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LIBRARY ROUTINE L 8 - 302

Solutioﬁ of a system of linear equations by an iterative
method (SADOI Only) ' . ’
Complete program '

%38  (20-358) in Williams Memory

Depends on the condition of the equations. For more
ifdformation on this point see the description of the
mathematical method.

Depends to a large extent on the initial approximation.v
If it's close to the exact solution, convergence will be
fairly rapid; if not, then convergence is ligble to be

very slow. If T is the time required to solve a system

of N equations in N unknown, then'T ~ .015N2 minutes. For

example, when N'= 35, T = 16, This estimate of running time
is to be regarded as an approximation only!
S6 - OOF OOnF ~ where n = number of equations
S9 - OOF OOKF vhere 1 < k < 12 is the number of

» decimal places desired in the output.
A must be symmetric and positive definite. In addition
N-1 :
; ]aijl <lfori=0, ... N-1.
J=0
This implies that the largest eigenvalue of A < 1. On the
data tape, to be described below, the user will have to
specify a ahd b where a is the lower bound for the magnitude

of the eigenvalues of A and b is an upper bound. O cannot

— —— — — ———

N < 100.

If there has been a drum failure there will be an FF stop
at R.H. (OFO)l6 otherwise, when the problem is done, there
will be an OF stop at (0S9 )16°



METHOL OF USE:

-2 -

Suppose the set of equations to be solved 1s A X = §?where

A is an M x M positive definite symmetric matrix and §?a
vector with M components. Let a denote the magnitude of

the smallest eigenvalue or a lower bound for the magnitude

of the smallest eigenvalue and let b denote the magnitude of
the largest eigenvalue or an upper bound for the magnitude of
the largest eigenvalue of A. Library routines M 26 or M 20
may be used to determine these bounds.

It is essential that
O0<a <{b<<l1l.

ThHe data tape is then prepared as follows:
a
b

85 this is a scaling factor, to be discussed below

N

ﬂ
%1

a5 T #Mrst row of matrix,

N each row of matrix must

0 —\ o €5 \
851 be followed by

8.n the sexaaecimal character N.

Last row of matrix,

Followeg byt



So¥y
‘ -
= = (1 s 00
where y = (v, )
So"M
N
Followed finally bys:
S0701
. __)_ 7 h .
. where 'ZO = (?Ol’ .o :’OM) is the
s. " initial approximation
07 OM
N

All the above numbers are signed decimal fractions which
are read in via N 12.

SCALING: s, Will usually be 107 or 107 etc. but other scale
factors such as 2-1, 2-2, etc. may also be used. The
scale factor should be chosen so that the matrix 50 A
satisfies the restrictions noted above and the coordinate

elements of SO§?and s satisfy the following inequalities

P
0:0
(in order to prevent overfldw):

M
1) sy Z l?ojl < 1/2

J=1

M
2) s, ?:1 ij| < 1/e
The routine automatically performs any additional scaling.
The first number punched on the output tape is Sy the

final scaling factor, followed by sk)?, the scaled solution
vector.
BRIEF DESCRIPTION OF MATHEMATICAL METHOD AND CONVERGENCE CRITERION:

Denote the system of equation to be solved by

1) & =%
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It is assumed throughout the follqwing discussion that
A 1s symmetric, positive definite, and has all eigenvalues
less than 1. Now 1if one wants to solve this system of
equations by an iterative method then, as has been pointed
out by von Neumann [2], a large number of such schemes are

described by the equations:

- > -
(2) Fre =% Tk tHY
where'glgdenotes the kth iterate and Gk and,Hk are matrices
of the same order as A. The G_ and Hk are not independent

k
of one anotherj; they must satisfy the following two conditions:

(3) G + HA =1 (I = identity matrix)

(4) et |B | £O

The reason for this is the following: suppose g’k is

= - -
the solutionﬁ}.e. 3 K = iifhen oEyiously g kil = % k
which means X = (Gk + HkA) X, all X, hence (3) follows.
Similar considerations lead to condition 4, For further
details consult Golub [1] pp. 7-8. Since X = (G, + HA) X
then upon subtracting (2): .

6) % - ,?k+l'-;Gk(_)-?k) (since AX = 7).

Therefore

M @-F)-x 6®@- T ). -
Tx To 3 £ 0

In many cases G, = G(all k) so (7) becomes

8) X- ?k =Gk(>?-;o).
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It is noﬁ easily seen that if the eigenvalues of G are
all less than 1 in magnitude X - ?k — 0 independently
of ?O' However, if ?O is a poor approximation or if
the largest eigenvalue of G is close to 1 the convergence
may be too slow. In [2] von Neumann considers replacing
the original sequence :/-;O’ %l’ by a sequence of averages

- -
700 71 where

e

K
- (9) '?k=£2 8 ?

=0
and
.k
(10) ZEO a , =1.
Hence
k k 9 T

= =) — - - -

(1) x- 7y =g:=o 8y (x - ?,_ ) 7{0 8y G - =,

k
¢ g0 @ 1

That is, after k iterations of this process the initial
error is multiplied by a matrix polynomial so that
k

—_

(12) x - -%k = Pk,(G) & - ?O) where Pk(G) =L ak;G’

Z =0 .

If X - 30 is éxpanded in terms of the eigenvectors of
- C

G(if G is symmetric, this can always be done) then the

following inequality results:

1% - 7 max s |IX- 7
(,) "H _}kllilEiENlPk(kl)l | 7ol

I

I

<
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where )‘i are the eignevalues of G. Now for arbitrary ?ZO
X - Fikll 1s to be as small as possible after k steps,
hence max lPk(Xi)I must be minimized. The answer is well
known and leads to the Chebyschev iteration scheme described

by Golub [1] pp. 9-15. The general expression isg

(14) '—fk+1 =ab,, (6 B o+ 8 - 71;-1) +7. 0 k=12, ...)
v :

L 3 by =1 and X is an upper bound for

b = -
k+1 o ?bk
the largest eigenvalue.
In the library routine described here H'k = q{I, all k, and
hence G = I - A, where ol is chosen so as to minimize
the maximum eigenvalﬁe of G. If the émallest and the
largest eigenvalues of A are denoted by a and b respect‘iw}ély, o
then & = a—24:‘5’ This choice of o yields the iterative method
used in this routine.
CONVERGENCE CRITERION: v
v As is pointed out by Golub, H—)?k+l - Zkll < € does not
pA

imply |IX - )—?’k+l|l < €. However, if z_is defined as

—

AL B P A AT

+« More precisely

"small" so is ||X - Y?kl

.

-1 -1 A ‘
ATaTZ R B e (174 7,0 < LAz

Therefore if

|12, ]| < —&E—
Tt



then
”?' ﬁ’kll SG-
Now

R - 71{) = AKX - ‘7’k) =°((§’-A?7k) =d?k=?k.

Because of round off errors € cannot be made arbitrarily
small. In fact it might be the case that min||z, || > >0
k

for all k. Hence, if € is chosen too small, the process
pay not converge. A lower bound for € has been determined
by Golub (see [1] P. 86) wvhich can be expressed as

e <

*wtF o

where

o___2
1Y 12

M=T0 - 27
and

bea
A= m .

M is an estimate of the rounding error which occurs during
iteration. It should be noted that if ( is close to 1
(which is the case for ill.conditiohed matrices) € becomes
large. Therefore, much less accuracy is to be expected

in this case.
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LOCATION ORDER NOTES PAGE 1 L8
00 10K
26 1000N
0 15 6F 361 + 2N
00 1F
1 L4 10L
42 3F (s3)
2 50 6F
T5 6F
3 L5 6F K + N + 2560
sk F
L L4 11L
40 L4F (s &)
5 L5 6F
00 1F 3N + 1 + 360
6 Lk 6F
‘ Ik 10L
T k2 5F (s 5)
L5 12L
8 ko TF
L5 13L
9 ko 8F
26 999F
10 00 F
00 361F
11 00F
00 2560F |
12 00 F
00 202F
13 00 F
00 251F
26 10N

00 20K




LOCATION ORDER NOTES PAGE 2 L8
00K (L9)
0 4o (506) Store scale parameter
15 OF
1 10 1F
40 OF a/2
2 15 1F
10 1F
3 40 1F b/2
Ik OF
L 4o (507) a/2 + b/2
L5 1F
5 10 OF
50 (508) Clear Q
6 66 (507)
S5 F
7 40 (509) A = b-a/b+a
75 (509)
8 10 1F
40 (510) 222
9 L5 (501)
Ik (505)
10 4o (503)
L5 (500)
11 Ik (505)
ko (502)
12 4 (511)
40 (504)
13 50 (509)
71 (509)
1k 4 (511)
4o 1F
15 S5 F
40 OF
16 (0) | 00 1F

50 (0)




LJ (508)

LOCATION ORDER NOTES PAGE3 L8
17 22 (R1l) 11 -2
10 1F
18 4o oF
LJ OF
19 4o OF
50 (508)
20 L5 (509)
10 1F
21 66 OF C-r1+T1-3
S5 F ‘
22 Ik (511)
Lo oF
25 50 OF
73 OF a-€)?
24 Lo OF
15 (512)
25 50 (508)
66 OF
26 ST F
ko (513) Compute end constant
27 (25) {49 OF from 108
L1 OF
28 Lo (514)
k1 (523)
29 (24) 122 (1)
{15 (51%) | from 90, 99
30 00 1F
36 (2) Is -b, = -1/27
31 89 1F
Lo (51k4)
32 (2). |50 (514) | from 30
79 (510)
33 Lk (511)
4O OF
34 50 (508)




LOCATION ORDER NOTES PAGE &4 L8
25 66 OF
S5 F
36 (1) | ko (514) Compute - b, .
' 41 (517) | from 29
37 b1 (515)
41 (516)
38 15 (500)
ko (3)
39 ko (19)
L5 (501)
40 4o (L)
15 (518)
5 4 (5)
4o (6)
4o (17)]| 15 (520) | from 82
| k2 (7)
43 Lo (8)
%2 (9)
4y 46 (6)
42 (11)
b5 (3) | 8 11F .
Lo Sk by 38,473 from 50| Read in 128 components of AR 1
46 (1) |32 (1)
_ 40 85 by 42,49
W7 F5 (3)
ko (3)
48 10 (502)
36 (18)
k9 F5 (7)
. k2 (7)
50 10 (521)
36 (3)
51 (18)1 15 (6) from 48,75
|40 1F
52 15 (517)

Lo OF




Lo (517)

LOCATION [ ORDER NOTES PAGES LB
53 (10)| L5 (506)
50 (10)
5k 26 S7 Jump to residual
4o OF
55 L7 OF
12 (507)
56 36 (100) Rescale
L5 OF
57 66 (507)
S5 F
58 (8) | Lo OF
Ik 55 by 43, T4
59 4o 1F
19 1F
60 50 1F
70 (514)
61 (9) |00 1F
, 10 S5 by 43, T4
62 (6) |40 s5 &9 (3 by M, T3
Ih 83 by 41, T3
63 40 1F
LL 1F
64 36 (12)
B . 26 (100) Rescale
65 = |(12) |I5 (515) | from 64
|2 a3 |
66 |(13) |26 (1)
. 50 OF from 65
| 671 L5 (516)
T4 OF
68 Ik (515)
| ko (515)
69 S5 F
- | 40 (516)
T0 (1%) |F5 (517) | from 66




LOCATION ORDER NOTES PAGE 6 L8
T 10 (505)
36 (15)
2 15 (6)
A (519)
T3 ko (6)
F5 (8)
Th k2 (8)
k2 (9)
™ L0 (524)
' 36 (18)
76 (11) |00 1F from TL
(15) 15 S5 by 44,803 from 81
7 (&) 86 11F
. 00 Sk by 40,78 Record 128 components of A—tz’k
8 Po(s) |
o (4)
79 10 (503)
%6 (19) |
80 5 (11)
ho (11)
81 o (525)
32 (11)
82 26 (17)
; 00 F _
.83 (19) |85 11F from 79,88
| 00 Sk by 39, 87
8k (5) |14 s3 ’
. Lo s3 by 41,86
85 |5 (5)
L4 (519)
86 4o (5)
: F5 (19)
87 Lo (19)
10 (504)
88 36 (19)

I5 (516)




ORDER -

| LOCATION ~ NOTES PAGET L&
# 89 40 OF
L5 (515)
90 32 (20)
| 22 (24)
9 [(o) | oo
: ’ 50 (20) | from 90
oe 26 (R1)
| 40 OF
93 L3 (523)
36 (22) is ) =07
ok L5 (523)
1o (513)
95 36 (23)
. L5 OF || _I?kH - end constant < 07
% Lo (523)
36 S8v € C - 6! when done
91 |(3) |15 (523) | from 95
’ 4o (522)
98 (22) |15 o0F | from 93
ko (523)
99 22 (2k) ;
00 F l|o(?k+l]| = HG’?kH in acc.
100 (100) | L5 (526) | from 56,64 ‘ '
4o (101)
101 [(203) |41 OF
: 50 (102) | from 106
. 102 . f(a01) {77 S3
] 40 s3 | vy 100, 104
103 L5 (101)
4 (519)
104 40 (101)
F5 OF
105 4o OF
10 (505)
106 36 (104) |
22 (103) |

[



L8]

LOCATION ORDER NOTES PAGE 8

107 (104) {50 (102) | from 106

77 (506)
108 40 (506)

26 (25)
109 1(102) |40 F

00 F
110 (500) | 85 11F

00 sk
111 (501) | 86 11F

00 Sk
112 (502) | 85 11F

00 F by 11 85 11F 00 NSk
113 (503) | 86 11F
, 00 F by 10 86 11F 00 NSk
11k (504) | 05 11F

00 F by 12 05 11F 00 Nsk
115 (505) {00 F

00 s6 00 F 00 NF
116 {(506) |00 F

00 F by 0, 108 Scaling factor
17 |(507) {00 F
- 00 F by 4 a/2 +bv/2 = 1/of
118 (508) |00 F

00 F Zero
119  [(509) {00 F

00 F by T3 A
120 (510) OO F

00 F by 8 A?/e
121 (511) |80 F

00 F -1
122 (512) oo F

00 T0F
123 |(513) joO F |

00 F by 26 End constant

|




LOCATION| ORDER NOTES PAGE9 L8
124 (514)] 0O F
00 F by 28,31,36 - b,
125 (515)] 00 F
| 00 F by 68 I “
126 (516)] 00 F
00 ¥ by 69 IEENI.
127 |(517)} 0O F
00 F by 36,70 Equation counter
128 |(518)| 14 53
4o 83
129 (519) | c0 1F
00 1F
130  |(520) | 00 S5
| 00 S5
130 {(521)|s2 (1)
: 40 12885
132 (522) |00 F
| 00 F by 99 oo, ;1
133 |(523) |00 F
‘ oo F by 28, 98 g =, ||
134 |(524) [NO F
Ik 12835
135 (525) |80 1F
L5 12885
136 |(526) |73 s3
4o 83




LOCATION ORDER NOTES PAGE 10
00 K
0 (&) 50 33L Read in a, b, s,
50 L
1 26 (N12)
L5 30L
2 Lo L1,
k2 9L
3 50 3%60F Read in one row of matrix and transfer
: 50 3L it to drum
h 26 (N12)
‘”. -
5 - 86 11F
00 2560F
6 F5 5L
40 5L
T F5 UL
| 40 UL,
8 L0 31L
3241,
9 41 29L M) Check sum
15 F
10 L6 29L Computation
4o 29L
11 F5 9L
T Lj j‘_ nou%Eww 1 Form x, + |si_lt = 5,
12 R B TNl
32 13L 5, =0 )
13 22 9L
L5 5L
14 40 15L Store -5 - 279 < cxs
F1 29L
15 Q0 F on drum just after last elt. of row
00 F '
16 F5 5L
40 5L




LOCATION ORDER NOTES PAGE 11 L8
17 F5 (C)
4o (C)
18 o (N)
36 20L
19 22 1L
OF F
20 50 36186 Read in S and initial approximation
50 20L
21, 26 (N12)
26 22L
22 50 83
50 22L
23 26 (N12)
L5 33L
2L Lo F
L5 3h4L
25 - Lo 1F
1 LS 35L
26 Lo (102)
26 20F Jump to iteration routine
27 - |(c) 00 F
' 00 F
28 (N) jooF
00- 86
29 00 F
' 00 F
%0 00 F
00 360F
31 K6 (N12)
L5 36086
3D 41 29L
15 36086
33 00 F
00 F
3L 00 F
00 F




LObATION

ORDER NOTES PAGE 12 L8
35 00 F '
00 F
00 X
0 (B) | 4o k6L Store scale factor;
X5 F | ]
1 ko 37L Plant link
15 F
2 Lo (1) Store i
50 (N+1)
3 7 (1) 1(41) 2777 4 2560
- S5 F
b Lk 4OL
Yo TL
5 I)+ (N+1) End constant for drum transfer loop
ho ML
6 L5 30(A)
. b2 8L
¢ 00 F Drum read order inserted by 4
00 F
8 22 8L
o | o F
9 F5 8L
| so8L Transfer ith row of matrix, including CKS
10 7L to WM. 360, 361, ... 360+N
| oL
n Yo 4L
: 32 12L
12 26 TL
o 41 29(a)
13 L5 30(A)
I 42 1%L Form CKS
- 1b LT 29(A)
1 Ik F
15 40 29(a)

F5 141




LOCATION

ORDER

i

16
i7
18v
'?‘i9:”f
;207

2

__2#
"f é5'
2T
| o
?:igé
| »

| 2

f_ajsA

23 |

40 14T
10 koL
36 18L
26 1h1,
L5 8L
10 43L

42 20L
| F5 26(8)
22 20L

hE

4O F

L3 F

| 36 251 il

FF F

g s (MSP)
| 49 (Lsp)
|15 30(a)
| 42 261
115 880
luom
| 15 (1sp)
}s0F

.; Th F '
| osp) |
| ko (usP)

S5 F

10 (LsP) |

I5 2TL
Ih b3L

fu6 21
| F5 26L

ko 26L
10 4TL
32 33L

0ld CXS = New CKS?
>0 yes; < 0 Noi

Compute residual,

doublé'precision

| 26 26L




LOCATION ORDER NOTES PAGE 1k L8
fsoyi
L5 48L 5,.¥; = skK = )
3k Ik (1) 0,
42 35L
35 50 46L
D F
36 66 35(4)
S5 F
37 L0 (MSP)
22 F
38 (1) 00 F
00 F
39 (N¢1) | OO F
00 186
4o 85 11F
00 2560F
L 00 F
00 F
42 L7 29(A)
L4 36086
43 00 1F
00 1F
Ly (MSP) | OO F
00 F
45 (ISP) |00 F
00 F
46 00 F s, stored here
00 F
k7 L5 (ISP)
50 36086 End constant
48 00 S3

00 36186




”éﬁ(Aj 261N

LOCATION ORDER NOTES PACE 15
00 K
0 L5 (506)
26 1L
1 50 12F Print out firal scale factor
50 1L
2 26 (P16)
I5 5L
3 L4 (W)
4o 11L
L 92 135F
2 S515F
5 22 5L
1583
6 50 89
50 6L
T 26 (P16)
92 131F
8 92 515F
. F5 5L
9 4o 5L
, , 10 11L
1 10 32 19(A)
22 5L
11 00 F
00 F
A (916) 00K
(N12) 00K
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