UNIVERSITY OF ILLINOIS DIGITAL COMPUTER

LIBRARY ROUTINE V 6 - 202

TITLE Associated Legendre Functions

TYPE Closed

NUMBER OF WORDS 80 (71 plus the 9 of Program R 1 which is

attached.)

TEMPORARY STORAGE 0-10 inclusive and $(k_n + 2) (k_n + 1)$ words at

S 3

PRESET PARAMETER S 3 contains the address at which the table of

functions K_0^0 (x), K_1^0 (x), K_1^1 (x), ... K_m^n (x) is

to be placed

DURATION $[25 + 24k + 12 k^2]$ ms. Approximately (this

expression holds if $k \ge 2$)

ACCURACY The maximum errors that can occur due to round

off are:

$$\epsilon_{\mathbf{k}}^{\mathbf{m}}$$
 (= error in $K_{\mathbf{k}}^{\mathbf{m}}$) = $\mathbf{m}2^{-39} + \sum_{\mathbf{j}=0}^{\mathbf{m}} {m \choose \mathbf{j}} \times^{\mathbf{j}} \epsilon_{\mathbf{k}-\mathbf{m}+\mathbf{j}}^{\mathbf{0}}$

where

$$\epsilon_{k}^{0}$$
 (= error in K_{k}^{0}) = $2^{-39} \sum_{i=0}^{k-2} (2x)^{i}$

(Note that ϵ_0^0 , $\epsilon_1^0 \leq 2^{-40}$)

In general the errors are reasonably less than these maxima. See Discussion of Error below.

DESCRIPTION AND ENTRY

Enter with $-.985 \le x \le -2^{-19}$, $2^{-19} \le x \le .99$ in

the accumulator and the program parameter:

p 50
$$k_n F$$

50 pF 0 < $k_n \le 12$
p + 1 26 qF

where k is the maximum order of the functions desired. q is the address of this routine. K_k^m (x) will be placed in the

location [1/2 (k + 1) (k) + m] S3, i,e. K_0^0 in S3, K_1^0 in 1S3, K_1^1 in 2S3, K_2^0 in 3S3, K_2^1 in 4S3, K_2^2 in 5S3, ..., $K_{k_n}^n$ in [1/2 (k_n + 2)(k_n + 1)] S3 If $k_n \ge 13$ the functions K_k^m will exceed scale. If k_n is 0, K_0^0 , K_1^0 , and K_1^1 will be computed.

NOTE This program contains the library routine R1-116 Square Root as an appended part. It is hence available for use in other connections and would not need to be placed a second time in the machine. It can be entered in the usual fashion at word 71L of this routine.

DISCUSSION OF METHOD $\text{The functions } K_{k}^{m} \text{ (x) computed by this routine are defined as }$

$$K_{k}^{m}(x) = \frac{1}{2\sqrt{\pi}} \bar{P}_{k}^{m}(x) = \sqrt{\frac{2k+1}{8\pi} \frac{(k-m)!}{(k+m)!}} P_{k}^{m}(x)$$
 (1)

where P_k^m (x) are the standardly defined Associated Legendre Polynomials. \bar{P}_k^m (x) are the Normalized Associated Legendre Polynomials so that K_k^m satisfy:

$$\int_{1}^{1} K_{k}^{m}(x) K_{k'}^{m}(x) dx = \frac{1}{4\pi} \delta_{kk}^{T}$$
 (2)

For all $0 \le m \le k$ and all $0 \le k \le 12$, the functions $|K_k^m(x)| \le |$ and are hence in scale.

The routine operates in three parts:

(a) The unnormalized Legendre Polynomials $P_k = P_k^0$ are first computed using:

$$1/2 P_{0}(x) = 1/2$$

$$1/2 P_{1}(x) = 1/2 x$$

$$1/2 P_{k}(x) = x[1/2 P_{k-1}(x)] + \frac{k-1}{k} \left[x[1/2 P_{k-1}(x)] - 1/2 P_{k-2}(x) \right]$$
(3)

and inserting 1/2 $P_{\mathbf{k}}(\mathbf{x})$ in the proper place in the table at S3.

(b) Each 1/2
$$P_k(x)$$
 is multiplied by $2\sqrt{\frac{2k+1}{8\pi}}$ to form

$$K_{k}^{O}(x) = 2\sqrt{\frac{2k+1}{8\pi}} [1/2 P_{k}(x)]$$
 (4)

(c) The recursion formula

$$\sqrt{(1-x^2)} K_k^m (x) = \sqrt{\frac{(2k+1)(k+m-1)}{(2k-1)(k+m)}} K_{k-1}^{m-1} (x) - \sqrt{\frac{k-m+1}{k+m}} x K_k^{m-1} (x)$$
 (5)

is then used to compute the $K_{\mathbf{k}}^{m}$ (x) for M = 0 and fill in the table as S3.

DISCUSSION OF ERROR This program suffers from the very great defect common to all programs which generate a sequence of functions using recursion relations, namely the accumulation and magnification of error at each step. From equations (3) and (5) it can be seen that the error in $K_{\mathbf{k}}^{\mathbf{U}}$ increases with \mathbf{k} and that the error in $K_{\mathbf{k}}^{\mathbf{m}}$ for fixed \mathbf{k} increases with \mathbf{m} . The latter increase is much more pronounced than the former. In addition the error will be much worse for $|x| \sim 1$ due to $\sqrt{1-x^2}$ in equation (5). In fact for x < -.985 or x > .99, the K_k^m lose so much significance for k and m large that division hang-ups will occur. (if $|x| < 2^{-19}$ a division hang-up will occur in the attempt to compute |x| = 1. These possibilities dictate that this routine be used with a great measure of care, skill, and caution. Representative K_k^m calculated by this routine for representative values of x have been checked against the 10 place tables of Associated Legendre Function of Zaki Mursi, Found I University, 1941. These errors are given in Table I in units of 10⁻¹⁰. Note the extremely poor results for x near 1 and for k, m large. One saving feature in this respect is that K_k^m (for $m \neq 0$) $\rightarrow 0$ as $\mid x \mid \rightarrow 1$. Hence in the range near 1 in which this program is inapplicable, it may be permissible in some problems to set $K_{k}^{m} = 0$ for x in this troublesome range. For a fixed k this becomes a better approximation as m increases which arejust the cases (i.e. m increasing for fixed k) in which this routine becomes increasingly bad.

PROGRAMMED BY J. N. Snyder

APPROVED BY

DATE

November 18, 1955

TABLE I: ERROR IN THE FUNCTIONS K (in units of 10-10)							
FUNCTION	X = 0	X = •3	X = .6	X = •9	X = .95	X = .98	X = .985
K 1	< 1	< 1	3	9	1	7	2
K ₂		3	1.	10	9	5	8
K ₂	< 1	< 1	1	4 3	. 6	2	2
K ¹ ₃	< 1	· < 1	< 1	6	< 1	1	7
K ² ₃		< 1	< 1	< 1	<i>.</i> 1	<u>.</u> 4	: , 2
к ³ 3	< 1	< 1	< 1	.7	2 -	9	11
K ₄		1	< 1	< 1	.4	14	ı
K ₄	<1	* 3	< 1	<<^1	2	10	1.
к ₄	< 1	< 1	< 1	2	9	50	62
K ¹ ₅	< 1	4	< 1	2	6	5	2
K ¹ 5	2	1	1	1	5	5	5
K ⁵ 5 ,	8	6	3	5	40	300	34 7
K 6		1	1	4	1	4	1
K ³		2	1	5	3	5	7
к ₆	7	5	2	12	130	1610	1720:
K ¹ ₇	3	< 1	. 2	5	9	2	4
к ¹ 4 7		1	3	6	9	10	51
K ⁷ ₇	24	17	5	24	450	8400	12400
K 2		14	< 1	1	1	1	4
к8	·	5	1	2	5	27	42

FUNCTION	X = 0	X = .3	X = .6	X = •9	X = •95	X = •98	X = .985
к ₈	10	8	25	50	1500	3 7 000	16200
K ₉	< 1	, 2	1	<u>)</u> į	1	3	2
K ⁵ ₉	16	8	7	5	214	133	t 6 20
к ⁹	87	57	50	105	4200	42000	300 , 000
K ₁₀		1	1	2	2	1	14
к ⁵		50	50	230	76	<u> 16,1</u>	1100
K ₁₀	2	120	177	270	10,100	1,140,000	worthless
						s.	

LOCATION	ORDER	NOTES PAGE 1
0	40 3F	Store argument in 3
	41 5F	clear k storage location
1	41 F	Create a zero
	K5 F	- Plant link
2	42 67L	
	10 20F	Plant k
3	42 SF	
	\ 49 S3	Set $1/2 P_0 = 1/2 in S3$
7+	L5 3F	П
-	10 lF	Set $1/2 P_1 = 1/2 x in 1S3$
5	40 1 53	
}	F5 F	Set k = 1
6	40 4F	
	L5 3L	Set initial
7	42 13L	addresses to S3
	42 28L	
8	42 62L	<u>L</u>
	L5 13L	Form 20 Set address of Pk-2
9	42 ITL	
	L4 4F	Set address of Pk-1
.10	42 13L	Ц
	F4 4F	$lacksquare$ Set address of P $_{f k}$
11	42 19L	
	17 5 4F	
12	40 4F	
	FO 5F	k - k _n
13	32 20L	$\bigoplus k \geq k_n$, Done with P's
	50 ()F	By 7 and ⊖ Not done with P's
14	7J 3F	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	40 lf	∐
15	L5 4F	1-1
	FO F	$\frac{k-1}{k}$ in Q
16	50 F	
	66 4F	<u> </u>

LOCATION	ORDER	`	NOTES	PAGE 2
17	L5 lF			
	LO ()F	By 9	complete 1/2 Pk	
18	40 2F			
	7J 2F			
1 9	L4 lF			
	40 () F	By 11	Store 1/2 Pk	
.20	22 8L		Repeat cycle	
	41 4F	From 13	Set k counter to 0	
21	L5 28L	From 32		
	L4 4F		Advance	
22	42 28L		addresses	
-	42 29L			
23	41 F		Clear O	
	50 F		Clear Q	
24	L5 4F			
	F4 4F		$\sqrt{\frac{(2k+1)}{8}}$ in A	
25	00 34F		F	
	66 70L	er.		
26	S5 F			
	50 26L		$\int \frac{(2k+1)}{8\pi} \text{in } 2$	
27	26 71L		V Og.	
	19 lF		2 ⁻² in A	
28	50 2F			
	74 ()F	By 7 and	$\frac{2k+1}{-8\pi} \text{in Q}$	* *
29	00 lF	22	у он	·
	40 ()F	By 22	Store K _k	
30	F5 4F		Π	
	40 4F		advance k counter	· .
31	FO 5F		k - k	
	32 32L		① Done normalizing	
32	26 21L		⊖ Continues	
·	50 3F	From 31	_	
		<u>k</u>	<u> </u>	

LOCATION	ORDER		NOTES	PAGE 3
33	7 1 3F		-x ² in A	
	L4 691		$1 - x^2$ in A	
34	40 1F		$NSP (1 - x^2) \rightarrow 1$	
	S5 F			
35	40 F		LSP $(1 - x^2) \rightarrow 0$	
	50 35L		wases 4/	
36	22 7IL			
	40 8F		$\sqrt{1-x^2}$ in 8	
37	41 F		Clear O	
-	F5 F			
38	40 4F	*	Set k = 1	
-	40 7F	From 68	Set m = 1	
39	F5 62L			_
-	42 42L	From 65	Plant address of K	1
40	F4 F		Plant address of K	
	42 62L			
41	FO 4F		Plant address of Kk-	1
	42 57L			
42	50 3F		Π,	
	7J (´)F	By 39	$-xK_{\mathbf{k}}^{\mathbf{m-1}}$ to 6	
43	40 6F		Ш	
	L5 4F			
1+1+	L4 7F		$(k + m) \rightarrow 9$	
	40 9F		<u> </u>	
45	FO F		$(k + m - 1) \rightarrow 1$	
_	40 lF			
46	L4 4F			
	LO 7F		$-(2k-1)\rightarrow Q$,
47	10 39F			
	75 9F		$\prod (k+m)(2k-1) \rightarrow 2$	
48	S5 F			
· }	40 2F	(-		

LOCATION	ORDER		notes page 4
49	F5 4F		
	L4 4F		$-(2k+1) \rightarrow Q$
50	10 39F		
	75 lf		1/4 (k + m - 1) (2k + 1) inA
51	00 3 7 F	:	<u> </u>
	66 2F		Ī
52	S5 F	·	(k+m-1)(2k+1)
	50 52L		$-1/2 \sqrt{\frac{(k+m-1)(2k+1)}{(1+m)(2k-1)}} \to 10$
53	26 71L		
	40 lof		Ц
5 ¹ 4	F5 4F		П
	LO 7F		(k - m + 1) in A
55	50 F	, -	Clear Q
	66 9 F		1
56	S5 F		
	50 56L		$\frac{k-m+1}{k+m} \text{in 2}$
57	26 71L		√γ .
r.,	50 () F	By ¹ 41	$oxed{K^{\mathtt{m-1}}_{\mathtt{k-1}}}$ in Q
58	75 10F		
_	00 lF	·	$\frac{(k+m-1)(2k+1)}{(2k+1)}$ in A
59	40 lof		☐ √ (k+m)(2k-1) NSP ["] in 10
4.	85 F		LSP ["] in A
60	50 2F		
	7 0 6F		
61	L ¹ 4 10F		
	66 8F		
62	S5 F		
	40 () F	By 8 and 40	Store K
63	F5 7F	40	Advance w . m . 1
	40 7F		Advance $m \rightarrow m + 1$
64	FO 4F		m - k in A
	36 66L		$ \bigoplus m \geq k $, done this k

LOCATION	ORDER		NOTES PAGE 5
65	L5 62L 22 39L		Θ Not done this k
66	F5 4F 40 4F	From 64	Repeat
67	FO 5F	The C	k - k in A
68	32 ()F F5 F	Ву 2	① Done, enter Link ② not done,
69	22 38L 80 F	<u>.</u>	Set m - 1 and repeat - 1 = 1
 70	00 F 40 F		
71	50 72L	3 163 397J	$\frac{8\pi}{32} = \frac{\pi}{4}$
72	26 999F 00 F		Interlude to load
7 3	00 71L 00 F		Routine R - 1 116
	26 71 L		at 74L
26	5 ln		
Routine Rl Square Root			