UNIVERSITY OF ILLINOIS DIGITAL COMPUTER LABORATORY

NEW COMPUTER LIBRARY ROUTINE D1-ROM-31

TITLE: Romberg integration

TYPE: closed, relocatable, mnemonic

LENGTH: 28 words

TEMPORARY STORAGE: 6 words at fixed memory locations 0-5

n words beginning at location S

FAST REGISTERS CHANGED: none

SUBROUTINES USED: none

DURATION: depends on the duration of the auxiliary routine

for evaluating the function f(x). Since the

auxiliary is entered $2^{n-1} + 1$ times, duration is

approximately doubled when n is increased by 1.

PARAMETERS: link in ML5

4 parameters which must be written in the word

following the word containing the JSB instructions:

8.	address of left limit a of integration interval
ſ	address of auxiliary routine
s	address of first location of temporary storage

integration interval divided into 2ⁿ⁻¹

 $2 \le n \le 13$

The right limit b of the integration interval has t

The right limit b of the integration interval has to be placed in the location immediately following the one which contains the left limit a.

DESCRIPTION: this subroutine computes $I = \int f(x) dx$

in the following way:

subintervals

Compute a sequence R_{11} , R_{21} , ... R_{n1} of approximations to I, where R_{i1} is found by dividing the integration interval (a,b) into 2^{i-1} subintervals of equal length and evaluating the integral by the trapezoidal rule.

The sequence R_{43} converges linearly to 1 with convergence factor 1/4, i.e.

$$\frac{R_{1,1} - I}{R_{1-1,1} - I} \approx 1/4$$

The new sequence

$$R_{12} = \frac{4R_{1,1} - R_{1-1,1}}{3}$$

also converges linearly to I, with convergence factor 1/16.

Beginning with R_{il} , we generate different sequences R_{ij} which all converge linearly to I according to the formula

$$R_{i',j+1} = \frac{4^{j}R_{1,j} - R_{i-1,j}}{4^{j} - 1}$$
 $j = 1, 2 \dots n-1$

and arrange them as columns in a triangle:

USE: The user must provide:

The left limit a and the right limit b of the integration interval, in two consecutive locations, and specify the address of a as parameter,

An auxiliary routine for evaluating the function f, which is also linked in M15,

A block of n consecutive words in memory beginning at location S.

The subroutine stores $R_{n1}/(b-a)$ $R_{n2}/(b-a)$... $R_{nn}/(b-a)$ in memory locations S S+1 S+n-1 and leaves the best approximation R_{nn} to the integral in the accumulator.

The choice of the parameter n (which implies that the integration interval is divided into 2^{n-1} subintervals) should depend on the behavior of the function f(x), taking into consideration that the duration is approximately doubled when n is increased by 1.

Range: $2 \le n \le 13$.

DATE:

December 1, 1962

PROGRAMMED BY: J. Nievergelt

	1	1
0	SFR2,0 SFR3,2,1	
Ç	SFR4,2,2	
red.	SFR5,2,3	
9	SFR6,2,4	
en.	ATN15,1 LFR6,0 SFR7,2,5	(M15) + 1 read parameters into F6
3	SFN11,0 CAM12,2,1	(Ml2) = 1 - n
4.	CADS, O	left limit a
	ATN9,0 JSR15,0,0	f (a)
E	STR2,3 CAM4,2,1	$(M4) = 2^{1-1} \leftarrow 1$
6	CAD8,2,1	right limit b
<i>6</i> 0	ATM9,0 JSB15,0,0	f(b)
7	ADD2,3 MPY10,3,2048	S ₁ = {f(a) + f(b)}/2
8 (1) >	STR10,0 CAD15,3 STR2,3	
	CAD8,2,1	right limit b
9	SUB8,0 ATN4,0	b = 8
	D1V9,3,0	2h = (b = a)/2 ¹ -l
10	STN4,3 MPY10,3,2048	negative step length -h in accumulator
XX.	ADDB, O STR3, 3	a = h = F3
~	SFN4,0 Camb.0	(M6) = -k = -2 ^[-]
12: 12:	CAD4,3 ATN6,0 MPY9,3,0	-2h
	ADD5,3	a w h + 2 kh

13		ATN9,0 JSB15,0,0,0	f(a - h + 2kh)
14	(€1) ←	ADD2,3 STR2,3 CJU6,3,11R	
15		CJU6,3,11R ATN4,0 DUV9,3,0	m; - (£f)/2 ⁱ⁻¹
16		atnio, o Cami4, o Addi4, o Mpy10, 3, 2048	
17		STR2,3 ATN4,0 CAT9,3,0	R ₁ , 1 = (R ₁ -1, 1 + m ₁)/2 ~ F2
18		S1A4,0 ATNLL,0 SFNL2,0	double 2 ¹⁻¹ in M4
19	(1) → Ç	CAM13,0 CAM5,0 CJF5,2 CAD9,3,1	(M5) = J ← O (M5) + 1
20		ADE5,0 SUB9,3,1	لُبِهِ
21,		STR3,3 CAD2,3 SUB14,0 D1V3,3	4j - 1 F3 (F2 - S ₁)/(4 ^j - 1) + F2
Œ		ADD2,3 ATN14,1 SFR2,0 STR2,3	(Ml4) + l F2 - S _j
23		CJU15, 1, 19r ATN14, 0 SFR2, 0	
24	◎ ←	CJU12,0,8R	
25		CSB8,1 ADD8,0 MPY2,3 LFR3,2,1	b - a Rnn - F2 x (b - a)
26		LFR4,2,2 LFR5,2,3	
		LFR6,2,4	

€965 €4 11	LFR?, 2,5
	lfr2,0 J.H15,0