UNIVERSITY OF ILLINOIS

DIGITAL COMPUTER LABORATORY

NEW COMPUTER LIBRARY ROUTINE E1-D1VF-32

TITLE:

divided differences

TYPE:

closed, relocatable, mnemonic

LENGTH:

14 words

TEMPORARY STORAGE:

3 words of fixed memory locations 0, 1, 2

a block of (k+1) consecutive locations beginning

at So

SUBROUTINES USED:

none

none

DURATION:

PARAMETERS:

dependent on the duration of the auxiliary routing

for evaluating the function f(x). The auxiliary is

entered (k+1) times

FAST REGISTERS CHANGED:

.

link in M15

4 parameters which have to be written in the word

following the one with the JSB instruction:

f Xo So k

address of auxiliary for f(x)

address of first abscissa

{address of first location of temporary storage block

k-th divided difference

USE:

The user must provide:

) k+l abscissas

 $x_0, x_1, x_2, ..., x_k$

in locations

x₀, x₀+1, ..., x₀+k

- 2) An auxiliary routine for evaluating a function f(x), beginning at location f.
- 3) A block of k+1 consecutive words beginning at location So.

The subroutines computes a divided difference table and stores:

k-th divided difference
$$f[x_0, \ldots, x_k]$$
 in location So $(k-1)$ st divided difference $f[x_1, \ldots, x_k]$ in location So+1 $(k-2)$ nd divided difference $f[x_2, \ldots, x_k]$ in location So+2 \vdots lst divided difference $f[X_{k-1}, X_k]$ in location So+k-1 the value of the function $f(X_k)$ in location So+k

The k-th divided difference $f[x_0, x_1, ..., x_k]$ is also left in the accumulator.

DATE: December 21, 1962

PROGRAMMED BY: J. Nievergelt

	1
0 :	SFR2,0
	SFR6, 2, 1
7	ATM15,1 LFR6,0
ψ.m	SFR7, 2, 2
	ATN9,0
2	CAMILS, O
	ATN10,0
	CAMILA O ATNIL O
3	CSM12, 2, 1
	CAD1.3,1
4	ATN8,0
- 20	J SB 15,0,0,0,0
5	STR14,1
L	≺ CJUL2, 2, SR
	j
6	ATNUL, O CSMD.5, O
.	> CA10.3,0
	ATNILS, O
	ATNULO
7	CAQ4,2,1
(I)—·	ATUO O
.	> ATN9,0 CSB13,0
8	ATN9,0
	A0014,1
	STR2,3
9	ATNLO, O
•	CSB13,1 ATN10,0
	A0013,0
	DIV2.3
10	SBM13,3,1
	C2010 0
	STR10,0 SFN14,0
11	ATN11,0
	CAM12,0
	JPML2, 2, 7R
12 (61)	
12 01	CJU15,1,6R
	LFR6, 2,1
1.3	LFR7,2,2
	LFR2,0
	JLH125,0

read parameters into F6

(M14)
$$\leftarrow$$
 s_0

$$(M12) \leftarrow -(k+1)$$

fill up
$$S_0$$
, S_1 , ..., S_k with $f(x_0)$, $f(x_1)$, ..., $f(x_k)$

$$(M0.5) \leftarrow -k$$

$$(M14)$$
 $(M11) + (M15) + 1$