UNIVERSITY OF ILLINOIS

DIGITAL COMPUTER LABORATORY

NEW COMPUTER LIBRARY ROUTINE B1-SIN-29

TITLE:

Sine-Cosine

TYPE:

closed, multiple entry, relocatable, mnemonic

LENGTH:

13 words

TEMPORARY STORAGE:

1 word at a location specified by the symbol "common"

(to be defined by the programmer) and F2

DURATION:

100 microseconds (January, 1963)

FAST REGISTERS CHANGED: F2

SUBROUTINES USED:

none

ACCURACY:

absolute error $< 2^{-43}$

PARAMETERS:

link in M3

ENTRIES:

Enter with $x = \theta/\pi$ in the accumulator. Suppose N is the

address of the first word of this routine.

1) JSB3,2,N

(or \$883,,sin)

Sin 77x is placed in A and OV is cleared.

2) JSB3,,N+1

(or JSB3,.cos)

Cos mx is placed in A and OV is cleared.

Note: In general the result is unnormalized.

METHOD:

Entrance at "sin" places x - 1/2 in A and computes

 $\cos \pi (x - 1/2) = \sin \pi$. $x \pmod{2}$ is formed at "cos" and

then x: = 1/2 - |x|. The identity $\sin (\pi/2 - |\pi x|) =$

cos ix is used at this point.

Sin πx is now computed using the Tchebyscheff polynomial approximation of degree 15 to the Taylor series expansion of sin $(\pi/2x)$, $-1/2 \le x \le 1/2$. The polynomial,

$$\sin x = \sum_{k=0}^{6} c_k x^{2k+1},$$

is evaluated by the standard technique. The coefficients were calculated on Illiac II, starting with $\sin y \sim y = y3/3! + ... = y19/19!$

REFERENCE:

Hildebrand, F. B., "Introduction to Numerical Analysis," McGraw-Hill, New York (1956).

DATE: January 28, 1963

PROGRAMMED BY: Policit Longe

APPROVED BY: Elyge.

SINE-COSINE

	FLD	
0	DEC~6, cos ∻5	modifier constants
	s inSUB10,3,2048	compute sine
ı	cosSTF0,3	compute cosine; x = x (mod2)
	SFR6,2,common	save F6
	JDC10,1,cos+1	clear OV
2	DAV10,3,2048	x - 1/2 - A
	STN2,3	x: = 1/2 - x x ² - A
3	MPY0,3	
	LFR6,2,cos=1	set M8 and M9, I: = -6
	STRO,3	store x ² in F0
4	CAD9,1	C7g→ A
	MPY0,3 (-) ADD9,1	* ×2
	CJF8,1	¢C _{or} ∤ ls i ≈ 0
5	LFR6, 2, common	restore F6
	MPY2,3	*x
	JLN 3	⇒ exit
6	00003517,06174,04521,15173	c ₇ = 3.14159265358859
7	0CT14165,15472,10711,10575	c ₆ = -5.16771277987331
8	00702501,15532,14354,01577	c ₅ = 2.55016403224337
9	OCT13151,06467,17623,06400	c4 =59926438371110
10	00705063,05706,06336,13601	cz = .8214445992426=-1
11	00715325,01030,14735,04602	c2 =736293450191 _e -2
12	00006220,17665,04210,14201	c ₁ = .44617418582 _m =3