UNIVERSITY OF ILLINOIS

DIGITAL COMPUTER

Aux .

LIBRARY ROUTINE E6-221

TITLE

Integration over a Single Interval (Tabulated Values)

TYPE

Closed subroutine

NUMBER OF WORDS

32 (see Note)

TEMPORARY STORAGE

0, 1

ACCURACY

quadrature (see Method)

DURATION

3.7 + 1.6s msec.

DESCRIPTION

This routine computes an approximation to the integral

$$\int_{a_p}^{a_p + w} f(x) dx/w$$

when f(x) is tabulated for the (2s+2) values, $x=a_p-sw$, $a_p-(s-1)w$, $---a_p-w$, a_p+w , a_p

The two parameters, p and s, appear in the entry to the subroutine as follows:

Control is returned to the left hand side of (q + 2) with the result, $\int_{a_p}^{a_p + w} f(x) dx/w$, in A and also in location

0. The parameters a and w need not be specified since the result is unchanged by a linear transformation of the variable x.

Since the subroutine permits efficient numerical integration with evenly spaced ordinates, it is specially useful when the interval w is large because of prohibitive cost of computing ordinates. Also, because s appears in the entry, the subroutine can be used for calculations with several values of s chosen by another routine, as required for example when integrations must be repeated until the error is reduced below a pre-set value.

Such an application might occur, for example, during the calculation of an indefinite integral.

The 10 constants needed for calculations with s=0, 1, 2, 3 are stored at 22L, 23L --- 3LL in the subroutine. If a value of $s=s_1>3$ is to be specified in the entry then the corresponding (s_1+1) constants must be placed at relative

positions $(u_1 + 22) L$, $(u_1 + 23)L$, - - - $(u_1 + 22 + s_1)L$ where $u_1 = s_1(s_1 + 1)/2$. If the largest value of s needed, say $s = s_2 < 3$, then the subroutine can be shortened by

omitting constants at the end of the subroutine.

The numerical integration formula* used is

 $\int_{a}^{a + w} f(x) dx/w = \sum_{i=0}^{s} A_{is} (f_{-i} + f_{i+1}) + \epsilon(s, w) = g_{s} + \epsilon(s, w)$

The quadrature error term $\epsilon(s,w)$ corresponds to approximating the function f(x) by a polynomial of degree (2s + 1) and can be estimated from

$$|\epsilon(s,w)| \le (w/2)^{2s+2} |f^{(2s+2)}(a+\xi)|, |\xi| \le w$$

The coefficients $\mathbf{A}_{\mathbf{i}\mathbf{s}}$ can be generated from the equation

$$g_s - g_{s-1} = 2 P_s \cdot \mu \delta^{2s} f_{1/2}$$

where $\mu\delta^{2s}f_{1/2}$ is the mean centered difference of degree 2s at x = a + w/2 and

central differences have been replaced by appropriately weighted sums of ordinates.

NOTE

METHOD

^{*}Integration of the Newton-Bessel interpolation formula (Whittaker and Robinson (2nd Ed.), p. 40) gives a quadrature formula that can be expressed in terms of mean central differences (loc. cit., p. 147). In the formula used by the subroutine, the

$$P_{s} = [2^{2s+1}(2s)!]^{-1} \int_{0}^{1} (z^{2}-1)(z^{2}-9) ---[z^{2}-(2s-1)^{2}] dz$$

Note that $A_{SS} = P_{S}$. The error in calculating $\int_{a}^{a + w} \sin x \, dx/w$ with this

subroutine, for a = 55 $\pi/180$, w = 15 $\pi/180$ and s = 3, is 6.6×10^{-9} . The error estimated by the above formula is $|\epsilon(3, 15 \pi / 180)| = 7.6 \times 10^{-8}.$

> DATE October 15, CODED BY APPROVED BY

EXAMPLE

LOCATION	ORDER		NOTES	PAGE 1
0	41 1F			
	K5 F			
1	42 4L			
	46 11L		Set addresses	
2	LO 20L			
	10 20F			
3	42 11L			
	F5 4L			
4	42 18L		Plant link	
	L5 F		-	
5	42 1F			
	41 F			
6	50 1F	-	Set addresses	,
	75 LF			
7	S5 F			
	L4 1F			
8	10 1F			
	L4 21L			
9	42 12L			
	L4 1F			
10	42 19L		Set end constant	
	36 18L		End test	
11	L5 F			
	L4 F			
12	40 lf	-	$f_{-i} + f_{i+1}$ to 1	
	50 L	l Fi	alle, 6 relati	
13	7J 1F		$\sum A_{is} (f_{-i} + f_{i+1})$	to 0
	L4 F		10 -1 111	
14	40 F			
	L5 11L			
15	I4 50F			
	40 11L		Change addresses	
16	F5 12L		•	
	42 12L			
17	FO 19L		Prepare for end te	st
	22 10L			

LOCATION	ORDER			NOTES	PAGE 2
18	L5 F			Sum to A	
	26 F			Link	
19	40 lF		П		
	50 L				
20	LL 4095F		 	Constants	
	00 1F				
21	80 F				
	00 22L				
22	40 F				
	00 0000 000	0000J		A _{OO}	
23	40 F			00	
	00 0416 666	66 6667J		A _{Ol}	
24	NO F			01	
	00 4583 33	33 333 3 J		A ₁₁	
25	40 F			1.1	
	00 0569 444	मि भिनिति ।		A ₀₂	
26	NO F			0 _	
	00 4354 166	66 666 7 J		A ₁₂	
27	00 F				
	00 0076 388	38 8 88 9J		A ₂₂	
28	40 F				
	00 0648 396	61 6402J		A ₀₃	
29	NO F		·		
	00 4212 05	35 7143J		A ₁₃	
30	00 F				
	00 0155 孙	06 0847J		A ₂₃	
31.	NO F				
	00 4984 209	96 5608J		A ₃₃	