UNIVERSITY OF ILLINOIS

DIGITAL COMPUTER

AUXILIARY

LIBRARY ROUTINE E 11 - 311

TITLE:

Evaluation of Exponentially Weighted Infinite Integrals by

Quadrature (Hermite Quadrature)

TYPE:

Closed subroutine, with one program parameter

NUMBER OF WORDS:

18 + 2N (see below)

DURATION:

N(1.8 + T) milliseconds, where T is the duration in milli-

seconds of the auxiliary subroutine.

TEMPORARY STORAGE:

Location 0 (may be used by auxiliary subroutine)

ENTRY:

When this routine is located at y, entry is made by the orders

where a is the location of the auxiliary subroutine which computes the values of the function to be integrated. When control is returned to the right side of p + 1, the computed integral will be in the accumulator register and location y + 14.

DESCRIPTION:

To evaluate the integral

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx,$$

this routine uses a form of Gaussian Quadrature appropriate to the interval (- ∞ , ∞) and the weighting function e^{-x²}:

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx \approx \frac{1}{2^{P}} \sum_{k=1}^{N} A_k f(x_k).$$
 (1)

The values A_k and x_k are chosen in a manner such as to give truncation error when f(x) is a polynomial of degree 2N - 1 or less. In the case where the factor e^{-x} does not occur explicitly in the integrand,

$$\int_{-\infty}^{\infty} g(x) dx = \int_{-\infty}^{\infty} e^{-x^2} [e^{x^2} g(r)] dx \approx \frac{1}{2^{Q}} \sum_{k=1}^{N} A_k e^{(x_k)^2}$$

$$g(x_k) = \frac{1}{2^{\mathbb{Q}}} \sum_{k=1}^{\mathbb{N}} B_k g(x_k).$$
 (2)

It is assumed that the function e^{x^2} g(x) may be closely approximated by a polynomial function.

Because the actual values of the points \mathbf{x}_k and the weights \mathbf{A}_k and \mathbf{B}_k may exceed 1, they have been scaled down by powers of two. P and Q are defined in equations (1) and (2), and R is defined below in equation (3).

N	R	P(for A _k)	Q(for B_k)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3	l 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 0 0 0 0
19 20	3 3.	0 '	0
	-		

[Note: Because the weights for these values of N become quite small, there may be appreciable roundoff errors for certain integrands].

The auxiliary subroutine which computes $f(x_k)$ <u>must</u> take the scaling of these values of x_k into account. The function values computed by the auxiliary are assumed to lie in the range $-1 \le f(x_k) < 1$.

USE:

SCALING:

ACCURACY:

The closed auxiliary subroutine is entered from the main routine with x_k^* in the accumulator and link in Q; control is returned to the main routine with $f(x_k)$ in the accumulator. To use this routine the programmer copies the integration routine first on his program tape, and immediately after it the parameters, points $\mathbf{x}_{\mathbf{k}}$, and weights $\mathbf{A}_{\mathbf{k}}$ or $\mathbf{B}_{\mathbf{k}}$ appropriate to his needs. These latter numbers appear on the tail of the library tape, labeled by the number N of points at which the function is to be evaluated, and the type of weights $(A_k \text{ or } B_k)$ to be used.

The scaling of the values of x_k is such that the auxiliary subroutine is presented with $\boldsymbol{x_k}^{\,\,\boldsymbol{\star}}$, where

$$x_k^* = 2^{-R} x_k, 0 \le R \le 3,$$
 (3)

and the largest x_k^* satisfied $1/2 \le (x_k^*)_{max} < 1$ for all N. The computed integral is scaled down by 2 P(or 2Q). For the convenience of the programmer, the above scale factors are contained in the subroutine parameter at location y + 16, in the following form:

$$(y+16) = OR (y+18) OP (y+18+N),$$
 for A weights
= OR (y+18) OQ (y+18+N) for B weights.

The truncation error due to omission of powers of x higher than 2N is

$$\frac{n! \sqrt{\pi}}{2^n (2n)!} f^{(2n)}(z)$$
, where z is some point in (- ∞ , ∞).

There will also be round-off errors which may be significant; for a discussion of these see the write-up of library routine E 5 - 195.

REFERENCES:

National Bureau of Standards Journal of Research, Vol. 48,

- p. 111 (1952).
- G. Szegő, Orthogonal Polynomials.
- F. G. Tricomi, Vorlesungen über Orthogonalreithen

DATE October	• 12	, 1960
--------------	------	---------------

PROGRAMMED BY John Ehrman

APPROVED BY

LOCATION	ORDER	NOTES PAGE 1 E 11		
	00 K			
.0	L5 16L	Preset point and weight addresses		
	46 5L			
1	42 7L			
	K5 F			
2	46 6L	Plant subroutine entry and link		
	42 13L			
3	41 14L	clear sum box		
	2S 4L			
4	S5 F	Save L.S.P. of sum		
	40 15L			
5	L5 () F	get $\mathbf{x_k}^*$; link to Q		
	50 5L			
6	26 () F	jump to auxiliary		
	40 F			
7	L5 15L	L.S.P. to A, weight in Q		
	50 () F			
8	7 ¹ 4 F	x f(x _k), accumulate M.S.PF		
	L4 14L			
9	40 14L			
	L5 8L			
10	L4 5L	step x _k address		
	46 5L	-		
11	F5 7L	step A _k address		
	42 7L			
12	LO 17L			
	36 4L			
13	L5 14L	exit via link		
	22 () F			
14	00 F	temporary store for M.S.P.		
	00 F			
15	00 F	" " L.S.P.		
	00 F			
16	OR 18L			
	OP [18+N]L	Coefficient addresses and scale constants,		

LOCATION	ORDER	NOTES	PAGE 2	Ell
17	75 15L	end constant		
	50 [18+2N]L			
18	*1			
•	•			
0				
•	•			
17+N	× × _N			
18+N	A ₁ or B ₁			
0	•			
٥	٠			
•				
17+2N	$\mathtt{A_{f N}}$ or $\mathtt{B_{f N}}$			
1				
		4		