UNIVERSITY OF ILLINOIS DIGITAL COMPUTER

LIBRARY ROUTINE S 3 - 130

TITLE

Logarithm (DOI or SADOI)

TYPE

Closed subroutine with standard entry

NUMBER OF WORDS

14

TEMPORARY STORAGE

0, 1, 2

ACCURACY

Maximum error 2^{-38} assuming exact argument. Has biased error from + 0 to -2^{-39} .

DURATION

Approximately 51 milliseconds

DESCRIPTION

This routine is entered with the argument x in A, x being within the limits 0 < x < 1. $Log_2 x$ is left in AQ with the integer part in A and the fractional part in Q with $q_0 = I$. If x = 0 the routine will loop for determining the integer part of the logarithm and thus if it is possible that x = 0 this should be tested for before entering the routine.

This result may be converted to any desired base with the use of the formula $\log_a x = \log_2 x \log_a 2$. The two most often used conversion factors are:

$$\log_e 2 = 0.69314 71805 60$$

 $\log_{10} 2 = 0.30102 99956 64$

Since $\log_2 x$ is left in AQ, a right shift may be necessary to bring the integer part of the logarithm into Q before multiplying by the conversion factor. In this process q_0 remains equal to one and thus the logarithm has the correct sign. In general, for 0 < x < 1, it will be sufficient to shift right 6 times since the integer part can be no less than -39.

The direct conversion factors after shifting right six places for base e and base 10 respectively are:

$$(64/100) \log_{e} 2 = 0.44361 41955 58$$

 $(64/100) \log_{10} 2 = 0.19265 91972 25$

thus leaving (1/100) $\log_{e}x$ or (1/100) $\log_{10}x$ in the accumulator after multiplying.

The two most significant decimal digits are interpreted as the integral part of the logarithm.

If $1/2 \le x < 1$, the correct result is in Q alone when leaving the routine and no shifting is necessary before base conversion. More accuracy can thus be retained in the final result.

MATHEMATICAL METHOD

The quantity $\log_2 x$ is found in this routine to take advantage of the binary operation of the computer. The integer part of $\log_2 x$ is found by considering x as $2^{-m}(w)$ where 0 < x < 1, $1/2 \le w < 1$, and m is a positive integer. Then

$$\log_2 x = \log_2 2^{-m}(w) = -m + \log_2 w$$

 \log_2 w is fractional and -m is the integer part of \log_2 x. The quantity w is then used to calculate the fractional part of \log_2 x from the series

$$\log_2 w = -1 + \sum_{i=1}^{39} a_i 2^{-i}$$
 where a_i is either zero or one.

The quantities $\mathbf{a}_{\hat{\mathbf{l}}}$ are determined from the recurrence relation

$$P_0 = x$$

$$P_{i+1} = P_i^2 \text{ if } P_i^2 \ge 1/2$$

$$= 2P_i^2 \text{ if } P_i^2 < 1/2.$$

The a are found one at a time by the relations

$$a_{i+1} = 1 \text{ if } P_i^2 \ge 1/2$$

 $a_{i+1} = 0 \text{ if } P_i^2 < 1/2$

DATE 2/23/54 RT; 7/18/60
PROGRAMMED BY R.E.Miller
APPROVED BY J.P.Nash

LOCATION	ORDER		NOTES	PAGE 1	S 3
	0 0 K(S3)				
0	40 F	h	Store x in location 0		
	K5 F	-			
1	42 13L		Plant link		
	41 2F				
2	50 F				
	22 5L				ing section .
.3	40 F				
	L5 2F	,	Form "O" digit fo	r fractional pa	rt
<u>)</u>	26 11L				
	00 LF	·			
5	F5 1F	<u> </u>	· ·		
	40 LF		Count for integer	· part	
6	SJ F				1
	32 4L		Test for $\geq 1/2$		
7	S5 F				
	26 9L				
8	50 F	1		·	l
	7J F	μ	Form P ²		l
9	40 F				
	L4 F	1			
10	36 3L		Test for $P_i^2 \ge 1/2$	· ·	1
	F5 2F		Form "l" digit fo		rt
11	L4 2F				
	40 2F				
12	36 8L				
	50 2F		Put fractional pa	rt in Q	
13	Fl lF		Put integer part	in A	
	22 F		Exit		I