.

2. Add 1's on the @J-map in such a way that it becomes

. . ¥*
as symmetric as possible.

3. Draw a map for Fl having all the 1's of fl. Put 0's

in all positions in which @ shows a 1 but f, ao.

(This "blocking of ones" is obviously necessary

because of the theorem cited above,)

4, Proceed similarly for F,.

5. Symmetrize the F, and F2 maps by adding l's in

1
appropriate squares. (Note that this does no harm

since ¢ has O's in those positions.)

% This last point is doubtful: less symmetry in ¢ may mean more

3 1
symmetry in Fl and_Fz.
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In Figure 3-21 we symmetrize ¢§ by making the squares marked x — 1 while

F, and F, are symmetrized by making a =+ 0 and b —» O while y —» 1 and
The end result is

1
z —& 1,

00

01

11

10

00

0l

11

10

2

that

$=x v X3X),
Fl = x2x3 v ox),
F2 = XX, V X 5X)
00 01 11 10
0 0 0 0 00
0 0] 0 0 o1
b g
1f1]11]o0 1 1
0 1 1 0 10
00O 01 11 10
00 0 o) 0 X
01 0 0] 0 1
11 1 1 1 X
10 X 1 1 X
00 01 11 10
a | vy Yy 0 00
y |y | vy | O 0l
Fl
1 1 1 0 11
0 1 1 0 10

' Figure 3-21

00 01 11 10
ofo}|o} o
0|0 }|o] 1
olo]|al]o f2
o|1]1]o0

¢

00 01 11 10

b b4 z 0

Z z Z 1

ol ool o T2
ol 1|10

Multifunction Simplification in the Method of Assumed Form
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CHAPTER IV

OPERATION OF A DIGITAL COMPUTER SYSTEM

4,1 The Illiac I Arithmetic Unit

Figure 4-1 gives the general layout of the arithmetic unit in a

rather typical computer i.e. Illiac I. A, K, Q, ﬁ, R3 and R, are registers

3

holding 40 binary digits each. The names commonly given to these registers
are:

A: accumulator register

A: temporary accumulator register

Q: multiplier-quotient register

5: temporary multiplier-quotient register

R3: number register

R3: order register

In the diasgram we symbolize any kind of gate (or group of gates) by
a circle containing a combination of a letter and G or a G with a subscript.
‘R, 0, B, Y and G stand for red, orange, black, yellow and green, When any one
of the group of gates RG, 0OG, BG or YG is open, the effects are a‘shift between
A and A and (except for 0G) simultaneously between Q and Q. More specifically

RG  shifts left down

0G shifts straight down
BG shifts right down

YG shifts stralght up.

The group of gates GG connect the output of the adder to A. The in-

puts to the adder come from A (@onnected permanently) and from R3: when u = O,
the contents are transferred directly to the adder, while u = 1 entails comple-

mentation (two's complement, formed as in Figure 2-15).
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A

(Temp. Mult.-Quot. Reg.)

(Temp. Accum.) L

|

() () (e

W

{Accum. ) : -
#0%1%2%3 =< | ®10 ***| %20 "°* P30"""#36%37%38%39 ‘ Q
Punch Output ' Tape Input G)
: p. : L
: I '~ Drum Input and Output
\ 7
Y
(Number Reg.) R3

To Memory

R

Adder | Complem. (Order Reg.)
Circuit '

u= 1’0'—.’
Complem./Not Complem. Figure 4-1
Illjac Arithmetic Unit
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The lines between A and Q as well as A and Q indicate that, when any
one of the groups RG or BG is used, the registers act as one. This means that
for a right-down shift the least significant digit of A goes into the most
significant non-sign position of Q. Incidentally ao, where a, is the sign
digit in A, is shifted into the most significant position of A during this
operation. A therefore starts out with aoao, For a left-down shift the
most significant non-sign digit of Q goes into the least significant position
of A. During this operation a "0O" is shifted into the least significant
position of Q. Figure 4-2 illustrates the effect of shifting right of left.
Because of these connections between the accumulator and the multiplier-

quotient register, one often talks of a double-length register AQ or Kﬁo

8y 8 e a38 a39 Q 93 &b - q39
/ / J/ / rinjeot 0
al a2 coe a39 ql qo q2 q3 oo q39 0

Illiac Left Shift

8y 8] oo a38 a39 9y 9 U oo q38 q39
. \
inject a.o_\\ \ \

8y By e a37 a38 % a39 Qy ere q37 q38

Illiac Right Shift
3
Figure 4-2
Illiac Shift Patterns

The accumulator is used for intermediary storage in all communications
with the outside world or the memory. For the tape input, digits are read serially
from the tape into the four least significant positions and then shifted left
(passing through &). For the punch or teletype output an analogous situration
holds, except that the four most significant digits afe used, In case the drum
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is used (for input or output), digits 8y 810 8pg and ag, ere connected
simultaneously to the drum. After 11 (actually only 10 useful) shifts the
"tetrads" have exhausted the whole word. This scheme permits speeding up the

transfer. Finally, when G, is open, 40 digits are read into the memory in

3
parallel fashion,

The memory can send information to Q (through GS)’ to R3 (through G6)
and to R3 (through G7)° R3bcontains the order (actually a pair of orders --
see next section) currently being followed. Each order consists of an instruc-
~ tion of 8 digits (add, multiply etc.) and an address of 10 digits. Decoding
circuits decode the instruction and set the internal connections in the machine

in an appropriate way.

It should be noted that Q cannot communicate with the memory. In
order to be able to read out information in Q, this information is first
transferred to R3 (via Gh) and then added to zero in A (via G2)° The way
followed is thus: Q—»‘R3 —»'Adder - A—» A. This seemingly complicated pro-
cedure allows the contents of Q to be modified on their way to A.

4.2 Tiliaec I Control

Decoding and Dispatch Counting Circuits

Figure U4-4 shows the block-diagram of this part of the machine.

Lying in R, is shown an order pair consisting of two eight digit instructions,

3

two ten digit addresses and two waste spaces of two digits each -- Figure L4-3

shows this arrangement in detail.

Left Hand Order Right Hand Order
- A N A N
\ Y
1-8 \\\ 11-20 21-28 ‘\\\\ 31-40
Figure L4-3

Illiac I Order Pair
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|
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l
|
!
|
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Control
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Regisger [
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\Gy

Input for transfer of control

-

=
@ri@
]

1
Instruction E?d
1 Sequencing [® Signal
Begin Counter From 3
Signal Start/Stpp From A |To @ To R

Figure L-4

Address

Generator

Il1liac¢ ' I Decoding and Dispatch Counting Circuits
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This order pair has been brought into R3 in the following way. The
control register contains the address of the location of the order pair. This

address is gated into the dispatch register and sets the address generator.

The address generator chooses the memory location, the contents of which are
transferred to R, via G,. Now one unit is added to the address in the dispatch

3 T
register and the result is gated into the control register.

Next the instruction sequencing counter puts the left hand address
into the decoder, a device which sets certain flipflops in the machine and
opens certain paths according to the type of instruction. Simultaneously
the left hand address is gated into the dispatch register.

If the instruction happens to involve a transfer of control, the
new address is transferred to the control register via Glh and then gated
into the dispatch register upon the arrival of an end-signal. The process
described above then occurs & second time. If there is no transfer of
control, the left hand address is put into the dispatch register and sets
up the necessary memory connections via the address generator. The machine
then executes the given instruction, the instruction sequencing counter
being tied to the start/stop control. Upon the arrival of the end-signal
of the operation, the instruction sequencing counter gates the right hand

1nétruction into the decoder and simultaneously the right hend address into
the part of the register previously occupied by the left hand address: the
right hand address thus goes into the dispatch register. A transfer of
control operates as before. If there is no transfer, the right hand instruc-
tion is executed, The end-signal again causes the contents of the control
register td be gated into the dispatch register, If there was no transfer
of control in the two instructions, the contents of the control register at
this time are the address of the previous order pair increased by one: the
machine goes through the memory location in sequence. It is clear that
programming errors can cause number locations to be interpreted as order

locations,

As the memory system in Illiac I is regenerative, i.e. since
all memory locations must be scanned periodically and renewed, there is
a regeneration fegister attached to the dispateh register. During the
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regeneration cycle the contents of this register, increased by one, are gated
into the dispatch register and determine, via the address generator, the

location of the next word to be renewed.

Control for the Arithmetic Unit

As indicated in Figure 4-5, there are 4 principal parts in this

section of Illiac I: +the shift control, composed of the shift sequencing

unit (See Section 2.4) and the clear and gate selector, a shift counter

(as described in Section 2.2), a recognition circuit and a start/stop control.

The recognition circuit has a dual purpose. If the instruction in R3
is a shift instruction, the address part gives the number of shifts to be
performed. The recognition circult then compares the number of shifts as
counted by the shift counter to this predetermined number and, upon cgincidence,
acts on the start/stop control. If the instruction in R3 is a multiply or
division instruction, the machine must go through 39 add-and-shift or subtract-
and-shift cycles. This time the recognition circuit acts on the start/stop

control upon the advent of 39 shifts.

Notice that the shift counter has a "reset" input: this clears
all counter flipflops to zero before operations commence. The "up" and
"down" pulses are taken directly from the gates between A, K, and Q and 5:»
red, orange or black gates give a "down" signal while the yellow gate gives
an "up" signal. Which group of gates is actually chosen depends upon the

signals from the decoder, i.e, upon the instruction followed.

4,3 TIlliac Memory Circuits and Interplay Control

Figure 4-6 shows the layout of the memory circuits and what is

called the "interplay control", i.e. the part of the machine which directs

the transfer of information from the (synchronous) memory to the (asynchronous)

registers and vice-versa.
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The Illiac memory uses cathode ray tubes as storage elements, each
one of the 40 digits in a word coming from & different storage tube. The
storage of a "1" is obtained by brightening up any one of the sports in a
32 x 32 raster: there are therefore memory locations numbered from O through
1023. By measuring the beam current when the beam is directed to a given
location by the address generator (all beams are controlled in parallel!),
one can determine whether a "O" or a "1" has been stored. A read-out

amplifier detects the signal when the beam-control turns on the beam: a

pulse corresponding to a "1" sets a flipflop (previously cleared) in the
beam-control. Depending upon the state of this flipflop, a "1" or a "O"

is written back immedistely to eliminate loss of information.

As mentioned before, the memory can be in either one of two modes:

an action-cycle (read or write) or a regeneration-cycle (transformation of

"fair" charge distributions in the cathode ray tubes to "good" distributions).
In order to read out of the memory, one only has to examine the state of the

40 output flipflops mentioned above. For writing into the memory the restoring
process described above is used: a "1" is always written back and writing a
"0" involves an additional motion of the beam. This additional motion is
suppressed if a "1" is to be written. The regeneration cycle is fundamentally
the same as the "read-and-restore" process.

The decoder acts on a register selector which in turn establishes

the connections for the transfer of signals to the registers. It is, however,
important to remember that the memory is synchronous and contains a clock and

a pulser chain. These pulses control the moment of transfer of information

through the register selector chassis. They also control the action of the
dispatch counter (control counter and regeneration counter) e.g. when regen-
eration occurs the address is stepped up by one unit by means of a clock

pulse; the other input of the memory synchronization comes from the instruction

sequencing counter. Often the latter two units are called the "memory

synchronization chassis".

L.,4W Tlliac Input-Output Circuits

The input-output circuitry of Illiac I is given in block-form in
Figure 4-7. As mentioned before, the right hand side of A (actually the 4
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rightmost  digits) is tied to the tape input equipment i.e. the reader, while
the left hand side of A (actually the 4 left-most digits) are tied to the tape
output equipment, i.e. the punch or the printer,

When tape is used, digits are read or printed four at a time and
after each read or print cycle the shift control (under the action of the

shift counter and the decoder) executes four left shifts. As an example
let us take the read-in process. The reader ‘uses' photo-electric cells

which sense holés in paper tape. This tape (see Figure 4-8) has 5 hole-
pbsitions plus a row of sprocket holes. The first four holes correspond
O, 21’ 22

means that one column, by different combinatiéns, can represent any one of

to binary digits having the weights 2 and 23 regpectively. This
the values O to 15. 1In order to simplify the translation from holes to
numbers, it is advantageous to use the sexadecimal system with numbers

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, K, 8, N, J, F and L. The table below gives
the equivalences. For technical reasons K and S are printed + and -

respectively.

@ - "Fifth Hole"
o2
OO OO0 OO0 « Sprocket Holes
< e --~°
| . _ 21
e-2°
Column
Figure 4-8

Punched Paper Tape
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Table for the Sexadecimal System

o 1
o] 2
oo 3
o b
(o) o) 5
oo 6
0o0oo0 T
) 8
o] o 9
o o 10 K (+)
o oo 11 s (-)
oo 12
oo o 13 J
ooo 4 F
o0oo0o0 15 L

If the fifth hole is punched, the interpretation of the other
holes changes: they can represent letters (different from K, S etec.),
number shifts, letter shifts, spaces, carriage returns etec. If the
computer is to take account of these instructions, the fifth hole infor-
mation must be stored in A: the sign digit of A is assigned to the fifth
hole.

The tape reading process can only be carried out when the tape

has come to a complete stop in the reader: a tape position detector

senses the sprocket-hole position. When its second input is a "no shift
signal" it opens a gate on the path between the reader and A. Notice
that in the case of the output equipment the shift control must be

synchronized with the mechanical movements in the punch or the printer,

The connections between the drum and the A register were
already mentioned in Section 4.1. Since the drum is a synchronous device,
switching operations (shift control!) and the times of transfer are
controlled by a "timing track" on the drum.
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A cathode-ray-tube output with a 256 x 256 raster (set up through

an address generator connected to a

3 o a39 for horizontal positioning and
), oo a31 for vertical positioning) allows the display of curves etc. To

this purpose the computer is programmed to lightiup.specific. points of the :
raster. A memotron, connected to the same address generator, gives a per-

sistent image of the CRT curves,

4,5 The Relative Size of Memories

Problems Involving large Amounts of Storage

By definition data processing involves simple computations on a
large number of words (non-cumulative errors) while scientific calculations
involve complicated computations on a small number of words (cumulative
errors). Modern scientific calculations tend towards data processing
because complicated tabulations and searches are involved while the

fundamental iterative loop is simple,

Let us estimate the storage space required for some typical
scientific problems.

Hyperbolic Differentisl Equations. -These often occur in hydrodynamic

problems in m dimensions, Usually the values of 2m + 1 varilaebles xi
(i.e. Gy eee Qs Py oceo Ppo S) at time t + At are deduced from their
values at time t in a region with A&xi > cAt. The number M of mesh
points per Xy (10 < M < 100 usually) determines the amount of data to

. . . iéan+
be stored at any one time: approximately 1 words are necessary.

Interactions Between Atoms in a Lattice, Here it is customary to employ

a tabulation method in which all atoms (M3 where M is the number in each
dimension, again 10 < M < 100) are listed and successive approximations
change the values of m parameters of interest. Visibly mMsrwords have
to be stored.
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Solution of Nonlinear Network Problems. It is easy to see that in a network

defined by N voltage vs current curves of n points each and formed of K nodes
with an average of B branches coming into each node, the number of words to
be stored is 2Nn + 2KB. When this nonlinear network solver is a subroutine
of another (e.g. optimizing -) program, the number cited can be multiplied
by a factor between 2 and 3.

Solution of Systems of Nonlinear Algebraic Equations. Solving n equations

In m varlables by minimizing a function formed with them and using the
method of steepest descents, at least knm words of storage are required and
2 <k <10.

Av.rage Computation Time as a Function of Access Time

The average computation time t can be calculated for certain types
of problems by assuming that on the average each multiplication (time tm) is
associated with A non-multiplicative instructions (time ta each). Let ay and
a, be the access times of the random access memory for instructions and
operands respectively. Then

t = K%I [t + At + (A +1) (ag +a,)]. (4-1)

This shows that speeding up multiplication or addition without decreasing ao

and a, is inefficient., Unhappily a. = EainJ 1.5 pus in the latest core

0
memories, The table shows t for Illiac I and Illiac II for A = 10. Visibly

a 200 fold decrease of tm and ta produces only a 40 fold decrease in t.

EE Eﬁ : a.i + ao 3

Tlliac I ~ 600 40 o7 118
in us

Illiac II 3 .3 2.25 3
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Paralleling of Operations. Buffer Memories

In the caiculations above it was assumed that all operations are
done sequentially: if n operations with individual times Ti are required
in & process, the time for the process is ZSD Bvidently it is theoretically
possible to reduce this time to Max (T ) When all operations are paralleled.
In practice it must be realized that the ideal time, Max (Ti), cannot be
attained because of supplementary control times necessitated by the more

complex nature of the control problem.

The bottleneck described is alleviated in Illiac II by using a
very fast access memory directly connected to the arithmetic unit and called
the "buffer". This serves a double purpose: 1) the factor A is reduced
since short loops do not have to go outside the "buffer"; and 2) paralleling
of information transfer into the "buffer" and actual calculation becomes
possible. The usefulness of the 10 word "buffer" in Illiac II is guaranteed
by its .2 us access time. A special design maekes the realization in the form

of flipflop registers economically feasible,

Optimum Size of the Random Access Memory

For problems of the kind discussed at the beginning the main
random access memory must be connected to a back-up memory (drum, tapes),
since a 20-30,000 word core memory is too expensive. The cost of such a
back-up memory - per bit stored - is reduced by serializing information
transfer: blocks are transferred with an access time @ per block (random
address) and then a time P per word read serially within the block. Always
o >> B, '

The question as to the relative sizes of these memories cén only
be partially answered, even when the type of problem to be solved is known.
The back-up store can be assumed to be of a size sufficient to contain all
the iInformation encountered in a problem; it is sometimes useful to assume
that it is actually part of the input-output equipment. We shall calculate
the number of words (n) in the random access memory for which any further
increase in n no longer corresponds to an appreciable decrease of the total

calculation time.
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Consider problems in which N initial words are reduced to AN words
(M~ .5 or less) and an average calculation time t is required per operation.
If the random access memory holds all N words, the total calculation time is
evidently TN = Nt. If, however, only n words are available in the random

access memory, to and fro transfers are necessary. It is easily seen that

20N
T, =T+ 0 * BN(2-\). (k-2)

Suppose that we do not want to increase the calculation time by more than a

factor of five by choosing n < N, Then

T
_n _ 2aN . BN(2-M\)
> = T, R R

For t = 3 us, M = .5, & = 18000 ps, B = 6 ps we then have n = 12000, DNote
that Tn/TN has a lower bound of 1 + B(2-\)/t: This means that is is very
time consuming to transfer information as soon as the calculation time is

of the order of the word-time B.

General Design Criterion. Reliability

For the memory - as for any other equipment involving a great
number of similar elements (transistors, cores, etc.) - the relationship
between the decrease in reliability with increasing complexity and the
decrease in total calculation time can be established. Idealizing by
assuming that there are N elements with an average life of T hours
(meaning that the machine breaks down every T/N hours on the average)
and that the computation time lost per breakdown is L(N) hours, a problem
needing O, hours of faultless time with this N-element machine will in

N
reality necessitate

. NL{N?
@N = ON [1+ T ] hours.
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For M > N elements

ML(M)
| B P —
QM = @M [1+ T ] hours.

But obviously M/N computers of the N-element type can solve the problem in

N@ﬁ/M hours; the increase in hardware is therefore only justified if

No
o, [1 + MLéM)] < MN [1+ M]. (4-3)

The best possible design therefore minimizes

NL(N)
N@N [1+ T]‘

ar,

Neglecting Nz with respect to L (i.e. repair time nrindep. of N!), this

means that

-

= - [1+

©
=

It seems not unreasonable to put N = 20,000, T = 60,000 hours and L(N)~ .5
hours. Then the optimum memory has the property that a l% increase in N

produces a 1,2% increase in speed.

L.6 Addition, Subtraction, Multiplication and Division in Tlliac I

Addition and Subtraction (Order Type L)

The only difference between addition and subtraction is the setting

of the complementing circuit:

augend x + - addend y = sum z

minuend x - subtrahend y = difference z
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During the execution of an add or subtract instruction y is transferred

from a specified memory location to R3 and then to the adder via the
complementing circuit. The augend or minuend lies in A and forms the second
adder input. When sufficient time has elasped for the sum or dlfference z
to be formed, z is transferred to A and by a straight-down shift to A.

Two important variants are used in addition and subtraction: '"hold"
add and "hold" subtract leave the result of the previous operation in A (x
unchanged), while "clear" add and "clear" subtract sets the augend or minuend
to zero initially (x = 0). The latter variant is therefore used to bring a
number or 1ts negative from the memory to A.

The Illiac orders which interest us in this category are

L O n: (a) - (n) A
L1ln: -(n) &
L 4 n: (A) + (n) A
L 5 n: (n) A

where n is a memory location and (n) and (A) means contents of n or A:
(A) = X, (n) =y.

Absolute Value Addition and Subtraction. Increment Add Orders and Add From
Q Orders (Order Types L, F, S and K)

The absolute value of a number to be subtracted or added can be
formed by sensing its sign digit and reversing the setting of the comple-
menting circuits with respect to those discussed in the last section 1f the

sign digit is a one.

. Bince a one can be added to the least significant digit of A in
.order to form the two's complement after forming the one's complement of
each digit, this facility can be used to create orders in which the
relationship between the setting of the'complement gate and the insertion
of the least significant digit is reversed: this means that [(n) + 2-39]

is involved instead of (n).
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We have seen that the contents of Q can be transferred to R3:
This allows us to add or subtract (Q) from (A). All variants (absolute

value, increment) are available,

The Illiac orders in this category are:

L2n (a) - |(n)]| —A

L3n - |(n)] —4

Lé6n (A) + |(n)]| —aA

LT7n |(n)| —A

FOn (a) - (n) - 2739 _,a
Fln - (n) - 27¥—a
Fln (8) + (n) + 2739 4
FS5n ) (n) + 0739
X 0 (a) - (Q) - 27394
K1 - (@) -2
Kb (A) + (Q) + 2739
K5 (@) + 2739—4
S0 (4) - (@) —A
S 1 - (Q) —A
82 (a) - [(Q)] —A
s 3 - [(Q)] —A
S 4 (A) + (Q) —A
S5 (Q) —A
S 6 (A) + |(Q)] —A
s 7 1(Q)] —A

Multiplication (Order Type 7)

Initially the multiplier y lies in Q (name!) ﬁhile the multiplicand
x is transferred from the specified memory location to R3 where it remains
throughout the multiplication. Multiplication thén.is a series .of additions
and right shifts: at each step a partial product is held in A. A multiplier
digit in the least significant position q39 of Q is sensed. If this digit is
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1, the sum of the partial product Py in A and x (in R3) is transferred to K;
if this digit is O, the partial product in A is transferred to A. In either
case, a right shift from A to A follows, Simultaneously, a right shift occurs
in Q, bringing the next multiplier digit into the least significant place.
Notice that a double-length product 1s formed.

The partial product pi as well as x are (as all numbers in the
computer) in the range -1, +1 (+1 being excluded). The sum in A is therefore
in the range -2, +2, meaning that the sign digit in A is not & true indication
of the sign of p, + xi in transferring Py + x to A with a right shift, the
range is reduced to its allowed value: - 1< 1/2 (pi + x) < + 1, but we have
to insert the proper sign digit. It 1s easily seen that the sign of 1/2
(pi + x) should be that of Py and x when thelr signs are equal, or equal to
that obtained in A for Py + x 1f their signs are different.

Let us now consider the 39th partial product formed as described

above. The recursion relationship for partial products is

Py, = 1/2 [py + y39 4 %] (L-k)
which shows that
39
_ »"39 -i_ -39 _

Py being the initial contents of A. We see that in case of a negative

multiplier (yO =1), contains a "false term" Yo X = x: 1in this case

P39

Illiac automatically subtracts the multiplicand x and sets qo = 0,

According to the value of Py we distinguish three types of

multiplication:
Th n (n) (Q) + 2—39 po——aAQ ¢ "hold" multiply
75 n (n) (Q) —AQ : "clear" multiply
77 n (n) (Q) + e'uo —AQ : "round-off" multiply
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Division (Order Type 6)

As mentioned in Section 4.1, registers A anva can be combined to
form a double length register AQ (or AQ) such that the sign digit % of Q is
left out in the shifting process. The contents (AQ) are therefore

oo & In division we start out with a double length

%o 39 4+ 939
* igi = H 8 v e
dividend* called r, having a sign digit p, (po 85 8 +vr 839 Q) %39
therefore represent ro + pol); this divident lies in AQ. The divisor y
(with a sign digit yo) is transferred to R3

|r0| < |y| <1, i.e. we will have for the quotient q, |q| < 1.

and it 1s supposed that

For po = yo = 0, i.e. positive dividend and divisor, the
division process in Illiac I is analogous to long division: the divisor
is subtracted from a partial remainder T, (with sign digit pn) in A and
the sign of the difference (in the adder) is sensed, If the sign is
negative, O is inserted in q39 as quotient digit and AQ is shifted left
(doubled) to form a new partial remainder. If the sign is positive, 1
is inserted in q39 and the difference in the adder is placed in A; again
AQ is shifted left. At each left shift, 9 is shifted into a39
but also into 9t this is to give to the contents of Q the right sign

(as usual)

after 39 quotient digits have been created.

In order to understand the division process more fully, especially
in the case of negative dividends and divisors, we shall formulate the rules

10 be obeyed by the computer at each step.

1. At the beginning, the sign yo of the divisor is compared
to the sign P of the dividend. If they agree, the
complementing circuit is set to subtract throughout the
division; if they disagree, the complementing circuit is

set to add. The setting 1s thus given by

* A single length divident means that the non-sign digits of Q are either
left over from a preceding calculation or that they have been set to
zero initially. ‘
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3.

PatY,
(1) ° 7% = o (say). (4-6)

A tentative partial remainder s (with sign digit tn)
is obtained by forming

s, =T, ~o- - (4-7)

If the sign tn of s, agrees with the sign Pg of the
dividend, the tentative partial remainder is transferred
from the adder to A. If they disagree, the partial
remainder in A is transferred to A, (This cholce between

a tentative partial remainder and the old partial remainder
is a special feature of Illiac, made possible dy the fact
that the partial remainder in A is not destroyed when the
tentative partial remainder is formed). The new partial

remainder - after a left shift - is then given by

+t

r =2r -g- (1 + (-1)po My (4-8)

n+l

If the sign tn of the tentative partial remainder agrees
with the sign yo of the divisor, 1 is inserted in q39
(39th position of Q). If they disagree, O is inserted,
Call the quotient digit thus obtailned Q- Then

yo+tn

q, = 1/2 [1+ (-1) ] (k-9)

() and (Q) are transferred to A and Q with a left shift.

At the end q39 is set to 1.
By using (4-8), we find that

38 t
039 r cr -y (12739 4oL (—l)Po % (-1) " 2™ (4-10)
0
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(4-9) gives the non-sign part of the quotient q (using rule 6)
38
% q, o™, ™39
1
i.e, the arithmetical value of the quotient is
38

38
Q= -qy+ E q, 2B 4 2739 -2q, + g q, 2™ 4 2739 (4-11)

Now we define a remainder r by

r = 239 [ry-av] (k-12)

In order to show that g is the quotient, we must show that r is of
order unity. Using (L4-11) and (k4-12)

r = (ry-ar) 239

> v~ 38 t
= 0% r, - 239 y [-2q, + 27 )08 (1) P ey 1)
0
38
since = oL F o039
0
39 39 39y -1, PPt o
But r., =271r. -27¢y [(1-2777) + 27 (-1) " X (-1) " 27"]
39 0 0
YA+t
and g=2" 1+ (-1)%
-1 Yo™Po
=2 [1-(-1) ] since P, # to by our hypothesis

lrol < Iyl <1.

2t 1 -6 ]
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Therefore

38 t
(r-r39) 2P =y (12 o+1-0-1+ {0 - (-1)y°} L(-1)"e™

-y 2% - {} 2

Now

7o “Po Po*Yo
{}= (-1) ~ [(-1) -1 =0 since by definition ¢~ = (-1)

and it follows that

- ¥ (4-13)

r=r

39

Since r_ . and y both have absolute values less than one and since

39

o” = + 1, the absolute value of r cannot exceed 2, meaning that

39 ¢« D = 2"38

Iro - qyl <2
(Actually it can be shown by a more detailed examination that lro - qy| < 2-39!)

The Illiac division order is written 66n and as we have seen its

effect is to put
(AQ
_(_}-—QQ

4.7 Other Methods of Multiplication and Division

The IAS Method of Multiplication

This method, used in the Princeton machine, multiplies only the
non-sign digits of the multiplier y and the multiplicand x: suitable
corrections have to be made. Let x. and x, be the sign and non-sign digits

0 1

of xt x = -xo + Xy -
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In the same way ¥ = Yo + Yy and

X)¥q = (x + xo) (v + yo) = XY + X ¥+ ¥, (x + xo). (4-14)
This shows that a correction is required in two cases:

1. If Yo = 1, 2+ X, must be subtracted at the end.
2, If X,

1, ¥y must be subtracted at the end.

The latter operation is quite difficult, since the digits of the multiplier
are destroyed in the multiplication process. In order to circumvent this
difficulty, a plecewlse insertion of the digitwise complement of the non~
sign digits of y is used; at the end «1 + 2739 15 added to the final product,
in order to obtain the two's complement. The following rules describe the
operation:

1. At each step if q,39 = 0 add X, to the partial product pi
and if q39 = 1 add the non-sign digits of the multiplicand,
i.e. (x + xo) to p;. In case xj is 1, add the digitwise
comg}ement of Y39-1 i.e. (1-y39_i). E?ansfer the results
to A and the non-sign digits of @ to Q.

2. Shift right from A to A and from @ to @, inserting O as
sign digit in A.

3, If the multiplier was negative, subtract x at the end and
. , -3
if the multiplicand was negative, add -1 + 2 ‘9,

Formulating these rules mathematically

]

iy = M2 Ipy + ¥ag g (x4 x5) + (1 - yy54) %]

i

12 [py + ¥39.4 % + %l

It follows that ’
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P3g = 27 po+ (v +yy) x4+ (1 -279) xy

Correcting by rule 3, we find that the final product p
is given by

P = Pyg - Yo% - (1 -27%9) x0=xy+2'39po

It is easily shown by induction that all the partial products
Py lie in the range 0O, 1.

Non-Restoring Division

Decimal desk calculators use two different systems. The first
category imitates long division by subtracting the divisor from the partial
remainder (assuming that both are positive) until a negative number is
obtained; then the divisor is added once: this "restoring" of the divisor

gives the process its name,

In non-restoring division we subtract the divisor until the sign
changes, or until nine subtractions have occurred. The partial remainder
(negative this time) is shifted and the divisor added until the sign again
changes, or until nine additions have occurred. In the first case put down
a positive quotient digit equal to the number of additions. For the decimal
system the possible quotient digits are thus -9, -8, .ec; =1, +1;, +2, e, +9:
no zero is required. It is easy to see that we can convert such a quotient
into one using digits O through 9.

Let us examine the non-restoring division scheme more closely in
the binary system: only two quotient digits, -1 and +1, can be created as
at most one addition or subtraction is required at each step. Suppose that
we have formed such a "+1, -1 - quotient" and that we wish to find the

normal "+1, 0 - quotient", i.e. given

5N
X =2 b, 277 with b =41, -1 (4-15)
1
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find x. and Xy (having values O and 1) such that

(0]
9
we g8 x 2 (1-16)
Introduce
bi + 1
8, _, = 5—, thena, , =0, 1 (4-17)
then
39 . 39
x =% a2 (3D ot
1 1
38
B i -39
= (ao -1) + % a; 27 + 2
i.e. Xy = 1 - &y
X =8y i=1, ..., 38 (4-18)
*39 = 1

We therefore have the conversion rule: replace -1's by zeros, shift left,

insert 1 in the least significant digit and complement the sign digit
(obtained after the shift).

Using the same notation as in Section 4.6, we can now discuss non-
restoring binary division. In this system a part of the +1, -1—+ 0, 1 con-
version is made at each step. The initial conditions and the conditions on
the absolute value of dividend and divisor are the same as before. As a

preliminary step the divident ro is transferred to KQ. Then the rules are

-138-



Transfer (A) and (Q) to A and Q with a left shift,
qy being transferred to a39°

Sense the sign Yo of the dlvisor y in R3 and the sign
p, of the partiel remainder in A. If these signs agree,
subtract y from ern and insert 1 in q39° If these signs

disagree, add y to ern and insert O to q39.
In either case transfer the difference or the sum to A.

After 39 steps transfer the remainder from A to A
(without shift), the quotient from Q to Q, convert to
complementary form (-1—+ O and left shift are done
already) by complementing qO and inserting 1 in q39.

Mathematically these rules correspond to

f

n

2]

1
Loy

L

l,._l
-

=]

«

r
n+l

D 1Y
- -170
o7t 1+ Zn+l]’ where z = (-1) B 1

4

The arithmetic value of the quotient q is then

39 39 JE '
q=2 z 2B -§F ()pt0pm
1 B 1

Defining the remalnder r as before by

we find that

_ 239 (p -
r=2 g-<r° qy)

39
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where

| ' 39  p_ .4y o
239 = § (-1) Bl 70 o ; (4-22)

r,,=r. -y
39 | 0 1

This shows that q is indeed the quotlent, for r
value,

39

is less than 1 in sbsolute

4,8 Illiac Shift Orders, Transfer Orders, Store Orders and Input-Output Orders

Without going into further details, we give below a list of common
orders used in Illiac as an illustration of the facilities which it offers end
as a preparation for the next section. All of these orders ere of the 20-digit

variety, except for the 40O-digit drum orders.

20-Digit Orders

00 n Shift AQ left n places

OF Stop

10 n Shift AQ right n places

20 n Stop. After (manual) restarting go to r.h.
order of location n

22 n Transfer control to r.h, order of location n

24 n Stop. After (manual) restarting go to l.h.
order of location n

26 n Transfer control to l.h. order of location n

30n

3 n If (A? > 0 do as in corresp. 2 ... order

34 n e o ’
If (A) < 0 go on to next order

36 n

4o n Store (A) in n, leaving A unchanged

Ll n Store (A) in n, clearing A beforehand

k2 n . Store digits - to address of r.h., order from A

46 n ‘Store digits -+ to address of 1.h. order from A

50 n Put (n) in Q

80 n Input n/4 sexadecimal characters from tape

8l n Clear A and then proceed as in 80

82 n
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40-Digit (Drum) Orders

For T # 0, 1, 8, 9 transfer drum location (n)

85 11 to A and then execute the order TV n.
211 T an For T = 0, 1, 8, 9 do as before, but skip
TV n,

For T # 0, 1, 8, 9 transfer (A) to drum location
86 11 TV n n and then execute the order TV n.
For T =0, 1, 8, 9 do as before, but skip TV n.

Note that out of addresses 0-12799 on the drum the first 2600 are "locked out"
and contain often used routines.

Example of s Complete Program

As an example of how a complete program is put inside the computer
and how coding tricks permit to shorten codes quite considerably, we are going
to consider a program which fills the memory full of K4 orders. ILooking at
the orders given in Section 4.6, we see that this makes the computer count
indefinitely: after having read out all order pairs up to 1023, the control

counter goes back to zero and another cycle begins.

Before discussing the program, it should be mentioned that addresses
on the input tape must be written in the sexadecimal system. There is a
conversion routine, called SADOI (symbolic address decimal order input), which
allows the programmer to use the decimal system for addresses, but we shall

not assume its use here.

The program starts as follows:

T A (80 028 k40O 000) Set by pushbutton, (or by
input routine) does not

Miniature advance control counter.
B 80 028 40 001 Read in and store
Bootstrap
80 028 4O 002 Read in and store
D 26 000 (00 000)* Go back to order pair
stored in O
E 81 o0k L2 000 Read in one character and
Block to be modify address
read into
memory F 3 L5 00K Lo 00S
L Gll' ® 0 6 0 00 ¢ oo 0680

* "waste order"
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A places B in 0. Now B is obeyed, placing C in 1 - which then
puts D in 2. Next D is followed; we go back and obey B: this places E
in 1 (overwriting C) and this is obeyed next. ‘E clears the accumulator,
reads into the accumulator one character of F (i.e. g) and then modifies
the address of the right hand order in O. ILocation O now reads 80 028
4O 003. Going to location 2 we are thrown back on this modified order:
the rest of P is read in and stored in 3. Location 1 agaln modifies
location O to read 80 028 40 OOk (the address being given by the character
at the beginning of G)n This then reads in the rest of G. This process
continuves until the r.h. address in O has gone up to K. The order after
K is preceded by 1, this then modifies location O to read again 80 028
LO 00l: this is obeyed after the transfer of control and places 26 003
00 000 in 1. Now the .contents of locations O through K look as follows:

Lo 007 4O 008
Lo 009 25 000
Kk 000 K4 000
26 003 00 000

0] 80 028 4o o001
1 26 003 00 000 Transfer control to location 3
2 26 000 (00 000)
3 L5 OOK 40 008 (N,J...) Store K4, K4t in location S
| L4 F5 00 4o 00

Block read in > 003 3
5 L5 002 36 003

by process
6 40 003 4O ook

described
7 40 005 4O 006

above.

8
9
K
S

The next order pair comes from location 1 (which was just overwritten)
and transfers control to location 3. This brings K4 000 K4 000 into the
accumulator and stores it in location S. Order pair U4 brings LS5 00k 40 00S
down into the accumulator, adds 1 (i.e. adds 1 to the r.h. address, making
it N) and stores it back in 3. So 3 reads successively ... 40 00S, ...

40 OON, ... 40 00J etc. Now order pair 5 brings down 26 000 00 000 and
tests if this is positive or zero. Written in binary this pair starts with

0010 ... and is therefore positive: the 36 order transfers control to the
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(modified) location 3. Now we store Kt 000 K4 000 in N. This process cycles
again until all locations between 8 and 3LL (—» 1023) have been filled up with
K4 000 K4 000 order pairs.

Now we make use of the fact that after address 3LL the next address
3LL + 1 has the same result as address O: addresses are interpreted mod 1024
This means that locations O, 1, 2 will receive the "standard" order pair,
Going through locations 3, 4, 5 the cycle is now modified: the address in 3
1s stepped up again (order pair L5 OOK 40 003) but order pair 5 brings this
time K4 000 K4 000 into the accumulator, for this has overwritten the
original 26 000 00 000. Upon testing, this reveals itself as negative
(K4 ... in binary starts 1010 ...) and this time we go on to obey location
6, 7, 8, ... . This overwrites 3, 4 and then the order pairs which have just
been obeyed with the fixed contents of the accumulator, i.e. with K4 000
K& 000,

The final step occurs when location 9 is obeyed; 40 009 25 000 is
placed in R3° First the left band order is followed: this places the
standard K4+ 000 K4 000 in location 9, thus drawing the whole program out of
the memory and leaving all locations with the same contents! The 25 000
order is a "black switch order": the machine stops and clears A.  After
being restarted with the 'black switch", it goes to location 000 and starts
with the left hand order. This initiates the counting process,
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CHAPTER V

ABSTRACT METHODS

5.1 Groups, Rings, Fields and B. A,

1. SEMIGROUP -

Let some common property of the elements a, b, c... define a set
S = {a, b, c...}, also let us define a binary operation * on the members of
the set, "binary" meaning here "involving two elements." Now a ¥ b = x may
or may not belong to the set S, If for any two elements (a, b) of the set

a ¥ b does belong to S, we say that S is closed with respect to the operation *,
Also, if for all a, b, c S (<& meaning: belonging to)
(a *Db) *c=a * (b *c), (5-0)
the operation * is called associative in S.

Definition: A semigroup is an assoclative, closed set S with respect to an

operation *,
Remark: A set can be:

discrete finite 1 {+1, -1}
discrete infinite : {all integers}

continuous : {all numbers}

2. GROUP

Definition: A group G is a semigroup with a unit and inverses where the unit

and the inverse are defined as follows:

The unit e satisfies a * e = e % a = a (5-1)

-1

]
[0]

(5-2)

. -1 . -1
The! inverse g to a satisfies a * a =g ¥ a

Theorem 1. The unit is unique.

Proof: Let e,, e, both be units

1 2
then
* = * =
el e2 el also el 62 e2
hence
el = e2 QED.



Theorem 2. The inverse is unique.

Proof': Assume that there exist inverses a—l, b.
Then by definition a *b =e¢
-1
a ¥ g = e

i.e., operating on the left by a™l we nave
1

(a-l ¥ a) ¥ b (a_l *a) *a

hence e ¥b =e * a

or b=at

Definition: A group is said to be commutative or Abelian if a * b =b * a.

The order of a group is the number of elements in it.

3. RING

A ring R is a set which is a comutative group with respect to one
binary operation (say +) and a semigroup with respect to a second binary opera-
tion (say .). Also, the following distribution relations hold for all a, b, c

cR

a-+(b+c)=ab+ac (where ab means a - b, etc.)
and _ (5-3)
(a'+b) ¢ c =ac + be
Definition: We shall call z the unit of the operation +, and we shall call al
the Inverse of a with respect to z:
1 1
a +a=a+a =2g
(5-k)
a+z =2 +a =4a.

Example: {all integers} forms a ring.
Special Rings: |

(1) Ring with a unit (unit e for the second operation).

(2) Commutative ring: ab = ba for the second operation.
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Lk, PIELD

A field F is a ring with a unit e and inverses &l for the second
binery operation (called » above). The existence of a unit and an inverse
with respect to + 1s guaranteed by the fact thet the field is a ring. We
could say that a field is a "double group.”

Example: {feal numbers}

5. BOOLEAN RING

A Boolean ring BR is a ring with a unit (w.r.t. ¢) in which the
idempotency law holds:

for every a < BR a.a=a (5-5)
Theorem 3. & + 2 = z in a BR. (5-6)
Proof: (2 +b) » {a+Db) =aa + ba + ab + bd

LHS

(a + b) by the idempot. law
RHS = a + ba + ab + b by the same law

.8 +b=2a+ba+ab+d

but
al + a = g, bl +Db =1z
therefore
al + ol + (a +b) = al + bl +a +Dba +ab+ b
or
z = ba + ab
ﬁow let a = b, then
z = aa + aa,
or by the idempot. law
Z =a + a QED.
Theorem 4. a© = a in & BR. (5-7)
Proof: Z =a+a and z = al + a
Thus
al = al + 2 = al +a+a=-a QED.



Theorem 5. ab = ba in a BR ' (5-8)
Proof : By theorem L4 we have (a.b)l = ab, Also from the proof of Theorem 3

z = ab + ba or (ab)1 = ba (unique inverse!)

S, ab = (a.b)l = ba QED.
Theorem 6. 8z = z in a BR. ' ' - (5-9)
Proof' az =ala +a) =sa +ea=a+8a =2 QED

6. BOOLEAN FIELD

The elements 2 and e of a Boolean ring form a Boplean Field RF,.
"Theorem 7. A Boolean field has only two elements,
Proof: let a < BF, afz.
Then

a = ae = a(aa-l) = (aa)a'l = (a)a-l =e

Thus a BF can have only two elements: z, e.

The distinguishing properties of Rings, Flelds, etc., are summed up
in the following table:

Table 5-1

Name e el |aa-=allat=a |ab=balaz=z |a = (%)
Ring
Field X X

Booleen < < < % -

Ring .
Boolean X X X X b X x

Field

~ —~ N " ~/
postulates theorems
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7. BOOLEAN ALGEBRA

Two more operations are introduced, called

3

Complementation: a=a+e and
(5-10)
Conjunction: avb=a+b+ab
Remark: It is evident from the definitions that we have
avb=bva (commutativity) (5-11)
and
(avb)ve=av(bve) (associativity) (5-12)
Theorem 8. a v a = a (5-13)
Proof’ ava=a+a+aa=(a+a)+a=2+a-=2a
Theorem 9. a(b v ¢) = ab v ac (5-14)
Proof': a(b ve)=alb+c+bé)=(ab) + (ac) + (ab)(ac) = ab v ac
Theorem 10. a v be = (a v b)(a v ¢) (5-15)
Proof: RHS = (a + b + ab)(a + c + ac)
=a + ac + ac + ba + bc + abc + ab + abc + abe
=a + be + abe + (ac + ac) + (ab + ba) + (abe + abe)
= (a) + (bc) + (a)(be)
= a v bc = LHS QED.
Intersection and Union,
2 a=2 (5-9)
as proved above ,
zva-=a , (5-16)
since z v a =z + a + ai =a ,
e ra=a (5-17)
by definition of e J
eva=e (5-18)

sinceeva=e+a+ae=e+8a+8a==¢e+ 2

]
0]
.

-149-



Comglementation and Duality.
aa =z - | (5-19)
since aa = a(a +e) =aa+ae =a+a =1z : o
avb=ab A (5-20)

since a v b

(a+e)+(b+e)+(a+e)b+ e)

a+e+b+e+ab+ae+eb+e

ab+e+ (a+a)+ (b+Db)+ (e+e)
gb + e = (ab)

also

avb=a-b ' (5-21)

sinceavb=e+a+b+ab=(e+a)e+b)=a-5b

We now see that the algebra of a ring with a unit, satisfying
idempotemcy and including the‘operations of éomplementation and conjunction
is formally the same as a Boolean algebra:

e <——> 1
Zz2 <> 0

o+ is‘simply the operation @ defined in Chapter III. Again it should be
emphasized that Boolean algebra is not restricted to values 1 and O for the

' variables as is shown by the following example:

8. EXAMPLE OF A BOOLEAN ALGEBRA .OF MORE THAN TWO VARIABLES

Take the most general function f(gy x,) of two (two-valued) Boolean

varjables. There must be & canonical expansion (see Chapter III) and therefore

£ = a(, %) v blEy ) v el %) v olx, x,)

where a, b, ¢, d are also Boolean variables with the values O and 1. Visibly
‘any combination of four zeros and ones corresponds to a different f: There

arezl6,different functions of two variables.

. Now take as the elements of a ﬁew, multi-valued algebra the sixteen

types of f, setting

£(0000)

It
O
I
'_.)

,  f(1111)

£(0001)

It
=

A .... £(1110)
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and call x a variable that can take any one of these 16 values. It is then

quite clear that all postulates of Boolean algebra are satisfied, e.g.,

the latter two simply expressing that the minterms in x and those in X are
mutually exclusive and that the product of any one in X with any one in x is

zero since they are orthogonal (see Chapter III).
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5.2 Cubical Representation of Minterms

5.2.1 GENERALIZED CUBES

In a cartesian coordinate system the vertices of a suitably scaled
and rotated 3-dimensional cube (or 3-cube for short) can be represented by the
eight possible binary triplets (000), (ooi), (010), (o11), (ro0), (roi), (110)
and (111). We shall call the figure in a space of n dimensions whose vertices

are represented by all possible multipiets of n binary digits an n-cube and

1 1

denote it by c'. A 2-cube is a a l-cube & "line segment’ and a O-cube

'square, '
simply a "point." A L-cube is called a "tesseract': It is shown in a (non-unigue )
projection in Fig. 5-1.
- Graphical Representation
- O-cube or cO: o‘
- 1-cube or cl: o—0
2=-cube or 02: [:::::1
3

3-cube or c7:

h-cube or c :

Figure 5-1. Cubes
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By definition the vertices (or O-cubes) of an n-cube correspond to
the possible multiplets of the form (al...ai,,.an) with a; = 0 or 1. This shovs

that an n-cube has 2" vertices. Two vertices will be called complementary if

they differ in one digit position only. We shall represent the line segment

(or l-cube) joining two complementary vertices by the multiplet representing

these vertices with an x in the digit position in which they differ. The line

joining (1101) and (1001) is thus (1x0l). We shall call two l-cubes complementary
if their multiplets have the x in the same position and coincide in all remaining
digits except one. We shall represent the 2-cube Jjoining two complementary
l-cubes by the multiplet representing these l-cubes with an x in the digit posi-
tion in which they differ. The generalization of this procedure is evident.
Note that in the case of n = 1, 2 or 3 "complementary"” has the geometrical
significance of "adjacent" as far as vertices are concerned, but means "opposite"
when it comes to edges or sides. I; is obvious.that we can always build up the
whole cube by judiciously forming combinations of complementary O-cubes, then of
complementary l-cubes, etc. This will lead ultimately (in whatever order we
synthesize the n—cube) to a multiplet containing x's only: the l-cube in
1-dimensional space : is represented by (x); the 2-cube in 2-dimensional space
by (xx); the 3-cube in 3-dimensional space by (xxx).

Suppose now that we work once and for all in a space of a fixed number--
n--of dimensions, i.e., that all multiplets are of the form (al.,.ai,,,an) with
n digits. Then our synthesis of an r-cube from the representation of two
complementary (r - 1)-cubes leads to the rule that all r-cubes have exactly r
digits a, equal to x.

Given any r-cube, we shall say that an s-cube with s < r is a subcube
of this e’ (or that cr contains cS) if its representation can be obtained from

that of c’ by particularizing one or more of the x's. . If s = r - 1 we shall
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~call the possible s-cubes faces of the r-cube: this definition shows that a e’
has 2r faces, for any one of the r x's can be given the value O and then 1 to
obtain r pairs of complementary faces. Similarly a cube et containing a ¢ is

called a supercube of CS,

5:2.2 SUBSETS OF VERTICES. FACE AND COFACE OPERATORS. - CUBICAL COMPLEXES

We shall discuss below the geometry of subsets of vertices of the
n-cube. Let f be such.a subset. Then one of the possible problems is to group
complementary vertices in f into l-cubes, then complementary l-cubes in f into
2-cubes, etc. In particular we might be interested in how big the biggest cube
(i.e., the cube having most x's) is that uses vertices in f only. Or we might
want to construct a set C of cubes (of maximum dimensions ) containing all

vertices in f: +this is the so-called covering problem. In general any set of

cubes containing all vertices in f is called a cover of f: we ﬁsually;want as
simple a cover as possible (see below).

The representation of the faces of ok = (a °..ai...an) can be obtained

1

by applying to (al.,,ai,..an) a face operator ag or 81 where 82 means: replace

.th .. . . : . - .
the 1 digit a; in (al.ovai,..an) by a 0 if a, = X. It ai-% X the operator is

zero by definition@ Summarizing:

0 _ =
6i(al°"ai°°°ah) = (alo.,Oo,.an) 'l e

1 J St
si(al...ai,..an) = (al,..l...an) & (5-22)
0 1 N .

Si(al'°‘ai'°°an2 = gi(al...ai,..an) —‘O if a, # x )

By choosing i equal to the digit position in which the x's occur, we visibly
obtain the 2r faces of the cr°
Given.a set f and a certain r-cube (al.,.ai...an) one of the important

questions is: can we find a second r-cube using vertices in . f only and
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complementary to the first} This is answered by examining the result of the

application of the coface operator ei defined by the property that

¢’ = (al...ai...an) being a given cube using f-vertices only.
Ei(al...ai...an) = (al...x...an)
} (5-23)

if both (al...l...an) and (al...O...an) use f-vertices only

If the ith digit is already an x, the result is zero by definition.

It is important to note that ei does not form a supercube of one more dimension:
it forms this supercube only if it can do so using f-vertices only. Using coface
operators it is now possible to build up all cubes which remain within the

bounds of the subset f. Any supercube of a cube ¢’ which remains within these
bounds is called a coface of cr, All cubes using the f-vertices (which one can
obtain by applying €i on a trial and error basis first to O-cubes, then to l-cubes

thus formed whenever possible, etc.) form the cubical complex corresponding to

f. This complex is denoted by F = K(f), K meaning "form the complex of." F
consists possibly of a set of O-cubes Kp plus a set of l-cubes Kl, etc.

Obviously Kp = f and
F=K(f)=7fuU KUK U ... - (5-24)

If £ is given by a cover consisting of the set of cubes (not necessarily
minimal) {a,b,c...} it is customary to write F = K{a,b,c...} with the under-
standing that {} would actually allow us to determine f.

Example: ILet f be defined by {(0000), (0001), (0100), (0101), (0110), (1000),
(1010), (1110)}. Tﬂis is also the set KO. To calculate K" we must apply the
coface operator to each digit of each vertex, i.e., we must see whethef there
are in f pairs of complementary vertices which can be combined into l-cubes.

This is done systematically in Table 5-1.
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Vertex Compl. 1st digit Compl. 2nd digit Compl. 3rd digit Compl. Mth digit

(0000) (1000) v (0100) v (0010) (oo01) ¥
{ooo1) (1o01) (o101)v (0011) (0000)
(0100) (1100) (0000} (0110) v (o10L)v
(o101) (1101) (oo01)v ‘ (0111) (0100) v
(0110) (1110) ¥ (1010) v (0100) v (0111)
(1000) (0000) v (0100) v (1010)~ (1001)
(1010) (0010) (1110)v (1000) v (1011)
(1110) (0110) v (1010) v (1100) (1111)

Table 5-1 Calculation of Complementary Vertices

Whenever the complement is in f (denoted by a check-mark), we can form a l-cube:
(0000) and (1000) give (x000), (0000) and (0100) give (0x00), etc. Replacing

l-cubes which occur several times by a single mention, we obtain

Kl=UWmL(mmL(mmL(mm%(mmL(ﬁmL(mmL

(0x10), (01x0)}

We can continue the process, examining only pairs of l-cubes having the x in

the same position, This leads to
K = {(0x0x))

This terminates the process. Note that 52 (0x0x) = (000x) for example, while
8$(OXOX) = 0 since the first digit of (OxOx) is not an x. GM(OXOO) = (0xOx)
since (0xOl) belongs to f, while eu(OOOx) = 0 because the A digit is already

an x. Figure 5-2 shows all the cubes of F = K(f).
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0010 1010

‘\-1x10
x110
0110 1114
0011 1041 10x0
0111 1111 ‘/
000x 0001 1001
01x0 ol ¥
\* 0ol
x000
000\ 1000
: o
T: Q 01
010x

0100 1100

Figure 5-2. Cubical Complex of f = {(0000), (0001), (0100%, (o101},
(0110), (1000), (1010), (1110))}

5.2.3 MAPPING OF MINTERMS. MINIMUM COST COVERS

The action of the coface operator, which combines two complementary
r-cubes into an (r + l)—cube,is very similar to the operation we called
"reduction" in Quine's Method (see Chapter III). This is, of course, no accident
because the geometrical language we have just developed (due to Roth and Miller
of IBM) is calculated to generalize Quine's Method, using the more elegant wording
of geometry. The hyphen "-" used by Quine is the equivalent of the "x" used in
the preceding sections.

Before using the Roth-Miller method of minimization, we first note

that any function of n Boolean variables x ce X, has a unique cononical expan-

1

sion, i.e., that it is a unique sum of minterms. - Via the binary correspondence
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introduced in 3.4 each minterm corresponds to a multiplet of n binary digits
(E; - 0, T 1) and thus to a well defined vertex of an n-cube. This means
that the set of vertices f [and F = K(f)l] is known as soon as the Boolean
function is given. Becaﬁse of the complete equivalence of the set of vertices
and the function, we shall denote both by the same letter‘f.

The fundamental problem of simplifying a Boolean function now becomes
eqﬁivalent to finding a set C of cubes covering f and causing'(for the equivalent
physical circuit) minimum cost. If C contains a number g, of O-cubes (corres-
ponding to AND's with n inputs), g l—cubesv(corresponding to AND's with n-1

inputs}, etc., the criterion for minimizing the cost is usually

n n n
Cro = v gr(n -r)+ L g, = % gr(n - r+ 1) = min, (5-25)
r=0 r=0 r=0

wherethe first term gives the total number of AND-inputs and the second term
the number of inputs of the "collecting" OR: C o &ives the number of arrowheads

A

in the sense of Chapter III. We are thus led to a search for as few cubes of F

as possible, each having the maximum dimensions.

In case we have to cover f, but may cover f v g, i.e., in case f gives
the "care" conditions and g the "don't care" conditions (see Chaptef III), one
‘problem is to find a minimum cost subset of K(f v g) which covers K(f) only.

Let K(C) denote the complex of cubes using the vertices in the cover C only

and let < be the set-theoretical inclusion; then obviously

F = K(f) < K(C) < K(£ v g) = M(say) (5-26)

5.3 Cocycles and Extremals

5.3.1 THE EXPANSION AND INTERSECTION OPERATORS

Let us take two cubes in n-space
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(¢}
|

= (al...ai...an)

¢’ = (b ...bi...bn)

1

. r . .
where the number r of x's in ¢ is not necessarily equal to the number s of x's
y

in ¢®. We shall then define two commutative operators, the expansion

operator ¥ and the intersection operator N such that cr * cs(= c® % cr) or

cFne® (= ¢® ncf) is a cube with digits a; ¥*b, ora, nNby defined by

Digit Combination ais bi =N * bi or a, n bi
0,0
1,1
0,1
0,x

1l,x

X H O M += O

X,X
Table 5-2. Expansion and Intersection Operator Table

The difference in the two operators is that for the expansion operator cf o* 8

is defined to be equal to zero if the combination 0,1 arises more than once,

while c¥ n c® is defined to be equal to zero if the combination O,1 arises at all.

Theorem 1. ¢’ % c® is the largest cube containing subcubes of ¢’ and c° as

complementary faces.

Proof': By putting O or 1 into the position of the newly obtained x (if
there is such an x) the modified ¢” * ¢® can be made to look like
a subcube of either ¢’ or c°. Since these subcubes are obtained by

particularizing the same x to O or-l, they are complementary. No
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more x's (i.e,, no larger cubes with the property of the theorem)
are possible because all those common to ¢’ and ¢® occur automatically

since x ¥ x = x.

Theorem 2. ¢’ * ¢° has at the most one more x than Min(r,s).

This theorem is clearly a consequence of the method of formation of
et o c®. An interesting case arises when (for an arbitrary s) we consider
successively cubes with r = O (then e’ % 8 gives at the most l-cubes), then

cubes with r =1 (giving at the most 2-cubes), etc.

Example.
Let ¢’ and c¢® be the cubes
001 Ol C:I' - (Xll)

et s _
a ‘
¢ AN \\SB\\ shown in Fig. 5-3. Then

NO ‘ 100 r s a
%?’ ¢ % c” = (x1x) = ¢, where
010 110 ¢® is also shown in the figure.
s
c

Figure 5-3. Action of the
. Expansion Operator

The expansion operator has the following properties:
(" * %) x ot £t ox (5 x ct) (non-associativity) (5-27)

Tf ¢’ is a subcube of cs, f % e® = cf - (5-28)

Theorem 3. ot n c® is the largest cube which is entirely contained in (i.e.,

is a subcube of) both c' and c®.
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Proof': et N c® has zeros where both ¢’ and c¢® had them, ones where both e’

and.cS had them. In cases where ¢’ or c° had an x in a digit
position the x has been particularized and thus a subcube formed.

The intersection operator has the following properties:

(cr n cs) N ct =" n (cs n ct) (associativity) (5-29)

If ¢ is a subcube of c°, cFne®=cf (5-30)

Example.
r s
Let ¢ and ¢~ be the cubes
001 101 oL = (11x )
s _
01T 111 ¢’ = (xx0)
c'— shown in Fig. 5-4. Then
/42228%442;2?:;j/ 100 c¢f ne® = (110) = cb, where the
010 I 3 110 vertex cb is also shown in the
c
oS figure.

Figure 5-4. Action of the Inter-
section Operator
The operators * and N can, by éextension, be applied to sets of cubes
rather than single cubes. If A and B are two such sets and ¢ is any specific

cube, we define

c ¥ A = {all cubes obtained by applying the expansion operator to
¢ and all cubes of A}
A ¥ B = {all cubes obtained by applying the expansion operator to

all possible combinations of one cube in A and one cube in B}

The definition of ¢ N A and A N B is analogous.
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5.3.2 COCYCLES

‘Suppose that we have a covering problem with an initial set of vertices
f giving rise to a cubical complex F. We found F in an example in 5.2.2 using
coface operators, but it is also apparent that one can use the expansion
operator, applying it first to all pairs of vertices (and the result being zero
if the pairs are not complementaryl), then to pairs of l-cubes having the x in
the same position, etc. The reason for the successiof the first step of this
process is, of course, that in our case Theorem 1 states thatvthe result of the
expansion operator is "the largest cube containing the vertices as complementary
faces." Whatever our procedure (i.e., €, or *) we shall end up with a great
number of combinations and a great number of cubes, namely all cubes in F. Tt
is, however, quite useless in a covering problem to have all‘cubes in F available:

‘we only want those which are not contained in larger cubes. A cube of F which

is not a subcube of a larger cube of F is called a cocyle. It is clear . that the

minimum cost cover is a combination of cocycles.

We shall now indicate how the set Z of cocycles (consisting of the set
ZO of vertices not contained in l-cubes of F, the set Zl of l-cubes not con-
tained in.2-cubes of F, etc.) can be found. It has become customary to
generalize the pfoblem,slightly by not giving f but an arbitrary initial cover

of f, not necessarily minimal: is thus a collection of cubes covering

F without regard to cost.

The first step is to subtract from all of those cubes which are

contained in bigger cubes of DO (i.e., not bigger cubes of the complex formed

with the vertices of but cubes actually present in ) Let Da" be the

set of these cubes contained in biggérﬁcubes. We then form

= - D*
L O

Let do be any O-cube left in Do.
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Remark : Dg = {c/c c d; c,d € ] in more abstract notation. This. is read:

DS is the set of cubes c such that (symbol: ]) c is a subcube of d (symbol:

¢ < d) and both ¢ and d belong (symbol: €) to .

Theorem 4, The O-cocycles are those O-cubes of D which cannot be combined

0

with parts of higher order cubes of D. to form l-cubes.

0
20 = (a%/a° « Dy # any 1-cube)

Proof': do * DO forﬁs at most l-cubes by Theorem 2. The set {} above rules

out explicitly those dois which actually succeed in forming a l-cube,
l.e., none of the do's above have cofaces. This means that-ZO < {}
since DO is certainly a cover and must therefore include all neces-
sary O-cubes to cover f and, in particular, those in ZO which are
"anexpandable.”" Now assume that there is a a° in {}--say 4 for
short--which is not a cocycle. Then there is aﬁ ei—operator such

that eid = e, where e is a l-cube covered by D The complement

o

of d, which has been used to form e, must also be covered by D, i.e.,

ol

d * DO must contain e: d should have been eliminated in the first
place! Hence all elements of {} are cocycles.

We now form the union (or sum) of the set D, and Dy * D

= *
We again take away the set D¥ of cubes of contained in .larger

1
cubes of and consider
o= = ¥~ -
D, D¥ - {all O-cubes of@]

It is clear that Dl

OI

(O
1 Uz is.

The gquestion now arises whether Dl actually contains all l-cubes of

is not a cover of F = K(f) but that D

_163_



F (or their cofaces), so that we can search for‘Zl, i.e., all

1

l-cubes in F not contained in larger ones using D, only. The

answer 1s given by

Theorem 5. Dl contains all the l-cubes of F or the cofaces of these cubes.

Proof': Suppose that a certain l-cube dl or its coface is in D Then by

O.
definition of Dl dl must also be in‘Dl because it was not taken from

Do U Dy

subcube of a larger cube which is still in]Dl°

* DO as a O-cube and if it was taken away in'D{ it was a

Now suppose that dl was not in DO; then there are two comple-
mentary faces a and b which, together, form dl and which are both
covered by DO” This means that D, contains two cubes & D g and

0

B D b: Db * Do will then contain & * B which is a coface of dl,

PR

The procedure for finding ZO can now be extended to Z;, ZE, etc., as

can Theorems 4 and 5. The iterative procedure is as follows: frovar‘we form

= * ' _
%UD ", (5-31)
= - D% _ - . 1yl _
D..1 DX, | {all 0-,1-,...,(r-1)- and r-cubes of }

- (5-32)

where D;f+l denotes all (r+l)-cubes contained in larger cubes of , . The

(r+l)—cocycles are obtained from

and

gT+l _ {dr+l/dr+l ¥ D ? any (r+2)-cube} (5-33)

r+l1

where dr+l is a cube of Dr+ This iteration is followed until Dr+ is empty.

1° 1

It is usual to arrange the calculations of D, * DO, etc., in the form of tri-

0

angular arrays as shown in the example below.
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Example. Let the initial cover of a certain f be given by

= {(1x0), (x00), (01x)}

since Dg is empty (none of the cubes of {} dontains any of the other two!),

DO = . Since DO dces not contain any O-cubes, the set of O-cocycles is also

empty: ZO = 0. We now form DO * D by the triangular array

0

(1x0) (x00) (01x)

(1x0)  —---- (100) (x10)
(x00)  --mem —eee- (0x0)
(01x)  —=-==  —meom ammee

where the dash indicates that the calculation of () * () is either without
interest because the cubes in the operation are identical or that the result

may be found elsewhere in the table. We now have

= ((1x0), (x00), (01x), (100), (x10), (0x0))

and D = {(lOO)}. Since there are no O-cubes to subtract
D, = {(]—XO): (XOO)) (OJ—X): (XlO), (OXO)}

We now search for l-cubes in D, (here actually all of them are l-cubes)
which cannot be combined to form higher order cubes. This is most expediently
done by examining Dl * Dl: this table will be needed anyway in the formation

of DQ. This gives
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(1x0)  ----- (100) (x10) (110) (xx0)
(x00)  —--mn e (0x0) (xx0) (000}
(01x)  —==mm emmem - (010) (010)
(x10)  semmm mmmem mmeee e ~(010)
(0x0) ——— ——— mmm mmeme —meee

We see that (01x) is the only l-cube which cannot be combined to give
a larger cube [here (xx0)!] and that therefore 7t = {(01x)}.

Now we form

= {(1x0), (x00), (01x), (x10), (0x0))
u {(000), (100), (010), (110), (0x0), (x10), (xx0)}
where the second set is formed of the cubes resulting from our table above,

leaving out cubes which occur several times. When we take away cubes contained

in larger ones, as well as all O-cubes and all l-cubes, we are left with
D, = {(xx0)}

The 2-cube in D2 cannot be combined with anything else (to form a 3-cube (xxx),
which would imply that the output is not connected to the input!) and therefore
72 contains just this cube and nothing else: 72 = [(xxO}]° Thus the set of

cocycles of T is
0 2
z = (z°u 2ty 7Y = ((01x), (xx0))

It is essential to note that at no point in our calculation we had to calculate

all the minterms of f. Figure 5-5 shows the cocycles in our example.
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001 101

011 111
(01x )—»
000 /// 100
//15;/ /
010 | 110
(xx0)

Figure 5-5. Cocycles of the Initial Cover {(1x0), (x00), (0ix)}

5.3.3 EXTREMALS

Iet us consider once more a problem in which we have f - "care

conditions" and g —» "don't care conditions.” This means that we have to cover
F = K(f) but that instead of using the cocycles of F only we may use those of
M = K(f v g). The problem is then to cover F with a subset of cocycles of M

and at minimum cost.
We shall now introduce a subset E of the set Z of gocycles of M
called extremals: these are cocycles covering vertices covered by no other

cocycle or so-called distinguished vertices. It is customary to call such an

extremal an "F-extremal of M" and to refer to the set E of all such extremals

as B(M,F).

Theorem 6. Any minimal cover C of F contains E(M,R): E(M,F)c CC Z.
Proof': C must contain all distinguished vertices; therefore all extremals
must be used: C must contain‘E(M,F)° That any cover can be made

out of cocycles, has been discussed before.
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Theorem 7. If the set of extremals E(M,F) is a cover, it is the minimal cover.
Proof': Since E(M,F) € C, the fact that E(M,F) = C shows that it is the

minimal cover.

We shall now introduce the neighborhood U(z,Z) of a cocycle z as the

set of tocycles s in Z which have at least one vertex in common with z or--using

the intersection operator--for which s N =z % O:
U(z,2) = {s/s € 2, s nz # 0) , (5-34)

Since z itself is in U (because z N z % OI), it is often useful to define the

deleted neighborhood U™ (z,Z) as the set U(z,Z) minus z itself:

U (z,2) = U(z,2) minus % (5-35)

It will now be necessary to find E(M,F) from F and the cocycles of M.
First we shall establish a criterion to decide whether or not a cocycle is an

extremal e.

Theorem 8. If e is an F-extremal of M, we have

K(e n F) # 0
_ ‘ (5-36)
K(e n F) # Kle n F n U (e/z)]
Conversely if (5-36) is satisfied, e is an F-extremal of M.
Proof': Suppose that e is an extremal, then there is at least one vertex d

of F covered by e and by e only. ’This means that d is in e and

also in F. Therefofe enkF % 0 and the cubical complex K(e n F) # 0
for itvmust at least contain 4. But 4 is not in any’other cocycle

z and in particular not in 't U_(e,Z): this means that e N F N U-(eﬁZ)‘3
cannot contain d (e N F contains it, ~ U (e,Z) does not) and therefore
Kle nF)=KlenFnU{efz). .
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Now suppose that we have found an e satisfying (5—36). Let us
try to assume that K(e n F) < K(U™ ) where K(U ) is the complex of
cubes formed with the vertices in U . Then it follows that
Kle nFnU)=EKenF) because the supplementary condition n U
does not restrict us for a subset of U . This contradicts the
second equation and we must therefore have K(e N F) ¢ K(U_)° Then
there must be at least one vertex d in K(e n F) which is not in
K(U_). Now d must be in e (we formed e N F) but it is in no other
cocycle: neither in those encompassed by U nor in those which do

not even touch e, i.e., the others. Hence e is an extremal.

Example. Let us take a problem with F = M as shown in Fig. 5-6. It can be seen
by inspection of the figure (note that a cube like (1xx1) has two possible
complementary cubes, i.e., (Oxx1) and (1xx0) with which it could form a larger

cube!) that the cocycles are

N
1l

{(1xx1), (x1x0), (000x), (1lxx), (0x00), (x001)}

Let us take Z

1l

(xle) and consider its neighborhood: there must be cocycles
having a 1 or an x in the second digit position and a O or an x in the fourth
position. (1lxx) and (0x00)--plus (x1x0) itself--form the neighborhood.

Figure 5-6 shows that indeed the former two cocycles have common parts with (x1x0):

(x1x0) n (11xx) = (11x0)

il

(x1x0) n (0x00) = (QLO0)
Here, therefore

U(z,2) = {(x1x0), (11xx), (0x00)}

U (z,2) = {(11xx), (0x00)}
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0010 1010

Distinguishe
Vertex Distinguished Vertex

Y

0110 1110

011l Wen

11x0

/4§F§ \;\
//

1000

0100 » 1100
Figure 5-6. Cocycles and Distinguished Vertices for a Compléx

Defined by {(0100), (0000), (0001), (1001),. (1011),
(1;11), (1101), (1100), (1110)}

5.4 The Roth-Miller Extraction Algorithm

5.4.1 ITERATIVE COVERING. BRANCHING

Suppose that we start out with M = K(f vg)and F = K(f). We can now
find Z(M) and also E(M,F) by the procedures described in 5.3. If E is a cover

of F, the problem is solved. If it is not, we proceed as follows: we set

M =M, F =T, 7, =2 and E =E | (5-37)

and form
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(::>= 7. - E (these are the left-over cocycles) (5-38)

il

and F F_ - subcomplex covered by El

2 1
(5-39)

K{left-over vertices})

Let u and v be cubes in (::) and consider u N F2 and v N F2. Suppose that

un F2 <vn F2, i.e., that as far as F. is concerned, v covers all that is

2

covered by u. Furthermore suppose that cost u > cost v: +then v is called a

nonmaximal cube and eliminated. In case the costs are equal, we shall still

retain the cube covering more of F2°

Now we continue our process, setting

Z, = (::) - nommaximal cubes ; (5-40)
M, = K(z,) (5-41)
B, = B(M,, F,) (5-42)

Continuing this operation we find El’ Eg, «eey until there are no further extremals.
It El U E2 U ... forms a cover of F, the problem is solved. Very often, however,
we do not attain a cover and yet there are no distinguished vertices left: +this

is the so-called irreducible case. In such a case one examines the two covers

obtained by branching: the first branch assumes that one particular cocycle of
the remaining cocycles is in the cover, while the second branch assumes that it
is not. The cost of the two branches is then compared and the lower cost one
chosen. It is, of course, quite possible to have multiple branching, i.e.,
branching within each branch.

Example 1. Using Fig. 5-6 we find that there are two distinguished vertices:

(1011) and (0101). We have seen that
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[N
1

i
1]

Z(F) = {(1xx1), (x1x0), (000x), (1lxx}, (0x00), (x001)}

M, = K{(1xx1), (x1x0), (000x)}

In order to cover the distinguished vertices we need

B, = {(x1x0), (1xx1)}

Therefore

®)

Fa

]

K{ (000x )}

((11xx), (x011), (000x), (0x00)}

As far as ¥, is concerned, (11xx), (x011) and (0x00) are nommaximal cubes,

giving
z, = {(000x)}
E, = { (000x )}
E, UE,
Example 2.
001 101
(1x1)
011 Ga1d) 111
(10x)
(01x)
000
| ono ) 100
010 110

Figure 5-7. Irreducible Case

visibly forms a complete cover: this cover is minimal by Theorem 7.

Let us consider the cubical complex F,
defined by the vertices (000), (100),
(101), (111), (011) and (010) in

Fig. 5-7. It is easlily seen that the
cocycles (shown in heavy lines) are the

l-cubes of the set

z, = {(x00), (10x), (1x1),
(x11 ); (01x), (OXO)}
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Visibly there are no distinguished vertices: each one of them is

included in two cocycles. Starting from Z, we now branch out in two possible

1
ways (actually there are 12 ways, but the other ten are equivalent by symmetry{):

Branch 1. We suppose that (xOO) is included in the cover and even an extremal:

B, = {(x00)}

&

We see moreover that what is left to cover of Fi is simply

((10x), (1x1), (x11), (01x), (0x0))}

F, = K{(1x1), (x11), (01x)}

It is easily seen that as far as the covering of F, is concerned (1ox) < (1x1)
and (0x0) < (01x). (Actually one should examine the intersection of (::) with

F, by writing down all the cubes of F_, i.e., {(1x1l), (x11), (01x), (010},

2 2’
(o11), (oo1), (101), (100)}. This is what a machine would do!) Now

N
Il

{(1x1), (x11), (01x)}

and visibly

=
il

{(1x1), (01x)}

Since E. U E

1 forms a cover C' of Fl, we reach the end of our problem with

2

c' = {(x00), (1x1), (01x)}

Branch 2. Now suppose that the cover does not contain (xOO) and set

As before
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@= ((10x), (1x1), (x11), (01x), (0x0)}

but this time all the vertices of F. remain to be covered (those of (xOO) had

1

been eliminated above):

F, = K{(10x), (1x1), (x11), (01x), (0x0)}
Clearly

7, = {(iOx),‘(lxl), (xll),‘(OIX), (0x0))}
and

E, = {(10x), (0x0)}
i.e.,

@ = {(1x1), (x11), (01x)}
But here

Fy = K{(x11)}
Therefore

v(lxl) < (x11)  and  (0lx) < (x11)

N
H

(1x1)

]
I

(xll)

This gives us the alternate cover

-17kL-



¢t = ((10x), (x11), (0x0))

Since both covers consist of three l-cubes, their cost is identical and we may

choose either one.

5.4.,2 SYMBOLIC NOTATION. TOPOLOGICAL EQUIVALENTS

It is clear after inspecting the second example of the last section
that it is by no means necessary to write down the cubical form for each cocycle

as long as we deduce all relationships by direct inspection of a figure. If we

read off the adjacencies on such a figures, we can replace the cubical notation
of the cocycles by--arbitrarily chosen--symbols such as a, b, c, &tc., and write
down our iterative steps in symbolic form. This aids clarity enormously. It
should be remarked, however, that the "blindfolded" calculation a machine

would go through must use the full cubical expression of each cube.

Example 1. Let us introduce in the second example of 5.4,1 the following
symbolic representation:

(x00) - a, (10x) -» b, (1x1) - c

(x11) - 4, (0lx) -» e, (0x0) - f

Then we can write for branch 1

@ = 'b: c,d,e,f}

= K{c,d,e}, etec.

=
!

The very fact that symbols can be used to denote cubes and that in
figures only the adjacencies of cubes count, show that in multidimensional

problems it is possible to extract those cubes which interest us in a
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minimization problem and to\"lay them out" in a space of fewer dimensions--if
possible a plane. As long as the figures in the subspace is the topological

equivalent, all relationships necessary to calculate a cover can be read

directly from it. 00101 10101
Example.
01101 1110
00111 1
011 T4 111
H
D 011
01
\C\L€E
/ 10001
01001 // // / 11011

00100 //jé;;;;/l//>///

011 é 111Y0
i Figure 5-5. Covering
Problem on a 5-cube.
(To simplify the figure,
the l-cubes linking cor-
< / responding vertices of
00000 % the two tesseracts have
o~ A ornly been drawn in for
(77 A the outer vertices.)
Y7yl i AN
y /A fl N\, V/
)/ 7 = Y/
\\ V/4
\
01000 11000



The complex indicate on the 5-cube in Fig. 5-8 is topologically
.equivalent to the one illustrated in Fig. 5-9. The squares denoted by a, b,

c, 4, i, j, k, 1, m, n are all cocycles.

Y
m k
n J
~ i e f
e < Lintt of T
N e e e — —
4
~ c ~limit of F
\\ . . // 2
~_f——1_~-
b
- . a
: “limit of F
\\\\ - //" 1
N e e e o e ValE

Figure 5-9. Plane Topological Equivalent of Figure 5-8

Thus we start from

Mi = Fl = K{a,b,c,d,1,J,k,1,m,n}
Since fhere are all cocycles

'Zl = {a,b,c,d,i,j,k,i;m,n]’

:Now»clearly a is an extremal (since it is at the end):

Then
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<>={mgd¢gﬂggmn}
and

F, = K{c,d,1,J,k,1,m,n}
As far as F2 is concerned b < ¢ and

Z, = {c,d4,1,j,k,1,myn}

But this makes ¢ an extremal:

Now

@ = {d: i,J,k,1,m,n)}

F3 = K{i,J,k,1,m,n}
But again, as far as F3 is concerned, 4 < c and
Z3 = {1,J,k,1,m,n}

This is now an irreducible case: +the remaining cocycles form a sort of ring

and we must branch. Following the general branching procedure, we find

Branch 1. Assume that i is in the cover, i.e.,

E3 = i
<::> =2 - 1= (3,k,1,m,n}
FLI. = K‘[k, l,m}

Clearly
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J <k, n<n

and
ZL,_1= {k:l)m}
Now
E) = {k,m}
IOME
But F5 = 0 since all is covered, and we obtain a cover
¢t = (z,c,1,k,m)

Branch 2. Here we assume that i is not in the cover. Then

E, =0
3
Consequently
@ = {J,k,1,m,n}
Fu ='K{J,k,1,m,n}

»Zh = {J,k,1,m,n}
Since j and n. are now at the end
E)_'_ = {l’l,j}

Removing n,j from Zh’ we find
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{k:l:nﬂ

®

Fs

X(1)

:This means that k <1 and m < 1 and
and

It is also clear that the sum of all extremals gives a cover

11 .
C = {aacu])l)n}
Again the cost of the. two covers Cl and Cll is identical. We can choose either

one.

5.4.3, THE ROTH-MILLER EXTRACTION ALGORITHM

Whether we program a mechine in order to perform the'iterétive steps
or whether we examine by inspection a topologically equivalent figure using a
‘symbolic notation, the steps we have to perform always follow the same pattern.
This is described by Roth and Miller as follows:

We start with (M),F;) end form 2Z) (M), E; (M,F)). Then @ =z -E
is formed as well as F2 =’Fl - complex covered by El and after the elimination
of nonmaximal cubes Z2 = (::) - nonmaximal cubes is formed. This process is
iterated until either a‘complete cover is obtained or until branching 1s neces-
sary. Formally the step r - r + 1 is as follows:

1. Zr is known as well as Fr‘ In case extremals exist, we find Er'

2. We form

= z, -E, ” (5-43)
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3. If there are

3a.

3b.

Fr+l = Fr - cubes covered by Er'= K {vertices in Fr -
vertices covered by Ef} (5-44)
re1 = (Z,..7) - nommaximal cubes with respect to F_ (5-45)
E,,, = extremals of Z . (5-46)
nc extremals, we branch by comparing:
Assume a given cocycle, a, of Zr is part of the cover. We set
E_ = a and form
r
SR

We have to cover the complex Fr minus the

this Fi+l° We eliminate nommaximal cubes

cubes covered by a; call

fromZr and examine Z;

+1 +1

for extremals. This brings us back to a step like 2 or 3.

Assume cocycle a above is not part of the

and form (as above)

This time, however, we have to cover Fiil

has been obtained in the preceeding step.
which differs from Zi+l above, but we are

2 or 3.

5.4.4 THE SHARP OPERATOR (SUBTRACTION OPERATOR)

The reader may have noted that in the formation of Fr+

cover. We set Er =0

= Fr since no simplification

1

. . . -1
This will give us a Zr+l

also back to steps like

1 from Fr by

the use of (5-44) we had to fall back on an explicit enumeration of "left-over

vertices" in order to form the new complex.

This is highly undesirable: in

the calculation of cocycles we already formulated a method which starts with
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a nommaximal cover as the basis of all calculations. The same thing is possible

for the passage from Fr - Fr+l if we use the Sharp Operator. This operator is

defined as follows:

Tet ¢" and c® be two cubes of a cubical complex:
¢’ = (alag...an)
c =(bfb.ubn)

Let us define the sharp (#) or subtraction operation on the ith digits

of the two cubes by Table 5-3.

Table 5-3. Sharp Operator

‘Then the # operation on two cubes is defined by the following rules:
1. If foralli (1 <i<n) a, #'bi =z (i.e., a; and b, identical or b,

an x!) then
F# =0 (5-48)

2. If for some i a, #’bi =y (i.e., a; the opposite of bi), then

S S (5-19)

3. If a; #'bi = (0 or 1) (i.e., a; is an x but b, is not) for some i's, viz.,

1= 1%, 1 =1, etc., then
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" #c® = Z(al..,a.d b.a,  ..08_ ) ' (5-50)
where Jg=1
and where the sum should be understood in the U sense. cr# ¢® is thus the sum

of a certaln number of cubes complementary to cofaces of the minuend.

Example. On a 3-cube (xxx) together with one of its l-cubes (1x0) we have for
instance (xxx) # (1x0) = (Oxx) v (xx1), i.e., when we take the left lower edge

away from the cube, we are left with

001 101
P = :557 the sum of the left face and the
001 ;/;/ 111 upper face.
:é 000
////’ 100
1x0
010
110

Figure 5-10. Sharp Operation on a
3-cube (xxx)

Theorem 9. e # c® forms all subcubes of c' which are not included in c° (i.e.,
we are left with the biggest cubes one can build out of the vertices
of o after those in cr N c® have been taken away).

-Proof': Let us take the three cases of the definition separately.

1. If the subtrahend cube has the same digits .(or :x) as the
minuend cube, all vertices of the minuend will be taken away:
the occurrence of z in all positions indicates precisely this.

2. If a, #'bi = y for a given i, the minuend and subtrahend are
opposite faces of a bigger cube, obtained by réplacing the O
and 1 in digit i by x. . Such opposite faces cannot intersect:

the minuend is therefore not affected by the operation.
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3, If a O or 1 occurs, there was an x-digit in the minuend: the
operation forms the other face (complement in the digit position!)
of the bigger cube (- to x in position i) still left over. For

several x's, we take the sum of all complementary cubes,

The sharp operator has the following properties:

F#c® =" ir Fncef=o0 (5-51)
o #e® ot (5-52)
et ST (5-53)
(" #eS) #ct = (T #c%)u (P #c”) (5-54)
(" #c®) #ct £ #(c®#c) (5-55)
(F #c®) #e® = (5 ") #c° (5-56)

The proof of these properties follows more or less immediately from
the definition of the sharp operator. Note that (5-56) can be generalized by

saying: it is allowed to subtract a set of cubes in any order from a given

cube--no brackets have to be used and (cl # 02) # Cgee. caD be written
cy # c, # cge

The Fr - Fr+l step is now described by

Theorem 10. If F.= K[cl,...,cn]
and E, = {el,...,em} then
ey # ey # ey ~ev €
Fa-KYce,#e #e, oo fe (5-57)
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. Proof': c; # e, # ey e # e, contains all vertices of c, not contained

~in the extremals SRR Hence by the defihition of K the fight—

hand side equals Fr+l°

Let us now introduce some further definitions:

1. Let C = {Cl’CE"°°’cm]° Then by definition

c#C=c# ¢y # Chp v #c (5-58)

m

2, Tet CO = {cOl,coe,..,,cOn]

c, = {

1 011’012’°°°’clm}

Then by definition

e 3
Cop 7 O
Co # 0y =< ¢, #C, & (5-59)

°

o

LcOn #'Cl J

Now we simply write

Fr+l - K{Fr #>Er]

The sharp operator is useful too when we want to decide on the

equivalence of two covers because we have

Theorem 11. Two covers CO and Cl cover the same complex if and only if

Proof: C, # C, contains all vertices of Cj not in C, and C; # C, all

. vertices of Cl not in CO’
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5.5 Partially Ordered Sets

1. DEFINITION OF POSETS

Sets can be totally ordered ("toset"), partially ordered ("poset")
or unordered: it is, of course, necessary to define the relationship with
‘respect to which ordering occurs. Examples will illﬁstrate the three cases.
- Example 1. The heights of mountains inside the continental confines of the
U.S.A. can be totally ordered by the relationship "higher than" or "lower
than."

Example 2. The successive generations of a family can be ordered by the
relationship "is a descendant of," Figure 5-l1 shows a family tree: it is

what is called later on a "Hasse diagram" of the poset in question.
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Jonathan Smith

Ethel Brown

Edward Smith

Victoria Jones

Fate Lamb, nee S.

Theodore S.

Figure 5-11

(no children) (unmarried)
David S, John S. Ken S. Lea Harper Alice S. Linda S.
Glen S.

A Family Tree as a Graphical Representation of a Partially Ordered Set

Exaryle 3. The set of complex numbers cannot be ordered by the relationship

"argument less than" because for a given argument there are many complex

numbers.

Definition of a Poset

A set X = {Xl’ ooy Xn} is partially ordered (a poset) if and only

if for some pairs Xi’ xj there is a relationship

One then says:

that this relationship is not given for all pairs:

be a toset.

(inclusion)

X, includes x,, x. follows x, or x, is greater than x.,. Note
J i J 1 J i

_178_
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The < relation has the following properties:

1oox, <x, (reflexivity)
2. if x, < X and if X, <x, then x, = X, (antisymmetry)

then X, < x (transitivity)

k

. i . < x, . <
3 if x X and xJ <x X

=4

Theorem 1. Cyclical lists cannot occur in a poset.

: < < .. < <
Prééf: Suppose Xp S %y S Sx o Sx

Then by the antisymmetric and transitive laws we have

X, =X & o0 = X , QED.

Remark:  If X < Xps then clearly x, > x But the ordering relationship

o 1

could also be turned around, i.e., we could again write Xy < X,, because the

l)
ordering symbol can correspond to "bigger than" or "less than". In other

words: 1in any theorem about lattices we can always substitute > for <.

Definition: If xi < Xj and X, + Xj we write

x, <x,
1 J
and if furthermore there exists no Xk between Xi and Xj such that
X, < Xy < xj

and we say Xj covers X

2. HASSE DIAGRAMS

The partial ordering relationship can be illustrated graphically if

we adopt the following rules of correspondence:
The elements of the set, X5 correspond to: points or circles
Xi < Xj ;correspOnd)to: point xj is above point Xy

X; coverS“xj correspondsto: a segment leads from X, to Xj
without interruption (points

x, and x; are directly connected)

The resulting diagram is called the Hasse diagram.
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Remark: Note that if an element X, covers Xj’ they cannot both be covered by
an element k nor can they both cover such an element. Suppose that k covers X,
(which covers xj): Then k > X, > Xj’ i.e., X, is between k and x, and conse-

J

quently k cannot cover Xj' In the Hasse Diagram this means that no triangles

can occur. More generally: if X5 covers x, there cannot be any side-branch

J
(passing through more than one element) leading from Xy to xj.

Example, Take all functions of two Boolean variables X,y X, as was shown in

2
Section 5.1. They can be written in the form

f =a xl x2 v b xl x2 v c Xl x2 v d xl x2

a.)

Let f. = f(al, b, ¢, 4

f, = f(ae, by, Cs dg)

then fl < f, is defined as meaning that

As was shown in Chapter 3 these two definitions are mutually con-

sistent and one follows from the other.

The corresponding Hasse diagram is then as shown in Figure 5-12.
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3. LUBS AND GLOBS

Definition 1. A maximum element of a poset is the one which is under no other

elements,

Definition 2. A minimum element of a poset 1s above no other elements.

Remark: Obviously each poset has at least one maximum element and one minimum

element.

Definition 3. The unit element is a unique maximum element (if it exists)°

Definition 4. The zero element is a unique minimum element (if it exists).

Definition of lub (lowest upper bound )

a, Let Y be a subset of a poset X and let there be an Xy € -X such
that for every yj € Y we have yj < X, Then X, is called an

ub (upper bound) of the set Y.

Remark: xi may or may not belong to Y.

b. If there exists an x, lower than any X, (the upper bounds of Y)

k
the x, is called the lub (lowest upper bound) of ¥; x, = lub (Y).

k k

Definition of glob (greatest lower band)

a. Let Y be a subset of a poset X and let there be an X, € X such
that for every yj € Y we have X, < yj, then X, is called a lob
(lower bound) of Y.

Remark: X, may or may not belong to Y.

b. If there is an Xy above all lob's, then this Xy is called the

glob (greatest lower bound); X, = glob (Y)

Example: Let X {Xl’ Xps x3, X), 5 X5} in Figure 5-11 and let Y be the set
Y = {x3, X) 5 X5}
Visibly YcX

Figure 5-13
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Here x. x_. and x_ are upper bounds of ¥. The lub is x., and here

172 3 3

belongs to Y. The glob of Y is clearly X5' Note that this poset has a zero

(namely x5) but no unit: There are two maximum elements.

Remark: The lub and glob of a subset Y of a poset X are unique if they exist.

This stems from the fact that if Xy and\gz < x,

~for example are both lubs, Xy

and x, <X

o i.e., %, = x

1’ 1 2"

5.6 lattices

1. DEFINITION OF LATTICES

Definitionl. A lattice is a poset in which every arbitrary pair X:5 xj has a
lub and a glob, i.e., there are two other elements of the lattice

X and x , such that
u £
x, <x x, < x,
i—-"u Y/ |
}- and }-
X, <Xx X, <x,”
i—"u L—="3-
and there are no lower xu’s and no higher xﬂ's.

This means, of course, that "going up" or "going down" in a
Hasse diagram for a lattice, we shall converge, for any pair of

points, on a "single nearest common point" both above and below.

An example is visibly furnished dy all switching functions of two

variables as shown in Figure 5-12.

We shall introduce the symbols U and N (not to be confused
at this stage with v and A) by the following

1

Definition 2. lub (x., x.) = x, Ux,
—_— S J} (5-60)

It

glob (xi, Xj) xi/\ xj
Theorem 1. If X, V) xj (or X, N xj) equals one of the factors for all i, j, the
poset is a totally ordered set (toset). '

Proof': Suppose for instance that

X; =% U X = lub <Xi’ Xj)

This implies that X; < xj by the definition of lub; thus for all
i, J either X > Xj or x, < xj, hence the elements are totally

ordered.
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Theoren 2.

Proof':

Theorem 3.

Proof:

In a lattice L each finite subset Y has a lub and a glob.
The proof can be given by indwction:

l.' Suppose Yi = i?k 3 then visibly glob Yi = lub Yi = % 1.€ey
- the theorem holds.

2. Suppose Yé = {xk, xk+l}’ then by the -definition of a lattice,

the theorem is satisfied.

3. Suppose Yh = {xk, seos xk+n} and suppose that the theorem.
holds for this Y , i.e., that lub (Yn) = x,,4 and glob (Yn) =
xk+j exist. Let

Yn+l - {Yﬁ’ xk+n+l}

then clearly

lub (Yn+l) = lub (lub ¥ , xk+n+l)
= 1ub (x5 Xpyn00)
Since x, ., and x are elements of L, the 1lub exists by the
k+i k+n+l

definition of a lattice. Similarly glob (Yn+l) = glob (glob Y,
S x ) exists and thus the theorem is true for all n, hence it
k+n+1
is true for all lattices.

Every finite lattice contains a unit and a zero.

By the definition of L we have a lub for all pairs of elements of
L, and by an iterative process we clearly can find an element
which is a lub of all elements of L. This element satisfies the
requirements of a unit. By similar reasoning, one can show that a

zero element exists.

It is quite obvious from the definition of lub and glob that

we have
onNn xl = 0
} (5-61)
O ux., = x,
i i
1ln xl = Xi
} (5-62)
1l ux, =1



2, PROPERTIES OF LATTICES

-In every lattice the following identities hold for the glob and lub

operations:
l, x, Ux, = x, U X,
o 1} ] (5-63)
and x, N x, = X, N X,
i 3 i
2. X, X, X, =X, U({xX.ux
R e N o
and xif\ (’Xj ('\xk) = (xin xj) nx 7
3. X, N X, =X, U X =X (5-65)
L, (xi(\ xj) Ux, =x, = (xi v xj) nxg | (5-66)
A1l of these properties are nearly self-evident except (5-66):
from the definition of a glob we have
X.N X, <X
jg="1
hence (xi'n xj) U x; = lub [glob (xi, Xj)’ xi] = lub (xi, Xi) = x;

Remark: It will be shown later that a Boolean Algebra is a special type of
lattice if V and N operations correspond to the OR and AND operations respec-

tively.

Theorem 4. Any set in which two operations U and N are defined and satisfy
properties (5-63) to (5-66) is a lattice. '

r_n

Proof: Let us define the <" relation by

x, < x, if and only if x. X, = X,
1= A D B

Now we have to show that the poset postulates hold for the <

relation as defined and furthermore that glob (xi, xj) = xi/\ Xj

and lub (xi, Xj) =% U X, with respect to this relation.
Effectively we have

1. Reflexitivity: x, < x, since x,U X, = X,
' i-—-"1 - i i i

2. Antisymmetry: - X, < xj and xj S'Xi imply that

Xi v Xj = xj and xj L)xi = Xi
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‘But from propérty (5-63)

X. X., hence x,.
JU i? i

il

X

X, U X,
1 Y J J
3. Transitivity:
Let x, <x, and x; < x, implyi that x, X, = X,
E e i J"k—pyng 1UJ J
and that x U X = X By property (5-64) we can

write

R u(xjuxk)
but this implies that Xy
for the relation.

Now consider that

x; U (kU xg) = (xpuxg)u X, = %
but this implies that X, <X
and x, < x,

3=

hence x U x,
i J

shown that Xs v xj is actually the lub;

is an upper bound of (xi,

bound of X5 Xj’ i.e.,

X, <X, x; < %
implying that
inxk=xk and X uxk=xk.

Then we have

(xiu Xj) Ux,

hence from the definition of "<"

i.e., Xs U x, is lower than any other upper bound x

i}

(xiu xj) ka:xj U X =X

xk, thus transitivity holds‘

Xj)' Tt remains to be

let x

K be another upper

x; U (Xj ka) = (inxk) = X,

K’ hence it is

the 1lub of ixi, xj} . The proof of the theorem can be completed by

using similar arguments to show that
x, 0 X5 = glob (xi, Xj)

-186-



Duality:. Since properties (5-63) ... (5-66) define a lattice by Theorem 4, and
since these expressions are perfectly symmetrical with respect to U and n, it
follows that each theorem about lattices hag it dual, obtained by interchanging

U and N.

3. SPECTAL LATTICES

We shall now consider briefly several other types of lattices which
are of interest either from a theoretical point of view. because they form a
link to Boolean Algebra or from the point of the theory of asynchronous circuits

to be presented in Chapter VI.

Semi Modular Lattice:

Definition: A lattice is a semi modular if either one (but not both) of the

following conditions is satisfied.

b'd Case 1

Here x covers both x. and X, (i.e.,
there exists no element Xk such that

i J Xi < Xy < x or xj < Xy < x) and in a
semi modular lattice of the first type
this implies that x., and x, both cover
N x * J

*5 J xif\xj.
Figure 5-1kg

Case 1 of a Semi Modular Lattice

Case 2

Xi V) Xj
///////, \\\\\\\ Here x is covered by both x, and X, (i.e.,
there exists no element X such that
X5 x5 X <% <x;orx<x < Xj) and in a
semi modular lattice of the second type
\\\\\\\X(/////// " this implies that xiLJ X covers both

X, and x,.
1 - J
Figure 5-14b

Case 2 of a Semi Modular Lattice
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Mbdular~Lattice:

Definition: A lattice is modular if

implies that

x, U (x N xj) = (xilJ x) N xj (5-67)

Theorem 5. A modular lattice is doubly semi modular, i.e., it satisfied the

properties of both case 1-and case 2 above.

Proof': Suppose that properly 2 is not true, i.e., that there exists an
element k such that

X, X,
1 v 3 xi <k < xi\J Xj
i.e., k + xi! Clearly x is a lower
k
bound of xj and k and xj is greater
% x than le\k by definition of the N
i .
S/ J operation:
X x<x,. Nk< x5
Figure 5-15

Proof of Double Semi Modular
Property of Modular Lattices

There is nothing between xj and x; i.e., xj covers x. This means

that xj N k must be equal to either x or to Xj°

1. BSuppose that xj Nk = xj, implying that Xj < k. But by
hypothesis X, < k; hence k would be an upper bound of xi and
xj lower than X, U xj: this is clearly impossible by defini-

tion of x. U x..
1 J

2. Now suppose that x, N\ k = x. Since the lattice is modular, we

have x, U (x.Nnk)=(x. Ux.)Nk
1 J 1 J

i.e., x; U x' =k

OI‘ x = k,

i
but this clearly contradicts the hypothesis that X + k., We
conclude that there cannot be any element k between X; and

xi U xj: The latter covers X, Similarly it covers xj°
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Distributive Iattice:

Definition: ¥For a distributive lattice we have be definition
xiﬁ‘(xj V) xk) = (xi N Xj) V] (xi N xk) (5-68)

(Note similarity of this equation and the distributive property
of a Boolean Algebra when (Y—> * and U—> v).

Theorem 6. In a distributive lattice
x; V (Xj nx)=(x; U xJ.) N (x U %) (5-69)
and conversely: if a lattice has this property, then it is a
distributive lattice. '

Proof: X

s U'(xj nx ) =[x U nx)lu (xj nx.) by (5-66)

x;, Ullx, nx)u (xj n xk)] by (5-64)

x; U [xk n (xi V] Xj)] by (5-69)

[(x; v xj) nx1ulx Ny xj)] by (5-66)

(xi\) xj) n (xi U Xk) by. (5-69)

QED.

4, COMPLEMENTED LATTICES AND BOOLEAN ALGEBRA

Definition: In a lattice with O and 1 (e.g., every finite lattice) a comple-

ment ii of Xi is defined by

: n xi - z} (5-68)

M
<
»

I

Example: The lattice of all subsets of a set is a complemented lattice as we

have seen in Chapter 3 in the discussion of Venn Diagrams.
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Theorem 7. In a distributive lattice the complement is unique.

Proof': Suppose that ii is a complement and also ;i’
Then
- ——l ~—l
X, VX%, = X, U x =
xlnxl=0 Xs xl=O
and

X, =x.Nn1l=x r\(xiui.)

Il

(x; Nx) v (x N x)

0 U(xin xi) = x, N x;

X2
1
M1
>
xl

By symmetry

~
therefore X, =X

Theorem 8. A distributive complemented lattice follows the rules of Boolean

Algebra.

Proof: If we replace N by AND and U by OR in the arguments, the theorems

and remarks contain the postulates of Boolean Algebra.

5.7 Combinational Circuits, Feedback, :Sequential Circuits.and. Timing

1. DESCRIPTION OF INTERCONNECTIONS

Definition: If the outputs of a "box" are functions (Boolean Functions) of
the inputs only, then the "box" contains a combinational circuit.

The relationship between inputs and outputs can be written

z, =f (x, «o.x ) 1i=1...n
xl—> —> zq i i lﬁ\ m’. ,
X . Boolean
7 "Bx" [T expressions
x = — .
m .
- 7
n
I |
Figure 5-16

Circuit Notation
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Take any arbitrary interconnections of AND, OR and NOT elémehts_and

possiblé other one-output elements as shown in Figure 5-17.

Suppose, for the

moment, that elementslike flipflops are replaced by appropriate AND-NOT or
OR~NOT combinations according to Chapter 2.

Definition:

X1
x2 yi
~ R\
7 53 I3
*3
o

Figure 5-17

Internal Nodes
A1l output points (with signals yi)bare internal nodes. They can
be connected to any number of inputs, but controlled by one output

only. Neglecting any consideration of timing, we can write

| .
v = fi(xl, ce. X

w Y12 o, cer Yiope Yigps oee V) (5-69)

where all variables of fi are assumed to have a fixed wvalue

”Lwhile'yi is computed. In order to indicate this, we write yi'

rather than vy Note that vy is excluded from fi for technical
reasons: no output of an element is ordinarily supposed to be
directly connected back to its input. This rule may, however, be
violated and in such a case we shall simply include y; on the

right-hand side.

2. PARTIAL ORDERING OF ELEMENTS, FEEDBACK

Let Ei < Ej mean that element Ej receives (besides direct inputs from

X, een xm) only inputs from elements with i < j. Tt is easily seen that this

convention- gives
antisymmetry (E,
E,. <E —> E.
J - i

k

a partial ordering: The laws of reflexitivity (Ej < Ej)’

<E, E <E, —E =E,) and transitivity (E, < E.,
- 71 i—=7J i J i—=73

A«

Ek) are visibly satisfied.
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Definition of Feedback

A network of elements‘has feedback if it is possible to trace a
complete loop thréugh some sequence of elements by following the input to
output direction. (Note: A circuit with feedback can still be combinational,
although these circuits can always be reduced to an equivalent form not having
feedback. ) T

Theorem 1., A circuit without feedback can be partially ordered and conversely

a circuit which can be partially ordered does not have feedback.
Proof': We can describe the partial ordering as a numbering process:
1. Number 1 to j all elements having direct inputs only (x's).

2, Number j+n (n =1, 2 ...) n elements having (besides direct
inputs) as inputs only the outputs of previously numbered

elements (not necessarily all of them:)

3. Suppose that at step k we find that the further numbering is
impossible. Now this means that there is no element outside
the set 1 to k which has inputs from one to k only. Therefore
in the "non-k" set every element must have at least one input
from another element in the "non-k" set. Let us start in an
arbitrary node p of the "non-k" set and proceed "backwards"
in the out-in direction. Because we can find always an input
coming from a "non-k" set element we can trace a path step by
step inside this "non-k" set. Since this set has a finite
number of elements, we must come back to a node covered
previously, i.e., the circuit has feedback. This contradicts
the hypothesis of the theorem: therefore, the "non-k" set
must be empty, i.e., we must have numbered all elements: a
circuit without feedback can be partially ordered by this
method; conversely, if we have partial ordering, cyclic lists
are excluded (Theorem 1 of section 5.5) and we cannot have

feedback.

Theorem 2. A circuit which can be partially ordered is a combinational circuit.

(The converse is not true.)

Proof': Suppose that we have partially ordered the elements as gbove; then
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'(xl ceo xm)

o

|.._l
"
y

’._l

5o = 20y o % 1)

y3 = f3(xl e o m’ yl) y2)

i.e., by substitution

= - t
Yo fe[xl, cees X fl(xl cee xm)l £, (xl ces xm) ete.

By continuation of this process, all node signals can be expressed
‘as functions of the inputs only. Hence, the circuit is combina-

tional.

Remark: A circuit may have feedback and yet be combinational.

Example: Consi&er’the circuit in Figure 5-18. Its output is

— ’ - " . . N "
z = xl Xy V X, x3 v Xy x3 M(xl X, x3). Such a "majority function can
actually be performed by the circuit shown in Figure 5-19. In Figure 5-18 we

simply apply x3 to two in-

puts of the lower majority

element and it is evident
that its output y simply
follows x3 quite independ-
ently of the feedback from
%, But this does not con-

tradict the fact that we

(out)
have a perfectly good feed-

back circuit.

- Figure 5-18 Figure 5-19
Combinational Circuit with Feedback Majdrity Element
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Sequential Circuits

There are feedback circuits in which the outputs depend on the
history of the inputs: such féedback circuits are called sequential circuits.

As an example consider the circuitcof a FF (see Figure 5-20): if X,
@gg/xe are both zero, this circuit still
can exist in two "states": either v, =L
Vp = 0O or vy = 0 and Yo T 1. Which one
is "held" depends on which x was last

made a one.

Figure 5-20
Flipflop as a Sequential Circuit

3. RACE CONDITIONS

Up to now we have not given any consideration to all the difficulties
arising from the fact that logical elements produce signal-delays and thét, if
a circuilt contains many paths, it is often very important to know which one of
the possible paths reacts first. Some typical values for delays of individual

elements are listed below in Table 5-5.

TYPICAL DELAYS IN DIFFERENT COMPUTERS

(times given in millimicroseconds)

= 1079 sec.
5 AND SoR Syor O
Tllijac I 250 250 700 1500
New Illiac 3 3 15 30
Fastest Known 0.3 0.3 1 2
Table 5-5
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Consider as an example for timing difficulties the circuit in Figure 5-21:

Figure 5-21

assume that the delays are

3o = ° $ o.
g = ©

and'ﬁhat the input goes from 1 —> O.

Circuit with Race Conditions

If we had instantenously acting elements, we would conclude that z is identical-

ly equal to one, quite independently of the input changes. In reality we have

(as illustrated in Figure 5-22 below) a critical time to where the upper path‘

is not yet able to furnish a 1

i | (or an inverted 0) while the
| lower path has already taken
0 I i | ot away its (directly transmitted)
v A | | : ! 1. Consequently, the output is
| ' | t actually going to drop momentarily
ilEOE‘ .4,?._9']:._ to 0 and then come up again.
O : ) : | =‘t Such intermediate false signals
7, C £ called "transients" can obviously
N : ; o t totally upset the operation of a
i ] logical circuit connected to z.
0 } ' S
Figure 5-22

Timing in the Circuit of Figure 5-21

Theorem 3.

Proof':

In a combinational circuit all transients die out after a time

greater than the sum of all delay times.

The elements clearly can be ordered 1 to k. Then

also

Generalizing all yi's are fixed after 61 + 3

1

= f

4 (

xl e xm) is settled after some 81

= i ' =
fg(xl cee X, yl) is settled after & (61 + 82).

2

novee Bm.
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4, TRANSIENT ANALYSIS BY POST ALGEBRA

Post Algebra will give us a systematicvprocedure to investigate

dangerous race conditions in a logical circuit.
Let us define the following‘symbols:
"L" ... means that the signhal is 'at the one level

"s" ... indicates the transition from the one level to the zero

level, i.e., "the signal tends to ‘0"
"0" ... means that the signal is permanently at the zero level

"e" ... indicates the transition from the zero to the one level,

i.e., "the signal tends to 1"

Actually we have, as usual, bands for the O and 1 signal states in practial

circuits. Our definitions are shown in Figure 5-23.

\voltage

,f?jé?/ "one" band = "1"
/

o) L T €

\QSSE\ "zero" band = "O"

Figure 5-23

I1lustration of the Meaning of O, &, €, 1

The idea is now to examine the behavior of nodes in a network when
some input is made to change. Such an input change would be the succession

O—=>¢€ —=>1 orl —=>3-> 0. If all nodes show allowed sequences, i.e., Oeel

000 or 111 8550, the circuit is safe. If, however, disallowed sequences like
151, OCe0 Od€l appear, the circuit may be unsafe. Visibly disallowed sequences
are those in which a rising signal is not followed by 1 and a falling signal

not by a 0.

Next we attempt to establish some rules for this special algebra:
Consider an AND circuit (see Figure 5-24). Its performance is described by
Table 5-6.
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0
— S —
AND 0 5 € 1
0 0 0 0 0
X
1 5 o | s 5 5
X
- 1
2 € 0 5 € €
X
o 1 0 5 e 1
Figure 5-2L AND Table 5-6

The Jjustification of the table is the physical behavior of AND's, e.g.,

if one input rises and the other one falls, the output tends towards zero.
If we suppose that we have the ordering
0<d<e<1 (5-70)

the AND Table:5-6 says: take the "smaller" one of X5 X5, i.e., 2= minb& xg).

For example, if x, =08, x, = €, then z =% from table; also ® < €, hence the

1 2

rule checks out,

For an OR circuit (see Figure 5-25) we have table 5-7.

PSR
OR 0 3 € 1
0] 0 3 € 1
Xl ‘II’ X S S S € 1
1
z
€ € € € 1
b'd
2
1 1 1 1 1

Figure 5-25 OR Table 5-7

Again the Jjustification is the physical behavior. With the same
ordering of symbols (O < 3 < € < 1) we have the rule for the OR circuit that

=€, x, =1 we have z = max(€, 1) = 1.

z = max(xl xg), i.e., if x o

1
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The ifollowing rules can easily be verified by the tables.

X VX=X \

(xl v XE) VXg =X v (x2 v x324_ NOTE: The duals of these
equations are also  (5-71)

x) (%, v x3) T X X V Xy Xg true.
O+ x=20
Ovx=x

Instead of complementation we introduce an operation called negation. Consider
the operation of a NOT circuit (see Figure 5-26): The truth table for y is
then given by Table 5-8.

X Y
0 1
o) €
X ’(:§:> y € o)
1 0
Figure 5-26  NOT Table 5-8

As before, the physical behavior of NOT's suggests the table.

Definition of Negation by Cycling

We define cycling by the stepping forward by one unit in Figure 5-27.

0 ———> 1

y € ¢

Figure 5-27 Cycling

vy = x! means that x is "cycled" one step. We have the rule x" = (x')!, etc.,

and visibly x"" = x.
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Now we define the functions

[x' v x" v xl"]l"

P, (x)

[(xve)"vx"]" (5-72)

P, (x)
<P3(x) = [(x ve)" vy\;"]"'

andy=;c'by

y =X

Py (x2) v oy(x") v ¢3(x'") (5-73)

Although we certainly cannot write xx = Oand x v X = 1 in the

general case, we still have involution and DeMorgan's theorems:

=, - x2) =X, VX \‘

1 2
T, vx) = ;l . Qé > (5-74)
o
(X) =X y

Example of the Use of P. A,

Consider a FF of the kind discussed in Chapter II and shown in

‘Figure 5-28.

From the equivalent OR-NOT combination FF we

o —y find that the following sequencing table is
1 1

X, —» 1 — Y5

true.

Figure 5-28 Flipflop

X, Xy yl Yo State of FF

0 0 0 1 "

€ 0 € o) transition
S SR 1 0

5 0 10 "o"

0 0 1 0

0 € B € transition

0 1 0 1

0 5) o 1 e

0 0 0 1

H
[
\Q
by



Example 2

Consider the circuit of Figure 5-29 and let us examine the transition

110 = 180 => 100 at the input. Assume SA =-80 =0 * 6N >0

2
']

»
»
»
»
»
ok
» 2
N

i1 O 0 1
€
0 © o) 0]

Figure 5-29

Clrcult to Form z = xl x2 v x2 x3

Since the sequence 181 at the output is an unsafe sequence, Post

Algebra warns us about a potential danger.

One method of avoiding this danger is the use of a trick(which will

be discussed in more detail later): From Boolean Algebra we know that

XlXEVX2X3=XlX2VX2X3VXl3

The apparently redundant x. X, term actually eliminates the unsafe sequence.

173
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CHAPTER VI

SEQUENCING

6.1 Asynchronous, Speed Independent and Synchronous Circuits

There are three well-known ways of eliminating the unwanted effects
of transients inlogicalcircuits: asynchronous design, speed independent
design and synchronous design. We shall discuss the circuit modifications to

be made to the circuit of Figure 5-27 in the three methods.

1. ASYNCHRONOUS DESIGN

Principle: We introduce artificial delays which ensure the proper signal timing
by creating delay asymmetry in the circuit. In the example of the

last section we choose a delay A in

the upper path such that A >> GNOTO This

will certainly eliminate the transient

in the 310 -= 150 — 100 input transi-

tion. Unhappily this very modification

now introduces a transient in the
130 -+160 -»110 input trensition (all
other input transitions are safe!).

Pigure 6-1

Asynchronous Modification of the

Circuit in Figure 5-27

2. SPEED INDEPENDENT DESIGN (MULLER THEORY)

Principle: We provide additional internal paths and interlocks which make the
output transition independent of the relative speeds of the elements

inside.

As noted before x x v x2x3 = xlxg‘v x2x3 v X x3, hence the circuit
is modified to have the configuration of Figure 6-2. It can be
proved that no transients will appear for any input transition

starting with a steady value.

Note: Depending on the input sequence, different subsets of the circuit

control the output, and this control path operates in a
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sequential fashion, i.e., one can often say that in a speed

independent circuit the effective topology varies wiﬁh the

input. In our example only "box 1" is used for the
‘10 - 300 transition, only "box 2" for the 131 —=QLl

transition, etc.

e mte  —p S—— o o o o—

607&2{

— e e e W — o i w— — vt wm w g— - v | - o

—— o a— A — —— w— ——— - ] —— o—

- — e e e a— e . waw ww o w—— m—— ¢

Figure 6-2
Speed Independent Modification of the Circuit in Figure 5-27

3. SYNCHRONOUS DESIGN

Principle: Inputs are periodiéally‘strobed by a clock signal ¢ and internal
' paths are provided with compensating delays so that each subsection
of the circuilt produces exactly one clock period (Télock) delay.

Note: This method in general presupposes very close time tolerances.
Tt might actually be necessary to strobe the outputs by a
second set of AND's. Lo

Ay

’ In this design we choose
o therefore

2 %%xor * % = Tetock

i 5 =8 : 7
(assuming that a0 = B or
= 0).

SOSLOSEORI®

Figure 6-3 ,
-Synchronous Modification of the Circuit in Figure 5-27

-20k4-



As an example congider the 1,1,0 - 1,0,0 transition:

% . ¢ z(1,1,0) =1+ 1v 0. 1=
4
2(1,0,0) =1 -0v 1l °1=
e I]' {[/ when the‘output appears, i.e.,
r 7 127' 7 >C one clock period after the
% \ : input was applied:
4 3
: | 20 (v+1)1] = £[x; (vD), %, (vT), x, (vE)].
5 / 0 ! 3
|
- + > ¢
l i | |
“3" 3 i |
! s [
‘: 8 !
0 Lo i O !
: !
o = ‘ ; » C
Ze e SN |
[ — . »

Figure 6-k4 ‘
Timing in the Circuit of Figure 6-3

Remark: The example above shows that a synchronous combinational circuit behaves
in many ways like a sequential circuit. The present output depends on previous
inputs, i.e., there is memocry. There is, however, one important difference:

the initial internal state is completely "flushed out" after V clock pulses,
where V is the maximum number of layers of logic between input and output.

The initial internal state of a synchronous sequential circuit can influence

the output for any length of time.

L, THEOREMS ABOUT SYNCHRONOUS CIRCUITS

Theorem 1. Any logical circuit can be converted into an equivalent synchronous
circuit.
Proof., We shall show that an arbitrary subsection can be converted. Then

the theorem follows by converting the finite number of subsections

of the original circuit one by one.
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e
; ‘
Consider the subsection shown in Figure 6-5,

Figure 6-5 Subsection of a Logical Circuit

The equivalent synchronous circuit is shown in Figure 6-6.

Figure 6-6  Synchronous Equivalent of the Subsection in Figure 6-5

The additional delays A aré éhdsen such that (Sk being the
inherent delay of B ete. )

sk + % = 51 4+ Aj_ = 6z + A}e = T = clock periOG (6'1)

Furthermore, we introduce strobing AND circuit whenever direct

inputs occur.
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New Definition of y'

In synchronous circuits we shall designate by y' the value one
clock period later rather than the '"value if all arguments were fixed" as we

did in the last chapter:

yi(vT) = yl(va)T] = £, [, (VT), ...,y (V)] (6-2)

In the example we have

yi(T) = £;[x,(0), x5(0), ¥, (0)]

1

= £, [x,(0), x,(0)]

e
N -
=]
p—
1

Ty(T) = £,[x,(0), 3, (0), ¥;(0)]

The clock period will be dropped from the argument in what follows, i.e., we

shall write
y(vT) = y(v) (6-3)

If now we assume that the initial state is known, i.e., that all signal values

of the internal nodes are given at t = O (as well as the inputs), we have

P
'—l
g
1l
<
-
TN
(@]
~—
i}

£,[x,(0), x,(0)]

yi<l) = Y{(O) = fi[xl(o)’ XS(O), yk(o)}

—_ )
and vy (1) = yy(0) = £,[x,(0), ¥, (0), y,(0)]
From the y's at time T and the input at T (i.e., the set yk(l), (l); yz(l)
and x (l), (l), etc,) we can calculate the next motions of the 01rcu1t, i.e.,

the 1nternal states at time 2T, etc.

At this point it becomes convenient to introduce vectors to represent
input combinations, the set of signals at the internal nodes and finally the
output combinations. These vectors may be thought of as column vectors,

although other interpretations may be useful.

Definition: Let 8 = 2°, M = 2" and N = 2" where s is the number of internal
nodes, m the number of input lines and n the number of output lines.

It X5 +eo X . 1s a given input, yij des ysj a given internal state
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and‘zlk cee 2o @ given output, we define input vectdrS‘Xi;j '
state”vectorSvYd,~and,outputrvectcrﬁ’zk by -

X = e oo x4} tel..M |
Yj = {yu, ac.’-e, SJ} J &= l .0 S (6'“)
Zi(= {Z $ o9 g zm} k: 1 L4 N

If we want to 1ndica£e=values at clock period v we may also write

'l’x(v) = {xl(v)r wu‘xm(\’)}' | A

| Y(V) = {yl(v)) °vag ys(\’)}‘ ' Sl A (6'5)
Z(V)a{zl(\/), 9009 Zn(V)}
Symbolically our equations (6-2) or the equivalent (5—69) can now

" be written : ‘ : '

¥ = Y(v o+ 1) = Fik(v), Y(V)) s (6-6)

We see, then, how successive internal étates can be constructed
iteratively. It is, however, not clear how the outputs can de .
‘obtained. It is sometimes useful to consider the z's as forming
together with the y's e new set of nodes but this can lead to

_confusion. We shall therefore until further notice make the
following. ' '

Convention: It will be assuned that we have an instantaneous decoder (i.e.,
an infinitely fast combinational circuit) which forms the z2's either from
the y's alone (Moore machineg) or from the y's and x's (Mealy machine).
Symbolically ' : - ‘

- 2(v) = olY(v)) (Moore ) B (6-7) -

o 2() - HXG) YV (ealy) 8



Theorem 2.

Proof.

Theorem 3.

Proof.

Theorem 4.

Proof:

In any synchronous circuit (combinational or not) the initial
condition of all internal nodes and the sequence of all inputs

determine uniguely the output behavior.

(6-6) shows how we can calculate Y(n) recursively:

¥(1) = F[x(0), ¥(0)]

Y(2)

F{x(1), Y(1)} = P{x(1), Fx(0), ¥(0)1} , etc.

Y(0) and the sequence X(0), X(1), etc., therefore determine Y(n).
Similarly this sequence also determines Z(n) since Z(n) = G[Y(n)]
or H[X(n), Y(n)].

If the inputs are held fixed in a synchronous circuit of s elements,
the outputs show, after not more than S = 2% clock periods, constant
signals or a cyclical behavior of the outputs, the cycle length

being < 2° clock periods.

Assume that we start from Y(0),which is one of the possible
internal states Yl ;,¢ YS’ Let us wait S clock periods: we have
then gone through S + 1 states, i.e., a certain state Y(v) must
have occurred twice. Since the output X is constantly equal to
X(0) we shall therefore have the condition X(0), Y(v) both at
clock period v and again before § . From this point onwards
everything is repeated by virtue of (6-6). Tt is also obvious
that the cycle length is < S = 0¥ periods. (6-7) or (6-8) then
show that the output is cyclic With‘a qycle length of < o8 periods,
The case where Z is constant simply corresponds to a cycle length

of one period.

m

.Any system ¥ % fi(xl,e,,,x , yl’ff"yé)’ 1.0, Y(v +1) =
F[X(v), Y(v)] can be realized when infinitely fast combinational

‘logic is available (or the cloék period is made long enough).

Figure 6-7 below shows how one can simply delay combinational outputs

(formed in a time short compared to the clock period) by one clock

" period before feeding them back into the circuit. The combina-

tional circuit can obviously be made to give instaneously all

fi(xl,,..,xm,yr‘.,. y,) functions. The description of its operation

with delays inserted is clearly yi = fi.
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b4 (v) initislly,

after y's are fed back

%y (v) initially:, o
X (v +1) ————b
after y's aré fed back

yylv + l)

v! (at v instead of
!
, !
) Infinitely Fast l
: Combinational Logic |
S !
| includes
' zloqozn
|
|
t" |
! |
)
|
y!}(at v insfdad of
'W(Ez)i
()
Figure 6-7 Model of a General Synchronous System
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6.2 State Diagrams and Matrices for Synchronous Circuits

1. STATE DIAGRAMS L {

i

A state diagram is a linear graph in which Eiféles represent the set

(or a subset) of states Yl,...,Y and arrows the transitions under given input

S
conditions Xl Seees lehsually written next to these arrows). The state
diagram may also contain information about the outputs Zl,...,ZN: in the first

two examples, however, we are going to neglect the outputs.

Example 1. Suppose that a simple minded animal has the three states "Eating"
Lxample L
(Yl), "Awake" (YE)’ and "Asleep" (Y3) and that the transitions are cause by
four inputs "Darkness" (Xl), "Light" (XE)’ "Stomach full" (X3), and "Smell of
food" (X, ). Then Figure 6-8 shows a possible state diagram.

L S

XI /X3

X3
| I[ X

2,

&ﬂo& &ﬁ“&

Figure 6-8 State Diagram for a Simple-minded Animal

- It is to be noted that transitions only occur periodically (when
the "brain" scans the sensory perceptions) and also that as long as it is

light, food will be absorbed, except when the stomach is full.

Remark: It happens quite often that the complement of the signals at internal
nodes is available. If this complement is formed instantaneously (as in the
two outputs of an Eccles Jordan flipflop) it is not ﬁecessary to introduce
separate nodes for the complement. One sometimes expresses this by saying that

we only have to choose the cardinal points, i.e., a subset of outputs inside

the circuit which completely define the state.
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Example 2. Consider the system shown in Figure 6-8 formed of three flipfiops,

various gates and an input x The internal nodes are 1, 2 and 3 with signals

1
Yys Ypr ¥y TO simplify the argument we shall suppose that il’ §2, §3 are
also available. We shall also assume that each flipflop has a time delay

equal to the.clock period and that other element act instantaneously.

. ‘ )éb
R} S S IR e W
YY) FF2 1 FF3

Figure 6-9 Three Flipflop System

The "setting" equations of the FF's {i.e., the combinations setting
the flipflops to 1 and to zerb'respectively) are:

for . T B0y = xyy foln) =Xy
FF3 By(¥3) =3y vy, Bolyp) = WY,

Now we are in the position to constfuct the transition table (see
Table 6-1) of the system. The question is: glven a state, to which next ‘
‘ 1 = 0 and for the condition x; = 1.
It should be noted that care has been taken in the design of the circuit to

avoid "1,1" inputs to flipflops. .

state will the system go for the condition %

Although we can simply operate with states designated by (0,0,0),
(0,0,1) and inputs O and 1 respectively, our example can be converted to |
ﬁore general notation by calling Xl the input O and X2 the input 1. Similarly
we can assign the names ¥, ... ¥g to (0,0,0) through (1,1,1). The relationship
between Y and Y' for the conditions Xl
Flow Table given in Table 6-2. Figure 6-10 gives two equivalent forms of the

and X, are then expressed by the Huffman

state diagram. ‘
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TABRLE 6-1

Signsl Changes in the Circuit of Figure 6-9

TABLE 6-2

for the Circuit

Huffman Flow Table
of Figure 6-9

Yt

for X2

for Xl
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Figure 6-10a Unencoded State Diagram

Figure 6-10b Encoded State Diagram

We see now that the circuit admits two types of cycles (0,1,0) -
(1,1,1) - (0,0,1) - (0,1,0) ... for the input sequence l,O,(b%), l... and
(0,1,0) » (1,1,1) - (1,0,1) > ... (1,0,1)— (0,0,1)— (1,0,1) for the input
sequence 1,1 ... l,O,(gf), 1..., ie., the input sequences which produce cycling

ar‘é l,o,x,l} 2900 .l,o,x’l,‘ ona‘ and l,O,X,l,O, "3 ooo..
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Rules for State Diagrams (including output information)

1. From a given state draw arrows to all states which can be attained by the

allowed inputs in that state.

2. In case a state does not admit all inputs two cases are possible: either
certain inputs are actually prohibited or the transition is simply not
defined for these inputs. If the latter is the case, it is allowed to

define the transitions for these inputs.

3. Every input must lead to a well defined state, i.e., the machine must

be deterministic.

4, 1In the so-called Moore-model it is assumed that the outputs depend only
on the state. In such cases we write inside each circle representing a
state the corresponding output, i.e., terms of the form Yi/Zk (called
state/output pairs). '

5. In the so-called Mealy -model it is assumed that the outputs depend on

the state and the input. In such cases we write next to each arrow the
input and the corresponding output, i.e., terms of the form Xj/Zk (called
input/output pairs). If several inputs cause a given transition, we write

an OR-sum.

2. DESCRIPTION OF MACHINE BEHAVIOR

The following items are necessary to describe completely how a

machine behaves:

1. Alist of a) Inputs ' DOPREY XM'
b) Internal states Tiseen Yg
c) Outputs Zyyeur T p
where X = {Xl, cesy xm}

Y

]

VAR

I

Z {Zl’ ey zn} ~as discussed in (6-5).

2. A transition map T written symbolically

T-A{Yif..x

. —>Y£‘} | (6-9)

and usually given in the form of a Hoffman flow table (see Table 6-2). This

is a matrix form of the function F in (6-6).
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3. An output map .
a) For a Moore machine, ) is denoted symbolically by
Q - {Yi -‘—)Zl,e} (6-11)
This map is usually written in the form of a column vector associated
with {Yi,.a.,YS}. Tt is the matrix form of G in (6-7).
b) For a Mealy machine, Q is written symbolically
ooy, o x -z} » (6-10)

It can take the form of addition columns in the Huffman flow table or

of a set of output vectors Ql = {le’Z..L‘,’2 zlS}’ 92 = {2212‘22 ZQS}’
etc,, associated with the states Yi""’YS and the possible inputs

Xy a+e0,%ye Here we have the matrix representation of H in (6-8).

Remark 1: 1In an incompletely specified machine some of the outputs or

transitions are not defined. We then write a hyphen in the corresponding posi-
tion, except if the transition is prohibited: we then write a O,

We shall only discuss Mealy machines in all that follows, In order
to facilitate the discussion, we shall now introduce two further types of
matrices, | n

The Connection Matriz (Hohn)

The general element c,, of the connection matrix

1 _
C = [cij] , o (6-12)
is given by
ey = xa/zd v xb/ZB Vo oees | - (6-13)
where Xa, Xb +v. are the inputs that produce a transition from state Yi to state

Yﬁ and %a »++ the corresponding outputs, Note that we are only talking about
Mealy machines. |
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The Transition Matrices

With the input X, we shall associate a transition matrix

k
L (4K
™ = )] (6-14)
where
0 if Xk does not produce transition Yi -»>Y
ko _
£y = (6 15)

1 if X, does produce transition Y, -an

It is to be noted that due to the deterministic behavior of machines

a transition matrix has only one 1 in each row,

Example. Take a Mealy machine with a state diagram as shown in Figure 6-11.

XI/Z/VXZ/ZJ, - X//Zb

% /7

Figure 6-11 Mealy Machine

Here we have the connection matrix

| 0 (xllzl v xglzg) 0
c=| o | Xl|Z2 , X2|Zl
xllzl x2122 : 0

and from the definition
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Theorem 1.

-Proof.

- - -

z. 2]

17 | % ; Gb=1%
z 7

1 | %]

Let Xi be an input and T the corresponding transition matrix. Let
Zij be the output for input X, and internal stateYﬁ (i.e., the

[] ' . .
Zij s are amongst {Zl ...-ZN}). rForm the diagonal matrix

i S B Y | (6-16)

1 ° RENS

‘Then the connection matrix C is given by

c=1 UiTikk L o (6-17)

' where the sum is to be interpreted as an OR-sum.

The process described above takes T" and multiplies its successive
rows by Xi/Zil’ » |
mn, then the product will give Xi/Zim' If any other input Xk also
has a 1 in position mn, we add Xk/ka’ i.e., if inputs X, X_ ...
give the transition Y — Y we shall find in 2 X /2, v Xk/ka'°°°
Visibly the outputs are precisely those that correspond to the-

Xi/ZiE’“étc' Suppose that T has a 1 in position

inputs and staté %@vi.e;, those we would expect in the connection

- matrix.
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Example. Take a machine with a state diagram as shown in Figure 6—12, Form
C according to (6-17).

X, /2,

e () ©

X 1Z,\ Xa[Z 4,

Figure 6-12 Example of a Mealy Machine
' . G
Xl/le _o o1 | xe/z21 0 1
0 xl/zle j1 0 0 X/7,1]1 O

where the second factors are simply the transition matrices ot and_T2 cor-

responding to Xl and X2. Since

'211 = (output for X, in state Yi) =7
Zy, = (output for X in state Yé) ='Zl
Zzl = (output for X, in‘state Yl) = Z2
Zop = (output fo? X, in state Yi) = Z,

as is seen from the state diagram, we can write

. X%, X,/2

 Xi/Zi v /2, O

C =

This is indeed the comnection matrix as shown by direct inspection.
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Remark

If a row of zeros occurs in C in row m 1t slmp.ly means that we cannot-

leave the correspondlng state Y

Theorem 2.

~ Proof, |

- un of the product.
" The element t

Theorem 3.

; 5Pr¢of.

V(Ti'l“j) gt

Now row'm of Tl'has'a sing1e 1 at most:

‘ column p of '1“j
a secopd 1 in row m of the product.
19 hed a 1 in position t

'The,produet of two transition matrices is a possible transition
matrix itself, i.e.,, at most & single 1 can occur in a glven row.
By gefinition of a,métrix product, the‘element mn -of the product
of two transition matrices T and ™ is given by

mk

‘let it occur in column A
if and
we chall obtain a 1 in position

(a particulér value of ), Consider now column n of TY:

only if 1t has a'l in position t,
Now consider an.element tp with p # n in row m:
giving: a 1 1S’Still the same. Let us look at
Tif again the 1 occurred in position Ap we would have
But this would imply that

s l.e., two 1's in. the same row.

mh

| , o 09 B
This being impossible, the theorem is proved.

The resulting state after the input sequence X, +eo X is spplied

to a machine 1n1tia11y in state Y&, is given’by the.vth row af”
the. column vector Y ‘

Y* = Tl T2 o 90 Tk ° Y
o . . B (18
| ol | o o (6-1 )
where Y = : g
¥q

For a sihgle;tfansition*we havé ,
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F-S -

Ztin
j:

*

Y =t y- :
g
Ztls.Y
j=1 8979

Suppose now that we start from Y, and that t&x =1, i,e., that under
the influence of Xl,Y - Y Then our assertlon is that

S 1

jgltvjyj =0V ... Vv tv)\Yx V... 0=7Y

which is correct. Now for two transitions we have

Suppose that we start in state YQ and that under the influence of Xl,
1

Yv-e Yﬂ’ i.e., that tvﬂ = 1., Also suppose that under the influence
. 2 . v

of XE,Yn—e Y 0 i.,e., that tﬂu = 1, Then obviously Yv >Yﬁ under the

influence of X

12 folloved be X2.

. * 1.2 .
Consider the vth row of ¥ = TTY, i.,e.,

Z Z tl 2 = tl . t2 Y vOvOoOvoO...

}\_ljlv%.?\. v M 1
=1-+1-.-Y =Y
M M

Again this agrees with our direct observation. Clearly this method
can be generalized to any number of transitions, i.e., the theorem

is true.
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¥ .
Remark: If ¥ has a zero, it means that for the given input sequence the
result is not specified. One says that such input sequences are not allowed.

Example. Take a state diagram according to Figure 6-13, neglecting outputs.

, @ ‘X, @xz'

Figure 6-13  Simple Machine
Here fo 1 » 0 0}
’ T = | =
0o 0] T 7 lo 1

TlTE‘

PN D | IS I
FEEE o ofly, 17 Lol

, input sequence"XlX2 leads us to state

and therefore

L}

o
e

meaning that if we start in state Yl
Yé, while if we start in Yé the result is unspecified.

3. INPUT/OUTPUT POLYNOMIALS. SEQUENCES OF GIVEN LENGTH

Since we have inputs Xl cos XMAand outputS‘Zl coe ZN there are
M - N possible input/output pairs of the form Xi/zk. Let us number them
Pl e e Pa s ey Pﬁ '.".«PMN. ’
Definition: An input/output polynomial of degree r is the OR-sum of products
having each r factors taken from the set Pl oes PMN'

It is natural to interpret the product PaPB = (Xi/Zk)(Xj/ZE) :
(say) as meaning that we consider the input sequence Xin and that the obgerved
output sequence was zkzz. A product of length r then corresponds to a definite
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input sequence involving r-inputs and adefinite output sequence involving r-
outputs, i.e., each term of the OR-sum in the input/output polynomial represents

a certain input/output sequence of "length r."

In & similar way we shall interpret the OR-sum P v PB = (Xi/zk) v

(XJ/ZE) as meaning that input X, or input X, has been applied, the output

J
being Zk or Zﬁ depending on the case, More generally an OR-sum of r-factors
shall mean that the input/output sequence corresponding to the first term

or that corresponding to the second term, etc., has been applied.

It is easily seen that we can operate with these input/output
polynomials according to a set of laws not unlike those of Boolean Algebra:
There is a O-element, namely a polynomial "O" corresponding to no further

stepping forward of the clock time. There is, however, no analog of a l-element.

Rules for Input/Output Polynomials

Let f,g and h be possible polynomials. Then

1. fvg=gvf (commutativity w.r.t, v) ‘ (6-19)
2. fg # ef (non-commutativity w.r.t. '5 (6-20)
3. fvf=r¢F (idempotency w.r.t. v) (6-21)
L, fvO0o=0vf=rfF (0 is the unit element for v) (6-22)
5. £f*0=0-+f=0 (zero annuls a sequence) (6-23)
6. (fveg)vh=7fv (gvh) (associativity for v) (6-24)
7. (fg)h = £(gh) (associativity for °) (6-25)
8. (fvgh = fh v gh (distributivity) : (6-26)
9. f(gvh)=*~fgvfh (distributivity) (6-27)

Remark 1: (6-23) may astonish at first sight. All it means is that a sequence
represented by f (say of length r ) cannot be made into any longer sequence

when the clock is stopped.

Remark 2: The set S of all input/output polynomials is (comparing to the
definitions in 5.1) a commutative idempotent semi-group (with.a unit) with
respect to v. It is a non-commutative, non-idempotent semi-group (with a zero)

with respect to -.
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The rules given gbove allow us now to calculate powers of the con-

nection matrix. .We have

Theorem 4. The entry mn in o gives all input/oﬁtput sequences of length r

starting with Yﬁ and ending with Yn'

Proof. Let us denote by (C* )mn the entry mn., By the rules of matrix

multiplication (with + replaced by v!) we have

: S
¢ )mn = ) c_.c ces C
(c*) z :

Ao o V=1 mk‘xu

vn
where 2, is taken in the OR-sense. fAll these sequences are of length
r since they correspond to polynomials of degree r. They éll start

with Yﬁ because the first term is ¢ fwhich may be an OR-sum of

several input/output pairs) and allman-with Y, because of ¢ .

They also go via all possible intermediate states since A, H, ...
can take on all values between.l and S. Of course it is entirely
possible that no sequence exists, i.e., that for instance ¢, =0

. AU
for all lambdas which make c_, # O: then (c¥)y =o.
mA mn

Example. Take the machine shown in Figure 6-1k.

X2/2,

X2 )Zz

Figure 6-14 Binary Pulse Divider

As is easily seen, this is simply a binary pulse divider.
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xl,/:zzL xe/zl_ X1/Z1 XE/Z]. ' "‘

X2y X% | X X/

il

(%,/2, )00/ 2, v (%,/2, ) (/7)) (X/2, ) (X2 W/ 2 )%, /2, )

(xg/zg)(xl/zl)v(xl/zl)(xg/zg) (xg/zz)(xg/zl)v(xl/zl)(xl/zl)

meaning, for instance, that we can go from state Yl back to itself in two steps

le or X2X2, the output sequence being in the first

case lel?and Z1Z2 in the second.

by the two input sequences X

6.3 State Reduction in the Case of Few Input Restrictions (Hohn and Aufenkamp)

1. ALLOWABLE SEQUENCES, EQUIVALENT STATES AND MACHINES

Hohn and Aufenkamp have developed a method which allows:the simpli-
fication of machines in such a way that the input/output behavior is unchanged
but the number of internal states Y, ... Y of the "black box" is reduced.
This method is at its maximum efficiency in those cases where all inputs can
be applied to allvstates (no "input restrictions") but it remains useful in
cases where there are a few input restrictions. In case there are a great
number of input restrictions, an extension of the method--due to Aufenkamp--

can be applied: This case will be treated in Section 5.

Definition 1: Given a state Yi’ a sequence is called allowed if 1t corresponds

to a path on the state diagram which does not violate any input

restrictions.

It is to be noted that in a machine without input restrictions--

also called a "completely specified machine'"--all inputs are allowed in all states.

Definition 2: The state Yi of a machine M is said to be equivalen&_to a state

YS of M'if all their allowed sequences are identical.

Definition 3: A machine M is said to be equivalent to a machiﬁe M' if for every

Y, in M there is at least one equivalent state YS of M' and vice

versa.
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Let us:now agree towritethe transition of a state Yi or a set of states

{.., Yi ...} into asingle state Yk or a set of states {... Yk ..,} under the

influence of Xj with an output Zm symbolically

X./%
J m
Y, —> Y
i k
X./2
g m
or TR LS S

The general idea of state reduction can then be introduced by the following

example,

s

Example of Machine Reduction

Let M be represented by the state diagram
shown in Figure 6-15. Here there are no
Xi/2, XL/Zz input restrictions.

Figure 6-15

Example of a Machine
without Input Restrictions

The connection matrix of M is visibly

- | -
/2 : %[ © °
.. X/2, : 0 X,/% 0
X,/ : 0 0 X,/2y
_X2/Zl :xl/zl 0 0 1



Here we see that

X2/22

{Yé, Y3, YL} _—> X

1
,Xl/zl .
{t, X, Yu} — {1, Y Yh}

the latter meaning that the states Yé, Y3 and Yh are permuted by input Xl°

It we "collapse" Yé,'Y3 and Y, into the state Yé of a machine M'

and call Yl now Yi of M' (for consistency), it is clear that the input/output
behavior of M' (shown in Figure 6-16) cannot be distinguished from that of M:
They both respond in the same way to a given input sequence and are therefore

equivalént.

X[, | Xo /2,
(X
’/// y

Figure 6-16 Reduced Form of the Machine in Figure 6-15

X2 2,

Note that this example simply shows that reduction is possible.
Instead of discussing more cases and deducing rules from them, we shall treat
directly the general method developed by Hohn and Aufenkamp. It will turn
out that if C can be partitioned (see example) into submatrices having in each
row identical entries (obviously, however, in different columns!), all states

corresponding to a given partition are equivalent!

2. PERMUTABLE MATRICES

Definition 1: A matrix containing input/output polynomials as elements is

'called a permutable l-matrix if:

1) The same entries appear in each row (but perhaps in dif-

ferent columns, perhaps all in the same column!)
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2) All non-zero input sequences are different in each row.
3) All non-zero entries are OR-sums of the product of r input/

output pairs.

Remark: The second condition simply means that we are talking about a

deterministiec machine.

Definition 2: A square matrix is symmetrically partitioned if the columns are

grouped in the same way the rows are.

Example:
o te s w )
21: "2 %23 II %21 %25 (A A A
A= 31: ®30 a33,: | 5| T [fa fe e
%y : e Cu3 | b s | A3 A A3 |
%511 %2 %53 : "5y 55
where A, =8,.; A, = [ag, 13], = [a aq) 15], ete., is symmetrlcally

partitioned because (g01ng downwards) we have groups of 1, 2 and 2 elements

and going across we also have groups of 1, 2 and 2 elements.

Theorem 1. The sum of two permutable r-matrices A and B is a permutable r-

matrix provided each row in A has its set of input sequences distinct

from the set of input sequences in the corresponding row in B.
Proof. We can directly apply the definition 1 above,

Remark: It is evident that permutable matrices are not necessarily square

matrices.

Theorem 2, Thebproduct of a permutable r-matrix and. a permutable s-matrix is

always a permutable (r + s)-matrixlif the product can be formed.

Proof, Property 3 of the definition 1 is evident. Let us consider property

2: all non-zero input sequences in a row must be different. Let
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], B=[b,.)

A= lagls iJ

Then element ij of the product is given by (Z ->OR-sum)

(AB)ij =2 2, bxj

(We shall omit the limits for A in all calculations: they are 1
and S respectively.) We want to show that if J f J the input

sequences in (AB) . are different from those in (AB)ij and that

i3 Jd
for a given j all sequences in (AB)i. are different for the 4if-
ferent values of A. The latter point is evident since the
sequences In a,, f the sequences in aik when A f;é, A being a

permutable r-matrix and the interpretation of a; is "sequences

AN

in a, followed by sequences in bhj": The aik-part being different

N
the whole sequences must be different. This argument still holds
when we consider j f J and different A's. The only new case is

then an identical A and j # j: Then the sequences in bxj # from

the sequences in b, ., because B is a permutable s-matrix and because

AJ
of the above mentioned interpretation of aiKbXJ'

Lastly we want to show that property 1 holds, i.e., that the set of
all entries in a row is the same for each row. To this end consider

a certain term t = a,,b, ., in row i. Then the part AN must also

AN A £
occur in another (arbitrarily chosen) row i as 8.5 since A is
permutable. Similarly the part b)\"j must occur in row A of B as ?ﬁl
since B is permutable. Hence t aﬁﬁears as a; b in row i. _—

A

Remark: We shall use below an interesting property of two symmetrically
partitioned square matrices A = [aij] and B = Ibij] where the partitioning is
identical: one proves easily that in forming the product it is allowed to
multiply the submatrices together as if they were single elements. It is also
noteworthy that all submatrices multiplied in the operation are conformable
(i.e., the number of columns in the first factor equals the number of rows in

the second one).
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Example. Let

and set
A

12

21

22
Then

- AB-

L}

i}

11

— -

2l

31

11

21

B2

32

AiBp v

AoyBrn v

since for instance

A

A

11811 YV AeB

le)p 813

3L

810 813

22 %23

32 33

23

33

B

Al? 2l

AooBoy

b

1i

%1°11 7

11

2l

22

A

12

1B v

) e
Po1 i Pop

| b3, b3

11
= [y, ®,4]

[ o0y

Rl

'b22 b

| P2 P33
A1oPopn

Ay Bio vV AxoBos

[

-23@-

812 %13

(819017 V 815bp)

31

83037 )




Py Pog

fl

L ]

] vla

Aj B v AjpBy, = 8g,1by, By g 12 213

P3p P33

= [allbl2 allbl3] v [(algb22 v al3b32)(a12b23 v al3b33)]

voa,. b, )]

bos v a13b32)<a11b13 V 815055 V 813D

(ay1b1p v 25

801 8o o3| Ppp
Ay1Bry V APy = . R . . b
| *31 | 732 33| 731
| 81P11 850001 V 85303y
= v

~a31b11 _a3eb21 V 834ba)
851011 V BopPpoy V 8303

| 231°11 YV 230%1 V 233P3) ete.

Theorém 3. If a given symmetrical partitioning of a connection matrix C

(say C = [Cij

partitioning of the rth power of C (say C' = ICij]) will result

]) results in permutable l-matrices, then an equal

in permutable r-matrices.

Proof. The theorem is clearly true for r = 1. Now we use induction:
suppose that the theorem holds for r = k, i.e., that Cij and C?j

are permutable matrices. Since

Ko F-xc. K

iNTAS

by the previous remark, we conclude from Theorem 2 that each product
Ci)\Cl;:j is a permutable (k+l)-matrix. Furthermore there are no

k k .
Ciﬁgﬁj and Ciﬁcﬁj where A f A because C 1s
a connection matrix and therefore Cix End'Cixfhgve no common input se-
quences. Therefore by Theorem 1 the OR-sum 3. Cixcij is a permut-
able (k+1)-matrix.

common - input sequences
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3.

2)

3)

L)

5)

Theorem 4. " If a connection matrix C can be symmetrically partitioned into

permutable l-matrices, all states within a submatrix Cij are

equivalent.

Proof. Consider a sequence of input/output polynomials of length r given

by the terms in Cr. By definition we have partitioned C, and

therefore also Cr,into submatrices C?j

r-matrices. Hence the input/output sequences for all states

which are permutable

inside a submatrix are identical, i.e., the states in a submatrix

are equivalent.

THE HOHN-AUFENKAMP ALGORITHM FOR STATE REDUCTION

Separate the states in the connection matrix C into groups of maximum size

lY 2Y + .. such that there is no overlap, and such that all states in a

given group have the same input/output pairs fisually in different columns).

If the partitioning is trivial (i.e., each group has one member only),

the matrix cannot be reduced.

Reorder the connection matrix C by putting"lY;first, then‘?Y, etc., and
also reorder the column in the same way, i.e., partition the result sym-
metrically: if all matrices are permutable we have found a reduced
equivalent machine.

If the submatrices are not permutable, separate the states inle into

llY 21Y 31

s Y, etc., such that the rows in each new subgroup in the first

column have identical entries (i.e., repeat essentially step 1).

Reorder C according to llY, elY, 31Y, cens 12Y, 22Y, 32Y, ... and partition

the result again symmetrically (i.e., repeaf essentially step 2).

Continue steps 3 and 4 until all matrices are permutable (meaning that we

succeeded) or have only one element (meaning that M cannot be reduced).

Theorem 5, Let the final partitioning lead to groups of states lY, 2Y, os o QY

(Q < 8, where ¥, ... Y5 are the states of M) and let the submatrices
- corresponding to this flnal partitioning be Cij (i,5 = ce. Q)
Now place all states in ly by one state Y{ of M', Describe M' by

-a matrix obtained by putting in position ij an.entry dij = union

of all entries in C . (see Figure 6-17). Then the reduced machine

M' is equivalent to the original machine M.
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Proof.

- Yl
Jy _ ~ 3 -
1 l ! I ' '
_I _ i ' l |
=TT 7" ""”r" R e e R
| : | I [ l
[ |
— |
_._.._..]_..____._:___.._4__... ._..__.l__._._.r___._:____
| |ABO | I l
| IO AB | y! ‘ | | Av Bl
e _°BAL b
| l o i ! ' ? _
oiJ clij

Figure 6-17 Partitioned C-matrix and Matrix of Reduced Machine

Let D = [dij

matrix since d % d (since all entries in C,, are unequal to

id
entries of the C 137 _because the algorithm leads to groups with

]. The matrix D has the properties of a connection

non-overlapping 1nput/output sequences).

We want to show that if we have an input/output sequence of length
r starting in Y' and leadlng to Ys there is an identical seguence

starting in some state of *Y and ending in some state of JY

A1l sequences of length r starting in Y' and endlng in Yj of M'

are given by the element 1j of D" , 1.e.y by

r number of terms

X N
r 7 )
D Z d. a N
( )ij TR iNAp vJ

il

2 (all sequences leading from any state in *Y to any
state in kY) x (all sequences leading from any state

M 4o any state in MY), etec.

Any term in (D ) 3 is therefore of the form (input/output sequence
from a Qartlcular state in Y to a particular state in Y) x etc.,
i.e., there are particular statesin iY, xY ++o Which give a se-

quence of length r and identical to the term of M'.
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Conversely it isAeasily seen that any particular sequence from a
particular state in Y to a particular state in JY will occur in
2 d4..d d . because dij is the union of all possible entries;

iy o Yy
therefore, M is equivalent to M'.

Example. Consider the machine described by Figure 6-18.
XZ/Z/ v X//ZI

Figure 6-18 Machine to be Reduced

The corresponding connection matrix is

1 2 3 L 5 6 7 8 9

i o x/z x/z; o 0 0 0 0 0

2 0 0 o x/z, x/72, o0 0 0 0

3 0 0 0 0 x,/7 x,/2, O 0 0

b 0 0 o o o 0o x/7 X/, 0

C= 5 o o 0 0 0 0 0 xl,*‘zlvxg/zl 0
6| o 0 0 0 o 0 0 )(2/'2l xl/zl

7 ,x_,[/zlvxé/Zé 0 0 0 0 0 0 0 0

8 X1/Z,1VX2/Zl 0 0 0 0 0 0 0 0

9 _X:L/Zl"Xg/Zz 0 0 0 0 0 0 0 0

1
o
w
T




We see at once that a first partitioning leads to:
Y = {Yl, Yo, Yo, Y, Yo, Yo Ya}

Y= {Y, Y9}

Now C must be reordered:

1 2 3 b 5 6 8 7 9
i o x/z x/z, o0 0 0 o | o 0 ]

2 0 0 o x,/z, x/z; 0 o | o 0

3 0 0 0 0 x/z, %/ : 0 0

4 0 0 0 0 0 I VA _)c;/zl 0

c= 5 0 0 0 0 0 0 xl/zlvxg/zli 0 0
6 0 0 0 0 0 o X/72, 770  x/2
S/l o 0 900 o 1o _°

7%y zlvx27'732 0 0 0 0 0 o | o© 0

9 [X, /2, v/, © 0 0 0 0 o | o 0

We note that lY can be partitioned further:
11 ‘
Y = {Yl, Y, Y Yo, Yg)

21
=y, v
2y = {¥, 1}

Again we reorder C as shown below:
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Further separation is possible:

111

Y =

211

311

O N4 O F w

1 e 3 5 8 L 6 T 9
- | ’ -
1 o x/2, %[z, 0 o , 0 0 | 0 0
| |
2 0 0 o x/z, o |){2,/2l 0 | 0 0
3 0 0 o X/, O |l o x/7 : 0 0
i
5 0 0 0 0 X, zlvxg/zlJ 0 o 0 0
| !
8|X, /2,2, O 0 0 0 | 0 | 0 | 0 0
4 0 0 0 o x,/z l| 0 0 :xl z, O
6 0 0 0 0 xe/zl_: 0 o | 0 x/7
_____________ S O g
7 X_L/ZlVXE/ZQ 0 0 0 o 0 o 0 0
9 |%/2, vX,/2, © 0 0 o | o o | o o
we obtain
21,
fr,, v, gt Y=Y, Y
- 2y -
={Y
fr
1 5 8 2 3 L 6 T 9
B ' I I | N

0 o | o x/z. x/z. 1 o 0 0 0

_____ I__.__+.____J_l_.l_:_g_l__|___..._.__:___. -

z

I A R N L R
= DS T |

X, /2, VX, /2, 0 o |, 0o | o 0 0 0 0

.—l————lg——l-————l————r-—-—--l —————— L— —————

o - x/z, 1 o o. | o Ix/z. o | o0 0

%1771 I 2/ 71

""""" iyl nedels st S S S

oAl 10 e Al o
| | |

0 | 0 I1%,/2 | 0 l 0 ' 0 0 le/zl 0

| [

0 | o |x,/z, 1 0 o | o 0 L_O X, /2,
________ .,.._.L...__-L_.._.ﬂ._ ———— —— —_——— e =
X /zlvx2/22| 0, O : 0 : o, 0 0 : 0 0

o |
_Xl/zlvx2 2| ;0 o o o o 1o o |
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The groups are. .now

Py - {y )}
2111Y - {YS’ YB}
?1.1: = {1}
3y - {Y3}
Ty - fn, v
2,

= {Yr Y5}

Ne reordering is necessary, but we still do not have permutable matrices in all

positions. One last partitioning attains our goal: we must split up ElllY into

12111Y _ {Ys}

{%}

EElllY

i}

Aggin no reordering is called for and this time all submatrices are permutable.
The segts of states that are equivalent are thus {YA, Yg} and {Y#, Yé} giving

Yo=Y

1 1
Y= Y
A
Yﬁ = Yé
v -1
%= {4 %}
5= g %)
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Then we have a reduced connection matrix D

1 2! 3 b 5 6 7'
4] ) 0 0 0 x,/2,  %/7 0 o |
Y 0 0%/2 vX,/200 0 0 0
¥l X,/2, v %,/2, 0 0 0 0 0 0
D= Y 0 X,/2, 0 0 0 xe/z]L 0
15 0 ><2/zl 0 0 0 X,/2, 0
4 0 0 X,/2) 0 0 0 xl/zl
Y, i(l/zl v xa/zg 0 0 0 0 0 0 |

and the corresponding state diagram is that of Figure 6-19.

XI/Z,VXL/ZL ;.Yz/ZwX:/i.

Figure 6-19 Reduced Machine Equivalent to That in Figure 6-18

Remark: It is often customary in discussing state reduction problems to call
each "collapsed set" (i.e., the Ys-» {Yézb ...}).by the name of the state of
lowest number in the original set: 1if states YL and Yé and. states Y7 and Yé

are respectively equivalent, the states of the reduced machines would be called
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1 1 5 75
=1 vy = {T, Y5}

Y- {y, v}

Note that there is no Yé and Yé. Often it 18 even desired to leave off the
prime symbol (to avoid confusion with "next states")., We shall follow this
practice and redraw Figure 6-19 in the form 6-20. Evidently topologically
equivalent state diagrams (the equivalence extending to the input/output pairs)

represent the same machine,

X[ 2,V X[
X[,V XelZ, “|2e

Figure 6-20 Different Notation for the Machine in Figure 6-19

6.4 State Assignment

1. SIMPLIFIED METHOD

In this simplified method we shall assume that no complicated feed-
back loops exist inside the machine, i.e., that the internal states Y ,...,Y

1 S
will be determined by the combination of states of an appropriately chosen

-239-



number flipflops--say t--and that we only have to design the AND and OR gates
l,...,XM with the outputs of these flipflops. We shall

furthermore assume that each flipflop is set at each clock period, independ-

combining the inputs X

ently of whether it may actually alfeady be ‘in the right state or not. That

such a simplification is possible will be shown by the success of the method.

The first question. is: how many secondary: variables yl,...,yt

(representing the flipflop states, or more precisely the signal on the "1"-output
side) are necessary. We shall include the answer in' the State Assignment
Algorithm.

State Assignment Algorithm

1. For a machine with S states take t flipflops where
2'>s  wut  2¥lcs " (6-28)

(i.e., the number of combinations of flipflops states must be.at least

equal to the number of internal states!)

This fixes the number of secondary variables’yl;...gyf. Note that we have
chosen t rather than s since there is not necessarily any relationship

between the number of nodes (s) and the number of flipflops (t).

2. Associate arbitrarily (we shall improve on this in the next section) the

combinations of the y's with the Y's by some éoding scheme: .
Yi - (yli, ygi)"'}y.ti) 1 = l e oo S (6—29)

Obviously there may be many combinations of y's which are unused. When
they occur in a table wel may consider the corresponding Y's to be don't-

cares.

l,...,Zn, i.e., determine the

appropriate number of binary input variables m and the appropriate number

3. Repeat steps 1 and 2 for Xl,...,Xm and Z

of binary output variables n Such that we can establish an (arbitrary)

code

X

) k=1...M (6-30)

X, ﬁ)(xlk’ Xopreses

Zj—>(z j=1...N : (6-31)

lj) Z‘Q'j)"')znj)



4. From the connection matrix C write down a modified Huffman Flow Table using

secondary variables. Besides the usual "next state" columns, write down

for each input Xl,...,XM Yyree oy as column headings twice and mark the

two parts‘fo and T Mark an * under f. and Yy in group X

1° 0 k
corresponds to y, = O in the "next state" part of the table. Mark an *

if this input

1
5. Determine the functions fo(yi) and T

under f. and s if vy = 1 under the influence of Xk'

l(yi) which are necessary to set the
flipflops from the table in step 4 and the encoding of the inputs (6-30).
Note that fO(yi) means the "O"-setting function for flipflop i. This

function will generally depend on yl,...5yt and xl,...,xm.

6. Simplify the f, and f, functions by appropriate methods (Roth, Karnaugh).

1
Note that under the assumptions of the present method

£o(y;) = £,(5;)

1
so that we can actually Jjust determine the fl-functions.
7. Design a decoder such that for each combination (xl,...,xm)(yl,...,yi) we
obtain the correct (zl,...,zn) when (6-29), (6-30) and (6-31) are used.

This is a (in theory simple) combinational problem.

Example. Let us reconsider the machine of the last.example, drawn in the form
of Figure 6-20.

Steps 1-3: We have only two inputs Xl and X2 and two outputs Zl and Z2. There-

fore we havem = 1 and n = 1, i.e., one input variable x. and one output vari-

1
able Zl suffice, Let us encode as follows:
Xl—a xl=O
X2-+ xl = 1
Zl-e zl =0
Z2-ﬁ Zl =1

To represent seven states we need three flipflops, i.e., three secondary

variables yly2y3. Let us encode as follows
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Yl - 0,0,0

' YQ - 0,0,1

Y3 - 0,1,0

YL - 0,1,1

Y5 —91,0,‘9

Y7 -1,0,1

YS f>l,l,o

The combination l,l,l is. left over.

Step L: The table below shows the aspect of the modified Huffman Flow Table:

TABLE 6-3

X = Q X, = 1 X, = 0 X = 1
State ‘State' State' £, £y £, £y
Yy Yp Y3|Vq Yp Y3¥y Yp Y3y Yo Y31 Yo Y31 Y2 Y31 Y2 U3
O’ 0 00 01]001 O * |* % * * *
0O 0 111 0 O0{0 1 1 |* * % * ¥ |
01 001111 0O * ¥ ¥ * * ¥
01 11 0 111 1 0 i* * * *  * *
1 0 01 1 O0j1 1 O |* =* * Ix * *
10100 0]J0 00 e oo * * x
110f0o0ofooo e %o * o* %

Modified Huffman Flow Table

Steps 5 and 6: From the table we can write down the 1- setting conditions for
the first‘flipflop; if we take the order xlylyéy3~we have:

]

£1(y;) = 000L v 0011 v 0100 v 1010 v 1011 v 1100

-100 v 101- v 00-1
T Yy Vp¥g VXYY VX907
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00 01 11 10

00 0 i 0

1
01 1l 0 x o}
Q

11 1 x 0

RO o

10} 07 0] 1} 1

Figure 6-21 Karnsugh Map for fl(yi> of the Machine in Figure 6-20

as can also be seen on the Kamaugh Map in Figure 6-21. Note the presence of x
(don't care) for the two squares corresponding to the unused 111 combination
of secondary variables, Here obviously we shall choose x = O.

Similarly
fl(ye) = (xl v yi)yéy3

£,(yg) = %3 (vp v ¥3) v 2,3, 3,¥5

and, as we discussed before:

folvy) = 5,0
Tolvp) = 117
fo(y3) = leyaf

Step 7: This is rather trivial since 22, i.e., 2, = 1 only cecurs when we are

1
in state Y# (ylygy3 - 1;0,1) and when we also have input X, (xl =1). A

simple AND eircuit can decode this combination:

\
N

Zy T X IYpY5

2. ELIMINATION OF PERIODIC SETTING OF FF'S

The flipflops will not have to be "adjusted" at every clock pulse if
they are already in the correct state; therefore, we use the following principle:
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Principle: On the fl(yj) map replace all 1- entries in rows having y.

by don't cares. Similarly replace on the fo(yj) map bybdon't

cares 1's in rows having y. = O.

Since the original fl'and fo maps (without the new don't cares

introduced above)gre complementary in all positions corresponding
to assigned secondary variable combinations, we can factor (i.e.,
simplify) either 1's on fo or the corresponding O's on fl. If

now the new don't cares occur, we would put an x in place of a 1
on fo; we can therefore also put an x in place of those O's on f

1

for which v is zero; We shall call flO such an fl map on which

we actually factor O's and which has x in all positions in

which v; = 0 and the square is O on the original f, map.

1
It is clear that after choosing values for the don't cares which
may differ from one map to the other, the fo and fl are no longer
necessarily complementary: we pay this price to gain greater

simplicity.

Example. Let us go back to the map in Figure 6-21.

y2y3
Ve " N

00 01 11 10 00 01 11 10 00 01 11 10
(OO 0 0 0 0 00 0 % 1 1 0 00 X 1 1 X
01 1 0 x| 0 01 x {0 ]| x]0 01 1 0 x| O
11 1 0 x |0 11 O1lx1|O 11 1 Ol x}|O
‘ L10 L OO0 |1 {1 10 010 |1 1 10 x| x {1 1

.. . . , X ,

Original fl(yl) without fl(yl) with don't cares flo(yl) with don't cares

don't cares (factor "ones") (factor "ones") (factor "zeros")

Figure 6-22 Don't Cares in the Karmaugh Map of Figure 6-21

Figure 6-22 shows how we first arrive at an fl(yl) map with don't cares: the
two leftmost "ones" in the original f, map become x's becuase y, is actually
n "

one 1in their rows., This means that we can simplify the map by setting the

two next x's to O, the 0ld ones equal to 1 and obtain a simplified

ol



fl(yl) = 00-1 v --11 v 101-

= XV Y3 VY3 VXYY,

. We than factor zeros on the flo(yl) map. Here it is useful to make the x's
in the 00 and 10 rows equal to 1 and the x's in the two middle rows equal to
0. This leads to

£o(yy) = 7 (3 v y3)

by applying the blocking technique shown in Chapter III: here we block the
two leftmost "zeros" by (y2 v y3).

3. OPTIMIZATION OF STATE ASSIGNMENT

At the beginning of this section e agreed to choose the "code" for
the correspondence between Y,,...,Y, and the combinations of NAPRTRPS A
arbitrarily. We shall now improve our method, i.e., choose the code in such
a fashibn that the gating circuitry is simplified. We shall judge our success
by the ease of factoring of the ﬁo and fl~maps, in particular we would like
to make the largest number of maps as simple as possible, We shall, however,

completely neglect the output "code": This calls for a separate treatment.
Definition: ' The aséignments
X':-L.'~> (yli} yzi)"‘!yti)

YJ"'> (yiJ, ygj) "')ytj)

are called neighboring if they differ in as few digits as possible.

Since Yi and Yj are different states, the two combinations must
at least differ in one digit: The optimum for a neighboring
. assignment is therefore one adjacent assignment in the sense of

a Karnaugh map.

The idea is now to consider the fo(y' ) and fl(yn) maps for a

S m
given assignment of the form (6-29). We shall also go back to

our assumption that the flipflops are set at each cycle,
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independently of whether this is actually necesséry or not. In
order to simplify our reasoning we shall assume that there is only
one inpui variable X, (i.e., X = O or xl = 1) and that there are
oply three secondary variables yly2y3. Let us now draw

1. A Present State Map

This is aKarnaugh map containing in each square one of the state
symbols Yi’°’°’YS' This map will be symmetric with respect to

a horizontal line through the center, since we do not take
account of the input (xl = 0 or X = 1). Let Xk.(see Figure 6;23)

be a state corresponding to two symmetrically placed sequences.

2. A Next State Map

This is a map in which a given square contains the state following

the state in a similaﬁ location on the present state map. Since

this new state depends on whether X, = 0 or X, = 1, we can no
longer expect symmetry. In Figure 6-24 we have Y, and Yj
| xl = 0 xl_= 1
respectively, where Yk —_— Yi and Yk —— ¥j.
v 3. An fo or fl Map for Y,
Whether we choose fo or fl depends on whether in the Ykea Yi

transition (i.e., the upper haelf of the map) the variable v,
has to be set to O or to 1. (By virtue of our hypothesis that

flipflops are set at each cycle one of the maps will contain
al.)

The idea is now that if Yﬁ has an assignment neighboring to that

of Y the y,'s of Yj change when those of Y, do: alorao0in

the square — Yi will give the same symbol in the square ->Yj,

i.e., the fl (or £.) maps for most of the yi's will have sym-

o)
metrically placed O's or 1's and will be easy to factorize.
This amounts to saying that two next states Y& and Yj (symmet-

rically placed) should have neighboring assignments.

Remark: Since we have oniy treated the xlyly2y3 case it‘is difficult to

generalize the geométrical rules. It is, however, not too difficult to find

the modified rules in more general cases. In the case of xlx one sees,

2917253
for instance, that all next states in a vertical column of the five-variable

Karnaugh map should be neighboring in their assignments.
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Identical entries if
Yi and Y, have neigh-

boring assignments

00 01 11 10 00 01 11 10 00 01 11 10
0 00 | | 11 00
Input O {O ' Input O 4 T~1T1 Input O'{
o1 Yk 1 | YL | 01 <+
,___,_> ) . .._} :
11 Yk 11 , Yj ‘ 1
Input l-{ Input 1 {. - Input l*{
10 10 B | I 0}
Present State Map Next State Map fo of fl
Figure 6-23 Reason for Neighboring State Assignments

It is to be noted that in order to dréw Figure 6-23 it is necessary
to make a tentative aséignment. But it is also clear that the result will
not depend on this tentative assignment, since the symmetry properties do not

depend on it.

Example. Let Figure 6-24 give the state diagram of a certain machine.

X. v Xi

Figure 6-24 Assignment Example
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Let us make the following tentative assignment

Y. - 000 ' X, =»x =0
Y, - 001 o X, »x, =1
Y, - 010
) — 011
Y. — 100
Yé - 101
Y, —110

-
‘Y8 111

Then the state diagram gives us the Present State and Next State maps shown

in Figure 6-25.

00 01 11 10 00 0L 11 10
o | Yl Y, |y, Y3‘i‘ o | v, |y |y |
o | v |y | g | v, o1 ,' Yo | Y | Y, | Y
‘11 | Y [ Yy | Yy S I R AR N R
10 Yll Y, | Y, | Y 10 Yo Y5 | Y, Yé

Figure 6-25 Maps for the Assignment Example

We néw'deduce'directly from the right- hénd map that the following pairs should
have neighborihg assignments: &é, Y 1, {v,, 5} and {Y, 8} Comparing
Flgure 6-10a in Section 2 to Figure 6- 2& we see that the two state diagrams
are really the same. In Section 2 the state assignment (dictated by the

actual layout of the flipflops and their gates ) was
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Yl - Q00

Y2 - 010

ngighboring
Y, =110 '
3

‘ .Yh - 011 .

neighboring

Y 1
5 - 111

;R I O |

YE - 101

¥, 100 | neighboring

-
Y8 OO;

1

and actually does satisfy our criterion for'optimization.

6.5 Machines with Prescribed Input[Output Behavior. State Reduction in the Case

of Many Tnput Restrictions

1. DEFINITION OF A‘MACHINE BY SEQUENCES

It is possible to design a machine by specifying its output sequences
when given input sequences are spplied. Such a specification takes the fol-

- lowing form: .

o | N
X, X, v X, =2, Z., 400
SIS RS TN 51 ZE

length Ll
X, X, e X, —Z. Z ... )
1, Ko Ty T, %, Zkgl > (6-32)

. N .
length L2f

X, X, ... X. 52 Zy oe

g ‘g g g g/
‘ length Lg
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In case the length of any of these sequences is infinite (i.e., infinitely many
terms) we shall assume that it is periodic after a finite number of terms. In
such a case we shall write down one complete period&x1both sides} underlining

it and marking it "cycle."

Remark: We are not saying that we can always start the desired'machine in the
same state to obtain the above correspondence. All we are trying to obtain

is a machine M which started in some‘appropriate state will-show the desired

1nput/output behavior. By virtue of Theorem 3 in Section 1 and its proof we
can always attain the appropriate startlng state by applying a fixed 1nput for

a sufflclently.long time.

The design procedure is quite elementary: we'design separate machines
N&, Mé ..., €tc,, for each one of the sequences, i.e., we draw up an appropriate
state diagram. We than merge all state diagrams into a single one by re-
numbering all states. Although this "merged" diagram is formed of isolated

pieces, it is .a perfectly acceptable'diagram of a machine M,

The next step would be to sim@lify'M and to obtain a reduced machine
M' by the Hohn-Aufenkamp method. TUnluckily it turns out that the very fact
that we have disconnected sub—diagraﬁs means that only very few inputs may be
applied to a given state_(i,e,, we have severe input restrictions). The‘ '
ordinary partitioning of C léads ﬁsually'to nothing. Happily there is an
extension of the method (due to Aufenkamp) which gives useful results. It

will be treated after an example.,
Example. Suppose that we are given the following sequence.requirements:
SR PP | |

Xl, Xl, Xl _921, ZE’ Zl

| | S PR |
cycle cycle
Xp Xy Xp 2B, 2y, 2
' | I |
cycle cycle
X ., X, X. > 2., 7, Z

Tt e’ T2 27 717 T2

and x,xg,xqz’,z,z

1 1 2 17 1
| I
cycle cyecle
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where "cycle" means that an infinite succession of the underlined terms on

the left gives an infinite succession of the underlined terms on the right.

By the procedure outlined above we find the following partial state

diagrams for the four "partial machines”:

Figure 6-26 Partial State Disgrams

The union of Mi, MQ, M3, Mﬁ forms & machine M which is obtained by re-
numbering the states as shown in Figure 6-26, i.e., Y, becomes Y,, ¥} becomes

Yé, etc., We can write down the connection matrix for M: due to the disjoint

structure of its state diagram and the fact that all states only allow an Xl

or an X, input partitioning according to Hohn?Aufenkamp does not lead to any

2
reduction., However it is clear that the machine can be reduced: Figure 6-27
shows & machine M' having exactly the prescribed input/output behavior and

only two internal states!
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%Iz v Xalz,

NalkhvaKé/Q;,

Figure 6-27 Reduced Machine Corresyonding to That of Figure 6- 26

2. yON-PERMUTABLE MATRICES

The stete reduction method diécusaéd in Section 3 can be generalized.
Aufenkamp found that if the terms "equivalent" and "permutsble" are replaced
by “compatible" and "non-permutable" respectively in the statements of that
gection, most results can be interpreted to have & more general mesning.

_ The general idea is that (f tvo stétee 4o not have to reaet to the
same input, they may be contracted into one, although they are certainly not

equivalent, Since the Theorems (45 well s thetr proofs) are very similar to
those in Section 3, we shell not give any proofs: they may be left as an
exercise for the reader, . o

- Definition 1: A state Yi of & machine M 1s compatible with e state Y3 of &
mechine M' if for those input sequences they might have in
common the output sequences of M end M! are identicel.

‘Remark: Note that this meghs th&t two states may be compatible simply because
“they do not have any inputs in common., In case all allowed sequences are
common to both astates, the notion of compatibility reverts to that of
equivalence, | |

Definition 2: Mo machines M and M' are compatible if and only if for every
gtate Y off M there 1z at 1east one compatible state Y3 of M‘
and vice versd, i

Definition 3: A set of states of M is called pséudo—equivalent if they are
' 811 compatible, :
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Definition 4: A matrix containing input/output polynomials as elements is

called a non-permutable r-matrix if

1. whenever two rows happen to have the same input sequence, they are
associated with the same output sequence. (In the permutable

- case all input/output sequences would occur in each row.)
2. 1in a row all non-zero input sequences must be different.

3. =all non-zero entries are OR-sums of the product of r input/

output pairs.

Using these definitions, the following theorems can be stated (The proofs

are analogous to those given in Section 3; hence, will not be given here.):

Theorem 1. .

Theorem 2,

Theorem 3.

Theorem U,

The sum of two non-permutable r-matrices A and B is another non-
permutable r-matrix if the entries in each row in A are different

from those of the corresponding row in B and if furthermore when-

‘ever an input appears in different rows in both matrices, it is

associated with the same output.

The product of a non-permutable r-matrix and a non-permutable s

matrix is a non-permutable r + s matrix if it can be formed.

If a given symmetrical partitioning of a connection matrix

Cc = [Cij] gives non-permutable l-matrices and furthermore all
submatrices in a row have different sets of entries, the rth
power of C,partitioned in the same way (i.gg, CijL'has as its
submatrices non-permutable r-matrices and the submatrices in a

row again have different setsof entries.

If C can be symmetrically partitioned such that all submatrices
are non-permutable l-matrices and such that all submatrices in a
row hav disjoint input sequences, then all states in a submatrix

are pseudo-equivalent.

3. THE AUFENKAMP ALGORITHM

1. Parition the states Y ... YS in the connection matrix C into groups of

: : 1,
maximum size 7Y,

1

2Y .ss such that there is no overlap and suchvthat the
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rows in each set form non-permutable l-matrices, and such that if two

groups are united, the result is no longer a non—gérmutable 1l-matrix.

(There usually is more than one solutlon Yy If thexnntltloning is tri ial,
the matrix camnot be reduced.,

2. Reorder the connecticn’matrix by putting lY first, then EY, etc., and
ﬁartition symmetrically: if all'submatr1¢es'&re nonwpermutable.i-matrices
and ali submatrices in & row have disjolnt input sequences we terminate:
all states inca partition are pseudo—equivalent,

3. If the submatrlcesai%erStep @ are pot non-permutable l»matrices,repartition
ingide of lY; Y, ceos If the result is trivial, there sre no pseudo- '

equivalent states,

L. If the partitioning is Step 3 is successful, reorder and partition the :
matrix symmetrlcallye '

5. Continue Steps 3 and 4 until all matrices are noﬁ-permutable l-matrices
(meaning that we succeeded) or have only one element (meaning that M
cannot be reduced).' ' o ‘ '

‘Theoren 5. If thé pseudo-eduivalent sﬁates of M obtained by the Aufenkamp
algorithm are replaced by a single st#te of & machine M' and the
conneétion matrix C' of M' is obtained by forming the union (OR-
sum) of the entries in the submatrices of C after the final -

partitioning, then M‘ 1s compatible with M, (This means, of course,

that for those input sequences they may heve in common, the output
‘sequences will be identical ) ‘ ‘

. Theorem 6. The reduced mach;ne M' can accept all input sequences of M but

not: V1ce verss. .

Proof., This rather {mportent fact (the r@duction wotlld be without sense
' otherwise) simply follows from the reduction method° rio inputs
are lost in the partitioning and the,formatibn of the final OR-
sum, . '

Example 1. Let M be given by the state diagram_cf Figure 6-98.
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Figure 6-28  Machine to be Reduced

ConseQﬁently C is given by

t ] :
o _jnfn wm) f
C= xg/z3 : 0 x3/22
YI
. }
xl/z3 e X3/Z2~_

.the that by the Hohn-Aufenkamp method, C is irreducible, The Aufenkamp method,
however, gives the indicated partitioning: there are two pseudo-equivalent
statgs Y (gorresponding to Yi) and ¥ (qorresponding to Y, and Y3)° .The
reduced state diagram is shown in Figure 6-29,

Figure 6-29 Reduction of the Machine in Figure 6-28

o 4
Example 2. Let us apply the Aufenkamp algor;thm to the machine (M = izi Mi)
discussed at the beginning of this section. Its connection matrix can be

symmetrically partitioned and reordered as follows:
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10 0 o 0 0 0 0 o |x/z, o 0 0 0
3.0 0 0 0 0o 0 0 0 0 x/z, 0 0 0
5 0 0 0 0 0 0 0 0 0 0 xejz2 0 0
7.  0 0 0 0 0 0 o} 0 0 o o x‘?/z2 0
9 0 0 0 0 0 0 o) 0 xl/zl 0 0 0 0
lo o o 0 0o 0 0. 0}o0 X2, 0 0 o0
11 I 0 0 0 | 0 o 0 0 0 o 0 0 0 X[z
2 o o o0 0o o o o0 o} o0 0o 0 x/z o
2 lo o o o x/z, o o ofo o o 0 o0
L 0 0 0 0 0 x/7, 0 0 0 0 0 0 0
6 0 0 0 0 0 0 xz/zl 0 0 0 0 0 0
8 0 o  0 0 0 0 0 >(2/zl 0 .o 0 0 0
13 [0 o o} 0 0 .0 0 o] o o. o0 0 0

Hence M has effectively two pseudo-equivalent sets of states:
. \ . ) A . ' '
{Yl’ Y30 Yoo Ypp Aoy Yy gy Yl2} =Y

% Y, Y Y v} -1y

This agrees with our pre#ﬂ:ﬁs findings,

6.6 Asynchronous Circuit Theory (Muller-Bartky)

1. TARGET STATES, SURROUNDING STATES, —> RELATTONSHIP

It'will turn Ouﬁ that in the discussion below we will need not only
what corresponds to a "next state" for each state ¥, ... Yg but also "sur-‘
rounding states." Furthermore we must often distinguish sequences of states
starting with a given initial state:and even'discriminate between the signals

at the circuit nodes for each one of these: if Yi were a given state,
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surrounding states would have to have two indices Yi , the signals Yy eoe ¥

. k
three indices, i.e., Yik = (ylik’ Yoix *°° ysik) and a node signal for a

S

sequence a fourth index. In order to simplify matters we shall often call

the states A, B, ... ¥ ... 2 (we will not be concerned with outputs and can
use X and Z for states), i.e., A = Y., B=1Y, ... etc. The "surrounding"
relationship will be indicated without using a subscript, a sequence of
states starting with A will be written as A(0) A(1) .;. A(n) ... and the

internal signals of A(n) by (al(n).ag(n) ces as(n)).

In synchronous circult theory we had the eQuation

y{ % fi(xl)°°°’xmf yl)°°°’y8)

In asynchronous circuit theory we assume that the imputs are held constant

while we examine the transitions of the machine, i.e., that we actually have
. Y
yi = fi(yl’°°‘,ys) (6 33)

The inputs may be thought of as parameters that can only be changed aftér the
machine has settled down. We suppose, as usuel, that it 1s always possible
to choose sppropriate internal nodes or "cardinal points" such that the state

of the (input-independent) machine is completely specified by their signals.

Definition 1: The state Y' = (y],...,y]) defined by (6-33) wiil be called
the target state of Y = (yl,.,,,ys)°

Remark: The target state Y' of an asynchronous machine is defined in the
same way as the next state Y' of a synchronous machine. In the present
case, however, there is no guarantee that the machine will ever attain Y'

. because of internal races.

Definition 2: A state W =,(w1’°°"ws) "surrounds'" state Y = (yl,;o.,ys) with

target state Y' = (yi,,.,,yé) if its signals agree with those

of Y and Y' whenever the latter agree:
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Otherwise we shall 'allcsr'wi to have either value, i.e.,

vy ' '
wo{ b (6-34)
or y; - - o

(Note that (6-3&)’contains-thé case y, = yi;) For such a state
W surrounding Y we shall write Y - W (W surrounds Y or Y is
surrounded by W), with the explicit understanding that W mi _gg
come after Y but must not and that there was no 1nterven1ng -

state.

Remark 1: The -»relationship is denoted by # in Muller's original pepers. Also
‘his definitions include the case Of more than two signal values.

Remark 2: It is clear from the definition that Y -»Y' and Y - Y. However it
is usually not true that ¥ -»W implies WY, '

Remark 3: If Y' differs from Y in k digit yositions (i €.y signals), Y is
" surrounded by 2% states (including 'Y end Y' themselves ).

Theorem 1. Any state following Y directly must surround Y.

Proof. Tt is clear that the next state after Y will correspond to & change‘
in none, some or all the signals, excepting those which remain
constant in passing from ¥ to ¥'. A following state is therefore

'a surrounding state.

Example. Let Y = (0,0,0,0) and Y' = (0,1,1,1). ‘Then the states surrounding
Y (and f from Y and Y') are (0,0,0,1), (0,0,1,0), (0,1,0,0), (0,0,1,1),
(0,1,1,0) and (0,1,0,1), i.e., they are obtained by changing the digits one
at the time, two at the time, ete. Figure'6-30 shows this relationship on a
tesseract. One can say that all surrounding states lie on a cube passing
through the initial state and the target stete,
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\ INITIAL STATE

oloo ' 1100

Figure 6-30 States Surrounding State (0,0,0,0) with Target State (0,1,1,1)
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Theorem 2. A machine is in equilibrium if and only if Y = Y'.

Proof. If Y = Y' there are no surrounding states f Y: the following state
can therefore only be Y and this means equilibrium. If the
machine is in equilibrium all surrounding states must be the same;

now Y' always surrounds Y, therefore Y = Y',

Definition 3: A sequence of states Y(0), Y(2), ... Y(J), ¥(j+1) ... is an
allowed sequence if and only if it satisfiled the following

conditions:

1. Y(3) = Y(3+1) - N o | (6-35)
(Y(3+1) surrounds Y(j))
2. Y(3+1) £ ¥(3) . | | | '(6f36)

(Y(j+1) aiffers from Y(j))

3.  For no internal node i can we have for all j > O

Yi(j) constantly < Yi(j) ‘
| , ' } (6-37)
or Yi(j) constantly > Yi(j)

(target condition)

(Here > and < are taken in the Boolean sense, Which'simply

reduce to the ordinary numerical O < 1 and 1 > 0).

Remark 1: The seéond condition eliminates the trivial case when the machine

hangs up in one state.

Remark 2: The third condition simply means this: when for a given node the
signal in the target state is different from the signal in the present state

and "pulls" constantly in the same direction, the node will finally "give

in" and change in the direction of the "force." This excludes by no means the
possibility of the target’state pulling sometimes in one direction and some-

times in the other. In such a case we shall say that node i is variably forced.

A sequence of different states following each other and variably forced for

all nodes (or simply'"variably forced") is always an allowed sequence.
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Remark 3: A cyclic sequence is perfectly allowed if its states are variably

forced.

Remark L4: A subsequence of finite length in which (6-37) is not necessarily

verified, is called a partial allowed sequence or siﬁply a sequence.

Definition 4: We shall say that a state K "follows" a state A if there is a
~ sequence A = A(0), A(1), ... containing K. We shall then

write A#K. (There are, usually, many intermediate states.) This

sequence does not necessarily satisfy the target condition.

Theorem 3. For any state A there is at least one allowed sequence starting with

it except if A = A' (equilibrium!).

Proof: A' surrounds A and we can form A(0), A(1), ... by making A(0) = A,
A(1) = A' = A'(0), A(2) = A'(1), etc. It must come to an equilibrium
state or go into a cycle: in both cases the target condition is
satisfied (ai(J) ai(j+l)l)

- Theorem 4, An allowed finite sequence ends with an equilibrium state.

Proof: There would be a continuing allowed sequence from the last state K
(say) if K # X'

2. EQUIVALENT, TERMINAL, FINAL AND PSEUDO-FINAL SETS

Definition 5: If two states A and B are "reversibly joined", i.e., if A#B and

BZA we shall say that they are in the same equivalent set and
write AEB.

From the definition it follows that the g€«relationship satisfies the

following rules:

AsA | - (6-38)
AEB — BFA (6-39)
AEB and BEC - AFC : (6-40)
Let us denote the equivalence sets by Greek letters &, B.... Note that their

number is finite since the number of states S is finite.
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Definition 6: We shall write a?B if_there is‘a state A¥* in o and a state B¥* in

Theorem 5.

Proof':

B such that AXFB*,

If A is any state in @ and B any state in B and &7B, then A%B.

There is an A* in @ and a B¥ in B with A¥¥B%, Also by definition

- ABA¥* and BEB*, There ére, therefore, - sequences from A to A%, from

A¥ to B¥* andvfrom B¥* to B.

Remark: Clearly o does not imply B#a, for then all states in o and B would

be reversibly joined and the sets @ and B should have been collapsed into a

single set.

Theorem 6.

Proof:

The equivalence sets Q, B.,. form a poset.

# in the ordering of &, ... can be replaced by < in the rules for

a poset in 5.5:
AZA  (reflexivity)

A8 and B#x —»a = B (anti-symmetry, see remark above)

#p and BFy - 0¥y (transitivity)

Definition 7: A final set p is a set such that there is no set p¥* with pdu*.

Theorem 7.

Proof:

For any equivalence set @ there is at least one final set p such

that oidu.

This follows from the partiél ordering: any poset has at least one

maximum and one minimum element.

Definition 8: A pseudo-final set is an equivalence set of states containing

more than one state--which is not final and variably forced.

(The last condition means, as usual, that no node i may have P.n
* i . :
constantly < P or Pin constantly > Pin for all n,_where

Pn = (pln,“..,psn):) A

Definition 9: If an allowed sequence Y(0), Y(j), Y(j+l)... has the property

that for J > m all states are in the same equivalence set T,

this equivalencé set is called the terminal set of the sequence.
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Theorem 8. Any allowed sequence attains a terminal set.

Proof': The number of equivélence sets is finite and they are partially
ordered: after having left a certain set as we go along in one
sequence we are never allowed to go back to it. So the sequence
slowly exhausts all equivalence sets and must, after some time; be

trapped in a last one.

Theorem 9. The terminal set of an allowed sequence is elther pseudo-final (in
this case we have a cycle in it) or fimal (in this case we have
several states and a cycle or Just one state and equilibrium)°
Figure 6-31 shows all these possibilities.

Proof: Suppose that T is final. If it has one state K, this means that
we cannoﬁ go anywhere from K. But we always have K »K': we must
have K = K', i.e,, equilibrium, Conversely if we go to equilibrium
in a state K'of T, K must be the only state in T: any other state
M preceding K (and in T) as we go towards K must be reversibly
Joined to K (since both are in T). K being an equilibrium state,
we cannot go anywhere from K, in particular not to M. Therefore
M does not exist. The target condition is satisfied since we have

equilibrium.

If we still suppose that 7 is final but contains more than bne
state, we can evidently have a cycle. Then the variable forcing
condition must be satisfied for the states of the cycle since we

have an allowed seguence,

Now we shall suppose that T is not final: then it is aﬁ intermediate
set with more than one state. (One state K would mean equilibrium--
since T is terminal--and then K = K' means that there are no states
surrounding K: we cannot leave K and T would be final.) Since

it contains an allowed sequence the target condition becomes the

variable forcing condition and the set must be pseudo-final;
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Final Set with Final Set with
One State (Equilibrium) Several States

Final Set

Pseudo-Final Set (Several States)

Figure 6-31 Ultimate Behavior of an Asynchronous Circuit
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Theorem 10. If A is a state in @ and @ is any final or pseudo-final set fol-

lowing @ (i.e., a#P), there is an allowed sequence A = A(0), A(1),..

whose terminal set T is .

Proof: If ¢ is final, this is evident,for we can go from A to a certain F¥

3.

in ¢. From F* onwards we can take the target state sequence: this
is trapped in @ since it is final ahd it is allowed (as are all
target state sequences!). If @ is pseudo-final we can still go

'*=
from A to F* in @, Leﬁ'F Pn of @, From Ph we can go to Pn+l

(since they are in the same equivalence set), from Pn+l to Pn+2’

etC., ... UDP tO Pr° From P we go back to Pd. This sequence
P(O).=,Pn’ P(1) = next state on‘path from P tO.Pn+l’ etc., is
cyclic, has all different adjacent terms, is entirely in ¢ and
satisfies the target condition because the states in @ satisfy the
variable forcing condition.: @ is therefore a pqssible‘terminél

set T of this allowed sequéfice°

METHODS FOR FINDING'EQUIVALENT STATES

The discussion of an asynchronous machine amounts essentially to

finding the equivalence sets of all its states. This can be done by the

~ following algorithm.

Equivalence Algorithm

1. Choose the neCéssary number of éardinal points (say s) inside the logical

diagram and establish (for a given fixedvinput) the relationships between

states and térget states, i.e., determine -
r o .
i =T paeenyy)

Assign states Y,,...,Y  to all the possible combinations of y's.

Draw up a tablé of target states by listing alongside each present state Yﬁ

the corresponding (yl,oo,,yé)-combination and calculating from it the y,'s,

Iist the yifs in order on the same line and via the assignmént of Step 2

 determine the'target state corresponding to'Yj, i.e4 YS,
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4, Varying all signals differing in Y5 and,YS one at the time, two at the time,
etc., calculate all other states surrounding Yj and draw up a table of

surrounding states.

5. . Take a state, say'Yj, and investigate how it is connected to its surrounding

investigate whether there is & sequence from Yk

states, i.e., if Yj.e %g
back to Yj (meaning that YjPYk and YKQYJ, that is YjéYk). To this effect

draw up a stepping diagram as follows:

a. The first column contains Yd.

b. The second column contains all states surrocunding Yj except Y, itself,
J

c. Bxamine this column and strike out all equilibrium states or states
leading solely to equilibrium states in a few steps (scan the table of
surrounding states for this!).

d. Next strike out in this same column all states leading to other states

in the column or to the left of it in very few steps.

e, Finally strike out in this column all states leading,to the same states
as another entry in the column in very few steps. Do not strike out

this other entry.

f. Iterate steps c. through e. after having formed a third column containing
all states surrounding the states in the second column (except for these

states themselves!).

6. The process in Step 5 will reduce the possibilities for a path back to Yﬁ'
As soon as we find such a path, we terminate the process and we know that
YjéYk. ‘If, however, we find only paths that avoid Yj (in particular if we
only find a closed cycle leading back to Yk without touching Yd) we kgow
that Yk is’in another equivalence set.

Example, Take the circuit shown in Figure 6-32 in which the element M is

defined by the fact that for it

output = (input 1 v input 2){input 3)

We clearly need four cardinal points (nemely the outputs of the four elements)
and the circuit equations are
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t

b4

N}
i

Yév "-"5’)4(3"1 v 5'2)

=

T

We now assign to all combinationg (0,0,0,0) through (1,3,1,1) the states

Yo vo0 Y5

when the index iz simply the decimal eguivalent of the binary
combination, The target state table is shown below.

Y

Y

Figure 6-32 Exemple of an Asynchronous Circuit
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TABLE 6-4
Table of Target States.

Target;
State} v; ¥, ‘ y3 W, y]'_ y2' yé yli State
Y, o o o o o 1 1 1 X,
vyfo o o 1 |o 1 0 1 Y,
v,f0 o 1 o |1 1 1 o Y,
yylo o 1 1 /1 1 o o0 Y,
Y, o 1 0o o0 |1 1 0o 1 Y
Yo 1 o 1 f1 1 o 1 Yo
Y, 0 1 o o0 |1 1 o0 0 T,
v, o 1 1 1 1 1 o0 O Y,
Yy | 1 0o o o o o 1 1 X,
Y| 1 o o 1 fo o o 1 4
Yol 1 0 1 0 1 0 1 0 Y0
Y, 1 0o 1 1 |1 o o o | g
.yl 1 0o o |1 o 1 1 % 14
Y01 1 o 1)1 o o 1 f ¥
vl 1 1 1 o1 o 1 o ! Y,
1 1 1 11 o o0 o i ¥y
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The next step is to draw up the surrounding state table:

TABLE 6-5
Surrounding State Table

Target . ‘
State | State Other Surrounding States
Y, Y, YooY, Yy Y Y ‘
A A
Ll o | Y% o
4 Y, Yo Y, Y, Y, Y Yo Y, Yg Yo ¥ Y. oYy Y.
Y, Y, Y5'%2
Y ¥ -
Yév, Yo 0, Yy
oY, N, Y Y Yl3-Ylu Y.
g 4 Y, Y, Y, Y .Y9v Y,
Yé | Y, -
10 Y10 o
Yll ‘Y8 Y9 Yio
Yol Y1 | Y8 Y9 Yo Yis Yiu Y15
ST B |
Yoy Yo o
s s Y9 Y10 Y11 Yip Taz Y1y
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Let us now take a state, say Y.. We see that it is surrounded by

. 0
Yi and the question is: can we go back from Yl to Yb by some path? Here we
need not even draw up a stepping diagram since the only sequence starting with
Yi is

Yl~—>Y5—-aYl3->Y9—->Yl

This sequence avoids YO and Yl is therefore not in the same equivalence set as
YO.:

Let us now try the next state that surrounds Yb, namely YQ, Here we

use a stepping diagram:
TABLE 6-6

Stepping Diagram for Yé to Yb

e |y, o \%\
Mo | e | Y
XX %

We note that in the fourth column (after/s%riking out Y. because we know that

5

we can only have Y. =Y =Y —-Y —-»Y! . a o
Y 5 13 9 1 Y5 ) stw;ll lead back to Yb Continuing

this process for all states and all their surrounding states, it turns out

that there are four equivalence sets:
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a: {v, ¥, Y, Y, Y, Y, Y, Y. Y3

(Note that not all surround YO; some surround other states

in the.set,)

B: {y LA Y5}

It is to be remarked that set 7 is not final, although it contains just one
state. This state cannot be an equilibrium state by a preceding theorem. The
partial ordering of the sets is shown in Figure 6-33. Note that it can be seen

that o itself is pseudo-final: it is variably forced.

FINAL
(CyeLe)

FinaL (EQUILIBRIUM)

Figure 6-33 Equivalence Sets for the Circuit Shown in Figure 6-32

6.7 Speed Independent Circuits

1. GSPEED INDEPENDENT AND TOTALLY SEQUENTIAL, CIRCUITS

v Wé;ﬁéVe proved that an asynchronous circuit attains either an equilibrium
state or tha£ it cycles in a final or pseudo-final set. In the first case we
have true static equilibriumv in the second case a sort of "dynamic" equilibrium.
However, we must realize that for a givén initial state A there are many possible

pseudo-final and final sets following the equivalence set of A. Each one of
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them is a potential candidate for the terminal set of an allowed sequerce

starting with A. This means that in general a given initial state can lead

to almost any machine behavior. We shall now introduce "speed independence,”

i.e., a foreseeable machine behavior by a new definition. ~

Definition 10: A circuit is "speed independent” with respect to an initial

Theorem 11.

Proof':

state A (we shall then write si(A)) if every allowed sequehce

starting with A ends up in the same terminal set T.

A circuit is si(A) if and only if the equivalence set @ of A is
followed by a single final set and no pseudo-final set.

Let @ be the single final set. Then there is an allowed sequence
beginning in A which is ultimately trapped in ¢. Since there are

-no pseudo-final sets it cannot get trapped on its way to ¢ and

there can be no other sequences leaving A and not attaining ¢
because they would have to end in a pseudo-final set (and there
is none which follows &) or a final set (and there is nonedifferent

from.@); It is seen that the condition is not only sufficient

" but that it is necessary by a similar reasdning°

Definition 11: A circuit is "totally sequential" with respect to an initial

Theorem 12.

Proof:

Theorem 13.

Proof:

state A (we shall then write ts(A)) if there is only one

allowed sequence starting with A.

A circuit which is ts(A) is also si(A).

The only allowed sequence leaving A will (as any allowed sequence'
be trapped after some time in a terminal set. This must be a
unique 'final set (for if there had been another one, there would
have been anothér allowed sequence leading into it) and there |
cannot be any pseudo-final sets in between because then there
would be two allowed sequences: the one trapped in the pseudo-

final set and the on trappea in the final set.

In a totally sequential circuit only one signal changes at a time

(i.e., parallel action is excluded!).

Since the target state sequence can always be constructed, it

is clear that in a totally sequential circuit the one and only
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allowed sequence is precisely the target state sequence, i.e.,
A(3+1) = A'(3). If two signals were to change we would by the
construction of surrounding states have more than A'(j) following
A(3) and theré would be other sequences., This not being the case,

~only one gignal can have changed.

2. SEMI-MODULAR CIRCUITS

Tt becomes apparent that although a totally sequential circuit is
safe in the sense that'it is actually speed independent, the advantages of
parallei operations cannot be reaped. Happily there are speed independent
circuits which are not totally sequential, the prime example being semi-modular

circuits.

Definition 12: A circuit is "semi-modular" with respect to an initial state A

(we shall then write sm(A)) if for a state C sur-
rounding a state B in.a sequence starting with A we can

establish that B' surrounds C, i.e.,

if B-C - - o
} - (6-41)
¢ - B! ! N

Theorem 14. In a semi-modular circuit a node which is excited remains excited

or acts as we go to the next state but its excitation does not

disappear before it has acted.

Proof: Suppose that in state B (surrounded by C) node i is excited, i.e.,
that bi_f bi° Then the semi-modularity conditions show that we

must have simultaneously:

B—> C meaning

®
Q
.
]
°
——

i
o’

1
. or (:) C. .
1 1

@b£=ci}
~or (:) bi = ci

C —B' meaning
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If (1} is true, node i has effectively changed and condition (:),is

automatically satisfied. If (:) is true, (:) is untrue and there-

. 1
fore (:) must be true: s
i.e., in state C we still have this node excited.

= b!; here we have thus ¢! =b! # b, = c,,
1 .1 1 1 1

We.mgst now establish that semi-modularity does indeed mean speed
independence. This will necessitate the introduction of the notion

of min-max state and of parallel sequence:

Definition 13: In a circuit which is sm(A) let K be a state following A and
‘ let B and C be states surrounding K. We then define the
"min-max state" M of B and C with respect to K (written as

M = Mm K[B,C]) by its components (ml, veny ms):

]
=

. ki . '
max (bi’ Ci) if k, <kg, i.e., kI

i.

. X 1 T
min (bi’ ci) if k >k, i.e., kf =0

B
1l

k, if k. = k'
-1 1 1

or symbolically

m, = min—max ki(bi’ ci) , : (6-42)

Theorem 15. M surrounds K, B and C.
& ) '

Proof : First we show that M surrounds K, i.e., that m, = ki = ki whenever
k, = ki. This is evident because K = B and K - C means that
k, = k! implies b, = c, = k, = k! and therefore
i i i i i i
'm, = min-max k,(b,, c.) =k, = k!.
i TivE T i it
Now let us show that M surrounds B, i.e., that m; = bi = b£ whenever
bi ='b£. ‘Because of semi-modularity we have B — K' or ki = bi = bi,

There are three sub-cases:

(:) If k, = k! we have the case above; i.,e., m, = min-max k_(b,, c.)
i i i iti? i

with b, = ¢, = k, = k! and therefore m, = k, = b, = b! because

_ i i i i i i i i

of our hypothesis that b, ='b£.
(é) If k, <k', this means that k! = 1 and since k! = b, = b' we
\ i i i i i i

see that b, = 1 and m, = min-max k_(b,, c.) becomes

S | i ivi? i

- =Db!.
i

m, = max.(bi, ci) =1=Dh,
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(:) If k, > k!, this means that k; = O and since k; = b, = b} ve
see that b, = 0 and m, = min-max k_(b,, c. ) becomes
1 1 1 1 1
m, =min (b,, c.) =0="Db, = Db/,
1 1 1 1 1

Definition 14: Suppose that we have a sequence (not necessarily satisfying the

target condition and therefore not necessarily allowed!) B(0),
B(1), B(2), ... B(j), B(j+1) ... and that B(0) is surrounded
by a state C(0) # B(0). We can then construct iteratively a
"parallel seguence" as follows: take B(0), B(1) and ¢(0) and

take

c(1) = Ma B(O)[B(1), c(0)]

c(2) = Mm B(1L)[B(2), c(1)]

;. (6-43)
o(3+1) = Mm B()(B(3+L), (1)1

obtaining -

B(0) » B(1) » B(2) ... » B(j) » B(J+1) » ...
Vsl N I N
c(o) »c(1) »c(2) ... »C(3) = C(§+L) » ...

where the arrows have their usual significance of “surrounded

by" by virtue of Theorem 15,

We see.that the parallel sequence we have formed has the
property that each of its terms surrounds the preceding term
of the new sequence and also the two corresponding terms in

the original sequence,

Theorem 16. Let P(0), ... P(r), P(0) be a cyclic sequence (not necessarily
allowed, i.e., not necessarily fulfilling the target condition)
and Q(0), ... Q(r), Q(0) the parallel seguence constructed by
(6-43). Then for any node i for which

1. p,(3) = q,(§) we also have p,(J+1) = q,(J+1)

2. pi(j) < qi(j) we also have pi(j+l) < qi(j+l) (in this case
p,(3) <p'(3)?)
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Proof:

3. pi(j) > qi(j) we also have pi(j+l) > qi(j+l) (in this case
0,(3) > p(3)1)

i.e., all inequalities and equalities between pairs in parallel

cycles are propagated through the whole cycle.

Let us first discuss the case Rig;g = qigjz. There are three sub-
° ] . = s 1] . . s 1 s s
cases: (D) »!(3) = p,(3), (@ »i(3) > p,(3) and (:) p;(J) <, (3).

Case (:)° Remembering that

-P(j) »P(j+1) -
NN LN
-Q(3) = Q(j+1) -

where Q(J+1) = Mu P()[P(J+1), Q(3)] we see that p}(j) = p,(J)
implies that q,(J) = p,(3+1) = p,(3) = p{(3) and q, (J+1) =

min-max p, (J)lq;(3), »,(3+1)) = p, (3) which here is = p_(J+1),
i.e., qi(j+l) = pi(j+l). Note that we did not even have to use the
hypothesis that pi(j) = qi(j)l

Case (:)5 Here clearly pi(j) 0 and p{(j) = 1. By our hypothesis

qi(j) = 0, Therefore qi(j+l)

[0}

min-max Pi(J)[qi(J), Pi(j+l)]
= max [0, pi(j+l)] = Pi(J+l)-

Case (:>, Here clearly pi(J)
qi(J) = 1. Therefore qi(j+l)

1 and p%(j) = 0. By our hypothesis

min-max p, (§)[q;(3), p;(5+1)]
= min [1, p,(3+1)] = p, (5+1).

We see thus that equalities are effectively carried forward in

all cases.,

Part 2. Now we have to discuss the case Eigg) < qigg), implying
pi(j) = 0 and qi(J) = 1. Let us again split up the discussion into

the three sub-cases aboVe}

Case (:>o This case is clearly impossible, since it implies (as

shown above) that pi(j) = qi(j) quich contradicts pi(j) < qi(j)°

Case (:>, This case is'also excluded since pi(j) 0 and

pi(j) < pi(j) contradict each other.
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gggg_(:). We must therefore have case (:), i.e., Pi(J) < pi(j)
whenever pi(j) < qi(j). This means that pi{j) = l‘and

q; (3+1) = min-max p, (3)[q;(5), p;(3+1)] = max [1, p, (3+1)] = 1.

We have yet no proof that pi(j+l) = 0 so as to give pi(j+l) < qi(j+l).
We do know, however, that pi(j+l) # qi(j+l) because otherwise by
Partlwe would have all successive pairs equal--coming around in

the cycle we would have pi(j) = qi(j) which is contrary to our
hypothesis in Part 2. Therefore, pi(j+l) = O while, as shown,

qi(j+l) = 1: this carries the inequality one step forward.

Part 3., Here we suppose that Ei(j) > qigj)° The reasoning being
symmetric in pi(j) and qi(j), it is evident that the proof of Part 2

is sufficient.

We now come to the central and final theorem of our discussion.

Theorem 17. A circuit sm(A) is si(A).

Proof': We shall show that the equivalence set ¢ of A is followed by a

single final set ¢ and no pseudo-final set. Using Theorem 11 we

obtain the desired proof.

Part 1. Let us first show that o cannot be followed by two final
sets @ and ¢* (which a priori does not exclude that it is followed
by a pseudo-final set). Let F be in ¢ and F* in ¢¥. Then we know
that we can form sequences A(0), ...,F and A(0), ...,F¥* where

A(O) = A. Evidently F % F*, but some states in the sequences may
be common to both. Let A(j+l) be the first state in the first
sequence from which we can no longer go to F*., Relabel A(j)

(from which we can go to F*) simply B(O). Then there is a sequence
B(0), B(1),...B(k), F¥. Call F* now B(k+l). Then we can construct
the parallel sequence C(l),,,C(kf;) to B(1) ... B(k+l) by the

min-max process, obtaining
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A(0)
i

I
o

\

A

3)
| NP SN UN N Y

( B(0) »B(1) »B(2) »... »B(k+l) = F*
!

A(3H1Y -  c(1) »c(2) »... »C(k+l)
¢ .
]

°
°
4

F

Now consider C(k+l): this state cannot be in ¢* for if it were,
we could go from it to F¥* and that would imply that, contrary to
our hypothesis, we could go from A(j+1) to F*. Therefore, C(k+l)
is outside ©*, But by the construction of the parallel chain we
can go from F* to C(k+l) outside: our assumption that ®* is final
is, therefore, wrong. There can, then, be only a single final

set ¢ following Q.

Part 2. Now we must show that & cannot be followed by a pseudo-
final set (say T) composed of states T(0),...,T(r). Since T is
not final, there must be a set ES# T following T. Let D be a
state in 8 We can then construct a sequence T(O), eoey D: 1in

it is a first state--say Q(O) which is not in T. We can assume
that the states in T can be labelled such that Q(0) surrounds
T(0). Now let us construct a cycle T(0) ... T(1), T(1) ... T(2),
eeey T(r) ... T(0) containing all states in T and let us show that
this cannot be an allowed sequence, i.e., that the target condition
is not satisfied, Note that if we chose a subset of states in T
as our cycle, the hope of satisfying the target condition would
even diminish. Let us rename our cycle P(0), ..., P(r); then
P(r+1) = P(0). Finally, let us construct the parallel cycle

Q(0), ..., Q(r) to P(0), ..., P(r). We then obtain:
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A(0) = A

4
in T - P(O)éP(l) -P(2) » ... »P(r) »P(r+l) = P(0)
INC LN 0N N YNy
not in T » Q(0) »Q(1) »Q(2) » ... »Q(r) » Q(r+l) = Q(0) —
LN
$

since Q(0) # P(0) (They are even in different equivalence sets!),
they must differ in at least one signal, say pi(O) # qi(O). There-
fore, we can only have pi(0)>> qi(O)——Case (:)—- or pi(o) < qi(O)-—

Case (é).

g§§2_<:).- By the proof of Theorem 16 this must imply that
pi(O) >-p£(O). Since pi(O) > qi(O) is-propagated and gives
pi(j) > qi(j) for all j. This also means that for all states of
our cycle pi(j) > pi(j), this visibly violates the target
condition: our sequence is not an allowed sequence and T cannot

be pseudo-final.

Case (:). The assumption.pi(o) < qi(O) leads to pi(O) < pi(O) and
by iteration to pi(j) < p{ (j) for all j. Again the target condition

is violated.

Thus there is no pseudo-final set following & but there is a unique
final set following it: the circuit (started in state A) is speed

independent!
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