ILLIAC
PROGRAMMING

A Guide to the Preparation of Problems
For Solution by the University of lllinois
Digital Computer

DIGITAL COMPUTER LABORATORY
GRADUATE COLLEGE
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

DIGITAL COMPUTER LABORATORY
GRADUATE COLLEGE
UNIVERSITY OF ILLINOIS

ILLIAC PROGRAMMING
A Guide to the Preparation of Problems
for Solution by
the University of Illinois Digital Computer

by

S. Gill, R. E. Meagher, D. E. Muller, J. P. Nash,
J. E. Robertson, T, Shapin, and D. J. Wheeler

Edited by J. P. Nash

Fourth Printing. Revised and Corrected.

URBANA, ILLINOIS
September 1, 1956

PREFACE

The Digital Computer Laboratory of the University of
I1linois has a three-fold program which is concerned with re-
searéh in the field of digital computers, with maintenance for
University use of & high-speed digital computer, and with teaching
of design and use of digital computers. The preparation of pro-
grams for the Illiac is the responsibility of the person who wilshes
his problem solved. But since each prospective user cannot always
attend the courses on programming offered by the University, it
has seemed desirable to help make it possible for him to learn
the elements of Tlliac use by himself.

The result has been this book, first issued in March 195k,
which makes use of two years of experience in operating the Illiac
for University research and several years of experience in the
teaching of programming. Many of the chapters were used in pre-
liminary form as supplementary material in Mathematics 385, the
basic course on programming, and the book is now used as standard
course material.

Like most of the work of the Digital Computer Laboratory,
this is the result of a group effort by meny different people. The
chapters were written by S. Gill, R. E. Meagher, D. E. Muller,

J. P. Nash, J. E. Robertson, T. Shapin and D.J. Wheeler. Other
members of the Laboratory staff read the material and offered
valuable criticism. The typewritten copy was prepared by Helen B.
Clark and Muriel P. Fetzner; the drawings were made by George
Ehrlich and Charles Breed.

iii

MEMORY

SLAVE TUBE
/ |

i . % TAPE

o PRINTER

/

(o]

\

_TAPE READER
CONTROL PANEL

ORDER COUNTER

ORDER REGISTER
—NUMBER REGISTER Py
L—QUOTIENT REGISTER

- ACCUMUL ATOR THE |ILLIAC

KEY PUNCH
REPERFORATOR
PAGE PRINTER

TAPE COMPARER

|

I/—--
‘ \‘

L

"‘ | L |
FW KEY PUNCH—/ j

REPERFORATOR

TAPE PREPARATION EQUIPMENT

PREFACE. .
PHOTOGRAPHS.
Chapter 1.
Chapter 2.
"2.1

2.2

2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

.12
2.13

2.1k
2.15
2.16

2.17

INTRODUCTION .

THE ARITEMETIC OF THE ILLIAC . .

Representation of Numbers. .

Fundemental Operations of the Illiec

Arithmetic Unit. .

*

.

The Illiac Arithmetic Unit =

Additions. . . « -

Subtractions . .

.

Absolute Value Addition and Sgbtraction.

Increment Add Orders .

Add from Q and Increment Add from Q.

The Shift Orders .

.

o e

Multiplication.. « « « ¢ o o = o = ¢

Division . « « «

Remainder. » + « =«

The Division Hang-up.

Division « ¢.e o o

a o

Spec

ial

Cages

Precise Calculation of the Division

Memory to Q and Store Instructions .

TI1lustrative Examples.

Integer Operations .

Summary.

viii

iii

iv

2-3
2-5
2-5
2-6
2-7
2-8
2-8
29
2-11

2-12

2-15

2-16
2-17
2-17
2-20

2-21

Chapter 3.

3.1
3.2
3.3
3.4
3.5

THE ORDER CODE

The Makeup of Orders

Execution of Orders.
Stop Orders. . . . « « « . . .
Order Types. « « ¢« « ¢« v « . .
Order Variamts
Left Shift
Right S8hift.
Unconditional Control Transfer
Conditionel Control Transfer .
Store. L.
Memory to Q. « ¢« ¢«
Divide . . . « ¢« v v v v v . .
Multiply « « v ¢ v v v 0 4 o
Input-OQutput
Special Input=Output
Increment Add fromQ
Add fromQ.
Extract
Increment Add
Addo 00 s e e

Abbreviated Order List

ix

3-13
3-14
3-16
3-17
3-18
3-19
3-20
3-21
3-23
3-25
3-26
3-27
3-28
3-29
3-30

Chapter L.

Chapter

h.1
.2
4.3
bk
h.5
L.6
4.6

N

5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8
5.9
5.10

5.11

ROUTINES. « .

Closed Subroutines. . . .

Entering a Closed Subroutine. . . . »

Returning Control to the Master Routine .

Placing the Argument. .
Program Parameters. . .
Interpretive Routines .

Preset Parameters . . .

THE DECIMAL ORDER INPUT

Relative and Fixed Addresses.

Directives. . . ¢« «
Assembling of Orders. .
Decimal Addresses . . .

Starting the Program. .

Input of Decimal Fractions.

Pre-set Parameters.

O1rders. « « o« « o o o o @

Modification

e »

of

-

.

Example of Use of Decimal Order Input . .

Use with Interludes.

Stopping the Tape

Retained Directive.

Placing the Decimal Order Imput

h-11

5-2
5l
5-4
5=5
5-6
5-6

5=
5-8
5-11
5-12

=12

Chapter

Chapter

6.

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5

7.6

-7

7.8

7.9

7.10
7.11
7.12
7.13
7.1k

SBCALING o o o v v v 4 o & v o 0 v v .

Scaling by Shifting

Numbers with Binary Point Shifted .

Scaling a Full Problem. . . e e e e

Ad justable Scaling Factors.

Continuous Scaling. Floating Point
Routines.

MACHINE METHODS AND CODING TRICKS .

The Summetion of Products
Reversing the Control Transfer.
Binary Switches « . . .
Tests for O and =1. . o & o o & o + . .

Use of Orders and Addresses as

Constants .+ v o v v o o v

Resetting and Starting of Cycles
of Orders .+ o & v o & v 6 4 0 0 4 . .

Use of the Quotient Register for Inter-
changes . . . « v v v v o 6 4 0 e e . .

Testing if Nﬁmbers are Greater-than
one-Half ° LY ° ° ° ° ° . . . o ° . ° -

Convergence Criteria. . . »
Marking . « ¢ & & v v o 0 v v 4 . o0 . .
Remainder in Integer Division
Binary Chopping « . . .
Evaluation of Polynomiagls

Shifting A Left without Shifting Q. . .

xi

6-10

6-10

7-11

7-11

Chapter

Chapter

8.

8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8

8.9

8.10
8.11
8.12

8.13

9.1
9.2
9.3

9.k
9.5
9.6
9.7
9.8

CHECKING METHODS. . . .

Common Blunders . .
The Discovery of Errors

Sources of Information.

Modifications to Programs .

Blocking Orders

Types of Checking Routines.. .

Post Mortem Routines. .

Post Mortem Version of the Decimal

Order Input . . « « + »

The Address Search Routine.

Sequence Checking Codes
Control Transfer Check.
The Check Point Routine

Conclusion. « « « « « o«

TAPE PREPARATION. . . .

The Illiac Input. . . .

The Illiac Output . . .

The Perforated Tape. Sexadecimal.
Tape Code Characters. . . . « « .

Classification of Operations. .

.

.

Description of Equipment.

General Remarks
High Speed Printer

High Speed Reperforator

xii

8-6
8-7

- 8-8

8-9

8-11
8-11
8-12
8-12

8-13

9-18
9-19
9-19

Y,

Chapter

Chapter

Chapter

Chapter

lo.

10.1
10.2

10.3
11.

11.1
11.2

11.3

11.4

11.5
11.6

11.7

12.1

12.2

13.1
13.2
13.3
13.4
13.5
13.6

CALCULATION OF RUNNING TIME.

Order Times. . « v o « o« « o o .
Example of Running Time Calculation.

A Simple Running Time Formula. . . .
PREPARATION OF A COMPLETE PROGRAM. .

General Statement of the Problem .

Trajectory Equations

.

Processing of Equations for Solution

by the Illiac. . + ¢+ v ¢ & v 4 o o &

Scaling of the Quantities for Illiac
Solution « o & v 6 ¢« 4 ¢ 0 4 v . o0 W

Coding of the Problem. . . . » « o &
Checking the Program

Conclusion . v v & o o o o o o o +
THE CATHODE RAY TUBE DISPLAY

General Description. . o o o o o &

Orders Controlling the Cathode Ray Tube

Display. « o« ¢« v v v 6 o 4 v v 4w
PROGRAMMED CHECKS. o o o « « + .+ . .

General Principles of Checking . . .
Input Checking . . « « « « ¢ v o o &
Output Checking.« « « o & &
Memory Checking. ; o o
Arithmetic Checking.

Summary. . . o« . 4 v v e e e e e e

xiii

10-1

10-1
10-2

10-4
11-1
11-1
11-5

11-8

11-10
11-15
11-36
11-38

12-1

12-1

12-3
13-1

13-1 |
13-6

13-11
13-12
13-15
13-15

Chapter 14. THE PROGRAM LIBRARY. . . + + « « & o + « « 1h-1
14.1 Library Orgenization 1h-2

1k.2 Program Descriptions and Summary Sheets. . 14-2

14.3 Library TePeB. . « « « « o « o ¢+ o o o . 14-2
14.4 Tlliac Library Categories. 1h=2
14.5 Illiac LIDP&ry . . « « « « ¢+ ¢ 0 0 o0 o . 14-4
Chapter lsu DEFINITM OF TERMS. 15"1

OMpter 16. MAGNEI‘IC DRUM STORAGE e o 6 o @ ¢ o o o @ 16"1

Index

Xiv

E-/

CHAPTER 1

INTRODUCTION

In 1948 the University of Illinois began to look into the
possibility of acquiring an automatic digital computer. When attempts
to buy one or to have one built failed, the University decided to
build one of its own, and the Digital Computer Laboratory was organized
in February 1949. Shortly thereafter an agreement was made to build
a second computer for the Army to be used at the Aberdeen Proving
Ground.

It was decided to build the two machines following the de-
sign of a computer then being designed and built at the Institute for
Advanced Study. While many modifications were later mede, both
machines built by the University owe much to the early designs ob-
tained from Princeton.

The two machines were built more or less together so that
advantage could be taken of the savings obtainable by paralleling
the design and construction work, but work on the Army machine, called
the ORDVAC, was emphasized, and it was finished first. It passed its
acceptance tests in February 1952 at Aberdeen and it has been in use
there since that time.

Work on the University computer (later named the Illiac) was
completed in September 1952 and the computer was first made available

for University use when classes began on Monday, September 22, 1952.

The Illiac 1s an automatic electronic digital computer.

It is digital because it handles numbers as sets of digits
which have discrete values, rather than as scale readings or measure-
ments, which are continuously variable. Apparatus for handling digits
is more complicated than that for handling continuous quantities, but
it is capable of giving unlimited accuracy by using suitable numbers
of digits.

The Illiac is electronic. In the last ten years electronic
circuits for storing, transmitting, adding, subtracting, multiplying
and dividing numbers in digital form at extremely high speeds have been
devised. The actual addition of two numbers in the Illiac takes only
about 75 microseconds.

Such speed 1s useless unless the machine can be made to go
ahead on its own with may thousands of operations, without human inter-
vention. The Illiac is therefore automatic, in the sense that it can
be given orders telling it how to proceed, and will then act on these
orders automatically.

In common with many other computers of a similar type, the

Illiac contains the following five essential features:

(1) An arithmetic unit.
(2) A memory or store.

(3) Devices for the input and output of
information (e.g. numbers) to and
from the machine.

(4) Means for the transfer of information
between the varilous parts of the machine.

(5) Means for the automatic control of
the whole machine.

The arithmetic unit carries out the individual arithmetical operations
that make up every computation; it can be thought of as the electronic
equivalent of & desk calculating machine. It is described in detail
in Chapter 2.

The memory is needed because, in any lengthy calculation,
numbers produced at early stages of the calculation are frequently
required to be used at later stages; they must therefore be recorded
or "remembered". The memory is capable of recording 102k numbers . ©
These can be recorded (i.e. transferred to the memory from the arith-
metic unit) individually, as directed by the computer's control de-
vice, and recalled again individually in a similar way. The memory
may be thought of as 1024 1ittle boxes or locations, each accomodating
one number, and labelled with the numbers O through 1023. The label
of a location is called its address. A number in the memory is
identified by the address of the location containing it.

Information enters and leaves the Illiac coded in the form
of a pattern of holes in punched paper tape; there is a tape reader
for input, and an sutomatic punch for output. There is also a tele-
typewriter which can be used to provide output from the machine
directly in printed form. Several machines are available for pre-
paring punched tape, copying it, comparing it, and producing printed

versions of the information on it.

This is the high-speed memory. The magnetic drum furnlshes additional
storage.

1-3

The problem of controliing the whole computer has been
solved by stipulating that every individual operation that occurs within
the machine must be one of a certain set of specified permissible
operations, and that no two such operations can occur simultaneously.
Thus the design problem was reduced to that of engineering the various
permissible operations and arranging for them to be executed in any
desired sequence. It is up to the user of the Illiac to specify the
sequence of operations or program, which the Illiac must execute to
carry out his calculation.

Each permissible operation can be specified in a concise
coded form called an order. The correspondence between the set of
permissible operations and the set of orders which specify them is
called the order code of the Illiac. It is given in detail in Chapter

3. A coded problem is called a program or routine.

The mechine’s control unit has the task of accepting orders
one by one, and of causing the machine to carry out the operations
specified according to the order code. If each order were taken by
the control unit directly from a punched tape; then to make full use
of the speed of the rest of the machine the tape would have to pass
through the tape reader at about 200 miles per hour. Instead, the
orders are recorded in the memory along with the numbers, so that the
control unlt merely has to take its orders from the memory, which it
can do electfonically at high speed. This 1s made possible by coding

each order to look like a number. To be more precise, orders are

1-k

gtored in palrs, one pair to a memory location. The information
contained in one memory location is often called a word, meaning
either a number or an order pair. Of course, the more orders there
are in the memory, the less room there is for numbers. Both orders
and numbers are fed into the machine initially on punched tape.
Normally orders are obeyed by the control unlt in the

gequence in which they are stored in the memory, e.g.:

Left-hand order in location 6,
Right-hand order in location 6,
Left-hand order in location 7,
Right~hand order in location 7,
Left-hand order in location 8, etc.

Sometimes, however, thils sequence is broken and the control unit
starts over at some new position in the memory; this is called a

transfer of control. There are special orders which cause this.

There is also special provision for making & transfer of control
depend on the value of some number obtained by the machine during
the calculation. Thus the machine can be made to "choose" one of
two or more alternative courses of action according to the way
things happen to work out.

If control is transferred a few locations back in the memory,
the machine will repeat the operations specified by the intervening
orders. It 1s possible to cause this repetition to occur any number

of times, leading to a cyclic behavior of the machine. Practically

every calculation which the machine performs contains several such
cycles, often one inside another. 1In this way it often happens that
the same order gets carried out many thousands of times, so that a

few orders suffice tq keep the machine buéy'for several minutes. If
each order in the memory were to be carried out once only, the Illiac
would get through them &ll in a quarter of & second (even if the memory
contained nothing but orders). In practice, calculations vary in
duration from a minute to a few hours.

The occurrence of cycles is one of the things that complie
cates the programming of a célculationo Another 1s the fact that,
since orders are stored in the memory in the same form as numbers,
they can be operated on and altered during the course of a calculation
(at the behest of other orders) Just as if they were numbers. All this
makes possible some most interesting calculations; it can also make
programming difficult,

Fortunately a coder can often, as described in Chapter b,
make use of bits of programming done by other people., Thus a typical
program consists of a number of groups of orders, some written by the
coder, others already available. The latter will be available in
punched tape form, and can be copied mechanically onto the program
tape along with the new orders. Tape preparation is described in
Chapter 9.

When the whole tape for a particuler program has been prepared
it can be placed in the tape reader of the ITiliac. The Illisc reads

the tape, forms the orders and numbers punched on it and stores them

1-6

in the memory. When the program is in the memory, the machine begins
to execute the orders, continulng until it comes to some particular
order which causes it to stop. If the programming is correct, this
ig the end of the calculation. If there is a mistake in the programming
verious things may happen; remedies are discussed in Chapter 8.

Somewhere in the program will be some orders which cause
the machine to punch some output tape. Thig carries the results of
the calculation. The program mey also contain orders causing the
mechine to resd more input tape, carrying data for the calculation.

The reading of most of the program tape is accomplished by
the Illiasc executing a particular set of orders called the Decimal
Order Input (See Chapter 5) which is always punched at the beginning
of every program tape end hence read into the machine before the rest
of the tape. The Decimal Order Input not only assembles the program
inside the machine; 1t also makes certaln modifications and conver-
sions, so that the way in which orders are represented when punched
1s somewhat different from their final form in the memory. The
object is to make progremming easier. It is important to remember
that the written form of an order and the form which it assumes in
the memory are not the same thing. The relationship between the two
is determined by the Decimal Order Input.

Remaining chapters of this manual are devoted to: The
arrangement of calculations so that all the numbers encountered

are the right size (Chapter 6); ways of programming certain types of

1-7

simple tasks (Chapter 7); how to estimate the duration of a calculation
(Chapter 10); an example of a typical program (Chapter 11); and how the
program library is organized (Chapter 13). Finally, concise descriptions

of the principal contents of this collection are given.

CHAPTER 2

THE ARITHMETIC OF THE ILLIAC

The construction of a computer involves a compronisc
between engineering economies on the one hand and ease and flexi-
bility of use on the other. As a result, the details of the
operations of arithmetic are often dictated by englneering design
considerations. The following paragraphs describe the peculiarities
of the representation of numbers and of the operations of arithmetic
in the Illiac.

2.1 REPRESENTATION OF NUMBERS . The simplest device for

storage of numerical information is an electronic element having two
stable states in which ome state is called "zero" and the other state
"one". One such element is capable of holding one binary digit.
Registers composed of forty such elements are provided in the Illia.
for representation of forty binary digit numbers. The Illiac is

described as a binary parallel digital computer having a precision

of forty binary digits -- roughly equivalent to twelve decimal

digits.

The Illiac is a fixed-point computer; the location of

-

the fixed binary point between the first and second digits is in-

dicated in Figure 2.1.

2-1

//location of binary point

3§
K - ’

sign digit 39 non-sign digits

Figure 2.1
The Forty Digits of a Word

L.

The leftmost digit of a number is the sign digit. If the sign

digit is zero, the number is positive or zero; if the sign digit is

~one, the number is negative. For cxample, + 7/8 is represented in

the Illiac as
0.11100 ... 00 = + 1/2 + 1/k + 1/8 = +7/8

7*5 Negative Numbers. Negative numbers are represented in

the Illiac as complements with respect to 2. The process of comple=~

mentation is carried out by forming the digitwise complement (re-

placing ones by zeros and zeros by ones) and then adding & unit in
the least significant (thirty-ninth) non-sign digit. As an example,

- 7/8 is formed from + 7/8 by complementation as follows:

0.11100 ... 00 + 7/8

1.00011 ... 11 ones replaced by zeros and zeros by ones
+ 0.00000 ... 01 addition of 2757

1.00100 ... 00 machine representation of - 7/8

It is sometimes essential to distinguish between the

2-2

machine representation of a number and its arithmetic value. Suppose
we have a number whose arithmetic value is x and whose machine re-
presentation has the sign digit x, and non-sign digits xi(i =1,2,...,39).
If x is positive; i.e., if Xy = 0, then

2

X = L 2 " x,. (2.1)
i=1

If x is negative (xo = 1), then the relationship is

A v“‘l,"‘-‘ S
wolel A A a

39 /Aéu.u -
S ool .. (2.2)
i

1=1 T !

Equations 2.1 and 2.2 may be combined in the one equation

29 ‘ h

- -~

+ 2 27" x,. (2.3)
i=1

If equations 2.1 through 2.3 are to hold, x must be restricted to

the range -1 < x < 1. The programer must keep in mind that the

Illiac arithmetic unit is designed for numbers in the range -1 <x <1.

When an operation is performed which yields a number outside this

range, an unwanted number within the range results. This effect is

called overflow and, although certein operations are unaffected by

overflow, computational errors usually result.

2.2 FUNDAMENTAL OPERATIONS OF THE ILLIAC ARITHMETIC UNIT.

The following five operations are fundamental in the arithmetic unit

2-3

of the Illiac:

1. complementation,
2. addition,

5. _left shift, or multiplication by two,

L. right shift, or division by two,

5e clearing to zero.

Complementation is executed in the Illiac in the manner
described in the previous section by a circuit called a complement
gate. The complement gate is actuated by a signal from the control
and is capable of supplying either the number unchanged, or its
digitwise complement. Addition is carried out by the adder, which
is capable of forming the sum of two 40O binary digit addends.

A left shift is a displacement of the binary digits one

digital position to the left and corresponds to a multiplication by

two. /There will be an overflow if the number to be shifted is

+ 1/2 or if it has an absolute value greater than oné-half. The

right shift is a displacement of the binary digits one digital

position to the right and corresponds to a division by two. For

example,

0.0l11 shifted left is 0.1110; 7/16 x 2 = 7/8
7/16
1.0010 shifted right is 1.1001; -7/8x 2 = -7/16

,0-1110 shifted right is 0.011l; 7/8 4 2

1.0100 shifted left is 0.1000; -3/k x 2 = 1/2 because

]

of overflow.

2-L

It should be noted that the sign digit 1s propagated when the right

shift is executed. The Illiac arithmetic unit has two shifting

registers, each capable of executing both left and right shifts.
Clearing to zero involves setting all digits of a number
to zero; the corresponding arithmetic value is zero.

2,3 THE ILLIAC ARITHMETIC UNIT. The structure of the

I1liac arithmetic unit is shown in Figure 2.2. The arithmetic unit
is composed of two shifting registers, the accumulator A and the
quotient register Q, and one non-shifting register, the number
register R3° Also required are the complement gate and the adder.
The A and Q registersrare the only registers to which the programmer
has direct access; the number register R3 is used to hold temporarily
the numbers brought from the memory for arithmetic operations. It
is essential that the programmer be familiar with the roles played
by the A end Q registers in the operations of arithmetic; many pro-
gramming errors arise from placing operands in, or removing results
from, the wrong register. The functions of the registers during the
operations of arithmetic are described in the sections which follow.
2.4 ADDITIONS (order Type L). Before an addition in-
“Myu@ struction begins, the auge lies in the accumulator register A.
&J‘ During execution of the addition instruction, the addend is trans-
ferred from a specified memory location to the number reglster R3.
The digits of R3 are then sensed through the complement gate unchanged,
so that the addend forms one of the inputs to the adder. The augend

in A is the second adder input. The adder forms the sum which is

transferred to the accumulator A, replacing the augend. The quotilent

~register Q is undisturbed by the addition instruction.

MEMORY

y |
ADDER

[[JK

Q

3 COMPLEMENT

. - R
R GATE

Figure 2.2
The Illiac Arithmetic Unit

Two variants of addition are "hold add" and "clear 8d4d."

The "hold add" instruction leaves the augend in A undisturbed

until the sum is formed by the adder. The "clear add" instruction

Ltlears A to zero inifially, thus setting the augend to zero. The

"clear add" instruction is thus a transfer order which moves a

~

number from‘a specified memory location to the accumulator A.

2.5 SUBTRACTIONS (Order Type L). Subtraction in

the Illiac arithmetic unit is performed by adding the complement

2-6

A e

of the subtrahend to the winuend. Before the subtract instruction

begins, the minuend lies in the accumulator A; and is used as one

of the two adder inputs. The subtrahend is brought from a gpecified
memory location to R3; its complement is formed by the complement
gate and is used as the second adder input. The adder thus forms
the difference by forming the sum of the minuend and the complement
of the subtrahend. The adder output is then transferred to the
accumulator A, replacing the minuend.

Either the "hold subtract" instruction or the "clear
subtract” instruction can be used by the programmer. For the foréé%%JQ

instruction, the result of a previous operation is left in the accumu-

lator A as minuend; for the "clear subtract," the minuend in A is

set to zero, so that A contains the negative of the number in a

§pec1fied memory location when the operation has ended.

2.6 ABSOLUTE VALUE ADDITION AND SUBTRACTION (Order Type L).

Tt is possible to form the absolute value of the addend (or sub-
trahend) after it has been transferred from a specified memory loca-
tion to R3 and before it is added to the augend (or subtracted from

the minuend) in the accumulator. Ordinarily the setting of the com-

plement gate depends upon whether the instruction is an addition or

_g subtraction; for forming the absolute value of the number in R3,

it is necessary to sense the sign digit of R3 as well. For example,

if the addition of the absolute value of a negative addend is required,

the sign digit of the addend in R3 is sensed indicating that a

complementation is necessary. The add instruction ordinarily does

2=7

not rggg}xgwgomplementatiog; the net effect of the sensing of the

add instruction and the R3 sign digit is that the complement gate is

/8et to form the complement of the addend.

2.7 INCREMENT ADD ORDERS (Order Type F). It was noted

in section 2.1 that the operation of complementation is performed
by first forming the digitwise complement of the number held in R3
and by then adding a unit in the least significant digital position

of the adder. _For the ordinary addition and subtraction orders

_korder type L), the least significant digit insertion occurs only

—

_ When the complement gate is set to form the diglitwise complement.

In the Illiac, special increment add orders (type F) are provided.

For these orders, the relationship between the setting of the com-

p%ﬁ?ent gate and the insertion of the least significant digit is

reversed. Thus, the "clear increment.add" instruction sets the

—_—

augend initially in A to zero and adds the addend from RS to g3?

Land places the result in A. Conversely, the "clear increment sub-

tract” instruction sets the minuend in A to zero, replaces ones

e .

of the subtrahend by zeros and replaces zeros of the subtrshend

by ones, and transfers the digitwise complement of the subtrahend

thus formed from the adder to A. Detailed descriptions of further

orders of this type are given on page ;;2&.

2.8 ADD FROM Q (Order Type S) AND INCREMENT ADD FROM Q

(Order Type K) INSTRUCTIONS For the add from Q and increment add

from Q instructions, the addend or subtrahend is tranferred to the

number register R3 from the Q register, rather than from a

v

gpecified memory location. Optherwise, the K and S order types

are the same as the corresponding F and L order types described

-

ip sections 2.4 through 2.7.

©.9. THE SHIFT ORDERS (Order Types 0. 1). Since the

right and left shift operations are fundamental in the Illiac
arithmetic unit, specific shift instructions are provided for
the programmer. All digits in both A and Q, except the sign digit

q, of Q, are shifted. A left shift (order type O) of one digital

position replaces

0r 817 8ozt ¢ 0 337, a38, a39 in A

and

qo’ ql’ q2 A | Q37I q38) q39 in Q
by

81y 8oy a3, .« o -y a38, a39, ql in A
and

qo’ QQ, q3) ° ° o 9 Q38J q39’ 0 in Q°

The right shift (order type 1) of one digital position replaces

Bhs 815 Boy o o a37, a38, a39 in A

and

2-9

qo’ ql’ q2’ LA A | Q37J q38l q39 in Q

by
8nr 84 8y
and

qo) 339! ql,

. e 336, a37, &3

8 in A

A 4 q36f q37) Q38 in Q'

From the behavior of the left and right shift we see

that we may consider the shifting to take place in a single register

AQ of 79 digits consisting of A followed by Q with 9, deleted.

Thus the left shift replaces

ao, &l, ae,

by

al, 32, 33,

ey B30y

o o a38,

While the right shift replaces

8hs 811 Bn»

by

o} ao) al’

.

v By

. &36,

838

39’

638,

a

37’

&39; q1) qe"' L 4 q37) q38) Q39

ql; q27 Q3, L q38) Q39} 0

a39; ql} q2’ L 1 Q37) q38’ q39

a383 a39} ql) L Q36’ q37’ q38'

The number n of shifts can be specified in the address

digits of the shift order by the programmer. A left shift of n

2-10

digital positions replaces AQ by 2n AQ. Similarly, a right shift of
n digital positions replaces AQ by > pAQ; n lies in the range
1<n£65.

2.10 MULTIPLICATION (Order Type 7). Initially, the

multiplier lies—in—the guotient register Q. At the beginning of the

multiplication instruction, the multiplicand is transferred from a

location specified by the address of the multiply order into the

number register RB; where it remains throughout the multiplication.

The multiplication then consists of a sequence of additions and shifts.
More precisely, a multiplier digit in q59 is sensed. There are two
cases. (a) If Qs = 1, the multiplicand is added to the partial
product in A. A right shift in AQ follows which halves the number

in A, moves a new multiplier digit into q59 and transfers

a product digit from &g to g . (b) 1If dzg = 0, only the right

shift occurs, which transfers a59 to a; and transfers the next most

significant digit of the multiplier into q59. After thirty-nine

right shifts have occurred, the sign digit of the multiplier is sensed.

If the multiplier is positive, the multiplication 1s complete, with

a double precision product (sign digit and seventy-eight non-sign

digits) in AQ. TFor a negative multiplier x, the process of thirty-

nine shifts and conditional additions constitutes a multiplication
of the multiplicand y by 1 + X (Equation 2.3) to form a product

v(l + x) = y + xy. In this case the Illiac automatically subtracts

the multiplicand y to produce the correct product xy.

A number of variations of the basic multiplication pro-
cedure described in the previous paragraph are possible. The initial
contents of A may be either 0, 1/2, or some quantity previously

calculated. If we degignate the initial contents of A by a, the

final double precision product in AQ is xy + 2-39a, where x and y

are multiplier and multiplicand,'respectively. For_a/= Q, the

instruction specified is "clear multiply” and the result in AQ is

Eggvexact 78 digit signed product Xy. For a = 1/2, the instruction

specified is "roundoff multiply" and: the result in A is a rounded

-~

29 digit signed product. If a is arbitrary, the instruction

specified is "hold multiply", and the result in AQ is xy + 2-59a;

tgé,quantity a is thus added to the least significant part of the. .

z\'
- product in Q. In,all multiplication instructions the sign digit ﬂ*y /

v
4, of the quotient register is set to zero. ‘ﬂ& égéf

For each of the three types of multiplication instructions
described in the previous paragraphs, four additional variations
can be specified by the programmer. Either N(n), -N(n), IN(n)|,
or - |N(n)| can be used as the multiplicand, where N(n) is the
number transferred from memory location n to the number register
RO.

2.11 DIVISION (Order Type 6). Initially, the double

Jrecision dividend lies in AQ. The divisor is tfansferred at the

beginning of the division instruction from a memory location

specified by the address of the divide order to the number register

RB, For jpositive divisor and dividend, the process is analogous

top elementary long division. The divisor is subtracted from a

partial remainder in A and the sign of the difference (in the adder)

i;,sensed. ~If the difference 1s negative, 0 is inserted in qQ:7:
J7

as/quotient digit and AQ is doubled to form a new partial remainder.

If the difference is positive, 1 is inserted in q.,, as quotient
27

digit and the difference in the adder is placed in A, and AQ is

doubled to form a new partial remainder. At each doubling of AQ,

7
. q, 1s shifted into q, as well as into a,.. Thus after 39 steps au/éy .

q, has the sign of the quotient. The dividend is used as the initial

partial remainder; after 39 quotient digits have been generated, the
process is complete. A similar procedure is employed if divisor
or dividend is negative or if both sre negative.

The Illiac division has the following properties:

(1) A rounded quotient Q is always generated.

The roundoff is achleved by setting 1

’ 439 =

in all cases.

(2) The thirty-ninth partial remainder is left

in A and is called the residue r. The true

remainder R corresponding to the rounded quotient

is related to r approximately as follows:

R=r1+ (295 - 1) v, (2.4)

where y is the divisor and q, is the sign

(3)

(&)

digit of the quotient. Thus if the quotient

is positive

R=r1r-1y, (2.5)

and if the quotient is negative

R=r "l‘%»Y. _:' (2.6)

i ¢

(The equations given above for the true remainder

are valid if the absolute value of the quotient is

. less than one, and they yield results in error by

_pot more than

The sign digit of the quotient replaces the least

significant (78th) digit of the double-precision

.dividend. One effect is that the least significant
digit of the residue (a39) is the same as the sign
digit of the quotient 9.

If we have a priori knowledge of the true value q
of the quotient (such as, for example, a division
of qy by y), the relationship between the machine
quotient Q and the true quotient q 1is

a=q+27 (1249, (1- 2y (2.7)

where q39 is the least significant digit of q and
Yo is the sign digit of the divisor y. Equation

2.7 1s essentially a description of the division

roundoff., If g,. = 1, then @ = q and the machine
J7

quotient is the true quotient. If 9,, =0
77

. the nature of the roupdoff depends upon the

sign of the divisor. Suppose, for example, that 7
e ,
q is 0.1013 then Q 1s eilther 0.101000...001 or
0.100111...111 depending upon whether the divisor

was positive or negative, respectively.

5.12 PRECISE CALCULATION OF THE DIVISION REMATNDER. We

define the remainder R in relation to a_quotient Q, a divisor y,

and a dividend 4 by the equation
w+2 7R =4,

or

R =27 (d -Qy). (2.8)

However, the exact relationship involving the Illiac residue r and
including the replacement of the least significant dividend digit

d78 by the quotient digit 9 is
-39 L ,-T8
Qy + 2 [r + (2qo - 1l)yl =4 + 2 (qo - d78)' (2.9)
Solving for R, we have

R = 277 (@ -Qy) =1+ (2qO -1)y + 229 (d78 - qo). (2.10)

Equation 2.10 gives the exact expression for the remainder R which
0
corresponds to the machine quotient Q.)
If the remainder R corresponding to the true quotient q

is desired, then R is defined as

2-15

R =27 (4 - qy). (2.11)

The value of R is found by substituting equation 2.7 in equation

2.9 and solving for ﬁ, which yields
R=-r+ [2qo - dzg - (1 - q39) 2yO] v o+ 2—59(d78 - qo). (2.12)

2.13 THE DIVISION HANGUP. SPECTAL CASES OF DIVISION.

Ci{guits are incorporated in the Illiac for stopping the Illiac if

the quotient resulting from a division exceeds one in absolute value.

The _sign digit of the quotient is predictable from the signs of divisor

and - dividend. The sign digit of the quotient is calculated in the

Tlliac by comparing the dividend and divisor arithmetically. Thus,

by sensing the sign digits of quotient, divisor, and dividend, it
is possible to detect thé fact that the quotient exceeds one in
absolute value, and stop the Illiac.

Q The; equations derived in Sections 2.10 and 2.11 are valid

\

only if the absolute value of the dividend is less than the absolute

————— =

value of the divisor. @geﬁ absolute vglues of dividend and divisor

are equal, the Illiac generates a quotient -1 + 2-59 if the dividend

Li? negative and the divisor is positive. The quotient is +1 - 2-39

if dividend and divisor are both negative. If the dividend is

(\ pdéitive and equal to the absolute value of the divisor, the Tlliac

! will stop. If the divisor is -1, the Illiac generates a quotient

—_—
which is the digitwise complement of the dividend, except for the

gquotient roundoff.

2-16

9

<

2.14 MEMORY TO @ (Order Type 5) AND STORE (order Type 4)

INSTRUCTIONS. Instructions are provided in the Illiac for trans-

ferring & number from a specified memory location to the Q register,

and for transferring a number in A to a specified memory location.
7~

The former instruction can be used to trapsfer the multipliier.

Y
to Q before a multiplication; the latter instruction is used to

transfer a result from A to the memory. If a result lies in Q(eegey

a division quotient) it can be transferred to the memory by using two

orders, 55 and 40 which transfer Q to A and then A to the memory.

2.15 ILLUSTRATIVE EXAMPLES. 4¢1€;p¢c;4// ?>

A. The Leapfrog I Division Test. In the Leapfrog

I divisiondgfst the product xy is formed and is then divided by y-

The sum of the quotient in Q and residue in A is formed and stored.

N

The sum of quotient and residue is then calculated independently

_and compared with the sum previously stered.

The value of the machine quotient Q in the quotient regis-
o -
ter after division of xy by y is given by equation 2.7, with ¢ = x.
Thus
-39 .
= + 2 1-x 1 -2 .
q=x (1 - x59) (1 - 2y,)

The value of the residue r left in the accumulator is found from

equation 2.12 by setting R = 0, x = q, and solving for r:

-39
r = [x59 + (1 - x59) 2y, - 2xo] vy + 2 (xo - Xz y39).

The sum Q + r, after rearranging terms, is

X - 2-59 59)

Q+1r = Xs9 Y3g = %5 (y - 2~ + (1 - XO) y +

(1 - x59) (v, - 1) (v - 277).

The independent calculation of Q + r thus consists of forming

x - 279 X39 ¥3g and either adding y or (-y + 2-59) depending upon

whether x 1s positive or negative; and finally, if x is O, adding

39
or subtracting (y - 2—39) depending upon the sign of y.

B. The "Double Precision" Divzéion. It is

sometimes convenient to consider a single precision divisor & as
exact and form a "double precision" quotient s + 2-59t utilizing
the double precision dividend d originally in AQ. The procedure
used is as follows:
1. Form d/y, yielding s + 279 4n Q and r + 2-5980 in A.
2. Shift right, forming r/2 in A and s/2 in Q. |
3. Form r/2 +y leaving’égin Q and a residue u in A.
-39

L. Assemble s + 2 7t by setting ty (the sign digit of T)

to zero, inserting s/2 in A and shifting left once.

29

The precision of s + 2 “7t can then be calculated as follows:

Step 1 yields s and r such that (by equation 2.9)

(s +2)y 4279 [F 4279 5o+ (@, - L)y 1 =a+ o"78 (55 - dog),

2-18

or

78

-59 _ -
sy + 2 (r + 2soy) =d -2 d g (2.13)
Step 3 yields
Ty + 279 [u s (éto -l)y 1 =r/2+ 2-78to. o (2.14)

The following substitutions are made:
(a) SO = to, since the.sign of r/2 is the same as the sign of
d.

(b) From step 4, t = 2(T + so) or T = 1/2t - 54

Substituting in equation 2.1k and solving for r, we have

r=(t - QSO)y + 2_58 [u+ (250 -1)y 1 - o7 So°

Substitution of the value for r in equation 2.13 yields

sy + 2-39 [(¢ - 2so)y + QSJy 1 + 2_77 [u+ (s - 1)y]

-116 < 78

-2 o= d -2 d78.

We thus have

39 8 38 1

(s + 27’ t)y + 27T [2u + 2(2sO -1)y + d78 -2 sy 1 = d.

It can be shown that u + (2so - 1)y < 1 so that the quantity

within square brackets is less than 3 in absolute value. We conclude

39 76

that the quotient & + 2 77t is in error by not more than 2 .

The program for forming a "double precision” guotient

.from a double precision dividend and an exact single precision

divisor is given in words 57 to 66 of library routine A 4 entitled,

"1.7 Precision Floating Decimal". A major difficulty encountered

is the formation of-r/2 from r (Step 2 above), for r may be as large
as 2y and may therefore exceed range. It is therefore necessary
to set the sign digit of r/2 to that of the original dividend 4.

2.16 INTEGER OPERATIONS. It is sometimes desirable to

use integers for computations in the Illiac. ©Suppose we have an

integer a stored in the memory or arithmetic unit. In terms of the

formulation of previous sections, we ‘would store 2 59a, where a

59 <ac< 239. If we wish to add or subtract

9& + 2

lies in the range -2

two integers a and b, no difficulty is encountered, for 2-3 -59b

2-59 (a + b) indicating that the correct sum or difference lies in
~A after the instrucion is performed. Multiplication of two integers
a, b yields (2_59a) (2-59b) = 2‘78 ab. The product ab lies in AQ
78 78

and is in the range -2 < ab <2 7. If the programmer scales
all quantities so that the product remains in the range -259 <ab < 259,
then the 40 digit signed product can be transferred to A by a left
shift of 39 digital positions. It should be noted that the sign
diéit of Q@ is set to zero during the multiplication so that for
positive products, N(Q) = ab, if 0 < ab < 259.

Division of integers presents certain difficulties. An

example is given here of a method of dividing a positive dividend

a by a positive divisor b to yield a quotient f and remesinder g.

2-20

The steps are as follows:

8 7

(1) Place the dividend 2 1, in AQ. D <a<ea'l,
=8 >e

-

(2) sShift left one digital position, leaving 2a in AQ with

=0
q.59 k]
(3) Divide by 2 %, leaving (2f + 1) 277 in Q and (2g)
2% ina. 0 <b < 239,
(L) Shift right one digital position, leaving 2-59f in Q

and 2-59g in A

It can be proved that bf + g = a by substitution of the

appropriate quantities in equation 2.9, as follows:
(2f + 1) 277 (2"59b) +279 [279%0g) -2] - 2 18 (2a)
which yields

2'78 (2bf + b +2g - b) 2'78

i

(2a) or bf + g = a.

The ranges of f and g are O < f < 258 and O < g < 258.

2.17 SUMMARY . In the Illiac arithmetic unit are two
registers, A and Q, which are directly accessible to the programmer.
A single arithmetic order of a program utilizes the initial numerical
operands in A, in Q, and in a specified memory location, and trans-
forms tﬂese quantitiqﬁ to produce desired results which are left in

|

the registers. The programmer must know where the operands are

initially located and where the results are to be found. The functions

2-21

of the registers for the operations of arithmetic are indicated in
Table 2.1.

The Illiac has a fixed point arithmetic unit; the binary
point is fixed so that any number x used in computation must lie
in the range -1 < x < 1. The programmer must insure that all
quantities remain within this range during'a computation. The
sign of a numerical gquantity is indicated by the leftmost of the
forty binary digits stored in a register of a memory location.

The sign digit is O for a positive number 1 for a negative number.

Id

2-22

ge-2

INITIAL CONDITIONS FINAL CONDITIONS
INSTRUCTION || Specified A Q A Q NOTES
Memory . Register Register Register Register
Location
Augend can be
Add Addend Augend Arbitrary Sum Unchanged set to O or 1/2
Subtract Subtrahend Minuend Arbitrary || Difference Unchanged Minuend can be
set to O or 1/2
. s Set to 0 at
Clear MuLtipli=| ciort of Multiplier || Double Precision Product q. set to O
Multiply cand X 0
instruction
Rounded " zizrzooﬁ/in?t iz Rounded Usually "
Multiply ctruction Product Unwanted
Hold " Accumulant " -39 "
Multiply y p Xy +2 7a
Double Precision Rounded
Divide Divisor Dividend Residue Quotient
Left Shify{} See Note Double Precision 1.q, unchanged
(n 1) 2 Number X
2. Address digits
Right Shift " " specify num-
(n 1) x ber (n) of shifts
Table 2.1 Use of Illiac Registers During Arithmetic Instructions

CHAPTER 3

THE ORDER CODE

The Illiac is a binary computer in which the storage
capacity of each register or memory location is 40 binary digits.
The orders which the machine carries out are represented by numbers
in the machine. The relation between the order types and the corre-
sponding numbers is called a code, and the collection of all such
numbers is called the order code of the machine. The order code
is interpreted by the control circuits of the machine and completely
determines what the machine does. The machine is designed so that
any storage location in the memory may be used either for orders or
for numbers, the only distinction being that the control must be in-
structed properly so that orders and numbers will be treated
appropriately.

3.1 THE MAKEUP OF ORDERS. An order for a digital computer

consists of an instruction to say what to do and one or more addresses
to say where to get the quantities to be used in carrying oﬁt the ih-
struction. In contrast to some existing computers, the Illiac uses
what is called a one-address code. For a one-address code, the order
is of the kind that says "add the number in memory location 12 to a
number already in the arithmetic unit, leaving the sum in the arith-
metic unit."

Since a one-address code is used, it is not necessary to use

40 binary digits to describe an order. The Illiac uses 20 digits and

3-1

packs two orders (an order pair) into one location. These are the
left-hand order and the right-hand order. Since many orders must
refer to locations in the memory, each order contains an address.
It 1s still called an address in those orders which do not refer
to the memory.

The electrostatic memory of the Illisc has 1024 locations
and because 1024 = 210 we require 10 binary digits for the address.
These are the rightmost 10 digits of the 20 digits assigned to an
order.

Of the remaining 10 digits of each order, eight are used

for the instruction or (function) and the other 2 are unused. The

digit makeup of an order pair is shown in Figure 3.1.

8-DIGIT 10-DIGIT 8-DIGIT 10-DIGIT
INSTRUCTION ADDRESS INSTRUCTION ADDRESS
LEFT-HAND ORDER RIGHT-HAND ORDER

| pam— DIGITS 0-19 ———l—— DIGITS 20-39 ————pueui
Figure 3.1
Order Pair Makeup

The instruction digits are 8 in number because of the

convenience obtained by using a base 16 (sexadecimal) number system

3-2

in which 4 binary digits may be represented by one sexadecimal digit.
Thus each instruction may be coded as 2 sexadecimal digits. The

symbols K, 8, N, J, F, L are used for 10, 11, 12, 13, 14, 15.

As an example of an order pair let us consider the following
40 binary digits.
1111010100000001110101000000000000000110

When divided into instruction and address digits, these digits look

like this: f ‘4~Jf
>
1111 0101 00 00000711061 0100 0000 00 OOOOOOOllOa
10& _20 1(2
INSTRUCTION L.H. ADDRESS INSTRUCTION R.H. ADDRESS

The left-hand instruction is made up of the two L-digit numbers

1111 010l which are the sexadecimal digits L5. The left-hand address
is interpreted as an integer which mey go from O to 1023 1f we use
decimal notetion or from O to 3LL if we use sexadecimal notation.

In sexadecimal representation the left-hand address is 1J
which corresponds to the decimal number 29. Thus the left-hand order
is L501J where the O has been supplied so that all 20 binary digits
(including the unused 2) are accounted for. (We could have set the
unused digits to 1's and used N rather than O if we had wished.)

Similarly the right-hand order is 40006, and we have, in
sexadecimal notation, the order pair

L501J L0006

This order pair says, "Transfer the contents of memory location 1J
to the accumulstor; store the accumulator contents at location 6
of the memory."

It is quite inconvenient to have to write addresses in
gexadecimal form, and it is unnecessary if the machine contains a
program which will take addresses written in decimal form and con-
vert them to sexadecimal (i.e., binary) form for machine use. A
program of this type is available for the Illiac. It is called
the Decimal Order Input Routine (See Chapter 5).

3.2 EXECUTION OF ORDERS. The Illiac operates by using

orders which have been stored in the memory according to a plan deter-
mined by the programmer. The program is begun with a particular

order chosen by the programmer. Let us suppose that it is the left-
hand order at location 10. (We shall refer to addresses in decimal

notation.) The control will put into R, the order pair from location

3
10. Then, until something is said to the contrary the control will
follow a fixed pattern in executing orders. It will do the left-hand
order and then the right-hand order in R3. Then it will put the order
pair at location 11 into R3 and again do the left and right-hand orders.
It will continue to withdraw and execute order pairs from successive
memory locations until one of two things occurs:

(a) One of the orders brought out says "stop,"

(b) One of the orders brought out says "change the

sequencing."”

3

Control Transfer Orders. The second kind of order, a con-

trol transfer order, permits the programmer to change the sequencing

of orders and provides the flexibility required for 1terative processes.
It works in the following way. Let us suppose that after the machine
has executed the left-hand order at location 17 the programmer wishes

to move to a sequence of orders beginning, say, with the right-hand
order at location 35. Then the right~hand order at location 17 will
say "Transfer control to the right-hand order at location 25." The
execution of this order will consist of arranging that the next order
pair is brought to R3 from location 35 and that the left-hand order

is skipped. Having done the right-hand order in R3, the control brings
out the order pair from location 36 and proceeds in the usual way.

Conditional Transfer Orders. There are two kinds of con-

trol transfer orders, conditional transfer orders and unconditional

transfer orders. We have just described the unconditional transfer

order. The conditional transfer order does the same thing as the

unconditional transfer order provided that the number in the accumu-

lator is not negative. Otherwise it does nothing. In the example

we have just used, if the right-hand order at location 17 has been
conditional, then if the accumulator had held zero or a positive
number the next order executed would haﬁe been the right-hand order
at location 35. But if the accumulator had held a negative number

the next order executed would have been the left-hand order at location

18.

3-5

3.3 STOP ORDERS. There are four control transfer orders,

the right-hand and left-hand unconditlonal and conditional orders.

These have been further combined with a stop or not-stop order, giving

_eight orders in all. If the programmer chooses one of the four "stop

and transfer control" orders the machine will stop before transferring
control and must be started again with a panel switch. The switch can
be set so that these stop orders are 1ghored, which of course makés
these stop orders into ordinary control transfer orders. This 1s often
useful in programming, and when 1t is done the machine can still be
stopped with another kind of stop order which cannot be ignored.

3.4 ORDER TYPES. The number of orders which the Illiac
can execute is quite large (more than lOO), but not all of them are
of general interest. Whet we shall do here is discuss the various
types of orders, giving the variants of each. Following this dis-
cussion will be a list of those Illiac orders which are of most use.
This 1list is adequate for the coding of any problem, and beginners
are urged to confine themselves to it. Experienced coders will find
uses for other variants.

The two sexadecimal instruction digits Qf an order give
the order type and the order variant. We shall refer to them as the
T- and V- digits, respectively. In the example L5 cited earlier the
T- digit is L and denotes additionf The V- digit is 5 and chooses

one of the varlants of the addition order.

3-6

The order types are given in Table 3.1.

T-Digit Order Type
0 Left Shift
1 Right Shift
2 Unconditional Transfer
3 Conditional Transfer
L Store from A register
5 Memory to Q register
6 Divide
7 Multiply
8 Input or Output
9 Special Input or Output
K Increment Add from Q
S Add from Q regisfer
N Not Used
dJ Extract
F Increment Add
L Add
Table 3.1
Order Types

The meaning of the address digits of the different order

types 1s given in Table 3.2

3=-7

ORDER-TYPE ADDRESS SIGNIFICANCE

0, 1 Number of shifts (cannot exceed 63)

2, 3 Memory location from which next order
pair will come

b Memory location at which storage will
occur
5 Memory location from which word is

brought to Q register

6 Memory location of divisor
7 Memory location of multiplicand
80, 82 Number of binary digits to be input
or output :
92 Character to be punched and number of
punchings
K, S Address not used
J Same as for 5 order
F Memory location of addend
L Memory location of addend
Table 3.2

Meaning of Address Digits

It will be seen from Table 3.2 that except for the O, 1,

8‘~21—§_EEE_? orders the address of an order always refers to the

] mgmory.

3.5 ORDER VARIANTS. Let us now consider the variants

obtained by changing the V-digit. The sexadecimal V-digit 1is made
up of the four binary digits V8, Vh, V2 and V1. There are 16 possi-
ble combinations, giving V-digits from O to L, but not all are used.

The results obtained with different V-digits are as follows:

3-8

(a) The Digit V1. If V1 = 1, A will always be cleared to
zero at the beginning of any order. If V1 = O, A will not be cleared.

Thus an odd V-digit means that A will be cleared.

(b) The Digit V8. If V1 =1 and V8 = 1, the quantity 1/2
will be put in A at the beginning of any order. This is how rounded

multiplication is carried out. _If V8 = 1 and V1 = 0, the Illiac will

hang up.

(c) The Digit V2. This digit affects all orders except

those of types O, 1, 5 and J. See Table 3.3.

(d) The Digit V4. ,This digit affects all orders except

those of types 0, 1, 5 and J. See Table 3.3.

The following notation is convenient for a more detailed

description of the orders:

A

accumulator register

8y = sign digit of A

Q = multiplier-quotient register

9, = sign digit of Q

AQ = the 79 binary digit double register formed
from A and Q by omitting 4
N(R) = contents of register R
N(n) = contents of memory location n

If no ambiguity is possible, the symbols A and Q will also

be used to denote the contents of A and of Q.

On the following pages there are detailed descriptions of
the results obtained by changing the V-digit of the 15 order types
used in the Illiac. After the detailed descriptions is an abbrev-

iated list of orders. The orders in the abbreviated 1list have been

underlined in the detailed descriptions.

3-10

1T-¢

TYPE vh EFFECT OF Vi V2 EFFECT OF V2
0, 1 - NONE - NONE
5. 3 0 RIGHT-HAND ORDER 0 STOP IF SWITCH SET TO OBEY
’ 1 LEFT-HAND ORDER 1 NONE
- NONE 0 STORE FULL WORD
L
0 RIGHT-HAND ADDRESS 1 STORE ADDRESS
1 LEFT-HAND ADDRESS
5, J -- NONE -- NONE
6 1 V4 MUST BE 1 1 V2 MUST BE 1
8 0 TAPE ¢ INPUT
1 DRUM 1 OUTPUT
0 INPUT
9 0 TAPE 1 OUTPUT
7, K, S 0 SUBTRACT 0 NUMBER
F, L 1 ADD 1 ABSOLUTE VALUE

Table 3.3 Effect of Digits Vi

and V2

OV n Left Shift (Double) 3 Orders
Final Stop 1 Order

If n = 0, the machine will stop. If not, repeat n times

the operation which replaces the contents

84s 815 8y, - .\; , 338, a39; 415 Ay q3, ..y q38’ q39
of AQ by

ay, 85, a3, ey, a39 415 9y q3, Qs+« « q39, 0

leaving , unchanged.

The number n will be interpreted modulo 6.

Varients
0, 2, 4, 6 Order as described above.
1, 3, 5, 7 Clear A and then execute as described.
8, K, N Illiac will hang up. Avoid these.
9, S, J, L Clear A, insert 1/2 in A, and then execute

order as described above.

F Final Stop.

Use only 00, 01, 09 for shifts
Use OF with n = O for final stop-

3-12

1V n Right Shift (Halve) 3 Orders

If n = 0, the machine will stop. If not, repeat n times

the operation which replaces the contents

ao, al, &2, o o e g &38, 839; ql, qg, q3, N q38, q39

of AQ by

ao} ao) alf LA 4 a37’ a383 339} ql} qg’ L 4 Q37J Q38)

leaving g unchanged.

The number n will be interpreted modulo 6L .

Verients
0, 2, &, 6 Order as described above.
1, 3, 5, 7 Clear A and then execute as described.
8, K, N, F Illiac will hang up. Avoid these.
9,8, J, L Clear A, insert 1/2 in A, and then

execute order as described above.

Use only 10, 11, 19

3-13

2V n Unconditional Control Transfer 12 Orders

Bring the next order pair from memory location n and
choose the left or right hand order of this pair, stopping before-

hand or not, depending upon V.

Variants

0 Stop. The first order after starting with
the START switch will be the right~hand order
at memory location n. The stop can be ignored
by setting a panel switch.

2 Transfer control to right-hand order at memory
location.

b Same as O except take left-hand order.

6 Same as 2 except take left-hand order.

1, 3, 5, 7 Same as 0, 2, 4, 6 except clear A first.

8, K, N. F Illiac will hang up. Avoid these.

9, s, J, L Seme as 1, 3, 5, 7 except also meke A = 1/2

after clearing.

Use 20, 21, 22, 23, 24, 25, 26, 27, 29, 28, 2J, 2L.

Starting After A Stop. When the Illiac has been stopped

by one of the control transfer stop orders, it is usually started
again by moving the black switch to START, from which position the
switch automatically returns to OBEY.

The Illiac can also be started again by moving the white

switch through EXECUTE to FETCH and then back to RUN. If this is

3-1k

done, the control transfer order which stopped the Tlliac will be
ignored. The normal sequencing will then follow unless the stop
order is a right hand order transferring control to the right hand
side of a word. In this case, the order first obeyed after starting
will be the right hand instead of the left hand order of the new
order pair brought out.

For example consider the following orders:

P L5 F
20 p+2

p+l Lo 1F
2L p

p+2 7J 2F
L4 3F

If we stop with the 20 order, the black switch will start with
LY 3F and the white switch with 2k p. If we stop with the 2k
order, the black switch will start with L5 F and the white

switch with 7J 2F.

3V n Conditional Control Transfer L4 Orders

If A > O, bring the next order pair from memory location
n and choose the left or right hand order of this pailr, stopping be-
forehand or not, depending upon V., If A < 0, go on to the next
order.
Variants
0, 2, 4, 6 If A > 0, do the same operation as for
the corresponding 2V order. If A <O,

go aon to the next order.

1, 5, 5, 7 Identical with corresponding 2V orders.
8, K, N, F Illiac will hang up. Avoid these,
9, 8, J, L Identical with corresponding 2V orders.

Use only 30, 32, 34, 36.

Starting After A Stop. The discussion given with the

2V orders applles here to the corresponding 3>V orders.

3=16

Ly n Store 9 Orders

Copy into memory location n all of the contents of A,
the contents corresponding to the address of a left-hand order, or
the contents corresponding to the address of a right-hand order,

depending upon V.

Variants
0, 4 Replace N(n) by A.
1, 5 Replace N(n) and A by O.
2 Replace address digits of right-hand order

at memory location n by the corresponding
digits of -A.

3 Same as 2 except clear A first.

6 Same as 2 except take left-hand order.

7 Same as 6 except clear A first.

8, K, N, F Illiac will hang up. Avoid these.

9, J Replace N(n) and A by 1/2.

S Replace A by 1/2 and address digits of
right-hand order at memory location n
by O,

L Same as S except take left-hand order.

Use only 4o, 41, L2, 43, 46, L7, ko, Ls, LL.

3-17

5V n

= o BN (o)

Memory to Q

Transfer N(n) to Q
Yeriants
Transfer N(n) to Q
Clear A and transfer N(n) to Q.
Illiac will hang up. Avoild these.

Put 1/2 in A and transfer N(n) to Q.

Use only 50, 51, 59.

3-18

3 Orders

6V n Divide 3 QOrders

Divide AQ by N(n), placing the rounded quotient in Q
(the least significant digit being 1 for the roundoff) and leaving
s residue in A. If [A] > |N(n)| the Illiac will stop after
dividing. If |A] = |N(n)| and if A > 0, the Illiac will stop
after dividing; if |A| = |N(n)| and if A <O, the Illiac will

not stop after dividing.

Variants
6 As described above.
T Make A = O, then proceed as above.
L, S Make A = 1/2, then proceed as above.
8, K, N, F Tlliac will hang up. Avoid these.
2, 1,2, 3 These give incorrect results or results
b, 5, 9, J which are correct only under certain

conditions. Avoid them.

Use only 66, 67, 6L.

3-19

™Vn Multiply 12 Orders

Put Q x P(n) + 279 A into AQ, the least significant

39 digits being in Q with 9, = 0.

Variants
0 P(n) = - N(n)
1 P(n) = - N(n); A =0 "Unrounded Negative Multiply"
2 P(n) = - |N(n)|
3 P(n) = - |[N(n)|] 3 A=0
L P(n) = N(n) "Hold Multiply"
5 P(n) = N(n) ; A =0 "Unrounded Multiply"
6 P(n) = |N(n)|
7 P(n) = |[N(n)| 5 A =0
8, K, N, F Illiac wj up. Avoid these.
9 P(n) = -N(n) ;3 A = 1/2 "Rounded Negative Multiply"
S P(n) = - |N(n)| ; A =1/2
J P(n) = N(n) 3 A = 1/2 "Rounded Multiply"
L P(n) = |N(n)| 5 A = 1/2

Use only 70, 71, 72, 73, T4, 75,

1_6_: H’ E: lS_, E: E

3-20

8V n Input-Output 9 Orders

Transfer words between A and the input tape, output punch,
or magnetic drum.
The address n must be a multiple of 4 for the tape and punch

orders and must be 11 for drum orders.

Variants

0 Shift AQ four places left as in the 00 order
and replace 336’ a37, a38, 339 by the binary
digits corresponding to the sexadecimal

character being read. This is done n/h times.
1, 9 Clear A and then do as in 80 order.

2 Punch the digits 84s 8Bqs 85 a3 as one sexa-
decimal character and shift AQ four places
left as in the 00 order. This is done n/k

times.
3 Clear A and do as in 82 order.
5 This is a 40-digit order of the form 85 11 TV p.

We distinguish two cases.

(1) T is not 0, 1, 8, 9. 1In this case, A
and Q are shifted left eleven places as
in the 00 order and the word at drum
location p is placed in A. Then the T
order is executed using address p. Com-
plete freedom is not available in drum

addresses because p may interfere with V.

3-21

(2) Ti1s 0, 1, 8, 9. 1In this case after
the word at drum location p is placed
in A the right-hand order is skipped.
This permits use of any drum address

for p.

6 This is a LO-digit order of the form 85 11 TV D.

We again have two cases:

(1) Tis not 0, 1, 8, 9. 1In this case A is
transferred to drum location P, and A
and Q sre shifted 11 places left as in
the 00 order. Then the T order is ex-
ecuted using address p. Complete freedom
i1s not availeble in drum addresses be-
cause p may interfere with V.

(2) T1is 0, 1, 8, 9. In this case the right-
hend order is skipped sfter doing the
left-hand order as in case (1). This

permits use of any drum address .

7 Same as 86 except clear A first.
S - Put 1/2 in A and do as in 82 order.
L Put 1/2 in A sna do as in 86 order.
8, K, N, F {EEEEE_EEE;_hang_u;LmnA#©4d~thasev»
h, o These are not useful. Avoid them.

Use ._8.9) _8__1; _8_2_’ 83; _8_2, §§) 87) 881 8L,

3-22

9V n Special Input-Output 2 Orders

Variants

1 Five hole input. Clear A, shift AQ four places right
and replace a56, a57, a58, a59 by the binary digits
corresponding to the four least significant holes on
the tape. Place the contents of the fifth hole in

position 8y The address part of this order must be b,

2 Letter output. Punch on the tape a character de-
pending upon the address digits n. Three quantities
are defined by the 10 binary address digits:

(1) The leftmost 4 digits define the usual 4 digit
positions in the output tape.

(2) The rightmost digit defines the 5th hole in
the output tape.

(3) The rightmost 6 digits determine the number
b of times that the above-defined character
is punched and also the number of right
shifts executed. The number of characters
punched will be found by dividing the number

in the rightmost 6 digits by 4 and rounding
up to the next integer.

The address n may always be found from the following
formulas

n=~6ka + 4o +c -2
where s is the character punched, a =0, 1, 2, . . ., J, F, L

b is the number of characters punched, 1 <b < 16
¢ determines the fifth hole, c¢ =0, 1.

3-23

The number of right shifts executed is 4b + ¢ - 2.

Example. Punch the character 7 thirteen times.
n=6kx7+4x15+0-2-= 498

It will be found that the last 6 digits contain the
number S0 which when divided by 4 and rounded up gives 13. There

will be 50 right shifts.

Figure 3.2 shows tlhe relationship between the tape
holes and the address digits of the 92 order. The address shown

will print the character 7 thirteen times.

O

O
/o No o 0 o ——

/5
// O

/ A
1]1

1 11010 110

Figure 3.2

Address Digits of 92 Order

3-2L

that Q is

NOTE:

Increment Add from Q

These orders are identical with the FV orders except

used instead of N(n).

Variants

pdd -q - 2727 to A.
Put -q - 2727 in A.
Same as O if Q > O3
Same as 1 if Q > O3
add Q + 277 to A.

Put @ + 277 to A.

Same as 4 if Q > O3
Same as 5 if Q > O3

-
=
= .
-

o]

Illiac will hang up

(See note).

same as

same as

same as
same as

Axraid

L if @ < 0.
5 if @ < O.

O if @ < 0.
lif @< 0.

these.

Put -Q - 279 4 1/2
Same as 9 1f Q > O3

H 49 n o 3 O\ F W N O

Same as J if Q > O3

in A.

same as

Put Q + 227 + 1/2 in A.

same as

J if Q < 0.

9 if Q < 0.

Use KO, K1, K2, K3, K4, K5, Ké, K7, K9, KS, KJ, KL

q - 2=

5-25

is the digitwise complement of Q.

12 Orders

SV n

identical

Add from Q

Q is added, subtracted, etc., to A. These orders are

with the LV orders with Q uscd instead of N(n).

Variants

Subtract Q from A.
Put -9 in A.
Subtract [Q| from A
Put - |Q] in A.

Add Q to A.

Put Q in A.

Add |Q| to A.

Put |Q| in A.
l&i}ac will hang up. Avoid thggs:
Put 1/2 - Q in A.
Put 1/2 - |Q| in A.
Put 1/2 + Q in A.
Put 1/2 + |Q] in A.

F W b = O

Qo o9 onw
-
=
-
=
-
=
+

Use S0, 81, S2, 83, s4, 55, S6, S7, S9, SS, ST, SL

3-26

12 Orders

JV n Extract 3 QOrders

If two corresponding digits of N(n) and Q are both
1's, put 1 in that place of Q. Otherwise put 0. This order gives

the logical product of N(n) and Q.

Variants
0, 2, 4, 6 As described above.
1, 3, 5, 7 Clear A and do JO order.
8, K, N, F Tlliac will hang up. Avoid these.
9, 8, J, L Put 1/2 in A and do JO order.

Use only JO, J1, J9

5-27

NOTE:

Increment Add 12 Orders
Programmed Stop 1 Order

Variants
Add -N(n) - 2739 4o A. (See note)

1 Put -N(n) - 2737 in A. ,
Seme as O if N(n) > O; same as U4 if
N(n) < 0.

3 Seme as 1 if N(n) > O; same as 5 if
N(n) < 0.
Add N(n) + 2739 in A.

5 Put N(n) + 2737 in A.

6 Seme as 4 if N(n) > 0; same as O if
N(n) < 0.

7 Seme 8s 5 if N(n) > 0; same as 1 if
N(n) < O.

8, K, N Illiac will hang up. Avoid these.

9 Put -N(n) - 2737 & 1/2 1in A.

s Same as 9 if N(n) > 0; seme as J if
N(n) < O.

J Put N(n) + 2737 + 1/2 in A.

L Seme as J if N(n) > 0; same as 9 1f
N(n) < O.

F Stop. This stop 1s used to indicate

fallure of a programmed check.

Use FO, F1, F2, F3, F4, F5, F6, F7, F9, FS, FJ, FF, FL.

-N(n) - 2737 is the digitwise complement of N(n).

3-28

LV n

Add

N(n) is added, subtracted, etc., to A.

Variants

premiuit gt SIS G e et e

3-29

o} Subtract N(n) from A.

1 Put -N(n) in A.

2 Subtract |N(n)| from A.
3 Put - |N(n)| in A.

L Add N(n) to A.

5 Put N(n) in A.

6 Add |N(n)| to A.

7 Put |N(n)| in A.

8, K, N, F Illiac will hang up. Avoid these.
9 Put 1/2 - N(n) in A.

S Put 1/2 - |N(n)| in A.
J Put 1/2 + N(n) in A.

L Put 1/2 a |N(n)| in A.

12 Orders

ORDER

00 n

09 n

OF O
10 n

19 n

20 n

22 n

24 n

26 n

30 n

34 n
36 n

40 n

41 n

ABBREVIATED ORDER LIST

DESCRIPTION

Shift AQ left n places, 1 < n < 63.

Meke A = 1/2 and then shift AQ left n
places, 1 < n < 63.

Final stop.
Shift AQ right n places, 1 < n < 63.

Meke A = 1/2 and shift AQ right n places
so that AQ contains 2 %71, 1 <n < 63.

Stop. The first order after START will
be the right hand order at location n.
The stop can be ignored by setting the
panel switch to IGNORE.

Transfer control to the right hand order

at location n.
Same as 20 except take left hand order.

Same as 22 except take left hand order.

If A> O do as in the corresponding 2V

order.

If A <O go on to the next order.

Replace N(n) by A. Do not change A.

Replace N(n) and A by zero.

5-30

ORDER DESCRIPTION

ko n Replace address digits of the right hand
order at location n by the corresponding

digits of A. Do not change A.

46 n Replace address digits of the left hand
order at location n by the corresponding
digits of A. Do not change A.

49 n Replace N(n) and A by 1/2.

50 n Replace Q by N(n).

66 n Divide A + 227 (@ + ay) by N(n).

70 n Put -N(n) Q + 2757 A into AQ.

71 n Multiply -N(n) by Q, putting result in AQ.

72 n Put - |N(n)| Q + 277 A into AQ.

73 n Multiply - |N(n)| by Q, putting result in AQ.
T4 n Put N(n) @ + 277 A into AQ.

75 n Multiply N(n) by Q, putting result in AQ.

76 n Put |N(n)| Q + 2727 A into Aq.

77 n Multiply |N(n)| by Q, putting result in AQ.
79 n Put the rounded product -N(n) Q into A.

7S n Put the rounded product - IN(n)| @ into A.

7 n Put the rounded product N(n) Q into A.

7L n Put the rounded product |N(n)| Q into A.

80 n Input n/4 sexadecimal characters from the tape.
8l n Clear A and input n/4 sexadecimal characters

from the tape.

5-31

ORDER

82
85

86

o1

92

92
92
92
92

Kl

K5

S0
S1
S2
53
Sk
55
S6
ST

131

6L2
706
769
963

n

DESCRIPTION

Punch n/4 sexadecimal characters on the tape.

Replace A by the word at drum location n.
See page 3-21.

Replace the word at drum location n by A.

See page 3-22.

Read one five-hole character from the tape.

Punch one carriage return and line feed

character.

Punch one + sign (or K).

Punch one - sign (or S).

Advance film.

Punch one space character.

Put - Q - 2777 in A. (This is the digitwise
complement of Q).

Add q + 2797 o 4.

Put Q + 2739 44 A.

Subtract Q from A.
Put - Q@ in A.
Subtract |Q| from A.
Put -|Q| in A.

Add Q to A.

Put Q in A.

Add |qQ]| to A.

Put |Q| in A.

3-32

ORDER DESCRIPTION

JO n Replace Q by the logical product of Q and
N(n).

F1 n Put -N(n) - 2727 in A. (This is the digit-
wise complement of N(n).

F4 n Add N(n) + 2757 to a.

-39 .

F5 n Put N(n) + 2 in A.

IO n Subtract N(n) from A.

Ll n Put -N(n) in A.

12 n Subtract |N(n)| from A.

L3 n Put - |N(n)| in A.

L4 n Add N(n) to A.

L5 n Put N(n) in A.

L6 n Add |N(n)| to A.

L7 n Put |N(n)| in A.

5-35

CHAPTER b4

ROUTINES

One of the first tasks in programming a computation is
to break it down into a number of small or medium size operations,
each of which forms & fairly distinct logical step in the whole
calculation. Such a step may be the evaluation of a function such
as a sguare root, logarithm or cosine. Each step must be carefully
defined so that it fits correctly with all the other steps. Having
decided exactly what'is required of each step, it is possible to
proceed with the coding of the individual steps.

This procedure has three important advantages. Firstly,
it enables the programmer to concentrate on one part of the job at
a time. Secondly, the coding of each step can be tested separately
before incorporating it in the program. Thirdly, certain steps
are common to a very large number of different calculatlons; these
have been coded and tested once for all, and may be used by anyone
in the Laboratory.

The coding for one step constitutes a routine. The
collection of routines for pérforming common operations in the Illiac
is called the library of routines. It includes routines for evaluating
many simple functions like those mentioned above, also for printing
numbers in various layouts, for integrating differential equations,

for solving simultaneous equations, and for meny other operations.

A routine, when used to perform part of the work of another
routine, is called a subroutine. The simplest type of subroutine
is merely a string of order palrs which can be inserted in the appro-
priate place among the other orders of a program. This is called an
open subroutine. However, for various reasons another type, called
a closed subroutine, is more commonly used.

4.1 CLOSED SUBROUTINES. A closed subroutine is also

a string of consecutive words but these do not have to be placed
among the other orders of the program. Instead, they may be put
in any convenient place in the store. Each time the subroutine
1s to be executed, control must be transferred to it in a certain
special way (the subroutine is said to be entered). It is so arranged
that when execution is complete, control is automatically returned to
the point from which the subroutine was entered, so that execution of
the rest of the program may continue.
In this way a program is seen to consist of several dis-
tinct, self-contained blocks, namely the various subroutines and
the part of the program (usually called the main program or master
routine) which makes use of its subroutines by sending control to
them. Internal rearrangement of a routine is usually difficult,
but the routines comprising a program can be shuffled about very
easily, and this fact makes the coding of large problems much simpler.
It is not necessary to enter each subroutine directly from
the master routine; there is nothing to prevent one subroutine being

entered from another. A subroutine may itself have subroutines.

hep

4,2 ENTERING A CLOSED SUBROUTINE. The following two

orders must be inserted in the master routine at the point from

which a subroutine is required to be entered.

k Any -
50 K|

k+l 26 g/ Subroutine starts at m.
Any

These orders must be, aé shown, in the right-hand half of one word
and the left-hand half of the next (it may be necessary to waste an
order to do this). The 50 order contains the address of the memory
location in which it is itself contained. The 26 order contains the
address of the memory location containing the first word of the sub-
routine (it actually trensfers control to the left-hand half of this
word).

The subroutine, after execution, automatically transfers
control to the order following these, i.e., to the right-hand order
in memory location (k+l), so that there is no break in the logical
continuity of the master routine. There is no need for the user to
know how the subroutine does this, but it is not difficult to under-
stand and it helps to complete the picture.

4.3 RETURNING CONTROL TO THE MASTER ROUTINE. It will

be seen that the effect of the 50 order above 1s to place the order
pair, of which it is the right-hand half, in the Q register. Thus
whenever a closed subroutine is entered, the Q register contains a

pair of orders of which the right-hand order containe the address

4-3

of the memory location from which the pair came. Control must be
returned to the right~hand order in the memory location followlng
this.

The subroutine uses fhe information in the Q register to
set the address in a transfer of control order (a 22 order) called
the link, which ultimately causes the transfer back to the master

routine. It does this by means of the orders shown in Table L4.1.

o K 0 These orders ''plant”

ko min the link

- —
aQ

m+1 .o o \
m+n - -

22 (0) link

Table 4.1

Forming a Closed Subroutine Link

The K5 order transfers the order pair from the Q register
to the A register, increasing the right-hand address by 1 as it
does so. This address is now the address to which control is
eventually to be returned. The 42 order places this address in
the link. The link 1s situated so that it will be encountered
by control when the execution of the subroutine ig complete. Note
that the link should be a right-hand order so that its address may
be inserted from the right-hand side of the A register.

It may sometimes be convenlent tc use a 32 order as a link;

Lok

thié order may then perform a test within the subroutine and return
control to the master routine only if some ~ondition is satisfied.
Also the above procedure for "planting" the link may be varied 1if
desired, so long as the result is the same. In particular note the
variants in sections 4.5 and 4.6 below.

4.4 PLACING THE ARGUMENT. All subroutines operate on

at least one number somewhere in the machine, and there must be
agreement between the subroutine and the master routine on the
placing of these numbers, and also on the placing of the results
of the subroutine operation.

If only one number is operated upon, it is convenlent
to use the A register to hold this number when the subroutine is
entered(since the A register is not being used for anything else
at this moment). Similarly, if only one number is produced by the
subroutine it is convenient for the subroutine to leave this number
in the A register.

For example, Library Routine R 1 is a closed subroutinsz that
finds the square root of the number given in A, and leaves this
square root in A. Suppose we wish the Illiac to find the largest
root of

x + 2x5 + x2 -c =0
where ¢ = N(10) and satisifies 0 < ¢ < 1/2. It can be shown that

the root is

x =-1/2 + J1/h+ &

k-5

Suppose that the constants 1/2 and 1/4 are given in 20 and 21
respectively, and that x is required in 11. Routine R 1 will be
used to find the square roots; let its first word be in 100. Then

the master routine might contain the orders of Table 4.2

50 L5 10 Put c. in A
50 50 Enter Code R 1
51 26 100 to form T~
Lk 21 Add 1/k to =
52 22 52 Waste order
50 52 Enter Code R 1
53 26 100 to form y 1/% + v ¢
LO 20 Subtract 1/2 to form x
5k Lo 11 Put x in 11
Table 4.2

Master Routine Using A Closed Subroutine

The subroutine itself must use a slightly differen£ method
oi' link planting from that given in section 4.3, which would des-
troy the argument in A before using it. It is here necessary to
rescue the argument and hold it in sa storage location until the

link has been planted, as in Table 4.3

m o q Put argument in q
K O
m+l b2 mn Plant link
m+n ..
22 (0) Link
Table 4.3

Modified Link Planting

L-6

4.5 PROGRAM PARAMETERS. Sometimes a subroutine 1s

mede to carry out slightly different operations on different occasions.
For example, one subroutine might be made to print numbers to any
number of figures. Another might form the nth root of a number,
where n is any positive integer. The value of n, or the number of
figures to be printed, is called a parameter of the subroutine.

The value of a parameter must always be specified if the
subroutine is to operate correctly. There are two standard ways of
specifying parameters; parameters specified in the way now to be

described are called program parameters. (The others are called

"preset" parameters - see below, section 4.T).

A program parameter is specified in the first half of
the word containing the 50 order which is required on entering any
closed subroutine. Let us take for example Library Routine R 2,
which is a closed subroutine for replacing N(A) by its pth root.

Here p is a program parameter, to be specified as follows:

k 50 p Program parameter
50 k

k+1 26 m Subroutine starts at m
Any

To illustrate this, suppose we wish the machine to com-

pute the positive real root of

x6 - 5xLL + 3x2 + 2¢c = 0, (1/2 < c < 1)

which is given by the formula

X = + _V/l + #@ 1 - 2c

-7

Suppose that ¢ = N(10) and that x is required in 11l; suppose also
that N(20) = -1, and that Routine R 2 starts at 100. Then the master

routine might contain the program given in Table 4.4

50 L9 10 N(A) = (1/2) - ¢
00 1 N(A) =1 - 2¢

51 50 3 Program parameter
50 51 Link

52 26 100 To Routine R 2
LO 20 N(A) = 1 + '\3/ 1-2¢c

53 50 2 Program parameter
50 53 Link

54 26 100 To Routine R 2
Lo 11 x to 1l

Table 4.4

Use of Program Parameter

It will be noticed in Table 4.4t that the order contain-
ing the parameter (50 3 or 50 2) is actually obeyed by the machine
before the subroutine is entered. This is Just a waste of time
which is not worth avoiding; it does no good and, provided the order
containing the parameter is suitebly chosen, no harm. It is usual
to use a 50 order here; this puts rubbish in the Q@ register, but
the latter is then immediately reset by the following 50 order and
no damage has been done.

A more elaborate example of the use of a program parameter
is to be found in Library Routine P 1 which prints A as an integer

or fraction. The entry is by means of the orders of Table L.5.

4-8

k XY 4
50 k
k+1 26 m

Table 4.5

Multiple Program Parameters
In Table 4.5 x = 5 or J; if x = 5 and A is negative the printed
number is preceded by a minus sign, otherwise it is preceded by
a space. Also Y=0or 2; if ¥ =0, AX 239 is printed as an
integer; if ¥ =2, A is printed as a fraction (correctly rounded
off). The layout of digits is given by d = 10q + s; q digits are
printed with a space after the first s.

Tt will be noted that all combinations of X and Y form
harmless orders.

2

.6 INTERPRETIVE ROUTINES. There is a type of sub-

routine which, instead of executing a single distinctive operation,
carries out a whole series of operations. Each operation requires

s paremeter for its specification, so that the master routine contains
a string of parameters, one for each operation. The string may be

of indefinite length.

Such subroutines are called interpretive routines. Their
use lies in programs that involve actual operations on elements which
are not numbers stored in the usual form but may be numbers stored
in some special form, or different mathematicel entities altogether
such as expansions in Boolean algebra. The commonest application
is to numbers stored in the so-called "floating point" form (see

Chapter 6). There are certain advantages in storing numbers in this

b9

form; however, such numbers cannot be added or multiplied in a single
Illiac operation. A routine is required to handle simple arithmetic,
and for this purpose an 1nterpreti;e routine is used (e.g. Routine Al).
Fach parameter of the interpretive routine corresponds to one arith-
metical operation, Jjust as each Illiac order corresponds to one opera-
tion in the Illiac. Thus, for example, to place in register 6 the

sum of the numbers in registers ¥ and 5 we write the parameters

85 L
84 5
8s 6,

vhich act in a similar way to the Illiac orders

Ls L4
L+ 5
ho 6.

Owing to the close similarity between the parametefs and
the ordinary Illiac orders, the parameters are themselves often re-
ferred to as interpretive orders, or merely as orders, "orders," or
orders. The "order code" of the interpretive routine may be des-
cribed in a similar way to the order code of the machine; it involves
reference to an "accumulator" which behaves, for floating point num-
bers, like the A register of the Illiac.

An interpretive routine is entered in the same way &s a
closed subroutine, but the parameters (1.e., the interpretive "orders")
follow the orders causing entry. Finally a special parameter may
be used to cause control to the Illiac to be tramsferred out of the

interpretive routine and back to the master routine. Thus if we

h-10

imagine that the above example is a complete set of operations to
be carried out by the interpretive routine, the master routine

would contain the program of Table 4.6.

k Any
50 k Enter interpretive routine
k+1 26 m
85 L4 Parameters (interpretive orders)
k+2 84 5
8s 6
k+3 8F k4 Send control of Illiac to L.H.
00 0 side of k+b
etc.
Table 4.6

Program for Interpretive Routine

4.7 PRESET PARAMETERS. By making use of a library routine

a programmer avoids not only the necessity of writing out the orders,
but also the labor of punching them, since a master copy of the tape
is kept on file in the Teletype Room to be copied when required.
If the routine has one or more parameters associated with
it, it can meet a wide variety of requirements. However, the use
of program parameters consumes both computing time and storage space.
A program parameter has the property that it can be varied
from one application to another within the same program. Frequently
1t happens that, although the abllity to choose a value of a para-

meter to suit any particular program is desired, the ability to change

411

the value during the execution of a program is not needed. The
value can be set before execution begins; there is no need for the
orders which, in the case of a program parameter, set the value
afresh each time the routine is entered. A parameter whose velue
i1s set before executlon begins is called a preset parameter.

The master copy of a library routine must be valid for
all values of any preset parameters involved. The fixing of a pre-
gset parameter for a particular program must therefore be done after
(or during) the copying of the master tape; in fact 1t is done as
the program is read into the Illiac. This operation is carried
out by the Decimal Order Input Routine which is described in

Chapter 5.

CHAPTER 5

THE DECIMAL ORDER INPUT

The Illiac is a binary machine intended for University
research. Since it will be used by a large group of people with
various scientific backgrounds, it is important that its use be
made as simple as possible. To this end a library of subroutines
hes been organized and aids in using it have been devised. One of
these aids is the Decimal Order Input, Library Code X1. This code
has two principal purposes:

(1) To make it possible for programmers
to use decimal notation in coding,

(2) To make use of the library easy.

The use of subroutines is discussed more fully in Chapter
L, but one way to characterize a subroutine 1s to say that it is
essentially an extension of the order code of the machine. It is
a group of orders used to carry out one or more operations which
may be as simple as a square root or as complicated as a complete
program for executing the details of floating point arithmetic.
In any case the interior structure of a subroutine will depend upon
its location in the memory. For example, the left-hand address of
the second word in the square root routine (Library Code R1l) refers
to the eighth word of the routine. If the routine begins at loca~
tion 10, this address must be 18. But if the routine begins at
location 97, this address must be 105. The use of subroutines is

very awkward unless problems of address changing can be easily

5-1

handled.

Another principal nuisance 1in coding is the number system
used by the Illiac. In the sexadecimal system using Illiac notastion
(see Chapter 2), the 1024 addresses of the memory are represented
by numbers between O and 3LL. It 1s much more convenient if addresses
can be expressed in decimal form with the Illiac doing the necessary
converting to the binary system.

With the Decimal Order Input every number corresponding
to the address part of an order must be written in the decimal system.
These decimal numbers are always converted to sexadecimal (i.e., binary)
form by the Decimal Order Input.

The Decimal Order Input overcomes the ebstacles of changing
addresses in subroutines and of converting from decimal to binary
form. It also provides certain other useful services.

5.1 RELATIVE AND FIXED ADDRESSES. If we can devise some

way of using addresses in decimal form, we never need the 6 characters
K, S, N, J, F, L in an address and can use them for other purposes.
Let us consider a program beginning in location 11 of the memory, as

ghown in Table 5.1.

11 bo 1
S5 1
12 Lh 13
L6 20
13 51
10 1
Table 5.1

Program Beginning at Location 11

5-2

The same program, if begun at location 20, would read as in Table

5.2.
20 k4o
85
21 L4 22
46 29
22 51
10 1
Table 5.2

Program Beginning at Location 20

The second word .has changed. But 1f we mark each address which de-
pends upon the location of the routine with the symbol L and each
address which is independent of the location of the routine with

the symbol F, we have the program in Table 5.3.

0 Lo 1F
85 1F
1 L+ 2L
46 9L
2 51 1IF
10 1F
Table 5.3

Program With Relative and Fixed Addresses

The addresses ending in L are relative to the location of the first

word of the routine.

We can now write each subroutine as if it begins at location
zero provided we add to each L-terminated address the location of the
first word of the routine when we store the routine. We shall do this
by introducing a new symbol K.

5.2 DIRECTIVES. Orders which are written for the Illiac
use two sexadecimal function digits followed by an address., We
follow this convention even in the case of pseudo orders. A directive
is such a pseudo order. When we want a group of orders to be placed
in memory locations n, n+l, n+2, . . . , we punch on the tape the
directive

00 nk Y
The Decimal Order Input will recognize this as a directive and will
place the orders following the directive in pairs in the locations
n, n+l, n+2, . . . , starting with the left-hand side of location n.
It will add n to the address of any order terminated with L béfore
placing it in position. The directive 00 nK is not placed in the
memory. Thus if we have 00 11K followed by the orders of Table 5.3
we will place in the memory the code given in Table 5.1, while the
code of Table 5.2 would be obtained by using the directive 00 20K.

5.3 ASSEMBLING OF ORDERS. Since each address ends with

an alphabet character and since there are always two function digits,
the Decimal Order Imput can distinguish between address digits and

function digits. The Decimal Order Input uses the fixed storage

1 We shall use small letters to represent decimal quantities and
capital letters to represent sexadecimal quantities.

5-4

locations O, 1, and 2 as temporary storage. After two function digits
have been réad and shifted to a right-hand order position in location
1 the routine converts the decimal address n to binary form n x 2_39
and adds it to the function digits. The order pair in location 1l is
then stored. Next the contents of 1 are shifted left 20 places and

the next order is formed as before. Again the order pair in location 1

is stored in the same address as the previous time, but now the correctly

asgembled order pair has been stored. The address of the store order

which 1s assembling the program is increasSed every other time. Thus

the left-hand 20 digits of location 1 always contain the previous
order while the next 8 digits of location 1 contain the function digits
of the order being put in.

When the address ends in K (a directive) it 1s stored in
location 2 and is added to each L terminated address in location 1
before the appropriate order is stored.

5.4 DECIMAL ADDRESSES. The address is converted one

digit at a time as it is read from the tape. This kind of con-
version makes it unnecessary to write non-significant zeros, so
orders may have the form L5 7L, 40 1021F, 26 L, etc. Indeed,
we are not restricted to addresses smaller than 1024 and may use
anything we please. If the address exceeds 4095 1t will add to
the function digits (remember that there are two unused digits

between the function digits and the address), but even this may

be made use of as we shall see below in Section 5.6.

5=5

5.5 STARTING THE PROGRAM. After the Decimal Order

Input has placed a program in the memory we must start the pro-
gram. This is done by using the terminating symbol N. The symbol
N causes the order which it follows to be obeyed. It is ysed with

a control transfer order which must appear on the tape as if 1t were

a left-hand order. It will never be stored in the memory, other

than as the right-hand order in location 1.

For example, the order 26 pN will be obeyed and will trans-
fer control to the left-hand order at address p. Any unconditional
transfer order may be used. The order 20 gN will stop the computer,
and when the computer 1s started again control will go to the right-
hand order at address q. The addresses p and q are fixed addresses.

Control cen also be transferred using a relative address,
for the previous order with itg ad justed address.is always in the
left-hand side of location 1. Therefore the two orders 22 rL
26 1N will cause control to be transferred to address r relative
to the last directive if 22 rL is the right-hand order of the last
order pair, i.e., if the phase is correct.

5.6 INPUT OF DECIMAL FRACTIONS. In section 5.4 it was

pointed out that an address is formed and added to the function

39 1 without getting

digits. Thls address could be as large as 2
into the sign digit, and any positive integer n could be input as
nx 2_39 by letting the left-hand order and the right-hand function

digits be zero. For example, the "order pair" OOF 002896F would

appear as 2896 x 2_39. Hence a 12 digit right-hand address smaller

than 239 (about 5.5 x 1011) could then be converted to a decimal
fraction by miltiplying it by 239/1012.

This is done when the terminating symbol J is used. For
example, the characters OOF 002969 0000 0000J would cause the
quantity 0.2969 to be placed in the memory. Zeros at the end can-
not be omitted, but preceding zeros can be omitted. Do not omit

function digits. Remember that this 1s essentially an integer

input. The range can be extended by using theleft-hand function
digits, for they are simply a number to which the right-hand
address 1s added after being multiplied by 25°/102. The left-
nand function digits 40, 80, NO reprecent 1/2, -1, -1/2. Thus
numbers could be input as follows:

-0.8888 8888 8888 as 80F 00 1111 1111 1112J,

0.7854 3216 0000 as 4OF 00 2854 3216 0000J.
This is not an efficient way to read decimal fractlions into the
machine, but it is convenlent for occasional numbers scattered
through the program.

5.7 PRE-SET PARAMETERS. MODIFICATION OF ORDERS. The

remaining unused alphabetic sexadecimal character is S. This is
used to modify orders by using pre-set parameters. The symbol S
differs from the other terminating symbols in that it is always

followed by another single character which may be any of the 13

sexadecimal characters 3 to L. The termination SD on an address
causes the content of logation D= 3, 4, . . . , F, L, to be

added to the order while it is in a right-hand position as

>=T

described in Section 5.3 and before 1t is placed in the memory.

This is for either right or left-hand orders of completely assembled
order pairs. For example, if location J contains 7 x 2-39, the
order pair L5 208J 40 30S8J will be modified to read L5 27F 40
37F before heing stored. This facility 1s very convenlent for using
parameters with a program because the program can b; written with
orders of the form L5 83, L4 8L, and if locations 3 and 4 have
been previously set the parameters will be added appropriately as
the program is read into the machine.

Many examples of pre-set parsmeters can be found in the
library. 1In Illinois Code P6, Single Column Print, the parameter
OOF OOmF is used to specify the printing of m decimal digits and
must be placed in location 3 before Code P6 is read. Thus if we
wish to place Code P6 in locations beginning with 50 and to print

7 decimal places, the pertinent part of the program tepe would

read
00 3K Directive
00 F Place 7 x 2739 4n
00 TF location 3
) 00 50K Directive
Code P6 Place Code P6 beginning

with location 50.

5.8 EXAMPLE OF USE OF DECIMAL ORDER INPUT. The decimal

Order Input has 25 words and occupies locations 999 to 1023 in the
memory. It is placed in these locations with its own bootstrap

input which then transfers control to the Decimal Order Input

5-8

so that it can take over the control of program input. Let us con-

sider the following simple example:

Compute to 10 decimal places the square roots of
x/10 and e/10 using the Square Root Routine (Code
Rl)and the Single Column Print routine (Code P6).
We have the following data:

(a) Code Rl - 9 words, closed, finds
square root of argument placed in

A and places answer in A.

(b) Code P6 - 14 words, closed, prints
woras in A to m decimal places followed

by carriage return and line-feed. Cocn-

tents of address 3 must contein m x 2~39
as Code P6 is input.

In this program, the code for which is given in Teble
5.4 on the following page, we have scattered the orders through
the memory to indicate how directives are used. Notice that the
arrangement on the tape is arbitrary after the Decimal Order Input
except that the parameter in address 3 must be in place when Code
P6 is being input. The parameter is used in word 6 of Code P6,

this word being

19 6383
50 F

Thus the address of the 19 order was set to 9 (73 = 9 mod 64) for
counting the number of digits to be printed.

Notice also that the directive 00 560K can be changed

MEMORY LOCATION PROGRAM TAPE REMARKS
999 - 1023 Decimal Order Input Routine X1
00 10K Directive
10 - 18 Square Root Routine Routine Rl
00 3K Directive
3 00 F Parameter
00 10F
00 30K Directive
30 - 43 Print Routine Routine P6
00 50K Directive
50 00 F 7/10
00 314159265359F
51 00 F e/10
00 2718281828467
00 560K Directive
560 L5 50F 7/10 to A
50 L Link
561 26 10F To Routine R1
50 1L Link
562 26 30F To Routine P6
L5 S51F e/10 to A
563 22 3L " Waste Order
50 3L Link
564 26 10F To Routine R1
50 LL Link
565 26 30F To Routine P6
OF F Stop
566 22 6L Waste
26 L Start Program at
relative location
24 1IN O after stop
Table 5.4

Use of Decimal Order Input

5~10

s0 that the words following it are placed differently but that ro

other change need be made to move these worag, because the program

was started using a relative address. The waste order at location
566 1s required so that 24 1N will have a left-hand location

5.9 USE WITH INTERLUDES. RETAINED DIRECTIVE. An

interlude is a computation performed during the input of a program,
the input being interrupted and then resumed.

A tape bearing a library routine masy begin with an inter-
lude which is- placed in locations destined eventually to hold the
routine itself. When the words of the interlude have been read
control is directed to it, the interlude is executed, and then in-
put is resumed. The next part of the tape carries the routine it-
gself which ié written over the interlude. The purpose of the inter-
lude is usually to prepare some orders or constants required for
the routine. 'For example, a printing routine, where the number of
digits printed is determined by a preset parameter, may use an
interlude to compute the roundoff constant.

Input is resumed after the interlude by transferring con-
trol to the left side of locaticn 999 (3F7 sexadecimal), Either
the first word on the tape must contain the needed directive
00 mK or Q must contain m x 2-39.

If, upon resuming input, it is desired to retain the last

used directive, control should be transferred to the right side of

1014 with m x 2"39 in A. The next words on the tape will be placed

in m, m+l, . . . , retaining the previous relative address. The

5-11

interlude must not use location 2.

5.10 STOPPING THE TAPE. The order 20 1019N on the

tape will stop the computer and will have no other effect. Upon
being started the tape will continue being read from where it stopped.
5.11 PLACING THE DECIMAL ORDER INPUT. BOOTSTRAPS.

Up to this point we have not said how the Decimal Order Input is
itself put into the Illiac. It occupies locations 999 to 1023,
the last 25 positions of the electrostatic memory, and it 1s placed

in the memory with s bootstrap input routine.

With panel switches we can clear the control counter to zero and
place the sexadecimal equivalent of the order pair 80 4LOF 4LO F in the
order register. The code in Table 5.4, which must be written with sexadeni-
mal addresses, will then place the Decimal Order Input in the memory.

80 028

Lo o001

80 028
40 002

19 026
26 000

80 028
%0(000) 2)

4 001
Lo oo1

80 028
Lo(3F6)

Table 5.4
Tape for Bootstrap Input Routine

2 Parentheses are often placed around addresses which change during
the course of a program.

5-12

This bootstrap actually places the 3-word routine (shown in both

sexadecimal and decimal forms) of Table 5.5 in the memory and starts

it

L4+ o001 Ly 1F
0 0

Lo o001 Lo 1F

80 028 80 LOF
1 1

4o (3F7) 4o (999)F

19 026 19 38F
2 2

26 000 26 F

Table 5.5

Memory Contents for Bootstrap Input Routine

at location 1. Clearly it will take the next words on the tape
and start putting them at location 999F. To stop the input we
place the order pair 22 3LS 00 001 (This is 22 1019F 00 1F)
on the tape so that it gets put into location O. The control
will be transferred to the right-hand side of location 1019F and
the Decimal Order Input will be started.

This bootstrap input may be used with any code and it
or something like it must be used to input programs whenever the
Decimal Order Input has been overwritten.

The term bootstrap start is often used for tapes which

5-13

are started by setting the order register to 80 LOF 4O F and

the control counter to zero.

5-1k

"CHAPTER 6

SCALING

With the convention adopted -for the Illiac (See Chapter 2),
only numbers which lie in the range -1 <x < 1 can be held in the
registers. Since most problems require numbers outside this range,
some scaling process is usually needed to fit a problem to the

machine. It is necessary that each number at every stage of a

calculation lie within the capacity of the machine. The organization
required to assure this is sometimes trivial, but in many instances
it is the very essence of the problem.

6.1 SCALING BY SHIFTING. Although the number 2 lies out-

side the range of Illiac numbers, we can multiply and divide numbers

by powers of 2 by shifting. Thus the left shift order 00 10F will

10

cause AQ to be multiplied by 2 1024. Similarly, the right shift

9

order 10 9F will divide AQ by 2 512. A knowledge of the use of
the shift orders is essential to an understanding of scaling.

6.2 NUMBERS WITH THE BINARY POINT SHIFTED. Let us con-

sider the problem of computing with numbers in which the binary point
has been moved 10 places to the right of its Illiac position. We
are then dealing with numbers in the range - 1024 <y < 102k - 2-29.
Let these numbers be designated by N,,- Then we have'NlO(m) = 210 N(m).

We can formulate rules for doing arithmetic with the numbers
N o Addition and subtraction are simple. If N(q) = N(m) + N(n),

6-1

then

10 10

277 N(q) = 210 N(m) + 277 N(n)

and
Nio(a) = Njy(m) + N, j(n) .

Thus the Illiac addition rules hold.
Multiplication requires a shift to the left of 10 places.
We want
N, o(a) = Ny o(m) x Ny (n) .
Thus we require
2lon(q) = ElON(m) X QlON(n)
and

N(q) = 2lON(m) x N(n) .

We may consider several simple routines to carry out the
multiplication. The method given by (b) is probably the best.

(a) The shortest method merely multiplies and shifts.
Notice that a 75 order must be used rather than a T4 order because
the least significant digit of Nlo(p) is nOW‘2-29 and not 2-39.

A bias of -2~2°

is introduced by the absence of a roundoff. The
program is given in Table 6.1.
(b) This method roundsoff by adding 272" to N, ,(p),

giving an unbiased result. The program is given in Table 6.2.

50 mF N(m) to Q

75 nF N(m) x N(n) to AQ
00 10F 10 N(m) x N(n)
40 pF to p.

Teble 6.1
Multiplication with Binary Point 8hifted

-11

19 10F o™ to A
50 mF N(m) to Q
T4 nF N(m) x N(n) + 2790 o AQ
00 10F 220 N(m) x N(n) + 27*° to A
4o pF to p.
Table 6.2

Unbiased Multiplication with
Binary Point Shifted

(c) A roundoff similar to that of division is obtained
with the program given in Table 6.3.
50 mF' N(m) to Q
75 nF N(m) x N(n) to AQ

00 9F 29 N(m) x N(n) to AQ
-1

50 tF 2"t Q=1
00 1F This makes 2 37 A = 1;
N(A) = 20 N(m) x N(n)
4o qF to q.
Table 6.3

Division-Type Roundoff in Multiplication
with Binary Point 8Shifted

6-3

In Table 6.3 the order 50 tF is used simply because the word at
location t has a 1 in the proper place.

In division we also need an extra shit't to restore the
quotient to the proper range. But here the shift precedes the divide

order and no special arrangements for roundoff are necessary. We

want

N o(a) = Ny o(m)/Np o (n).
Hence

2'°N(q) = N(m)/N(n),
and

¥(a) = 2729 N(m)/N(n).

The following program in Table 6.4 will carry out the

required operations:

L5 wF N(m) to A
10 10F 10 N(m)
66 nF 2710 N(m)/N(n)
S5 F to A
Lo qF to q.
Table 6.4

Division with Binary Point Shifted

It can be noted that by using such relations as

D
10° = 2P x ~—l“—103—-—

2

where 10P < 2" we can use decimal scaling although it will be slower
and clumsier to handle because of the factors 1P / 2™,

6.3 SCALING A FULL PROBLEM. There are conceptually two

ways in which we can approach the scaling of a problem; both give
the same program.
(a) We can alter the problem using such
substitutions as xl = 100x or pl = 32p,
so that the modified problem has all its

variables less than one but retaining full
significance.

(b) We can use scaled numbers inside the machine

to represent the variables. That is, we can
use x/100 instead of x and p/32 instead of p.

The final result must be such that the variables lie
within machine range and retain sufficient accuracy. Constants
greater than one can be represented by numbers less than one in
conjunction with scaling factors. For example, multiplication by
5.63 can be done by multiplying by 5.63/8 and shifting left 3 places.

Let us consider the following simple problem:

Example 1. Program the Illiac to compute the quantities

at intervals of 0.0l from x = O to x = 6.

We note that we must scale x. Since the largest value of

6-5

x 1s 6, let us use x/8 inside the computer because this will minimize
the loss of significant figures.

What scaling factor is needed for y? A rough estimate shows
that y does not exceed e6 / (L + 36) ~ 11, so that we shall compute
and store y/16.

Library Routine S 2, the exponential routine, will give

valid results only if x 1s negative. We therefore write

ex/8 = e X e-l * X/8
so that

eX - (eX/8)8 .

X
Now y/16 = —=—— x = ’
16 x 6k 1/6k + x°/6k
x

and E—EH = {[(e_l +x/8>< e/’-&)ex2]2>(2}2

We shall store the constants e/l and 1/64%. Each part of the computa-

tion 1s within machine capacity. We proceed as follows:

(a) Square x/8 and add 1/64,
(b) Call the result R and store it,

(¢) Evaluate el * x/8

with Library Routine S 2,
() Multiply by e/4 and square,

(e) Double and square,

6-6

(f) Double and square again. Call the result P.

(g) Form y/16 by dividing P by 1.

Accuracy in the Result. Let us now consider how much

accuracy we obtain. If x/8 is near unity, numbers remain large
during the calculation and we do not lose significance by sub-
tracting nearly equal numbers 6f by other ill-conditioning.
However, when x/8 is small we notice that we form = / (16 x 64)
quite accurately and then divide by R ~ l/6h which is about equiva-
lent to a left shift of 6 places and losed 6 binary digits on the
riéht. We can prevent this if we perform the division while the
double-length P is in AQ.

N

Accuracy in the Argument. We should also consider the

accuracy of the argument x/8. It can be formed either by successively

adding the jincrement 0.0l/8 = 0.00125 or by counting and multiplying.

The adding method is not so good because the quantity 0.00125 will

not be stored exactly and the accumulated roundoff error obtained

by the time x is 6 (which requires 600 additions) may be troublesome.
The counting method avoids this trouble. And x/8 is

n x 0.01/8. Hence we have

H

x/8 = n x 0.01/8

(n x 2-59) x 0.6k4 x 270

1

39

If we store 0.64 and count to get. n x 2 » we can use the following

6-7

set of orders to get x/8 (where we have used arguments in place of

addresses):

50 n x 2-39
75 0.64

00 30

40 x/8 .

The program for the entire calculation of y/16 is given
in Table 6.5 on page 6-9 where we have again used arguments instead
of addresses.

Example 23 Solve the pair of simultaneous equations

ax + by +¢c =0

dx +ey+f =0

where the coefficients are in absolute values less than 1/2 and
where the answers are known to lie within machine range. Retain
as much accuracy as 1s reasonably possible.

We can distinguish two cases:

(a) If |a| > |a] , then

dc/a - £
bd/a - €

c_+ by
X = =

a

6-8

ORDER

F5
40
50
5
00
40
50
73
Lk
40
L5
Ly
50
26
40

ARGUMENT

n><2—39

(n +1)x 2=59
(n + 1) x p=5?
6L

30

x/8

%/8

x/8

1/6k
1/6k + x°/6k
/8

-1

(1ink sddress)

to S 2
o1+ x/8

Table 6.5

ORDER

50
[0
40
50
>
00
4o
50
™
00
Lo
50
(&
66
85
4o

2
Calculation of € / (1 + x)

6-9

ARGUMENT

oL+ x/8

e)(2-2

&8 sy,
/8y
&8/,

1

&/ g
/%) g
&/ /g

1

ex/2 / 30
/2 / 32
ex/2 / 32
1/64 + x°/64
(any address)

y/16

(b) If |d]> |a] , then

c - fa/d
b - ae/d

f + ey
X = =
d

In this program we shall foilow the conventions of
the Decimal Order Input (See Chapter 5). Notice that divisions are
always made using a full 78 digit dividend to retain as much assuracy
as possible. The program treats the two cases (a) and (b) separately,
distinguishing with the 36 order at 1L. Locations O and 1 in the
memory are used as temporaty storage. The program is given in Table
6.6 on pages 6-12 and 6-13.

6.4 ADJUSTABLE SCALING FACTORS. It is not always

possible to arrange a program so that a single scaling factor can
be used throughout the calculation. Then it is necessary to make
tests at appropriate places to discover when variables are becoming
too large or too small and to make proper adjustments in the scaling
factors. For mény problems it'is advantageous to have the variable
less than 1/2. Then two numbers can be added or multiplied without
exdééding capacity. By using the LL n order we place'1l/2 + |N(n)|
in A. Hence A is positive if |N(n)| < 1/2 and A is negative if
IN(n)| > 1/2. -

6.5 CONTINUOUS SCALING. FLOATING POINT ROUTINES . For

calculations in which continual tests are required to maintain accuracy

floating point routines (See also Section 4.7) may be used. These

6-10

routines represent numbers as y = a X lOb and store a and b. Thus
they can represent accurately the numbers in some large range such

63 where y has 30 significant binary

as, for example, 10-65 <y <10
digits. There are two such routines in the Illinois Program Library.
The first, Library Routine A 1 is as described above. The second,
Library Routine A 4 is a multiple precision floating point program
in which numbers lies in the range 107170 < y < 10%27 with y
having 20 significant decimal places.

Floating point routines are slow because numbers are
scaled at each step of the calculation. Certain conveniences have

been programmed in, however, and these to some extent compensate for

the extra time required and also simplify the programming.

6-11

10

11

13

1k

LT 22L
L2 25L

36 13L
50 27TL

75 22L
66 25L

S1F
L4 2uL

Lo F
50 22L

75 26L
66 25L

S1F
L4 23L

Lo 1w
L5 F

66 1F
S1F

40 29L
50 29L

75 26L
L4 27L

66 25L
S1 F

Lo 28L
OF F

50 23L
75 25L

66 22L

85 F

la] - la]

la] < |a

s £ toQ

fa/d

-fa/d + ¢ to O

ae/d

-ae/d + b to 1

(-fa/d + c) / (-ae/d + b) = -y

y to 29L

(ey +)

-(ey +£) / d=x

x to 28L
STOP

la| = |a

s b to Q

bd/e.

Table 6.6

Solution of Two Simultaneous Equations

6-12

15

16

17

18

19

20

21

22

23
2k

25
26

27
28

29

LO
Lo

50
5

66
Sl

Lk
66

85
40

[P
L4

66
22

26L
25L
2h1,

22L

27L

29L

23L
2L,

22L
11L

bd/a - e to O

d to Q

dc/a

(-dc/a + £)/(bd/a - e) =y

y to 29L

by

(vy +c)/a = -x
Control to 11L

a

b

y

Table 6.6 (Continued)

Solution of Teo Simultaneous Equations

6-13

CHAPTER 7

MACHINE METHODS AND CODING TRICKS

There are usually a number of special technigues which
can be used on any particular digital computer and which will simplify
progremming. Some of these techniques are applicable on many
different computers but usually, as is the case in those which follow,
they result from particular orders or combinations of orders which
are peculiar to an individual machine. This chapter_is concerned
with a number of unrelated sections having to do with operations
which frequently .arise iﬁ programming. |

7.1 THE SUMMATION OF PRQDUCTS. We often need to form

sums of products, and on the Illiac this cannot be directly done in
the accumﬁlator. The accuracy can often be enhanced by performing
e summation either exactly or with only“one round-off error. This
is comparatively easy to do ueing the T4 order. All that we need
Hto do is to place the least significant half of the partially summed
products into the accumulator before performing the T4 order. In
fact, this can usually be done by an 85 order because the quotient
register will usually hold the last single half of & summed product.
Then, since T4 n gives N(n) Q + 2-39A, we obtain the double-length
product in AQ. Of course, the most significant part of the pre-
viously summed products needs to be added using an L4 order.

Using similar schemes we can alsgo arrange to add or

subtract products with double-length accuracy in a program. As a

7-1

first example we shall sum 50 double-length products, assuming we

do not exceed capacity.

Example 1:

in location O.

Place the rounded sum

k9

2 N(100 + 1) N(150 + 1)

i=0

The program is given in Table 7.1

m b1 F Clear location O for sum.
26 1L Wasted order
m+1 50 8L Put 1/2 in Q
L5 111 Set i = 0
m+2 40 3L
S5 F Round off (See Section 7.2)
m+3 50 (_;F
™ ()F N(100 + 1) N(150 + 1)
m+4 Ik F
4o F
m+5 L5 9L Increase i by 1
L4 3L
m+6 4o 3L
LO 10L Test for i > 150
m+7 32 2L Re-enter loop
OF F Stop
48 Lo F Roundoff constant = 1/2
OO F
m+9 00 1F Increment
00 1F
m+10 JO 150F End constant
74 200F
m+11 50 100F Starting constant
74 150F
Table 7.1

Program for Example 1

T-2

7.2 REVERSING THE CONTROL TRANSFER. FURTHER DISCUSSION OF

EXAMPLE 1. There is a second coding trick in Example 1. The end
congtant, instead of being 50 150F 74 200F has had -1 added to it,
making the first order JO 150F. The effect is to reverse the sense
of the following 32 order (in location m + 7) so that we transfer
control to re-enter the repetitive loop. If this had not been done
a 22 order following the 32 order would have been required and the
technique is equivalent to having a conditional transfer order act
when the accumulator is negative.

Another coding trick might have been used to save a full
word. The left-hand order at m + 1 puts 1/2 in Q so that it may be
uged to round off on the first step of the sum, this being the sole
roundoff. Instead of storing 1/2 in m + 8 we could have used the
order pair in m + 2 as the roundoff constant. This order pair is
1/2, plus at most 2-% and would serve quite well.

As-a second example we consider a summation of two products

with a single roundoff.

Example 2: Gilven

cos © 1in 10,

gin @ in 11,

b 4 in 12,

y in 13,
place the rounded quantity (x cos © + y sin ©) in
location 20 and the rounded quantity (-x sin © + y cos ©)

in location 21. The program is given in Table T.2.

7-3

4o

m 50 1OF X cos © + 2
T7d 12F
mtl L4LO F Most significant half to location O
S5 F Least significant half to A
m+2 50 11F y sin © + p=39 (L.s. half of x cos © + 2-&0)
74 13F
m+3 L4 F Add most significant half of x cos © + 2—40
LO 20F Store x cos © + y sin © + o-40
neh 50 11F -x sin 0 + 270
79 1l2F
m+5 4O F
S5 F
-39 -4o
m+6 50 1OF y cos © + 2 (L.s. half of =-x cos © + 2)
74 13F
m+7 Ly F 40
Lo 21F Store =x 8in @ + y cos @ + 2
Table 7.2

Program for Example 2.

7.3 BINARY SWITCHES. It is sometimes necessary to do two

different operations alternately. This can be done by changing the
sign of a number each time we pass it so that it will be alternately
positive and negative. Usually it is not necessary to use a special
number for this because some number or order palir In the rest of the
program may be used. To accomplish the switch,an L1 order followed
by a 40 order is used to change the sign of the number and put it
back in its location with sign changed. A conditional transfer order
may then be used to decide which of two sequences will be performed.
A varistion 1s the requirement that an order (or order pair)
take on two different walues alternately. This can be accomplished

by using the identities

b= (b +a)-a,
and a=(b+a)-h0.

Thus, 1f the current value of an order (or order pair) is subtracted

from the sum,the other value is obtained.

Example 3: Arrange a program to alter the address
of the left-hand order at (m+2) so that it takes on
the values O and 5 alternately. A program for this

is given in Table T7.3.

m any order

15 pF Put sum of orders in A
m+1 L0 2L Form alternate address

Lo 2L Store alternate address at (m+2)
m+2 L5 (O)F

L4 12F Normal program order
P FK 6F Sum of L5 OF L4 12F

F8 2u4F and L5 5F L4 12F

Table 7.3

Binary Switch

In Table 7.3 only a single address 1s taking on alternate
values end it 1s also possible to carry out the switch using the
program of Table 7.4, In Teble 7.4 the 50 SF order at location
m is provided for the switch. If some order which needed address

S5F could be used here, we should be very well off indeed.

m 50 5F
L5 nF

m+1 LO (m+2)F
46 (m+2)F

m+2 Ls (O)F
L4 (12)F

Table 7.4
Binary Switch

7.4 TESTS FOR O AND -1. 1In order to test for a particular

number value held inside the machine 1t is generally necessary to
use two tests. However, the numbers O and -1 can be tested for using
absolute value orders and a single test. In machine languasge O is

the only number w ue 1s positive, and -1

is the only number whose positive absolute value ig negative.

Thus we can test for O using an L3 order followed by.a"éondition&l
transfer order, and we can test for -1 using asn L7 order. Similarly,
we can test for 2737 and 1 - 2737 by using F3 and F7 orders, res-

pectively.

Example 4: Transfer control to location 200 if A

is zero but transfer control to location 300 if A

is non-zero. Two ways to do this are given in Tables
7.5 and 7.6. The program of Table 7.5 has only two
words. The program of Table 7.6 has four words but

will be faster than the other if A is usually negative.

Moreover, the pfbgram of Table 7.6 can be used

to transfer comtrol to amy of three locatbns de-

pending upon whether A is positive, negative or zero.

m+1

m+1

m+2

75

Lo
L3

36
26

36
26

LO
36

26

00
00

F
F

200F
300F

1L
300F

pF
300F

200F

l;j-"'-‘i

AtoO
- |N(O)| to A

To 200 if A

>0, i.e., if A =0
To 300 if A £ O

Table 7.5

Testing for Zero

To 300 if A < O
A 239 o
To 300 if A - 2777 > 0, i.e., if

To 200 otherwise, i1.e., if A = 0O

Constant 2”29

Table 7.6

Testing for Sign

USE OF ORDERS AND ADDRESSES AS CONSTANTS. SV and

KV orders do not use their addresses, so these addresses can often

be used for other purposes.

& starting address taken by a cycling order or an increment which

is used to change an address.

In such cases we naturally use 42 or

L6 orders to meke certain that the function digits do not become

altered.

-7

A >

For instance, they may be used to store

In the following example the address of a K5 order is

used as a counter.

Example 52 Given the positive number a in A,
write a closed subroutine which will furnish
the positive integer m such that 1/2 < 2" < 1.

The program is given in Table 7.7.

m o F Store a at location)
K5 F Form link
m+l ho 41, Plant link
4z 1, Clear counter
m+2 I5 F
00 1F Shift a
m+3 4O F
36 5L Test to see if 2%a > 1
m+4 L4 L Counter to A
22 ()F Link
m+5 F5 L Count
Lo L
m+6 26 2L Re-enter loop
00 F Waste order
Table 7.7

Address Use in K5 Order

7.6 RESETTING AND STARTING OF CYCLES OF ORDERS . In

many cases we have cyeles of orders, some of which are being modified

by the same increment. In such cases the variable addresses can all

7-8

be modified by modifying one order and then deriving the other orders

(or addresses) by adding the constant difference between the varisble

orders. When this is done it is economical to use the gsame orders

to set these addresses when the cycle is begun. The following example

with the program given in Teble 7.8 illustrates this:

Example 6: For i = 0, 1, . . ., 99 place in

location 200 + 1 the sum N(10) + N(100 + i) + N(200 + 1).

m

m+1

m+2

m+3

e+l

m+5

m+6

m+7

m+8

m+9

L5
26

L5
L4

L4
Lo

L5
Lk

Lo
Lo

Lo
36

OF
00

L4
4o

00
00

4
00

TL

L1, Set 1 =0

10F Form N(10) + N(100 + 1) + N(200 + 1)
F and put in 200 + i

F

F

8L

2L Increase 1 inm + 2

2L Increase i in m + 1 and test for end
oL

1L

1L

F Stop

F Waste order

200F Starting constant

200F

1F Increment

1F

300F End constant
100F Constant to change i in 2L

Table 7.8
Resetting of Addresses

=9

In Example 6 the sddresses in location m + 2 have been
changed and then that in m + 1 has been obtained from one of them.
Notice that the end test has been combined with the second address
change and thet the end test constant 1s not L4 but 74 so that the
36 order at location m + 5 will cause re-entry to the repetitive loop.

When two orders have to be varied in a single cycle, it is
advantageous to let these form a single order pair as in Example 6
go that they can both be modified simultaneously by the same orders.
This arrangement is not always possible and the second best arrange-
ment is to place the variable orders on the same side of their res-
pective order pairs so that the orders required to modify them will
be as slmple as possible.

For very simple operations it is sometimes advantageous to
do three or four operations in a single cycle. This saves tiwme
although the adventage 1s bought at the expense of more orders. This

is 1llustrated in Example 7.

Example 7: Add the numbers in memory locations

10 to 14, putting the sum in location 15. It is
simpler and faster, both in coding and in machine
operation, to use the program given at the top of

page T-11 than to write a repetitive code which counts.

7-10

L5 10F

Ly 11F
Ik 12F
L4 13F
L 14F
Lo 15F

7.7 USE OF THE QUOTIENT REGISTER FOR INTERCHANGES. In

many programs we wish to replace the number in a certain storage
location and yet use the value that is there to continue with the cal-
culation. In such cases the o0ld value can be placed in the gquotient
register before the new value replaces it in the memory. Thus, the

old value is available in the quotient register for further computation.

Example 8: Store A in location 10, but use the old

N(10) as a dividend to form N(10) / N(11). The program

is then
50 10F
4o 10F
S5 F
66 11F

7.8 TESTING IF NUMEERS .ARE GREATER THAN ONE-HALF. When
scaling numbers it is very often necessary to test when numbers are
larger in megnitude than one-half. This can easily be done with the

appropriate L or S order. For example, the order LL n will cause the

T-11

accumulator to be negative if the magnitude of N(n) is greater than

or equal to 1/2.

Example 9: If |N(10)| > 1/2 replace it by half

its value. The program is given 1in Table 7.9.

m LL 10F 1/2 + |N(10)| to A
32 (m+2)F

m+l L5 1OF
10 1F

m+2 Lo 10F

Table 7.9

Scaling by Testing for One-half

‘7.9 CONVERGENCE CRITERIA. When iterations or repetitive

calculations are carried out we frequently want to stop when we have
achieved the maximum accuracy. In some cases it is difficult to
specify in advance the tolerances which can be used as end criteria
because we have to compromise between achieving the greatest accuracy
and yet assuring that we terminate the processes (i.e., don't loop).
In such cases it is worthwhile to use more complicated
criteria which will give us maximum accuracy but which will not loop.

One such criterion is to terminate the process if e > en-1 where e

n i

is some positive number which tends to zero as the process converges
with increasing n. This criterion will terminate the process only
when either e is the same for two successive iterations or when the

roundoff error has actually caused it to increase.

T7-12

7.10 MARKING.

It is often possible to use marking

techniques instead of the more usual counting processes. The

simplest illustration of such a technique 1s Library Routine N3

where a sequence of numbers read from the tape is automatically

terminated by the merk N. In this code instead of counting up to

gsome predetermined number we test each character as it is read from

the tape until it is N.

A binary digit is sometimes shifted as a marker; this is

illustrated in the next example.

Example 10:

Using & print routine stored at locations

beginning with 50 print the 7 numbers in locations 10-16.

The prograem is given in Table 7.10.

0 19
4o
1 L5
00
2 Lo
32
3 OF
L5
L 22
50
5 26
F>5
6 4o
26

TF 2-8 to 1F. This is the marker
1F
1F
1F Advance marker by shifting
1F
3L Test for end
F Stop
10F
LL Waste order
L1,
50F Enter print routine
3L
3L Increase address of number to be printed
1L re-enter loop
Table 7.10

Use of a Marker

7-13

In the program of Table 7.10 the marker is shifted into the sign
digit to indicate the end of the repetitive process.

This technique can be used in a similar way for completely
internal programs. For example, when we are dealing with a group
of numbers in the memory we may arrange that the storage location
following the group contains some unique number such as 0 or -1.
Then the code merely has to test for the presence of one of these
numbers rather than for a predetermined count.

7.11 REMAINDER IN INTEGER DIVISION. In the general case

it is difficult to compute the remainder from the residue that 1is
left in the accumulator after a division. However, if we are dealing
with positive integers less than 2+38 in magnitude we can do this
quite readily. We place twice the dividend integer in the quotient
register, clear the accumulator and divide by the divisor integer.
The accumulator then contains twice the integer remainder and the
quotient contains twice the integer quotient. We store an integer

39

mas mx?2 ~°.

Exemple 11: Divide the positive integer in location
20 by 10. Place the quotient in location 11 and the
remainder in location 12. The program is given in

Table T7.11.

39

m 51 20F mx2 -7 toQ
00 1F m x 2'58 to AQ

m+1 66 4L (m x 2'58) / (10 x 2'59) x27t - m/10
10 1F

m+2 4o 12F Store remainder
S5 F

m+3 Lo 11F Store quotient
26 pF

m+l 00 F
00 10F

Table 7.11

Remainder in Integer Division

T.12 BINARY CHOPPING. This is the method of repeated

subdivision of an interval. It is easy to code although it may be
wasteful of memory space and it is slow because it will usually take
the full 39 steps to go from an interval of length unity down to
one of length 2=39,

If we use binary chopping to find the zero of a function,
we proceed as follows. We choose bounds for the zero, perhaps -1 as
a lower bound and +1 as an upper bound. Then we bisect the interval
and compute the function at the midpoint. Depending upon whether the
sign of the function at the midpoint agrees with the sign of the lower
or upper bound, we substitute the midpoint for the appropriate bound.
After 39 steps the difference between the two bounds will be 2‘39

and the zero will be determined.

T-15

The code will be simpler if the signs of the upper and

lower bounds are known so that a comparison with the sign of the
midpoint is not needed at each step. This is the case in Example

l12.

Example 12: Find the square root of a = 0.26943

by using a binary chopping technique on the function
2

a - a.
n

Here we choose imltial upper and lower bounds of

1 - 279 and 0. Instead of counting 39 steps,

a test has been included so that if an2 -ac< 2"37

the code stops. The program is given in Table 7.12.

T.13 EVALUATION OF POLYNOMTIALS. Polynomials are best

evaluated by use of a recurrence solution. Given the polynomial

n
n n-1
f(x) = 2 a. X =aXx + a,X ¥ .« . . +a X + a
i=0

we can express it in the form

Si+l =X Si + a. ,
SO =0,
Sl = f(x) .

7-16

10

11

15

14

15

16

L>
10

Lo
L5
10
Lh
Lo
50

TJ
LO

Lo
32

L5
Lo

22
L5
Lo
LT
LO
36

OF
00

00
00

LL

00
00

00
00

00
00

00
00

269430000000

LO95F
Logs5F

R ML B B B - B |

Table

572 to location O

(a +a)f2 = a tolkL

8 2 - a to 15L

Change

jo

Change a

-a< 2—57

Test for a 2
n
Stop

a = 0.26943

1 - ™9

o]
I

T.12

Square Root by Binary Chopping

=17

If, as is often the case, the coefficients a, are the

quantities N(m+i) the recurrence relation becomes

Siy1 =X 8, + N(m+i) ,
SO=O’
Sn+l = f(x)

Example 13 shows how a polynomial may be evalusted. In practice
the summation of products should be done with a T4 order as in

Example 1, but we do not wish to obscure the general idea here.

Example 13: Given x in location 49 and coefficients

in locations 50 through 67 evaluate the polynomial

17 .
L T NG04+ 1) .
1=0

The program is given in Table 7.13.

7.1+ SHIFTING A LEFT WITHOUT SHIFTING Q. The contents

of A may be shifted to the left (doubled) by adding A to itself.
This is slower than using a shift order but it has the advantage
that the Q register is not altered (as it would be by a shift order).
The order pair 4O nF L& nF will shift the contents of A one

place to the left for each use.

7-18

p+l

p+2

p+3

pHl

p+5

L1
50

TJ
Lk

Lo
F5
40
10

32
OF

LJ
Lk

F SO =0
LOF P
F x 8y + N(50 + 1)
50F
F
1L Increase 1
1L
5L Test for end
L
F
F End test constant
68F
Table 7.13

- Evaluation of a Polynomial

7-19

CHAPTER 8

CHECKING METHODS

To obtain a correctly working program from a written one
the coder must find and remove all of the coding errors. To the
person unfamiliar with coding it might seem that a careful inspection
of a program before it is run on the Illiac would remove all of the
coding blunders but unfortunately this is not true. It is necessary
to check the program on the machine to remove the remaining blunders
from a code, and it 1s unusual to find all blunders in one run on
the machine. As a general rule it will be necessary to have several
checking runs on the machine before a code is correct.

The number of coding errors in a program depends upon a
number of factors, including complexity, length of untested program,
programmer, and the care with which the code was inspected. It 1is
possible to remove most coding blunders from a program by carefully
inspecting it and it is best to obtain a person other than the coder
to inspect the code. In many cases this cannot be done, and then the
code should be set aside for as long as possible before being inspected.
This to some extent prevents a grooved mind from missing the flaws in
the‘program, for the coder remembers the general nature of the program
but not the details where most errors occur.

8.1 COMMON BLUNDERS. A great many of the coding mistakes

made by programmers are familiar ones which are made over and over again.

The list given in Table 8.1 is one of common errors. It should be
pointed out, however, that this list is not complete, and that
brogrammers develop their own idiosyncrasies and should be on guard

for their own pet blunders.

8.2 THE DISCOVERY OF ERRORS. Errors are found by running

the program and comparing the actual performance with the designed
performance. That is, to find an error it is necessary to obtain
information about the way a program runs. It is almost useless to
have & program run through a long calculation and then print out the
result. If the result is wrong, no information is usually available
to explain why. Therefore, when checking a program we have to print
out more information about the intermediate results than 1is required
in the actual running of the program. There are many ways in which
this can be done and the remainder of this chapter describes some of
them.,

Because we have to compare the intermediate stages of the
calculation with those estimated by other means, it behooves us to
choose parameters and variables so that the initial calculation is
as simple as possible. Further trials will probebly have to be run
with more complicated calculations and with values designed to test
the special cases and boundary limitations. Simple blunders should
be detected and removed before an attempt is made to look for more
subtle errors. Localization of mysterious errors can be effected
by continually printing more and more information from smaller and

smaller parts of the brogram until the error is found.

8-2

10.

11..

12..

13.

1k,

15.

16.

17.

L5 orders used instead of L4 orders
S5 orders omitted after divisions.
Orders terminated by L instead of F and vice-versa.

The renumbering of a code not complete after a
modification has been made.

Rounded multiplication used when dealing with
integers.

Control trensfers to the wrong address or wrong
order of an order pair.

Accumulating storage registers not cleared before
8 cycle of orders is entered.

The end condition for a cycle of orders not correct.

Allowlng the temporary storage of & subroutine to
erase useful data.

Using a 46 order instead of a 42 order and vice-versa.

Omitting directives and starting orders on the
program tape.

Incorrectly remembering the specifications of a
subroutine.

Forgetting to reset addresses when coming back to
a cycle of orders.

Making corrections incorrectly.

Using the same relative addresses on correction
words although the preceding directive is different
from that of the program.

Overlooking the digits shifted from the quotient
register to the accumulator on a left shift.

Attempting to convert fractions greater than one-
half by using the J terminating symbol.

Table 8.1
Typical Blunders

8-3

8.3 SOURCES OF INFORMATION.

The Punch. The punch is the most effective way by which
data can be extracted from the Illiac. However, there are other ways
to obtain information, particularly when a program does not run far
enough to punch any data at all.

The Reader. If the input tape stops before the entire
program has been read into the memory, then an examination of the
characters punched on the tape Jjust ahead of the place where it stopped
will often provide an explanation.

The Order Register and Control Counter. If the program

is read in correctly but comes to a sudden unexpected stop, then the

order register R, will exhibit the order on which the program stopped

3
while the control counter will contain a number one greater than the
storage location from which the order pair came. With this information
the programmer can often discover the cause of fallure of his program.
If the Illiac loops, observation of the slave tube will give
an indication of how extensive the loop is. Then, if the machine is
stopped and the contents of the order register and the control counter

noted, we usually have enough data to identify the loop in our program.

8.4 MODIFICATIONS TO PROGRAMS. Temporary modifications

often need to be made to a program while it is being checked. These
may be for the purpose of correcting the program, for temporarily

arranging the punching of extra data, or for some other purpose. In

such cases it is undesirable to repunch the entire program tape. The

modification can be carried out by "overwriting" the original program,

that is by replacing some of the orders already placed in the memory

by other orders. To do this a short extra tape is punched with suit-

able directives and words so that, when it is read Into the memory

by the Decimal Order Input, the appropriate words of the original

program are replaced by those on the tape. For example, 00 523K

L5 U4F 40 2F will cause the word at 523 to be replaced by L5 kP 4o
In order to be able to use this technique of modifying a

program we must:

(a) Prevent the original program from being started
before the modification is made.

(b) Trensfer control to the Decimal Order Input so
that the modification tape can be read into the
memory.

(c) Start the program after the modification has been
nmede .

This can be done efficiently if the original program ends
with a stop transfer of control to the Decimal Order Input followed
by a transfer of control to the program. An example might be 24 999N
26 93N 1if it were necessary to transfer control to location 93 to
start the program.

If we wish to modify the program before starting it, all
that is necessary is to place the modification tape in the reader
before moving the switch to START. This will cause the modification
tape to be read instead of the 26 93N. The modification tape will

naturally have to end with 26 93N in order to start the program.

8-5

2F.

If the original program ends with a stop transfer of control
to itself instead of to the Decimal Order Input a slightly more compli-
cated modification tape 1s necessary. An example might be 24 93N.
Then the sexadecimal order pair 26 3F7 00 000 1s punched at the
head of the modification tape. When this tape is placed in the reader
the machine 1s completely restarted by setting the order register to
82 LOF 4O F and the control counter to zero without, however, clearing
the memory. This results in the first order palr on the tape (namely
26 3F7 00 000) being transferred to location zero and being obeyed,
so that control is transferred to 3F7 sexadecimal or 999 decimal (the
Decimal Order Input), and the rest of the tape 1s read in the usual
way. This is a bootstrap start. See Section 5.11.

Corrections. As each coding blunder is found, a modification
tape should be repunched to include all of the corrections. It is not
worthwhile repunching the entire program tape until all or a large
number of coding errors have been found.

8.5 BLOCKING ORDERS. This is the name given to control

transfer orders which are used to replace normal program orders, SO
that some printing or checking can be done at the point of replace-
ment. Before control is restored to the program the replaced order

of the program is executed and the contents of the arithmetic registers
are restored. Thus the original progrem is unaffected, but the

extra orders that are obeyed can be utilized to do printing of desired

data.

8-6

An example may illustrate this: Let us suppose that

(a) we have a program in which we wish to
print N(19) after the left-hand order of
the order pair 40 9F L5 29F at storage
location 100, has been obeyed,

(b) we wish to preserve the quotient register
but not the temporary storsge of the print
subroutine,

(c) 1locations 800-804 are unused by the program,

(d) +the progrem print routine starts at 200,

(e) the original progrem ends with 24 999N 26 nN.

We then prepare the following modification tape:

MODIFICATION TAPE COMMENTS
00 100K Directive
4o OF Plants blocking order in progr
26 800F
00 800K Directive
S5 F
Lo 4L Stores Q at SO4LF
L5 19F Enters print subroutine
50 1L
26 200F
L5 29F Does omitted order
50 4L Restores Q
26 101F Control back to program
26 nN Starts program

8.6 TYPES OF CHECKING ROUTINES. There are several types

of checking routines. One prints out the contents of certain

8-7

memory locations after a program has stopped. We call this a post
mortem routine.

A second type takes a given prograsm and allows it to be
obeyed order-by-order while printing oﬁt information about the course
of the program. It is often called a sequence checking code.

A third type arranges for information to be printed oﬁt at
specified points of a program. It is usually known as a check point
or blocking order routine.

8.7 POST MORTEM ROUTINES. Library Routines C3, Ck, cCs5.

These are printing routines and have been arranged so that they can be
used with little or no preparation on the part of the programmer. They
are read into the memory with bootstrap input routines and are located
in storage locations at the end of the memory, the longest occupying
locations from 986 to 1023 and using locations 0, 1, and 2, as temporary
storage. The end of each of the post mortem tapes contains 100 two-
decimal-digit numbers. These numbers are used to specify the locations
from which printing will occur. Suppose, for example, that we wish to
know the order pairs in memory locations 540 to 549. Then we read in
Routine C5. When it stops we find the number 54 on the end of the tape
and place 1t in the reader. When the START switch is moved, the order
pairs in locations 540 to 549 will be printed and then the I1liac will
stop. If we start again we will get the order pairs in locations 550
to 559. Codes C3 and C4 perform similar functions for decimal fractions

and decimal integers.

8-8

The programmer should keep in mind the storage locations
used by the post mortem routines so that he will be able to take

full advantage of these important checking routines.

8.8 POST MORTEM VERSION OF THE DECIMAT. ORDER INPUT. Library

Routine Cl. This is a very important checking routine and is usually
the first one used after a program failure. It compares the contents
of the memory with the contents of the input tape. Only discrepancies
are printed out, enabling programmers to discover which orders of a
program have become altered while the program was in the memory. This
is an aid in making sure that orders which should have been modified
have been modified correctly and that no order has become modified
accidentally.

This routine is used in the following manner: The Post
Mortem Version of the Decimal Order Input is read into the memory
in the usual way with a bootstrap input routine. It occupies storage
locations 962 to 1023. The program tape is then placed in the reader
after its copy of the Decimal Order Input, so that the Decimal Order
Input is not read into the Illiac. Then when the machine is started
the program tape will be read and the words created from it compared
with the corresponding ones in the memory. When a discrepency is
found it will be printed on a line giving, first, the location at
which the descrepancy was found, second, the word read from the tape
printed as an order pair and, third, the word found in the memory, again

printed as an order pair. Thus a typical line of printing might be

345 L5 000 40 354 L5 546 L0 354

indicating that the left-hand address of the order pair in location 345
had become modified, taking the value 546,

It should be pointed out that closed subroutines which have
been used will usually have their links i)rintedo This gives an indi-
cation of the part of the program from which they were last called in.
Interludes cause a large amount of printing because the contents of
the interlude locations are changed twice in the course of input and
are printed out both times.

The Post Mortem Version of the Decimal Order Input causes
the memory to be changed to the original state as it is being executed,
so that if the program is started the original program will be performed
again.

If desired, only selected ﬁarts of the tape need be compared
with the contents of thememory. However, when doing this it is
necessary that all the preset parameters pertaining to that part
of the program be input and that the selected part of the program
beéin with a directive.

All post mortem codes occupy locations at the end of the
memory and all of them use storage locations 0, 1, 2 as temporary
storage, so that it is desirable when coding not to use these storage
locations for constants or numbers which may need to be printed out,

It is worthwhile to note that if addresses which are to be changed

are initially read in with their final values then no printing will

8-10

take place on the post mortem if they have been modified correctly.

8.9 THE ADDRESS SEARCH ROUTINE. Library Routine C2.

Programs sometimes fail because of a transfer of control to an order
which causes the machine to stop. The usual order causing the stop
is a zero left shift order because the memory is normally cleared to
zeros before a new program 1s read in.

Under such circumstances the offending transfer of control
order may be searched for with the aid of Library Routine C2. The
gearch routine is read into the memory, occupying storage locations
normally occupied by the Decimal Order Input. Next the address to
be searched for is read into the machine as a three character sexa-
decimel address. The routine then searches the memory (exclusive
of itself) for order pairs containing this address. When found they
are printed out (in sexadecimal form) together with their location
(in sexadecimal form).

The routine naturally has other similar uses. For example,
if it is known that some number becomes modified but it is not known
why, then the store order which does the damage can be sought for in

the above manner.

8.10 SEQUENCE CHECKING CODES. Library Routines D2 and D3.
These routines control a program order b& order and print out suitable
i{nformation about the execution of each order. This enables the action
of & program to be traced order by order. They use a blocking order

technique which enables a selected part of the program to be checked

8-11

in this manner. These codes are very slow on account of the printing

involved and should not be used blindly.

Routine D3 prints out the function digits of the orders which
are actually obeyed, starting & new line of printing whenever a control
transfer order 1s obeyed. This enables the sequence of orders obeyed
by & program to be traced.

Routine D2 prints in full each order that is obeyed, having
one order pair per lihe of printing. After each store order or address
order, the number transferred to the memory is also printed. This .
enables every step of a program to be completely checked. However,
the smount of printing is such that thls routine is very slow. It
should be used only in the final stages of tracking down an elusive
fault.

8.11 CONTROL TRANSFER CHECK. Library Routine D4%. This

routine takes charge of a program and allows it to be obeyed order
by order. Each transfer of control that is obeyed 1s placed in a
list kept in & specified place. The list is cyclic, that is to say,
the later entires overwrite theé earlier ones in a cyclic fashion. At
the end of a program, the list can be printed, so that it can be dis-
covered how the program reached its final end. There is no printing
durlng the execution of the progrem, so that this routine allows the

progrem to be obeyed at speeds much greater than those of the routines

which print.

8.12 THE CHECK POINT ROUTINE. Library Routine D1. This

routine is designed to print out intermediate information about some
other program. It uses the blocking order principle, and the programmer
prepares &a specification tape to describe the kinds of information he
wishes to obtain. It is possible to go through iterative loops and
print results on various passages through the loops. Data can be ob-
tained as an order pair, & right-hand address, & left-hand address,

a 10 character sexadecimal word, e signed integer, a signed 12 decimal
place fraction or a signed 5 decimal place fraction.

Library Routine D1l 1s a very powerful checking routine be-
cause of the great latitude given the progremmer in choosing where
and how he will obtain information and because it utilizes the pro-
grammer's own knowledge of his code.

8.13 CONCLUSION. The fact that it will be necesSary to
check a program should be kept in mind when writing it. Its storage
locations, including those of the temporary gtorage, should not inter-
fere with routines 1ikely to be used in diagnosing its faults. The
program tape ghould end with a stop control transfer to the decimal
order input as explaeined in Section 8.4,

Occasionally a blunder turns up in the blind spot of the
programmer end it appears to be impossible to find it. It is not much
comfort to him to point out that the blunder can be found by continually
narrowing down the section of the code in which it is known to be. This
ig tedious but eventually all blunders yield to this technique. A final
word to this chapter might be that all programmers meke mistakes but good

programmers f£ind -theirs first.

8-13

CHAPTER 9

TAPE PREPARATION

9.1 THE ILLIAC INPUT. The input unit of the Illiac

is a photoelectric tape reader that transfers binary digits from a
punched paper tape to the A register. The tape preparation equip-
ment is used to translate instructions and data from the programmer's
manuscript into a binary-coded punched tape acceptable to the Illliac.

9.2 THE ILLIAC OUTPUT. Output from the Illiac is

usually in the form of punched tape. This tape may be printed on
any of the Teletype page printers that are a part of the tape pre=~
paration equipment. The page printer performs a conversion from
the binary-coded representation on the tape to the sexadecimal or
decimal characters on the printed page.

9.3 THE PERFORATED TAPE. SEXADECIMAL TAPE CODE CHARACTERS.

The tape preparation .equipment presently in use consists of Teletype
equipment thch has been modified to correspond to the Illiac tape
code. This tape code is shown in Figure 9.1. The paper tape can be
punched in any one of 6 positions across its width. One of these
positions is elways punched. This 1is the feel hole or sprocket hole
position. Feed holes are smaller than the other holes.

Four of the remaining positions are used to represent the
2h sexedecimal characters. There are 16 keys on the Teletype tape

punch labeled O through 9 and K, 8, N, J, F, L. When one of these

9-1

01 2 3 k5 6 78 9 K S N JF L

o 00000

e © 6 & o &6 o o o ® ¢ 6 o o o

o000 o000

o0 (N o0 [N

® o o [o ® o
Figure 9.1

Sexadecimal Tape Codes

Delay Space
® o o o
o o
o o o o
®
[o
o ®
Tabulate Carriage Return
and Line Feed
Figure 9.2

Format Tape Codes

keys is pressed a corresponding pattern of holes is punched across
the width of the tape. Since a hole or absence of a hole is a binary
affair, we speak of the character punched in the 4 positions across

the tape as a binary tape code for the corresponding sexadecimal digit.

If we speak of only the 10 sexadecimal characters O - 9 and their
corresponding binary codes, we call the characters punched in a tape

binary~coded decimals.

The Illiac tape code for sexadecimal characters is very
easy to memorize since the hole positions across the tape simply
0 3

correspond to powers of 2 from 2 to 27,

Page Printer Format Characters. Punched taves are con-

verted to a printed page by means of a page printer. Four addi-
tional tape codes shown in figure 9.2 are used for format control,
causing the printer to space, return the carriage and advance to
the next line, tabulate, and delay, i.e., perform one printing
cycle without printing anything. The functions are similar to
those of a typewriter, but the tabulate feature occurs on only
one printer. Successive tabulate characters set the carriage to
10, 25, 40 and 55 spaces from the left margin. The carriage

return-line feed and tabulate characters must always be followed

by a delay character to allow sufficient time for the carriage to

move.

9-3

Notice that these codes all have a hole in a position that
1s never punched for a sexadecimal. This 1s called the 5th hole
position. When & punched tape is placed on the Illiac tape reader
the circuits cause any character with a 5th hole punched to be skipped
over, l.e., not read into the computer, when reading in the normal
way. (However, a special input order will read such a character;
see the order code.) This means that in the preparation of an
instruction tape, these format codes can be interspersed with sexa-
decimal order digits in any desired way. Then when an instruction
tape 18 printed these tape codes will control the printer. The usual
method in preparing instruction tapes is to follow each order pair with
a carrisge-return and line feed code. This produces a single column
print of words.

Tape Codes for Letters. The printer will also print all

the letters of the alphabet for identifying headings and the like.
Tape codes are provided for these and are shown in the complete tape
code list, Figufe 9.3. To accomodate all of these symbols, there
are also numbers shift and letters shift tape codes, analogous to the
shift-lock on an ordinary typewriter.

A list of instructions to be used with the Illiac and the
Decimal Order Input (See Chapter 5) to produce any of the tape codes

shown in Flgure 9.3 is given in Table 9.1.

6-6

A B C D E F G H I J K L M N 0 P Q
o ¢ ¢ [o o @
e o @ ® e e o o o ® ®
™ . ¢ ° ° o ° ° . ® ° ° ° ® ° e .
¢ e [¢ e o o
¢ o o e o ¢ o
e [L e e o o @ o
) ($ 3 F = ' 8 J + L N 9 0 1
(or tab)
R S T U v W X Y Z Letters Delay Delay
Shift
o o e o o o @) e
o e o ® L
° . o ° o ° e ° ° ° ° ™ . e * e
o L o [o o o o o
o ¢ ® | o o o o o
] ¢ ® L o ® ¢
i - 5 7 s o / 6 x Space Numbers--Shift

LETTERS PRINTED AFTER LETTERS SHIFT
FIGURES AND NUMBERS PRINTED AFTER NUMBERS SHIFT

Figure 9.3

Carriage Return
and Line Feed

MACHINE ORDER
PRINTED CHARACTERS (DECIMAL ADDRESS)

Space 92 963F
Carriage Return and Line Feed 92 131F
Delay 92 515F
Letters Shift 92 259F
Numbers Shift : 92 707F

AFTER AFTER
LETTERS SHIFT NUMBERS SHIFT

92 387F

(92 195F

: 92 835F

$ or tab* 92 67F

3 92 194F

F 92 898F

= 92 579F
apostrophe 92 TT71F
92 514F

92 834F

6L2F
92 962F
92 6L3F
92 770F
92 578F
92 2F
66F
92 258F
92 706F
92 322F
92 L50F
92 323F
92 130F
L51F
92 386F
92 899F

H+ &
O
o

Nr-<><£<:ci!-3mw‘0*d02SL—‘HLIHHJO@MUQUJ:P
~unt Frovsg-.
Ne
N

MOV~
O
1§

Table 9.1
Coded Tape Operation of the Teletype Printer

*Only one printer has a tabulation mechanism.

9-6

9.4 CLASSIFICATION OF OPERATIONS. The operations in

preparing tapes may be listed as follows:

1. Punching a tape from a manuscript by
means of a keyboard tape punch.

2. Punching a tape from one Or more previously
punched tapes. This operation is called
reperforating and is used for duplicating
tapes, Jjoining short tapes, and making
corrections.

3. Printing a tape on a page printer.

4. Comparing two tapes to see if they are
identical.

5. Comparing the manuscript with a printed
copy (proof-reading).

It is necessary to punch the main part of the code from
a manuscript by means of a keyboard. It is not necessary to punch
routines that are in the routine library.

When all the parts of the code that have been punched from
manuscript are correct, obtaln any necessary routine tapes from the
routine library. Using the reperforator, these'tapes can be assembled
into one long problem tape.

Every time a tape is reperforated it is wise to check the
copy by comparing it with the original tape.

9.5 DESCRIPTION OF EQUIPMENT. Several Teletype units

are provided for making instruction tapes. These include & keyboard
perforator unit, a page printer unit, a reperforator unit, a combination

unit, and a tape comparer unit.

BACKSPACE

LEVER
REPEAT BUTTON

POWER
SWITCH
UNDER

wBLE

ZERO BAR

CARRIAGE RETURN
AND LINE FEED BAR

Figur-e 9.4

KEYBOARD PERFORATOR UNIT

9-8

Keyboard Perforator Unit. This unit is used to punch tape
from a manuscript; see Figure 9.4, Turn on the power swif&h under the
table by pulling it forward. The power supply takes about a minute to
warm up.

The sixteen sexadecimal keys that will be used most are
in the center of the keyboard and arranged to be operated with one
hand. It is recommended that a touch system be learned both for maxi-
mum accuracy and meximum speed.

If a wrong key is pressed, operate the backspace lever and
then the space bar. This will punch the space symbol (all five holes)
over the incorrect symbol and so be skipped on the Illiac reader if
the usual 80 instructionhs are used.

Page Printer Unit. This unit is used to make a printed

page corresponding to a punched tape; see Figure 9.5. Turn on the
power switch. The power supply takes about a minute to warm up.

In order to operate the printer mechanism the page printer
motor switch should be turned on.

The function of the transmitter-distributor is to read paper
tape and translate the binary tape codes into electrical signals.
These signals are sent to the page printer. The binary tape code
is sensed by 5 pins which are periodically pressed against the tape.
A hinged 1id holds the tape down against the pins. The tape is moved
by a sprocket wheel which engages the feed holes punched in the tape.
Place a tape in the reader and close the 1id. Then turn the start-
stop switch to start. The tape will now be transmitted to the page

printer.

9-9

POWER SWITCH

(BEHIND PRINTER)
PAPER FEED

CRANK

PAGE PRINTER

TRANSMITTER
DISTRIBUTER

PRINTER
MOTOR
SWITCH

TIGHT TAPE
STOP LEVER

Figure 9.5
PAGE PRINTER UNIT

9-10

There is an end of tape stop device that stops the transmitter-
distributor when the end of the tape passes under the 1id. A tight tape
stop bar will also stop the unit and keep the tape from being torn should
the tape become snarled or tight and raise the bar.

Reperforator Unit. This unit is used to duplicate tapes;

see Figure 9.6.

Turn on the power switch by moving it towards the back of the
table. After about a minute, the power supply will warm up and the
reperforator motor switch should be turned on.

The trensmitter-distributor has been described in the pre-
ceding paragraph. Place a tape in the reader and turn the start-stop
gwitch to start. A copy of this tape will be made by the reperforator.

When a few corrections need to be inserted in a tape, punch
a second tape containing only the corrections. Then use the reperforator
unit to duplicate the correct portion; stop; insert the second tape in
the reader and reperforate the correction; then replace the first tape
and continue with the correct portion.

Combination Teletype Unit. This unit, shown in Figure 9.7,

combines the functions of those units already described.

Underneath the top of the table are two switches. Switch
10 turns on the dc supply which must be on before any of the other
units will operate. On some of the tables it takes about a minute
for the dc supply to warm up.

Switch 9 turns on the motor of the transmitter-distributor.

9-11

LEVER FOR
PUNCHING SPACES

POWER
TRANSMITTER SWITCH REPERFORATOR
DISTRIBUTER\ BOX

START-STOP
SWITCH

TIGHT TAPE
STOP LEVER

REPERFORATOR
MOTOR SWITCH

Figure 9.6

REPERFORATOR UNIT

9-12

el-6

@O

@@ ©

@ ®

@®

TAPE READER

(TRANSMITTER—DISTRIBUTOR)

PAPER FEED CRANK
MANUAL CARRIAGE RETURN

BACK-SPACE, TAPE

DOOR TO AUTOMATIC CARRIAGE
RETURN MECHANISM

START-STOP SWITCH FOR
TAPE READER

TIGHT TAPE STOP
KEYBOARD SELECTOR SWITCH
PAGE PRINTER MOTOR SWITCH

PUSH-BUTTON FOR “"ZEROS®
ON REPERFORATOR TAPE

TAPE READER MOTOR SWITCH

DC POWER TO TABLE & TAPE COMPARER

PUSH-BUTTON FOR "SPACES" ON
REPERFORATOR TAPE

DOOR TO PUNCHINGS DRAWER

REPERFORATOR MOTOR SWITCH

PAGE PRINTER /

6.1:@ _,__A

KEYBOARD

KBD. & TAPE

REPERFORATOR L

Figure 9.7
COMBINATION TELETYPE UNIT

ON

The transmitter-distributor has already been described. It sends
signals to both the page printer and the reperforator and will operate
€ither or both of these units if the corresponding motor switch is on.

Turn on the reperforator motor by means of switch 13. The
reperforator will now duplicate any tape that is run through the
transmitter-distributor.

Pressing lever 11 will cause the reperforator to punch
gspace tape codes. Pressing button 8 will cause the reperforator to
punch zeros. However, one unpredictable character will be punched
at the end of the zeros. 2Zeros are useful at the beginning of tapes
to provide space for writing identifying information. They should be
followed by spaces to make it easy to set‘the tape in the Illiac
reader.

To operate the page printer turn on motor switch 7B. The
page printer will now print any tape that is run through the trans-
mitter-distributor. The carriage may be returned manually by pressing
lever 2. Crank 1 will turn the platen.

It is possible to operate the bage printer and the reperforator
at the same time. However, it 1s possible for the reperforator mechanism
to make an error that would not appear on the printed copy. If the
printed copy that is to be proof-read against the manuscript is pre-
pared from the final tape, it is quite certain to show any errors in

the tape as well as any possible errors in the printing mechanism.

9-1k

Set switch TA to 'tape". Tape can now be perforated from the
keyboard .

It is also possible to type on the keyboard, and perforate
type in the reperforator at the same time. To do this turn TA to
keyboard, 7B on, and 1% on. There is no way to back-space tape that
comes from the reperforator. It 1is also more difficult to read the
last character that has been punched on the tape tﬁan when the keyboard
perforator is used for punching tape. The transmitter-distributor
may be used to reperforate correct portions of a tape. The tape should
be stopped before the error by means of switch 5. Type the corrections
from the keyboard. Then move the tape to the next correct section
and continue reperforating.

Tt is also possible to print with the page printer at the
same time a tape is being punched from the keyboard. To do this turn
on the printer motor by means of switch 7B and set switch TA to
"keyboard and tape". A disadvantage of this method is that the keys
cannot now be operated as fast as when punching tape alone. There is
no way to change errors on the printed copy that are corrected on the
tape with the backspace lever. Since the printed copy is made by a
seperate mechanism at the same time that the tape is punched, there
{s also a small possibility that it may not correspond to the holes
in the tape. This copy should not be used for proof-reading.

Switch 7B can be turned on and off without affecting anything

being reperforated if switch TA 1is placed in the "tape" position,

9-15

SKIP SET BUTTON

Jump ALL SKIP ALL
O O O o0 o @f FRONT SPACES Sth HOLE @
TAPE CHARACTERS
IR S S S JUMP NO
HOLE HOLE HOLE HOLE HOLE SWITCHES CHARACTERS
JUMP RUN f
O o0 o0 o o § REAR SKIP SToP g
TAPE SWITCH SINGLE
CHARACTER
RUN SWITCH
FIGURE 9.8

PHOTOELECTRIC PAPER TAPE
CONTROL PANEL

COMPARER

N

before 7B is operated, and kept there while 7B 1s off.

Comparing Tapes. A tape comparer consists of two tape readers

connected to checking circuitry. Two kinds of tape comparers are avail-
able in the Laboratory, one kind using mechanical readers and the other
using photoelectric readers. When tapes are compared in the mechanical
readers, it is necessary only to place the two tapes in the readers and
to turn the power on. The tapes will advance in synchronism as long as
the binary codes in the two tapes agree and will halt if a disagreement
is detected. On of the machanical units will halt one row of holes
beyond the disagreement and the other will halt on the holes which dis-
agree. When the tapes stop, the power should be turned off and the tapes
inspected visually. They may then be marked if in error, replaced in
the readers and the comparison continued. One of the two mechanical
units has push-buttons for advancing either tape one step at a time
while they are stopped on a disagreement.

The tape comparer using photoelectric readers is more versatile
than those with the mechanical readers. By means of a switch it is
possible to choose three modes of operation in which the reader will
"skip no characters", "skip all S5th hole characters” or "skip all spaces."
A set of neons is associated with each tape reader and when the tapes
stop on an error the neons indicate the character read from each taps.

As in one of the mechanical readers, it is possible to advance either
tape one step at a time by means of switches. A full description of
the operation of the photoelectric tape comparer is provided in Internal

Report 62, and a view of the control panel is shown in Figure 9.8.

9-17

Short tapes may be checked more rapidly visually by super-
imposing them and holding them up to a strong light.

9.6 GENERAL REMARKS. The misreading of aven a single

hole in a long tape can cause enormous changes in the behavior of
Illiac. It is important to keep tapes clean. Dirt from tapes
accumulates in the transmitter-distributor tape reading pins and
causes errors. Worn or torn tapes will also cause errors.

Do not mark tapes with a waxed pencil: use a lead pencil
or ink.

Library tapes and other tapes which need to be handled
frequently are on a grey parchment stock which is heavier than normel
tape stock. One of the reperforators is mechanically adjusted to
punch this heavy stock.

It is generally more convenient to make corrections to be
made on the tape itself, as well as on the printed copy.

If corrections are needed at the end of a long tape, it is
sometimes more convenient to reperforate the tape tail-end first,
so that the corrections can be made at the beginning, and then the
reperforator left running unattended.

A hand punch is available and can often be used to change
one or two characters and so avoid reperforating a long tape. Holes
punched with it should be inspected carefully to see that they line
up with the other hPles in the tape. If in doubt, it is better to
have the extra hole slightly oversized so that it is certain to be

read by the Illiac reader.

9-18

9,7 HIGH SPEED PRINTER. This printer performs the

same function as the slower printers except that it operates at
10 characters per second. The turn-on switch is on the lower
front side. Carriage return and line feed buttons are provided
on the front. After printing is complete the paper should be
advanced before shutting the printer off. Otherwise unwant ed
characters will be printed on the page as the unit stops.

9.8 HIGH SPEED REPERFORATOR. The high speed reper-

forator uses two photoelectric readers to provide a flexible
means of preparing tapes. Four switches and a push button con-
trol the operation as follows.

Switch Sk4, Stop-Run. This switch has only two positions

which determine whether the unit is in a standby position or
operating in accordance with settings of the other switches.
It should be at STOP to change any switch except S2.

Switch S1, Reader Selection. This switch has three posi-

tions, allowing a tape to be read from the front reader or the
back reader or allowing carriage return-line feed characters to
be punched on the new tape while neither reader operates.,

Switch S3, Mode Control. This switch, in conjunction with

$2, determinesthe mode of reading a tape and punching another.

It may be set as follows:

a. "Single Character Punching" to punch one character and stop.

b. "Stop Punching on CR & LF" to punch up to and including the
next CR & LF character and then stop.

c. "Single Character Bypassing" to skip one character and stop.

d. "Stop Bypassing on CR & LF" to skip all characters up to and

including the next CR & LF and then stop.

9-19

Switeh 82, Start, Obey, Ignore. This switch obeys the

instruction of S3 when set to OBEY. If moved to 3TART after a
stop it will cause the instruction of 53 to be executed once,
If set to IGNORE it will cause all of the stops spnecified by
S3 to be ignored.

Set Button. This is a reset control which should be
pushed when the unit is first started and whenever a tape is
manually shifted in either reader.

Neon Indicators. A row of neons on the panel indicates

the last character read and either punched or byvassed.

9-20

CHAPTER 10

CALCULATION OF RUNNING TIME

Bach programmer should estimate as well as he can the
length of time his program will run. This information 1is needed
for efficient scheduling of machine time and to enable the computer
operator to decide whether a program may have failed to stop when
it should have.

The estimation of running time consists of summing up the
times for executing all of the orders of the program, taking into
account that many orders are executed more than once. Thus, the
time 1is calculated for one passage through an iterated loop and then
multiplied by the number of trips through the loop. The number of
passages through a loop is not always known (as in the square root
code where the number of passages depends upon the quantity whose
square root is being calculated) and the programmer may have to
make rough estimates for such cases. He can make use of the code
checking periods to help him here.

10.1 ORDER TIMES. The programmer must know how much

time the Illiac requires for each order. The order times are given
in Table 10.1, the time required for getting the order from the
memory being included.

The values given in Table 10.l1 are in some cases not
exact. The T7O® microsecond value for multiplication is a maximm,

the time depending upon the multiplier. It could be as low as 625

10-1

microseconds.

ORDER TvPE nE
On, 1n 16 n microseconds

2, 3, 4, 5, J 55 microseconds

3 not executed 18 microseconds

6 800 microseconds

7 700 microseconds

80, 81 L milliseconds/character

82, 92 17 milliseconds/character on punch

1 millisecond/character on display
XK, S, F, L 90 microseconds
Table 10.1

Order Times

The time required to execute an 80 or 81 order so as to
read one character from the tape is 4 milliseconds. Since most
programs use conversion routines for input it will be found that
the time 1s closer to 4 1/2 milliseconds for decimal input.

10.2 EXAMPLE OF RUNNING TIME CALCULATION. Let us con-

sider a simple example. The program given in Table 10.2 will trans-
fer the contents of memory locations 100 to 199 into memory locations
200 to 299. How long will it take?

The program in Table 10.2 consists of 7 words. There is
a loop consisting of the 9 orders beginning with the left-hand order

at location O and ending with the left-hand order at location 4.

10-2

This loop is executed 100 times. There are no other orders executed

except the stop order. Thus we have the following orders:

00 50K
0 L5 (100)F
40 (200)F
1 LS L
LO 5L
2 32 4L
L5 L
3 Lk 6L
40 L
4 26 L
OF F
5 L5 199F
40 299F
6 00 1F
00 1F
24 SON
Table 10.2

Repetitive Program

Five L orders at 75 microseconds,
Two L4 orders at 55 microseconds,
One 2 order at 55 microseconds,

One 3 order at 18 microseconds.

The time T is then given as

10-3

=]
it

(5x 75 +2 %55+ 55 + 18) 100 microseconds,

53,800 microseconds,

i

.054 seconds.

10.3 A SIMPLE RUNNING TIME FORMULA. A rule which is

accurate enough for most calculations is the following one:

Let NO = number of orders obeyed,
Nm = number of multiplication orders Obeyed,
Nd = number of division orders Obeyed,
NS = number of shifts.

Then the running time T, exclusive of input and output orders, is

NO NS Nm + N
T = 18 + 20 + 5 milliseconds.

In the example given above Nb is 900 while Ns =N =N

We thus have T = 900/16 milliseconds or about .056 seconds.

10-4

CHAPTER 11

PREPARATION OF A COMPLETE PROGRAM

The problems solved on the Illiac vary in complexity from
programs requiring only the punching of parameters and data for use
with a library routine to programs involving hundreds of words re-
quiring the entire memory capacity of the machine. There is, of
course, no "typical" program; however, the problem described in the
following sections illustrates features common to many problems.

The problem described is one that arose in the electron
tube research laboratory of the University of Illinois.* The problem
is first described qualitatively, and a general mathematical formu-
lation is given. Approximations are then made to simplify the
equations. The resultant equations are reformulated so that a
library routine can be used for the solution, and reformulated agein
in terms of scaled variables so that machine range will not be ex-
ceeded. The general organization of the program is then described,
and the details of the coding are given. Those interested primarily
in the programming may omit the introductory description.

11.1 GENERAL STATEMENT OF THE PROBLEM. The purpose

of the problem is to solve for the trajectories of electrons in an

* The staff of the computer laboratory is indebted to Mr. Irving
Kaufman of the electron tube research laboratory for permission

to describe his problem and for his assistance in the preparation
of this chapter.

11-1

electron cyclotron. An electron cyclotron is a device that accelerates
electrons to energies of several million electron volts. The accelera-
ting mechanism is a radio-frequency electric field in a microwave

cavity. According to the well-known Lorentz force equation, the force

on a charged particle is given by:

f=qE+qvx3B, (11.1)
Here
f = vector force (newtons),
q = charge (coulombs),
E = vector electric field (volts per meter),
v = vector velocity (meters per second),
B = vector magnetic flux density (webers per 'square meter).

It is seen that the component of force produced by the
electric field E is parallel to E 5 that produced by the magnetic
field B is perpendicular to both v and B. The former causes accelera-
tion or increase in energy; the latter merely changes the direction
of motion. This combination gives rise to the mechanism of the
electron cyclotron shown in figure 11.1.

Here a microwave cavity, externally supplied with electri-
cal energy, is immersed in a uniform steady magnetic field (shown
by the dots) whose direction is perpendicular to the paper. The

cavity has been constructed so that near the axis it has a time-

11-2

varying electric field E that is almost emtirely parallel to the

axis X-X' and whose magnitude is given by E = Em sinewt. The magni-

7

tude of Em is on the order of 5 x 10 volts per meter, so that it

is possible for an electron passing through the 1 cm. gap of the
p)

microwave cavity to acquire an energy of 5 x 107 electron volts.
(This corresponds roughly to the relativistic rest energy of the

electron).

Microwave
Cavity

Xl

Figure 11.1

Electron Cyclotron

11-3

Yl

Thg’action of this cyclotron is as follows:

1. The very high value of E forces some electrons out of
the cavity wall during some parts of the cycle. (Let us consider

here the trajectory of electrons emitted from surface R-R).

2. The E-field accelerates the electron toward surxface
S-S.

5. A fraction of the electrons emitted pass .through the
orifice in S-S. The magnetic field as well as space charge pro-

duces a slight bending of the trajectory.

L. The magnetic field external to the cavity causes
the electron to move in circular orbits. The orbit radius is pro-
portional to the product of electron speed and total (relativistic)
energy. Consequently, a fraction of the electrons ejected are
returned to the orifice in cavity surface R-R; the rest collide with

the walls.

. Those particles that re-enter the cavity when the field
is in its accelerating phase (recall, E - E sinwt) acquire
additional kinetic energy during transity through the gap. They conse~

quently execute larger orbits externally.

6. For those electrons that maintain the favorable phase
conditions of (4) and (5), above, an indefinite number of orbits
is possible. For a 1 cm. cavity gap, each orbit corresponds to g

step in energy of approximately 1/2 million electron volts.

11-k

11.2 TRAJECTORY EQUATIONS. The combination of the

relativistic equation of motion for a particle and the Torentz force

equation yields, for electron motion in the cavity, the equation

m. (iv. + Jv)
d 0 X y - . -
= = wt -
T B 1/2 e [1 (Em sinwt va) +J (va)]
3 I S A
2
c
L. .

Here:

my = rest mass of electron,

Ve = dx/dt = component of velocity in X-direction,

vy = dy/dt = component of velocity in Y-direction,

¢ = velocity of light,

i = unit vector in X-~direction,

j = unit vector in Y-direction,

t = time,

e = magnitude of electroaic charge,

Em = peak electric field intensity,

w = angular frequency of cavity field,

B = magnetic flux density.

For motion exterior to the cavity, the term Em sinwt
should be deleted from equation 11.2. The two resulting vector
equations are then to be solved for electron trajectories.

To reduce the complexity for a first order sclution,

three approximations are made:

(11

1. The effect of the magnetic field inside the cavity
is neglected.

2. The effect of vy in the gap is neglected.

5. Particles exterior to the cavity are taken to move
in circular arcs. The arc length is taken as the difference be-
tween a full circle and the cavity gap length. (In other words,
the chord length of the gap 1is set equal to its arc length.) As
before, the radius of the circle is proportional to the product
of velocity and total energy. These approximations leave only one
differential equation to be solved; for now, after some manipulations,
in the gap

a [my v (1 - [32) -1/2] /dt =e E sinwt , (11.3)
while outside of the gap

T LR] B R CI- LR

+ oe,n -(en) (n+1) . (11.4)

The symbols used in 11.3 and 11.4 and not previously

mentioned are:

v = electron speed (meters per second),
= v/e,
n = number of the orbit in which moved; i.e., for
first cavity crossing and exterior orbit n = 1, etc.
Oe,n = the phase angle (radians) in the microwave RF cycle

11-6

at which the electron leaves the gap in orbit n.

(See Figure 11.2).

the phase angle (radians) in the RF cycle at which

i,n+l
the electron re-enters the gap after completing
orbit n. (See Figure 11.2).
K, = 6.31599
K2 = 0.,09291C

/\—‘5‘-
L I_J
o
e,n

Figure 11.2

Phase Angles of an Electron

11.3 PROCESSING OF EQUATIONS FOR SOLUTION BY THE ILLIAC.

Electron Trajectory_iﬂdthe Gap . The equation of motion of

the elctron in the gap is given by equation 11.3, which is reduced
to a set of first order ordirary differential equations so that the
solution can be obtained using library routine F 1.

Using as variables 6 =§ft, u = vﬂu, we can reduce equation

11.5 to the pair of first order equations:

1

dx/de = u,

du/de (eEm / mdug) (1 - (w?ug) / 02] 5/2 sin 3

The sine function may be'evaluated by using two additional
equations with appropriate initial conditions:
d(sin 9) / d6 = cos © or df/ds = g

d(cos &) / a6 = -sin 9 or dg/de = -t

The equation of motion of the electron in the gap has thus been reduced

to the following set of four first order differential equations:

dx/de = u
2
/a8 = (e / mf) (1 - (52) F))2
df/de = g
dg/de = -f

Initial Conditions for Gap Trajectory Equations. An

electron is introduced into the gap at x = 0 with negligible velocity

vV =wu at a certain phase QO =W+t. The initial conditions are then,

11-8

for arbitrary ©:,

g = Ccos 90.

The effect of variation of the parameter QJ will be studied.

Motion of the Electron Exterior to the Cavity. The elec~

tron is accelerated while in the gap and leaves the gap at x = 1 cm.

with a velocityc&ue 0 and phase Oe 0 It then follows a circular

3 2

orbit at constant velocity and re-enters the gap at x = 0. The

phase at the time of re-entry can be calculated by equation 11.4,
/ C .

n

Re-entry Conditions for Gap Trajectory Equations . The

in which ﬁ is equal tOLUue
3

re-entry conditions for the gap trajectory equations are:

x =0, u=u , £ =sino g = cos ©

i,n+1’ i,n+l’ © = gi,n+l’

where ©. is calculated from @ as indicated above.
i,n+l e,n

Information to be Printed. For a given value of the

initial phase 90, the following informatiod is desired for each of
ten orbits:
(a) The orbit index n,
(b) The phase Qe,n of the electron leaving the gap,
(c) The phase gi,n+l of the electron re-entering the gap,
(d) The relative velocity fg of the electron in the orbit,
(e) The quantity [1 - P 2] -1/2 ,

(f) The energy of the electron in the orbit.

11-9

The calculation is to be repeated with different values of the para-

meter @). The parameter 9) is printed for identification of results.

11.4 SCALING OF THE QUANTITIES FOR ILLIAC SOLUTION.

Magnitude of Quantities Involved. For the rnage of in-

tegration (electron trajectory in the gap), the phase angle o was
known to be in th: range 1 < 9 < 2.5 from a previous desk calculatoer
solution. The design constants and physical constants are Em’ Ly

e, m and c, which are, respectively, the peak electric field

0
intensity in the gap, the angular frequency of the field, the charge
of the electron, the rest mass of the electron, and the velocity of
light. The gap length of 1 cm. is the maximum value of the variable
X. The maximum value of u is easily caluclated, sincec&u/c is
the velocity of the electron relative to the velocity of light and
is less than one. The variables f, g, and their derivatives are
the well-known and well-behaved sine and cosine functions. The
maximum value of the derivative du/d@ is simply the constant
eEm / mJu?.

The ranges of the unscaled variables and values of

the constants are indicated in Tables 11.1 and 11.2. The scaling

of the variables is indicated in Table 11.3.

11-10

SYMBOL DESCRIPTION NUMERICAL VALUES SOURCE

Min. Max.

e Phase 1l radian 2.5 radians Previous desk
calculator
solution

X Distance 0 0.01 meter Design constant

u 0 J.017

meter/radian wu < c

£ f = cos © -1 1

g g = sin © -1 1

dx/de dx/ds = u D 0.217 m/rad.

du/de -0.02970k4 0.02979k4 sin ©
(1 - ﬁg)B/ ? <

ar/de af/de = - sin 9 -1 1

dg/de dg/de = cos © -1 1

Table 11.1

Table of Variasbles and Derivatives

1l-11

SYMBOL.

e/mO

w

X
nmax

DESCRIPTION NUMERICAL VALUE
L ~ALL
Ratio of charge to 1.7592 x 10
rest mass of an coulombs/kg .
electron
. . 8
Velocity of light 2.99776 x 10
m/sec.
Peak electric 5.2266 x 107
field intensity volts/meter
Angular frequency of (2n)(2.8)(109)
the field rad/sec.
Gap length 0.01 meter
- 0.02970k4
6.31599
0.092910
Table 11.2

Table of Constants (mks units)

11-12

SOURCE

Physical
constant

Pnysical
constant

Design
constant

Design
constant

Design
constant

Derived
constant

SYMBOL

dy/ap
dp/df
ds/ap
dr/ag

NUMERICAL VALUE

Min. Max.

0.1 0.25

0 0.201

0] J.017

0 0.005

J 7,005

0] 0.017

-0.2970k 0.2970k

-0.05 0.05

-0.95 0.25
Table 11.3

RELATION TO UNSCALED VARIABLE

$ =0.16
y = 0.1 x

P =1u

r = 0.005 f
5 = J.005 g

dy/dp = dax/de

dp/d@ = 10 du/ds
ds/dp = 0.05 af/ds
dr/dg = 0.5 dg/ds

Table of Scaled Variables and Derivatives

The Scaled Equations.

dy/ap
dp/ag
dr/ag
ds/ap

i

u

10r .

The scaled equations become

(2s/0.01) ,

The quantity in brackets in the equation for dp/dP has

11-13

been scaled by 1/2. The constants G and E are:

G = 202/w2 = 0.00058078 ;

E=20V2 eEm/mUu.)e = 0.84016 .

The scaling for dp/d@ and for the bracketed expression

have been absorbed by the constant E.

Scaling for External Orbit Recycling Equation. The time

phase of an electron re-entering the gap is calculated as follows:

Oi,n+l =¥ [1-K, (1 G C2)l/2/ wu/e)] [1 - (u)u/c)2] -1/2

+9, - (n +1) (n) ,

where K, = 6.31599 and K, = 0.092912. Since $ = 9/10 and n can be

as great as 10,

By ey = (/10) (1/0.1) L1 -K, (- wp?/e2)M2) (rowp/e)]

[1- (wp/c)2] -1/2 -2n(n + 1)/ 10C + ¢

e,n

where ¢e n and p are values at the time of exit after the nth tra-

s
Jectory of the gap. After performing the indicated subtraction, the
quantity within the brackets { 2 is on the order of 0.0l.

Additional Calculation for Printed Results. The additional

calculations below are to be performed.

P =wu/c (relative velocity)

11-14

Un/UO = l/l - ﬁe (ratio of total energy to rest energy)

T = mace [(L - 32) -1/2 1] = (511.24) (105) [Uh/UO - 1]

(electron kinetic energy)

After scaling we have

P=U~)P/C ’
2.01 U /u, = 0.01 Y2 ’
o0 2 1/2
[1/2 - p°/a]
10787 - 0.51124 [0.01 Uh/Ub -0.01].

11.5 CODING OF THE PROBLEM.

Organization of the Program. The following steps are to be

done:
(L) Read parameter ¢O from tape and print.
(2) St initial conditions for integration in gap.
(3) Perform one stop of integration.

(4) Test to see if last step has been performed; if not,
repeat step 3.

(5) Perform external orbit recycling calculation.
(6) Calculate and print data desired for each orbit.
(7) Test for last orbit; if not, return to step 2.

(8) Stop, then return to stop 1.

Use of Library Routines. The following library routines

were used:

11-15

(1)

Decimal Order Input X 1

(2) Constant Listing Auxiliary X3
(3) Differential Equations F1l
(k) Sine-Cosine T 1
(5) Decimal Number Input N 3
(6) Print P1
(7) Square Root R 1
Use of Parameters. In order that the coding could be

independent of the allocation of memory space, parameters in

addition to those required by the differential equations F 1 were

assigned for memory locations of the subroutines. The assignment

of parameters is as follows:

83
Sh

S5

s6
S7
S8
59
SK
Ss
SN

SJ

location of first variable,
location of scaled derivative of the first variables,

location of first word of temporary storage for

differential equations routine,

number of differential equations to be solved,
location of first word of auxiliary subroutine,
temporary storage,

square root subroutine R 1,

initial conditions setting program,

main program,

print routine P 1,

decimal number input routine N 3,

11-16

SF sine-cosine routine T 1,

SL differential equations routine F 1.

The parameters S3-S7 are those required for the differential
equations routine.

Use of Differential Equations Routine. In using the

differential equations routine, a number of choices must be made,
as indicated in the specification sheets. These include:
(a) selection of increment length h and the parameter m,

(v) method for handling the independent variable .

It has been noted that two first order equations are required for
solution of the second order differential equation of motion of the
electron in the gap. Two additional equations were included to
evaluate the sine function required. The range of integration is
fromy = O to y = 0.001 where y is one of the dependent variables.
Since it is not possible to predict the relationship between y and ¢,
it is not possible to determine an increment h of ¢ in such a way
that integrating over an integral number of equal increments h will
result in y assuming its final vplue. The technique used is one

of integrating beyond the range desired, then integrating in the
opposite direction with a decreased value of h. The integration
then oscillates around the end of the range, with decreasing values
of h, until y lies within some predetermined interval containing its

final value 0.001. The initial length of increment h is determined

11-17

from considerations of accuracy and time. The value of h chosen
was 0.J00L. For this value of h, the estimated number of steps of in-
tegration is 150 and the accuracy is on the order of lO-l). The value
of m selected is the largest possible such that none of the scaled
derivatives exceeds range, namely m = 9, or 2™ - 0.512.

For homing on the final value Yo of the dependent variable

Y, the value of the scaling factor 2™ is changed in the following

manner.
yi+l L”f///’;’k:
y ! |

) |
Yy P<-h'

IR

y f — h —
| |
7, ' P140= Py+h
g — ¢i+2= ¢i+l+h'
Figure 11.3

Adjustment of Interval Length

When yi+l - ye differs in sign from Yy - Ves 2mh is changed to a new

value

oM _ 2mh<yi+l - ye)

Yy “Yia

11-18

The integration then proceeds with the smaller interval h' (of opposite
sign from h) until two successive values of y again lie on opposite

sides of y_. If, at any time |yi - yel <1079

, the integration is
complete.

In the differential equations of motion of the electron
in the gap, the independent variable ﬁ does not appear. The value
of § is calculated by using a counter in the main routine, rather than
integrating the equation ¢' = 1. The number of equations used is thus

.

Details of the Coding. The Initial Conditions Setting

Program. Words O to 9L of this part of the code are devoted to
reading a value of the parameter ¢O from tape (using the decimal number
input) and arranging the format and printing ¢D in both degrees and
radians. (Print routine P 1 is used for printing). Since the scaling
of ¢O is by a power of 10, printing is arranged so that the decimal
point appears in the printed results to yield the correct values for
the unscaled quantity QO'

The remaining words are used for the following:

(1) Set initial value of orbit index n,
(2) Set initial values of p and y to zero,

(3) Set temporary storage locations for differential

equations routine (S5 ff.) to zero,

(k) Calculate and set initial values of r and s.

(The sine-cosine routine is used for the calculation),

(5) Set initial value of 2™,

11-19

(6) Set initial value of y. , -y

i+l ’

e

(7) Transfer to main program.

Details of the Coding. The Auxiliary Subroutine. The

auxiliary subroutiné is a closed routine whose function is the calcu-
lation of the scaled derivatives from the values of the variables in
accordance with the equations of motion of the electron. The variables
Ys P, 8, and r are in locations S3, 1S3, 283, and 353, respectively.
The scaled derivatives 2™h y', etc., are to be placed in locations

Sk to 3sk. Constants necessary, such as G, E, and negative powers

of ten, are obtained by using the constant listing auxiliary (Library
Routine X 3). Results of intermediate calcualtions are placéd in
temporary storage locations 1S8 through 1488, for reference in checking
the program for errors. The calculations are arranged so that none of
the intermediate results exceeds capacity; otherwise the program itself
is self-explanatory. The auxiliary subroutine uses the square root
routine (entry from 6L), the first word of which is in location S9.

Details of the Coding. The Main Program. The main program

can be subdivided into three parts; the supervisory program for inte-
gration in the gap, (words OL to 18L), the external orbit recycling
calculations (words 18L to 30L), and the orbit counting and printing
routine (words 30L to 61L).

The first part of the main program performs the following

functions:

11-290

(1) The independent variable }/ is increased by h.

(2) Values for the ith step of the variables y, p,

s, r and of (yi - ye) are stored for future reference.

(3) The i+l step of the integration is performed by
entering the differential equations routine; i.e.,

new values of y, p, s, and r are calculated.

(k) Vil "~ Ve i3 calculated and its sign is compared
with the sign of y, - y_. If the signs differ, 2™
is adjusted; if the signs agree, 2™ 1s left

unchanged.

- ye| > 10-9 s another step of the inte-

1079
14l " ye[< 10 7, the

external orbit recycling calculation is begun.

(5) If |y,

gration is performed. ITf iy

The second part of the main program performs the calcula-
tions indicated by the external orbit recycling equation in such a
way that none of the intermediate results exceeds capacity. It should
be noted that the quantity [1 - p2-/G]l/2 is necessary for this calcu-
lation. To obtain this quantity, the auxiliary subroutine is entered
directly from the main program. The auxiliary subroutine leaves the
desired quantity in location 3S8, where it is then available for
further calculation by the main program. It might be thought that the
quantity could be obtained directly without re-entry from the main
program; it should be noted, however, that the auxiliary routine was
last used with intermediate values of the variables. For accurate
results, it is therefore necessary to re-enter the auxiliary subroutine

with the final values of y, p, s, and r in locations S3 through 3S3.

11-21

The last part of the main program, beginning with the right-
hand order of word 30L, is devoted to orbit counting, and to calculations
for the format of the printed results. The print routine P 1 is entered
in such a way that decimal points are placed to correspond to the un-

scaled values of the results. The format used is indicated in Table

11.4

11-22

£eS-T1

Q

0
degrees radians
050.0000 0.872665
9
e,n
n radians degrees
0le 2.07513 118,896
02, 2,00608 114,940
03. 1.98559 113,766
04, 2,00941 115,131
05 2,05493 117,739
C6e 207354 118.805
07 204100 116,541
08Bs 1.99582 114,352
09, 1.98125 113.517
10, 2,00854 115,081

e

1,n+1

radians

1.36207
1.37242
1. 40726
1. 45802
1.47955
1. 44881
1. 40483
1.39111
1.41901
1,46613

Printed Results

degrees

078, 041
0784634
080, 630
083,538
084,772
083,011
080, 491
079.705
081,303
08 4, 003

Teble 11.k4

A

0.86371¢
00942114
0. 9679571
0. 979635
0.985871
0. 989611
0s 992050
0. 993730
0. 994930
0995812

Uﬁ/UO

01.9842¢
02, 98271
03, 98364
04,98157
05, 97197
08, 95861
07.95137
0g. 95100
09495242
10.95028

T

00 503205
01,013640
01525355
02,035536
02541871
03.046279
03.553819
0L, 064869
04, 576833
056 0869€ 0

LOCATION ORDER
20 3K
3 00 F
00 320F
L 00 F
20 32LF
5 00 F
00 328F
6 00 F
00 LF
7 00 F
00 200F
8 00 F
00 3LOF
9 00 F
00 6LF
K 00 F
00 220F
S 0) F
00 250F
N 00 F
00 125F
J 20 F
00 Tup
F 00 F
00 95F
L 00 F
00 153F

Auxiliary Subroutine

00

200K

11-24

NOTES

number of equations

LOCATION

10

11

12

13

ORDER

K5
L2
50
73
4O
50
75

66N OOF 005
8078 0000 J

59
40
32
50
26
4O
50
7T
)
50
75

66N O0F 00
100 0020 0000 J
7IN LOF 00 3401
6000 0000 J

o)
50
™
00
Lo
50
L5

F
18L
153
158
Sk

1S3
183

F
238
5L
5L
59
358
2s8
358
458
458
283

F

F
1s8
1F
1Sk
s8
383

2™
2mhy'

11-25

NOTES
Set link
oMy = 2™Mp
G

a=1/2 - pe/G
Waste

1/2

[1/2 - pg/G] at 388

[1/2 - 2/6 1 7/2 at uss

0.0

El

o™p' = 2™n (20Cs) E [a]5/2

LOCATION ORDER NOTES

14 66N OOF 00 1000 0.1
0000 0000 J
75 188 2™
15 Lo 2sh
50 88 -
16 L1 283
66N OOF 00 1000
0000 0200 J
17 75 158
40 3sh 2"y
18 32 18L Waste
22 ()L By O'

I

= 2™ (10r)

1l

2™ (-108)

00 220K Set initial conditions
0 k1 s8
92 1hoF
1 92 513F
92 961F
2 40 598 @
50 2L
3 26 sJ - D.N.I. Input @
L5 588
b 52 T3F
50 4L
5 26 SN - Print routine Print § (degrees)
L5 588
6 50 88
66N LOF 00 729
5779 5131 J 1.8/x

11-26

LOCATION

10

11

12

13

1L

15

16

17

18

19

20

ORDER

S5
40
52
50
26
92
92
19
Lo
Ll
L1
b1
L1
41
L1
L5
50
00
Lk
50
26
40

7JN OOF 00 100
0000 0000 J

Lo
50

7IN OOF 00
100 0000 0000 J

Lo

LS5N OOF 00 5120
0000 0000 J

F
558
TLF
8L
SN
129F
513F
5F
658
183
83
S5
155
255
385
598
s8
oF
558
16L
SF
758

2583
758

355

5% in A

11-27

NOTES

Print @ in radians

Setn+1l=2%x 2-7

Set p to O
Set y to O

Sine cosine routine

0.01
s = 1/200 sin 10 ¢

0.01
r = 1/200 cos 10 §

2™

Set
starting

values

LOCATION

21

22

MAIN ROUTINE

ORDER

Lo 158

L1N OOF 00 10
0000 0000 J
Lo 838

26 85

00 250K
L5 158
10 9F
L4 5388
Lo 558
L5 S3
Lo Lss5
L5 183
4o 585
L5 283
Lo 685
L5 383
4o 785
LS 8s8
40 938
00 9F
50 TL
26 SL
L5 83
LON OOF ©0 10
0000 0000 J
Lo 858

11-28

NOTES

o™y

h in A

Replace § by / + h

Store old values of y, p, s, r

Store (yi - ye)

Differential equations Routine F 1

Ve = 0.001

LOCATION ORDER NOTES

10 36 12L
L5 998
11 36 13L If y, - ¥y, and y, 1 - ¥, agree in
26 17L sign, integrate again
12 L5 9s8
36 1TL
13 L5 L4s5 Yj If Yy = Ve and Vil = Ve disagree
Lo 83 Yi+l in sign, form 2™
1h Lo 1788 Yy o= Vi1
50 888 (Y501 =)
15 75 158 2™
66 1088
16 S5 F
4o 158 2™ = 2% (v, - ¥o) [(vy = vi)
17 LT 838
LON OOF 00
1000 J Is |y, - yel < 107%
18 36 L
50 18L
19 26 87 - Auxiliary subroutine
LSN OOF 00 4Lé
6080 0000 J M
20 50 8
66 338
21 S5 F
4o 1188
22 L1N OOF 00
10000 0000 J 1072
50 S8
23 66 183
S5 F

11-29

LOCATION

2k

25

26

27

28

29

30

31

32

53

34

55

36

ORDER

Lo 1258

50 658

T7IN OOF 00 1000
0000 0000 J

Lo P

50 F

75N LOF 00 1283
1800 0000 J

00 TF

10 1158

LO 1288

66N OOF 00 1000
0000 0000 J

S1L F

Lk 538

Lo 13s8

92 129F

92 513F

L5 658

LON O1F OOF

10 32F

JO 22F

50 33L

26 SN

L5 588

52 61F

50 35L

26 SN

50N LOF_ 00 729
5779 5131 J

(n+1)27

11-30

NOTES

~1077 / p

O'l

25 /10

0.1

e,n

i,n+l

nx?2

Print n

Print § in radians
e,n

LOCATION

57

38

59

Lo

4y

L2

L3

Ly

b5

46

i

48

49

ORDER

77 588
22 38L
52 63F
50 38L
26 SN
L5 1388
Lo 538

NOTES

Waste
Print ¢e,n in degrees

Set ¢ for next integration

22 L1t Waste

52 61F

50 L1L

26 SN

SON LOF 02729
5779 5131 J
7J 1388

Print ¢1,n+l in radians

1.8/x

22 LhT, Waste

52 63F
50 LhT,
26 SN

Print ¢ in degrees

i,n+l

36 L6L Waste

L5 183

50 S8

66N OO0F 00 170
4100 0000 J
7JN OOF 00 1000
0000 0000 J

52 T1F

50 48L

26 SN

L5N OOF 00 70
7106 7812 J

Calculate and print

11-31

LOCATION ORDER NOTES

50 50 S8
66 338
51 S5 F Calculate and print
ko 1hs8 [1-B%1 -1/
52 52 T2F
50 52L
55 26 SN
L5 1488
54 LON OOF 00 100
0000 0000 J
Lo p Calcualte and print energy (mev.)
55 50N LOF D0 112
L0000 0000 J
T7J F
56 52 82F
50 56L
57 26 SN
L5 638
58 LYN CO1F OOF Increase n
Lo 638
59 LON ONF OOF
34 SK If n = 11 stop, read in ue-
60 26 128K If n <11, integrate again
20 F

Temporary Storage Starting at Memory Location Zh0

1 Emh

LL-3%2

LOCATION ORDER

NOTES

1/2 - /G

[1/2 - p°/a 1M2

[1/2 - p°/a]3/2
#

(n+1) 277

1/2 cos 10 ¢
(Yi1 - Vo)

(yy - ¥,)

Y1 =Y
MI1/2 -1 /6]
2107 / p

by

(1- P2] -1/2

-1/2

Allocation of Memory Space. Memory spece was allocated

as folleos:

5=15

lo-b3

oh-T3
Th-9h
95-12k

125-152

parameters

available for list of constants for

constant-llsting auxiliary
square root routine R 1

decimal number input routine W 3
sine-cosine routine T 1

print routine P 1

11-%3

153-193

differential equations routine F 1

194-199 unused

200-218 auxiliary routine

219 unused

) 220-242 initial conditions setting program

2h3-249 unused

250-311 main program

320-323 variables for integration routine

324-307 derivatives for integration routine

328-331 temporary storage for integration routine

332-335 previous values of variables for integration
routine

336-339 unused

3L0-354 temporary storage

355-940 unused

9k1-961 constant-listing auxiliary X 3

962-998 available for post mortem D.O.T. (Library
Routine C 1)

999-1023 decimal order input X 1

0-2 temporary storage

Tape Preparation. The tape was prepared in two steps. The

non-standard parts of the brogram - namely the list of barameters,

the auxiliary subroutine,

the initial conditions setting program, and

the main program ---- were punched, printed, and visually checked for

11-34

errors. Using library routines, the tape was prepared as follows:

Decimal order input X 1

00 941K

Constant listing auxiliary X 3
00 3K

List of parameters

00 64K

Square root subroutine R 1

00 ThK

Decimal number input routine N 3
00 95K

Sine-cosine routine T 1

00 125K

Print routine P 1

00 153K

Differential equations routine F 1
00 200K

Auxiliary routine

J0 220K

Initial conditions setting program
00 250K

Main program

24 999N

26 220N

11-35

KO6N

KOS5N

KO5N

The tape was then checked for reperforating errors, using a tape
comparer. The directive 24 999N was placed on the tape so that a
correction tape could be placed in the reader before the program was
started. Initially, however, the stop of the 2k 999N directive was
by-passed, and control was transferred to the initial conditions
setting program by the directive 26 220N. The quantities KO6N,
KO55N, and KOSN at the end of the tape are values of the parameter
¢O to be read from tape by the decimal number input.

11.6 CHECKING THE PROGRAM. The electron cyclotron pro-

gram was typical in that s number of blunders in coding were made.
A description of the sequence of events in checking the program follows.
When the program was first read into the Iliiac, the
quantity
07680. 0000 00528 59852_ 06685 86693 Lc83
was punched continually. The temporary storage was printed (P.M.
routine C 3) indicating that ¢O had been read from taps and stored
(at 588). ¢O was to be initially expressed in degrees scaled by
100 and was later to be converted to radians scaled by 10. Since the
conversion had not occurred, the difficulty was isolated to the
region 3L-T7L of the initial conditions settiﬁg program. A subsequent

printing of the orders of the print routine (with P.M. routine C 5)

11-3%6

indicated an incorrect link and the difficulty was isolated to the
print routine entry (word U4L) which was
52 73F 50 2L rather than 52 T_F 50 4L.

When the program was read into Illiac again, noises in-
dicative of integration were heard, and after an appropriate interval
cf time punching occurred. The results were, however, not entirely
were incorrect, although some small

correct. Values of ée and Qi

»1 »2

comfort was gained from the fact that o

5 and n were printed correctly.

The behavior of the variables ﬁ, ¥y, P, s and r for the first ten
steps of integration were then observed by using check point routine
D 1 with a blocking order placed at location 256 (6L in the main routine)
ahead of the entry to the Runge-Kutta routine. The initial values of
¢, ¥s P, 8, and r were correct, exonerating for the moment the initial
conditions setting program, but ¢ behaved peculiarly on successive
steps. Rather than increasing uniformly by increments of 0.0J31,
@ increased by 0.001, then by 0.0246, by 0.0006, and eventually de-
creased slightly. It was finally found that the location 5S8 used
for storage of ¢ was also being used for temporary storage by the
auxiliary routine. This blunder was cured by replacing the orders
LO 588 50 588 in words 10 and 11L of the auxiliary routine by
Lor 50F.

With a somewhat longer correction tape, the program was
again checked on the Illiac. The results of the first integration and

orbit cycle were correct, but the results for the second orbit wers

11-%7

all incorrect with the exception of the orbit index n. The re-entry
into the initial conditions resetting program was checked and it was
found that p was incorrectly being reset to zero; i.e., the program
was robbing the electron of all the velocity it had gained during its
first orbit. The correction tape increased in length; word 61L of the
main program became 26 12SK 00 F rather than 22 11SK 00 F. The
orders for clearing ql and p were interchanged in words 11L and 14L

of the initial conditions setting program.

After the following code check, the results for the first
orbit were again incorrect. After mutterings of "something is wrong
with the computer', it was discovered that s terminating symbol had
been omitted on the correction tape. The correction process then
converged and correct results were obtained.

11.7 CONCLUSION. The preparation of a problem for
solution on a digital computer is by no means a completely objective
brocess. No two programmers would p}epare the same problem for solu-
tion in an identical way. Furthermore, a second coding of the problem
by the same programmer would differ from the first Preparation.

The personal preferences of the programmer affected the
electron cyclotron program in a number of ways. Memory space other
than location O, 1, and 2 was assigned for temporary storage; it
was felt that such an arrangement might aid in code checking. The
S terminating symbol was used for designation of the locations of

first words of subroutines, so that the detailed coding could be

11-38

completed before memory locations were assigned to the subroutines.
Thus, the location of a subroutine affects only one of the S para-
meters rather than the addresses of a number of orders in the program.
Among the changes which might be made if the program were
rewritten is a change in the handling of the variable 6. If © were
expressed in revolutions, the overflow properties of the computer

would simplify the recycling computation.

11-39

CHAPTER 12

THE CATHODE RAY TUBE DISPLAY

12.1 GENERAL DESCRIPTION. Results of certain types of

calculations may be most conveniently obtained from the computer by
use of the cathode ray tube display. Whenever results of a cal-
culation can be represented pictorially as a graph or diagram, the
cathode ray tube output from the computer provides a rapid and
elegant method for obtaining these results. If results would other-
wise be graphed manually the cathode ray tube saves the humen time
required for this additional processing and also reduces the ﬁachine
time required to present the results to the user.

Another use of the cathode ray tube is to provide inter-
mediate results in such a form that they may be analyzed subjectively
during the course of a program. In this way the programmer may
discover errors in his program at an early stage in the calculation.
.He may also obtain immediate results which may be used to determine
the way the remainder of thg program is to be run. Even 1f the
final results must be presented with greater accuracy than is
possible using a graphical display, some advantage may be obtained
by supplementing the digital results with a graph or disgram. The
cathode rey tube output is called into use by turning the output
switch on the input-output rack to the cathode ray tube position.

When the switch is in this position the cathode ray tube is the only

12-1

form of output available to the user. The display on the cathode
ray tube is limited to a 3" x 3" square grea centered on the face

of the tube. Within this gquare area, chosen points may be brightened
on a 256 x 256 regular square raster. A finer raster is unnecessary
because of the limited resolution of the cathode ray tube. This
limited resolution makes the display of digital information such

as numbers or figures somewhat unhandy. It has been found that no
more than about 200 fully legible numbers or letters may be dis-
played in a single frame. In general the requirements of the format
will restrict it to somewhat less than this. This disadvantage,
however, 1s somewhat offset by the Possibility of using characters
having any shape which the brogrammer desires and by the greater
speed of output. A subroutine has been written which will display
characters at the rate of about 45 per second.

In order to retain s bermanent record of displayed re-
sults it is necessary to photograph the face of the cathode ray
tube. Two cathode ray tubes are installed in the rack. They
are driven so they operate in parallel and hence display the same
results. One is used for visual observation and the other is
equipped with a semi-automatic camers to permit photographing
the display. The film advance mechanism is controlled by the
program while insertion, removal, and development of film must

be done by hand.

12.2 ORDERS CONTROLLING THE CATHODE RAY TUBE DISPLAY.

Orders which would normally cause characters to be punched or printed
will effect the cathode ray tube when the output switch 1s in the
cathode ray tube position. The conventional output order to use for
cathode ray tube display is 82 16F. When this order is executed

it will cause one spot to be brightened on the face of the cathode
ray tube. The position of the brightened spot depends upon the
contents of the 16 leftmost binary digits 20 - 2'15 of the accumulator.
Let these diglts be designated by the symbols 8yr 810 v v s a15'
Assume an origin or coordinates 1in the lower left-hand corner of

the square raster and let d represent the length of one side of

the square raster (d = 3"). Then the coordinates of the brightened
gpot will be:

-1 -2 -8
d(aoz + a2 ...+ 2)

y

4 (a8 ot + ag 272 4. .. *+ 8 2‘8)

X

These formulae say, in effect, that the ordinate is obtained from

the first eight binary digits of A, regarded as a number, and that

the abscissa is obtained in the same way from the gecond eight digits.
During the execution of the 82 16F order the AQ register

will suffer a left shift of 16 places. This output order takes 800

microseconds. A varistion of this order permits a spot to be

brightened in only 400 microseconds. When an 82 8F order is executed

12-3

the ordinate is determined in the same manner as it is for an 82 16F

-1 -2 -8 . .
order, y = d(aO 2 7+, 2%+ ...+ 2, 2 "), but the abcissa will
be the same as that of the spot produced by the last 82 16F order
which was executed. In this way time may be saved when several points
having the same abscissa are displayed.

A letter output order is used for operating the semi-automatic

camera. The following order is used for this purpose:

92 769 Advance the film one frame.

The camera has no shutter, so that programs having long
periods of computation (say 15 minutes) between displays of results
should be arranged to advance the film before =and after each display
in order that the results will not be fogged from filament light in
the cathode ray tube.

Exposure of a single frame of the film takes place during
the period of time that the spots that make up the picture are
brightened. Amount of exposure 1s thevefore czntrolled by the
intensity setting of the cathode ray tube. Exposure of a spot may
also be increased by multiple brightenings. If calculations are
made while the frame 1s being exposed the resulting photograph will
in no way be affected although the image on the visual cathode ray
tube may f'ade partially before the completion of the frame. Ad-
vancing the film one frame takes one second and the Illiac will

walt until this operation is completed before executing other out-

12-4

put orders. If the orders following the film advance do not in-

volve output, their execution will be begun after only 200 microseconds.
No output orders other than those mentioned are of practical

use in the operation of the cathode ray tube display. A 92 order

having an odd address will affect the camera mechanism, while any

other output order will brighten a spot.

12.3 PROGRAMMING FOR THE CATHODE RAY TUBE DISPIAY. As

with typewritten output, the cathode ray tube display 1is usually

programmed by means of subroutines. If digital results are desired

the number of orders concerned with output will be greater when the

cathode ray tube display is used than when the punch is used. In-

formation needed to form a character (such as a letter or decimal

digit) may be stored in a single word in the memory, but the

mechanism required to decipher this information rapidly may take

as many as 35 words. Such a device is used in library program

CO 1. This program uses 6% words to display information similar

to that printed by library program C 3 which has only 31 words.
Graphical display is also most conveniently accomplished

by means of subroutines. Progrem O 1 is an example of a subroutine

which enables one to plot axes and points on the cathode ray tube.

Any method of graphical display will almost inevitably require

scaling of the coordinates of the points to be displayed. Since

it is desirable to utilize the full screen area of the cathode

ray tube, up scaling may be necessary in some cases instead of down

12-5

scaling. The full screen is regarded as having a range of 1 for
both coordinates when Library Routine O 1 is used. The full range
of all variables in this case should be scaled so as to correspond
to 1. If more then one graph is to be displayed on a single frame,
however, it is sometimes better to avoid entering the point plotting
subroutines more than once. Consider the following example: The
points (xl, yl) and‘(xl, y2) are both to be displayed relative to
the origin. Let us assume that axes have already been displayed
by program O 1. The quantities Xy and Yo have been supplied to
program O 1 when the axes were plotted so as to locate the origin.
They represent the x and y coordinates respectively of the center
of the screen in the coordinate system used. Let the necessary

parameters be those given in Table 12.1:

LOCATION PARAMETER

10 X,

11 Yo Assume these coordinates have been
12 X4 properly scaled before being stored.
13 ¥

1L Yo

15 scaling factor for vy

16 scaling factor for y,

17 1/2

Table 12.1

Parameters for Cathode Ray Tube Display

A program to plot the two points might be the one given in Table

12.2:

P 50 13 scale y,
7T 15

p+l Jo 12 plot (xl, yl) by use of subroutine O 1
50 p+l

p+2 26 (to program O 1)
50 1k scale y,

p+>5 73 16
L4 17 prepare 2(y2 + 1/2 - yo)

pth LO 11 to be displayed
00 1

p+> 82 8 plot (xl, y2) without use of a

subroutine

Table 12.2

Program for Cathode Ray Tube Display

In the program of Table 12.2 the second ordinate Y5 is first scaled
and then translated so as to be present in the accumulator in the
proper form for display purposes. It is then displayed by use of the
82 8 order, thus saving machine time and also saving the programmer

the trouble of re-introducing the abscissa Xl'

..o' 'S o o prvves
Y . '..' see
. 4
o. [’
., .o.
. o
—""'\ ‘. ".T e+
\‘~ '. o0 banaad ‘n
- ®
5
5~
e
‘e e,
. i d Y
T . .‘.
. .,
. .
.. ...
e o® ’. S
. “~,
.0. \.

)
l... *
&%
ey -ty ‘Mﬂ..\“
A . -y
'......l I
. JONGL N

CHAPTER 13

PROGRAMMED CHECKS

13.1 GENERAL PRINCIPLES OF CHECKING. Any person using

the Illiac as an aid to his research is 1likely to question the
reliebility of results of calculations carried out by the machine.
Although the Illiac is quite reliable in its operation, one is
almost never Justified in using Illiac results directly for publi-
cation or for further research without assuring oneself in some
way of their correctness. If the calculations carried out by the
computer are to be treated with the same care and thoroughness
that is usually required of resulﬁs obtained in other ways some
method of checking must be found. Naturally the Computer Laboratory
cannot guarantee the correct operation of the computer and it is
the responsibility of the person preparing the problem to provide
adequate checking of his results.

The subject of checking is by its nature, a difficult
one to treat in generality since the most suitable checking method
usually depends upon the nature of the calculations. An obvious
checking procedure is avallable in some cases and not in others.
For example, one may check the solution of a set of algebraic
equations by substituting the regsults into the original equations.

Whenever a checking process of this sort exigts it is preferable

13-1

to checking methods which only check some of the operations involved
iIn the calculation since it provides an overall check on the operation
of the computer from the beginning to the end of the problem. If the
results of a calculation may be plotted as a graph one may often verify
the correctness of the results by noting whether the points follow a
smooth curve. Such s simple check as thig may be used only when the
various points are calculated independently and should then be used in
conjunction with other checking processes. Some types of calculation
may be closely approximated by much simpler formulae which may be
evaluated iIndependently. When such approximations exist they are
often adequate for checking purposes. A checking process must thus
be tailored to fit the problem and its effectiveness will often depend
upon the ingenuity of the programmer.

Let us assume that g brogram is divided into distinct runs
of length tl and that a checking period of length t2 follows each
run. If a malfunction or machine error occurs either during the run
or during the checking period it will be detected at the end of the
checking period and the entire run will have to be repeated. The
average time wasted due to errors and checking and the optimum length
of run may be calculated using these assumptions. Take the time T as
the mean time between machine errors, i.e. the reciprocal of the error
frequency. It is not strictly correct to Speak of a fixed time T
gsince the error frequency depends upon the nature of the calculation

and other time dependent factors. Nevertheless, we shall assume g

13-2

fixed T and show later that oﬁr conclusions do not depend upon an

accurate knowledge of T. A reasonable choice might be T = 8 hours.
The average useful time per run may be taken as the prob-

ability that no error will occur during the run multiplied by the

length of run. Assuming a Poisson distribution of errors one obtains:
Average useful time per run = ty exp[-(tl + te)/T] (1)

Since the total time taken by the run is tl + t2 we find that the

fraction of the total time which is useful is

t

1
T = %Z—z—%; exp [-(tl + te)/T] . (2)

The first factor differs from 1 because of the time taken by the
checking process while the second factor differs from 1 because
of the likelihood of errors occurring during the run. If we

maximize: (2) with respect to t, we obtain

2
t] + 4ty - 1,7 =0, (3)

giving
8/t SVI/h w1/t - 12, (%)

If we assume that T >> t2 we obtain the approximation

t) é\»/th . (5)

15-3

If the same assumption is made in formula (2) we obtain for the

fraction of the total time which is useful

F21- t2/tl - tl/T . (6)

Substituting (5) in (6) we obtain
F=1- 2\h27T (7)

as the largest fraction obtainable. It is important to notice
that if T is much larger than t, formula (6) will remain nearly

1l over a wide range of tl. In effect, this means that our selec-

tion of tl is not critical provided it is much more than t2 and

much less than T. For example, if the time for checking, t2, is

5 minutes we obtain for the optimum length of run

t =\/§4min. x 480 min. = 49 minutes.

Yet as seen from formula (6), if the length of run were doubled
or halved the wasted time 1 - F would not be much greater.

In formula (1) if t; is allowed to increase we see that
the function reaches a maximum when tl = T. Therefore if a run
is permitted to exceed T the useful time achieved by the run (on
the average) begins to decrease. Under no circumstances will any

advantage be gained, therefore, by making t, greater than T. From

1

(k) we see that this limit is approached as t, increases.

13-k

An alternative system of checking may be used in which
the checking process is incorporated in the calculation and the
program is arranged to stop whenever an error occurs. The run must
be restarted from the beginning after the error. Each successful
run (of length tl) will be followed by a period of printing or storing
intermediate results which will allow the following run to be re-
started at that point. We shall assume this period to be of length t2.
The difference between this method and the preceding one is that an
unsuccessful run is cut short in this case. Although formula (1) is
unaltered the ones which follow are changed somewhat. This is be-
cause the total time taken by a run (on the average) is no longer

tl + t2 but is rather

1 At
(b, + ty) expl-(t) + £,)/T] + — ((U exp[-(U/T)] at
=T {l - exp[-(tl +)/T]}

The first term on the left is due to successful runs while the second
term is due to umsuccessful runs. The formulae corresponding to the

previous analysis are

t
1 1
F = T, + 5070 - 1% (2*)
ty - T{} - exp[-(t, + tg)/Tj} =0 , (3')
t) é'\/QtET , (5")
t t
Fiol- t2 - = = (6)

13-5

F i1 - 2t,/T . ’ (7")

Here we see that the optimum length of run is increased by a factor
of\/§: and that the wasted time is decreased by the same factor.
Although no closed expression can be obtained corresponding to (4)
we note that the remarks concerning tl in the neighborhood of T
still apply. Qualitatively the behavior‘of F as a function of tl
is still the same so F remains nearly unity when t2 2 tl<< T.

Thus a careful choice of tl and an exact knowledge of T are still

not important.

13.2 INPUT CHECKING. Often, an. overall check on the

entire program is not possible and individugi checks mist be made
on separate operations. The operations of reading and punching

are more subject to error than other operations and are also easier
to check in most cases. Standard techniques are also available

for checking input and output operations so that relatively little
burden is placed on the programmer.

The sum check is commonly used to check input-output
operations. It derives its name from the fact that a primitive
form of the sum check consists of merely adding together all +the
words in the memory before the calculation beginsg, but after the
program has been read into the computer. If this sum agrees with
a previously obtained sum, one concludes that the program has been

placed in the memory in exactly the same way as it was when the

13-6

sum was originally obtained. ’Agreement between the sums is taken
to mean that no error was committed during the reading of the pro-
gram.

A sum check 1s particularly useful for checking the reading
of a master tape which is to be used many times. Such tapes eventually
wear out and a sum check provides an indication of this as well as &
check on the operation of the computer. Library Program X 7 is an
jnterlude which computes the sum of the memory and compares the
result with a sum which is especlally prepared on tape the first
time the tape 1s used. A somewhat more relieble check than would
be obtained by simply summing is obtained in this program by per-
forming a circular right shift of the accumulated sum during the
summing process. By this technique one may avoid the possibllity
that two errors occurring in the same digit position. in different
words may compensate, thus ylelding a correct sum. Misplacement
of words is also detected by this technique. A typical interlude

to sum the memory might be the one in Table 13.1.

13-7

Place accumulated sum in A and

10 1F perform circular right shift,
1 sk F
L (LF Add next word to sum and restore
2 Lo F in zero.
F5 1L
3 4o 1L :] Step address to select next word.
Lo 8L :] Test for the end of the summing
L 36 L process,
81 kor
5 10 F Read previous memory sum from tape
Lo F and compare with memory sum obtained
6 I3 F this time.
36 999F If sums do not agree stop on an FF
7 FF F order; otherwise return to the D.O.I.
26 999F
8 3 F
LY 1024F Test constant.
9 00 F .
06 L] Enter interlude.
26 IN

Table 13.1
Sum Memory Interlude

After computing the "memory sum" this interlude will read a previously
brepared word from the tape which it compares with the memory sum. If
the two disagree the routine will stop on an FF order. This order has
been specially chosen to indicate the failure of brogrammed checks., It
should be used whenever g programmed check is made instead of the OF
stop so the computer Operator will be able to identify the nature of

the stop.

13-8

So far we have discussed a method for insuring the correct
reading of a program tape or master tape. A data tape which is to be
used many times may be treated in the same way. Tapes which are pre-
pared by the computer constitute a special problem and may be best
discussed in connection with output checking. There still remains the
problem of checking the reading of data tapes which are prepared by
hend and which need to be read only once. No entirely satisfactory
method for checking such tapes has been developed which does not
involve reading the tape twice. If arrangements are made for the
master program to read a tape twice one may store the numbers the
first time they are read and then compare them directly on the second
reading. If memory space does not permit storing the entire set of
numbers which are to be read one may effect an equally valid check
by computing a sum of the numbers as they are read the first time
and retaining only this sum to compare with a similsr sum computed
on the second reading.

Other ways of checking data tapes involve special preparation
of the tape. One such technique is to follow the punching of each
number by the sum of its digits modulo 9. These sums nust be com-
puted by hand as the tape is prepared thus complicating the preparation
of the tape and increasing the likelihood of human errors. As the
tape 1s read the corresponding sums may be formed by the computer (a

special input routine is required) and the reading of the tape checked.

13-9

A somewhat simpler technique requires the use of g
code in the punching of charscters. Punching in code may be
glmplified if one covers the Teletype keys with caps which
indicate the coded characters while the tape is being punched.
A convenient code uses the 5th hole of a character as a parity
check on the other four; for eéxample, the first four holes might
be used to indicate a sexadecimal character ag they are at present
and the 5th hole would be punched or not punched so as to make the
number of holes per character odd. A Speclal input routine would
be used to interpret the coded digits and check for errors. An
odd number of errors occurring in the reading of g gingle charac-
ter would be detected by means of such a check since the parity
would then be altered.

In order to obtain a typewritten copy of the coded tape
it is necessary to clamp the 5th pin on the transmitter-distributor
unit of the Teletype in the down position so as to Suppress the effect
of the 5th hole. Thus all carriage returns must be inserted manually
as the typewritten copy is formed. Another drawback to this method
of checking is that a character may be ignored by the reader or read
as two identical characters without an indication of error. In
order to check that the correct number of characters has been read
one mugt include some additional restriction on the typing of the
data. Such s restriction might be that all numbers which are typed

should have an even number of digits. Non-significant digits would

13-10

then have to be included in some numbers thus increasing the time
spent typing as well as the time required to pass the tape through
the reader. Still the time would be less than that required to read

the tape twice.

13.3 OUTPUT CHECKING. The checking of punched results

is usually a simple operation éompared to the checking of the reading
of hand-prepared tapes. A standard technique is to arrange to read
the output tape back into the computer at the completion of the problem.
If the punched results are retained in the memory they may be compared
directly at this time. If it is not possible to store the punched
results one may compute a sum of &ll results as they are punched and
then recompute this sum as the output tape is read back into the
computer for checking purposes.

If punched output from the computer is intended to be read
back into the computer at a later time it is convenient to include a
sum of the punched results on the output tape. This sum may be com-
puted during the punching process and finally punched at the end of
the tape. When this tape i1s read back sgain it may be checked for
punch or reader errors by recomputing the sum as it is read and com-
paring this sum with the sum punched at the end of the tape.

No convenient method exists for checking the Teletypewriter
or the cathode ray tube output. This is because no input device exists

which allows one to read printed or photographed results into the

13-11

computer. Three methods exist for checking such results but all

three involve considerable human labor which must be done without

error if a check 1s to be made. These methods are:

1.

Print the results twice from a checked tape
and compare the two printed copies by eye.

- Copy the printed results by hand onto Tele-

type tape and then use the sum check method
of the previous paragraph to éheck this tape,

treating it as though it were computer output.

Include some redundancy in the printed results
so that the output may be checked by hand
computation. One might, for example, follow
the printing of each number by the sum of its
digits modulo 9. This computation could then
be made by hand using the printed results and

could be compared.

13.4 MEMORY CHECKING. As we have seen in the previous

sections of this chapter,

the most satisfactory check of a calculation

is an overall check which checks all operations performed during the

calculation simultaneously. When such checks are impossible, however,

one must resort to the us

then wishes to check the

e of a combination of partial checks. One

operation of the input-output equipment,

the memory, and the arithmetic unit by means of independent checks.

The checking of the high-

speed memory is slso usually treated separately

from the checking of the drum memory.

13-12

During a long calculation it sometimes happens that words
in the high-speed memory become altered for no apparent reason. If
the altered word happens to be an order pair in the program the result
will usually be a malfunction of the program which in many cases will
not be difficult to detect. Yet there are many memory failures which
can produce subtle changes in the results, and for this reason a memory
check must be made. Some methods Qf arithmetic checking are complete
enough to include the memory and no\special check of the memory is
needed, but if this is not the case some special method must be devised.

Library program X 10 is a general subroutine for checking
all parts of the memory which are not altered after the first few
minutes of calculation. Provision is also made for removing the
program being checked from the computer each time such a check is
made. Complete input checking is also incorporated in this program
as an additional feature. This versatile subroutine may either be
arranged so that the removel of the program from the machine is under
the control of the operator or it may occur at intervals determined by
the program. When removal is to occur the master program must enter
X 10 as a closed subroutine. It causes a tape to be punched con-
taining information concerning the subroutine link, those words in
the memory which may suffer modification, and finally the memory sum.
A specilal tape is read at this time to specify the words which may
be modified. After punching is completed the program stops on an OF

order. To resume the program at a later time one merely reads the

13-13

initial tapes as if the brogram were being started from the
beginning and then arrests its progress with the white switch.
Using a bootstrap start the tape which was punched Just prior
to removal may be read. All words will be restored to their
condition at the time of entry to X 10 and a sum check rerformeqd.
If the sum check agrees with that punched previously one 1is
assured that words have been read correctly either at this
reading or the previous one, that the specially punched tape
was punched correctly, and that no word in the memory suffered
a change during the previous run with the exception of those
words specially designated. These latter words are usually
checked by the arithmetic check.

Checking of the drum memory is achieved more easily
than checking of the high-speed memory. In most applications of
the drum memory words are transferred to and from the drum in
blocks of perhaps ten or more. The standard block transfer
routine effects & check on the drum by recording a sum check
following each block which is recorded on the drum. Upon play-
back from the drum a similar sum is computed to be compared
with the one which was recorded. 1In this way the operation of
the drum is completely checked without special attention on the
part of the programmer. Only when individual words are to be
transferred to and from the drum must special arrangements be

made for checking.

13-14

13.5 ARITHMETIC CHECKING. In most cases a chsracteristic

identity of the problem being solved is used for arithmetic checking
purposes. Two examples are presented here to show how arithmetic
checking is carried out.

s) Assume that n values of cos 2o k with k = 0, 1, «+epm = 1
are to be used in a calculation and that %-is non-integral. Checking

n-1
mey be accomplished by means of the identity 2, cos gﬁg k = O. As

k=0
the cosine functions are computed they may be summed and the final
result tested to check that it is sufficiently close to zero.

b) Assume that the n products axi are to be formed where

a is a given number and Xy is given for 1 = 0, 1, ..., n - 1. These
n-1 n-1
products may be checked by computing izb Xy and izb ax, SO as
n-1 n-1
to allow a check by the identity igb ax, = aizb X, -

Tn case a convenient identity cannot be found one may
sometimes avoid duplicating all calculations by using an approximate
calculation as a check. An integration process for example, may be
checked by carrying out the same process using a larger step (or
mesh size) during the checking run. The checking run will thus take
considerably less time than the original, yet it will detect any
malfunction which produces a gross €rror.

13.6 SUMMARY. Although the operation of the Illiac is
reliable by computer standards one is rarely justified in using Illiac

results for scientific purposes without checking them in some way.

13-15

Sometimes it is possible to check results visually or by hand, but
when this is not possible one must make use of g programmed checking
technique. As has been seen the simplest and most effective pro-
grammed checks are those which check the solution of the prob lem
as a whole rather than the individual operations. Such overall
checks are possible when the solution may be substituted back into
an equation or when some fundemental redundancy exists in the results.
Even when an overall check is not possible one may obtain
a valid check by combining checks on input-output, memory and arith-
metic units. Although such individual checks are often difficult to
perform they are always preferable to running the problem twice and
thereby doubling the time taken. A summary of methods of checking

individual operations is glven in Table 13.2.

13-16

Operation Checked

Reading of program tape or
reading of datae tape which
is to be used several times.
Reading of computer output.

Reading of data tape to be
used once.

Punching of output tape.

Printing of results.

Storage in high-speed memory.

. Transfer to and from the drum

and storage on the drum.

. Arithmetic operations.

Table 13.2

Checking Methods

Sum check such as Library
Routine X 7 or X 10.

Sum check to be punched on
computer output tape.

a. Read tape twice and arrange
that one reading shall check
the other.

b. Use a parity check code on
characters which are read.

c. Use a modulo check on the
digits of each number.

a. Compare with stored results
by reading punched results.

b. Compute sum check as punched
tape is read and compare
with previously computed and
stored or punched sum check.

a. Print twice and compare by
visual inspection.

b. Prepare tape by hand from
printed page and check as
in bb.

c. Use a modulo check on printed
numbers and compute by hand.

a. Use a sum check routine such
as X 10.

b. Combine with arithmetic check.

Use a sum check such as the one
included in N 7.

a. Use an identity which relates
the various quantities computed

b. Use an approximate method which
is faster than the methoed being
used in the actual calculation.

Checking Methods for Various Operatlons

13-17

CHAPTER 1k

THE PROGRAM LIBRARY

The problem of planning and carrying out a large-scale
computation is often almost entirely a matter of organization in
which the detailed parts of the computation may be subcomputations
which are common to many problems. Consequently, it is of great
importance for the efficient use of a large-scale computer to have
readily available to the programmer means for cerrying out these
subcomputations. For example, it would be very wasteful 1f each
programmer had to prepare his own routine for converting binary
numbers in the machine to decimal numbers.

The Illiac library is a collection of routines which have
been prepared to make programming easier. They have all been
machine tested and copies punched on tape are kept available for
use. All are prepared for use with the Decimal Order Input (See
Chapters 4 and 5).

14.1 LIBRARY ORGANIZATION. Each Illiac rcutine bears

a label consisting of a letter (or possibly two.letters) followed

by & number. The library has been divided into categories according
to the types of operations performed, and the letter in a label
denotes the category to which the routine belongs. Occasionally a
routine, though belonging to one category, 1is useful conly in
connection with operations in another category (as, for example, a
floating decimal auxiliary), and in such cases the letter of the
second category has been added to the label. The number in the label

is simply a serial number within the category.

1h-1

An accession serial number is also to be found on each
routine; this is a Laboratory reference number and has no connection

with the categories.

14.2 PROGRAM DESCRIPTIONS AND SUMMARY SHEETS. Each library

routine is written up in two ways. One is a complete description of
the method used with the list of orders of the routine. The other is

a8 summary sheet which gives enough information to enable the routine

to be used correctly and to be compared for usefulness with another
routine of the same type. Programmers can obtain copies of summary
sheets by inquiring in the Teletype Room. Complete program descriptions
are available for reference in the Teletype Room and a user who must
make frequent reference to a particular program or who needs to modify
it for his own use may obtain a copy from the Teletype Operator.

14.3 LIBRARY TAPES. All library progrems are prepared for

use with the Decimal Order Input (Library Routine X 1) and each is
punched on heavy gray Teletype tape and filed in a cabinet accessible
to all programmers. To use a library program the programmer need
only help himself to the tape, copy it himself or ask the Teletype

Operator to assist him, and replace the library copy.

14.4 TILLIAC LIBRARY CATEGORIES. The categories of the

I1liac library are as follows:

Programmed Arithmetic

A. Floating Point
B. Other Programmed Arithmetic

1h-2

Code Checking

C. Post mortem checks
D. Dynamic code checks
Integration
E. Quadrature
. Ordinary differential equations
G Partial differential equations
Operations on Functions
H. Zeros and minima
I. Interpolation
J. Operations on polynomials and power series
K. Approximations and statistics

Linear Algebra

L.
M.

Simultaneous linear equations
Other operations on matrices and vectors

Input and Cutput

N.
Ol
P.

Number input
Scope output
Printing and punching

Mathematical Logic

Q. Mathematical logic
Particular Functions

R. Roots and fractional powers

S. Logarithmic, exponential and hyperbolic functions

T. Trigonometrical functions

V. Other special functions
Organizational

We Counting, sorting and selecting

X. Program preparation
Miscellaneous

Z. Miscellaneous complete programs

1Lh-3

14.5 ILLIAC LIBRARY Library routines which are of most

interest or most heavily used are placed in the active library, while

seldom-used routines are placed in the inactive library. On April 1,

1955, the active Illiac library contained the following routines:

LABEL

Al
A2
A3

Al

A5
A6

Cl
C3
Ch
C5
cé
CT
c8
c9

C10
Cli

D1
Dk

E2
Fl
F2

F3
FAl
Gl

G2

H1

SERTAL

63
128
125

87

138
154

48
9l
97
103
146
163
164
174

175
176

95
70

158
114
115

129

122

78
98

71
T2

TITLE

Floating Decimal Arithmetic Routine
Floating Decimal with Standard Auxiliary
Convert a Number from Floating Decimal
Representation to a Normal Machine Form
1.7 Precision Floating Binary Arithmetic
with Floating Decimal Conversion
Complex Number Arithmetic

Floating Decimal Routine and Auxiliaries

Post Mortem of the Decimal Order Input

Post Mortem for Fractions and their Locations
Post Mortem for Integers and their Locationsg
Print Sets of Order Pairs and their Locations
Address Search Routine

Drum Sexadecimel Post Mortem

Drum Fraction Post Mortem

Print Sets of Floating Decimal Numbers and
their Decimal Locations

Combined Post Mortem

Drum Order Pair Post Mortem

Check Point Routine
Control Transfer Check

Integration by Simpson's Rule

Solution of a System of Ordinary Differential
Equations

Sclution of a System of Differential Equations
by Milne's Method

Integration of n Simultaneous Second Order
Differential Equations with Initial Conditions
Specified

Second Order Linear Differential Equation with
Two Point Boundary Condition

LaPlace's Bquation - Liebmann Method
Poisson's Equation - Liebmann-Frankel Method

Inverse Interpolation
A Search for the Real Roots of f(x) = O

1h-b

LABEL

H>
H4
H5
H6

I1

Jl

K3

L1

L2
L3
L

L5
MO

M3
ML
M5
M6
MLO

MLl
ML5
N1
Ne
NS
N6
N7
N8

02
03

SERTAL

80
8L
85
86

111
67

159
135

137
182

112

113
100
166

165

141
118
117
136
139
145
153

160
173
183
104

61
88
167
168
172

181

143
k7

TITLE

Minimlzation of a Function of Two Variables
Minimization of a Function of Four Variables
Minimization of a Function of n Variables
Minimization of a Function of n Variables
Treating One Variable at a Time

Zero of a Solution of a Differential Equation

Interpolation
Roots of a Polynomial

Product Moment Correlations, Means, Standard
Deviations, Variances and Covariances

Least Squares

Autocorrelations

Solution of a Set of Simultaneous Linear Algebraic
Equations

Automatic Linear Equation Solver

Complete Linear Equation Solver

Half-precision Solution of a Set of n Simultaneous
Linear Algebraic Equations

Half-precision Automatic Linear Equation Solver

Eigenvalues and Eigenvectors of a Symmetric Matrix
Automatic Inversion of a Symmetric Matrix

Automatic Eigenvalue-Eigenvector Program

Closed Eigenvalues and Eigenvectors

Solution of the Determinantal Equation | A - AB | =C
New Matrix Multiplication

Estimation of Communalities by the Method of

- Maximum Likelihood

Matrix Multiplication (Closed)

Triangularization of a Matrix and its Determinant
Linear Programming

Matrix Multiplication with Floating D=cimal Auxiliary

Input One Number from Tape, Integer or Fracticn

Input a Sequence of Decimal Fractions

Drum Fraction Input

Drum Integer Input

Transfer Blocks of Words from the Memecry to the

Drum or from the Drum to the Memory

Read One Number from Tape as Integer or Fraction

Routine to Plot Points and Axes
Display Numbers and Letters on the Cathode Ray Tube

14-5

LABEL SERTAL TITLE

ok 161 Fast Fraction Display U4 x 6 Raster

05 162 Fast Character Display U4 x 6 Raster

06 , 177 Punch to Cathode Ray Tube Conversion Program

Pl 75 Print One Number Fractional or Integer in a
Manner Determined by a Program Parameter

P2 52 Print (A) with or without Sign to n Places as
Determined by = Program Parameter

P3 53 Print n Digits of an Integer with or without
a Sign

P4 55 Zero Suppression Integer Print

Ps5 37 Print One Number in a Parameter Set Layout

P6 25 Single Column Print

P10 133 Print Headings Interlude

P11 148 Rounded or Unrounded Print

Rl 116 Square Root Routine

R2 105 Integral Root Al/b

R3 106 Fractional Power Routine

RA1 92 Floating Decimal Squere Root Auxiliary

RA2 99 Floating Decimal Cube Root Auxiliary

S1 43 Natural Logarithm

S2 6L Exponential

83 130 Logarithm

SA2 127 Exponential Auxiliary for Floating Decimal

SA3 155 Natural Logarithm

Th 140 New Arctan X Routine

T5 157 Sine Cosine

TALl 126 Sine Auxiliary for Floating Decimal

TA2 156 Arc Tangent Auxiliary to the Floating Point Routine

Vi 82 Legendre Polynomials

Ve 120 Tchebyscheff Polynomials

vk 178 Fourier Analysis

\'s) 184 Spherical Bessel Functions

X1 18 Decimal Order Input

X3 90 Constant Listing Auxiliary

X7 142 Sum Check

X8 1hh Assemble Blocks

X9 169 Program Interruption Routine (Without Sum Check)

X10 170 Program Interruption Routine with Sum Check

XAl 121 Floating Point Constant Listing Auxiliary

14-6

CHAPTER 15

DEFINITION OF TERMS

*A 2-5

The accumulator register or the contents of the accumulator
register.

Access Time

The time to get a number from the memory to a register or the
time to get a number from a register to the memory.

Accumulator 2-5

The register into which numbers can be put by addition; same
as A register.

Action Cycle

The type of memory cycle in which the memory is connected to
the arithemtic unit for the transfer of a number.

Addend 2-5
The number in the memory to be added to the accumulator.
Address 3-1

The right-hand ten binary digits of a twenty-digit order;
usuelly the location of a number in the memory.

Analog

Indicates e continuous operation (as opposed to digital).

Arithmetic Unit 2-5

The part of the computer which 1s required to carry out
arithmetic operations.

AQ 3-9
The double-length register including A and Q but excluding
the first digit 5 of the Q register.

* Numbers refer to pages.

15-1

Augend 2-5

The number in the accunulator to which another number is
to be added.

-B-

Binary Switch 7-4

A portion of a program which is used to cause two separate
sequences of orders to be followed alternately.

Bit 2-1
One binary unit of information or one binary "digit."

Blocking Order 8-6

A transfer order inserted in s program to stop the "normal"
sequence of orders so that some check can be made on the program.

Blunder 8-1

A mistake in pProgramming, or more usually a mistake in pro-
gramming which is most obvious even without running the program.

Boolean

Pertaining to the symbolic logic of George Boole, the
mathematician.

Bootstrap Start 5-13

A routine which, with only the aid of the original order pair

80028 and 40000, makes it possible for the machine to continue
inputting and storing under the control of orders brought into
the machine from the tape.

Carriasge Return 9-3

The paper tape code which will cause the typing carriage of a
printer to go to the left-hand margin of the paper.,

15-2

Cathode Ray Tube Output 12-1

The cathode ray tube unit which can be used to display results
from the computer directly by output orders.

Check Point 8-6

A point in a routine where some check is to be made.

Circular Right Shift 13-7

A right shift of AQ in which use 1s made of the digits shifted
into Q.

Clear 2-L4

The operation of changing all the digits of a register to a
common state, usually O.

Code

A group of more or less arbitrary symbols used to represent
some other group of things.

Coding Error 8-1

An error in the detailed preparation of a program.
Collate 3=27

Digitwise logical product, same as extract.

Comparer 9-16
A device for checking the identity of two tapes.

Complement 2-2

See one's complement and two's complement.

Conditional Transfer 3=5

An instruction which will cause a transfer from the pattern
of taking orders sequentially if the sign digit of the
accumulator is O.

Control 1-k

That part of the machine which serves to "control" the arith-
metic unit, the memory and the input-output.

15-3

Control Counter 8-4

Usually the order counter.

Control Transfer 3-5

An instruction which may cause a transfer from the sequential
pattern for handling orders; see unconditional control transfer
and conditional control transfer.

Counter
Usually a short routine which counts the number of iterations
carried out in some program.

~-D-

Diagnostic Routine

A routine for finding and diagnosing a machine fault.
Digital 1-2
Pertaining to digits; discrete units.

Digitwise~complement 2-2

Same as one's complement; a binary number is the digitwise
complement of another binary number if and only if each digit
of the number disagrees with the corresponding digit of the
other number.

Directive 54

An order, usually on a tape, which specifies the location at
which a subroutine is to be stored.

The decimal order input routine, Library Routine X1; used as
a general purpose input routine for almost all programs.

Double Precision

Pertaining to numbers of approximately two 4O binary digit
number lengths; hence requlring two registers or locations
for a single number.

15-4

Drum

A rotating cyclinder with a ferromagnetic coating used as a
memory.

Error

Mathematically the difference between the correct result and
the computed result; often used in place of blunder.

Error Frequency 13-2

The averasge number of machine errors per unit time.
Even Order 3-1

The left-hand order of an order pair, thus using digits 20
through 0-19,

Extract Order 3-27

An operation which puts a 1 in the Q register wherever the
number in the designated memory location and the number in Q
are both 1, leaving all other digits zero; also called a
logical multiply order because the resulting number in the

Q register is the digitwise binary product of the Q reglster
and the number in the memory; same &8 collate.

-F-

Fixed Address 5-2

The numerical address remains unaltered when put into the
memory; usually in connection with D.O.I. where a fixed
address is followed by an F.

Fixed Point 2-1

The binary point is always in the same position of a reglster;
Illiac is a fixed point machine.

15-5

Floating Point

Pertaining to operations in which numbers are represented

by & number multiplied by a power of a base; thus numbers

may have different multiplying factors; floating point

operations in the Illiac must be obtained by programming.
Fraction

A number with an absolute value less than 1.

Function Digits 3-2

The first eight binary digits of an order; the T and V digits.

-H-

Hang up

An unplanned stop of the machine due either to a machine
fault or a coding error.

Input Routine

A routine for inputting other routines, usually aiding in
conversion from binary-decimal to binary.

Instruction 3-2

The operation in the machine designated by the first eight
binary digits of an order.

Integer

Pertaining to integers; although Illiac is a fixed point machine
with the binary point between the first two digits it is possible
to carry out operations using integer numbers less than 2+40,

Interlude 5-11
A routine which carries out operations and is then destroyed

by overwriting as the problem continues, usually carried out
during input of information.

15-6

Instruction Code 3-1

The order code.

Interpretive Routine L-9

A routine in which a sequence of operations (instead of a
single operation) may be carried out on & number, the sequence
designated by parameters carried with the number.

Iteration

A sequence of orders, usually to be executed more than once,
and arranged to converge to some analytic result.

-L-

Leapfrog 2-17

An engineering routine which may be used to test the machine.

Left-hand Order 3-1

The left-hand or even order of a pair of orders, thus using
digits 29 through 2-19.

Line Feed 9-3

The paper tape code which causes a Teletype to advance the
paper one line; always in conjuncticn with carriage return.

Link L4-b

The part of the routine used to bring = subroutine into
operation and designate the point of return.

Location 1-3

The designation of a number location, address or position in
the memory.

Logical Product

When applied to numbers of more than one binary digit, the
digitwise logical product; the same as collation of two
numbers and the same as extract.

15-7

Loop 8-k

A sequence of orders which may be carried out more than once
automatically.

Machine Error

An error caused by a fault in Illiac. A malfunction.
Malfunction 13-2

A mistake in a computer function. A machine error.

Memorx 1-2

A device which stores numbers; usually the cathode ray tube
or Williams memory in Illiac.

-N-

Number Register 2-5

The temporary location in which the addend, subtrahend,
multiplicand and divisor are automatically placed by the
control while the corresponding order is being executed; R”.

=-0O-

0dd Order 3-1

The rightshand order of an order pair consisting of the
digits 2 through 2-39.

One's Complement 2-2

Same as digitwise complement; each digit of a binary number
is changed to get its binary complement.

15-8

Order

A set of 20 binary or 5 sexadecimal digits which is used to
define a machine operation.

Order Code 3-1

A set of sexadecimal characters used to describe the operations
in the Illiac.

Order Counter 8-k4

The counter which keeps a record of the location of the next
order pair if no transfer of control 1s required.

Order Pair 3-2

Two orders which are stored together in one location of the
memory .

Order Register 3-4

The register R, into which an order pair is transferred from
the memory jus@ before either of the orders can be obeyed; R3.

Output

A display by oscilloscope, paper tape or Teletype printer of
the contents of some part of Illiac.

Overflow Digits 2-3

The digits which, as a result of a computation, would require
digits to the left of 20 in a register.

-P-

Page Printer 9-9

An sutomatic typewriter.

Paper Tape

The common 11/16 inch width paper tape used for hendling
numbers in and out of Illiac.

15-9

Parameter 4-7

A number which may be altered from one computation to another
but is held fixed during a single run.

Partial Substitution Order 3-17

An order which allows the address digits only to be stored
in the memory; a 42 or 46 order.

-Plant L-L

The act of putting some number into an order or routine;
usually with reference to an address.

Playback

The number coming from the magnetic drum memory .

Pogition

Referring to one of the 20 to 2739 places of the memory or
of a machine register.

Post Mortem 8-8

The checking of the routine in the memory after it has been
used, usually by an automatic routine which compares the
contents of the memory with the original input tape.

Program 1-4
The plan of a calculation.

Punch 9-1

A unit to punch holes in 11/16 inch paper tape, usually the
punch providing output from Illiac.

-Q-

g or 3 Register 2-5

The register which must be used for the multiplier during a
‘multiplication; also the register into which the quotient is
placed during division; the contents of the Q register.

15-10

Quotient Register 2-5

Same as Q register.

Quadrature

The process of evaluating a definite integral by numerical means.

-R-
By
The order register; bottom row of 40 neon lights on Illiac.
Range
The set of numbers which may be handled in an Illiac register
directly, from and including -1, up to and including 1 - 2=39,
Raster
The array on a memory tube.
Read-around

An index of the interference of one spot with another in
the Williams memory.

Reader O-1

The device to take data from a punched paper tape for insertion
into Illiac.

Record

The process of storing a number on the magnetic drum.

Regeneration

The process of refreshing the stored information on a
Williams tube.

Register 2-5
A row of 40 flipflops which can hold a binary number.

15-11

Relative Address 5-2

An address which is relative to a directive and hence must
be added to the directive address to get the true memory
location.

Remainder 2-12

The quantity left from the dividend after a division process
(without regard tc Illiac).

Reperforator 9-11

A standard Teletype machine for making paper tapes from
electrical signals.

Residue 2-13

The -quantity in A after a division order has been obeyed
(in the TIlliac).

Right-hand Qrder 3-1

The order using positions 2-20 through 2'39; seme as odd order.

Round-off 2-12, 13

The process of adding E-MO in multiplication and meking q 9 = 1
in division when the term is used with Illiac. 3

Routine L.l
A completed sequence of orders in coded form.
Run 13-2

A period of time during which a program is being executed
by the computer.

Scale 6-1

The adjustment of a number to come within range of Illiac.

15-12

Sexadecimal 3-2
A number system with base 16.
Shift

The process of moving a number to the right or left 1n a
register.

Sign Digit 2-2
The first position in a register; 20.

Single Address Code

A machine order code which has one address only with each
order; Illiac has a single address code.

glave Tube 8-k

A device for displaying the entire contents of one memory
cathode ray tube.

Store
The wemory, usually Williams memory.
Subroutine L4-1

A routine arranged according to a standard pattern so that
it can be easily used as part of other routines..

Sum Check 13-6

A check on computer reliability made by edding a set of
quantities twice and comparing the two results.

-T-

Tape Code 9-1

The hole patterns in a paper tape that are used to represent
numbers and instructions.

15-13

Tape Comparer 9-16

A device to compare two paper tapes.
T Digit 3-16
The first sexadecimal digit of an instruction.

Temporary Storage

Locations in the memory used briefly during a calculation
and not assigned to any number to be retained for results.

Terminating Symbol

A symbol on the tape indicating the end of a section of
code or tape.

Two's Complement 2-2

The difference between 2 and the number whose two's complement
is to be found; in the Illiac identical, because it 1s modulo
2, to reversing each digit and adding 2-39,

-U-

Unconditional Transfer 3-~5

A transfer out of the ordinary sequential pattern of handling
orders, regardless of the sign of A.

Useful Time 13-2

The average useful time per run is the probability that no
error will occur multiplied by the length of the run.

-V~

V Diglt 3-6

The second sexadecimal digit of an instructicn.

15-14

Waste Order 4-3

An order that serves no computational purpose but is
inserted because of ease in coding or limitation of the
machine because of odd and even pairing of orders.

Williams Tube

A cathode ray tube used for storing binary digits.

Word

Forty binary digits in a reglster or a gsingle location:
in the memory.

Working Space

See temporary storege.

15~15

CHAPTER 16

THE DRUM STORAGE UNIT

16.1 GENERAL DESCRIPTION. Auxiliary storage of 12,800

words is provided for the Illiac by the magnetic drum storage unit.
Some knowledge of the physical characteristics and mode of operation
of the drum storage unit is necessary for its most efficient use.

The magnetic drum is, physically, a rotating cylinder whose
surface is coated with magnetic material. Lengthwise, the cylinder
is subdivided into 200 tracks; assoclated with each track is a re-
cording and reading head capable of recording digital information
on the magnetic surface and capable of reading data previously
recorded (Page 16-2). The periphery of the cylinder is subdivided
into 64 sectors; as a sector passes under one head, the digits of
one word are recorded or read. Thus, the selection of any one of the
12,800 words requires a spatial selection of a track and a temporal
selection of a sector; that is, access to one word requires selection
of one of 200 heads and the selection of one of 64 time intervals
during which the digits of the desired word pass under the selected
head.

16.2 COMMON DRUM INSTRUCTIONS. The record instruction

86 11 OOp places the contents of A in drum location p and performs
eleven left shifts of AQ. The playback (or read) instruction

85 11 OOp performs eleven left shifts of Q and places the contents of
drum location p in A. Either type of drum instruction must occupy a
complete 40 digit word.

16-1

<91

RACK 197
RACK 198
RACK 199

-

- “‘.““.“‘\“‘.“‘.

D N N W S i e~ i s S e N

SECTOR O
\ SECTOR 13 AV VLV
VAVV VTN SECTOR 26 VAVV VTV T
VL SECTOR 39 \ AEE

1 SECTOR 52]
SECTOR | ’ | i

SECTOR 14

SECTOR 27 / |
[/ [[] 177] SECTOR 40 [[T T[]
[/ /]]]77] SECTOR 53 [/]]] /
SECTOR 2

FIG. 161 ILLIAC MAGNETIC DRUM

The address p of either drum instruction is specified by

-26 to 2‘39) of the 4O digit

the rightmost 14 binary digits (2
instruction and hence is obeyed modulo 2lh = 16,384. It is restricted
to the range O < p < 12,800 for playback and 2560 <p < 12,800 for
record, with the interpretation in both cases being made modulo 21h.
Of the 14 binary digits specifying p, the least significant six

(273% 4o 27%7) determine in which of sixty-four sectors the desired

=26 46 2_33) specify the track.

word lies; the remaining eight (2
Except in special circumstances, the programmer need not be concerned
with the breakdown of the address p into track and sector addresses,
since the track switching is automatic and imposes no special timing
restrictions on drum use.

The section of the drum O < p < 2560 is used for storage of
the drum bootstrap and commonly used routines; no recording by drum
instructions is possible in this range. If either the record or
playback instruction has an address in the range 12,800 < p < 16,384
(mod. 16,384), the instruction will cause the computer to stoo.

For most efficient use of the drum storage unit, the desired
sector of the drum should be aporoaching the reading and recording head
when a drum instruction is to be executed. Subroutines for transfer of
blocks of words between the drum and electrostatic memories require time
for execution of other Illiac instructions between successive drum

accesses; to facilitate such use, sectors whose Illiac addresses differ

by one are physically five sectors apart on the drum surface (Fig. 16.1).

16-3

The circuits for switching from one track to another are
so designed that all words on the same sector are equally accessible.
For this to be possible, a delay of one word time precedes any drum
consultation,

As an example, suppose that tﬂe dizits of word O have been
read from drum track 0, sector 0. As the drum rotates (kig. lé;l),
sectors 13, 26, and 39 pass under the reading heads., This interval
of three word times is available for calculation and for address
modification. The drum instruction requesting consultation of
sector 1 should be in the Iliiac order register before sector 52 begins
to pass under the reading heads. The enforced delay of one word time
ocecurs as sector 52 passes under the head, whereuvon the digits of any
word in sector 1 can be read into the Illiac accurulator as sector 1
passes under the heads.

16.3 CALCULATION OF ACCHSS TIMg. The timing data necessary

for efficient use of the drum storage unit can be deduced from the

following facts:

1. The time required for one revolution of the drum is 16.9 milliseconds.

2. Since the digits of 64 words are stored serially around the periphery
of each track, the time required for the digits of one word (one
sector interval) to pass a reading or recording head is 0,26
milliseconds,

3. The drum instruction must be in the Illiac order register at least

one sector interval (0,264 milliseconds) before the digits of the

16-4

word can be transferred between the drum and the Illiac accumulator.
Thus, the minimum time required for execution of a drum instruction
is two sector intervals or 0.53 milliseconds.

L. words corresponding to successive addresses in drum instructions
are spaced five sectors apart on the drum surface.

An isolated drum instruction with no definite timing relation-
ship to other drum instructions may be regarded as occurring when the
drum is in a random position. In this case, the time taken by the drum
iﬁstruction will be equally likely to lie anywhere in the range between
the minimum of 0.53 milliseconds and the maximum of one revolution time
plus one sector interval or 17.43 milliseconds. The average time would
thus be 9.0 milliseconds.

A program does not usually have isolated drum instructions,
but instead it will contain a sequence of drum instructions separated
by other Illiac instructions. Under these circumstances, three timing
calculations are of importance.

1. The time t between the completion of one drum instruction and the
completion of the next drum instruction.

2. The time T required by all the Illiac instructions which come
between the two drum instructions.

3. The maximum time Tmax available for execution of Illiac instructions
if the second drum instruction is to be obeyed as quickly as
possible after the first.

The conmonest case is that in which successive drum instructions

have successive addresses. The time Tmax is then equal to three sector

16-5

intervals or 0.79 milliseconds. If T < Tmax’ then the time t is
equal to five sector intervals, or 1.32 milliseconds. If the time T
required for execution of Illiac instructions exceeds Tmax’ at least
one additional drum revolution will be required for each access,
giving t = 18,2 milliseconds as the time between completion of drum
instructions.

A general calculation of t and Tmax for arbitrary addresses
of two successively obeyed drum instructions can be made in the following
way. If the address of one drum instruction is P1s and that of the next
is p,, one first calculates 5(p2 - Pl) - 2 - 3.8T and forms its residue
modulo 64. (All times are in milliseconds.) Call this quantity R. In
other words, R is formed by successively adding or subtracting 64 from
the above expression so as to make R lie in the range O <R < 64. The
time t between completion of the two drum instructions is then given by
the formula t = 0,53 + T + .264LR. The time Tmax is chosen as the
shortest time T to make R = O. Thus one obtains

Tmax = .26h‘{?esidue of [5(p2 - pl) - 2] (modulo 6&{}

16.4 CALCULATION OF TIME OF EXHCUTION OF ILLIAG INSTRUCTIONS.

If access time to the drum storage is to be minimized, it is important
that accurate calculations be made of the time of execution of Illiac
instructions obeyed between successive drum instructions. The most
accurate way of performing this calculation is to determine the number

of clock periods of the Illiac electrostatic storage unit. The clock
periods required for instructions commonly used in drum transfer routines

are given in Table 16.4.

16-6

Readout of each order pair 2
Order types K, S, F, and L 4
Order types 2, 4, 5, J, and 3 when

control is transferred. 2
Order types 85, 86, and 3 when control

is not transferred. : 0

Table 16.4

Two clock periods must be allotted for each order pair,
including the drum instruction itself and regardless of whether
one or two orders are obeyed. The remaining clock periods listed
in Table 1l6.4 are in addition to those allotted for order pair
readout. The clock period of the Illiac storage unit is
0.0185 + 0,0002 milliseconds; the maximum time T required for
executing instructions between successive drum orders is found by
multiplying the total number of clock periods required for the
instructions by 0.0187. As an example, the time required for the

record loop in library routine Y1l is calculated below:

16-7

Location Order

10 40 11 L 2 readout order pair
L5 (n) F L order type L

11 86 11 F 2 readout order pair
00 F O order type 86

12 2 readout order pair
F5 11 L L4 order type F
L0 11 L 2 order type 4

13 2 readout order pair
F5 10 L 4, order type F
42 10 L 2 order type 4

14 2 readout order pair
FO 35 L 4, order type F
32 10 L 2 control transfer

32 Total

The time T required for the record loop is therefore 32 x 0.0187 = 0.598
milliseconds, whicn is less than the time of three sector intervals
(0.792 milliseconds). Successive words will therefore be recorded at
the rate of 1.32 milliseconds per word, after the first word has

been recorded.

16,5 OrHER TYPES OF DRUM INST'RUCTIONS. A more general
type of drumAinstruction may be written in the form 8 Vl 11T V2 o
If T is 0, 1, 8, or 9 the drum instruction will be obeyed as described
in the first section. If T is any other digit type the right hand
half of the instruction will be obeyed as a separate Illiac instruction

after the drum instruction has been obeyed. In such a case the drum

16-8

address is interpreted modulo 8,192 = 213 while the drum instruction

is being obeyed and for this reason no hangup is possible. The
rightmost binary digit of V2 is uniquely determined by the drum address
p but V2 is otherwise arbitrary.

Possible choices for V4 include 5, 6, 7, J and L. The
playback instructions have Vl equal to 5 or J and both produce the
same result. It is customary to take Vl = 5 for playback. The
record instructions have Vl equal to 6, 7, and L, and they record N(A),
zero, and 1/2 respectively as may be deduced from the characteristics
of the variant Vl.

If vy is taken equal to 4 a playback is executed but since A
is not cleared before carrying out the playback the result will also
depend on the initial contents of A. The result of this instruction is
to shift A and Q left eleven places but during the shift to insert
zeros into right hand eleven digits of A rather than digits from Q.

A digitwise inclusive or (or logical sum) of this shifted quantity in
A is formed with the word taken from the drum.
A number of other instructions exist which affect the drum
but which also have little utility. They include the cases:
a. Drum instructions with the 1éft hand address different from 11.
b. Drum instructions with the left hand type digit equal vo 9
rather than 8.
c. Drum instructions lying entirely within the right half of a
word. (These instructions will produce the conventional effect

only if the address equals eleven mod 6kL.)

16-9

Since applications of these types of instructions to
actual programs are so limited we give no description of their
properties here,

16.6 MODIFICATION OF ILLIAC. The initial instruction

pair 8002840000 which has been used to start the tape bootstrap was

rewired so that the instruction pair 8500840000 is used instead.

This change will have no effect in the operation of the computer

except when a bootstrap start is used, and even then the computer will

usually respond in the same way now as it did with the original
instruction pair. The differences may be noted as follows:

l. No D.0.I. is now required on the front of your tape since if the
D.0.I. is omitted it is taken from the drum automatically and
placed in locations 3F7 to 3LL. The additional locations 3F5,
3F6, 000, and OOl are used in this process,

2. If a tape bootstrap such as that appeéring on the D.0.I. tape is
at the beginning of your tape, the computer will handle it in
the same way as it has in the past except that locations 3L6
through 3LL will be used before the bootstrap is read,

3. If your program requires the reading of a jump instruction by means
of a bootstrap start, it must be altered. A Jump instruction
written as 2406400000 mist be replaced by OOK24100N, while if the
instruction 263F700000 is to be read on a bootstrap start this
instruction may be omitted entirely. In any such case, the
locations 3F5, 3F6, 000, 00l will be used and the D.O.I. will be

replaced in the Williams memory,

16-10

The program which provides the facilities described above
consists of a set of routines which are stored on the drum. The
initial instruction pair 8500540000 plays back a drum boot.strap which
occupies locations 000, 001, 400, 4O1 on the drum and 000, OOl in the
high speed memory. It, in turn, plays pback routine 1 from 3L6-3L9
on the drum to 3L6~3L9 iﬁ the high speed memory. Routine 1 plays
back routine 2 from 3LK-3LL on the drum to 3LK-3LL in the high speed
memory. Routine 2 records the contents of the high speed memory
locations 002-01L at locations 31F2-31LL on the drum to preserve them
and returns control to routine 1. Routine 1 plays back routines 3
and 4 from locations 002-013 on the drum to 002-013 in the high speed
memory and jumps to routine 3. Routine 3 reads one sexadecimal
character from the tape to determine which routine should be played
back next and prepares routine L, accordingly. If the character O is
read from the tape, routine L, will play back part of the D.0.I. and
routine 5 and will jump to routine 5. Routine 5 replaces the words
in 31F2-31LL in locations 002-01L in the high speed memory and then
plays back the rest of the D.0.I. Entry is made to the D.0.I. in
such a way that the reading of the initial function digit 0 of the
directive is suppressed the first time. This is necessary since
routine 3 has already read the initial O. Routine 5 occupies locations
3F5, 3F6, 3L9-001. All except locations 3F5, 3F6, 000, and 001 are

covered by the D.O.I.

16-11

If routine 3 reads the character 8 from the tape a tape
boot.strap is indicated and routine L is prepared so that it plays
back routine 6 into locations 3L8-3LL and jumps to routine 6., All
words of routine 6 are contained in routine 5, but entry is made at
a different point. Routine 6 replaces the words in 31F2-31LL in
locations 002-0lL and causes the next nine characters to be read
from the tape and stored in 000 after faking the initial 8 which was
already read. Houtine 6 then Jjumps to 000 and the usual tape boot,-
strap sequence has been started.

Other initial characters have been assigned as follows:

(1) Leapfrog

(3) Flying Leapfrog

(F) Drum Post Mortem Routines
(L) Store Post Mortem Routines

16.7 USE OF THE DRUM. The drum will most commonly be

used by means of library subroutines. When this is done no special
knowledge of drum instruetions is required, and all problems of
reducing access time to the "minimum" of 1.32 milliseconds are handled
automatically by the subroutine.

Y-1 is a typical subroutine for transferring information
back and forth from the drum. It may be used to record a block of r
words on successive locations of the drum starting at location q
provided these words are present in successive locations in the
Williams memory starting at location n. One must enter the subroutine

by means of the instructions

16-12

JO n

P 50 P
p+tl 26 -

00 q
p+2 00 r

in order to cause the recording to occur. Control will be returned
to the right hand side of p+2 after the recording.

The same subroutine may be used to ﬁlay back r words from
successive locations of the drum starting at location q provided these
words were previously recorded by the subroutine. They will be
stored in successive locations of the Williams memory starting at any
arbitrary location n. In order to perform this playback and store

operation one enters the subroutine by means of the instructions

50 n
p 50 p
p*l 26 -~
00 q
p+2 00 r.

In addition to recording and playing back a block of words
in minimum time, this subroutine computes a sum check for the block
of words, which is stored on location gq + r of the drum. Upon play-
back this sum check 1s recomputed and compared with the recorded sum
check. If any word has been recorded or played back incorrectly, the
two sum checks will not agree and the computer will stop on the
instruction FFO01O.

In some complex problems one may wish to play back words
which do not occupy successive locations on the drum. and if this is

the case library subroutines are not practicable. For example, it

16-13

may be desirable to record a mat{ix in such a way that either a
row or a column can be played back with minimum access time. If
the matrix has no more than 65 columns, one may achieve minimum
access for either rows or columns by recording the elements of each
row in successive locations but recording successive rows 65 locations
apart. Thus, we see that Tmax (as deseribed in 16.3) is 1.32 milliseconds
for both rows and columns and corresponds to the usual "minimum" access
time. If the number of columns N lies in the range 65< N < 129 one
must record the rows 129 locations apart, etc,

If a technique of this sort is to be used with the drum, it is
up to the programmer to write his own record and playback loops with

due attention to access time and to sum checking.

16-14

INDEX

‘A register, 2-5
Accumulator, 2~5
gshifting without shifting Q, 7-18
Accuracy, 6-T
Add from Q, 2-8, 326
Addend, 2-5
Addition, 2-5, 2=~T, 3-29
Address, 1-3, 3-1
digits, 3-8
fixed, 5~1
relative, 5-1
AQ, 3-9
Arithmetic checking, 13-15
Arithmetic unit, 1-2, 2-5
Auvgend, 2-5

-B-

Binary

chepping, 7-15

~coded decimal, 9-3

digit, 2-1

point, 2~1

point shifted, 6-1

switch, T-l
Blocking order, 8-6

example of use, 11-37
Blunders, 8-1

list of typical, 8-3

discovery of, 8-2
Bootstrap, 5-12

start, 5-13

Camers operation, 12-4

Cathode ray tube display, 12-1
orders for controlling, 12-3, L
programing for, 12-5
example of result, 12-9

Check, .
programmed, 13-1
sum, 13«6
Checking, 8-1
arithmetic, 13-15
drum, 13-1k
input, 13-6
memory, l13-12
methods, table of, 13-1l7
of a particular program, 11-3%6
Check point, 8-6
Coding tricks, T7T-1
Combination Teletype, 9-11
Comparing of tapes, 9-16
Complement, 2-2
Conditional transfer, 3-5, 16
Constants, orders and addresses as, T7~7
Control counter, 8-u4
Control transfer, 3-5
reversed, T-3
Control unit, 1l-k
Convergence criteria, T-12
Correction tape, 8-5
Cyclotron trajectories, 1ll-1

Data tape, 13-9
Decimal order input, 5-1
Definition of terms, 15-1
Differential equations, 11-17
auwxiliary subroutine, 11-20
Digital, 1-2
Digitwise complement, 2-2
Directive, 5=l
Division, 2-12, 3-19
"double precision", 2-18
hangup, 2-16
remainder, 2-15, T-1k
special cases, 2-16

checking, 13-15
playback, 3-21, 13-1k
record, 3-22, 13-1h

Error frequency, 13-2
Extract, 3-27

FF order, 3-28, 13-8
Fifth hole, 9-h

Fixed point, 2-1

Format characters, 9-3
Fractions, input of, 5-6

Glossary, 15-1

Hand punch, 9-17

Increment add, 2.8, 3-28
from Q, 2-8, 3-25

Information sources, 8-k

Input, 9-1

Input checking, 13-6

Input-output orders, 3-21y 25

Institute for Advanced Study,

Instruction, 3=-1

Integer operations, 2-20

Interchange of numbers, T-11

Interlude, 5-11

Interpretive routine, k-9

-E-

Keyboard perforator, 9-9

Leapfrog, 2-17 :
Left shift, 2.4, 2-9, 3-12, 7-18
Letter printing, 9-4

Library, 1k-1

Link, L4k,

Location, 1-3

Logical product, 3-27

Loop, 8-4

Machine error, 13-2
Magnetic drum memory, 16-1
Malfunction, 13-2
Marking, 7-13
Master tape, 13-9
Mean time between errors, 13-2
Memory, 1l-2

checking, 13-~12

to Q, 2~17, 3-18
Modifications to program, 8-4
Multiplications, 2-11, 3-20

Negative numbers, 2-2
Number register, 2-5

One-address code, 3-1

Order, 1l-k4
as a constant, 7-T7
blocking, 8-6
code, 3-1
execution time, 10-2
pair, 3-2
types, 5’63 T
variants, 3-8

Ordvac, 1l-1

Output, 9-1

Overflow, 2-3

-P-

Page printer, 9-9
Parameters, 4-7

preset, 4-11, 5-7

program, 4-T7

use of, 11-16
Photo-electric tape reader, 9-17
Playback from drum, 13-14
Poisson distribution, 13-3
Polynomial evaluation, T7-16
Post mortem routine, 8-8
Product summation, T7-1
Program, l-4

complete, 11-1

modification, 8-4

tape, 13-9
Programmed check, 13-1

-Q-
Q register, 2~5
Quotient register, 2-5
for interchanges, T-11
~R-
RB’ 3=4
33: 2-5

Record on drum, 13-1k4
Register, 2-5
Remsinder, 2-12
in integer division, 7-1k
Reperforator, 9-11
Resetting of cycles, 7-8
Residue, 2-13
Right shift, 2-b, 2-9, 3-13
Routine, 1-4
address search, 8-11
check point, 8-8, 12
closed, 4-2
entry to, 4-3
exit from, 4-3
interpretive, 4-9
post mortem, 8-8, 9
sequence checking, 8-8, 11
Run, 13-2
Running time, 10-1
simple formula, 10-4

Scaling, 6-1
adjustable, 6-10
continuous, 6-10
of a complete problem, 11-10
Sexadecimal, 3-2
Sign digit, 2-2
Starting a program, 5-6
Stop orders, 3-6
Store, 2-1T7, 3-17 ,
Subtraction, 2-6, 2-7, 3-29
Sum check, 13-6

Tepe,
data, 13-9
master, 13-9
program, 13%-9

Tape code, 9-1
complete, 9-5
orders for, 9-6
sexadecimal, 9-1
Tape preparation, 9-1
Teletype equipment, 9-T7
Testing for O and -1, T-6
for 1/2, 7-11
Transfer of control, 1-5, 3-5

U=

Unconditional transfer, 3-5, 3-14

UNIVERSITY OF ILLINOIS
DIGITAL COMPUTER

ILLIAC ORDER CODE SUMMARY

Input output and drum orders are not included.
= Storage location specified in order.

Add., Subtract or Copy into A T5 microseconds

Inst Replace A by Inst Replace A by | Inst Replace A by

it b A+ N L5 LT 1/2 + X
;{_J 2 L0 A-N Ll L9 1/2 « N
i WeQ 6 A+ |N| L 1/2 + |N|
2 A~ |N| IS 1/2 - |N]|
Fb A+ (N+2"?9) BT 1/2 + (N+2“39)

¥
=
i
N
he.)
~

FO A - (m2™?) 9 1/2

F6 A+ [m2*?|

FL 1/2 + |m2™ 7|
F2 A - (M2 FS

1/2 « |m2™?|

A+ Q 85 Q 87 1/2 + Q
S0 A -Q s1 -q 89 1/2 - q
‘56 A+ |qQ] 87 Q] s 1/2 + |af
s2 A - |q] 83 -la] - s8 1/2 « |q]
A+ (@2) | ® (@+2™9) Kk 1/2 + (q2"?)
k0 A~ (@20 | m (@) X0 1/2 = (as2")
K6 A+ @20 | xkr e’ KL 1/2 + |Q2™?|
e A-|weP] | B elee™?| K 1/2 - a2 2]
/) '% s o lie ’):,L«u e 4/.4".* f’dh LA f""“/’ Lot m/%/ 0/ /v/ XAy ekl
/ j‘ acds A et [,,/u . Y wau S eekoids e
Ly leid Lt B 0cts fr0 LY 7 - v et/
p’—t/Jv 0?(&»: . L‘_, A”f v /
L o1V |
N L ,5 I PR ,‘ A /) w sy
9\) @ £ ;'r,/ ."((‘«-— /{}Z}‘f" s 7/ ,Z—- M}c*n:f W ‘1‘,”41 f‘;;‘. " i C/Lv' = a?/ j.y'v[:‘é/__gi,
/f/i A l;ex:zzé'uél_[\ Loyt t’/;’& {m‘? & {/_c‘ﬂ.w PR Sy & S R g S LA)

ﬁ) ‘){ ety :,./{mc?‘&u 24 1.2:5.1‘“(Y*\ ,/ f) 'ﬂﬂ St /{Lﬂ"’"’" //Jﬂ) M‘dHA/

, o 4 . S
S “vileg, pee el [t ind, R R ol e "“ /('.,
’ i i3 N

P . . ‘e P -

st [-‘-ﬂ—

Transfer from A

Inst Effect
140

yy N=4
L6 l.h.a. N

’-"2 I‘-h.a. N =

Copy into Q
Instruction
50 (_5215)":56)

5L (5355555T)
59 (59,53 ,5L)

Jo (J2,J4,J6)
JL (33,95,37)
J9 (J8,37,JL)

55 microseconds

Inst Effect Inst Effect

b1 oA kg s
(45) N=A=0 (47) N=A=1/2
= A)4-7 l.h«a- N = O’ h’L l.h.a; N = O’
A=0 A=1/2
= A)4'5 r.h.eaese N = O,)'J'S r.h.aae N = O,-
A=0 A=1/2

, 55 microseconds

Effect

Copy N into Q

" " "

n 1"

" gnd clear A
® " gnd put 1/2 in A

Logical product N and Q to Q@

" n

114 "

Multiply setting q, = 0

HOLD

Inst Replace AQ by Tnst
T Q.+ 27 75
70 -Q.N + 239 Tl
76 QN+ 2" (i
2 -alnl+ 27 3

" " 1

L 1 "

" gnd clear A
" " oand put 1/2 in A

700 microseconds

UNROUNDED ROUNDED
Replace AQ by Inst Replace AQ by
'Q.N. 7w . + 270
' ; -ko
-‘QONC 79 “Q‘-;}.\I’t + 2
Q|N| T Q|N| + 2:30
-q|n| 75 -q|N| + 27

Divide leaving residue in A 800 microseconds

Inst Replace Q by
66 (aq)/w
- 67 27Q/N 1£ @ > 03 279 (14q)/1 1r Q<0

6L (63) [1/2 + 2”P%q/x 1r q >0; [1/2 +2°9(14Q)] /N ir g < 0

Shift AQ Address = Number of shifts (mod 6h) £ 0
16n microseconds

AInstructions Effect T Instruction Effect
00 10
(02,04,06) Shift left (12,14,16) Shift right
0L Clear A 11 Clear A
(03,05,07) and shift left (13,15,17) dand shift right
09 Put 1/2 in A 19 Put 1/2 in A
(0s,0J,0L) and shift left (1s,17,11) and shift right

Transfer Control UNCONDITIONAL . TRANSFER 55 mieroseconds

Inst Effect Tnst Effect |Imst Effect
26 Jump to 1.h. 27 Jump to l.h.,| 2L Jump to l.h.,
(37) A=0 (31) A=1/2
22 Jump to r.h. 23 Jump to r.h.,| 28 Jump to r.h.,
(33) A=0 (38) A=1/2
2l Stops to l.h. 25 Stopy to l.h.,| 27 Stop; to l.h.,
(35) A=0 (37) A=1/2
20 Stopy to r.h. 21 Stop; to rdie,| 29 Stops to r.h.,
(31) A=0 (39) A=1/2
CONDITIONAL TRANSFER 55 microseconds (15 if no transfer)
Inst Effect

36 Jump to l.h. if A >0

32 Jump to r.. if A > 0 Final Stop
34 Stop; to 1.h. if A >0

30 Stop; to r.h. if A >0

OF

-3 - S. G111, 2/236/5
rt/ 9/26/56

gL n

b L

s
pecd ialiu nan A an 0% g £

VA) - K)o
-Nn) /J&M‘W/A’

| NM) TA/(h)
Ve) ol adle!

N@) - ;\/m
Py

o ofn o VEL:

rwe?o// oum»ﬁ{bo

furd gl 32024

o-{n—cQ@O

	0001
	0002
	0003
	0004a
	0004b
	0004c
	0004d
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-01
	10-02
	10-03
	10-04
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	z0-01
	z0-02
	z0-03
	z0-04

