UNIVERSITY OF ILLINOIS

DIGITAL COMPUTER

AUXILIARY LIBRARY ROUTINE E 10 - 310

TITLE:

Evaluation of Exponentially Weighted Semi-Infinite Integrals

by Quadrature (Laguerre Quadrature)

TYPE:

Closed subroutine, with one program parameter

NUMBER OF WORDS:

18 + 2N (see below)

DURATION:

N(1.8 + T) milliseconds, where T is the duration in milli-

seconds of the auxiliary subroutine.

TEMPORARY STORAGE:

Location O (may be used by auxiliary subroutine)

ENTRY:

When this routine is located at y, entry is made by the orders:

where a is the location of the auxiliary subroutine which computes the values of the function to be integrated. When control is returned to the right side of p+1, the computed integral will be in the accumulator register and location v+1.

DESCRIPTION:

To evaluate the integral

$$\int_0^\infty e^{-x} f(x) dx,$$

this routine uses a form of Gaussian Quadrature appropriate to the interval $(0,\infty)$ and the weighting function e^{-X} :

$$\int_{0}^{\infty} e^{-x} f(x) dx \approx \frac{1}{2^{\frac{N}{p}}} \sum_{k=1}^{N} A_{k} f(x_{k}). \qquad (1)$$

The values A_k and x_k are chosen in a manner such as to give no truncation error when f(x) is a polynomial of degree 2N-1 or less. In the case where the factor e^{-x} does not occur explicitly in the integrand,

$$\int_{0}^{\infty} g(x) dx = \int_{0}^{\infty} e^{-x} [e^{x} g(r)] dx \approx \frac{1}{2^{Q}} \sum_{k=1}^{N} A_{k} e^{x} g(x_{k})$$

$$= \frac{1}{2^{Q}} \sum_{k=1}^{N} B_{k} g(\mathbf{x}_{k}). \tag{2}$$

It is assumed that the function e^{x} g(x) may be closely approximated by a polynomial function.

Because the actual values of the points X_k and the weights A_k and B_k may exceed 1, they have been scaled down by powers of two. P and Q are defined in equations (1) and (2), and R is defined below.

N	R	$P(for A_{k})$	$Q(for B_{\dot{k}})$
1	1	1	2
2	2	0	3
3	3	0	3
14	1 4	O	3
5 6	74	Ο	3
6	4	O	3
7	5	0	14
8	5	0	14
9	5	-	14
10	5		4
11	6	-	4
12	6	-	14
13	6	-	4
14	6	-	14
15	6	-	4

The auxiliary subroutine which computes $f(x_k)$ must take the scaling of these values of x_k into account. The function values computed by the auxiliary are assumed to lie in the range $-1 \le f(x_k) < 1$.

The closed auxiliary subroutine is entered from the main routine with \mathbf{x}_k^* in the accumulator and link in Q; control is returned to the main routine with $f(\mathbf{x}_k)$ in the accumulator.

To use this routine, the programmer copies the integration routine first on his program tape, and <u>immediately after</u>

USE:

it the parameters, points $\mathbf{x_k}$, and weights $\mathbf{A_k}$ or $\mathbf{B_k}$ appropriate to his needs. These latter numbers appear on the tail of the library tape, labeled by the number N of points at which the function is to be evaluated, and the type of weights $(\mathbf{A_k} \text{ or } \mathbf{B_k})$ to be used.

SCALING:

The scaling of the values of \boldsymbol{x}_k is such that the auxiliary subroutine is presented with $\boldsymbol{x}_k^{\ *}\text{, where}$

$$x_k^* = 2^{-R} x_k, 1 \le R \le 6,$$

and the largest x_k^* satisfies $1/2 \le (x_k^*)$ max < 1 for all N. The computed integral is scaled down by 2^P (or 2^Q).

The A_k for N=9 to 15 are not included because they decrease rapidly with increasing k and N, and become too small to be held in a single Illiac register.

For the convenience of the programmer, the above scale factors are contained in the subroutine parameter at location y+16, in the following form:

$$(y+16) = OR (y+18) OP (y+18+N),$$
 for A weights
= OR (y+18) OQ (y+18+N) for B weights.

ACCURACY:

The truncation error due to omission of powers of ${\bf x}$ higher than $2{\bf N}$ is

$$\frac{(n!)^2 f^{(2n)}(z)}{(2n)!}$$
, where z is some point in $(0, \infty)$.

There will also be round-off errors which may be significant; for a discussion of these see the write-up of library routine E 5 - 195.

REFERENCES:

H. E. Salzer, in Bulletin Am. Math. Soc., vol. 55, no. 10, p. 1004 (October, 1949) (also in Natl. Bur. of Standards AMS 37)

- G. Szegő, Orthogonal Polynomials.
- F. G. Tricomi, Vorlesungen über Orthogonalreihen

DATE Se	ptember 26, 1960
PROGRAMMED	BY John Ehrman
APPROVED B	y Dollangder

LOCATION	ORDER	NOTES PAGE 1 E 10
	OOK	
0	L5 16L	Preset point and weight addresses
	46 5L	
1	42 7L	
	K5 F	
2	46 6L	Plant subroutine entry and link
	42 13L	
3	41 14L	clear sum box
	2S 4L	
7+	S5 F	Save L.S.P. of sum
	40 15L	
5	L5 () F	get x_k ; link to Q
	50 5L	44
6	26 () F	jump to auxiliary
	40 F	
7	L5 15L	L.S.P. to A, weight in Q
	50 () F	
8	74 F	x f(x _k), accumulate M.S.P.
	L4 14L	
. 9	40 14L	
	L5 8L	
10	L4 5L	step x _k address
	46 5L	
11	F5 7L	step A _k address
	42 7L	
12	LO 17L	
	36 4L	
13	L5 14L	exit via link
	22 () F	
14	00 F	temporary store for M.S.P.
1	00 F	
15	00 F	" " L.S.P.
	00 F	
16	OR 18L	
	OP [18+N]L	Ceofficient addresses and scale constants

17 75 15L end constant 50 [18 + 2N]L 18		LOCATION	ORDER	notes	PAGE 2	E 10
18		17	75 15L	end constant		
17+N			50 [18 + 2N]L			
18+N		18	\mathbf{x}_1			
18+N		•	•			
18+N $A_{1} \text{ or } B_{1}$ \vdots \vdots 17+2N $A_{N} \text{ or } B_{N}$		•	•			
18+N		•	•			
17+2N A _N or B _N			xN			
		18+N	A _l or B _l			
		•	•			
		•	.•			
	. [17+2N	A or B			
		T 1 714	AN OI DN			
				•		
						•
		·				