UNCLASSIFIED

Security Classification

DOCWHEHT CONTROL DATA-R&D

(Security classilication of title, body of abstrect an:t indezing amotation must he antered swhen the overall report |s classilied)

1. ORIGINATING ACTIVITY (Comporate suthor) 28/ REPORT SECURITY CLASSIFICATION
Department of Computer Science , UNCLASSIFIED
University of Illinois at Urbana-Champaign ° 2b. GROUP
Urbana, Illinois 61801

3. REPORT TITLE

A DESCRIPTION OF THE ILLIAC IV OPERATING SYSTEM

4. DESCRIPTIVE NOTES (Type of report end Inclueive datee)

Research Report
8. AUTHORI(3) (Firat nams, middle initial, last neme)

P. A. Alsberg, J. L. Gaffney, G. R. Grossman, T. W. Mason, G. A. Westlund

8. REFORT DATE 7& TOTAL NO. O? P‘GES 7b. NO. OF REFS
November 1, 1968 : - 89
a8, CONTRACT OR GRANT NO. aa, ORIGINATOR'S REPORT NUMDER(S)
 h46-26-15-30 . '
»=305 - ILLIAC IV Document No. 212
b. PROJECT NO. '
USAF 30(602)41lk ;
c ' 9b. OTHER REPORT NOC(S) (Any other numbers that may be asaigned
' this report)

DCS File No. 791

d.

10. DISTRIBUTION STATEMENT

Qualified requesters may obtain copies of this report from DCS.

1. SUPPLEMENTARY NOTES 12. SPOMNSORING MlLIT}.«RY ACTIVITY
Rome Air Development Center
NONE Griffiss Air Force Base
Rome, New York 13440

13. ABSTRACT

The operating system for ILLIAC IV is described. Residing principally on
the B6500 computer, the operating system includes a job parser, -a program
collector, a disk file allocator, ‘a data processor, a loader, an execubion
monitor, job partners, a hardware supervisor and a subsystem resident in
ILLIAC IV. A brief description of the ILLIAC IV hardware and dlscu381ons of
file security and interactive uses of ILLIAC IV are included.

DD ov.1473 o : UNCLASSTFTED

Security Classification

UNCLASSTIFIFED

) Security Classification
w

KEY WORDS

LINK A LINK B

LINK C

ROLE wT LROLE wT

ROLE

Job parser

program collector
disk file allocator
data processor
loader

execution monitor
Jjob partner
hardware supervisor
subsystem

file security

UNCLASSTFTIED

Security Classification

ILLIAC IV Document No. 169

DEPARTMENT OF COMPUTER' SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPATGN
URBANA, ILLINOIS 6180l

A DESCRIPTION OF THE
ILLTAC IV OPERATING SYSTEM
by
P. A. Alsberg
J. L. Gaffney
G. R. Grossman
T. W Mason

G. A. Westlund

File No. 791
November 1, 1968

_ ABSTRACT

The operating system for ILLIAC IV is described. Residing
principally on the B6500 computer, the operating system includes a job
parser, & program collector, a disk fiie allocator, a data processor, a
loader, an execution monitor, Jjob pariners, a hardware supervisor and a
subsystem resident in ILLIAC IV. A brief description of the ILLIAC IV
hardware and discussions of file security and interaétive uses of ILLIAC IV

are included.

ACKNOWLEDGMENT

Much of the organization of the operating system is due to the
efforts of N. Saville, as recorded in his ILLIAC IV document no. 181, "A
Description of the System Specification of OSK: An Operating System for
ILLIAC IV". Acknowledgment 1is also extended to D. McIntyre for writing
Appendix C, "Interactive Uses of ILLIAC IV". |

Section
I. INTRODUCTION . + + « o o . .
. II. THE JOB PARSER
III. THE PROGRAM COLLECTOR . .
IV. THE DISK FILE ALLOCATOR . .
V. THE DATA PROCESSOR
VI. THE EXECUTION MONITOR . .
VII. THE JOB PARTNERS . . + . . .
VIII. OSLk--THE ILLIAC IV SUBSYSTEM
IX. THE LOADER . . . + « « . . .
X. THE HARDWARE SUPERVISOR . .
Appendixes

TABLE OF

CONTENTS

.

A. ILLIAC IV HARDWARE DESCRIPTION .

B.

FILE SECURITY

.

C. INTERACTIVE USES OF ILLIAC IV

Page

I. INTRODUCTION

The operating system provides several services. Each of these
services 1s implemented by one or more program modules within the system.

A diagram of the interaction of the modules is given in Figure 1-1.

The user interface to the operating system is through the Job
Parser. The job parser can be driven by such available input media as
tapes, card decks, user operated consoles, or other running B6500 programs.
It scans a user's job control language and provides him with access, some
of which are conversational for consble usefé; to a variety of utility
routines and parts of the operating system. The utility routines perform
data reformatting, file editing, compiling, file collecting, and assembling
functions. Virtually any utility can be added. For example, the job
parser has a conversational interface to an education utility that teaches

a user howr to use the system and provides him with system documentation.

The collection of programs and some of the data needed on the

ILLIAC IV is performed within the B6500 by the program collector module.

The scheduling of ILLIAC IV time is performed by three system
modules: the disk file allocator, the data pre/post processor, and the
execution monitor. These thrée programs queue up requests for ILLIAC IV use,
assign Disk IV space to them, move any files that are needed onto the disk
before a run, save any files by removing them from the disk after a run,
schedule the use of BIOM space, and allocate particular ILLIAC IV gquadrants
"~ to the individual jobs (see Appendix A for a description of the ILLIAC IV

hardware).

There are two modules resident in the ILLIAC IV, the loader and
0Sk. The loader loads program files from Disk IV into the array memory. OSh
provides standard monitor functions and I/0 execution coordination routines

needed by all users.

The running ILLIAC IV job requires at least two intercommunicating
programs, the ILLIAC IV resident program and a B6500 resident job partner
that coordinates B6500 actions with the ILLIAC IV program and provides all
I/O support. Each job must have at léast one Jjob partner for all of its

1-1

quadrants. Standard job partners are furnished by the operating system;
however, the user has the option of supplying his own job partner(s).

The building of L/O descriptors, the initial recognition of
interrupts, and the actual issuing of I/O commands to the hardware are
functions of a set of routines in the B6500 Master‘Contrdl Program (MCP)
which are collectivély known as the hardware supervisor. Since a user may
choose not to use the system-supplied Jjob partner with the execution of his
ILLTAC IV program, but may write his own, the hardware supervisor also
checks all of the L/O requests made by a job partner for valldlty before

pass1ng them onto the hardware.

Most of the modules named above are separately running B6500 AIGOL
programs. They communicate with each other through the use of the in-core
file facility provided by the B6500 MCP. The hardware superv1sor routines
(called "MCP intrinsics") are coded in ESPOL to facilitate the issuing of
I/O descriptors and the passing of interrupts to the correct job partner.
The ILLIAC IV loader and OSk are coded in the ILLIAC IV assembly language.

—

40SS330Ud

\\ //a _
[WvH30ud [¥INLYVd
I wasn gor
// J —

/lll — .

d¥3avol _

= -

/ // _ \\ N
!

MYE50Yd | - A [u3NLuvd
n/ yisn ! _ dIn sor

/l rd _ A

== |- [uosianadns HOLINOW

— FUVMOYYH NOILND3IXI | viva

\\ /I m : R p
! u : A ,
{ RVUSOUd | w H3IN LYY
\ wIsn * aor
\ /

c/,ll\\ —

\\ / ~ .
! wvssouq [¥3nldvd
] ! gor
\ ¥3Isn g [v

\ \\

/lnl\ —

m { S3J8IS QIT0S NI N/AOHS SITINCOW)
==
” W3ILSAS ONILVHE3d0 AL VIl 3HL

¥ILNAWOD | | %S10 ~ ¥31NdNOD
ZLOVOTU |} 3T v [y 00598

\

{

H3TUdNOD 1
\ INONVHL /

\

™ -

HOLVO0TIV

3713 AHsia

¥01237709
HWYEO0¥d

N

\

! w3gmoo \

i
\

09TV

1
i

|

!

43sSyvd
gop

4

! srvyooud \

\ ALITHLN /

\

~

~

-~

—

~

7

AY

/

sy3sn

Figure 1-1

S33JIA30

— — ——— ey Gm— S———— —— (oo Gr——t S——— SHaAnat GOrori O Camiw Grown G | Gt SEE——0 bt GO, A B—— S Sn— — o—— {r—

IVY3H4I¥3d

II. THE JOB PARSER

The Job parser is the user's and operator's interface to the
operating system. It.is driven by any available input medium, such as
_tapes, card decks, and user operated consoles. Interfaces are provided

to a variety of utility routines and to parts of the operating system.

Regardless. of the input medium, all ﬁsers submit log-in state-
ments and satisfy file security requirements (project name and individual
user code). Once admitted to the system, a variety of control language
statements are at their disposal. Various compilers and assemblers are
évailable, such as Tranquil, a higher-level language, and ASK, an
assembly language. In addition, the users at conversational devices have

access to utility routines, such as TEACH, FILE/SECURITY, and REMOTE/EDIT.

~TEACH 1s an education utility that instructs the user in the use
of the system and provides him with levels of system documentation. Step-
by-step instructions for getting a program run on ILLTAC IV are provided
in a conversational manner. A listing of ‘the available job control

language statements and a description of their functions is also gilven.

FILE/SECURITY is a utility program used to admit new projects
and users to the system. It is also used to declare file access for pro-
Jects and users. File Security on ILLIAC IV is tree-structured by pro-
jects and sub-projects. The organization of the security system 1s avail-
able for inspection by any valid user, with the exception that user authen-
tication codes are never revegaled. A description of the file security

system is contained in Appendix B.

REMDTE/EDIT is a file editing utility used to create or modify
data or source program files. The utility provides features similar to

those provided by the B5500 program REMOTE/CARD.

The job that the user submits to the parser is composed of one or
more B6500 and/or TILLIAC IV programs called elements. An example of an
‘element would be an ASK assembly, a Tranquil compilation, an ILLTAC IV

execution, a data reformatting utility program, ectc.

The Jjob parser is responsible for executing these elements in the

proper order for the user. The user specifies this order by breaking the job

up into serial and parallel job steps where cach job step may be an element
or can be composed of one or more other serial and parallel job steps nested
to any depfh. Steps that are serial must be run sequentially while steps
that are parallel are independent of each other and may be, but not neces-

. sarily will be, run simultaneously on different processors in the B6500 or
IILIAC IV. The user is allowed to set time limits for the whole job and

for the individuvual steps.

A job is then defined to be a job step with its associated account-
ing information. For example, consider the user who wishes to compile a
Tranquil main program and two ASK subroutines. Folléwing the compilation
and assemblies, the user wishes to collect his main program and necessary
subroutines prioxr to'his ILLTAC IV run. At the same time the above steps
are being taken, the user would like some of his data files reformatted
before his ILLIAC IV execution. Once all of the above is done, the ILLIAC IV
program is to be run and that run followed)by a printing step to process

his output.

This job is broken down into elements in Figure 2-1. In terms of
steps, the Jjob consists of three serial steps: preparaﬁion, ILLIAC IV
execution, and printing. The preparétion step has parallel code preparation
and data preparation steps. The code preparation step has serial translation
and collection steps; and the translation step has parallel compilation and

assembly steps.

2-2

START

TRANQULL ASK ATK REFORMAT
COLLECT
RUN
PRINT
STOP

Figure 2-1. ELEMENTS OF A SAMPLE JOB

2-3

Each element can return a condition code that may be tested ﬁo
determinelwhether succeeding job steps are to be executed or skipped. Thus,
the user can specify that no steps are to be executed if his compilation were
to fall; as would be indicated by the condition code returned by the

compiler.

All of the above control information is specified to the job
parser in the TILIAC Control Language (ICL). ICL allows the eéxternal
specification of job steps and allows parameters to be passed to these Job
steps by the user. Therefore, the system and the user can keep libraries
of commonly used steps on the B6500 disk. For example, the job in Figure 2-1
could.exist as a prepared step on disk and be called in with one statement
every time a user wishes to run it. The typical compile-run-print steps that
a student might use are available in the‘system library and have appropriate

parameters for specifying input files and alternative output devices.

ICL statements are used to specify both ILLIAC IV and B6500 files.
This obviates the need to switch to B6500 control éards to specify B6500
files. Some file information may'be built for the parser by the user's file
declarations in Tranquil or ASK. This information is stripped off the code
file at collection time and prepared as an ICL statement by the collector.
In steps that are elements, the program provided ICL statements, and current
user ICL statements are merged to produce the compléte file specifications.
In case of coﬁfliét, the current user statements supersede the program

..

statements.

The execution of a B6500 element inVolves-the preparation of
suitable B6500 control information for use by the Burroughs' MCP to initiate

the program.

ILLIAC IV execution requires considerably more effort on the part
of the parser. Several ILLIAC IV elements may pass files hetween each other.
That is, the output of one step may be input to another. When this situa-
tion is recognized by the parser, all such interrelated ILLIAC IV elements
are gathered together as one ILLIAC IV scheduling request. This is done
so that the passed files are not moved on and off of the ILLIAC IV disk

for each element's execution. An internal identification number is assigned,

2-4

and a job dossier is built on the B6500 disk for all system modules to look
at. The dossier contains all of the file information, maximum limits, and
step information provided by the user's and program's ICL statements. In
addition, information needed by the system to schedule the request is also
contained in the dossier. A short message is then sent to the disk allocator.
The message identifies the parser as the sender, indicates that this is a

schedule request, and passes a pointer to the dossier.

The disk allocator then proceeds to queue and finally provides
disk space for the entire scheduling request. Once the request has completed
ILLIAC IV execution and data files have been moved back to the B6500, the
disk space assigned to that request is freed and the disk allocator notifies
the job parser of step completion and passes back condition codes and other

appropriate information.

- . The job parser also interfaces with the operator's console. The
operator has privileged access to the system parameters and is therefore
capable of ordering a change in the state of the system. Typically, the
operator may wish to interrogate the progressvof a job in the system, perhaps
hold a job at a certain state in processing, or change some scheduling
parameters to counter an unusual shift in the job mix. The message identifies
the sender, the operation to be performed, and a parameter that typically is
an internal job identification number or the new value of a scheduling
parameter. For example, on receipt of a message to hold a job at its current
point, the parser will pfepafe a hold message and insert the internal job
number. If the job is presently in the parser, it is held there until fur-
ther operator action. If the job is not there, the message is sent to the
disk file allocator who either holds the job if he has it or reoriginates the
message to the data processor. The message thus chases the job down from
module to module, following the same path the job must take until it finds
the job or goes to the execution monitor, back to the data processor, back
to the disk file allocator, and finally to ﬁhe Job parser without finding
it. If the complete circuit is taken without finding the job, the job is no
longer in the system. The message must double back like the job because it
may pass the job it is looking for on the way through the modules. If,

for example, module A does no£ have the job and passes the message to module
B who has it, module B may finish with the Jjob and‘pass it to A before it

reads The message from A.

A nmessage to change a scheduling parameter may only pass through
the system in one direction. It is passed from module to module until a
module recognizes the task as belonging to'it and resets the appropriate
parameter. For example, a request to change the category 3 time shard
(time shards are explained in the disk file allocator description) from 8
to 10 would go to the job parser, then to the disk allécator, who will
recognize:a time shard change request as his area of jﬁrisdiction and will

take appropriate action.

2-6

III. THE PROGRAM COLLECTOR

The Collector is a B6500 program, writtén in Extended AIGOL, the
purpose of which is the preparation of progiams, as output by assemblers or
compilers, for eventual execution on ILLIAC IV. The following facilities

are provided:

1) gathering program segments from user files, user librarieé,
and/or the system library, and verifying that they are indeed ILLIAC IV

program elements;

2) reformatting program segments as output by assemblers or com-

pilers into a standard form suitable for input to the loader;

3) wverifying the validity of links between program elements

(i.e., the absence of duplicate or missing links);

4) constructing core-load, sub-core-load, and super-core-load
program structures which may be used immediately on ILLIAC v and/or saved
for later use (see Sheaves, below);

5) mapping overlayable program elements info ILLIAC IV memory
according to the directions of the user; B S

6) constructing and maintaining system and user program libraries;

" T) communicating to the operating system, the loader, and/or the
user any information necessary and/or requested for the proper disposition
of the product of its actions’ (error éonditions, memory maps, timing informa-

tion, etec.).
These facilities are-explained in more detail below.

CONTROL File

The Collector executes commands passed to it in a card image file

named CONTROL. The command verbs are:

MAP <map file name> [<map parameters>]
causes the Collector to use the card image file denoted by
<map file name> as a set of Memory Allocation Processor

commands. See below.

3-1

LOAD <load file name> [<load parameters>]
‘ causes the Collector to prepare the contents of the file
denoted by <load file name> for proceésing by the loader,
including verification of the contents of the file as a

complete ILLIAC IV program.

LIBRARY <library file list>
causes the Collector to recognize the files named in the
<library file list> as user-provided program llbrarles

(see below).

CREATE <library create parameters>
' causes the Collector to create g librery file according to

the <library create parameters>.

EDIT <library edit parameters>
~ causes the Collector to edit a library file according to the

<library edit parameters>

. In order for a job to be run on ILLIAC IV, it is necessary that the
Collector be invoked in order to a) perform all operations necessary to
form a complete ILLIAC IV program ready for the Loader and/or b) verify that
all such operations have been performed and communicate this verification to
the operating system. These functions are initiated by the LOAD statement.
Only one LOAD.staiement is allowed per run, and all runs involving CONTROL
files containing LOAD statements must be initiated through the Job Parser.
Runs in which the CONTROL file does not contain a LOAD statement may be
initiated directly by the user.

If a job consists of only a main program, with all external program
segments (subroutines, data space allocation, etc.) residing in system or
user program libraries, the CONTROL file may consist of - (optional) LIBRARY
statements and a LOAD statement, and no MAP statement or file is necessary.
If, however, more than one user-supplied, non-library-contained program seg-
ment'is present, then at least one MAP statement must appear in the CONTROL
file and at least one corresponding MAP file must exist. MAP files are

explained in the next section.

3-2

MAP Files ‘
| A MAP (Memory Allocation Processor) file consists of card images
containing statements in a language which allows the user to specify the
origins of program segmenté and the manner in which they are to be connected
to form core-load, sub-core-load, and super-core-load (overlayable) program

structures.

The basic element of a program structure is called a STAIK.
Stalks are program segments as output by assemblers or compilers, or sub-

program structures previously created by action of the Collector.

When Stalks are combined to form program structures, the result is
called a Sheaf. Sheaves may consist of one or more Stalks, each of which may
itself be a Sheaf. 7

MAP Language Statements

MAP language statements are of two types: STAIK statements and
SHEAF statements. The syntax for the STAILK statement is:

<stalk statement> ::= STAIK <stalk name> <file part> <select part> l
<stalk name> ::= <ddentifier> N _ ' o
<file part> ::= <file.name>/<entry name> LIBRARY /<entry name> SYSTEM
<select part> ::= <empty>/[<entry selection criteria> <boj part>]

<entry selection criteria> ::= <entry inclusion criteria>-/ <entry

1t

exclusion criteria>
<entry inclusion criteria> ::= <entry list>

NOT <entry list>

<entry exclusion criteria> ::

<boj part> ::= @<lentry name>
<entry list> ::= <entry name> / <entry list>,<entry name>
<entry name> ::= <identifier>

The STAIK statement causes the Collector to iecognize a file or
part of a file as a program segment and to label it with an identifier. If
the <file part> is a file name, the file of that name is assumed to contain
the program segment. The <file name> may denote a library file, which need
not be declared in a LIBRARY statement in the CONTROL file. If the <entry

name> LIBRARY construct is used, the Collector will search all user libraries

3-3

declared in LIBRARY statements in the CONTROL file previous to the MAP
statement which caused the Collector to be directed to the, current MAP file

of which the STAIK statement is a part. The search will continue until

a) a program segment is found which contains the <entry name> as a declared
entry, or b) until all user files are exhausted, in which case the system
library will be searched. If a segment is found in either the user or system
libraries, .it will be used to form the Stalk; otherwiée, an error condition
exists. If the <entry name> SYSTEM construct is used, only the system library

will be searched.as above.

If the <select part> is empby, then all entry names declared in the
program segment are preserved, and any previously specified first executable
‘ location in the program segment is preserved. If the <select part> is
present with the <entry inclusion criteria> construct, only those <entry
name>s in the <entry list> will thereafter be recognized as entries to the
Stalk. If the <entry exclusion criteria> construct is present, then all
<entry name>s not in the <entry list> will thereafter be recognized. If
the <boj part> is present, the first executable location in the program
segment will thereafter be considered to be the location'denobéd by the

<entry name>.

The syntax for SHEAF statement is:
<sheaf statement> ::= SHEAF <sheaf name> <save name>
[<map phrase>] <select part>

<sheaf name> ::= <identifiers

<save name> ::= <Empty>/<file name>

<map phrase> ::= <contiguous segment> [<map phrase> <contiguity
operator> <contiguous segment>

<contiguous segment> ::= <overlay segment> [<contiguous segment>
<overlay operator> <overlay segment>)

<overlay segment> ::= <stalk name> [<sheaf name> [(<map phrase>)

.<contiguity operator> ::= <

ébverlay operator> 1:1= =

The <£heaf statement> causes the Collector to combine previously
created Stalks an@/or Cheaves into a new program segment, in which the rela-

tive layout of memory is specified, and to label the segmént with an identifier.

.3—u

If the <save name> is present, a copy of the Sheaf will be created
with the given <file name>. The <save name> must. be present if the Sheaf is
to be the file named in the LOAD statement in the CONTROL file of a Collector

run.

The <map phrase> construct specifies'which Stalks and Sheaves are
to be combined into the new program segment and how that program segment is to be
laid out in ILLIAC IV memory. The operator "<'" specifies that the program
segment denoted by <contiguous segment> following the operator is to be located
at a higher address in ILLIAC IV memory than the program segment preceding

the "<". The operator "=" specifies that the program segments bracketing
the "=" are to be allocated the same memory space (i.e., they "overlay"
each other). The "=" operator has precedence over the "<" operator. The

use of parentheses delimits the scope of the operators in the traditional

algebraic sense.

The <select part> in the <sheaf statement> has the same meaning as
in the <stalk statement>.

Program Segment Files

A program segment as output by an assembler or a compiler must

have the following format:

1) its physical record size mst be a multiple bf the disk
" segment size as defined by the B6500 hardware;

2) it must contain’ program words consisting of 16 bits of loader
information followed by 32 bits of instruction syllable, data
half-word, or loader instruction (see Section IX); the last three
program words must consist of two ILILIAC IV HAILT instruction
syllables followed by a loader THEND instructiomn;

3) following the THEND instruction must come the ENTRY table,
if any; the ENTRY table consists of the names of those locations
of the program segment which have been declared as entries paired

with their relative locations in the program segment;

4) following the ENTRY table must come the EXTERNAL refercence

list, consisting of those names declared as external to the code

3-5

segment; all reference to these external names within the program

segment must be by their position in the EXTERVAL reference table;

5) the last record of a program segment file must begin on a
disk segment boundary and must contain the following information
in 48 bit words:

WORD CONTENTS .
O "ILLIAC IV" in BCL, used to identify the file as a

program segment file;
1 - length of the loaded program éegment in syllables;
2 word number in the file at which the ENTRY table begins;

3 worq number in the file at which the EXTERNAL table

begins;
L number of entries in the EXTERNAL table;

5 modulus of the largest FILL in the program segment (see
' Section IX); ‘

6 first executable location in the program, or zero if not
specified;

T mist be zero;

"8 must be zero.

Format of Sheaf Files
Sheaf files contain all information relating to the program seg-

ments which comprise them, such as length, entries, external names referenced,
overlay information, etc., as well as the program segments themselves. Each

program segment in a Sheaf file has the following format:

WORD CONTENTS
0] length of the program segment in ILLIAC IV syllables;

1 length of the external reference table;

-— the external reference table, consisting of names paired

with pointers to the master entry table (see below);

3-6

WORD CONTENTS

- a loader PNOP instruction (see Section IX);

- program words, in a different format from those in the
program segment file as output from the assembler or com-
piler; the 16 Dbits of loader 1nformatlon in each program word are
stripped off and combined into 64 bit words, each of which
contains the loader information for four ILLIAC IV 32-bit
instruction syllables; the 32-bit instruction syllables are
combined into 6h-bit words, each of Whidh contains two such

syllables; the layout of these words is as follows:

0) 64 x 64 bit words, each containing two 32-bit
syllables

1-7) same as 0);

8) 64 x 64 bit words, each containing four 16-bit
loader information fields; the Oth word contains the
information corresponding to the four syllables in

word O of row O and word O of row 1, in that order;

in general, word n+6l4 x 8 of each block of program words
contains the loader information for the syllables in

words n and n+6h;

Each program segment in a Sheaf file must end with a loader THEND instruction.

-

Format of Program Library Files

Program library files are B6500 disk files which contain program
-segments which are datalogued according to their entry names. Each program
library file contains two types of records: directory records and program

segment records. The directory records contain entries of the following form:

<entry name> <location in file> <length> where <entry name> is
a name declared as EXTERNAL in a program segment, <location in
file> is the logical record number in the file of the first
record containing the program segment, and <length> is the length

of the program segment in logical records.

Record O of a program library file must contaih "ILIBRARY" in BCL

in word O. The last word in each directory record points to the next logical

3-7

record which is a directory record. If the contents of this word is -1,
“the record is the last directory record in the file. Empty entry positions
in the directory records are flagged by the character "?" in the <entry name>

part of the entry.

Program library files are created and edited by the Collector
according to the information in the CREATE and EDIT statements in the
CONTROL file. '

Symbolic Output from the Collector

:The Collector provides to the user, on request, symbolic output on

output devices such as teletypes or line printers. This output consists of
detailed reports of the Sheaving operations, including memory maps, and

library create or edit information, such as listings of library directories.

IV. THE DISK FILE ALLOCATOR

The disk file allocator queues and schedules requeéts for
ILLIAC IV disk space. Although its primary responsibility is the alloca-
tion of disk space, the disk file allocator, because of its position in

the ILLIAC IV job flow, also performs scheduling.

‘ The scheduling of Jjobs is distributed over three modules: the
disk file allocator, the data processor, and the execution monitor. Each
of these modules schedules its own tasks independently of the others; there-
fore, in this operating system, there is né portion that can be called "the
scheduler"--that is, there is no section of the operating system that
oversees all operations or is even aware of the state of all jobs in the

operating system.

A request for ILLIAC IV processing goes first to the disk file
allocator to get disk space and then to the data processor to transfer the
B6500 files to the ILLIAC IV disk. Once a user's data is on the disk, the
request is sent to the execution monitor which schedules the use of the
ILLIAC IV quadrants and the BIOM. After ILLIAC IV processing, the job moves
again to the data processor where ILLIAC IV files are moved back to the B6500.
The final action is to notify the disk file allécaté; to free the previously

assigned disk space.

" It is expected that the jobs submitted to ILLIAC IV will be of con-
siderable size and thus only a few jobs can be kept on the disk. Therefore,
the data processor and execution monitor are constrained to attempt a
sophisticated type of scheduling that may stall one job on the disk while
- other jobs move past it. Instead, an attempt is made to speed the turnover
of all jobs so that the occupied disk space is freed as soon as possible. In
view of this, a "first come-first served" scheduling algorithm operates in

those modules.

The disk file allocator, then, inherits the responsibility for
selecting a particular job to enter the processing stream. The disk file
allocator will schedule requests for fragments of time called time shards
that are assigned to n categories. Each of the-n categories contains jobs

which are within some maximum specified limits and require the class of

b1

service or turnaround time of that category. Each category has a time shard
‘and a time slice. The time slice is initially set to the time shard.

‘Both of these time units are expressed in quadrant minutes (240 quadrant
minutes per hour). The time shard represents the portion of processing time
that a category should receive relative to other categories, and the time

slice represents the amount of this shard that has not yet been used.

For an example, consider the three-category system shown below.

The lowest category (I) represents the best service.

Category
Shift I IT IIT
1 60 ' 10 0
2 25 - 20 35
3 9 1 23
- limit of 20 limit of 60 unlimited in executlon
quadrant-minutes quadrant-minutes time
per job per job :

This shows that jobs executed in the first shift should‘roughly'¢onform to a
60:10:0 mix. Shift 2, unlike shift 1, will process jobs in the lowest
category of service, and shift 3 time is heavily‘weighted"toward processing

of category III jobs. .

The operator adjusts the shards for each category during his shift
so that he maintains some particular rgﬁe of turnaround time for each
category. Of course, there will be times when everyone wants category one,
in which case, higher category users will be slighted in favor of maintaining

the turnaround time in the lower categorles.

An adjunct to the scheduling process is the project time budget for
each category. Although most projects will have identical budgets some may have
requirements for special services which will be reflected in their time

budget. The project budgets are used to level the load placed on each category.

The time used by each run in a given category is decremented from
the time remaining from the original allotment in that category. Once a

time allotment becomes negative or zero, that category cannot be used by the

L2

project unless it is the lowest category. Time is returned to a category by
the following algorithm. Once all categories have used at least some portion,
for example ten percent of,their budget, then that portion is added to each
time allotment. This allows a user to buffer his periods of heavy demand for
rapid service by making up for them with lower category runs before or after
the heavy demand times. However, over periods of weeks, his use of all

categories will conform to the mix prescribed by his project budgets.

This scheduling process is initiated under one of two conditions.
If disk space is freed by a completed request, or if a new job enters a
category with a positive time slice and is the only job in that category and
all higher categories have empty queues or non-positive time slices, then

the scheduling algorithm is executed.

Once a job is picked for scheduling, the disk file allocator
attempts to allocate the disk space needed for the selected job. If ﬁhe
file contiguity, size, and phasing restrictions cannot be met, no space is
allocated and no attempt is made to schedule another job. If the files can -

-be allocated, then the allocation procedure maps them onto the disk so that
checkerboarding of the disk will be minimized with respect to the probable
requirementsiof future requests. At the same time a file map table is con-
structed and placed in the job dossier. The file map table is used by the
hardware supervisor to-build I/O descriptofs that point to physical storage
unit, track, and segment addresseé corresponding to the logical file and
record numbers passed to it B& the job partner. Although the table is
originally generated as a singly dimensioned array by the disk file allocator,
it must eventually be changed into the épecial doubly dimensioned array des-
cribed below. Due to the varying array row lengths, ESPOL code in the hard-

ware supervisor is required to build the final two-dimensional array.

‘ The file map table consists of n rows, usually of unequal size,
vhere n is the number of files. The first word in each row contains three
'ié-bit fields. The first field specifies the size of a logicai record in
terms of 256-word segments (a record consists of an integral number of

physical segments). The second field contains the total number of segments

-3

in the file. The third field specifies the number of supplementary mapping

entries in the row.

After the first word, the rést of the row contains mapping entries
in ascending order of virtual segmént numbers. Each mapping entry consists
of four fields. :

record number in file x, and file x has n segments Per record, then the

The first is a 20-bit virtual segment number. If m is a
virtual segment correéponding to m is virtual segment m X n. That is,‘a
virtual segment specifies the number of 256-word segments from the beginning
of the file but is not a physical segment address. The second, third, and
fourth entries are sixteen, two, and eleven bit fields specifying on which
All virtual

segments from the one specified in this mapping entry up to but not including

storage unit, track, and segment this virtual segment resides.

the virtual segment specified in the next mapping entry follow contiguously

on the same storage unit and track.

Example:
An ILLIAC IV program has three files.

Array Row O ‘ Array Row 1
3 102 3 L 12

0 12 0 0 1 0 3h1
Ly 12 1153 1 1 2 3k
L8 12 Lol 3 0 2 117
8 3 2| 236
Array Row 2 9. 1L 1 o
1 256 1 10 0 1 11
0 3 731 11 1 21 1021

File zero has 34 logical records each 768 -words (three segments)
long. One hundred two segments are required for the file and they are

‘broken into three areas on storage unit 12. Records O through 14 appear

Ll

contiguously starting at segment zeroc on track one. The first 512 words

of logical record 15 follow immediately after record 14, but the last 256
words of the record are on track zero at segment 1153. The last 19 logical
records are on track 2 in segments U6l through 513.

File one is badly fragmented. ZEach récord occupies four segments.
There are three records in file one. Record one has its first virtual seg-
ment on storage unit one, track zero at segment 341, the next two virtual
segments are on track two at segment 341 and 3&23 thé last 256 words are on
storage unit zero, track two in segment 117. The second record (virtual
segments 4, 5, 6, and 7) is on storage unit zero, track two in segments 118,
119, 120, and 121. The last record is spread over storage units three,

fourteen, zero and one.

File two is on storage~unit three, track one and consists of 256

segments-~each containing one logical record in segments 731 through 986.

The above example illustrates the flexibility the file map table
provides to the disk allocator. If there is any free space on the disk,
no matter how badly fragmented the disk is, the allocator can use it if
necessary. Furthefmore;.the table is quick and easy to scan and does not
waste B6500 core. The amount of saved core needed is small. If four jobs
were running on ILLIAC IV each with ten files in four fragments, the total
amount of core use would only be 200 words. Hopefully, most Jobs will not
have ten files and will not be badly fragmented. If the typical job has
abbut four files with each file in about two fragments, less than 50 words

of core would be required.

Once a job has been allocated disk space and the appropriaté tables
are in the dossier, it is removed from the category queue énd a message is
sent to the data processor. This message identifies the disk allocator as
the sender, specifies that data preprocessing is to be done, and points to

the job dossier which contains the preprocessing requests for this job.

When the request has ﬁeen completely processed--that is, ILLIAC IV
execution is complete and all necessary files have been moved to the B6500,
the disk allocator will receive a completion message from the data processor.
The disk allocator will then free the disk space used by the job by updating
its disk space tables and a job complete message will be sent to the job

parser. If a queue exists, the disk file allocator will attempt to schedule

another job.

4-5

V. THE LATA PROCESSOR

The data processor is responsible for moving files onto the

ILLIAC IV disk before execution and for removing these files after execution.

Preprocessing requests are received from the disk file allocator.
At that time, the disk space necessary for the Jjob has been allocated and
the specification of which B6500 files are to be moved to which ILLIAC IV
disk files are in the Jjob dossier. In addition, the job dossier indicates
the standard reformatting procedures to be performed on the data while it is
being transferred. Once the data is‘moved,‘fhe data processor sends a
meséagé to the execution monitor that points to the job dossier and tells

the execution monitor that it is ready for ILLIAC IV processing.

At the completion of ILLIAC IV execution, the execution monitor
sends a similar post-processing message to the data processor. The files to
be moved from the ILLIAC IV disk to the BA500 as well as the standard
reformatting algorithms to use for post-processing are indicated in the job

dossier.

Once the data is moved back to the B6500, the data processor sends
a message to the job parser notifying it of the job's completion. The mes-
sage also points to the job dossier which may be needed by the job parser for

the calculation of condition codes and other housekeeping tasks.

'The data processor splits each pre- or post-processing réquest
into short canonical units and places these units onto the appropriate pre-
or post-process queue. Since the amount of data to be moved between B6500
files and ILLIAC IV files is known from the B6500 or ILLIAC IV file tables
or an explicit ICL statement, and since all procedures used to reformat that
data are well-timed system routines, it is possible to approximate the
execution time of each request. The data processor uses this approximation
to split a total request into request units that will tie up a block of BIOM

space for only a short, known period of time.

BIOM spaée is allocated in dynamic and static blocks. Static
blocks are assigned to running ILLIAC IV programs for the duration of the
run. Dynamic blocks are assigned only when requested by an ILLIAC IV job

partner or the data processor. Blocks of BICM space are made available to

5-1

the data processor only when all requests from running ILLTAC IV programs

have'been honored.

When BIOM space is made available, the data processor first tfies
to schedule as many post-process units as possible. If any BIOM space is
left, then preprocess units are scheduled. Therefore, the order of access to
BIOM space is ILLIAC IV progfam, then post-process, and finally preprocess

requests.

Within a preprocess or post-process queue; units are ordered first
by job so that the oldest jobs are scanned first; then units are ordered
within a job so that the units with the greatest BIOM space requirements are
scanned first; and finally, within unit requests which require the same

amount of space, the requests requiring the greatest time are placed first.

The scheduling of requests on one of the brocess queues is performed
as follows. The process queue is scanned for the first request in the next
Job that can use the space. The space is then allocated to that request and
. the data processing is initiated. The queue is then séanned again until all
BICM space is allocated from the oldest Jjob on the processing queue. If
all the BIOM cannot be exhausted from the next Jjob, the following action is
taken. If all preprocess requests are initiated for the oldest Jjob, the
. allocation algorithm is berformed on the next oldest Jjob. If all preprocess
requests are not initiated for the oldest Job, then the earliest possible time
for processing the next request on the queue is calculated from the estimated
finish times of post-process and Preprocess requests, and the maximum times
of dynamic and static ILLIAC IV brogram requests. After the earliest time is
calculated the rest of the process. queue is scanned without regard to job
boundaries. Those requests that can be completed before the calculated time
are initiated. This scanning process continues until BIOM is full or the
process queue is exhausted-~in which case no further BIOM allocation is

attempted from that queue.

The execution of these requests is performed by a slave program
belonging to the data brocessor. This program is similar to the IILIAC IV

Job partners in the sense that it has access to the hardware supervisor.

5-2

However, ifs function 1s only thet of an I/O monitor. That is, it initiates
as many I/O requests as it can at one time and then sleeps until they are
completed. When awakened, 1t either @erforms a transformation on some

data it has just read, writes it on the B6500 or IILIAC IV disk and goes to

sleep, or it way have Jjust coupleted a write operation and must now initiate
more reads to get the next data for reformatting.

5-3

VI. THE EXECUTION MONITOR

The execution monitor schedules the use 'of the BIOM and. the

ILLTAC IV quadrants. It also assigns job partners to the various quadrants.

BIOM space is allocated on a static (i.e., for the duration of a
run) or dynamic (i.e., short term) basis. Static BIOM requests are contained
in the job dossiers, are assigned at the time a program is initiated, and
are released at program termination. Dynamic BIOM space is allocated oﬁly
when requested by a job partner or the data processor. It is released

upon job partner or data processorAnotifiéation or at job termination.

The execution monitor maintains a BIOM map which identifies static,
dynamic, and unassigned BIOM space as well as the users of assigned portions,
and the time at which they will be relinquished. The relinquish time is the
approximate time specified by the data processor or the maximum time specified
by a job partner or a job dossier. This map is used by the data processor
to schedule pre-~ and post-processiﬁg and by the execution monitor to schedule
the use of the ILLIAC IV quadrants.

BIOM requests from job parfners are honoréd on a "first come-
first served" baéié. BIOM requests from the data processor are not honored
-~ unless there are no BIOM requests pending from the Jjob partners. All changes
in the status of the BIOM map are also commnicated to the data processor

so that it may do appropriate pre- and post-processing scheduling.

When the execution monitor receives a request for ILLIAC IV execu-
tion from the data procéssor,‘it is piaced in the ready queﬁe. All jobs in
the ready queue have completed their data preprocessing phase and are now
ready to use one or more ILLIAC IV quadrants. Some of these requests are
multi-element steps that were originally built by the job parser. The
execution monitor is responsible for executing such requests in the proper

order indicated in the job dossier.

6-1

- When quadrant space becomes available, the next job on the ready
queue is initiated if: a) it fits into the number of quadrants available
and, b) its static BIOM requirements can be met without reducing the current
amount of dymamic BIOM space available to less than is required by the pro-
grams currently executing or the program that is being scheduled. If the
proposed job does not fit the above requirements, then a time is calculated
at which the job can be run. This time is the latest guaranteed time of
execution as calculated from the maximum time specifications of Jjobs currently

executing,on ILLTAC IV and the time specifications in the BIOM map.

The ready queue is then scanned for a job that fits into the
available quadrant and BIOM space and also has a run‘time that will allow
completion before the latest guaranteed time just calculated. If such a Jjob
is not formed, then no program is initiaﬁed. If a program is formed that
meets the above requirements, then it is immediately initiated before any
older jobs in the ready queue. If guadrant space is still available after
initiating the job, new BIOM and quadrant requiremenﬁs'are calculated, and
»the scan of the ready queue is continued for another program that meets the

new BIOM and quadrant requirements and the latest time guarantee.

Both the execution monitor and the job partner are involved in
ILLIAC IV program initiation. First the execution monitor halts the
allocated control units and sets the configuration qontrol register. Then
file map tables for the job are sent to thé hardware supervisor along with
BIOM allocation tables. These tables will be used by the hardware super-
visor to check all disk and BIOM L/O requests for validity before executing
them. Once the control units are set up and the hardware supervisor notified
of the new program, the execution monitor initiates the job partner and .
passes file information to it: The job partner is then responsible for
further initialization of the quadrants. This usually involves the loading
of 0sSk, the loader, and the main program from the disk. Then the job
partner will start the control unit and continue processing only when an I/0
request is received from the ILLIAC IV program. When the job partner goes

to end of job, the BA500 operating system notifies the execution monitor.

6-2

_ The user is charged fof ILLIAC IV time from the time his job
- partner starts to the time it reached the end of the job. If he wishes to
return a condition code, then it must be passed to the execution monitor by

the job partner before the job partner terminates.

When all the programs for a given ILLIAC IV request have reached
the end of the job, the execution monitor sends a message to the data
processor. This message points to the job dossier and tells the data

processor to begin post processing of the user's disk files.

6-3

VII. THE JOB PARTNERS

Corresponding to each job to be run on TILLIAC IV is an AIGOL-written
job partner residing in the B6500. This is a standard (although user-
modifiable) program which is responsible for seeing that the ILLIAC IV job
gets loaded, initialized, initiated and monitored. Control is passed to the
job partner by the execution monitor after the module clears the ILLIAC IV

job for execution.

Each Job partner communicates with its active ILLIAC IV job through
0slk, the ILLIAC IV resident operating system. Necessary commmications are
established via the TRO and TRI registers in the CU. 0SSk loads the TRO when
it wishes to send information to its assoclated job partner, thereby causing
a B6500 interrupt which is given to the job partner. The job partner then
reads the TRO register, interpréts the contents, and performs the indicated
action (I/0, end of job, release a file, etc.). ILikewise, the job partner
commmicates with OSl by loading the TRI, which causes an ILLIAC IV CU
interrupt and an entry into OSh. 0SSk reads the TRI and takes the appropriate

action (mark an I/O complete, halt because time has expired, etc.).

The job partners are written uéing a modified Burroughs ALGOL com-
piler which allows access to programs controlling the ILLIAC IV input/output.
These programs, collectively called the Hardware Supervisor, are embedded
in the B6500 MCP (Master Control Program). Since each job partner is an
independént B6500 program and is associated with only one active ILLIAC IV job,
some means of supervision must be provided. This supervision is the task of
the Executién Monitor module. The execution monitor schedules jobs as they
are released by the data processor and creates tables for the job partner.
These tables define the areas of disk, the BIOM space, and the ILLIAC IV
quadrants avallable +to the active job. The job partner cannot change these
tables and the MCP routines will not issue I/O commands which violate the

data in the tables. Thus the system is protected from an errant job partner.
The job partners are coded to perform the following six functions:
1. to initiate the ILLIAC IV job;

2. to process I/O interrupts;

-1

3. to respond to communication requests from the job in

execution;

L. +to issue commands to OSk, the ILLIAC IV resident operating

system;
5+ to recover from ILLIAC IV errors;
6. to terminate the ILLIAC IV job when necéssary.
These six functions are described in more detail below.

1. . ,'IﬁLIAC.IV job initiation is performed by the job partner upon

clearance from the executlon monitor. The job partner is told the quadrant
configuration for the configuration control registers—-MCO, MCl, and MC2--as
well as the location on the ILLIAC IV disk of the first segment of the user
program that must be loaded into memory. The job partner then performs three
tasks. TFirst, it issues commands to stop the ILLIAC IV quadrant(s) and to
initialize the control unit registers to their starting values. Second, it
loads OSk from the disk into ILLIAC IV memory. Third, it commands OSL to
load the user program from the disk to the ILLIAC IV quadrant(s) and start

execution.

2. I/0 requests from ILLIAC IV deal only with transfer of information
from the ILLIAC IV disk to the ILLIAC IV memory (READ) and from the memory
to the ILLIAC IV disk (WRITE). Upon receiving an interrupt signal from

ILLIAC IV, the execution monitor uses hardware supervisor programs to "scan
in" a descriptor. This descriptor, which is generated by the ILLIAC IV I/O
controller, indicates which control unit requires attention and thus deter-
mines which job partner is to take action. The appropriate job partner is
alerted and in turn requests a hardware supervisor routine to read the con-
trol unit's TRO register. From the TRO bit configuration, the job partner
- determines the type of request submitted by the ILLIAC IV job.

_The above describes a standard I/0 request. However, in order to
complement the standard I/O handling, resident within each quadrant's job
partner is a spe01al I/O monitor des1gned to service special 1nput/output

needs. This monitor is invoked by an interrupt formatted as a

communication request, but the content of the request and the actions

. resulting from it give the connotation of an I/0 request.

The monitor's primary function is to pérform sophisticated data
retrieval and transfers upon request from the ILLIAC IV job in execution.
It is evident that very large data files on the ILLIAC IV Disk will be
broken down into smaller logical '"blocks" for transfer to and from PE
memory. In addition, these blocks may be skewed across the disk segments
from one track to another in a "checkerboard" fashioh in order to minimize
disk latency. It is the responsibility of the I/O monitor to locate parti-
cular blocks and initiate I/0. The I/0 moﬁitor's function is thus that of
8 llason between the system and the user who wants to do something "fancy"
with the disk. | /

The information passed from the ILLIAC IV to the B6500 is the
same as a standard I/O request except that the logical record number and
number of words to transuit are not involved. Instead, the block coordinates
are given. The I/0 monitor will "map" the block coordinates into a logical
record number and obtain the number of words to transmit from a File Char-

acteristics Table .containing:
a. format specificationsrfor'mapping the file on disk;
b. block sizes (in terms of segments);
. ¢+ Dblock skewing displacements;b
d. block counts and bounds.
Each file involving. special mapping Has such a table associated with it.

In addition to this scheme involving the block coordinates, it
is also possible for the user to specify his own run-time block location
algorithm in the Jjob partner. This is a procedure available to the I/O

monitor during run-time. Its operation is as follows:

a. The user issues a Communications Request as before, omitting

the block-coordinate parameters.

b. The I/O monitor passes control to the user-written block-

computation procedure.

e¢. The block-computation procedure has already comﬁuted the block
coordinates for the present I/O transaction from the previous
call and immediately provides the proper logical record
number and word count for I/O initiation. The user's procedure
then computes .the next block that will be called for, com-
putes the logical record number and word counts, and places
them in an I/0 queue within the I/0 monitor to await the
next signal from ITLLIAC IV. '

The user's algorithm thus determines ﬁhat block will be needed next and
therefore saves the block-coordinate mapping time at each interrupt. While
the ILLIAC IV is in execution, the procedure in the I/O monitor is calculat-

ing the next move.

File blocking appears to be the general solution to non-core-
contained data structures. Tranquil, of course, is com@iling in terms of
256 x 256 word blocks. A single array of dimension greater than this
canonical size is blocked 256 X 256 and coordinates or indices assigned to
the blocks. The disk mapping under these conditions is straightforward,
and 1/0 requests for certain blocks fit readily iﬁtc the I/O monitor's
functions.

Although large mesh structures (e.g., those involved in PDE
problems) may call for rather complicated mapping onto the disk files, it
is envisioned that a large class of problems to be run on ILLIAC IV will
not require very sophisticated mapping schemes and thus can be accommodated

on ILLTAC IV disk easily using the standard Jjob partner operations.

3. The following Communication Requests are generated by 0S4 upon

command of the ILLIAC IV program, and are described more completely in
Section VIII:

MARKEQF Mark the end of a file on the ILLIAC IV Disk. Close the
file and release it to the disk file maintenance portion

of" the operating system.

STATUS Determine the status of a file on the ILLIAC IV disk.

. LIMIT Set one of four interval timers. The request includes
an interrupt address. When the time limit is reached, control

is transferred to the interrupt address.
FREE Cancel a previous LIMIT request for a specified timer.

TIME , Obtain and communicate to the user the current time of day
and the time remaining until the end-of job. It is assumed
that the end-of-job time has been specified in the job control
language. The TIME requestlpermits.the user to anticipate
his scheduled end-of-job and to provide for necessary outputs

in the event he might otherwise over-run his scheduled time.

DATE Obtain and communicate to the user the current date. The
days Sunday through Saturday are represented as integers one
through seven. The date is repreéented as mm/dd/yy.

OPEN Open a file. This request must precede the first attempt to
read or write a file on the ILLIAC IV disk if the logical file

nuwmber is not known.

CLOSE Close a file. This request frees the file to the system and
specifies the action to be taken with respect to the file,
e.g., purging, transmitting to back-up memory, printing,

punching, displaying, etc.

ERROR Faulty data in the IILIAC IV job. The job partner has access
| to a table of error messages and actions to be taken. This
table is indexed on the error codes transmitted through the
request. Some codes cause immediate program termination,
others permit continuation after recording the message, and
others cause termination after the particular code has been

received a suitable number of times.

L. Commands to 0S4 are issued by the job partner to alter normal
ILLIAC IV execution via the BREAK, RESTART, TRAP, and LOAD commands. The
BREAK request saves and the RESTART request restores the entire program status

for the quadrants involved. All CU and PE register contents, as well as PE

memory, are transferredito or from the ILLIAC IV Disk when those commands are

T=5

rare issued. The TRAP command causes temporary suspensién of ILLIAC IV job
execution with a transfer to an interrupt‘address given in the command
parameters. The LOAD command causes 0Slh to load program segments from the
ILLIAC IV Disk into PE memory. The specific TRI register configurations for

these commands are given in the discussion of oslh.

5. Recovery from ILLIAC IV errors. The recovery procedures for I/O

error interrupts include the option of specifying an interrupt address to
which control is transférred when the procedures are unsuccessful. Such
recovery procedures involve one or more attempts to read or write with
subsequent job termination 1f the operation fails and if no interrupt address
is given. Other interrupts may be non-recoverable, thus giving the job
partner the alternative of terminating the job or branching to the interrupt
address given. In the instance of a power failure interrupt, a BREAK

command is executed for oSk to save the status of the Job partner's quadrants.

6. ILLIAC IV job termination. In the instance of fatal ILLTIAC IV

hardware and software errors requiring job termination, the job partner

notifies the execution monitor to initiate a '"halt CU".

It should be noted that job overtime termination is not effected
by the job partner, but rather by the MCP. ILLIAC IV job overtime is noted
by the MCP which then sends the job partner to end-of-job, in turn causing
the ILLIAC IV quadrant(s) to halt. ' | L

"VIII. OSL--THE ILLIAC IV RESIDENT SUBSYSTEM

0Sh performs three functions. It monitors ADVAST interrupts; it
processes ILLIAC IV program requests; and it responds to communications from
the B6500. Each of these three functions are described in detail below.

Interrupts in.ILLIAC IV are caused by the setting of bits in the
interrupt register (AIN), and the setting of corresponding bits in the
interrupt mask register (AMR).' The interrupts are of four types. Bits 0-3
control hardware failure interrupts; bits 4-8 and 13 control software failure
interrupts; bits 9-12 and 14 control program dependent interrupts; and bit 15
controls the BA500 to ILLIAC IV communication interrupt:

0 Power failure : ‘4 TImproper MCL or MC2
1 Instruction parity error 5 Improper lccal address
2 Undefined instruction 6 ADB wrap-around
3 CU stalled - 7 Execute loop
8 Improper skip distance
13 Protected write
9 Program request 15 TRI loaded
1O PE mode

11 PE overflow
‘12 Real-time input
14 Branch trace

Unless modified by a program request, the hardware failure and
software failure interrupt bits are always‘set in the interrupt mask register.
An interrupt of these types causes 0Sh to halt the program and interrupt the
B6500. The program dependent interrupts are treated individually as follows:
Bit 9 is always set; this bit controls all requests from user programs
running on ILLIAC IV. Specific responses are dictated by the type of request.
Bits 10, 12, and 14 are reset. Unless these bits are set in the interrupt
mask registef by suitable program requests, the corresponding interrupts do
not occur. Bit 11 is always set. Unless modified by a program request, a
PE overflow interrupt causes 0sh to halt the program and interrupt the B6500.
The B6500 to ILLTAC IV communication interrupt bit (TRI loaded) is always
set. The actions taken by»OSh are determined by the contents of the TMU
input register (TRI).

8-1

Program requests are macro statements in a user program running

on ILLIAC IV. They may be written in the ILLIAC IV assembler language

or in any fashion which generates a correct calling sequence to OSk as
described below. They each include the ADVAST instruction INR, the execu-
tion of which causes a program request interrupt (AIN bit 9). There are
three types of program requests: requests for input or output, requests for
communication with the BA6500 job partner, and requesfs for use of ILLIAC IV
resident utility routines. All three £ypes of requests employ the use of
the INR instruction to cause the interrupt, and employ the use of the ADVAST
accumulafor register no. three (AC3) to contﬁin the information necessary to
identify the request type and action to be taken. While in the interrupt
mode, several ADVAST registers are used, but all except AC3. are returned to
theif original state upon leaving the interrupt mode and returning to the
user program. AC3 is returned with information relative to the response for

the request.

Tnput/output requests deal only with transfer of information from
the ILLIAC IV disk to the PE array memory (READ), and from the PE array
memory to the ILLIAC IV disk (WRITE). I/O requests are distinguished from

communicate and utility requests by means of the most significant (left-most)
bit in AC3. For I/0 requests, AC3 bit O is set (contains a one). The

v remainder of AC3 contains either all the parameters necessary for the request
or contains an address which points to a table of the parameters in PE
mémory. If bits 33-34 contain 10, bits 45-63 contain a pointer address.

If not, bits 1-63 contain the parameters. The AC3 configurations and

parameters used are as follows:

1‘2 11 5 9 12 6 15 14
1 R/Wg P i) FN RN ce . AA WC
0 1 2 3.7 = ©8-16 17-28 29-3k 35-19 50-63
1 11 | 20 1 2 10 19
7 7
1 /// TA] 10 // POINTER ADDRESS l
0 1-11 53T 32 33-3k 35-LL L5-63
R/W Read/write indicator, one bit. If bit 1 is a zero, a read is

requested. If bit 1 is a one, a write is requested.

8-2

N

cc

Priority indicator, one bit. If bit 2 is a one, the variant field
of the I/0 descriptor fetched by the input—outpu% control will be
set to indicate priority: The descriptor will then override all
others in the queue for disk access. Since the disk queuer can
admit only one priority descriptor, the B6500 maintains its own
queue of priority descriptors. Hence, care should be used in the
setting of this bit by the user program on ILLIAC IV. Too mény 7
unserviced priority requests can provide slower service than a

balanced mix between pridrity and non-priority requests.

Identification number of the I/0 request, five bits. OSL maintains
a table for 32 entries of pending I/O transactions. The identifi-
cation number provides the index to this table and identifies the
request to the BA6500. Subsequent program requests can be used to
advise the ILLIAC IV user program of the status of the particular

transaction, given the identification number.

File number, nine bits. Up to 512 logical file numbers may be
used to reference files on the disk. A correspondence is maintained
by the B6500 between the logical file number (FN), its physical

location on the disk and its file name.

Record number, twelve bits. Up to 4096 logical records may be
contained in each disk file. The length of a logical record is
some multiple of 256 words (a disk segment), and is chosen by the
user before execut{on of the program. Lengths of logical records

may vary from file to file, but must remain constant within a file.

Configuration control, six bits. The left-most four bits are

treated in a manner similar to the hardware's use of the configura-

 tion control registers MCl and MC2. That is, specific quadrants

of a united configuration are to transmit or receive the data.

The right-most two bits denote the arrangement of the data within
the quadrant(s): 00 indicates that the data is to be read into
or written from full rows across the quadrant(s); Ol specifies
half-rows; and 1l specifies only a quarter of the gquadrant rows
to be involved. The data address specifies which half or quarter,
and of course in the half-row mode, the address must correspond

with the first or third quarter. 10 is undefined.

8-3

AA ~ Array address, fifteen bits. The data is to be read from or
written into PE memory, starting at the location 'specified by 16
times the AA. Since the hardware limits all transmissions to
blocks of "long-words" which are 1024 bits in length (16 words),
these transmissions must start and stop at long-word boundaries.
A four-quadrant ILLIAC IV with 2048 words per PE memory contains
32,768 long-words.

We Word count, fourteen bits. Up to 16,38L long-words may be trans-
mitted. This is equivalent to one-half of a four-quadrant array

menmory or approximately 28 percent of one disk storage unit.

If bits 33-4L of AC3 contain 10, the pointer address is a nineteen-
bit location of the first 6U-bit word of a table in PE memory. The table
must contain four words (eight syllables), with the parameters located in the
table in the same order as described above. Each parameter is right-adjusted
in its 32-bit syllable. No provision is made within OSL to distinguish
between parameter values that are to be provided by the ILLIAC IV user program
‘and those that are to be provided by the B6500 job partner. All values found
in the table are sent to the B6500 by OSk. The job partner may override

certain values at its option.

There are two methods of operational control exercised by oSk over
I/0 requests. In the first method, the user program wishes to request I/O
and not be interrupted when the transm;§sion is complete. It signifies this
by means of the parameter-packed form of register AC3, or if the pointer
address form is used, bits 12-31 of AC3 must contain zeroes. In the second
method, the pointer-address form must be used, and bits 12-31 of AC3 contain
an interrupt address. In either method, OSL returns control to the user
program as soon as 1t has processed the request and sent the parameters to
the B6500. In the first method, when the transaction is complete and the
B6500 interrupts the user program (TRI loaded interrupt), OShk records the
status of fhe transaction into its 32-entry table and returns normal con-
trol to the user, leaving the ADVAST registers in the userts state. In
the second method, osl savésvthe user's contents of register AC3, records
vthe status of the completed transaction into AC3, leaves the interrupt mode,

and transfers control to the

8-k

~ user at the location specified by the interrupt address. The interrupt
address, having been provided by the user as one of the I/O parameters, was
saved in the 32-entry table indexed according to the identification nuﬁber
of the transaction. When the user is finished in his interrupt routine, he
performs a program request to return to Oslk. At that point, the original
contents of AC3 are restored and control is returhed to the user at the point

where the TRI loaded interrupt occurred.

All entries to user interrupt routines, and exits from them, are
controlled by the five-bit transaction identification numbers. The 32-entry
table is used to save interrupt addresses,. the user's.contents of AC3, and
the return—from—intefrupt locations. Bits‘3—7 of AC3 contain the ID number
when entering an interrupt routine and must also contain it upon exit. Bits
3-7 of the ™U registers TRO and TRI contain it for communications with the
B6500. The format of the information sent to the B6500 in register TRO is
identical to the format of the parameter-packed AC3 described above. The
format of the reply information from the B6500 in register TRI is:

20 5 3 5 2 11 2

1 2 5 8

1 7// ™ V///% ADD-E s | PID | I | LD ERR ATT
0 1-2 3-7 8-15 16-35 36-L0 " L1i-h3 LL-L8 L9-50 51-61 62-63
ID _ Transaction identification number, five bits.
ADD-E Last address used in PE memory.

NS Instruction code, five bits. Read = 20g, write = 2lg.

PiD Partner identification number, three bits. Used by the B6500 job

partner to differentiate between guadrant transactions.

i) Transaction identification number, five bits. Repetition of ID
in bits 3-7.

11D List ID, two bits.

ERR Error field, eleven bits:
51 Disk time out . 56 Memory access error
52 Disk not ready 57 B6500 memory parity error
53 (not used)] - 58 Memory address error

-5

54 Disk parity or lock-out 59 Descriptor error
55 No memory module 60 Unit not ready
61 Unit busy

ATT Attention field, two bits:

00--No errors
Ol--Hardware exception

11--Software attention

,In the first method of operational control; where an interrupt
address is not specified, the contents of TRI are pladed in the 32-entry
status table. In the second method, the contents of TRI are placed in
register AC3 for the user's interrupt routine. The interrupt routine néed
only scan bits 62 and 63 for zeroes to ascertain that the transaction was
completed‘with no errors. Additional I/O requests may be made from within
the interrupt routine. In fact, portions of the program containing I/0
requests and interrupt routines may be nested to an arbitrary level, provided
that the thread of return control is never broken by failing to include the
proper transaction identification numbers in bits 3-7 of AC3 each time a’
return is made from an interrupt routine to OS4. Returns from interrupt
routines must always be done by executing an INR instruction after placing

'register AC3 in the following state:
2

000 b . ALL ZEROCES
0 37 | | . &3

Communication requests are program requests which are used for

requesting certain actions to be performed by the job partner on the B6500.
Communication requests are distinguished from I/O requests by means of the
most significant (left-most) bit in AC3. TFor communication requests, AC3
bit O is reset (contains a zero). Communication requests are further dis-
tinguished from utility requests by means of bit 1 in AC3. This bit, for
communication requests, is set (contains a one). The remainder of AC3

contains all the parameters necessary for the request:

8-6

5 ' 56

1 1 1
ol 2 f;?/ CID COMMUNICATION REQUEST PARAMETERS
0 1 2 3-7 . 8-63

The communication identification number (CID) contained in bits 3-7
is treated in a manner similar to the ID of the I/O request. A 32-entry
table is maintained by OSL for communication requests. This table is separate

from, but performs a similar function to, the 32-entry table for I/O requests.

Included in the first implementation of the operating system are
adue communication requests: MARKEOF, STATUS, LIMIT, FREE, TIME, DATE,
OPEN, CLOSE, and ERROR.

MARKEOF is a communication request used to mark the end of a file
-on the ILLIAC IV disk. It causes 0SkL to generate a signal to the B6509 to
close the file and release it to the disk file maintenance rortion of the
operating system. In effect, the length of the file becomes specified, and
the file will not be accessed by the current job on ILLIAC IV. The disk file
maintenance program is permitted to remove the file from the ILLIAC IV disk
and transmit it to backup storage on fheAB65OO. The format of AC3 for this

request is:

1 1 1 5 9 12 9 6 20

o {1 é%;; CID FN RN 222222%52000001 IA

0 1 2 37 8-16 - 17-28 29«37 38-k43 LL-63
- CID Communicétion identification number, five bits.

FN Iogical file number, nine bits. -

RN Togical record number, fwelve bits.

IA Interrupt address, 20 bits. If the user program wishes the B6500
to interrupt it upon completing its action, and OSk is to transfer
control to a user interrupt routine, the IA ghould contain the
location of the first code syllable in the routine. If the B6500
is to perform its actions and not intérrupt the program, the IA

should contain all zeroes.

8-7

. If an interrupt routine is used, the proper exit from iﬁ must

include the AC3 setting:

5 o 56
0 1 0 CID ‘ . AT ZEROES

0 1 2 3-7 ' 8-63

STATUS is a communication request for determining the status of a

file on the ILLIAC IV disk. The format of AC3 for this request is:

6 ,
Y IR S
0 1 2 3-7 8-16 17-37 38-%3 L1263

LIMIT is a communication request for obtaining time limit interrupts.
It causes the B6500 to set one of four interval timers. Since the ILLIAC IV
hardware does not include a real-time clock, the clock on the B6500 multi-

®lexor is used. The request contains four parameters in AC3:

6 20

1 1 1 5 2 19 9
1 W// cm | W T /// /] 000011 1A
o 1 2 37 8-9 10-28 29-37 38-L3 Wi-63
CID Communica%ion identification numbér, five bifs.
N Interval timer numbe;, two bits. Up to four LIMIT requésts may be

in effect at one time. N denotes which of the four intérval timers
is to be set. If a LIMIT request is made with a previously
specified value of N; and that previous limit has not been reached,

the new limit replaces the old.

T Time limit, nineteen bits. The user's program is to be interrupted
after T sixtieths of a second have elapsed. The largest possible
value for T denotes a maximum time limit of approximately 2-1/2

hours.

IA Interrupt address, 20 bits. When the time limit is reached, control
is to be transferred to the user's program at his interrupt address

TA.
' 8-8

FREE is a communication request for canéelliné previous LIMIT

requests. The request contains two parameters in' AC3:

1 1 1 5 28 6 | B 20
A L = i
N Interval timer number, two bité.‘ T;e FREE reguest cancels the

effect of a previous LIMIT request on intervai timer N. It does

not affect settings of the other three timers.

TIME is a communication request for obtaining the current time of
day and the time remaining until the end-of-job. It ha$ two parameters in
AC3:

RN/ B/ —

If the interrupt address (IA) is equal to zero, executién of the user program
is suspended until the B6500 responds with the information. If the IA is
non-zero, control is returned to the user after OSh sends the request to the
B6500. When the B6500 responds, the user program is interrupted and control
is transferred to the user at-his interrupt address. In either event, the

information is supplied in register AC3:

11 1 5 36 A | 20
o _
o |1V // CID TOD TR
0 1 2 39 8.3 T LL63
CID Communication identification number, five bitg.
TOD Time of day, thirty-six bits. The time of day is represented as
|

six 6-bit characters. It is based upon a QH-ﬂour clock (one minute
before midnight is 235900) and is given in hours (hh), minutes

(mm), and seconds (ss).

8-9

TR Time remaining, twenty bits. The time remaining is r%presented as
| a binary integer in sixtieths of a second. It has a haximum value
of approximately five hours. It is assumed that the time at which
end-of-job would occur has been specified externally to the execution
of the program via control card information. The use%of the TIME
request permits the user to anticipate his scheduled %nd-of-job
and provide for necessary outputs in the event he migbt otherwise

over-run his scheduled time while in the'debugging stﬁgé.

DATE is a communication request for obtaihing the current data.

It has two parameters in AC3:

g Ji {% g% 7//////{/2/:////% Oiﬁ | E‘ls

The interpretation of the IA is the same as in the TIME request?described

above. The information supplied to the user in AC3 has the foliowing format:

1 5 5 3 48
7 7
% 7)) co 72 7| pou MDY
0 1 2 3-7 8-12 13-15 - 16-63
DOW Day of'the week, three bits. The days Sﬁnday through Saturday are

represented as binary integers one through seven.

MDY Menth-day-year, forty—eighﬁ bits. The date is repreanted as
eight 6-bit characters showing the month, day, and ye@r with

intervening slashes in the form mm/dd/yy.

: OPEN is a communication request used to open a file. :Its use must
precede the first attempt to read or write a file on the ILLIA@ IV disk

if the logical file number is not known. It has four parameteris in AC3:

1 1 5 11 19 6 PO
0 1 CID NC PA 000111 TA
0 1 2 3-7 8-18 19-37 38-L3 LL-63

8-10

CID Communication identification number, five biﬁs.
NC Number of characters, eleven bits. A‘Binaryiinteger representing
the number of characters in the name of the éile.
PA Pointer address, nineteen bits. The locatioﬂ of the first 6L-bit
word in PE memory which contains the name of the file.
IA Interrupt address, twenty bits. Same interpﬁetation as in TIME
request above.
The response to this request, contained in AG3, has the format:
11 1 5 9 12 35
4 |
0 1 //// CID FN NR MAP -
% |
0 1 2 3-7 8-16 ~ = 17-28 | 29-63
CID Communication identification number, five bits.
N ﬁogical file number, nine bits. May be used in subsequent 1/0
requests. '
NR _ Number of records, twelve bits. Up to L0956 logical records may be
contained in each disk file.
MAP Thirty-five bits. Contains such information as blocking factors,

layout configuration of the file in disk storage unit areas, type
of format of the file data, etc. This information is optional,

with format of the MAP determined by the user or compiler.

CIOSE is a communication request used to close a file on the

ILLIAC IV disk. It frees the file to the system. An input file may be .

purged. An output file may be transmitted from the ILLIAC IV disk to the
B6500. The request contains four parameters in AC3:
11 5 9 21 , 6] 20
57 _
1 CID N A 001000 TA
7.
0 1 2 3-7 8-16 17-37 38-43 Lh-63

CID

Communication identification number, five bits.

8-11

FN

IA

TIogical file number, nine bits

Action, twenty-one bits. Specific action to be taken by the

operating system on the B6500, such as purging, transmitting to
back-up memory, printing, punching, displaying, etc, is determined

by the user or compiler.

-Interrupt address, twenty bits.

ERROR is a communication request normally used by mathematical

subroutines to 1nd1cate the occurance of faulty data; for example, a square

root routlne entered with negative arguments in one or more processing

elements,

The request can be used by any user program to enter information

into the user's error file or cause program termination. The ERROR request

has three parameters in AC3:

1 5 30 6 19

)

1
?%;; CID EC - OOlOOl%fi PA.

A

A\

CID

EC

PA

2 37 8-37 38-43 kb 45-63

Communication identification number, five bits.

Error code, thirty bits. The job partner has access to a table
of error messages and actions to be taken indexed on the error
codes. Some codes cause immediate program termination, others
pefmit continuation after recording the message, and others cause
termination after a suitable number of times the particular code
is received.

Pointer address, nineteen bits. Location of a table in PE memory
which contains the error information to be recorded. Normally,
the first word in the table contains the table length if it is

not included in the error code.

8-12

CUtility reduests are program requests which are used for re-
-questing certain actions to be performed by the ILLIAC IV resident oper-
ating system (0Sk) and its allied utility routines. Utility requests,
like communication réquests, are distinguished from I/O requests by
means of the most significant (left-most) bit in AC3. For utility re-
quests (and communication requests), AC3 bit O is reset (contains a
zero). Utility requests are further distinguished from communication
requests by means of bit 1 in AC3. This bit, for utility requests, is

-reset (contains a zero). The remainder of AC3 contains all the para-

meters necessary for the request:

62
0 0 UTILITY REQUEST PARAMETERS
0 1 2-63

Utility requests aie different from communication and I/0 re-

- quests in that they are not queued and interrupﬁ addresses are not used.

Once a utility request is made to 0sk, control is not returned to the user
program until all actions necessary to satisfy the‘request are completed.
Included in the first implementation of the operating system are nine
utility requests: ADVISE, SELECT, REMOVE, BREAK, RESTART, LOAD, RECONFIGURE,
TRACE,-and EXTT. ‘) '

ADVISE is a utility request used for obtaining the status of a

pending I/0 transaction. It has two parameters in AC3:

6 20

1 i 1 5 ° 30

o | o 0 = Tl s

0 1 2 37 8-37 38-43 kh-63
ID Identification number of the assoéiaﬁed L/O request, five bits.
TA Interrupt address, twenty bitse.

8-13

There are three methods of operational control exercised by OSk
over ADVISE requests. In the first method, the user's program is stalled
until the I/O transaction is complete, whereupon OSL returns to the user
program with the status information in AC3. This method is used if the I/0
request did not contain an interrupt address, and the interrupt address field
of the ADVISE request contains all ones. In the second method, the latest
‘status information is immediately returned to the user program, and no inter-
rupt is later made when the transaction is complete; This method is used if
the I/O réquest did not contain an interrupt address, and the interrup£
address field of the ADVISE request contains all zeroes. In the third method,
the latest status information is immediately returned to the user program,
but an interrupt will occur later when the transaction is complete. This
method is used if the I/O request did contain an interrupt address, or the
ADVISE request does contain a valid interrupt address. If the interrupt
address supplied in the ADVISE request disagrees with the interrupt address
supplied in the I/O request, the IA supplied with the ADVISE request is used.
The format of the status information supplied to the user program in AC3 is

identical to that received through TRI, described above under I/O requests:

5 8 20 5 3 5 2 11 P

% ID % ADD-E | INS PID 1D LID ERR ATT

0 1-2 3-7 8-15 16-35 36-ko Li1-43 LL-B8 L9-50 51-61 62-63

SELECT is a utility request used to modify the handling of interrupts
by OSk. The request specifies a particular bit in the ADVAST interrupt mask
register (AMR) to be set. When an interrupt occurs, and that corresponding
bit in the ADVAST interrupt register (AIN) is set, control is to be trans-
ferred to the user's program at a specified interrupt address. The request

has two parameters in AC3:

6 20

<l> %. %//{?27/////28%31%22?220 ' MI:63

8-1k

N Bit number in AMR, four bits. AMR bits 0-8 or 10-15 may be
selected. A value of N=9 does not select bit 9 of AMR (user pro-
gram request) since the SELECT and REMOVE requests are handled via
this interrupt. Instead, bit L of the ADVAST interrupt control
register (ACR) is altered (alternate interrupt base in use).
Normally, OSk operates with ACR bit 4 set. That is, the alternate
interrupt base is used, which causes all interrupts to start 0OSk
control at location 1. OSh normally maintains e halt instruction

at location 0. If a SELECT request is made with N=9, OSL resets
the ACR bit 4, and plants a jump to the specified interrupt address
at location O. This means that all subsequent interrupts bypass
0Slk completely and transfer comtrol to the user's own version of
an OSlk at the specified interrupt address. It must be noted that,
although the REMOVE request, described below, can be used to undo
the effect of a SELECT request for bits 0-8 or 10-15, the effect
of a SELECT request with N=9 cannot be undone except via special

treatment in the user's version of 0Sk.

IA Interrupt address, twenty bits. Once a SELECT request is used to
modify control under a specific interrupt, the occurrence of that
interrupt will cause entry to the user's interrupt routine at this
interrupt address. The entry is made out of the interrupt modé. Reg-
ister AC3 is saved by OSh when the interrupt occurs, but it is not
changed. The conténts of the instructim counter are placed in TRO for
the interrupt routine. In order to return via 0S4 +to the user program
at the point of interruption, the interrupt routine must perform ﬁhe
INR instruction with register AC3 in the following formatb:

11 o6 4 6

Ol maintains a table of fifteen entries indexed on N to enable
return of control from within nested interrupts. EFEach entry contains the

location at which the interrupt occurred.

8-15

REMOVE is a utiiity request used to restore OSh'é control over
“interrupts. Any previous SELECT request designating bit N of the interrupt
and interrupt mask registers is to be ignored. Use of the REMOVE request
returns handling of the specific interrupt to the normal action taken by
0Sk as described above under the interrupt handllng function of 0Sk. The

REMOVE request has one parameter in AC3:

1 1 26 4 6 6

Sl B 22 L A e 7 777
N Bit number in AMR, four bits. A value of N=9 (user program request)

is ignored since the SELECT and REMOVE requests are handled via this

interrupt.

BREAK is a utility request for saving the current status of a
program for later RESTART. It causes the contents of all CU and PE registers
and PE memory in the quadrants united to be saved on the ILLIAC IV disk. The

request contains two parameters in AC3:

1 1 6 9 21 G 20
A O 2 7
FN ‘ Logical file number, nine bits. The request is poétponed and

control is not returned to the user program's main code stream

until all pending I/0 requests are completed.

RESTART is a utility request for restoring the status of a rrogam to the
point at which a previous BREAK‘request was completed. The request contains
the parameter FN which refers to the file in which the previous BREAK request
caused the program status to be saved. It is anticipated that the user will
, be restricted to having no more than two files on the ILLIAC IV disk for
BREAK-RESTART requests. The format of AC3 for the RESTART request is:

8-16

The BREAK and RESTART requests described above are made from within
a ruming ILLIAC IV program. Other BREAK-RESTART actions are available to
be initiated from the job partner on the B6500, from within the executive
.control section of the operation system, from the operator's console, and

from remote user terminals.

. IOAD is a utility request used for loading program segments into
PE memory. Tt is normally used by the operating system, but is available

to the user program. The request contains twb parameters in AC3:

1 1 36 6 20
0 0 LT 000111 IA
0 1 2-37 38-43 LL-63
LI Loader.information, thirty-six bits. The format and meaning of

these bits are dictated by the design of the high-level language
compiler used, and restrictions placed on the overlay process by
the loader. .

IA Interrupt address, twenty bits.

RECONFIGURE is a utility request for changing the configuration
control in a multi-quadrant job. Job execution across several unitied
quadrants may be split into asynchronous execution of different code streams
in separate quadrants. After running asynchronously, the separate code
streams in the job may be reunited.

There are three configuration control registers in each control
unit: MCO,'MCl, and MC2. MCO controls the array size. MC1l controls instruc-
~tion fetching; thus it determines in which quadrants the program code is
locafed.- MC2 controls instruction execution and data fetching; thus it deter-

mines in which quadrants the data is located.

There are a total of 167 valid combinations of the configuration
control register settings. Within a multi-quadrant job, the user-is concerned
with specific settings of the MCl and MC2 registers, but is not concerned
with the absolute settings of his MCO registers. Howe#er, he must have the
éapability of specifying relative MCO settings to reflect his drray sizes
within the job. The RECONFIGURE request contains two.parameters in AC3:

6 1 19

E % 7////{?/:/{////, 1?1 %//}/é/’ 001000 % POINTER ADDREés

29-31 32-37 38-43 " LL - 45-63

The pointer address is a nineteen-bit location of the first 6L-bit
word of a table in PE memory. The table contains the reconfiguration in-
formation in one to four words. Thé number. of words is indicated by
the parameter N in AC3. Each word contains sufficient information to provide

configuration control for one subsequent code stream:

e N — 20
L0070 A | e | e 1
0-32 33-35 36-39 Lo-L3 Ii-63
AS “Array\size, three biﬁs. Since the operating ;ystem controls ﬁhe

actual settings of register MCO, AS merely indicates the number of

ones to be placed in MCO to control the array size.

MCL Desired MCl setting, four bits. TInvalid settings of MCl are three
ones, or a bit position is set which is greater than the number of

ones in MCO.

8-18

MC2 Desired MC2 setting, four bits. "Invalid settings of MC2 are
similar to those for MCl. '

IA Interrupt address, twenty bits. After changing the configuration,
control is to be transferred to the new code stream starting at

this location.

Normally, if a user program'wishes to fork its code stream into tWOV
parts, N=2 and two control table words are used. When rejoining, N=1 and
only one control table word is required. The RECONFIGURE request is post-
poned and control is not given to the.user program until all pending I/O
requests are completed. The RECONFIGURE request causes the B6500 to be
interrupted in order to modify future communication contrpl wiﬁh the job
partner(s), but no loading of program segments is performed. If the user
program does not contain the propér code segments for the new configuration,
they must be obtained via LOAD requests before initiating the RECONFIGURE
request. OS4 is structured in such a manner that reconfigurations of any
type may be performed without requiring reloading of OSl. Joining separate
code streams is performed after receiving the proper RECONFIGURE request from
each of the streams so that proper synchronization of the larger union can
be effected.

TRACE is a utility request for monitoring the flow of a program.
Each time the instruction counter (ICR) is altered by an Exchange, Load,
Skip, or Jump instruction, a,pranch tface interrupt causes 0S4 to record the
contents of ICR before and after the branch. The TRACE request contains

three parameters in AC3:

1 1 6 9 1 20 6 20
W /
o} o} /// /41 FN ;%Zé Lg 001001 UA B
0 1 2-=7 8-16 17 18-37 38-43 L4h-63
FN Logical file number, nine bits. A buffer of 100 words is maintained

in PE memory. Each time the buffer is filled by 100 branch trace
interrupts, the buffer is emptied by writing it out to the specified
file oh the ILLIAC IV disk. | R

LA Lower address, twenty bits. Branches with ICR values less than LA

are not recorded.

8-19

UA Upper address, twenty bits. Branches with ICR values greater than

UA are not recorded.

The TRACE request can be nullified at any time by another TRACE
request with LA=UA=0, at which time the partially filled 100-word buffer is
written to the disk file. The buffer is also written at normal job termina-
tion if a TRACE request had been in effect. Each word of the buffer contains

the before and after ICR values for one interrupt:

21 11 . 21

U= == Y= =

EXIT is a utility request used for terminating a job. Tt causes
input files to be purged, and output files to be closed and transmitted to
the B6500. The request has no parameters in AC3: '

o T W ===V

0 1 2-37 38-13

8-20

Responses to communications from the B5500 fall under three categories:

replies to I/0 and communication requests, commends from the B6500 job partner,

and B6500 executive control.

Replies to I/0 and commmnication requests interrupt the user's
program on ILLIAC IV via the TRI-loaded interrupt. The left-most two bits
of TRI indicate the type of reply, and bits 3-7 contain the index fo the
proper 32-~entry table: ;

5 56

1 2
V ‘
.1 : :
/% ™ ‘ I/0 REPLY PARAMETERS
0 1-2 3-7 , 8-63
1 1 ~ 1 5 56
0 1 // CID COMMUNICATION REPLY PARAMETERS
0 1 2 3-7 8-63

Job partnér commands also interrupt the user's program on ILLIAC IV

via the TRI-loaded interrupt. Included in the first implementation of the
operating system are four job partner conmands : BREAK, RESTART, LOAD, and
TRAP. Bits 0-1 of TRI contain zeioes. The BREAK, RESTART, and LOAD commands
perform the same functions as described'above under utility requests. The

formats of TRI are:

0 0 | LI - oooi11 ///%é
0 1 2-37 38-13 -63 |

8-21

. Upon completion of the BREAK, RESTART, or LOAD commands, OSh
places the command in TRT into TRO to signal the job partrner that the command
was performed. The RESTART command causes control £o be given to the
restarted program, but the BREAK and LOAD commands cause control to be
returned to the ILLIAC IV program at the point of interruption.

TRAP is a job partner command that causes interrupﬁion of the
ILLIAC IV program and execution of an interrupt routine on ILLTAC IV.
The interrupt routine, either supplied by the user,. the compiler, or the
operating'system; is executed in the normal state (not in the interrupt

mode), as are all interrupt routines. The TRAP command format in TRI is:

11 36 6 20
0 0 TRAP COMMAND PARAMETERS 111111 IA

0 1 2-37 38-43 . LL-63

0Sk transfers control to the interrupt routine at the interrupt
address (IA) after loading AC3 with the TRAP command contents of TRI. Return

from the interrupt routine must be made with AC3 containing:

1 36 ‘ 6 20
0 TRAP REPLY PARAMETERS 111111 | TRAP REPLY PARAMETERS

1 2-37 38-L3 LL-63

Upon return from the interrypt routine, OSlk sends the contents of
AC3, containing the TRAP reply parameters, back to the B6500 job partner via

TRO and returns control to the user program at the point of interruption.

B6500 executive control is used for starting a job on ILLIAC IV

and recovering from errors. It is also used for diagnostic control. It

does not employ the use of the TRI-loaded interrupt, but rather forces control
of ILLIAC IV by use of TMU commands. Job initialization consists of halting
the éontrol unit(s), setting the configuration control fégisters, clearing
local memory, initializing the interrupt and advast control registers,
bringing OSL and the loader into PE memory from the ILLIAC IV disk, and
issuing a LOAD command. Upon receipt of the LOAD complete signal, a TRAP
command starts the ILLIAC IV job execution.

8-22

IX. THE LOADER

General i
The Ioader is an ILLIAC IV program located in the protected

area of ILLIAC IV memory. It performs the tasks necessary to transform
relocatable program segments into executable code and to overlay program

segments during program execution.

The load file, prepared by the Collector, is read from the ITLIAC IV
disk. The Loader ascertains the mode of memory allocation (see below). A
Memory Data Table and Subroutine Return Stéék‘are constructed for the job,
all necessary relocation and instruction parity formation is performed, and
the job is initiated by passing the address of the first location to be
executed to OSl. During job execution, the ILoader stacks all subroutine call
return addresses and performs ail.explicitly and implicitly requested over-
lay. At the end of the job, the Loader supplies information necessary for
diagnostic memory dumps, if requested.

Memory Allocation Modes

The Loader provides for the use of ILLIAC IV memory in one of

three modes: static, fixed overlay, and dynamic overlay.

In the static mode, all program segments remain in memory throughout
the execution of the job, in fixed locations. Thus this mode can be used

only for memory-contained jobs.

In the fixed overlay mode, program segmentslmay be overlayed by

others, but the locations occupied by segments when in memory are fixed
throughout the execution of the job. Segments may be explicitly called in
by the user program at any time, and any overlay implicitly initiated by
subroutine calls will also be performed. This mode may be used when a
program is not memory-contained, and it is possible and practlcal to map

the overlay scheme of the program.

In the dynamic overlay mode, program segments are not assigned to

specific memory locations before job execution begins. Instead, each program
segment is brought into memory and its relocatable addresses made absolute
only when implicitly called for by user subroutiné calls., This mode must

be used when the program is not memory contained, and it is impractical

to map the overlay scheme of the program.

Subroutine Linkage: The Memory Data Table

A Memory Data Table is constructed for each job by the Loader.
It resides in the write-protected area in ILLIAC IV memory, and contaiﬁs
information used in subroutine calls and requests for overlay of program
segments. A table allocation is made for each location declared as an
ENTRY in the program. FEach table location consists of two ILLIAC IV words.
The first word is divided into inner (by%es 1-4) and outer (bytes O and 5-7)
parts. The inner part contains the memory address of the ENTRY, as well és
information relating to its presence in memory and the type of segment which
contains it. The outer part contains the address of the appropriate Loader
routine to process the call on the ENTRY. The second word of the table

location contains a disk descriptor skeleton describing the segment on disk.

Subroutine Linkage: The Subroutine Return Stack

A Subroutine Return Stack is maintained by the Ioader in order to
provide the facility for recursive subroutine calls. Each time a subroutine
is called, the Loader places thé return address‘in the top of the stack.

Each return from a subroutine is made to the address in the top of the stack,
and the top of stack is deleted.

Subroutine Linkage: Standard Calls and Returns
The Standard Subroutine Call has the form:

SLIT(3) = SUB;

1HAD(3) $C3;5
EXCHL(3) $ICR;.

At execution time, the Loader will have placed in the address field
of the SLIT instruction the address of the Memory Data Table location corres-

ponding to SUB. Execution of these three instructions will cause control to

9-2

be passed to the appropriate Loader routine to process the call. When
the called subroutine is entered, a Return Word is in ACAR 3. In order to
return to the calling program, the called routine must place this Return
Word in ACAR 3 and execute a '

- STL(3) $ICR.
This instruction passes control to the Ioader return routine.

In the case of a call with parameters to be passed to the called

subroutine, the form:

FILL;
SLIT(3) = SUB;
16aD(3) $C3;

EXCHL(3) $ICR;
SKIP, 2 X (number -of parameters);

followed by the parameters, each 64 bits long, must be used. On entry to
the subroutine, the inner part (bytes 1-4) of the Return Word will contain
the address-1 of the first parameter word in the calling program. Return

is accomplished as in the parameterless case.

Relocatable Code Segments: Program Words

Program segments as produced by Assemblers and Compilers and passed
to the Ioader via the Collector are termed Relocatable Code Segments (RCS). The
bulk of each Relocatable Code Segment consists of Progrem Words, composed of
a 32-bit Program Syllable (ps) asséciated with a 16-bit Loader Information
- Pield (LIF). The LIF informs the Ioader of the action to be taken in
processing the PS. The format of the LIF is:

8 2 2 2 2
CiITIM|A

.

The meaning of the codes is as follows:
C=0 No loader action required (constant).

cC=1 The PS is an ILLIAC IV instruction syllable.

RR R 8 838
il
O

=0 SLIT, ALIT, JUMP
=1 Other CU instruction
= 2 PE instruction.

Absolute address
=1 Relocatable address

=2 Externally defined address. ¥ points
to the position in the External table
_containing the name of the external
symbol. The address of the instruction
contains a displacement which is added to
the address of the external symbol at load
time. : T

A=0 Row type address arithmetic

>
n

Word type address arithmetic
A=2 Syllable type address arithmetic

The PS represents bit string data. The bit string data
facllity provides the means for constructing data con-
stants formed by concatenating bit strings derived from
relocatably or externally defined quantities. F = the
length of the string (in bits). A and M are as defined

in the IILIAC IV instruction case (C =1)e If M =0
(absolute address) then up to 255 bits may follow, 32 per
PS. If a PS contains less than 32 significant bits, the
significant bits are left justified in the PS. If M = 1,
the relocatable address is right justified in the PS. If
M = 2, the high-order 8 bits of the PS contain the External
table position and the low order bits contain the displace-

ment.

The PS contains a loader pseudo-instruction. The high-
order 8 bits of the PS are the loader pseudo-operation
code. The low order bits are defined according to the

instruction. The 1oader-pseudo¢instructions include:

ALJ absolute Jump
BRLJ base-relative Jump
SRI.J self-relative Jump
ALS absolute skip
BRLS base-relative skip

SRLS self-relative skip

PzR§ place Beroes

PNYP place no-ops

FILL place no-ops conditional
~ SEGEND End of program segment

Relocatable Code Segments: Entry Table

7 Included in each RCS is an Entry table, consisting of an eight
character identifier and its associated relative locafion for each identi-

fier declared as an ENTRY in the program segment.

Relocatable Code Segments: External Table

Tneluded in each RCS is an External table, consisting of an eight
character identifier for each identifier declared as EXTERNAL to the program

segment.

‘Relocatable Code Segments: Miscellaneous

Included in each RCS is information relating to the Entry and
Fxternal tables, confirmation of the segment as an ITLIAC IV program segment,

length of the program segment, and the first executable location in the

9-5

X. THE HARDWARE SUPERVISOR

Several procedures, called intrinsics, are added to the standard
B6500 Master Control Program (MCP) to handle ILLIAC IV I/O and Interrupts.
These additional intrinsics are collectively referred to as the hardware

supervisor.

I/0 intrinsics are used by the operating system to transmit I/0
commands to the IOC, and to verify disk I/O requests from the job partners

and to generate the absolute disk addresses for these requests.

Interrupts are handled by an intrinsic that scans in IOC result
descriptors and then uses the contents of the I/O command and ID fields to
look up the jdb‘partner which should handle the result descriptor. The
intrinsic then places the result descriptor into the job partner's RECEIVE

queue so that the job partner can process the interrupt.

The hardware supervisof performs the control state fUnction; that
the other system programs cannot perform since they run in normal state.
Therefore, it passes interrupts on to the appropriate program that must take
action or lssues an I/O descriptor that was built by a system module. The
hardware supervisor performs a more complex task when it verifies all job
partner requests for validity and maps virtual disk addresses into absolute

disk addresses for the job partners.

The hardware supervisof receives all of its job partner-related
information from the execution monitor. This information is used to check
job partner requests for validity. In order to route interrupts to the
proper partners and prevent interference in another quadrant, the hardware
" supervisor must know which job partners are responsible for which quadrants.
The execution monitor provides the hardware supervisor with a table that
identifies the appropriate partner for each quadrant and also marks the
étack of the job partner program with this identification. In addition,
-the file map table, which was built by the disk file allocator to specify
the mapping of user files on the disk, is presented to the hardware super-
visor. The hardware supervisor puts this table into core in the form of
the double dimensioned array described in section IV. This table is used
to verify all I/O that uses the disk. Finally, a BIOM map is provided--and

10-1

updated as necessary--that describes the blocks of BIOM thaf the job partner

may use.

In order to illustrate some of the hardware supervisor's activi-
ties, a description of the steps followed in-a typical disk to array L/O
request follows. It is important to realize that it is the job partner _
which eventually receives and acts on all CU and I/O intefrupts. The hard-
ware supervisor passes interrupts to the job partner, puts I/O descriptors
for the job partners into their final form after checking for validity, and
issues the verified descriptors in control state. .The steps are numbered

.to correspond with the diagram in figure 10-1.
1l. The user program rumning on ILLTAC IV decides to perform an
2. I/O request, which interrupts the program and transfers control to

3. 08k, the ILLIAC IV resident portion of the operating system. OSL reacts
by taking four actions: It

4, Constructs a one-word I/0 request message from the user program's I/0
request parameters and places it in the control unit's test maintenance

unit output register (TRO). It also enters the request in a

5. ©Status table in the write-protected area of PE memory. The status table
is referenced in subsequent requests for I/O status and upon completion

of the I/0 transaction. OSh then performs a

6. CACRB instruction which sets a bit in the ADVAST control register and
causes an intérrupt of the I/O subsystem's controller descriptor control
-(cpc). o08h's last action is to

T. Return control to the user's program.‘
8. The CDC, having been interrupted by OSk, interrupts the
9. MPX (B6500 multiplexor), which in turn interrupts the

10. CPU (B6500 processor). The CPU is interrupted immediately if it is in
normal state, processing a normal B6500 user program. The ALGOL compiler,
data reformatting utility routines, and most of the ILLIAC IV operating
system are normal-state programs. If the CPU is already processing an-

- other interrupt, it is in control state, and cannot respond immediately

to this interrupt. Eventually, the CPU is interrupted, and control is

given to the
10-2

1.

12,

13.

1k,

15.

16.

17.

18.

19.

MCP (B6500 Master Control Program). The MCP runs in the control state
in response to various classes of interrupts, and controls I/O with all
peripheral dévices, and handles all the B6500 time-sharing activities
such as paging of program and data segments in B6500 core memory. The
hardware supervisor portion of the ILLIAC IV operating system, which

is embedded in the MCP, also runs in control state. The MCP, upon gain-
ing control because of this interrupt, causes the CPU to read the multi- -

plexor's

Interrupt register. The contents of‘this register indicate which

‘peripheral device is seeking attention. One bit is reserved for

TLLIAC IV interrupts. The MCP, recognizing the interrupt as having
come from ITLLIAC IV rather than a standard B6500 peripheral, transfers

control to the Hardware supervisor.
The hardware supervisor causes the CPU to "scan-in" a

Result descriptor from the CDC. This descriptor was generated by the
CDC as a result of the interrupt from OSh, and indicates that a partic-
wlar ITLIAC IV control unit is desiring attention. Recognizing this,

the hardware supervisor causes the CPU to initilate an I/O ‘signal to

the CDC. The CDC then fetches an I/O descriptor from

B6500 memory. The I/O descriptor is part of the hardware supervisor's
tables, and specifies a "read CU' operation. The CDC places the I/0

descriptor into its .

CU descriptor control, which causes the TRO to be read into B6500

memory. When the read operation is finished,

The CDC is again interrupted, which in turn interrupts the MCP via the
MPX and CPU, and the

Hardware supervisor again gains control. The hardware supervisor scans-
in the result descriptor which indicates the "read CU" to be finished,

and transfers control to the appropriate

Job partner. The job partner decodes the request read from the TRO,
and asks the hardware supervisor to perform the necessary disk I/O. The

hardware supervisor consults the

10-3

20.

2l.

22.

23. .

ok,

25.

27.
28.

29.

Execution monitor's tables to check the request for validity, and
causes the CPU to initiate another I/O signai to the CDC. This time,
the CDC fetches the I/0 descriptor from B6500. memory which describes
the "disk to array" read operation. The CDC places this I/0O descriptor

into its

Disk queuer. The I/0 descriptor contains an absolute disk address.
As the proper disk storage unit turns, eventually this address agrees
with the

Disk timing track. If the storage unit and its disk file controller

are not busy, the

Transfer of data from the disk to the PE memory begins. When the data

transfer is finished, or an error‘is detected, the

CDC list control interrupts the CDC. The CDC in turn interrupts the
MCP via the MPX and CPU, and provides the hardware supervisor with the

disk-to-array result descriptor.

The job partner again gains control and checks the result descriptor.

If an error is indicated, the job partner may decide to try again. If
it does not, or if the result descriptor did not indicate any errors,
the job partner requests the hardware supervisor to send an I/O-finished
meséage back to O0Sk. The hardware éupervisor checks the execution mon-
itor's tables and causes the CDC to fetch the proper I/0 descriptor from
B6500 memory to cause the "write CU" operation. This operation writes

the job partner's reply message from B6500 memory into the control unit's

TMU command register (TCR). When the operation is finished, the CDC is
again interrupted, causing the repetition of interrupts and resultant
actions through the MPX, CPU, and MCP. The hardware supervisor, upon
receipt of the I/O finished result descriptor, terminates the B6500
actions for this request. Meanwhile, the TCR register has received the

Jjob partner's message in the form of a command to place the reply infor-

" mation into the control unit's

TMU input register (TRI). This action causes an interrupt of the
User's running ILLIAC IV program, which passes control to OSk.

0S4 responds by taking the message from the TRI reglster and placing
it into the ‘ A
10-4

30.

31.

32-

33.

. 3k,

Status table. If the original I/O request from the user progfam had
contained an "interrupt address", 0Sk leaves the interrupt mode and

transfers control to an

Auxiliary interrupt routine supplied by the user. Entrance is made to
the auxiliary routine at the specified interrupt address. When finished
processing the reply message, the auxiliary routine returns control to

0sh via a program request interrupt, and 0sl réturns to the

Main user program at the point of interruption. At any time during or

after the I/O transaction, the user may perfdrm a

Status request, which interrupts the program and transfers control to
osk. 0Sh consults its protected

Status table, and returns to the user with the current status of the

designated I/O request.

10-5

P S 0 S I S B o S T o N B S - 0 S P
CHAIN OF EVENTS IN HANDLING ONE ILLIAC IX INPUT/OUTPUT REQUEST
(DISK TO ARRAY READ)

®

140 - .
REQUEST px - >
: r; B Mee (®]
coc w1 -
® REGISTER
. o [le
STATUS o054 | A HAROW.
TABLE s 109 CU_ATTENTION sue
- : DESC. >
P I eru e ®
® ® coc FETCH DESCRIPTOR ~
m ‘ - CU DESC. “CU READ" 1/0 DESCRIPTOR . 86500
TRO CONTROL MEM
T TRO READ INTO MEMORY :
MPX cPu
- mcP
coe
INT
REGISTER
o e]
RESULT I/0 FINISHED HARDW. J08
DES6 sue PARTNER
) { EXEC
MONITOR
‘ TABLES
coc FETCH CESCRIPTOR
i @ 86500
PE LLIAC IT TMiNG Lo/ oa] queuer “DISK_TO ARRAY" 1/0 DESCRIPTOR : MEM
MEM DiSK TRACKS - v . :
€OC LIST
CONTROL
wex | Py
- McP
coe o N
REGISTER
: cpy @
. RESULT 1/0 FINISHED NARDW. I .
DESC. su PARTNER
B EXEC.
MONITOR
TABLES
coc FETCH DESCRIPTOR
CU DESC. “CU WRITE" I/0 DESCRIPTOR 86500
. @ | _resur - MEM
 I— I TCR_WRITE_FROM_MEMORY
| IR ‘
USER
® @ : wex cpu
TRI - McP
STATUS coc T
TABLE g % REGISTER
USER 4—————————{__(:2__]-«——-———-— HARDW
B e =
USER

I USER l
®

STATUS
I REQUEST ""’
ySTATUS
[TABLE as4

{ USER _}41“-—'—

Figure 10-1

10-6

Appendix A. TLLIAC IV HARDWARE DESCRIPTION

The ILLIAC IV system contains four basic components: the
TILIAC IV computer, the TLLIAC IV disk, the B6500 computer, and peripheral
devices. The ILLIAC IV computer is a parallel array of four identical 7
computers, each configured into a control unit and a matrix of 64 identical
pyocessing units. Each processing unit contains its own thin-film memory of
o048 Bli-bit words. The ILLIAC IV computer, in itself, contains no input-output
peripheral devices other than displays for hardware maintenance purposes.
Tts only major data path to the outside wofld is to the ILLIAC IV disk.

PERIPHERAL B6500 ILLIAC IV ILLIAC IV
DEVICES COMPUTER DISK COMPUTER

The ILLIAC IV disk subsystem is a set of sixteen disk storage
units, each with a capacity for 921,600 6L-bit words, with an average rota- .
tional latency of 20 milliseconds. The disk units are head-per-track files.
The disk subsystem is capable of simultaneous reads and writes at a transfer
rate with the ILLIAC IV array of lO9
being matched with the ILLIAC IV memory, is faster than the B6500 memory.

bits per gsecond. This transfer rate,

For this reason, a buffer input-output memory (BIOM) is used between the

disk and the B6500 computer. The BIOM (not shown in the above diagram) is
really identical to two of the ILLIAC IV processing unit memories. The

B6500, for purposes. of data transfers to the ILLIAC IV disk, views the BIOM

as an extension of its own memory. The BIOM has a capacity of 4096 6L-bit .
words, or 5456 48-bit. B6500 words.

The B6500 computer is a large-scale time-sharing computer. Tt
has a five-fold advantage in speed over its predecessor, the B5500. It con-
tains a 600 nanosecond thin-film memory, expandable in 16,384 word modules
to 524,288 48-bit words. The B6500, unlike the ILLIAC IV, has a port to the
outside world, namely a multiplexor. The multiplexor has a direct connection
with the control units of ILLIAC IV for control information, but not a wide
enough path for large amounts of data. The pabh data normally takes to the
ILLIAC IV is from peripheral devices through the multiplexor, through the
BIOM, to the ILLIAC IV disk. ‘

The B6500 peripheral devices are connected to the multiplexor.
They include the standard set of input-output devices, namely card readers,
card punches, supervisory printers, line printers, magnetic tape drives,
teletypes, telephone data sets, mass storage, and B6500 disk. Also included
is an interface message processor (IMP) connected to the ARPA net of remote

equipments.

Appendix B. FILE SECURITY

1. A user is reQuired to log in with a project'néme and a user name. He

may also be required to use an authentication code.

2. Once a user is logged in, provided he is the administrator of the project
under which he logged in, he may add projects and other users to the system.

He uses the control statement:
EXECUTE FILE/SECURITY

3. The file security program takes note Of.the project name and user name

under which he has logged in.
4. He may add a project to the security file via the statement:
ADD PROJECT <project name> UNDER <user name>

The FILE/SECURITY program uses a file called SECURITY/FILE. It checks this
file for the name of the logged-in project name and ascertains whether the
logged-in user is in fact the administrator of that project. If he is not,

it replies with the statement:
YOU ARE NOT PROJECT ADMINISTRATOR. oo e

If he is the administrator, the file is checked for a duplicate entry of the
<project name>. If found, it replies with the statement:

DUPLICATE PROJECT NAME. USE ANOTHER.

If it does not find a duplicéke, it records the project name and user

name and responds with the statement:
PROJECT <project neme> UNDER <user name> ADDED TO SECURITY/FILE.

The named project becomes a sub-project under the logged-in project name.
The named user gains admittance to the system, may access all files access-
ible to the named project, and becomes administrator of the new project.
The named user may be new to the system, may be a previously admitted user,

or may in fact be the logged-in user himself.
5. The logged-in user may add other users to the system via the statement:

ADMIT USER <user name>

B-1

The FIIE/SECURITY brogram searches the SECURITY/FILE for the logged-in project
name. If the logged-in user is not the administrator of that project, it

responds with:
YOU ARE NOT PROJECT ADMINISTRATOCR.

If he is the administrator, the program compares the user name with recorded
user names under that project name. If a duplicate entry is found, it

replies with:
'DUPLICATE USER NAME. TRY ANOTHER.

If a duplicate name is not found, the named user is admitted to the system

" as a user of that project, and the program responds with the statement:
USER <user name> ADMITTED TO PROJECT <logged-in project name>.

6. A project name, together with the names of all its sub-projects, may
be disassociated from its parent project and moved to become a sub-project

under another project via the statement:
MOVE PROJECT <project name> TO <name of new parent project>

Only a project administrator who has jurisdiction over the 0ld and new
parent projects may use this statement. If the iogged—in user 1s found to
be the administrator of the logged-in project, and the <project name> is a
sub-project of the logged-in project, and the <name of new parent projéct>
is also a sub-project name under the logged-in project name, the <project
name> and all attached sub-project names and user names associated with the
<project name> and sub-project names are moved from the old parent to the

new, and the reply is made:
PROJECT <project name> MOVED FROM <old parent name> TO <new parent name>.
If all the above conditions are not met, one of the following replies is made:
YOU ARE NOT PROJECT ADMINISTRATOR.
PROJECT NOT ﬁNDER YOUR JURISDICTION.

T- A project name, with all its sub-project names, may be removed from the
SECURITY/FILE via the statement:

DELETE PROJECT <project name>

The program checks to see that th2 logged-in user is the administrator of
the logged-in project. It then compares the <project name> with the logged-in
project name and all other project names which are sub-projects of the

logged-in project. One of three replies is made:
YOU ARE NOT PROJECT ADMINISTRATOR.
PROJECT NOT UNDER YOUR JURISDICTION.
PROJECT <project name> DELETED FROM SE(}URITY/FILE.

If the project is deleted, all users associated with that project and its
sub-projects are deleted. Since a user may be associated with many projects,
occurrences of his name are deleted only with reference to the deleted

projects.
8. A user may be removed from the system via the statement:
DELETE USER = <user name> FROM PROJECT <project name>

If the logged-in user is found to be the administrator of the logged-in
project, and the <project name> is the same as, or a sub-project of the
logged-in project name, and the <user name> is found to be a user of that
project but not the administrator of that project, the <user name> entry is
disassociated from the <project name>. "Entries with the same <user name>,
but associated with other projects, are not disturbed by this action. One

of four replies. is made:
YOU ARE NOT PROJECT ADMINISTRATOR.
PROJECT NOT UNDER YOUR JURISDICTION.
USER IS ADMINISTRATOR. CANNOT BE DELETED.
USER <user -name> DELETED FROM PROJECT <project name>.

9. In order to delete a project without at the same time deleting its sub-
project, or in order to insert a project between a parent and sub—project,

a. combination of ADD, MOVE, and DELETE statements muist be used. In order to
delete every entry of a user's name from the system, a separate DELETE
statement must be used to remove the user from the seﬁérate projects. TFiles

created by the named user under the named project are not purged. They are

attached to the administrator of the named project. In order to delete an
administrator of a project, his user name must be changed. Since an adminis-
trator cannot be deleted from a project, he can be replaced only by changihg

his user name:
REPLACE USER <user name> WITH USER <user name> UNDER PROJECT <project name>.

10. When a project is deleted, all files attached to that project are
purged. 1In order to save such files, a separate statement should be used

before deleting the project:

MOVE FILE <file name> FROM PROJECT <old project name> TO PROJECT <new
project name>

Only a project administrator who has jurisdiction over the old and new

projects may use this statement.

1l. Once a user is admitted to the system, he may obtain protection of his
admittance via the statement: '

PROTECT WITH <authentication code>

Subsequent entries to the system are made by logging in with the authentiqa-
tion code in addition to the project name and user néme. This aﬁthentication
code is not revealed to any other user in the system. It is the user's
private code. When lists of projects and users are provided, such as for
billing, only‘the project names and user names appear. If at any time a user‘
feels his authentication code has been compromised, he may change it by

using the statement:’
PROTECT WITH <new authentication code>:

12. Project names, user names, and authentication codes are each restricted
in length to eight alphanumeric characters. The format for logging in to the

system is:
?LI:<project name>,<uUser name>
or
?LI:<project name>,<user name>,<<authentication code>

- response'to the log-in, the system replies with one of five statements:

B-l

PROJECT NAME NOT IN SYSTEM.
USER NOT PROJECT MIMBER. SEE ADMINTSTRATOR = <project administrator name>.
AUTHENTICATTON CODE INCORRECT.
PLEASE AUTHENTICATE.
STATTON <station nwibers LOGGED TN AT <bimes.

13. Any user may obtain a complete list of projects, administrators, and

users in the SECURITY/FILE via the statement:
LIST

Authentication codes, of course, are not shown. The listing has the follow-
ing format:

1: Project name - Administrator name
User name

User name

2: Project name - Administrator name

~ User name

User name

2: Project name - Administrator name
User name

User name

3: Project name - Administrator name
User name

User name

-
.
.

k: Project name - Administrator name
' User name

User name

B-5

2: Project name - Administrator name
User name

User name

.
]
.

3: Project name - Administrator name
User name
User name

3: Project name - Administrator name
User name
User name

1Lk. When a user creates a file, he, and only.he, has full access to that

file. He may let others have access to it via the statement:
OPEN <file names> TO <accessors> VIA <access type>

A file name can have any number of parts, each separated by slashes, and
each restricted to eight alphanumeric characters. Several files, each to
have the same access, can be named separated by commas. The accessors can
have one of the following five forms: (1) A project ﬁame permits access by
any user of the project; (2) A project name; followed by one or more user
names restricts access to only those named users of the project; (3) The
construct <project name> + PARENTS permits access by all users of the
project and all users of projects in a direct ancestral line to the named
project; (4) the construct <project name> + SUBS permits access by all users
of the named project and all users of every project that is a sub-project
of the project and their sub-projects; (5) the word ALL permits access to

all users in the systemn.

Any number of representatives of the five accessor forms may be strung into
a list, separated by semicolons. Within type 2, the users are separated
from the project name and each othér by commas. The wo}d VIA ends the
wccessor list. The access type can have one of three forms: READ, WRITE,

or ADD, or any combination of the three, separated by commas. A list can

B-6

be formed by use of semicolons to correspond one-for-one left to right with
a list of accessors. A distinction is made between the access types WRITE
and ADD. Any part of a file may be written into, including overwriting
information via the access type WRITE. Access type ADD permits writing
additional records into the file, but not overwriting previously recorded

information.

Even though a creatér of a file is the only one who ﬁas access to it when
the file is first created, the file is created under a project. The file
creator, the administrator of the project, and the administrators of parent
projects are all permitted to use the OPEN statement for that file. Provid-
ing access to a file does not provide the facility for usirg the OPEN

statement.

"15. Any user can construct private accessor-type declarations for use in
OPEN statements. They are entered into the SECURITY/FILE for fubure use of
the particular logged-in project-user. The declarations are identified by

means of the statement:
DECIARE <access identifier> = <accessors> VIA <access types
Subsequent uses of OPEN statements can take the form:
OPEN <file names> TO <access(identifier>
16. Users can be denied access to file; via the statement:
CLOSE <file names>.TO <accessors> VIA <access types>

The file names, accessors, and access types are structured as in the OPEN
statement. A file may be closed to all access types via a shortened version

of the statement:
CIOSE «file names> TO <accessors>

Thé file creator and parent administrators are permitted to use the CLOSE

statement.

17. Files may be purged from the system by its creator or any parent

administrator via the statement:

PURGE «file names>

B-T7

~48. Any user who has access to a file may increase the length of time the

file is to be kept in the system via the statement:
SAVE <file names> UNTIL <date>

Sevéral files may be named separated by commas. Access by the user is
checked independently for each file.. Rejection of the request for a‘non-
accessible file does not affect acceptance for accessible files. Files
already to be saved to a later date than <date> are unaffected. For each

file, one of two replies is made:
YOU HAVE NO ACCESS TO <«<file name>
FILE <file name> SAVED UNTIL <date>

.19; The administrator of the parent project of all projects'in the system

has the capability of obtaining billing information via the statement:
BILLING FROM <starting date> TO <ending date>

A separate page of the output is started for each project in the system.
gcluded with that project are all of its sub-projects. Thus, each project
administrator can recelve a copy of the charges for his project and the

sub-projects under his Jjurisdiction.

20. Thé administrator of the parent project of all projects in the system
has the capability of erasing billing history via thevstatement:_ ‘

ERASE BILLING TO <ending date>
21. Execution of the program FILE/SECURITY is terminated via the statement:
END

22. The SECURITY/FILE consists of four files: a directory of project names,
called SECURITY/FILE/PROJECTS; a directory of user names, called
SECURITY/FILE/USERS; a directory of all files in the system, called
SECURITY/FILE/FILES; and a directory of all file access identifierg called
SECURITY/FILE/ACCIDS. The formats of these files are as follows:

SECURITY/ FILE/ PROJECTS

PROJECT NAME

——
--
——
- . - . ¢ A D e T G S M e e RS W SR AR R SR GG T W e e e g o G e
——

- - O T BV A S M e MR e S o W M A R M md G e G G e W Ow S M e WA T OV e e we S e e e

A R ————— R e e e K Rl R R]

- o - . mh - - o —— - v T . W A Wm e S oW S W W Wt s v e v G e e =

- L - o G e . D e o P S e S e Gt T W G e G W e e O S M e em o o

o - - - o oo o = e - - s - T ot S e - kB S8 G WA S W) S W Bw G wn e e e

e o s o v o e ot ot e e o S s e e o G e o o e

___,,..,_._._,_,,______________._,__________.___,_________

B-9

SECURITY/ FILE/USERS

PROJECT ADMINISTRATOR NAME
ADMINISTRATOR AUTHENTICATION' CODE
IOCATION OF FIRST ACCESS IDENTIFIER

M A S OO M AN Ak e e S S MR AR RO S s R e N e w WD G P M W SR G e M e e e e e R e POt AW am R S

A S e o S e e . G/ S . S A L e WS O S S S G WY M me W B e G e D EW W B B A B e e

USER AUTHENTICATION CODE
~ LOCATION OF FIRST ACCESS IDENTTFIER

- o o S o B G A R - D e W - Y WD A e S e) m e e e S e G e S e e

USER AUTHENTICATION CODE
LOCATION OF FIRST ACCESS IDENTIFIER

e - e - - = D o Gt S . . " - 3 & b . M M We M n e == - e e -

PROJECT ADMINISTRATOR NAME
ADMINISTRATOR AUTHENTICATION CODE
LOCATION OF FIRST ACCESS IDENTIFIER

T v —w n Sy M e AT N TR WS M s A8 W i e e M R G % e e - e .

W . . - - -~ - e e e G e W S im0 e E . = e W S S M e em e . e

USER AUTHENTICATION CODE
LOCATION,OF.FIRST ACCESS IDENTIFIER

T o wn S e r e me AR n G V. . " e B s G G S e e - e S S e S S T AN S e e A AN e . e e

- USER NAME
- USER AUTHENTICATION CODE
LOCATTON OF FIRST ACCESS IDENTIFIER

548 a0 o S5 o o W S v e e v e e - e A M A D e S e e e e - - e .

B-10

SECURITY/FILE/FILES
NUMBER OF PARTS IN FILE NAME

P S e b R e)

FILE NAME PART
FILE NAME PART

RIGHT-MOST PART OF FILE NAME

a0 . e - G L S PR W MR Sw W T G S S e W e T W e S W TN MR M S G e e e e S SR e S BN G G
- S D o B B . . S o S Wl W S G WA W e M S S e T R R W e M e e @6 e ome

LOCATION OF ACCESS IDENTIFIER

NUMBER OF PARTS IN FILE NAME

e o - - . G 54 G e . e S S e e - e G G G e e e e e e e Ge S e . e s S

LEFT-MOST PART OF FILE NAME
FILE NAME PART
FILE NAME PART

RIGHT-MOST PART OF FILE NAME .

LOCATION OF ACCESS IDENTIFIER

B-11

SECURITY/FILE/ ACCIDS

NUMBER OF ACCESS IDENTIFIERS

"E/USERS

ACCESS IDENTIFIER
NUMBER OF ACCESSORS

PROJECT NAME
TYPE OF ACCESS
ACCESSOR TYPE OR NUMBER OF USERS
USER NAME
USER NAME

ST L e em D e G A S M R e e e Gt G e T v S WR W B R = =S e O - e . . an A" A o o .

PROJECT NAME
TYPE OF ACCESS
ACCESSOR TYPE OR NUMBER OF USERS
USER NAME
USER NAME

SN A S e e e e Gt e S M e 0 Y o - v = W S G A e R e Y e e ey A o

ACCESS IDENTIFIER
NUMBER OF ACCESSORS

R s b wA ey G S S e S W e 2 e T S e o e mR AR M S R S e e e G W M S8 e M e

POINTERS FROM SECURITYA

NUMBER OF ACCESS IDENTIFIERS

ACCESS IDENTIFIER
NUMBER OF ACCESSORS

T R e e e e G e Ve N 6 N G e W M G A S Y SN - - N S S . 8 At e T e e e .

POINTERS FROM SECURITY/FILE/FILES

23. The FIIE/SECURITY set of files forms a tree. A subset of the tree,

with its file pointers, can be diagramed as follows:

-

J’ ;
IS e Ll m P54
! l
Eigs iggsﬁgs i
TDENT. TDENT.
l
PROJECT || Ao o0 |y USER
T
PROJECT (""" %Eﬁ > cggigoza

Appendix C. INTERACTIVE USES OF ILLIAC IV

It can be argued that there should be no interactive use of
IILIAC IV. The machine is too powerful to be allowed to sit idle while
awaiting human response. On the other hand, it is clear that (1) inter-
active use of computers has become very popular among programmers and (2)
there will be occasions when the interactive use of ILLIAC IV would be a

useful extension.

Obstacles in Problem Solving

When computers were scarce, the lack of computer time and the
failure of numerical algorithms were the prlmary hurdles which faced the
physical scientist in attempting to solve his problems. Whlle both these
problems persist as machines become faster, a new obstacle also arises.

The effort required to debug a‘written program can limit the number of new
problems that caﬁ be solved, regardless of how.fast the machine is or how
applicable the numerical algorithms are. Great strides are being made in
developing appropriate numerical algorithms. The advent of fourth genera-
tion machines will make available several hundred times the computing power
thet was available with third generation machines. Thus the obstacles
imposed by limited resources in numerical mathematics and computer time are
shfinking Tt seems only appropriate to also attack the new obstacle,
which lies not in mathematics or in the computer but in the man-machlne

1nterface

Compilers and Programming Effort

No one disputes the usefulness of higher ieVel languages. Their
sole purpose is to make it easier to compose code and thus increase the
productivity of a programmer. The inefficiency in the object code produced
by the compiler is generally accepted because considerably less programmer
effort is required to. compose a code. Clearly, in using a higher level
language, the resource of computer time is compromised to enhance the resource

of programmer effort.

Considerable effort has been expanded on the Tranquil compiler so
that the amount of programmer time required to compose a program is not
exorbitant. But composing the program does not complete the programming phase

of the job. The program must be debugged before it can be run productively.

c-1

On conventional computers, the length of‘time required to compose a large

code and the length of time required to debug a written code require

| roughly the same length of time. Why not devote-some effort to shortening
the time.required by a programmer ﬁo debug the code he has so conveniently

written in Tranquil?

Debugging Aids

The ILLIAC IV is a radical new design. It will be used principally
by people who are familiar with conventional machines. These people will
attempt to implement a new generation of problems in a language which is
totally foreign to them. (They use FORTRAN.) The software will have
errors. Many of the.people using thevﬁachiﬁe will reside elsewhere and will
wish to minimize their stay in I1llinois. All of these factors will compli-
cate the debugging process. Users must bé given adequate tools to offset
these complications or the result will be a long deiay between the completion

of codingjand the first production run.

In order to reduce the time and effort required to debug a larger
" code, the following features will be implemented in the system. CRT-keyboard
devices will be available to allow the user to "interact" with his ILLTAC IV

program. A user will be able to:

(1) Breakpoint through the instruction stream and display the
current value of any memory location or any operating register. Breakpoints

may be specified relative to machine ingtructions or Tranquil statements.

(2) Change the value of any memory locatipn or operating resistor
and resume execution with the new value. The programmer will be able to
select one of several formats (flbating point, integer, BCD, etc.). The
memory locations td be displayed may be referred to by location number or

symbolic name.

. Since a CRT can display many values (perhaps 30-40) simultaneously,
there is no reason to restrict the information displayed at one time. This
"interactive" mode may be entered (that is, the first breakpoint may be -
imposed) in one of the following ways: (1) at the command of the operator,
(2) upon entering a specific subprogram during the execution of an ILLIAC IV

program, (3) after executing for a certain length of time.

c-2

No Dégradation of Performance

These features can be implemented without significantly degrading
ILLIAC IV's performance, and at the same time it will appear to the user
that he is truly interacting with ILLIAC IV. When execution of a program
that is being run in "interactive" mode is suspended (execution of a break-
point), a file will be written on ILLIAC IV disk which contains a core dump
and a dump of all the PE registers. When the usér has‘identified those wvalues
he,wishes.to have displayed, the B6500 will load a buffer in its memory
from the ILLIAC IV disk and paint the CRT from this buffer, performing sult-
‘able encoding and formatting. If the user asks for the value of a variasble
by its symbolic name, the location of that variable in ILLIAC IV memory will
be obtained from the loader. If any values are to be modified, they will be
entered from the keyboard, decoded, and overwritten on ILLIAC IV disk. The
Aprogram.will then be restarted by loading ILLIAC IV from the disk file. (1t
is implicit in this implementation that the user will have sufficlent memory
maps provided by the compiler or loader.) Since the human fesponse time will
be in seconds while the B6500-ILLIAC IV interaction will be in milliseconds,
the process will appear to the user as an interactive one, but to ILLIAC IV
it will be offline. ' S T i

Interacting During Production

Some form of monitoring during a production run is necessary. If
the CRT-keyboards equipment has the capability to draw vectors, it should be
almost straightforward to develop software packages to search ILLIAC IV data
files and display "snapshot" graphical output, which can be monitored con-
tinuously during Ehe execution of a production run. This is a powerful
extension of the interactive process since any breakdown in a production code

can be detected immediately, and the job can be aborted.

Advantages of Interactive Debugging

The conventional debugging procedure is to inseft print commands
at strategic points in the ccde, execute until a disaster occurs, then attempt
to isolate the erroneous logic. Generally, this requires many repetitions,
with the print commands being expanded and rearranged. The programmer must
make repeated runs, often encountering scheduling delays, often frustrated

because he did not print all that was .needed. If an exhaustive print is

C-3

'attempted or if repeated dumps are tsken, the printers are occupied for
extended times and pouring through the massive output is very time-consuming.
Subtle errors which are encountered when the compller or operating system
"goofs" are almost impossible to detect using these procedures, and often

costly delays of several weeks result.

Using interactive debugging, the program is not required to sub-
mit several runs in order to find the values he needs. Any vaiues can be
displayed at his command, so the troubleshooting process is uninterrupted.
The printers are not tied up, and the programmer doeélnot have to thumb back
and forth'through reams of printout, diligently searching for a vital value.
Compiler errors can be detected almost as easily as logic errors and can be

corrected on the spot, rather than waiting for a "fix" to the compiler.

“There are certain problems which require "interaction" as the only
practical method of solution. These problems include very complex non-linear
equations in many unknowns and optimization problems with non-linear’
constraints. Solution of these equations by ordinary techniques is extremely
‘difficult and requires many separate runs. Many decision-making processes
mist be programmed. With an interactive CRT, a graph is displayed, and
paraméters are adjusted (with the human mind performing the problem-solving

decision process) until a solution having the desired'properties is generated.

¢

C-k

	001
	002
	003
	004
	005
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-01
	09-02
	09-03
	09-04
	09-05
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	C-1
	C-2
	C-3
	C-4

