6&000C
1L4-Pii

I

L
L
I
A
®

ILLIAC IV

SYSTEMS CHARACTERISTICS

AND
PROGRAMMING MANUAL

IV

CHARACTERISTICS
AND

PROGRAMMING A Burroughs Corporation
MAHUAL ' DEFENSE,; SPACE AND SPECIAL SYSTEMS GROUP

66000D

1La-PM1

1 May 1972

[}
£
o0
-4
o
=
fo
S
m

SYSTEMS CHARACTERISTICS

ND
PROGRAMMING MANUAL

1ous

This document replaces in entirity all prev

i0n.,

f IL.4-PM1 informati

1ssues o

Burroughs Corporation

Defense, Space and Special Systems Group

PROJECT SUPPORTED BY ADVANCED RESEARCH PROJECTS AGENCY
UNDER CONTRACT NO. AF 30(602)4I144 AS ADMINISTERED
BY UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS.

II.

CONTENTS

SYSTEM CHARACTERISTICS.
System

System Elements
Control Unit Functions

Control Units
Control Unit Structure
Timing Considerations
Sequence of Operations
Processing Units .
Processing Element
Processing Element Memory
Memory Logic Unit
I/O System .
B6700 I/O Control Computer
ILLIAC IV Disk File Subsystem
ILLIAC IV I/O Subsystem
PROGRAMMING CHARACTERISTICS
Word Formats.
Instruction Word Formats

Data Word Formats
Notation Conventions

iii

Page

1-14
1-16
1-16

1-20
1-21
1-26
1-26
1-27
1-27

1-29
1-30

III.

Iv.

CONTENTS (CONT'D)

Page
Configuration Control Logic. « « . . o 2-5
Forking and Joining « . .« . o o 2-11
Basic CU Registers« « « . .+ . o 2-12
Operational Control « « « =« =« =« « « =« = 2-12
Interrupt Handling e e e e e o e 2-13
Interrupt, Mask, and Control Reglster Functions . . 2-17
Illegal Instruction/Address Handling 2-20
Input-QOutput Control« - =« =« .+ =« o =« o 2-23
Descriptor Controller. . . - =« =« o =« == =« =« = 2-23
Disk File Control =« .« =« o =« « o o 2-44
Buffer I/O Memory« « « « o o & o o 2-46
I/OSwitch « o & « + e« & . 2-51
ADVAST INSTRUCTIONS+ =« « =« o o o =« o 3-1
Instruction Format and Field Usage =« =« = 3-1
ILLIAC IV Addressing+ « =« =« =« =« o o & o 3-4
ADVAST Instruction Repertoire - « =+ « .« = 3-8
ADVAST Instruction Descriptions « =« . =« = 3-11
FINST/PE INSTRUCTIONS =« .« =« =« =« o = 4-1
Instruction Format and Field Usage =« .« =« 4-1
FINST/ PE Instruction Repertoire - 4-5
FINST/PE Instruction Descriptions 4-12

iv

CONTENTS (CONTD)

V. TEST MAINTENANCE UNIT
Word Formats
B6700-TMU Communication
Register Address Codes and Accessibility
Operation of the TMU
Diagnostic Features .
TMU Display

TMU Instruction Set .

VI. INSTRUCTION TIMING .

VIIL, PERI
I/O Subsystem Timing

B6790 Peripheral Device Timing

Appendix A, GLOSSARY.

Appendix B. INSTRUCTION INDEX .

}

Page

5-5
5-7
5-17
5-9
5-10

5-15

Figure

1-1

2-10

2-11

ILLUSTRATIONS

Development of Parallelism Toward Improving

Program Throughput
ILLIAC IV System Configuration
Array Connectivity
Control Unit
Processing Element
Control Unit Block Diagram
Processing Unit Data Inputs and Outputs
Processing Element Block Diagram

ILLIAC 1V Interface Diagram

Instruction Word Formats

FINST/PE Data Word Formats
ADVAST Data Word Formats
Descriptor Controller

Disk File Control

Buffer 1/O Memory

PEM 32-Bit Mode Format

PEM 48-Bit Mode Format

48-Bit Mode PEM Address Modification

I/O Switch Configuration for 1024-Bit Transfer

Capability

Possible Expansion Elements to Basic 10S
Configuration for 4096-Bit Transfer Capability

Test Maintenance Unit

TMU Display Keyboard Character Set

FINST Overlay Structure

vi

Page

1-2
1-4
1-4
1-6
1-10
1-12 .
1-20
1-22
1-28

2-2
2-3
2-4
2-24
2-45
2-48

2-48

2-49
2-49

2-50

2-50

5-2
5-13

Table

2-1

TABLES

Functions of Bits in Interrupt (AIN) and Mask (AMR)
Registers

Functions of Bits in CU Control Register (ACR)

Legal/Illegal CU Addresses

Valid Registers for ADVAST Instructions

Operations Specified by Instruction Field of I/O
Descriptor

ADVAST Instruction Op Codes

CU Determination Chart

FINST/PE Instruction Op Codes

Address Codes for CU Registers

Bit Configurations of TCC Register and SRT Instruction

Data for Diagnostic Usage

ADVAST Instruction Timing
FINST/PE Instruction Timing

Peripheral Device Timing

vii

Page

2-18
2-19
2=22
2-22

2-34

5-6

5-8

6-8
6-11

7-8

INTRODUCTION

The ILLIAC IV is a large digital computing system that employs an advanced
concept of parallel design to achieve a major increase in processing capacity,
The nucleus of the system is the ILLIAC IV array, a matrix of 256 identical
processing units and four identical control units, configured into four identical |
quadrants, each having 64 processing units under the direction of a control unit.

These array elements perform the computational tasks for the system.

Although the user of this manual will be concerned mainly with operations
internal to the array elements, he should have a working knowledge of the
ILLIAC IV system as a whole. To provide this coverage, Section I is devoted
in its entirety to a general discussion of the system organization and of the
major units within this organization. Emphasis has been given especially to
interactions between the major subsystems — ILLIAC IV array and I/O sub-
system — and the disk file and B6700 control computer. Section II presents
detailed information pertaining to programming characteristics. This section
includes bit allocation in the internal word formats, the implementation of the
configuration control logic, and the basic registers of the CU. It also includes
descriptions of the Interrupt Control (including Interrupt Handling) and Input-
Output Control. Section III provides a discourse and flow chart for each of the
machine instructions executed by ADVAST of the Control Unit. Section IV
similarly treats FINST/PE instructions executed by the array processing elements.
A detailed description of the functional characteristics and instructions exe-
cuted by the Test and Maintenance Unit is presented in Section V. Section VI
is devoted to a discussion of instruction timing. Section VII presents a dis-

cussion on peripheral timing. A glossary of terms which includes abbreviations

ix

frequently used throughout this manual, and a quick reference table for ADVAST,
array processing element, and TMU instructions are presented in the Appendices.
These quick reference tables have also been included on the inside tabs of

sections III, IV, and V respectively.

CONTENTS

Page

SYSTEM 1-1

System Elements 1-3

Control Unit Functions . 1-7
CONTROL UNITS« 1-11
Control Unit Structure 1-14
Timing Considerations 1-16
Sequence of Operations. 1-16
PROCESSING UNITS 1-20
Processing Element 1-21
Processing Element Memory 1-26
Memory Logic Unit 1-26
I/O SYSTEM - . . - 1—27
B6700 I/O Control Computer 1-27
ILLIAC IV Disk File System . . .-. 1-29

ILLIAC IV I/O Subsystem 1-30

SECTION |
SYSTEM CHARACTERISTICS

SYSTEM

ILLIAC IV is a milestone in computer development in that it provides a level
of parallel processing many times that of conventional designs. To achieve
this, a new and fundamentally different approach is used. For important
classes of problems many repetitive loops of the same instruction string are
executed with different and independent data blocks for each loop. Parallelism
may be applied here by using N computers, each executing the identical pro-
gram concurrently on separate data blocks. This improves execution time by
a factor of N for that program. Similarly, since each computer is executing
the identical program, much of the control logic of the computers could be

made common. This is the fundamental proposition of the ILLIAC IV computer.

Figure 1-1 shows a three-step evolution from conventional design to the
ILLIAC IV. The top schematic (Figure 1-1a) shows three identical program
loops (P1, P2, P3) operating on three different data blocks (D1, D2, D3) in
series. The block element shown is a computer, without input-output or mem-
ory, that is functionally separated into a control part (CU) and an execution
part (PE). Figure 1-1b shows a simple application of parallelism that produces
a threefold increase in throughput. The final schematic, Figure 1-1c, shows
the ILLIAC IV approach with its simplifications and economies over the above

method.

° P2 P3 Cu | PE D1 D2 D3

a. Conventional Computer

P cu PE 1—‘.
cu | PE .——.
P3 | CU PE 1—.

b. Improved Throughput by Paralleling
Identical Processors

e (o)
.—— =~ CU | PE D2
P @

C. ILLIAC IV Approach, Using Common Control Logic
and Parallel Identical Processors

Figure 1-2. Development of Parallelism Toward Improving
Program Throughput

1-2

The ILLIAC IV has a distributed memory system which allows each execu-
tion element uninhibited access to an assigned data block within its own
memory. If a conventional, centralized memory were used, much time

would be wasted in routing data to and from such a memory.

SYSTEM ELEMENTS

The five major elements of the ILLIAC IV are the Control Unit (CU), the
Processing Unit (PU), the Input-Output (I/O) Subsystem, the Disk File, and the
B6%00 Control Computer. Each PU is a combinationof a Processing Element (PE),
Memory Logic Unit (MLU), and Processing Element Memory (PEM). A CU directly
governs 64 PUs configured in an array as illustrated in Figure 1-2. In the
ILLIAC IV system there are four such identical arrays called quadrants,

making a total of four CUs and 256 PUs. Quadrants may function separately

or in combination with one another.

Each PU is labeled with a unique three-digit octal number, the first octal
position identifying the quadrant number and the second two positions the PU
number within a quadrant. The four ''nearest neighbor' connections within

the array are defined in terms of direct, parallel, word transfer paths between
one PU and others having assigned labels differing by plus and minus eight,

and plué and minus one, from the value of the connected PU's label (Figure
1-3). Thus for example, PU033 can transfer directly to PUs 023, 032, 034,
and 043, This connectivity is maintained for both separate and joined quadrants,
and enables a variety of physical images to be modeled - for instance, weather
maps — by means of a combination of these transfer paths. All CUs have full-

word data interconnections for programs that operate in a multiquadrant mode.

The Burroughs parallel disk file is the principal secondary storage element,
the main storage being furnished by the PEMs. The disk file provides a stor-
L ' g

age capacity of 79 X 10 Dbits per Storage Unit and has a transfer rate of

6 . .
502 X 10 Dbits per second. Data is routed in and out of the disk files through

1-3

cu cu
TN
/ 64 PUs 64 PUs
64 PUs 64 PUs
cu cu
B6700 1/0 ILLIAC X
SYSTEM SUBSYSTEM E:LS;

Figure 1-2. ILLIAC IV System Configuration

I I I | I I
— 0 1~ 2 3 4 H 5 6 7T —
I 1 | I ! I |
— 10 —
I |
— 20 (— — 23 —
l I I
— 30 [— —-32—33r—-34-———
1 I | I
— 40 — — 43 P—
I I
— 50 }—
I
[
— 70 —

Figure 1-3. Array Connectivity

1-4

the Input-Output (I/O) Subsystem which includes the Descriptor Control-
ler (DC), the I/O Switch (I0S), the Buffer 1/0 Memory (BIOM), and the Disk File
Controller (DFC).

The final unit of ILLIAC IV is a B6700 control computer system which serves
as the principal managing element for ILLIAC IV. Resident in this system are
executive control, facility allocation, peripheral-equipment control, I/O proces-
sing and initialization, fault recovery, and program assembly. The linkage
between the B6700 system and the Control Units is via the I/O subsystem, as
shown in Figure 1-2. It is this link that the B6700 uses fo initialize the state
word in each CU, that is, setting the initial value of the program counter, the
control state, and array configuration. The array configuration identifies the
quadrants that are working jointly on the same program and the quadrants, if
any, that are operating independently. The B6700 also generates controls to
initiate the transfer of program and operands from disk to array memory before

allowing the CUs to proceed with program execution.

To effect a data transfer, the B6700 supplies the DC with a start address and
the number of words to be transferred. The DC then sends an intermediate
memory address to the CU and the disk file to initiate the transfer. Data
transfers are made directly between disk and the PEMs. Once the required
number of instructions and operands have been transferred from disk, the CU
will begin program execution by sending an instruction fetch to the PEMs.
Operation then proceeds in the conventional manner, under control of the
program stored in the PEMs. Instructions as well as operands may be trans-
ferred across quadrant boundaries, so they need be stored only once, regardless

of the configuration.

1-5

DC a—

l FROM ALL PEMS |

INSTRUCTION Y Y
LOOK- INSTRUCTION OPERAND
————
AHEAD STACK STACK
(ILA)
i
I
|
|
|
| ADVANCED |@¢——r-—
I e oo - STATION
: | (ADVAST) |——
TEST | :
MAINT, ' |
UNIT : |
l : FINAL INSTR.
: | QUEUE
P (FINQ)
I
|
| |
Y ¥
SERVICE FINAL
‘ - - - STATION
UNIT
DC —=-~--> (MSU) (FINST)

CONTROL BUS DATA AND CONTROL
ADDRESS BUS BUS
k
~s
TO 64 PEs
Figure 1-4. Control Unit

MODE STATUS

FOR 64 PEs

s INSTRUCTION

FLOW
ADDRESS
FLOW

DATA FLOW

CONTROL UNIT FUNCTIONS

The Control Unit is that portion of the computer system which performs the
initial processing of instructions up to and including the generation of instruc-
tion microsequences for a step-by-step control of the Processing Element.
Figure 1-4 is a general block diagram of this single cabinet unit. Contained
within the CU are five operating sections which perform specialized processing
tasks on a semi-independent basis: Instruction Look-Ahead (ILA), Advanced
Station (ADVAST), Final Station (FINST), Memory Service Unit (MSU), and
Test Maintenance Unit (TMU).

The Instruction Look-Ahead (ILA) fetches instruction words in 8-word blocks
from array memory, placing them in a 64-word content-addressable memory
which serves as an instruction word stack. Individual instruction blocks are
assigned locations by an associative memory which holds all but the four low-
order bits of the instruction addresses. To access a word in the stack, the
instruction counter in ILA sends the instruction address to the associative
memory to locate the proper 8-word group in the instruction stack, and then
the four low-order bits will select the appropriate instruction. Program

loops of up to 128 instructions can be contained within the instruction stack.

From the instruction stack, instructions are fed in turn to the Advanced Station
(ADVAST), which is the principal housekeeper of the system. Such functions
as address arithmetic, loop control, mode control, interrupt processing, and
configuration control are performed here. The hardware complement of
ADVAST consists of a 64-word operand stack, four full-word accumulators,
and a combinatorial logic unit, the latter used to perform functions such as
adds, compares, shifts, bit testing’, etc. ADVAST permits all those functions
generally associated with program control to be performed concurrently with,

but in advance of and separate from, the main processing activity.

1-7

The primary function of the Final Station (FINST) is to act as an intermediary
between the main control, in ADVAST, and fche 64 array elements, called |
Processing Elements (PEs). The repertoire for ILLIAC IV has two general
categories of instructions: those executed at ADVAST and those executed in
the array elements but controlled by FINST. Since all instructions are first

at ADVAST, those instructions intended for execution at FINST are transferred
to FINST through the Final Queue (FINQ). This latter element is composed of
eight instruction storage positions, which perform a time-smoothing function
between ADVAST and FINST. FINST decodes each instruction into control
microsequences, which are then broadcast to 64 array elements over a common
control bus.‘ FINST also broadcasts full-word operands, shift counts, test
values, and other common array parameters on a data bus. In actual oper-
ation, the timing sequences of FINST and the 64 array elements are lock-

stepped, except for the fixed transmission delay of the intervening control bus.

The Memory Service Unit (MSU) resolves the conflicts of the three users of
array memory: I/O, FINST, and ILA. It also transmits the appropriate
address to memory and exercises control over the memory cycle. As a
hardware expedient, the addresses are transmitted over thé same common

data bus mentioned above.

The Test Maintenance Unit (TMU) provides the control channel to the Control

Unit from the B6700 and the manual maintenance panel.

The array element, or PE, is the execution portion of the configuration
depicted in Figure 1-1c. This unit is devoid of all independent control with
the exception of mode and some data-dependent conditions. Mode control
permits a PE to accept or ignore a broadcast control sequence from the CU,

dependent on its current status. The PE is essentially a four-register

1-8

arithmetic unit, as shown in Figure 1-5, capable of executing a full reper-
toire of instructions having 64-bit, 32-bit, or 8-bit operands. Further,
operations involving 64-bit and 32-bit words can be done in either fixed-point

or floating-point representation.

An arithmetic unit in the PE combines a carry-save adder tree and parallel
adder with carry look-ahead logic to give a floating-point multiply time on the
order of 450 nanoseconds and a floating-point add time of 250 nanoseconds.
Both times include post-normalization. Other logic elements include a barrel
switch for rapid data-shifting, a leading-one's detector, and a logic unit for
Boolean operations. Instruction operands may originate in any of the PE reg-
isters, the common data bus, the nearest orthogonal ﬁeighboring PEs, or

the array memory.

The array memory consists of 64 independent memory modules, called the
Processing Element Memory (PEM). Each PEM is collocated with and
assigned to a specific PE, providing storage for 2048 words of 64 bits

each. The memory is designed for a 250-nanosecond read or write cycle.
Memory addresses are supplied to the PEM from the memory address regis-
ter located in the PE. An address adder and an index register within the PE
permit memory indexing and addressing independent of FINST control. Such

independence provides important flexibility for addressing data stored in a

variety of ordered forms.

1-9

[

MEMORY

MEMORY OTHER PEs MEMORY
] [} - | paTA BUS)
OTHER PEs
SELECT
GATE

MEMORY
ADDRESSING/

INDEXING

R A B s

REGISTER REGISTER REGISTER REGISTER

ARITHMETIC LOGIC /SHIFT
UNIT UNIT

Figure 1-5. Processing Element

1-10

'CONTROL UNITS

Each Control Unit (CU) diréétly coﬁtrols a subarray of 64 Processing Units
(PU) in a quadrant. Four identical quadrants, or a total of four CUs and 256
PUs, comprise the ILLIAC IV system. Associated with each subarray of 64
PUs are certain common registers and logical elements which can be manip- .
ulated by instructions; decoding of instructions for the Processing Elements
(PE) of the PUs is also common.. Both the decoding functions and the

common registers and logic are contained within the CU. In the performance -
of its primary task the CU manipulates two types of instructions in the instruc-
tion stream: those which it decodes for specifying commands to the PEs —
called FINST/PE instructions — and those which céntrol the internal operation
of the CU —called ADVAST instructions. A block diagram showing the principal
logic elements of the CU is given in Figure 1-6. A block diagram of the CU
showing the general relationships of its main functional areas appeared pre-

viously as Figure 1-4.

- CUs may function individually to control single quadrants (64PUs) or in arrays
of two (128 PUs), three (192 PUs), or four (256 PUs) quadrants. When operating
in parallel, the CUs specified by the array size control register (MCO0) will re-
ceive identical program instructions during fetches from array memory. The
program instructions will be fetched from that portion of array memory con-
trolled by the CUs specified by the instruction fetch register (MC1). Program
instructions which are independent of array size, such as COR, CADD, ADD,

- CHSA, etc., will be executed by all of the CUs specified by MCO. However,
program instructions which are array size dependent, such as LOAD, TCW,
RTL, RTG, etc., will be executed by the array whose CUs are specified by the
instruction execution register (MC2). Thus, the individual CUs will execute
identical instructions in parallel, but in combination will appear indistinguishable
from a single control unit having 64, 128, 192, or 256 processing units assigned
to it. Note that three-quadrant operation is restricted by the MC1 and MC2

control bits, which may not specify three quadrants.

1-11

gi-1

ADVAST

FROM
nc
TRI

0 63

l I DATA
| FROM PE PEM
| PEM DATA OR OTHER MODE WRITE
| | INSTRUCTIONS CUs BITS ERROR
ILA
! | !)
| |] { !
| i S S S
i worps) - = eemonod l || | | | |
l (GWORDSEI (64 WORDS l ACO AC1 AC2 AC3
0 21 0 63 0 53 0 63 0 53 0 63
| | - - - a TO
| OTHER
l | CU's
ADB
| | (S4WORL).; - - M M
0 63
I Yv ¥ l i
| l ICR] [ua l |
0 24 0 24 I
l | AIR :l
| , L
| INSTRUCTION l
I ADDRESS |
ADDER
TO
e 0 % I
0 63 | [LOGIC
T —_————_—— e — = = _]—= - AND
| . | 24 BIT ADDER
I ; ; |
| [wee | [wer | [wer | ' !
| o 50 73 0 7% | l Acu || AIN I AMR I] ACR H ALR I
| l ono‘lso‘lso*xsois
I |
1/0 ADDRESS | [——|----/-----—-—--—-—"—"—-"—-"-"—-"=—-"—-"—"—"=—"—"—"'— = —=
| | FIQ FDR °
| 8 WORDS)|_ (8 WORDS)
|] 0 150 63
TMU | P i FINST
Rt PE INSTRUCTION
ADDRESS |
MICROSEQUENCE
: DECODER | GENERATOR
| ! | }
COMMANDS DATA
| MSU sovess | cqmues o
Figure 1-6. Control Unit Block Diagram

A CU shares the same physical array memory (PEMs) with the PEs in its qua-
drant. The Memory Service Unit (MSU) of the CU determines which PEMs

shall be addressed for various memory operations according to the type of mem-
ory request received. For example, FINST/PE instructions which involve mem-
ory access require that all 64 PEMs of the quadrant must be addressed, whereas
the ADVAST inst ruction BIN requires that only eight specific PEMs of the quad-
rant be addressed (see Section III, ILLIAC IV Addressing). The various users

of array memory include in their memory request to the MSU the following

number of bits to identify which PEMs are to be addressed:

FINST/PE - none
1/0 - 2
ILA - 3

ADVAST (via FINST)

1
N

Program steps are fetched in blocks from memory, and executed one at a
time. Although there is rather extensive machinery in the CU to reduce the
actual number of memory fetches from one fetch per program step, as in
conventional machines, to 0.0025 or 0.015 fetch per instruction, this machin-

ery requires no attention on the part of the user programmer,
The registers in the CU which can be manipulated by the program are as
follows:

ACO, AC1, AC2, AC3 - A set of 4 registers, 64-bits each, general
purpose accumulators (ACARs) -

ACR - ADVAST control register, which contains CU status
information (read only)

ACU - Own quadrant number register (read only)

ADB ~ A set of 64 registers of 64 bits each, used as a scratch-pad
memory

1-13

AIN - ADVAST interrupt register

AMR - ADVAST interrupt mask register

R, T PR (D5 [, SR, T DR I, B
WILICIL [IOLUS e address Ol pending memory

MCO, MC1, MC2 - Array configuration control registers

IIA - ILA interrupt storage for ICR
ICR - ILA instruction counter
TRI — TMU input register (read only)

TRO — TMU output register,

CONTROL UNIT STRUCTURE

As noted previously, the order code has two general types of instructions,

those used primarily to control the internal operations of the CU, called

ADVAST instructions, and those that are used primarily to control PU opera-

tion, called FINST/PE instructions. Since there is almost no interaction between the
two instruction types, they’ can be viewed as two interlaced but distinct in-

struction streams. The hardware of the CU takes advantage of this partial in-
dependence to execute the two streams independently but concurrently with one

another. The CU has five main functional areas, as follows:

Instruction Look Ahead (ILA). The instructions are fetched, in

8-word blocks of contiguous code, to a section of the CU called the
instruction look-ahead (ILA). An associative memory (IAM) de-
tects which blocks of instruction are currently in ILA storage.

The instruction counter (ICR) is also contained in ILA,

Advanced Station (ADVAST). Each instruction is passed in sequence

to the instruction register (AIR) of ADVAST, In ADVAST, each in-

struction is first examined to determine whether it is an ADVAST

instruction (to be executed exclusively in ADVAST) or a FINST/PE

instruction (to be executed by the PEs). FINST/PE instructions
1-14

will be indexed, if required, within ADVAST and then placed in the
final queue (FINQ) for execution by the PEs. Some instructions
(e.g., BIN, LOAD) may require additional processing in ADVAST
after they have been executed by the PEs.

Final Station (FINST). Instructions from ADVAST enter a section

of the CU called the final station (FINST), the outputs of which
manipulate the Processing Units. Instructions enter FINST through
a final queue (FINQ) so that the instruction execution time at
FINST is decoupled from that at ADVAST. Some instructions (e.g.,
LOAD) are executed partially at ADVAST and partially at FINST
because of the need for PU operations to complete instruction
execution. In general, the programmer need not be aware of over-

lap operation between the two sections, if it occurs.

FONTT

Service Unit (MSU). The memory service unit (MSU)

receives requests for access to memory from three sources:
from FINST, from ILA, and from the Descripior Con-

troller (DC) of the I/O subsysiem. The MSU resolves con-
flicts among the three sources as well as conflicts concerned
with other FINST uses of the common paths from CU to memory.

ADVAST memory requests are serviced through FINST.

Test Maintenance Unit (TMU). The Test Maintenance Unit

(TMU) of the CU contains registers TRI and TRO (which are
addressable by instructions in ADVAST) and provides paths to
the maintenance panel, the display, and the B6700 (via the DC).
The display will, on external command, indicate the state of
certain CU registers. A portion of TMU serves as a ''test in-

struction" register for diagnostics, testing, and initialization.

- TIMING CONSIDERATIONS

Potential program difficulties are introduced by the asynchrony between ADVAST
and FINST since ADVAST may be executing instructions which occur later in the
m than th which n FINQ awaiting execution. The hard-
ware automatically detects this potential problem and introduces the necessary
synchronism to prevent any difficulty. The only exceptions are bits ACR(09)

and ACR(13). A change in either of these bits is effective immediately, even on
any previous instructions which may remain unexecuted in FINST. If this presents
a problem, an instruction "FINQ'" may precede the CACRB which changes
ACR(09) or ACR(13). On the other hand, changes in ACR(10), word size, are
synchronized; only those FINST/PE instructions which follow a CACRB(10) in-
struction will be executed with the new word size. Other cases of asynchronism
are also found. For instance, the effects of some interrupts, such as arithmetic
fault interrupts, are somewhat delayed in reaching the interrupt register, AIN;
they may halt the program several instructions after the one which cause the
interrupt. Also, STORE instruction, whose address is in the program area,

will not change the execution of the program if the instruction in ILA were fetched

before the STORE was effective in memory.

SEQUENCE OF OPERATIONS

The operation of the ILLIAC IV system is somewhat complex due to the close
coupling of intraquadrant operations and the largely decoupled operation of
interquadrant functions. Superimposed on this structure are communications
with the B6700 and the DC, which can be considered as being asynchronous
with the ILLIAC IV system itself. The program flow described here traces the

actions of the various system components during the execution of a program.

System Start-Up

Upon receipt of a job request, the B6700 transfers the program and data base
to the ILLIAC IV disk system. The quadrants of the system which will be used
by the program are than selected, and a command issued to the TMU section
of the selected CU(s) causing operation to halt and initialization for the new

program to proceed. Then, by issuing commands to the DC, the B6700

1-16

initiates the loading of the disk-held program and data to the appropriate array
memory locations, Following the loading operation, the B6500 sends commands
to the TMU(s) which will start program execution after setting the instruction |

 counter (ICR) in the ILA section to the address of the first program instruction.

Fetching the Program

| During initialization, the instruction look-ahead unit (ILA) is set to indicate that

there are no instructions in its instruction word storage (IWS). Immediately
upon start-up, the ILA will recognize this condition and request a block of in- f
structions — via the MSU — from the PE memories that contain the instruction |

addressed by the ICR.

The IWS acts as an instruction queue for ADVAST. It holds up to 128 instructions
which are fetched in blocks of eight words, two instructions per word (16 in-

structions per block). Eight of these blocks are stored in IWS.

The conditions for initiating the fetch of a new block of instructions are, either
ICR has changed or the instruction currently being executed is one of the last
eight instructions in the block and the next block of instructions to be executed
is not found in IWS. A ring-of-eight counter is used to implement a first-in-
first-out discipline on the eight blocks of instructions in IWS. Thus, the in-
struction block which will be overlayed by the newly fetched instruction block
is the oldest block in terms of the time at which the blocks were fetched from
array memory. If, however, the block presently being executed is the oldest
block (an exceptional case), the ring-of-eight counter is incremented a second

time such that the next oldest instruction block will be overlayed.

ADVAST Processing

As noted previously the primary function of ADVAST is to handle the house-
keeping tasks for the quadrant. From a programming point of view, FINST
and the PEs perform the "inner-loops' of a program while ADVAST handles
most of the "outer-loop' and control functions. Included in its tasks are the
processing of exception conditions, decision-making for interquadrant trans-

fers, and the handling of interrupts.

1-17

When ILA holds the instruction addressed by the ICR, the instruction is sent
to the ADVAST instruction register (AIR) which determines whether it is a
FINST/PE instruction or one that ADVAST will process. FINST/PE instruc-

the PEs, whereas ADVAST instructions remain in the AIR while they are being

executed.

The ADVAST registers ACAR are primarily index/limit/increment registers that
are used to supply addresses for PE instructions, but can also be used as accumu-
lators for performing logical functions such as decision making and data format-
ting. The ADVAST data buffer (ADB) is used in conjunction with the ACARs in
data formatting and information broadcasting to the PEs. The other registers

controlled by ADVAST are manipulated to effect program sequencing and control.

Final Station Processing

FINST accepts instructions from ADVAST and places them in the final queue
(FIN®), which is composed of an instruction queue (FIQ) and a data queue (FDQ).
FDQ holds the address values or data associated with the instruction in FIQ.
The eight locations in FINQ are serviced on a first-in, first-out basis. It is

FINQ that permits the concurrent operation of ADVAST and FINST.

Instructions are taken from FINQ in largely undecoded form, for execution in
the PE. FINST decodes these instructions into sets of microsequence com-
mands for the array of 64 PUs. In some cases synchronism with other quad-
rants in an array is required and is also accomplished in this process. The
generated microsequences contain the individual enable signals that control the
information flow — both in direction (register to register) and in time — within
the PUs. The generated microsequences are then broadcast to all of the PUs

selected to accomplish the execution of the instruction.

Communication and Input-Output

Following the completion of processing on a block of data, additional data
and/or program, or the output of the processed data, may be required for sub-
sequent operations., Since the system has no input-output commands of its own,
the CU can place a request code in its TMU output register (TRO) to interrupt

-the B6700 for servicing. This may be accomplished in either of two ways.

1, TRO loaded interrupt - TCI 04: occurs when a word is loaded into
the TRO. The word is generated and loaded into the TRO pro-

grammatically.

2. CU halted interrupt - TCI 05: occurs when the CU has processed a
HALT instruction. The HALT instruction causes the CU to complete

current operations and then wait for further instructions.

In either case, the B6700 reads the interrupt, via the DC, and interprets its
meaning. Numerous methods are available to the B6700 control program to

assume control of the array (see Section V, B6700-TMU Communications).

Other CU Functions

Other CU functions are largely ADVAST controlled. Synchronism require-
ments are delineated in the individual instruction descriptions and are accomp-
lished at either ADVAST or FINST, depending on the instruction set. The
Configuration Control description in Section II details the grouping of quadrants
into arrays and the synchronism that this implies. The interrupt system is
described under Operational Control in Section II, which explains in more
detail the uses and effects of the associated registers. The content of the
control registers is also described so that the features for programming

utility and service routines are available to the systems programmer.

1-19

PROCESSING UNITS

The Processing Unit (PU) functions as a general purpose computer under
the direction of an ILLIAC IV Control Unit (CU). All of the 256 Processing
Units in the ILLIAC IV system are electrically, mechanically, and function-
ally identical, each PU consisting of a Processing Element (PE), a Memory
Logic Unit (MLU), and a Processing Element Memory (PEM). Data inputs
to and outputs from the PE and PEM are shown in Figure 1-7.

From Other
PEs

—_——N— Input/Output
-8 -1 +1 +8 Buffer
64ls4ls4le4l 64l
64 Data
64 Data
PE Enables 257 PROCESSING 64 Data MEMORY 64 Data PROCESSING
From Controls 8 RO 2 E, E1 LOGIC BLEMENT
U —+« ELEMENT UNIT 11 MAR MEMORY
Data 64 (PE) 11 Mem. Addr. (MLU) (PEM)
— 3 MLU Bnabl 3 Enables
Mode 1 ML nables

l 1 164 164 11 lss
Mode To Other Cu CU 1/0
to CU PEs Buffer Buffer

Figure 1-7. Processing Unit Data Inputs and Outputs
For control, the PE and PEM receive enable signals from the CU for the

sequential enabling of data paths and logic during instruction execution

and for controlling the reading and writing in the PEM. In addition, the CU

1-20

monitors the control status of the PE by using one input and one output of
the PE mode logic. Similarly, it monitors the memory protect error

status of the PEM by using one input and one output of the MLT.

PROCESSING ELEMENT (PE)

The portion of the PE in which data manipulation is carried out is shown in
Figure 1-8. The principal registers are the five 64-bit data registers,
called the A, B, C, R, and S registers, the 16-bit indexing register, called
‘the X register, and the 16-bit memory address register. For speed in
addition, multiplication, and shifting, the logic gating is structured for
register-length parallel operation. Although devoid of many of the controls
usually associated with the conventional processing unit, the PE, under
main control of the FINST portion of the CU, can execute a full complement
of instructions involving arithmetic and data manipulations. Various
floating-point representation, or combinations of 8-bit bytes using unsigned
notation. All operations are fully synchronized in the PE using a clock
supplied to it from the CU. A receiver-retiming register accomplishes this
function, synchronizing the controls with this clock before they are buffered
for distribution within the PE. Although most of the controls originate
externally to the PE, some data-dependent controls, such as used in normal-

ization and signed-arithmetic operations, are generated within the PE.

Registers and Logic

Data Registers

The five 64-bit data registers are A, B, C, R, and S. The A register
functions as an accumulator, holding one of the operands in arithmetic
operations and receiving the output of the adder at the conclusion of the

operation. The B register holds the second operand in arithmetic

1-21

(PE NUMBERS)

-8 -1 +1+8 -8 -1 +1+48 ~MLU cos CONTROL UNIT
DRIVER MODE
DRIVERS s:zf;::: AND les] REGISTER | 4 miu
. | RECEIVER (RGD)
\ R
RECEIVER
SELECTION
GATING
R REGISTER ADDRESS
(RGR) ADDER
ADA
y Y N (ADA)
OPERAND
S REGISTER SELECT
> (RGS) GATES
ad {0SG)
Y ¥
MULTIPLICAND| | MULTIPLIER
SELECT DECODER
GATES I*] GATES
(M SG) (MDG)
¥ ¥ []
PSEUDOADDER
TREE B REGISTER o] X REGISTER
(PAT (RGB) (RGX)
MEMORY
X ‘c ARRY‘ ADDRESS
REGISTER
PROPA GATE
| ADDER (MAR)
CcPA) 1
!
C REGISTER
(RGC)
|
* J l
A REGISTER Logic
(RGA) UNIT
(LOG)
> MLU
LEADING
DETECTOR
(Lo D) BARREL
SWITCH
BARREL (8sw)
& CONTROL

Figure 1-8. Processing Element Block Diagram

1- 22

operations (with the exception of multiply) and communicates most directly
7ith external data via the operand select gates. The C register is used in
certain instructions to save carries from the adder. The R register is the
routing register, used principally for communications with other PEs, and
at times for temporary storage of operands. The S register is used for

programmatic storage of an operand within the PE.

Mode Register

This register contains eight bits which control some of the operations in the
PE and store the PE faults and test results. Two of these bits, E and

E], called enable bits, are used to protect the A register, the S register,

and the memory information register (MIR) by controlling the gating of

clocks to the outer (bits 0-7, 40-63), and inner (bits 8-39) half-words. The
E bit alone also protects the 16-bit X register, which is the PE index reg-
ister. In 32-bit mode, E and E1 are independent; however, in 64-bit mode,
E should equal E1. The two F bits (F and F1) are used to store faults (under-
flow, overflow, etc.). The other four bits (G, H, I, and J) are used primarily
for temporary storage of test results and can be manipulated in conjunction
with the E's and F's. By instruction, any one mode bit may be sent from the

CU or any one mode bit may be sent to the CU,

Shifting

A 64-bit, right shifting, end-around shift network, called the barrel switch
(BSW), is used in the PE. With the logic unit to select the input and with
full distribution of the output, the BSW allows generalized, one-clock-period
shifting of registers in the PE. BSW control is extensive to allow 64-bit or
32-bit words to be shifted left, right, end-off or end-around. Inputs to the
BSW control include shift amounts calculated by the address adder (ADA),

fixed amounts required in certain instructions, and variable amounts derived

1-23

from operands to be normalized or aligned. The normalization amount is
generated in a fast, parallel logic network, called the leading one detector
(LOD). From the output of the A register, the LOD finds the position of the
most significant nonzero bit in the 48-bit or 24-bit mantissa and generates
both the shift controls for the BSW and a binary number to be used for

exponent correction.

Adding and Multiplying

The requirements for the utmost speed in the addition and multiplication
instructions demand a fast parallel adder. The one chosen can function as
either a carry propagating adder using three levels of look-ahead, four bits
in the first group, four groups in the second section, and four sections in the
final level (achieving a 64-bit sum in a single clock period), or as a carry
save adder. To distinguish this adder from the other adders, it is called

the carry propagating adder (CPA) in spite of its dual purpose.

Eight-bit byte gating allows the interruption of carry propagation for 8-bit
mode, and a carry register allows the saving of carries for use in the mul-

tiplication sequence.

For speed in multiplication, the eight least significant bits of the multiplier
are decoded for each iteration and the proper multiples of the multiplicand

are generated by the multiplicand select gates (MSG) which are added in a
quadruple layer of parallel carry save adders (CSA) with the CPA acting as the
fourth CSA. This logic accomplishes a single multiplication iteration, but

without full carry propagation, in one clock time.

Addressing

The 16-bit address adder (ADA) has inputs selected from among the X
register, the S register, and the operand select gates (OSG). Sums may be
sent to the X register, to the 16-bit memory address register (MAR), and
to the BSW controls. The sum output is also sent to the OSG, but is used

only for transfers from the X register. With these data paths, all shift
1-24

counts and memory addresses are indexable b ither the X or S register,
A

ye
ADA,

odified with

W
g
g
M
3

the

Figure 1-8 shows that the portion of the PE used for memory addressing is
largely separated from the remainder of the PE. The sending of a memory
address over the common data bus through the OSG and the ADA (where it
may be indexed) into the MAR may be overlapped with any instruction not
using this part of the PE. This feature is valuable in decreasing PE or CU
idle time caused by waiting for information from memory, which takes

approximately seven clock times to complete one memory cycle.

Instructions

The instruction set of the PE is that of a large scale, general purpose digital
computer. Floating point arithmetic in both 64-bit and 32-bit words is
provided with options for rounding and normalization. Full word operations,
8-bit byte operations, operations ignoring exponents, operations using
exponents only, and operations ignoring the signs are provided in the arith-
metic group. A full set of tests is generated by making all registers address-
able and providing all possible comparisons. Test results are set into a mode
bit which may then be used to programmatically direct the flow of the instruc-
tions. Swaps of parts of 32-bit words, bit manipulation, shifts and logical

operations complete the instruction set.

Control

The PE is driven by a control unit to execute the instruction string contained
in the CU. The PE does not receive the raw instructions but rather the
fully decoded controls for the enabling of data paths and internal control

of the PE as in a microprogrammed computer. While many of these exter-
nal control inputs are used directly, some must be modified according to the
data in the PE. Extensively used modifiers include the mode bits E and‘El,
the signs of the A and B registers, and the output of the LOD.

1-25

There are a few internal control signals of the PE which are generated in
conjunction with data dependent ope rations such as multiplier decoding and
mantissa normalization. These will be formed in the PE and are timed to

coincide with external controls.

PROCESSING ELEMENT MEMORY (PEM)

The PEM provides a high speed random access storage function for the
ILLIAC IV Processing Unit (PU), of which it is a subunit. The other subunits
of the PU are the Processing Element (PE) and the Memory Logic Unit (MLU).
The PEM provides storage for 2048 words, each word being 64 bits in length.
The memory operates with a read cycle time of 250 nanoseconds (maximum),
a write cycle time of 250 nanoseconds (maximum), and a data access time of
188 nanoseconds (maximum). The PEM interfaces with, and is directly con-

trolled by, the MLU.

The first 128 words of the PEM can be write-protected by setting the control
bit ACR 13. If a write is attempted in any of the word locations 0 through 127

when ACR 13 is set, the memory write cycle will not occur.

MEMORY LOGIC UNIT (MLU)

The MLU controls and effects the transfer of data between the PEM, the
Control Unit Buffer (CUB), the PE, and I/O Subsystem. The MLTU also enables
non-memory data transfers between the CUB and the PE. In addition to the con-
trol and timing circuitry for PEM operations, tﬁe MLU contains a memory in-
formation register (MIR) used for the temporary storage of data to be written

into or read from the PEM.

1-26

/0 SYSTEM
The three elements which perform the I/O function are:

1. A Burroughs B6700 data processing system which, together with
its peripherals, performs all the functions of the control
computer;

2. A Model II disk file system providing approximately one
billion bits of storage;

3. An ILLIAC IV I/O subsystem which interfaces between the above
elements and the ILLIAC IV array subsystem.

The relationship of these elements to one another and to the array is illus-

trated in Figure 1-9 and described in the following paragraphs.

B67001/0 CONTROL COMPUTER

The primary functions of the I/O control computer are to execute the super-
visory program for the ILLIAC IV complex and prepare programs for

ILLIAC IV. The supervisory program controls the operation of ILLIAC IV;
schedules jobs for the array; maintains the Model II disks; transmits control
words (descriptors) to the I/O Descriptor Controller, which directs

the I/ O transactions in and out of the array; responds to interrupt conditions

from the array or elsewhere; and communicates with the operator.

The initial B6700 data processing system*

necessary to run the supervisory
program and prepare user programs consists of: one processor, 32 K words
of memory, an I/O multiplexer with one peripheral control cabinet, and
suitable peripherals including a disk file with 107 bytes of storage. Associa-
ted with the multiplexer are controller units which interface with the various
peripherals. These are Burroughs units for the standard peripherals: mag-
netic tape, disk file, line printer, card reader, card punch, and console

printer/keyboard., The B6700can be expanded from this initial complement

* Refer to B6700/B7700 Characteristics Manual.
1-27

8¢-1

NOTE

The numbers show how many
data bits are transm:tted in
parallel on any given data
path.

B6700 CONTROL COMPUTER SYSTEM

48

DISK FILE SYSTEM

1024

|] |

I/0 SUBSYSTEM

B6700 B6700
MEMORY MEMORY
#1 #2
B6700 48
PROCESSOR
DATA
COMM.
DATA
FOMMUNICATIONS
PROCESSOR
(DCP)
PERIPHERALS s
B6700 48
MULTIPLEXER
(MPX) -
| 48
BUFFER
| 1/0 MEMORY
5 (BIOM)
@
z
3 I
Q
w
48
48 DESCRIPTOR
| CONTROLLER
(DCY)
I 128 | [TTTTTTTTTT
STORAGE ELECTRONICS .o, | DISK FILE
UNIT CONCENTRATOR |— UNIT CONTROLLER #1
(su) (EU) (DFC-1) - (NPUT-OUTPUT
¢—} SWITCH
| |m——————— (10S)
STORAGE ELECTRONICS |354 DISK FILE 128 To024
UNIT CONCENTRATOR }—i UNIT | CONTROLLER #2
(sU) (EU) | (DFC-2)
I REAL
TIME
ILLIAC 1V

Figure 1-9.

ILLIAC IV ARRAY SUBSYSTEM

|

I CONTROL CONTROL CONTROL CONTROL

i UNIT UNIT UNIT UNIT

| (cu) (CU) (CU) (CU)

|

I 64 64 64 64

| PROCESSOR PROCESSOR PROCESSOR PROCESSOR

UNITS UNITS UNITS UNITS

(PU) (PU) (PU) (PU)

4

|

|

ILLIAC IV Interface Diagram

of equipment to include an additional processor and multiplexer as well as
additional memory (up to 512 K words). On-line communication may be
added by including a Datacom processor, multiline controls, and line

adapters.

The interface between the I/O subsystem and the I/O control computer is de-
signed to take advantage of the existing properties of the B6700, while ‘keeping
simple the interface to the ILLIAC IV array. Control words afe received over
the scan bus interface provided from the B6700 processor, and results are

described in words transmitted back over this same interface.

Two data paths exist between the B6700 subsystem and the I/O subsystem, one
being the Buffer I/O Memory (BIOM), and the other being directly into the -
Descriptor Controller (DC). The BIOM functions as a module of B6700 memofy,
as seen from the B6700 side, handling data transfers from the B6700 into the
ILLIAC IV I/O subsystem. On the ILLIAC IV side, the BIOM can transfer either
into the disk file, or directly into array memory. The data path to the DC uses
the 48-bit word interface of the multiplexer, being a connection into the multi-
plexer's memory bus whenever the multiplexer is not using it. All interfaces
between B6700 and I/O subsystem use bidirectional cables; 20 lines for address,
48 bits for data, 3 bits for tag bits accompanying the data, 8 bits of control, and
1 bit of parity.

ILLIAC IV DISK FILE SYSTEM

The ILLIAC IV disk file system (not to be confused with disk file which is part
of the B6700 control computer equipment) will initially consist of two Model II
disk files with thirteen storage units. Each Model II disk file includes an
electronics unit, a concentrator, and Burroughs Model II mechanisms, with
sufficient electronic circuitry for reading or writing simultaneously on 128

tracks of one disk. Each disk has a capacity of 79,257,600 bits and a maximum

1-29

of sixteen such disks may be connected to an electronics unit and its associated
concentrator. The electronics unit houses certain common electronics,
registers for providing conversion of information from disk-serial to control-
unit-parallel form, control logic, power, motor control, and the air pressure
system. Read amplifiers are housed in the concentrator. Approximate transfer
rate to and from the Disk File Controller is 502 X 106 bits per second and the

average access time is 19.6 milliseconds. The interface between each electron-

ics unit and its controller in the DFC is 384 bidirectional data lines and
25 control-address lines. The track layout consists of 256 active infor-

mation tracks per disk face, arranged in one zone.

ILLIAC IV I/O SUBSYSTEM

The I/O subsystem is shown in Figure 1-9 as consisting of the I/O
Descriptor Controller (DC), I/O Switch (I0S), Buffer I/O Memory (BIOM),
and Disk File Controller (DFC). The functions performed by these elements

are briefly described below.

The DFC consists of two controllers which execute descriptors held in DC

for transfers between disk and array, disk and BIOM, BIOM and array, and

real-time link and array. All transfers involving the array are via the IOS.

As previously noted, the BIOM acts as a memory module for the B6700 system.

Within the I/O subsystem, the BIOM has a 128-bit bidirectional interface with

- each of the two DFC units. All transfers through this interface are under the

control of DFC descriptors.

The I0S unit buffers and distributes data between the DFC and the ILLIAC IV
array. The DC is also located in the IOS cabinet. The IOS has a 256-bit
bidirectional interface with each of the two DFC units and initially a 1024-bit
bidirectional interface with the ILLIAC IV array. The IOS design provides

for possible future expansion of the real-time link with the array to 4096 bits.

"The DC receives pairs of control Wofds, célledﬂ”scan descriptor, area de-
“scriptor'’, over the scan bus interface. The DC fetches I/O descriptors over
‘the multiplexer word interface in response to the control words; sometimes an
entire sequence of I/O descriptors will be initiated by one pair of control words.
~The DC sends result descriptors back over the scan bus upon the completion
of I/O transactions. Certain I/O descriptors cause the DC to send words of.
data, fetched over the multiplexer word interface, to the CU, where they are
treated as instructions by the TMU. There is a 48-bit bidirectional interface

between DC and TMU for these transfers. .

1-31

CONTENTS

WORD FORMATS 2 - l

Instruction Word Formats . e e e e e e e 2-1
Data Word Formats 2-2
Notation Conventians. 2-4

CONFIGURATION CONTROL LOGIC 2-5
Forking and Joining 2-11
Basic CU Registers 2-12
OPERATIONAL CONTROL 2-12
Interrupt Handling . . . e e . 2-13
Interrupt, Mask, and Control Reglster Functlons e e 2-17
Illegal Instruction/Address Handling 2-20
INPUT-OUTPUT CONTROL.« .« « . . . 2-23
Descriptor Controller 2-23

Scan Bus ., . e e e e e e e e e 2~26

Scan Descriptor Usage e e e e e e e e, 2-26

I/O Descriptor Usage 2-32

Result Descriptor Usage 2-38
Disk File Control e e e e e e e, 2-44

Buffer I/O Memory 2-46

I/OSwitch 2-51

SECTION I
PROGRAMMING CHARACTERISTICS

WORD FORMATS

There are two general categories of instructions in ILLIAC IV, called ADVAST
instructions and FINST/PE instructions. The main distinction between them is
that ADVAST instructions are used primarily for quadrant-related control func-
tions (that is, manipulating logical control elements common to all 64 PEs in

a quadrant), whereas FINST/PE instructions are associated more with the
control of individual PEs within a quadrant. In this respect, ADVAST
instructions are primarily CU related instructions, in that they are executed
in the advanced station (ADVAST) section of the CU, while FINST/PE instruc-
tions are primarily PE related instructions, although principal control resides
in the FINST section of the CU. Both types of instructions employ a 32-bit
word length. Data words, on the other hand, are 64 bits in length. Opera-
tions involving data words may employ 32-bit or 64-bit word sizes, in either
floating~-point or fixed-point representation, or may use combinations of 8-bit

bytes in unsigned notation. These are more fully explained in this section.

INSTRUCTION WORD FORMATS

All instruction words are 32 bits in length, although some may not use all fields
available. Most instruction words must contain an operation field, that is,
nine bits which specify the particular operation code, and a parity bit (excep-

tions are the ADVAST instructions ALIT, SLIT, and JUMP). Most instruction

ADVAST INSTRUCTIONS

NO. OF
BITS IN GROUP: 5 3 8 2 | | 4 8
FIELD A INDEX SKiF FiRST GLOBAL/ FlELD B SECOND
op copE | INFormaTION | FieLp | operano | rocar | PARITY | op cooE OPERAND
BIT NO.: O a5 78 516 ——17 8 s 20 2324 3
FINST/PE INSTRUCTIONS
NO. OF
BITS IN GROUP. 5 3 4 | 3 16
FIELD A INDEX FIELD B ADDRESS
op cooe | inFormaTion | op cope | PARITY USE ADDRESS
BITNO: © as 78 TEECEE 1516 3

Figure 2-1. Instruction Word Formats

words also contain a 3-hit index field, the first bit of which indicates if an
accumulator register is to be used for address modification, and the next two
bits identify the specific accumulator to be used. Figure 2-1 shows the general
formats for the two types of instruction words. Field usage is explained in
detail on page 3-1 for ADVAST instructions and on page 4-1 for FINST/PE

instructions.

DATA WORD FORMATS

Various options in the FINST /PE instruction repertoire permit the use of six
basic bit configurations for data words, as shown in Figure 2-2. For the most
part, bit usage is obvious in referring to the formats. For floating-point
quantities, however, the bit assignments for the various fields are relative to
the equation:

A=(-1)SM' 2(E-D)

where A represents the floating-point quantity being expressed, S is the

content of the sign field, M is the content of the mantissa field stated as a

binary fraction, and E is the content of the exponent field (D = 16384 or 64,

in decimal, respectively for 64-bit and 32-bit word sizes).

9.2

Bit No.:

Bit No.:

Working Bits:

Bit No.:

Bit No.:

Bit No.:

Working Bits:

Bit No.:

64-Bit, Floating Point

0 1 ~15 16 63
SIGN OF
MANTISSA EXPONENT MANTISSA
32-Bit, Floating Point
0 1 7 8 9 15 16 39 40 63
IGN OF
SOUTER OUTER SligqNEgF INNER INNER OUTER
MANTISSA EXPONENT MANTISSA EXPONENT MANTISSA MANTISSA
0 1 . 1; 8. 8 31
outer outer inner inner inner outer
64-Bit, Fixed Point (no sign) or Logical
0 63
OPERAND (NO SIGN BIT)
48-Bit, Fixed Point (no exponent)
0 1 15 16 63
SIGN OF % / / PERAN
OPERAND / OPERAND
. .
24-Bit, Fixed Point (no exponents)
0 | —— 8 9 15 16 39 40 63
7 NOF |
S(I)%li g; 7 / SIII?NER . / INNER OUTER
OPERAND
[OPERAND //] opEranp //// OPERAND
ooute r inner 8 inner 8Oute r 81
8-Bit, Fixed Point (no signs)
0 7 8 15 16 23 24 31 32 39 40 47 48 55 56 63
BYTE #1 BYTE #2 BYTE #3 BYTE #4 BYTE #5 BYTE #6 BYTE #7 BYTE #8
Figure 2-2. FINST/PE Data Word Formats

2-3

The ADVAST instruction repertoire permits the use of three different bit con-
figurations for data words, two of which are shown in Figure 2-3., These data
words are used in conjunction with the ADVAST instructions INCRXC, TXE,
TXG, and TXL (Figure 2-3a) and DUPI and DUPO (Figure 2-3b). The third

format is that of a 64-bit logical operand, as shown in Figure 2-2 (64-Bit, Fixed

Point or Logical).

Bit No. : 0 1 2 15 16 39 40 63
HALF-WORD SIGN OF MAG. OF LIMIT CURRENT
IND. INCREMENT INCREMENT INDEX VALUE

(a) For Instructions INCRXC, TXE, TXG, and TXL

Bit No.: 0 7 8 39 40 63

OUTER HALF WORD INNER HALF WORD OUTER HALF WORD

(b) For Instructions DUPI and DUPO

Figure 2-3. ADVAST Data Word Formats

NOTATION CONVENTIONS

All words, registers, and fields in ILLIAC IV are numbered starting from
zero and ascending in a left to right direction or from most significant to least
significant bit position. The length of a data field is specified using the

following notation:
(REGISTER NAME) (High order bit position): (Length of field in bits)

For example, bit positions 40 through 63 of an accumulator register (ACAR)

are referenced as ACAR 40:24.

2-4

It is sometimes necessary to replace the position or length value by an expres-
sion which is also described using the same notation. These expressions are
contained in parentheses which have the meaning "the value represented by''.

- An example of this notation is the identification of a bit position in an ACAR

- register that is defined in the low order bits of the ADVAST instruction
register (AIR). This would be written as ACAR (AIR 26:6):1.

Exponents in ILLIAC are represented by an 'excess code' notation

""" (also called the "offset code'), rather than by sign and magnitude. This
means that the zero value (offset base) of the exponent is represented by a
"one" in the most significant bit followed by all "zeros'. Positive exponents
are formed by adding the exponent value to the offset base value; negative
exponents are formed by subtracting the exponent absolute value from the offset

base value.

Examples of excess code notation are given below for the 32-bit and 64-bit

modes. For convenience, octal numbers are used.

Exponent 32-Bit Mode 64-Bit Mode
Value (Exponent has 7 bits) (Exponent has 15 bits)
0 100 40000
+1 101 40001
-1 077 37777

Note that the peculiarity of having two representations for zero in sign-magni-

tude notation, namely +0 and -0, does not apply to excess code notation.

CONFIGURATION CONTROL LOGIC

The purpose of the configuration control logic is to specify the array config-
uration (one, two, three, or four CUs) during the execution of program

instructions. The array configuration is specified by the following:

1. The configuration control registers MCO, MC1, and MC2;

2-5

2. The local/global bit (bit 18) of the ADVAST instruction to be
executed, when either the instruction is executed entirely in
ADVAST or passed to FINQ for subsequent execution by FINST
and the MSU:

3. The FINST/PE instructions RTL and RTG;

4. TFor certain ADVAST instructions (CCB, COPY, ORAC, etc.),
bits ADR 0:2;

5. For ADVAST memory instructions (LOAD, STORE, etc.)
bit(s) 56 and/or 57 of the specified accumulator which are
passed to FINQ for subsequent execution by FINST and the MSU.
All of the functional units of the CU except the TMU (ILA, FINST, ADVAST,
and MSU), make use of the configuration control logic for synchronization. In
addition, it is used by FINST to direct routing commands, by the MSU for
address interpretation and data or instruction steering, and finally, by ADVAST

for receiving data for checking results of test and skip instructions.

A "one' in bit 18 indicates a "local" action. In this case, the CU that is exe-
cuting the instruction performs the operation independently; no synchroniza-
tion with other CUs occurs, and there is no exchange of information or control
signals. A ''zero' in bit 18 denotes a ''global" process. Here the CUs in the

| array execute the instruction in combination with one another; synchronization

of the CUs is required, along with an exchange of information.

Each of the three configuration control registers (MCO0, MC1, and MC?2) is

four bits long. The registers are readable — they can be stored in an accumulator
register or in main memory — and they are writeable — they can be loaded from
an accumulator or from main memory. Each register is considered as one

local memory location. The three registers are also accessible by the TMU
instructions SOC and SOD for either display or transmission to the DC. They
may also be loaded by the TMU set and transmit instructions SAT, SLT, and SRT.

The use of these registers is described in the following paragraphs.

no
1
@]

MCO, Array Size Control Register. Each bit in MCO corresponds to one

specific, permanently-numbered quadrant. A set bit represents a
particular quadrant assigned to work on the current program. Every
quadrant represented in MCO receives instructions during the instruction
fetch process of ILA, receives operands from main memory during the
operand fetch process of ADVAST, participates in all synchronizing
at the various stations of the CU, and receives the T/F indicator

during Test-Skip instructions and the CTSB instruction.

Example 1: Bit Position
Register 0123
MCO 0111

In Example 1 there are three quadrants in the array: CUl, CU2,
and CU3. CUO is not part of the system defined by MCO.

ing the location of the program in main memory. The contents of MC1
are relative to MCO, that is, the position of a set bit in MC1 refers to

ONLY the bits SET in MCO, starting with the first set bit in MCO.

Example 2: Bit Position
Register 0123

MCO 1101

MC1 0110

In Example 2 there are three quadrants in operation: CUO, CU1l, and

CU3. MCI1 has the second and third bits set to show that the program

is stored in the second and third CUs in the array defined by MCO.
Therefore of the three bits set in MCO0, the second and third define the

CUs that contain the program, so that in this example CU1 and CU3
are the program CUs.

2-1

MC2, Instruction Execution Register. MC2 furnishes information

needed for concerted performance of information exchanges of the
CUs. The contents of MC2 are relative to MCO, just as the contents
of MC1 are relative to MCO.

Example 3:
Bit Position
Register 0123
MCO 1011
MC2 1010

In example 3 there are three quadrants in operation: CUO0, CUZ,
and CU3. This configuration indicates that CU0O, CU2, and CU3
should participate in all sync operations at the various stations

of the CU and that CUO and CU3 are to exchange information (such
as data for inter-CU instructions TCW, TCCW, etc.). CUO and
CU3 will also attempt to fetch operands from their memory, how-
ever, the one determined by bit 57 of the accumulator will fetch it

and send it to CUO, CU2, and CU3.

The error settings of the MC register are:

Any "all zero' setting of any register;
Any "three ones' setting of MC1 or MC2;
Any setting of MC1 or MC2 in which the number of ''ones"

exceeds the number of "ones' in MCO.

The various valid settings are:

MCO holds four "ones': MC1 and MC2 can have settings consisting of

four, two, or one "'one(s)" resulting in eleven valid settings in either

register.

MCO holds three '"ones'': The first three bits of MC1 and MC2 can

have settings of two or one ''one(s)" resulting in six valid settings

for either register.

2-8

MCO holds two ''ones'': The first two bits of MC1 and MC2 can have

settings of two or one "one(s)", resulting in three valid settings for

either register.

1" 1" . .
MCOQ holds one 'gne'’': The first bit of MC1 and MC2 must have a

~ X 1

setting of one ""one' resulting in one valid setting for either register.
g g g

Certain actions occur when the registers are changed:

Changing MCO or MC1 causes the "IWS present'' bits to be reset.
This results in fetching new blocks for IWS using the present contents

of the instruction counter (ICR) when the current block is exhausted.

Changing MCO or MC2 causes ADVAST to stop executing instructions
and empty FINQ. The new value to be loaded into MCO or MC2 does

not replace the old value until FINST is idle. At that time the trans-

fer to MCO or MC2 takes place.

The ADVAST instruction repertoire can be divided into four sets, consider-

ing the configuration control logic:

1.

The following instruction set is executed independently by each CU:
ALIT, CACRB, CADD, CAND, CEXOR, CLC, COMPC, COR,
CROTL, CROTR, CSHL, CSHR, CSUB, DUPI, DUPO, EXCHL,
EXEC, FINQ, HALT, INCRXC, INR, JUMP, LLDC, LDL, LIT,
SETC, SKIP, SLIT, STL, and any other instruction in which bit

18 (Local/Global) is "one".

This set causes the array specified by MCO to be synchronized at
the beginning of the instruction and causes the CUs specified by
MC2 to execute the instruction: LEADO, LEADZ, ORAC, TCCW,
TCW, the TEST-SKIP instructions, and WAIT. (FINST executes
RT similarly.) Note that in the case of the TEST-SKIP instruc-
tions, the CUs of the array specified by MCO will test the result
and skip.

2-9

3. This set requires examination of instruction word bits 24 and 25
to select the CU to execute the instruction: CCB, COPY, CRB, .
CSB, CTSBF, and CTSBT. Note that COPY is a special instruc-

examination of bits 24 and 25 is copied by the other CUs in the

array. (In single-quadrant array, this instruction is a no-op.)

For the remainder of the instructions in this category, bits 24

and 25 are used as follows: The configuration control logic estab-

lishes how many and which CUs are in the array. When only one

CU is in the array, bits 24 and 25 are irrelevant. When two CUs

comprise the array, only bit 25 is pertinent; if it is "zero'', the

lower-numbered CU executes the instruction. In a four-CU array,

bits 24 and 25 specify the CU to execute the instruction.

4. This set includes the six ADVAST main memory operations:
LOAD, LOADX, BIN, BINX, STORE, and STOREX. The main
memory address is contained in the specified ACAR. To determine
which CU performs the fetch, ACAR bits 56 and 57 are examined
identically to AIR bits 24 and 25 above.

The LLOAD, LOADX, BIN, BINX instructions are processed at both the
ADVAST and FINST stations. Following ADVAST processing, the local mem-
ory location(s) referenced by these instructions are considered "empty' until
processed and filled by the FINST operation. Should an ADVAST instruction
reference one of these "empty' locations, the ADVAST unit will stall until
the referenced location has been filled. Although this protection feature in-
sures against timing dependent programming errors, it may slow down
system throughput. Where feasible, the programmer should access data

as far as possible in advance of its ADVAST use in order to minimize this

delay.

FORKING AND JOINING

'_Occasionally it becomes necessary, when running in multiquadrant array,
for the quadrant to separate (fork) and then rejoin. This capability allows

for the running of local subroutines.

| Forking is accomplished by resetting the configuration control registers and

~ then branching to the area in main memory where the local subroutine resides.
It must be understood that the procedures leading up to forking and the actual
forking instructions are executed in multiquadrant configuration. Since
changing MCO and MC1 causes the "IWS present' bits to be reset, care

must be taken that at least the resetting of MCO and MC1, and the JUMP

instruction are in the same 8-word block in IWS.

In order to fork, each CU must know what its quadrant number is so that it
may properly include itself in the new configuration control register settings.
This can be determined by reading the ACU, a local register which contains
"own CU number', via the LLDL instruction. This register, which is readable

only, has four bits in the same bit arrangement as MCO. The bit which cor-

responds to this CU number is hard-wired ON, all

OFF. Prior to forking, it is recommended that the configuration control

registers be stored to facilitate joining.

At the completion of the local subroutine, joining can be accomplished as
follows: the desired array configuration must be determined, this condition
must be set into a WAIT instruction (together with bit 27), and then the
"request join" option of the WAIT instruction (bit 27 ON; bits 28:4 set to the
desired configuration) must be executed (this can be facilitated by the use
of ACAR indexing). If all quadrants in the desired array have executed this
instruction, then all the quadrants in the new array will be in sync and their
MCO will reflect the desired configuration setting. ACR bit 5 can be tested
to determine whether this did indeed occur. If it did, then MC1 can be

changed to the desired setting and the program may JUMP to the global

‘routine. If sync had not in fact been achieved, the program has the option
of either repeating the special WAIT instruction until the quadrants do sync,

or it may disregard the other quadrants and continue in single-quadrant array.

- BASIC CU REGISTERS

Following is a list of the common registers accessible via the local address

contained in ADVAST instructions.

Octal Register
- Address Mnemonic Function
000 - 077 Dnn (ADB) General registers, local data buffer,

broadcast buffer

100 - 103 ACO0-3 (ACARO0-3) Accumulators, Index Registers

104 ICR Instruction Counter

105 IIA Interrupted Instruction Address

140 ACR ADVAST Control Register (see p. 2-20)
142 AIN Interrupt Register

144 ALR ADVAST Local Address Register

145 AMR Mask Register

151-153 MCO0-2 Configuration Control Registers

154 ARE Memory Write Error Indicators

155 TRI Input Communication Register (from B 6700)
156 TRO Output Communication Register (to B 6700)
157 ACU Own Quadrant Number (read only)

OPERATIONAL CONTROL

This section presents the procedure that mechanizes interrupts within the
ILL.IAC IV system and also describes the registers which control interrup-
tion and normal operation of the Control Unit (CU). The basic philosophy
behind this organization is emphasized at times to convey to the user the

precautions required in the programmatic manipulation of these controls.

2-12

In the ILLIAC IV repertoire there are no "privileged" instructions. In this
sense, all programs, whether performing interrupt or noninterrupt (normal)
fprocessing, have complete access to the system elements. As a result, the |
user must maintain rigid accountability for proper manipulation of these
facilities. Since few provisions for an executive or control program have
been incorporated to facilitate the selection and activation of user requests,
it is incumbent upon the user to conform to the programming conventions
established for the system so that optimum exploitation of the facilities is

assured.

INTERRUPT HANDLING

Interrupts in ILLIAC IV are recognized in the ADVAST section of a CU.

An interrupt is caused by the occurrence of a masked condition, that is,

a bit is set (by program) in the interrupt mask register (AMR), and if
subsequently, the masked condition occurs, the interrupt will be recognized.
Regardless of the setting of the mask bit (and, therefore, of the recognition
of the interrupt) the occurrence of the condition will cause a bit to be set in
the interrupt register (AIN), which bit corresponds with the bit in AMR.

The purpose of the interrupt feature is to provide automatic recognition of a
condition which either may require immediate response, or the occurrence
of which is unexpected and asynchronous with regard to the rest of the
program (for example, intercommmunication, etc.). When such recogni-
tion is not required, the interrupt feature may be bypassed for a particular
condition by reloading the AMR with the appropriate bit reset. If the interrupt
feature is bypassed, the information content of the AIN may be sampled at the
convenience of the program being executed, as a part of its normal execution

cycle.

Interrupt Recognition

Interrupt recognition occurs on an array basis; that is, if one CU in an

array (as determined by MCO) is interrupted, then all CUs in the array will

2-13

be interrupted. However, those CUs which actually caused the interrupt
may be determined by ascertaining which CUs have a masked AIN bit (by

reading each AIN and comparing it against the respective AMR).

It should be noted that there is no automatic change to the configuration
control registers (MCO, MC1, MC2) when an interrupt occurs. Therefore if
an interrupt occurs while operating in multiquadrant configuration at least
the initial processing must be a multiquadrant routine, using the same array

size as just prior to the interrupt.

Types of Interrupts

There are two types of interrupts: recoverable and nonrecoverable. Type 1
(recoverable) interrupts will occur only when all quadrants in the array are
synchronized. That is, the cendition will be recognized immediately, but
the CUs will not be interrupted until all the CUs are synchronized for the
execution of an ADVAST global instruction, or at the end of every instruction

when there is only one quadrant in the array.

Type 2 (nonrecoverable) interrupts will occur at the next clock pulse after

the condition is recognized. The CUs will be initialized by signaling the

TMU to execute a SIV instruction (with bits 39-44 of TCR set), which will

cause ADVAST, FINST, and ILA registers and controllatches tobe reset or setto
the idle state. The MSU will be similarly initialized at the completion of

I/O cycles. Interrupt processing would then proceed as for Type 1 interrupts.

Recoverability and nonrecoverability relate to the ability of the machine
to return, following an interrupt, to a known state relative to the point of

interruption without special provisions in the interrupted program.

Table 2-1 indicates interrupt type for all interrupts.

2-14

Interrupt Status Storage

In order to resume the execution of a program after interrupt processing,
it is required that the status of the CU be stored before entry into the inter-
rupt state and some known state restored upon exit. This storage function

is accomplished in register storage within the CU and in the PE memory array.

Instruction Counter (ICR) and Interrupt Address Register (IIA)

The instruction counter (ICR) is a 25-bit register which is used in both nor-
mal and interrupt programs to control the sequence in which instructions

are executed. Another register, the interrupt address register {IIA), which
is of the same length as the ICR, is loaded from the ICR when an interrupt
occurs. The IIA reloads the ICR when the "interrupt return' instruction

(INR) is given and is read and set as a local register.

Control Information Storage

No additional storage is required to store the logical condition of the quadrant
when an interrupt occurs. However, if interrupt processing alters the
setting of the interrupt controls (specifically, in the interrupt, mask, and
control registers), the programmatic storage ahd restoration of their
settings must be accomplished within the interrupt routine. Note that all
control registers which are not part of the local memory cannot be stored

in the accumulators or array memory but must be stored outside the array.

Data Storage

The initiation of an interrupt causes the contents of ACARO to be stored in
memory location eight or nine, depending on the setting of the "'alternate
interrupt base in use' bit inthe ADVAST control register (ACR). ACARO

is then loaded with an index value containing an increment field of +1, a limit

field of 32, and an index field of 16. Words 16 to 31 can be used for storing

2-15

up to 16 words of the ADVAST data buffer (ADB) should this space be required
for interrupt processing. ACARO provides the address for the store operations.
Words 9 (or 10) through 15 are for the storage of other ADVAST registers

(for example, other ACARs and the AMR) that may be altered during interrupt

processing.

Upon the execution of the INR instruction, ACARO will be reloaded with the
* contents of memory location eight or nine, depending on the setting of the

"alternate interrupt base in use' bit in the control register (ACR).

Interrupt Routine Instruction Storage

The instruction counter (ICR) will be set to 'zero" (or ''one', depend-
ing upon the setting of the "alternate interrupt base in use' bit in ACR) to
cause the first block of interrupt processing instructions to be fetched from
array memory words 0 through 7. As the local memory information is
stored in words 8 through 31, a branch is required within this area of the
block. (The alternate interrupt base was provided to allow the programmer

to bypass a suspected memory failure in PEM 0.)

Entering the Interrupt Mode

Because of the interrupt mechanism described above, there can be only one
level of recoverable interrupt (multiple interrupts would destroy interrupt
return information). However, the simultaneous occurrence of interrupt
conditions is considered a single level of interrupt. To protect the return
information until the execution of an interrupt routine, use of the AMR as

the interrupt enabling device is suspended and a "hardware'' mask is employed
instead. The hardware mask prohibits the recognition of any interrupt
conditions except those indicating hardware malfunctions, and remains in

use until ACRO02 is reset via INR or CACRB-2. Also,

2-16

while the hardware mask is in use, "storage protect'' is disabled,
regardiess of the setting of ACR13, until the hardware mask is -

replaced by AMR (via INR or CACRB-2).

During interrupt processing (that is, when ACR bit 1 is "one'"), a masked
interrupt condition will cause the CU to stop and interrupt the B 6700
'system by setting TCI bit 5 (CU halted). When a "branch trace' interrupt
occurs, the contents of the present ICR are loaded into TRO 40:24,

ICR (24:1) goes into TRO (0:1), the other TRO bits are set to zero, and
TCI bit 7 is set (indicating the right half of TRO is loaded).

INTERRUPT, MASK, AND CONTROL REGISTER FUNCTIONS

This section identifies the information content of the interrupt (AIN), inter-
rupt mask (AMR), and control (ACR) registers. The length of these

registers is 16 bits.

The functions of the bits in the AIN and AMR registers are listed in Table 2-1,
and for the ACR register in Table 2-2. The setting of any of these bits
indicates to the program that the condition, as stated, is true. In the case

of the AIN and AMR, the bit positions in each register relate to the same
function and thus have the same number. For ACR, a correspondence in

bit positions 11 through 15 exists with the AIN/AMR. In general, bits that

might be used or interrogated together are grouped together.

The first four AIN/AMR positions are grouped together because they represent
what are most probably hardware malfunctions. The "hardware mask"

(used immediately after an interrupt occurs until the mask register is loaded)
is implemented to permit a second interrupt (i.e., a stop) condition to become

true, and contains bits 0-3 of AMR.

2-17

Table 2-1. Functions of Bits in Interrupt (AIN) and Mask

-

(AMR) Registers

AIN/AMR

Bit No. Interrupt/Mask Name Type* Condition(s) for Setting or Functions Masked

0 Spare 2 Available for indicating power failure to operator
or to the B6700.

1 Parity error in 2 Sum of bits loaded from IWS to AIR modulo 2 is

instruction zero, except for instructions SLIT, ALIT, JUMP,
or instruction loaded in AIR due to EXEC.

2 Undefined instruction 2 Op code fields of AIR indicate instruction not one of
ILLIAC IV instruction set (see page 2-21,

Nllegal CU Addresses).

3 CU stalled 2 CU has waited 15 milliseconds for another instruction,
or HALT was executed, or breakpoint was reached,
or second interrupt has halted all operations.

4 Improper setting of 2 Any configuration register with all zeros; MC1 or

MCO, MC1 or MC2 MC2 contains three ones; or, bit position is set
that is greater than the number of ones in MCO.

5 Improper local address 2 Nonexistent or inaccessible ADVAST local address
requested as effective local address (after indexing,
if specified). Not set for BIN or BINX instructions.
(See page 2-21, Illegal CU Addresses).

6 ADB wrap-around 2 Effective ADB address is greater than octal 77 in
BIN or BINX instruction.

7 Execute loop 2 AIR contents replaced by ACAR value which has
identical op code and ACAR address.

8 Skip distance equals 2 Skip field of instruction for modification of ICR has

minus one value of minus one (endless loop on the same
instruction).

9 User program request 1 INR instruction executed and ACR bit 1 (processing
interrupt) is reset (zero).

10 Spare 2

i1 PE overflow 2 F mode bit in any of the 64 PEs is set; or, ACR
bit 10 (32-bit mode) is set and F1 mode bit in any
of the 64 PEs is set (see page 4-15, F Bits).

12 Spare 1 Available for indicating that block of real-time
information has been stored in predesignated area
of ILLIAC IV storage.

13 Attempted write to 2 ACR bit 13 (storage protect enable) is set andthe hard-

protected storage ware mask is not in effect, and an attempt was made
to write into PE memory at effective address less
than octal 1000. (Note that write operation is inhibited.)

14 Branch trace 1 ACR bit 14 (branch trace enable) is set and ICR
has been altered by EXCHL, STL, LOAD(X), SKIP,
or JUMP instruction.

15 TRI loaded 1 Set by controls in Test Maintenance Unit when a

set-transmit to TRI is executed.

* Type 1 interrupt ~ recoverable,
Type 2 interrupt - nonrecoverable.

2-18

Table 2-2. Functions of Bits in CU Control Register (ACR)

Can be

Set/Reset
Bit No. via CACRB
0 Yes/Yes
1 No / No

2 No/Yes
3 No / No
4 Yes/Yes
5 Yes/Yes
6 No / No
7 No / No
8 Yes/Yes
9 Yes/Yes
10 Yes/Yes
11 Yes/Yes
12 Yes/Yes
13 Yes/Yes
14 Yes/Yes
15 Yes/Yes

ACR Function

Test result

Processing interrupt

ALR busy

Alternate interrupt
base in use

Quadrants awaiting
synch indicator

FINST idle

BIN/LOAD in
progress

Non-overlap mode

Exponent underflow
inhibit
32-bit mode

Spare
Spare

Storage protect
enable

Branch trace enable

TRO loaded

Description

ADVAST comparison indicator - When set, previous test
was true, and when reset, previous test was false.

Processing interrupt indicator - When set, the CU is in
the interrupt processing mode. Set whenever correspond-
ing bits of the AIN and AMR are set. Reset during the
execution of INR.

Hardware mask in use indicator - When set, the CU does
not enter the interrupt processing mode for any interrupt
except bits 0-3. Set when CU is initialized, and con-
current with the setting of ACR1. Reset automatically
by the INR instruction.

TL.OAD or BIN pending indicator - When set, indicates that

a ''read data from array memory' is in progress at one of
the CU stations or in the FINST queue. The indicator is set
at the beginning of the operation and reset at the end of the
operation.

Base address indicator - Used to determine the starting
address for interrupt programs (ICR = 00... (ACR4)0) and
the location of array memory in which to store accumula-
tor zero (00...100 (ACR4)).

This bit, when used in conjunction with the "join" option
of the WAIT instruction, will indicate whether all quad-
rants, which were specified in the ADR portion of the
WAIT instruction, are ready to synchronize. Care must
be taken to ensure that this bit is reset before entering
the "'join" routine.

FINST complete indicator - Reflects the status of the
FINST idle level during the previous clock period.

BIN/LOAD indicator - When set, indicates that the last
memory operation processed at ADVAST was a BIN;
when reset, the memory operation was a LOAD.

When set, the ADVAST, FINST, and PUs must complete
the current operation, all CUs in the array must be
synchronized, and enough time left for any interrupt to
reach AIN before the next instruction is executed.

When set, FINST inhibits transfer of exponent underflow
condition(s) to F or F1 bits in all PEs.

32/64 bits mode indicator - A copy of this indicator is
transmitted to FINST with every PE instruction. When
set, the PE will receive the proper enables to operate
in 32-bit mode; when reset, the PE will receive the
proper enables to operate in 64-bit mode.

Write in protected area indicator - When set and the hard-
ware mask is not in effect, the protected area of memory

is protected against writes. If such a write is attempted .
while bit 13 is on, by any memory user other than the 1/0,
then error latches in memory are set which cause the setting
of AIN13. Error latches are reset whenever ACR13 is reset
or whenever INR resets ACR1I.

Branch trace enable indicator - When set in the non-
interrupt mode and a change of ICR is attempted, then
AIN 14 is set and the old contents of ICR are stored in
TRO 40:24.

TRO loaded indicator - Set by LOAD{X) to TRO and
reset when the data has been read by the CDC. It is
not set by other actions which may load TRO such as
STL, EXCHL, and branch trace interrupt.

2-19

Interrupt (AIN) and Mask (AMR) Registers

'The function of the AIN register is to preserve an indication to the program

that a condition has occurred, except as specifically indicated otherwise in

o1 - 1 Voo Lovon ~dS men AL LA ANTTD nmed o
.Table 2-1. The function of the AMR regis

'nition of an interrupt condition by use of the interrupt mechanism. The read-

ing of the AIN (by a STORE (X) or LDL instruction) causes it to be cleared.

ADVAST Control Register (ACR)

The function of the ACR register is to provide indications to the program of
the state of an ILLIAC IV quadrant which are required for the programming of
executive or control programs. Unless specifically excluded (as noted in

" Table 2-2), all ACR bits can be set or reset by the CACRB instruction. The

bits at all times indicate the actual state of the system.

ILLEGAL INSTRUCTION/ADDRESS HANDLING

This section identifies the procedures for handling the various types of illegal

instructions/addresses.

Illegal CU Instructions

All undefined instructions are illegal. The following cases are included as

undefined instructions:

(a) All the blanks of Table 3-1;

(b) Most of the blanks of Table 4-1, the exceptions being octal
codes 2600, 2601, 2602, 2603, 2011, 2012, 2610, 2611 (which
are used for communication from ADVAST to FINST), and
3416, 3417, 3616 and 3617 (which are meaningless variants of the
FINST /PE instructions AD and SB);

~(c) Any FINST/PE instruction whose ADR field is 110 or 100 (register

code), and whose address field specifies an invalid combination of

source and destination registers (see FINST/PE transmit instruction
LD).

2-20

Illegal CU Addresses

Three categories of CU operations are of interest: ADVAST arithmetic in-
structions, all other ADVAST instructions, and TMU instructions. Each of
these categories makes unique use of CU registers which are identified or

addressed by an 8-bit address. These registers/addresses (spare included)

are divided into four groups with legal or illegal status according to Table 2-3,

In Table 2-3, the following ADVAST instructions are classed as "ADVAST
Arithmetic':

CADD GRTR--
CAND
CEXOR TXE--
COR TXG--
CSUB TXL--
LESS--
and the following ADVAST instructions are classed as ""All Other ADVAST"

BIN LOAD
BINX LOADX
DUPI STL
DUPO STORE
EXCHL STOREX
LDL

ADVAST Valid Registers

ADVAST instructions that may address registers and yield results are defined

in Table 2-4.

Interrupt Selection

Interrupts resulting from illegal instructions/addresses are always returned

for processing to the originating source. That is, if the illegal instruction

2-21

Table 2-3.

Legal/lllegal CU Addresses

Group Octal Address Advast Arithmetic All Other Advast TMU
1 000-137 Legal* Legal Legal
2 140-177 Illegal Legal Legal
3 200-277 Illegal Illegal Legal
4 300-377 Illegal Illegal Illegal

*ICR and IIA valid for CADD and CSUB only.
Table 2-4. Valid Registers for ADVAST Instructions
REGISTERS
AC0-3 ADB AMR AIN ALR ARE ACR ACU ICR IIA MCO0-2 TRI TRO
BIN Yes
BINX Yes
CADD Yes Yes Yes | Yes
CAND Yes Yes
CEXOR Yes Yes
COR Yes Yes
CSUB Yes Yes Yes | Yes
DUPI Yes

2 | DUPO Yes

8 EXCHL Yes Yes Yes Yes | Yes UN UN Yes | Yes Yes UN | Yes

g LDL Yes Yes Yes Yes | Yes Yes Yes Yes Yes | Yes Yes Yes | Yes

E LOAD Yes Yes Yes Yes | Yes UN UN Yes | Yes Yes UN | Yes

z LOADX Yes Yes Yes Yes | Yes UN UN Yes | Yes Yes UN | Yes

5 STL Yes Yes Yes Yes | Yes UN UN Yes | Yes Yes UN | Yes

S STORE Yes Yes Yes Yes | Yes Yes Yes Yes Yes | Yes Yes Yes | Yes

< STOREX Yes Yes Yes Yes | Yes Yes Yes Yes Yes | Yes Yes Yes | Yes

LESS-- Yes Yes
GRTR-- Yes Yes
EQLX-- Yes Yes
TXE-- Yes Yes
TXG-- Yes Yes
TXL-- Yes Yes

UN = Undefined. The instruction can address these registers but the results are undefined,

Yes = The instruction can address these registers and the results are defined.

2-22

was received from ILA via IWS, an AIN bit is set which allows ADVAST to
process the interrupt. However, if the instruction was received from the
DC-TMU (that is, a TMU or EFA ADVAST instruction, or EFF FINST in-
struction) a TCI bit is set which allows the B6700 control computer to process

the interrupt.

'INPUT-OUTPUT CONTROL

This section describes the input-output control functions performed by the
various elements of the I/O subsystem. These elements are the Descriptor
Controller (DC) and Disk File Control (DFC), the Buffer I/O Memory 7
(BIOM), and the Input-Output Switch (IOS). Since the main input-output control
functions involve the use of descriptors for defining operations to be performed,
emphasis is placed on use of descriptors — scan, I/O subsystem, and result -
for controlling I/O operations within the ILLIAC IV system. This discussion is
included with the description of the DC.

DESCRIPTOR CONTROLLER (DC)

The main control functions of the I/O subystem reside in the Descriptor Con-
troller (DC). The DC (Figure 2-4) is comprised of the following control logic

areas:

Scan and Result Descriptor: Handles the scan bus from the processor

and assembles a result descriptor when requested by the processor.

Word Bus Control: Buffers I/O descriptors and data between the B6700

memory and other areas DC. It also accepts B6700 memory
addresses from the scan bus, CU descriptor control, and list control

areas of the DC.

CU Descriptor Control: Stores and executes all I/O descriptors for the

CUs. It controls the transmission of data between the B6700 and CUs,

sends instructions to the CUs, and handles interrupts from the CUs.

2-23

yc-¢

B6700
PROCESSOR
SCAN BUS

L

B6700

MULTIPLEXER

WORD BUS

L

'

SCAN & RESULT

DESCRIPTOR |@——

CONTROL

'

WORD BUS
CONTROL

69

TMU SECTION OF
—

15

EACH CONTROL UNIT

25

» BIOM
MSU SECTION OF
! ol

L CcU
| DESCRIPTOR |
CONTROL
LIST CONTROL, DFC <
AND . DESCRIPTOR
QUEUER) CONTROL <
l l ‘ Y Y Y v
DFC1 & 2 REAL TIME EU-1 EU-2 DFC-1 DFC-2 EXCH
SEGMENT CONTROL
ADDRESS

Figure 2-4.

Descriptor Controller

EACH CONTROL UNIT

Disk File Control 1 and 2 Descriptor Control: This section

combines the control functions of the two icdentical DFC controls,
the BIOM address register, and the disk exchange select re-
gisters into one logical grouping. Real time external controls
enter here into the designated disk descriptor control. It re-
ceives information from the queuer, and controls the address

for the array memory or BIOM for transfer to the proper memory
location when needed. Control lines are provided to effect data flow

to the DFCs and to send the disk address to the selected EU.

Queuer: This is a functionally separate logic area of the DC
and represents that portion of the hardware which allows the se-
quential execution of disk transactions to minimize 1étency time,

The queuer contains storage area for 24 disk transactions,

List Control: The function of the list control is to keep the

queuer full and to allow the processor to complete the execution of

a group of I/O descriptors without being interrupted for a des-
criptor fetch operation, The descriptors are fetched from

B6700 memory as a group as directed by the List I.D. in the

first word of the respective I/O descriptor. The list is a

sequential group of I/O descriptors in the B6700 memory with

List I.D.'s not equal to zero, A list is started by either a

List Head I/O descriptor orby any other I/O descriptor with

a List I.D. not equal to zero. The List I.D. field is two bits

and permits three different lists to be active at one time. A maxi-
mum of 15 descriptors is permitted in each list. A second list (or
third) can be started by an I/O descriptor within the first list having
a different List I. D. A list is ended when a List Tail I/O descriptor is
executed having a corresponding List I. D. value. A result descriptor
is sent to the processor when the last I/O descriptor of a parti-

cular list is executed. If an error is detected in a list descriptor
being fetched from the B 6700 memory, under control of the list

controls, the remainder of the descriptors in the list are not

2-25

fetched. The active lists are tailed. A result descriptor is re-
turned for the descriptor in which the error was detected (see Queuer

Result Descriptors for the type of relevant error detection).

Scan Bus

The scan bus of the DC is used for initiating operations between the B6700
processing system and other elements of ILLIAC 1V, or between various
elements of ILLIAC IV, under the control of the B6700. At present it is
used only for operations that involve the B6700-DC interface but it has
the capability for future expansion to accommodate additional devices if re-
quired. This is evident in the bit utilization of the scan descriptors as
discussed below, wherein certain bits of these control words are defined

only for operations with the DC.

The scan bus consists of a standard memory interface comprising 80 signal
lines. Eight of these are used as control lines, 20 are address lines, and

52 are data lines. The address lines are used only for fetching scan des-
criptors from B6700stack iop in the processor and the data lines are used only
for sending/receiving descriptors to/from the B6700processor. Descriptors

involving exchanges with B6700 memory utilize -he word bus.

Scan Descriptor Usage

The B6700 supervisory program uses scan descriptors to initiate operations
in the DC. As presently defined, the five types of operations that may be

performed using these descriptors are:

Initiate I/O (scan out);
Interrogate peripheral status (scan in);
Read result descriptor (scan in);
Set exchange (scan out);
Clear queuer (scan out).
Each of these operztions is initiated by the execution of an associated scan

Liliizn il

command ir the =7 50 processor. Upon execution of the scan command,
2-26

the top word in the B6700 processor stack (scan descriptor) is placed on
the address lines of the scan bus to identify to the DC the function to be
performed. The second word of the stack (area descriptor) provides the
sink or source for additional data required for scan in/scan out. The

format for a scan descriptor is as follows:

Scan Descriptor Format

19 17 16

100 VAR F z M

"Bit 19 = 1 for DC transfers.

Note: For all descriptors, the left-most bit in a field is
the most significant bit and the right-most bit is the

~ oo

least significant bit.

Field Function
M Designates unit(s) addressed by scan descriptor,
M = 0 indicates all units on scan bus are addressed;

M = 1 indicates only those units identified by the
Z field are addressed.

Z Z = 00 identifies DC as unit addressed by scan
descriptor.

F Function code. Identifies scan command to DC.

VAR Used for variants of the "interrogate' descriptor

and "'set exchange'' descriptor.

The function field (F) identifies the operation to be performed by the DC. The

execution of these commands is described below:

2-27

Initiate I/O (F = 0000): Initiate the specified operation on the

unit designated. The DC’ uses the area base address specified

by the area descriptor to fetch an I/O descriptor from B6700 |
memory. The command is not accepted by the DC if the DC is
already performing an 'initiate I/O" operation. In this event, the pro-
cessor will detect an invalid address interrupt. The format for the

area descriptor is as follows:

Area Descriptor Format

20 19 0

Interrogate Peripheral Status (F = 0001): This scan-in descriptor

will cause the DC to interrogate the status of the List Cdntrols,‘

the Queuer, the Disk and Disk Controls, and the Control Units, as
determined by the variant bit set into the VAR field. The bit assign-
ments are as follows:

Variant Bits

16 15 14 13 12 11 10 9 Description

0 0 0 0 O O O 1 |Interrogate status of List

0 0 0 0 O O 1 O Interrogate status of Queuer
0 0 0 0 0 1 0 O Interrogate status of Disk

0 0 0 0 1 0 O O |Interrogate status of CU

The result descriptor to be returned following the execution of
this scan-in descriptor will have one of the following formats, as

appropriate:

2-28

List Status Variant

Bits
0,1

11-8

12

13

17-14

18

V—t
K]

23-20

47-28

Queuer Status Variant

"1

Bits

0,1

2,3

27-5

2-29

Description

1 1 = Software attention with
or without hardware exception

Number of descriptors in the
Queuer from the three lists

1 = List head FF for List 1 Set
0 = List head FF for List 1 Reset

1 = List tail FF for List 1 Set
0 = List tail FF for List 1 Reset

Number of descriptors in Queuer
from List 1

List head FF for List 2 Set

0 = List head FF for List 2 Reset
1 = List tail FF for List 2 Set
0 = List tail FF for List 2 Reset

Number of descriptors in Queuer
from List 2

1 = List head FF for List 3 Set
0 = List head FF for List 3 Reset

1 = ig

.
- J_‘.I.TAM

t tail for List 3
0 = List tail FF for List 3 Reset

Number of descriptors in Queuer
from List 3

Contents of the List Address Register

Description

1 1 = Software attention with or
without hardware exception

1 1 = Queuer full
0 1 = Queuer not full, not empty
0 0 = Queuer empty

1 = Queuer location 00 contains a
descriptor

0 = Queuer location 00 does not
contain a descriptor

Same as bit 4 for Queuer locations
01 through 23 respectively

Disk Status Variant

Bits

0,1

18-3

22-19

23

39-24

43-40

CU Status Variant
Bits
0,1

10

12

14

2-30

Desgcription

1 1 = Software attention with or
without hardware exception

1 = DFC-1 busy

0 = DFC-1 not busy

0 = Storage units 00 through 15,
respectively, associated with
"DFC-1 ready"

1 = Storage units 00 through 15,

respectively, associated with
"DFC-1 not ready"

Specifies the electronic unit
controlled by DFC-1

1 = DFC-2 busy
0 = DFC-2 not busy

0 = Storage units 00 through 15,
respectively, associated with
"DFC-2 ready"

1 = Storage units 00 through 15,

respectively, associated with
"DFC-2 not ready"

Specifies the electronic unit
controlled by DFC-2

Description

1 1 = Software attention with or
without hardware exception

1 = CU #0 not ready
0 = CU #0 ready
1 = CU #1 not ready
0 = CU #1 ready
1 = CU #2 not ready
0= CU #2 ready
1 = CU #3 not ready
0 = CU #3 ready

Read Result Descriptor (F = 0010);: When access has been granted

to the DC, a result descriptor will be placed on the scan

bus. (See Result Descriptor discussion, page 2-36_,' for word

format and bit content of the responding descriptor.)

Set Exchange (F = 0011): The DC will respond to this command by

setting the disk exchange configuration registers to the value on the
scan bus. One of two area descriptor formats applies, as determined
by the setting of variant bit 9. (The queuer in DC must be empty of

I/O descriptors before this command can be accepted.)

If variant bit 9 = 1, then the following area descriptor applies to the

real-time device:

Area Descriptor Format

47 46 45 [¢]

I ALY

Bits Description

46 1

n

DFC-1 assigned to real-time
device

47 1

DFC-2 assigned to real-time
device

If variant bit 9 = 0, then the following applies:

Area Descriptor Format

47 44 43 40 0

BRI

Bits ~ Description
40-43 Switch designated EU to DFC-1 control
44-47 Switch designated EU to DFC~2 control

2-31

Clear Queuer (F = 0100): This instruction clears the 24 occupied

and 24 priority FF's. All list counters are cleared, as is the list

address register.

I/O Descriptor Usage

The 1/O descriptors are comprised of one or two 48-bit words, according to
the function to be performed. Before the I/O descriptor can be fetched from
B6700 memory, a scan descriptor must be executed by the B6700 specifying
an ''[/O initiate" command. Execution of the scan descriptor results in an
area descriptor being sent from the B6700 to the DC via the B6700 scan -
bus. The area descriptor gives the B6700 memory address where the I/O
descriptor is stored. Upon receipt of this information, the (DC uses the
area descriptor to fetch the I/O descriptor from B6700 memory via the
B6700. multiplexer and the word bus. The operation specified by the I/O
descriptor is then performed as required. The I/O descriptor word formats

are as follows:

First I/O Descriptor Word

474645 44 4039 3635 2827 242322212019 0
7
/PC INS VAR IDENT MAP |LDI |UNT ADD-A

Second I/O Descriptor Word

36 35 1€ 15 c

2-32

Field Function

PC Parity Control. When zero, the I/O functions normally
(with odd parity). When one, the parity generator
of the DFC is disabled. This bit is used for diagnostic
purposes only.

INS Instruction field. Specifies instruction to be performed,
as listed in Table 2-5.

VAR Variant field.

IDENT Identifier field. Identifies I/O descriptor and the

B 6700 control program where it originated. Program
uses field to compare against respective result des-
criptor, which must bear same program identification.

MAP Control field. Contains routing information for con-
trolling distribution of data to and from array quad-
rants, for both CUs and PEMs.

L.DI Descriptor identifier (List I. D.). LDI = 00 indicates
result descriptor required upon execution of I/O
descriptor. LDI =01, 10, or 11 indicates result
descriptor to be delayed until last I/O descriptor
bearing List I. D. 01, 10, or 11, respectively, is
executed. Note that if an error is detected when any
descriptor is being stored in the Queuer or when any
descriptor is being executed, a result descriptor is
returned for that descriptor.

UNT Designates which of the two DFCs is to be used in the
operation.

ADD-A Address field. Used to specify one of the start addresses
for data transfer operations between storage devices.

ADD-B Address field. Used to specify one of the start addresses

for data transfer operations between storage devices.
LIM Specifies limit for data transfer operations; a count of
data transfers (1024 bits each) for array memory, or
word count for B6700 memory or BIOM.
The specific I/O descriptor fields for the various operations are listed in
Table 2-5. Each entry indicates the operation to be performed, its corres-
ponding INS field contents, and the other fields of the descriptor that are

used. A detailed description of the various operations follows:

2-33

¥e-¢

Table 2-5.

Operations Specified by Instruction Field of
I/O Descriptor

Operation First Word Second Word
INS VAR MAP LDI UNT | ADD-A ADD-B LIM
Write CU 01 Y Y B6700 Y
Read CU 02 Y B6700 Y
Scan CU 03 Y B6700 Y
Stop CU 04 Y
List Head 14 Y List(B6700)
List Tail 15 Y List(B6700)
Transfers:
Disk-Array 16 Y Y Y Y Disk Array Y
Array-Disk 17 Y Y Y Y Disk Array Y
Disk-BIOM 18 Y Y Y Y Disk BIOM Y
BIOM-Disk 19 Y Y Y Y Disk BIOM Y
BIOM-Array 20 Y Y Y Y BIOM Array Y
Array-BIOM 21 Y Y Y Y BIOM Array Y
Array-Real 24 Y Y Y Array Y
Time Device
Real Time 25 Y Y Y Array Y
Device-Array

Y = Field is used.

Write CU: Transfer "n" words sequentially, singularly or jointly,
to the TMU input register (TRI) of the designated CUs from B6700
memory starting at address ADD-B. The number of words, n,

is specified by the word count in LIM, The transfer is jointly if

bit 1 of VAR is set; otherwise it proceeds singular in a sequential
manner, The CUs are designated by MAP, which has four bits, one
for each CU. If all four bits of MAP are set, all four CUs are de-

signated as destinations.

Read CU: Transfer 'n" words (48 bits) from the TMU output
register(s)(TRO) of the designated CU(s) and store sequentially

in B6700 memory starting at the address specified in "ADD-B"
(CMAR). If more than one CU is specified in the map field, the
transfers will be from the specified CUs in a sequential manner
(bit 1 of ""VAR" (bit 36) ‘is ignored). If bit 2 of ""VAR" (bit 37)

is a zero, the number of words specified will be read one at a time,
in sequence, from each CU specified in the map field, and stored in
sequential locations in the B6700 memory. If bit 2 of ""VAR' (bit 37)
is a one, the number of words specified will be read two at a time, in

sequence, from each CU specified in the map field.

Scan CU: Used for read out of addressed CU registers during diag-
nostic operation. First, a word is "written' (as in the "write CU"
operation above) to send an instruction word to the CU (usually an
"SOC'" or "SOD" to indicate to the TMU what CU register should be
placed in the TMU's output register (TRO)). Next, a word is "'read"
(as in the "'read CU'" operation above) from one half of the TRO into
the same B6700 memory location from the word just written. Then,
if bit 2 of "VAR'' (bit 37) equals a one, a second word will be read
from the same CU (the second half of TRO) into the next sequential
B6700 memory location. If bit 2 of "VAR' (bit 37) equals zero, a

second word is not read fromthe CU, The B6700 memory address is then incre-

2-35

mented and the above procédure repeated until the word count in the
"LIM" field is reached. The CU's are designated by the map

field. If more than one CU is specified in the map field, the transfers
will be to/from the specified CUs in a sequential manner (bit 1 of "VAR"

(bit 36) is ignored).

Stop CU: Stop instruction issued to CU(s) designated in MAP,

This is a one-word descriptor,

List Head: This is a one~-word desériptor which identifies the
descriptor list in LDI and specifies the B6700 memory location
(ADD-A) which contains the first I/O descriptor in the list. The
I/O descriptors comprising the list must be in sequential order
in B6700 memory. The first I/O descriptor of a list may act

as the head, in which case its location is the list address.

List Tail: This is a one-word descriptor which denotes the
end of the descriptor list identified in LLDI. After locating the
list tail, the DC will write a "lock' of all zeros in the assoc-
iated memory location. If the program is to extend the list,
this must be done before the lock is effected, otherwise it

must create a new list

Disk-to-Array Transfer: Transfer ''n'" words (1024 bits) from the

designated electronics unit (EU) to the designated section of the array.
UNT identifies the DFC to be used in the transfer and ADD-A speci-

fies the start for the disk segment. The destination section of

the array is identified by MAP and bits 3 and 4 of VAR as described
below; the array memory start address is given by ADD-B. The number
of 1024-bit words transferred is defined by the word count in LIM.

Each bit in the MAP corresponds to a particular PE quadrant (PEQ).

2-36

If one PEQ is desired, its respective MAP bit should be set. If two
PEQs are desired, their respective MAP bits should be set. The speci-
- fication of three PEQs is not allowed. If all four quadrants are desired,
all four MAP bits should be set. Data is always transferred
sequentially to the designated sections of the array. Bit 3 of VAR is
set if only one-fourth of each mapped PEQ is desired; bits 3 and 4 are
set if only one-half of each PEQ designated is desired - and

must start at the first or third quarter. The least significant

bit of VAR is set to indicate priority, overriding all other I/O
descriptors in the queue for disk access. ADD-A provides the

disk address, as follows: bits 13 through 16 are the storage

unit (SU) designation; bits 11 and 12 are the track number,

and bits 0 through 10 are the segment address. ADD-B is the

array memory address of a block of 16 PEM words.

Array-to-Disk Transfer: Transfer''n'" words (1024 bits)from the

designated section of the array starting at array memory ad-
dress ADD-Btothe DFC unitdesignated by UNT starting at the
disk segment address in ADD-A. Field usage is as indicated

above for disk-to-array transfers.

Disk-to-BIOM Transfer: Transfer ''n'" words (256 bits) from

disk starting at segment address in ADD-A, via the DFC desig-
nated by UNT, to BIOM starting at the address in ADD-B, If
it is a priority transfer, bit 1 of VAR is set. The MAP field
must be all zeros. The format of ADD-A is as described for

disk-to-array transfers. LIM specifies a 256-bit word count.

BIOM-to-Disk Transfer: If VAR bits 2, 3, 4 equal ''0, 0, 0", transfer
"n'" words (256 bits) from BIOM starting at address in ADD-B, via

the DFC designated by UNT, to disk starting at segment address

2-37

in ADD-A. Other conditions are as above for disk-to-BIOM transfers.

If VAR bit 2 equals "1", 16 words of 256 bits are transferred, then

48 words of 256 bits are skipped, alternately until the word count "n"

is reached, otherwise as above. If VAR bits 2, 3 equal "0, 1', 32
words of 256 bits are transferred, then 32 words of 256 bits are skipped,
alternately until the word count "n" is reached. For either of the last
two variants, the starting address should be zero, modulo 16 (or 32 for
the second variant), if the first group of words transferred is to be the

same size as all the others.

BIOM-to-Array Transfer: Transfer ''n' words (1024 bits) from BIOM
starting at address ADD-A, via the DFC specified by UNT, to the

designated section of the array starting at array memory address

ADD-B. Other conditions are as indicated for disk-to-array transfers.

Array-to-BIOM Transfer: Transfer 'n' words (1024 bits)from the

designated section of the array starting at array memory ad-
dress ADD-B, via the DFC designated by UNT, to BIOM
starting at address ADD-A. Other conditions are as indicated

for disk-to-array transfers.

Array-to-Real Time Device: Transfer ''n'' words (1024 bits)from the

designated section of the array starting at array memory address
ADD-B, under control of the DFC designated by UNT via IOS, to the
real-time device. Other conditions are as indicated for disk-to-array

transfers.

Real Time Device-to-Array Transfer: Transfer ''n" words (1024 bits)

from the real-time device under control of the DFC designated
by the UNT via IOS, to the designated section of the array starting
at array memory address ADD-B. Other conditions are as indi-

cated for disk-to-array transfers,

2-38

Result Descriptor Usage

Result descriptors are comprised of one 48-bit word. Access for the exe-
scan command by the B 6700. The request for the scan command is initiated
by the DC which sends an interrupt (to the B6700) which was caused by an
"I/O complete', an error, or an interrupt condition. The format for a result
descriptor is as follows:

Result Descriptor Format

47 28 27 16 15 21 O
ADD-E INS-1D : ERR ATT
Field Function
ADD-E Address field, Indicates last address used by

array, B6700, or BIOM.

INS-ID Identity field. Bit 27 identifies type of descriptor.
Bits 23-26 contain the four least significant bits of

the instruction, which combined with the restrictions
on the use of the instructions, unambiguously identifies

the instruction being executed. Bits 16-22 provide
an identification number for software use. Bits 13
and 14 serve as list ID in some types of descriptor.
Bit 7 identifies the type of descriptor.

ERR Error field. Denotes type of error or interrupt.

As

noted in the above comment, bits 13 and 14 carry an ID

function in some descriptor types. Bit 7 is used for
""CU3 not ready' in the DFDC result descriptors.

ATT This field denotes the type of attention required by the

program for the result descriptor.

Specific bit usage is described in the following subparagraphs for the various
result descriptors.

2-39

CU Attention Result Descriptor: This descriptor is formed whenever

a CU which is not being addressed by an active CU instruction, gener-

ates an interrupt (see note). It is read in the same manner as a result

descriptor.

Bit usage is described below:

Note: In the event that a CU interrupt is generated by a

CU which is being addressed by an active instruction,
the operation in progress is terminated and a CU
Result Descriptor (described next) is returned instead
of the CU Attention Result Descriptor.

Bits Description
0, 1 - 11 =Software attention with or without hardware
exception
7 Zero
9 CU #0 requires attention
11 CU #1 requires attention
13 CU #2 requires attention
15 CU #3 requires attention
27-23 Always bit pattern 00111 (octal 07) in INS field

to indicate unique code for this descriptor.

CU Result Descriptor: As noted above, this descriptor is generated upon the

ocourrence ofaninterrupt in a CU being addressed by an active CU instruction.
It is also generated by certain error conditions. Bit usage is as follows:

Bits

0,1

4

Description
1 1 = Software attention with or without hardware exception

Descriptor error. Indicates that an incorrect instruction code
was received by the CU Descriptor Control (CUDC), or that a
MAP field is equal to 0

Time-out error. Indicates that during operation with CU, a transfer
is not completed within 10 msecs.

Word bus error. Indicates that CUDC was thwarted in an attempt
to use the word bus because of error., The word bus controls will
also return a word bus result descriptor in response to the error.

Bits Description

7 Zero

8 CU #0 not ready

9 CU #0 error

10 CU #1 not ready

11 CU #1 error

12 CU #2 not ready

13 CU #2 error

14 CU #3 not ready

15 CU #3 error
22-16 Identifier bits (ID). All but the LLSB of the IDENT

field of the original CU I/O descriptor

27-23 Unique code of 01, 02, 03, or 04 (octal)
47-28 Address field (ADD-E)

Word Bus Result Descriptor: The word bus control is used by various

the word bus, as
follows: by the scan bus controls to fetch I/O descriptors; by the

list controls to fetch I1/O descriptors; by the CU descriptor controls
(CUDC) to execute read/write operations between the array (CUs) and
the B 6700. The word bus result descriptor is generated by the word

bus control. Bit usage is as follows:

Bits Description

0,1 1 1 = Software attention with or without hard-
ware exception ’

4 Descriptor error. This bit is set under any of
the following conditions:
a. I/O descriptor fetched has an invalid
‘ instruction code;

b. List head descriptor specifies a list
already in progress;

2-41

4 (Cont'd) c. List tail descriptor specifies a list
that does not have its corresponding
list head flip-flop set;

d. List tail descriptor specifies a list that
already has its list tail flip-flop set;

e. List head or list tail descriptor does
not specify a list;

f. Linked-list tail descriptor does not
specify a list or the list specified does
not have its corresponding list head
flip-flop set;

g. CUDC already has an active CU de-
scriptor when new CU descriptor is
received for processing by CUDC

5 Read address parity error. Indicates that the
B6700 memory detected a parity error for the
read address information transmitted

6 Read data parity error. Indicates that the data
read from B6700 memory was received with a
parity error

6,5 Write address/data parity error. Setto 1,1 to
indicate that the B6700 memory detected a parity
error for the address or data transmitted to it
for a write operation.

7 Zero

8 No access to memory. Indicates that the word bus
‘requested memory access and the memory ready
signal was not returned for a period of 8 clocks.

22-16 Identifier bits. All but the LLSB of the IDENT
field of the original I/O descriptor.

27-23 All zeros in INS field; unique code for this descriptor.

47-28 Address field (ADD-E)

2-42

Queuer Result Descriptor: This is an I/O result descriptor that is

generated by the Queuer controls of the DC. Bit usage is as

follows:

Bits

0,1
2

0 I h

12-9
14,13

15
22-16
26-23

27

Description
1 1 = Software attention with or without hardware
exception
Indicates a Queuer busy condition, as follows:

a. BIOM-Array operation specified but BIOM<-Array
descriptor already stored;

b. Priority for DFCn specified but DFCn
already has priority descriptor stored;

c. Queuer is full (non-list descriptors)
Unit not ready
Descriptor error. Indicates the existence of one

of the following error conditions:

a. Illegal unit specified in descriptor;
b. Descriptor specifies UNT field equal to

0 when INS field snecifieg a disk

aiois 2 AP AV MlueviliaiLo @ Ulon

operation;
c. Invalid INS code specified;
d. List specified but list tail is already set
for that list
LSB of DFC specified
MSB of DFC specified
One
Queuer full
Identification of storage unit specified

List ID

Priority bit
Identifier field. All but the LSB of the original field,

Instruction field, last four bits of "transfer' type instruction

zZero

2-43

Bits Description

47-28 Address field; array or BIOM memory address if list ID
is zero. If list ID is not zero, contents of list address
register.

DFDC Result Descriptor: This is an I/O result descriptor that is

generated by the DFC controls of the DC. If bits 2-14 are all zero,
successful completion of a non-list descriptor is indicated. Bit usage

is as follows:

Bits .» Description
0,1 1 1 = Software attention with or without hardware
exception
2 CU #0 not ready
3 CU #2 not ready
4 List complete. When bit 4 is set, the remainder of

the descriptor pertains to the last descriptor executed
in a given list.

5 Invalid MAP/VAR specified
6 Disk read parity error
7 CU #3 not ready
8 Disk missed access
9 EU manual write lockout
10 CU #1 not ready
11 SU not ready
12 Disk time-out
14,13 List ID
15 Track counter incrementing indicator
22-16 Identifier field. All but the LSB of the original field,
26-23 Instruction field; last four bits of ''transfer' type
instruction
27 One
47-28 Last memory address used by array or BIOM.

2-44

' DISK FILE CONTROL (DFC)

The I/O Disk File Control (DFC) contains two identical controls (Figure 2-5)
which communicate with the two Model II Electronic Units (EU), the I/O
Switch (IOS), the Buffer I/O Memory (BIOM), and the Descriptor

Controller (DC). The DFC controls the flow of data to and from an EU under
the direction of anI/Odescriptor executed by the DC. Data flow between the
B6720 system and the ILLIAC disk is via the BIOM, through the designated
DFC and EU, to a Storage Unit (SU). Data flow between array memory and
the ILLIAC disk is via the IOS, from its associated IOR, through the desig-
nated DFC, through an EU, to an SU. The designate lines (SU, track, and
read/write) go directly from the DC to the EU.

The smallest addressable area of the disk is a segmentw hich contains 16, 384
bits of data and 128 bits of parity. The total segment size of 16,512 bits is con-
tained in 43 disk words of 384 bits each. The data size of 16, 384 bits is equal
to 256 ILLIAC words of 64 bits each. There are 1200 segments per revolution

De BIOM
Y !

256
384 e » JOR-1
EU-] @«——»f Y& S 128

384

I0S

. 256 —» [IOR-2

EU-2 - 384 o

384
Y
1024

Figure 2-5. Disk File Control

2-45

and 4800 segments per disk (SU). Data transfer may start at any designated

segment but cannot cross SU boundaries.

A DFC has a 384 -bit word register to interface with the EU, and a 1024-bit
register to interface with IOR in the IOS or BIOM. These registers plus the
1024-bit IOR are required to match the combined data rates of the two disks
(2 X 384 bits every 680 nsec) to the Worst-qase delay for array memory cycles
- (1024 bits every 900 nsec). The 384-bit word register is also used for receiving
16 sets of addresses during the address mode. The address mode occurs
whenever the DFC is not busy executing an I/O descriptor for read or write.
Each SU provides a set of 11 address bits for every segment. These bits are
continually compared with the queuer I/O descriptors in the DC. When a

match is found, that I/O descriptor is the next executed by the DFC.

BUFFER I/O MEMORY

The BIOM is treated at the B6700 system as though it were a B6700 memory
module having four ports, one each for two B6700 processors and for the two
B6700 multiplexers, as shown in Figure 2-6. The advantage of considering the
BIOM a B6700 memory module is that the control program can transfer data
between B6700 memory (disk or tape) and the BIOM via the multiplexer without
requiring the B6700 processor to cycle its main memory. The B6700 side of
the BIOM is independent of the ILLIAC IV I/O subsystem, with the control
program handling memory protection and resolving conflicts in memory access.
The I/O descriptor for any multiplexer operation must be in BIOM at the head

of its assigned area.

The BIOM contains four PEM modules, each providing storage for 2048 words,
64 bits in length. It has two functional interfaces, one with the ILLIAC IV I/O
subsystem , the other with the B6700 system. These are shown in the simplified

block diagram of the BIOM, Figure 2-6,

The interface with the ILLIAC IV I/O subsystem is used for transferring data to
or from the ILLIAC IV disk system or the ILLIAC IV array. All data transfers

on this interface are for a 256-bit word per memory cycle. The four PEMs are

2-46

used in parallel to store 2048 words of 256 bits each; that is, each PEM stores
64 bits of the data word. Addressing of the BIOM is controlled by the designated

. 'DFC descriptor control in the DC. Eleven address bits specify one of 2048
locations in a PEM such that the same address refers to the same relative

location in each of the four PEMs.

The interface with the B6700 system is used for transferring data to or from the
B6700. On this interface, data may be transferred as either a 32-bit or a 48-bit
word. The BIOM module is designated by address bits A19 through A15 inclusive
equal to "1'" which assigns the BIOM as the two top memory modules on the
B6700 system. Address bit Al4, the least significant module address bit, is

the mode bit; Al4 = 0 for 32-bit mode transfers and A14 = 1 for 48-bit mode
transfers. Address bits A13 through A0 are the BIOM internal addresses.

In the 32-bit mode, two 32-bit words are stored for each 64-bit PEM word.
Address bits A2 and Al in combination designate one of the four PEMs.
Address bit A0 designates the half of the PEM word to be used. The formats are

illustrated in Figure 2-7,

In the 48-bit mode, sixteen 48-bit words are stored for every three 256-bit
words (four PEMs), as shown in Figure 2-8. The four least significant address
bits, A3 through AO, designate and control the 16 different positions within
three 256-bit words (four PEMs). The octal addresses for a 16-word subset
are shown in Figure 2-8. Address bits A13 through A4 define 1024 subsets,

of which 682 are usable. In both Figures 2-7 and 2-8 the least significant

end of the word is on the right side of the figure; bit 0 for a B6700 and bit 63
for a PE word.

The memory address as received from either the processor or the multiplexer is
interpreted in the BIOM logic so that it may be used directly in addressing a PEM.
The BIOM-Internal addresses of the three words (of four PEMs) in a subset N are
(see Figure 2-9):

3N + W0; 3N + W1; 3N + W2
where

N = bits A13 through A4
WO, W1, and W2 are derived from A3 through AO.

2-47

B6700
PROCESSORS

4

-

_ _ _A_MEMORY
BUSSES

B6700
MULTIPLEXERS

4

1 -

\

- -

DR/RCVR

DR/RCVR

DR/RCVR

DR/RCVR

I

i

i

]

[

DATA REG.

i

MEMORY

i

DR/RCVR

DFC-1 AND -2

Figure 2-6.
64 BITS ‘
32 ‘
BITS
1 !
| |
A0=0 ; A0=1 A0=01A0=1
I
: |
PEM O PEM 1
Al =0 Al =1
A2 =0 A2 =0
Figure 2-T7.

Buffer 1/O Memory

A0=0 ' AD=1 AO=0:A0=1
|
| |
PEM 2 PEM 3
Al =0 Al =1
A2 =1 A2 =1

2-48

PEM 32-Bit Mode Format

I

PEMO | PEM 1 | PEM2 = PEM3
|
[

00 01 02 | 03 04 }Wo
. 05 | 06 | 07 10 | 11] 12 W1
I
13 14 | 15 16 | 17 | pwW2
| | | i I
64 —> | l |
| BITS | | |
Figure 2-8. PEM 48-Bit Mode Format
A19 A18 . . . Al15.A14.A13 . . . A4 A3 A2 A1 AQ
1 1 ... 1 1 X X X X X X
XN =AN, N=4, 5, . . . 13
YN =A(N+1) N=4, 5, . . . 12
A

® >
X INPUT

SELECT ONE

y INpUT —((D—r OF 16 POSITIONS

CONTROL

11 BIT ADDER

© o [

BMAR-0 BMAR-1 BMAR-2 BMAR-3
11 BITS 11 BITS 11 BITS 11 BITS
PEM 0 ADDRESS PEM 1 ADDRESS PEM 2 ADDRESS PEM 3 ADDRESS

Figure 2-9. 48-Bit Mode PEM Address Modification

2-49

g
DFC-1 <228 © IOR
~
o]
a
s | [:
__ 256 J o ™ U 1024 ARRAY
DFC-2 <= £ IOR [£ » MEMORIES
e @
a - =)
r—m
POSSIBLE 1024 1>
REAL-TIME w'————» 2 I-‘— ————————]
LINK | =
=
2]
——— 10S-A EXPANSION
TO I0S-B
Figure 2-10. I/O Switch Configuration for 1024-Bit
Transfer Capability
FROM
108-A
REAL-TIME MIX/DISTR
UNK‘S ARRAY
[[_‘ MEMORY
o @ ! QUADRANTS
1024 > 2 1024
X - O e = » 2
& =z
= 2
& =)
© oot
024 0 2 1024
1
X - E |- = > 3
= o
3 a
= =
1024 3] O 1024
X - > e ~ > 4
= =
S g
10S-B

Figure 2-11. Possible Expansion Elements to Basic I0OS Con-
figuration for 4096-Bit Transfer Capability

2-50

Addresses from the four ports and DC are mixed and priority resolved for
allowing access to BIOM. The order of priority, from highest to lowest is:

DC, Port 1, Port 2, Port 3, Port 4. Note that if a BIO M-to-disk operation

is in process, no other unit (the four ports) is allowed access until the operation
is complete. The path between BIOM and disk is critical in timing to allow the

BIOM to keep pace with the disk.

. 1/O SWITCH

The I/O switch (Figure 2-10)isa unit which is used for data buffering and
distribution, and which provides expansion capability for the real-time link.
For buffering purposes a 1024-bit I/O register (IOR) is provided for each
disk file control. This buffering allows the transfer of 1024 bits to array
memory every microsecond, alternating between the DFCs. The transfer
channel between each DFC and the IOR is a 256-line bidirectional cable.

The transfer channel between either IOR and the array memory is a 1024~
line bidirectional cable. When the fourth or last group of 256 bits is being
transferred between an IOR and its DFC, a PEM memory cycle is requested
by the descriptor control of DC to effect the transfer. (The I/O registers

are not used with the real-time link.)

A second function of the IOS is to distribute data between the three I/0 ports ’
and the array memory. The three ports are the two DFCs and the real-

time link. The distribution method depends on whether the IOS is a 1024-bit
unit in the IOS-A configuration (Figure 2-10) or an expanded version (IOS-A,
I0S-B) capable of handling 4096 bits (Figure 2-11). For a 1024-bit I0S, the
two IORs are switched alternately to the single 1024-line cable to array
memory. The 1024 bits are sufficient to accommodate 16 PEMs of 64 bits
each per IOS transfer. Thus, each line need be routed to only 16 different
PEMSs for the entire array of 256 PEMs. The real-time link requires one

of the disk file controllers for control purposes although it has its own 1024-

bit input to the IOS., For a 4096-bit IOS, the IORs are distributed to one of

2-51

four 1024-bit cables to the array memory so that each 1024-bit cable group
connects to a separate quadrant of 64 PEMs. In this configuration, the real-
time link has an input/output of 4096 lines and uses all four cable groups to

the array.

The initial I/O switch will be in the IOS-A configuration, that is, with a band-
width of 1024 lines to the array memory. This is sufficient for the two disk
files and most real-time links. However, the IOS is organized so that it can
be expanded to include the IOS-B configuration to provide an additional 3072
data lines for the real-time link and array memory, This, of course, would
require that the cabling between the IOS and the quadrants be slightly modi-
fied so that the first cable of 1024 lines goes only to quadrant 1; the other

three sets of cables would go to quadrants 2, 3, and 4.

2-52

CONTENTS

Page
INSTRUCTION FORMAT AND FIELD USAGE 3-1
ILLIAC IV ADDRESSING 3-4
ADVAST INSTRUCTION REPERTOIRE , 3-8
ADVAST INSTRUCTION DESCRIPTIONS 3-11

(See Index on Reverse Side)

ADVAST INSTRUCTION INDEX

Mnemonic Octal Ref, Mnemonic Octal Ref, Mnemonic Qctal Ref.
Code Code Page Code Code Page Code Code Page
ALIT 16XX 3-12 INCRXC 0002 3-41 TXEF 1413 3-70
BIN 0610 3-13 INR 0007 3-42 TXEFA 1412 3-70
BINX 0611 3-13 JUMP 17XX 3-43 TXEFAM 1216 3-T1
CACRB 0001 3-15 LDC 0011 3-44 TXEFM 1217 3-71
CADD 0402 3-17 LDL 0405 3-45 TXET 1411 3-70
CAND 0410 3-18 LEADO 0201 3-46 TXETA 1410 3-70
CCB 1101 3-19 LEADZ 0200 3-46 TXETAM 1214 3-71
CEXOR 0407 3-20 LESSF 1507 3-66 TXETM 1215 3-71
CLC , 0005 3-21 LESSFA 1506 3-66 TXGF 1403 3-72
COMPC 0006 3-22 LESST 1505 3-66 TXGFA 1402 3-72
COPY 0204 3-23 LESSTA 1504 3-66 TXGFAM 1302 3-73
COR 0411 3-24 LIT 0003 3-48 TXGFM 1303 3-73
CRB 0207 3-25 LLOAD 0609 3-49 TXGT 1401 3-72
CROTL 0015 3-26 LOADX 0601 3-49 TXGTA 1400 3-72
CROTR 0017 3-27 ONESF 1007 3-67 TXGTAM 1300 3-73
CSB 0013 3-28 ONESFA 1006 3-67 TXGTM 1301 3-73
CSHL 0014 3-29 ONEST 1005 3-67 TXLF 1407 3-74
CSHR 0016 3-30 ONESTA 1004 3-67 TXLFA 1406 3-74
CSUB 0403 3-31 ONEXF 1017 3-68 TXLFAM 1306 3-75
CTSBF 1102 3-32 ONEXFA 1016 3-68 TXLFM 1307 3-75
CTSBT 1100 3-32 ONEXT 1015 3-68 TXLT 1405 3-74
DUPI 0401 3-34 ONEXTA 1014 3-68 TXLTA 1404 3-74
DUPO 0400 3-35 ORAC 0205 3-52 TXLTAM 1304 3-75
EQLXF 1417 3-64 SETC 0012 3-53 TXLTM 1305 3-175
EQLXFA 1416 3-64 SKIP 1103 3-54 WAIT 0206 3-78
EQLXT 1415 3-64 SKIPF 1107 3-69 ZERF 1003 3-76
EQLXTA 1414 3-64 SKIPFA 1106 3-69 ZERFA 1002 3-176
EXCHL 0406 3-36 SKIPT 1105 3-69 ZERT 1001 3-76
EXEC 0004 3-38 SKIPTA 1104 3-69 ZERTA 1000 3-76
FINQ 0010 3-39 SLIT 16XX 3-55 ZERXF 1013 3-11
GRTRF 1503 3-65 STL 0404 3-56 ZERXFA 1012 3-77
GRTRFA 1502 3-65 STORE 0602 3-58 ZERXT 1011 3-77
GRTRT 1501 3-65 STOREX 0603 3-58 ZERXTA 1010 3-77
GRTRTA 1500 3-65 TCCW 0203 3-60
HALT 0000 3-40 TCW 0202 3-61
TMU INSTRUCTION INDEX
Mnemonic Octal Ref. Mnemonic Octal Ref. Mnemonic Octal Ref. \
Code Code Page Code Code Page Code Code Page
EFA 160 5-16 SAT 047 5-25 SR 005 5-24
EFF 164 5-18 SIS 120 5-26 SRT 045 5-25
LICR 041 5-20 SIV 100 5-27 TIC 121 5-33
LISR 040 5-21 SL 006 5-24 TOC 002 5-34
RPT 001 5-22 SLT 046 5-25 WIS 044 5-35
RUN 020 5-23 soC 011 5-30
SA 007 5-24 SOD 010 5-32

'SECTION Il
ADVAST INSTRUCTION'S

_INSTRUCTION FORMAT AND FIELD USAGE

The format for ADVAST instruction words is given below, followed by an

explanation of field usage. Note that all bit positions are stated relative

to their location in the ADVAST instruction register (AIR).

AIR BIT NO.
O | 2 3 4 5 6 7 8 9 10 1l 12 13 14 |5 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FIELD A OP CODE ACARX SKIP ACAR FIELD 8 OP CODE ADR

i L
PARITY

GLOBAL /LOCAL:

Field Description

FIELD A OP CODE AIR BITS 0:5. Bit 0is ''zero' for AD-
VAST instructions. Refer to Table 3-1
for the ADVAST Op Codes.

ACARX AIR BITS 5:3. When bit 5 is ''one'!, the
contents of the ACAR specified by bits
6 and 7 are used to index the quantity
found in the ADR field. When bit 5 is
"zero', the ADR field is used without
indexing, and the values in bits 6:2 are
irrelevant (except in the SLIT/ALIT
instruction, where 6:2 specify the re-
cipient ACAR).

SKIP AIR BITS 8:8. This field is used in the
test and skip instructions to show sign and
magnitude of the skip distance, if a skip
is to be executed. Bit 8 is the sign (''one"
means subtract; ''zero' means add), while
bits 9:7 specify the magnitude.

3-1

¢-¢

FIELD A (AIR BITS 0:5)

00

01

02

03

04

05

06

07

10

12

13

14

16

17

Table 3-1,

ADVAST Instruction Op Codes

FIELD B (AIR BITS 20:4)

00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17
HALT CACRB | INCRXC LIT EXEC CLC COMPC INR FINQ 1.DC SETC CcsSB CSHL CROTL CSHR CROTR
LEADZ | LEADO TCW TCCW COPY ORAC WAIT CRB
DUPO DUPI CADD CcsuB STI. I.DL EXCHI. [CEXOR CAND COR
I.OAD LLOADX | STORE [STOREX BIN BINX
ZIER ZER ZER ZER ONES ONES ONES ONLES ZERX ZERX ZERX ZERX | ONEX ONEX ONEX ONEX
TA T FA F TA T FA F TA T FA F TA T FA F
CTSBT B CTSBF SKIP SKIPTA SKIPT SKIPKA SKIPF
TXE TXE TXE TXE
TAM ™™ FAM FM
TXG TXG TXG TXG TXI. TXI. TXI. TXIL.
TAM ™ FAM M TAM ™ IFAM M
TXG TXG TXG TXG | TXI. TXI. TXI1. TXI. TXE TXE TXE TXE EQLX EQLX EQLX EQLX
TA T FA I TA T FA ¥ TA T FA F TA T FA F
GRTR GRTR GRTR GRTR 1.ESS I.I5SS 1.ESS 1.ESS
TA T FA F TA T FA F
SI.IT/
ALIT
JUMP

Field

ACAR

GLOBAL/LOCAL

PARITY

FIELD B OP CODE

ADR

Description

AIR BITS 16:2. Each instruction describes
the particular usage of the ACAR specified
in this field. Usually, the designated ACAR
is the source of the first operand and/or
the destination of the result.

AIR BIT 18:1. A "zero' indicates ''global'’;
"one' indicates ''local.' Global means that
the execution of the instruction is dependent
upon the array configuration control logic;

in a multiquadrant array, it is assumed that
all CUs are executing the same program.
Local means that this CU executes the in- _
struction independently, without synchronizing
or interchanging data with other CUs.

AIR BIT 19:1. This is an odd parity bit. ALIT,
SLIT, JUMP, and instructions executed by
means of the EXEC instruction do not utilize
the parity bit.

AIR BITS 20:4. Refer to Table 3-1 for the
ADVAST Op Codes,

AIR BITS 24:8. Each instruction describes
the particular usage of this field. Generally,
it is indexable (see ACARX), and specifies

the local memory address to be used as the
source of the second operand, or the source
or destination of a data transfer. It indicates
the shift amount in the shift instructions. For
some instructions (e.g., CCB, CRB, CSB,
etc.) bits 24:2 designate the number of the CU
to perform the operation (as interpreted by the
array size and configuration control logic shown
in the CU Determination Chart, Table 3-2).
For the ALIT, SLIT, and JUMP instructions,
AIR bits 8:24 comprise the ADR field.

For instructions of the type noted in the ADR field description, Table 3-2

may be used to determine which CU will be used in instruction execution.

The array defined by MCO0 and MC2 should be the same in all CUs executing

an instruction of this type.

There is no provision in the hardware to enforce

3-3

Table 3-2.

CU Determination Chart

AIR 18:1
- 1 (LOCAL)| =0 (GLOBAL)
All Values .
CU Number* of AIR 24:2 (Relative CU Number)
0 1 2 3| AIR 24:2 00 01 10 11
1 0 0 0 0 0 0 0
0 1 0 O 3 1 1 1 1
=
0 0 1 0 - 2 2 2 2
0 0 0 1 M 3 3 3 3
a
1 1 0 0O 2 0 1 0 1
1 0 1 0 E« 0 2 0 2
1 0 0 1 A 0 3 0 3
4]
=
o0 1 1 0 5 1 2 1 2
o 1 0 1 - 1 3 1 3
5
o 0 1 1 < 2 3 2 3
1 1 1 1 0 1 2 3

*Number of CU(s) executing instruction as determined by MCO, MC2, and
the configuration control logic.

this conformity, and it is conceivable that there may be a reason for having
them not the same in the various CUs.

the settings of these registers for each CU to determine if any and which CUs

will perform the function.

ILLIAC IV ADDRESSING

Addressing is primarily a function of the Memory Service Unit (MSU). The

Therefore, it is necessary to examine

three users of MSU are I/O and the Final Station (FINST) and Instruction

Look-Ahead (ILA) portions of the CU. ADVAST requests its memory cycles

via FINST.

3-4

The I/O has two requests, IOA and IOB, the difference between them being

only in priority. FINST generates its request for three distinct purposes:

1. FINST Own Request — PE read/write request.

2. FINST Request A — ADVAST LOAD(X), BIN(X), or STORE(X).

3. FINST Request B — Transfer from PE register to an ACAR in
ADVAST.

The priorities for these requests in order of highest to lowest is the following:
1. IOA
2. FINST Request
3. ILA
4. 10B

The addresses sent to the PEs may be indexed by either the X or S registers
in the PE before loading into the Memory Address Register (MAR). The

register selection is determined by FINST.

The addresses (instructions and data) in a four-quadrant array (as defined
by MCI1 for instruction addresses and MC2 for data addresses) are inter-

preted as follows:

ITA|ICR 0 4 5 15 16 —— 17 18 20 21 23 24
] T T
| 1 | Selects ¢ . _
For | PEM Subaddress Selects the PEM Selects Half word
future | . the s the designator
i | (Bits 5-15) within i
expansion | | | CU No. the PUC PUC in ICR
1 | 1
ACAR 40 55 56 57 58 60 61 63 0

3-5

EXAMPLE

For the addresses specified (bits 5-23) the ILLIAC components
will be as follows:

Address Selected Components

(Bits 5-23) PUC PEM CU Subaddress
0000000 0 0 0 0000
0000110 0 1] 0000
0000777 7 7 3 0001
17777171 7 7 5 5777

In a two-quadrant array as defined by MC1 for instruction addresses and MC?2

for data addresses, the address is interpreted as follows:

1IA|ICR 1 5 6 16 17 18 20 21 23 24
' T | T
! Selects Selects
| elec c
or |1 o subaddress higher or | the PEM Se:::‘s g:;f word
uture bl (Bits 6-16) lower within -signator
expansion | | | 1 CU No the PUC PUC in ICR
1 1 | |) -
ACAR 41 56 57 58 60 61 63
EXAMPLE

For the addresses specified (bits 6-23) the ILLIAC components
will be as follows:

Address Selected Components
(Bits 6-23) PUC PEM CU Subaddress

000000 0 0 L 0000
000001 1 0 L 0000
000010 0 1 L 0000
000077 7 7 L 0000
000177 7 7 H 0000
000277 7 7 L 0001
000377 7 7 H 0001
7T 7 7 H 3777

In a one-quadrant array as defined by MC1 and MC2, the addresses are

interpreted as follows:

11A[ICR 2— 5 7 17 18 ————— 20 21 ——— 93 24
It ! | Sel
| | elects .
For PEM Subaddress the PEM Selects Half-word
future 1 I : s the designator
X | (Bits 7-17) within PUC in ICR
expansion | I] the PUC in
| 1 [|
ACAR 42 57 58 60 61 63
EXAMPLE

For the addresses specified (bits 7-23) the ILLIAC components
will be as follows:

Address Selected Components
(Bits 7-23) PUC PEM Subaddress

000000 0 0 0000
000001 1 0 0000
000010 0 1 0000
000077 7 7 0000
000100 0 0 0001
377777 7 7 3777

Various memories will be selected in a quadrant by the memory select lines
from MSU. The I/O request will select eight PUCs and two PEMs within each
PUC (that is, IIAIICR bits 20 - 23 are ignored). The BIN(X) and ILA requests
will select eight PUCs and one PEM within each PUC (that is, IIA|ICR bits

21 - 23 are ignored). LOAD(X) and STORE(X) will select one PUC and one
PEM within the PUC. PE requests will select eight PUCs and eight PEMs

within each PUC (that is, IIA|ICR bits 18-23 are ignored).
The half-word designationisthe least significant address bit for the 82-bit instruc-

tions. Itis ONE todesignate the rightorless significant half-word, and ZERO

for the left or more significant, 5.7

ADVAST INSTRUCTION REPERTOIRE

Following is a list of the instructions that comprise the ADVAST instruction
repertoire. They are arranged in alphabetical order according to mnemonic
or functional group, and in the same order of appearance as the instruction
descriptions which comprise the remainder of this subsection. Timing for

the instructions is given in Section VI.

Octal Op Code

Mnemonic Field A Field B
Code 0:5 20:4 Operation
ALIT 16 XX Add literal to address field of ACAR
BIN 06 10 Block fetch from PE memory to ADB
BINX 06 11 Block fetch (RGX-indexed) from PE memory to ADB
CACRB 00 01 Set/Reset nth bit in ADVAST control register
CADD 04 02 Add local memory to ACAR
CAND 04 10 Logical AND of local memory and ACAR
CCB 11 01 Complement nth bit of ACAR
CEXOR 04 07 Logical exclusive-OR of local memory and ACAR
CLC 00 05 Clear ACAR
COMPC 00 06 Complement ACAR
COPY 02 04 Copy ACAR
COR 04 11 Logical OR of local memory and ACAR
CRB 02 07 Reset ntP bit in ACAR
CROTL 00 15 Rotate ACAR left (end around)
CROTR 00 17 Rotate ACAR right (end around)
CSB 00 13 Set nth bit in ACAR
CSHL 00 14 Shift ACAR left (end off)
CSHR 00 16 Shift ACAR right (end off)
CSUB 04 03 Subtract local memory from ACAR
CTSBF 11 02 Skip if nth bit in ACAR is not "one"
CTSBT 11 00 Skip if o bit in ACAR is "one"
DUPI 04 01 Duplicate inner-half of ADB memory word
DUPO 04 00 Duplicate outer-half of ADB memory word
EXCHL 04 06 Exchange local operand and ACAR
EXEC 00 04 Execute
FINQ 00 10 Stop ADVAST until FINST is idle
HALT 00 00 CU comes to orderly idle state

3-8

Octal Op Code

Mnemonic Field A Field B
Code 0:5 20:4

INCRXC 00 02
INR 00 07
JUMP 17 XX
LDC 00 11
LDL 04 05
LEADO 02 01
LEADZ 02 00
LIT 00 03
LOAD 06 00
LOADX 06 01
ORAC 02 05
SETC 00 12
SKIP 11 03
SLIT 16 XX
STL 04 04
STORE 06 02
STOREX 06 03
TCCW 02 03
TCW 02 02

Test-Skip T/F A
(True/False All/Any)

EQLXTA 14 14
T 14 15

FA 14 16

F 14 17
GRTRTA 15 00
T 15 01

FA 15 02

F 15 03
LESSTA 15 04
T 15 05

FA 15 06

F 15 07
ONESTA 10 04
T 10 05

FA 10 06

F 10 07

Operation
Modify index field of ACAR by increment field
of same ACAR
Return to normal processing after interrupt
Jump to address in ADR field
Transfer specified PE register to ACAR
Load from local address
Find leading ''one' in ACAR
Find leading ''zero" in ACAR
Store next 64 bits in ACAR
Word fetch from PE memory to CU local memory

Word fetch (RGX-indexed) from PE memory to CU
local memory

Inclusive-OR of operand in ACAR of all CUs
executing the instruction

Specified mode bit from PEs to ACAR

Skip forward/backward

Replace address field of ACAR

Store ACAR in local address

Store from local address into specified PE location

Store from local address into specified PE location
(RGX-indexed)

Transmit ACAR counterclockwise (to next lower
numbered CU)

Transmit ACAR clockwise (to next higher numbered (CU)

Skip if ACAR 40:24 equal operand 40:24

Skip if ACAR 40:24 are greater than operand 40:24

Skip if ACAR 40:24 are less than operand 40:24

Skip if ACAR 0:64 are all '"ones"

3-9

Octal Op Code
Mnemenic Field A Field B

Code 0:5 20:4
ONEXTA 10 14
T 10 15
FA 10 16
F 10 17
SKIPTA 11 04
T 11 05
FA 11 06
F 11 07
TXETA 14 10
T 14 11
FA 14 12
F 14 13
TXETAM 12 14
TM 12 15
FAM 12 16
FM 12 17
TXGTA 14 00
T 14 01
FA 14 02
F 14 03
TXGTAM 13 00
TM 13 01
FAM 13 02
FM 13 03
TXLTA 14 04
T 14 05
FA 14 06
F 14 07
TXLTAM 13 04
™ 13 05
FAM 13 06
FM i3 07
ZERTA 10 00
T 10 01
FA 10 02
F 10 03
ZERXTA 10 10
T 10 11
FA 10 12
F 10 13
WAIT 02 06

Operation

Skip if ACAR 40:24 are all ''ones'

Skip dependent upon CU true/false flip-flop

Skip if ACAR 40:24 equal bits 16:24 in local memory

Skip if ACAR 40:24 equal bits 16:24 (also, 40:24
are modified by 1:15) of same ACAR

Skip if ACAR 40:24 are greater than bits 16:24
in local memory

Skip if ACAR 40:24 are greater than bits 16:24
(also, 40:24 are modified by 1:15) of same ACAR

Skip if ACAR 40:24 are less than bits 16:24 in
the local memory

Skip if ACAR 40:24 are less than bits 16:24
(also, 40:24 are modified by 1:15) of same ACAR

Skip if ACAR 0:64 are all "zeros"

Skip if ACAR 40:24 are all''zeros'

Synchronize all CUs in array or join all CUs
specified by ADR 4:4

3-10

' ADVAST INSTRUCTION DESCRIPTIONS

The remainder of this section consists of desc rlphons of the various AD-

AST instructions. These are arranged alphabetically according to ingtruction
mnemonic, in the same order as presented in the instruction repertoire pre-
viously listed. Each description includes the mnemonic code, the operation
performed, the AIR contents (the ADVAST instruction register) for the
specific instruction, and a brief functional description and flow chart of major
operations performed during instruction execution. The word format for

ADVAST instructions is as follows:

AR BIT NO.
0O t 2 3 4 5 6 7 8 9 10 Il 12 I3 14 15 i6 (7 i8 19 20 21 22 23 24 25 26 27 28 29 30 3|
FIELD A OP CODE ACARX SKIP ACAR FIELD B OP CODE ADR

T— PARITY

The general format used in the instruction descriptions is as shown below.

GLOBAL/LOCAL:

XX ACARX SKIP ACAR|G/L XX ADR

For all instructions that load the ICR, the stepping of the ICR upon completion of
the instruction is inhibited. Certain instructions (e.g., INCRXC, TXE, TXG, and
TXL) treat an ACAR as an index register, utilizing the ACR bits as follows:

Half-Word Sign of Magnitude of Limit Current
Ind. Increment Increment ' Index Value
0:1 1:1 2:14 16:24 40:24

Two abbreviations used in the flow charts are "'ILA NI' for ''fetch the next instru-
ction in sequence using the ILA" and "JUMP", for "fetch the instruction correspond-

ing to the new contents of the instruction counter".

3-11

OPERATION: Add Literal to Address Field of ACAR

AlIR:

16 1] XX ADR

DESCRIPTION: This instruction causes the address field of the specified
ACAR (bits 40:24) to be replaced by the sum of the address field of the in-
struction (ADR 8:24) and the address field of the specified ACAR. Bit 5 of

the instruction must be "one'. Bits 6 and 7 (see XX in format) designate the
ACAR which is used to index the ADR field (bits 8:24) of the AIR. The results
of the indexing operation are returned to the specified ACAR (bits 40:24).
ACAR bits 0:40 are not changed; any overflow is disregarded.

FLOW CHART:

ALIT

—»| ACAR 40:24 +ADR8:24 —» ACAR 40:24

3-12

MNEMONIC CODE: BIN(X)

OPERATION: Block Fetch (RGX Indexed) from PE Memory to ADB

ATR:
BIN 06 |ACARX 77 A ACAR[/L 10 ADR

o] 4 5 7 16 17 I8 19 20 23 24 3t
BINX 06 |ACARX A aCARKI/L 11 ADR

o] 4 5 7 16 17 I8 19 20 23 24 31

DESCRIPTION: This instruction causes a block of eight words to be read
E“o—rﬁ—?ﬁ_‘m_%?n—ory and stored in ADB. The PE memory address is taken
from the specified ACAR and, if BINX, is modified by RGX in the selected
PUs. The resultant PE memory address is treated as though the three
least significant bits were "zero' and then incremented until eight

words are transferred. The ADB address is taken from the ADR field of
the instruction and is indexable. The resultant ADB address is limited to
the ADB address area and is treated as though the three least significant
bits were "'zero' and then incremented until eight words are transferred.

BIN/BINX causes the ADVAST station to stall if ACR3 is set, that is, if a
previously requested BIN/BINX or LOAD/LOADX instruction using ADB has
not been completed. The ALR register is used to hold the unfilled local
address until the operation is executed at FINST. Note that any instructions
that reference unfilled location(s) as specified in ALR will cause ADVAST to
stall until the location(s) are filled. ACR7 specifies whether one or eight
locations are locked out.

When this instruction is ready for execution at FINST and MSU, all CUs in
the array are synchronized. The address in PE memory is interpreted
according to ACAR 56:2 and the setting of MCO and MC2 to determine which
CU accesses the data. If the instruction is global then only one CU in the
array will fetch the eight words from the PE. The eight words will then

be broadcast to other CUs in the array. If the instruction is local then only
this CU in the array will receive the eight words.

FLLOW CHART: See next page.

3-13

BIN |BINX

ALR BUSY \ YES
(ACR3)=17?

NO

ADR(X) 2:6— ALR 0:6

IS THE ADR VALUE\ YES

1+-ALRBUSY (ACR3)

AN ADB ADDRESS
(ADR 0:2=0)? /

NO

s
"WRAPAROUND"
INHIBITED
(AMR6=1)7?
YES

SET ADB WRAP-

1»BIN/LOAD (ACRT)

PLACE INSTRUCTION
IN FIQ, AND ADDRESS
FROM ACAR 40:21
IN FDQ

ILA

AROUND INTERRUPT
(1-»AIN6)

NI

IS THIS "BIN/BINX"
THE NEXT OPERATION | NO
IN FINQ IN ALL CUs IN
THE ARRAY ?

YES

IS
INSTRUCTION
GLOBAL?

INTERPRET ADDRESS
AS BEING WITHIN
OWN QUADRANT

DETERMINED BY THE ADDRESS
\ STORED IN FDQ. BROADCAST

YES
IS THE PE
MEMORY YES
ADDRESS IN THIS
QUADRANT ?
NO

THIS DATA TO THIS CU AND TO
THE OTHER CUs IN THE ARRAY
IF THE BIN/BINX IS GLOBAL

\

IS ADVAST BETWEEN
INSTRUCTIONS AND THE | NO
BROADCAST DATA
AVAILABLE?

YES

READ 8 WORDS FROM PE MEMORY

STORE THE 8 BROADCAST WORDS
IN ADB, STARTING AT THE ADDRESS
IN ALR 0:6(ALR 3:3 ARE CONSIDERED

ZERO)

0 — ALR BUSY FF IN ACR

3-14

'ADVAST
NI

MNEMONIC CODE: CACRB

OPERATION: Set/Reset nth Bit in ADVAST Control Register

AlIR:

00 |ACARX ////////////////////////////// 01 ADR

°) 7 13 20 2324 EY

DESCRIPTION: This instruction changes a bit in the ADVAST control
register. The bit number is specified in ADR 4:4 and is indexable. The
most significant bit of the local address field (ADR 0:1) will contain a "one"
if the bit is to be set and a "zero' if it is to be reset. If ADR 4:4 equals 1,

3, 6, or 7, then the ADVAST control register will not be changed. If
ADR 4:4 equals 2, then the ADVAST control bit will not be set.

Three bits, ACR9, ACR10, and ACR!3, control operations in the PEs but are
set and reset by CACRB which is an ADVAST instruction. A new value of the
bit should be effective only on the instructions which follow the CACRRB
instruction. Since the PEs may still be executing, from FINQ, instructions
which preceded the CACRB, there is a potential problem in synchronization.
Hardware interlocks automatically resolve this potential problem in the

case of bits 10 and 13. A change in ACR9, however, will apply as soon as
the change is effective, and will apply even to those instructions still remain-
ing unexecuted in FINQ. In case of doubt, a CACRBY can be preceded by a
FINQ instruction; CACRB10 or CACRB13 need not.

FLOW CHART: See next page.

3-15

i

/ 7 \ess/ \

A =1 107 AD =27)R 0:1 =12}~
KD@X) 3 OR R x)) /f___
l YES LNO NO

HAS FINQ EMPTIED \

_ YES
AND FINST STOPPED ? INHX)—I,&G,OR7;/

‘ YES NO

ADR =10 ’?\ YES

(N) ' >
| J

(X)

A AD 4:4)-1
CR (R(X))

I NO ADR 0:1 —»

/ . . = ?
ADR(X) 0:1 17

,% NC

IS
MEMORY
INITIATING ?

l NO

RESET
"ATTEMPTED
WRITE

VIOLLATION"
INDICATORS IN
PE MEMORIES

s — —

DELAY 7 CLOCKS

MNEMONIC CODE: CADD

OPERATION: Add Local Memory to ACAR

AIR:

04 |acARXY ////AACARY 02 ADR

[+ 45 ? 16 7 19 20 23 24 31

DESCRIPTION: This instruction adds the operand in the local address to

the contents of the specified ACAR. The local address field is indexable,
Operation is limited to the least significant 24 bits of the ACAR and the

local operand, except that the least significant bit of ICR and IIA are not used.
Overflow is disrégarded. The result is stored in the least significant

24 bits of the ACAR. The most significant portion of the ACAR is not
changed. The address is restricted to ADB, the ACARs, the ICR, or the IIA.

FLOW CHART:

CADD

YES NO

ADR(x) = ICR|IIA

(ADR(X)) 40:24 + ACAR 40:24—>» ACAR 40:24

IIA| ICR 0:24 + ACAR 40:24 —» ACAR 40:24

3-17

OPERATION: Logical AND of Local Memory and ACAR

AlR:

04 ACARX

10

ADR

DESCRIPTION: This instruction performs the logical AND between the
specified ACAR and the operand in the local address.

19 20

is indexable and limited to the ADB and the four ACARs.
stored in the specified ACAR,

FLOW CHART:

CAND

23 24

u_—_—.

e

(ACAR) "AND'" (ADR.__.)"

(X)

—» (ACAR)

>K:Local address limited to ADB and the four ACARSs.

3-18

The local address
The result is

31

MNEMONIC CODE: CCB

OPERATION: Complement n'" Bit of ACAR

~

AlR:

N\

11 |ACARX " //jacar]on 01 ADR

(¢} 4 5 7 16 17 18 19 20 23 24 31

DESCRIPTION: The local address field of this instruction specifies a CU
to complement a bit in the specified ACAR. The CU number is specified
in ADR 0:2 and is relative to MC2 and MCO. The bit number to be
complemented is specified in ADR 2:6, The local address field of

the instruction is indexable. This is a NO-OP for the CUs not selected

to perform the operation.

FLOW CHART:

CCB

'

SHOULD THIS CU PERFORM | YES | "NOT'" [ACAR (ADR 2:6):1] —»
THIS INSTRUCTION *? ACAR (ADR 2:6):1
(See Table 3-2.)

INO

3-19

MNEMONIC CODE: CEXOR

OPERATION: Logical EXCLUSIVE-OR of Local Memory and ACAR

AlIR:

s |acarx 77/ Jrcar 07

ADR

0 45 7 16 17 19 20

DESCRIPTION: This instruction performs the logical EXCLUSIVE -OR
between the specified ACAR and the operand in the local address. The
local address is indexable and limited to the ADB and the four ACARs.

The result is stored in the specified ACAR.

FLOW CHART:

23 24

X)

S (ACAR) "XOR' (ADR)" —== (ACAR)

E3
Local address limited to ADB and the four ACARs.

3-20

3l

MNEMONIC CODE: CLC

OPERATION: Clear ACAR

AlR:

o 077777 Aacarl— o5 V7

o) 4 16 17 19 20 23

DESCRIPTION: This instruction causes the CU to reset the specified ACAR
to all zeros.

CLC » (0 —» ACAR

3-21

MNEMONIC CODE: COMPC

OPERATION: Complement ACAR

AIR:

w [0 AR s 1777

DESCRIPTION: This instruction causes each bit of the specified ACAR
to be inverted.

FLOW CHART:

COMPC — "NOT'" ACAR —» ACAR

3-22

AlIR:

02 ACARX % //// AACAR |G/L 04 ADR

[o] 4 5 7 16 17 18 9 20 23 24 3

DESCRIPTION: This instruction causes all CUs in the array to be syn-
chronized at the beginning of the instruction. The local address field of the
instruction selects a CU whose specified ACAR is to be copied into the same
ACAR of the non-selected CUs, The selected CU sends its ACAR to the
other CUs each of which stores it in its ACAR. The local address field is
indexable, The CU number is specified in ADR 0:2, and is relative to

MC2 and MCO0. This instruction is a NO-OP in single quadrant array.

FLOW CHART:

IS INSTRUCTION \YES
COPY LLOCAL OR
1 CU IN. ARRAY? /

1\IO (2 or 4 CUs)

NO OWN CU SELECTED
TO SEND?
(See Table 3-2.

OWN CU RECEIVES ACAR OWN CU TRANSMITS
FROM CU SPECIFIED BY ITS ACAR TO OTHER
ADR 0:2 CU(s).

3-23

MNEMONIC CODE: COR

OPERATION: Logical OR of Local Memory and ACAR

AIR:

0« [acaRXx7/////////)acarl/ 11 ADR _

7 16 17 19 20 23 24

DESCRIPTION: This instruction performs the logical OR between the speci-
fied ACAR and the operand in the local address. The local address is
indexable and limited to the ADB and the four ACARs. The result is stored

in the specified ACAR.

FLOW CHART:

COR

————— (ACAR) "OR'" (ADRx,) —# (ACAR)

;‘:Local address limited to ADB and the four ACARSs.

3-24

MNEMONIC CODE: CRB

OPERATION: Reset n'® Bitin ACAR

AlIR:

02 (acaRXl///jacarloL 07 ADR

0 45 7 i6 17 18 19 20 23 24 31

DESCRIPTION: The local address field of this instruction specifies a CU
to reset a bit in the specified ACAR. The CU number is specified in ADR
:2, as Iinterpreted by the array size and configuration control logic. The
t

number to be reset is specified in ADR 2:6, The local address field of
the instruction is indexable. This is a NO-OP for the CUs not selected to

perform the operation,

FLOW CHART:

CRB

SHOULD THIS CU PERFORM
THIS INSTRUCTION ? YES
(SEE CU DETERMINATION
CHART)

NO

0 —» ACAR (ADR 2:6):1

3-25

OPERATION: Rotate ACAR Left (End Around)

15

ADR

AIR:

00 IACAR
o] 45
DESCRIPTION:

around, by an amount specified in ADR 2:6.

FLOW CHART:

3/ TRy

6 17 19 20

23 24

31

This instruction shifts the specified ACAR to the left end-

CROTL

Y

ADR 2:6 = 0 ?\YES

/
iNo

SHIFT LEFT END-AROUND THE
SPECIFIED ACAR BY THE
AMOUNT SPECIFIED IN ADR 2:6

3-26

The ADR field is indexable.

MNEMONIC CODE: CROTR

OPERATION: Rotate ACAR Right (End Around)

AlR:

00 |ACARX 7// //// ACAR/// 17 ADR

o] 45 7 16 17 19 20 23 24 31

DESCRIPTION: This instruction shifts the specified ACAR to the right end-
around by an amount specified i. ADR 2:6. The ADR field is indexable.

FLOW CHART:

CROTR

YES
ADR 2:6 = 0 ?

lNO

SHIFT RIGHT END-AROUND THE
SPECIFIED ACAR BY THE
AMOUNT SPECIFIED IN ADR 2:6

3-27

MNEMONIC CODE: CSB

OPERATION: Set n' Bit in ACAR

fAIR:

00 |ACARX //////]|acarfe/L 13 ADR

(o] 45 7 16 17 18 19 20 23 24 31

DESCRIPTION: The local address field of this instruction specifies a
CU to set a bit in the specified ACAR. The CU number is specified in
ADR 0:2, as interpreted by the array size and configuration control logic.
The bit number to be set is specified in ADR 2:6. The local address field
of the instruction is indexable. This is a NO-OP for the CUs not selected
to perform the operation.

FI.OW CHART:

CSB

l

SHOULD THIS CU PERFORM YES

THIS INSTRUCTION ? 1 —» ACAR (ADRZ:G):I
(See Table 3-2.)

NO

Y A
NI)
_/

3-28

MNEMONIC CODE: CSHL

OPERATION: Shift ACAR Left (End Off)

AIR:

00 |ACARX V77777 /Jacar . 14 ADR

(o} 4 35 7 6 . 17 19 20 23 24 31

DESCRIPTION: This instruction shifts the specified ACAR to the left end-
off, by an amount specified in ADR 2:6. The ADR field is indexable. Zeros
replace vacated bit positions at the right end of the ACAR.

FLLOW CHART:

L
ADR 2:6 = 0 ? | YES

lNO

SHIFT LEFT END-OFF THE
SPECIFIED ACAR BY THE
AMOUNT SPECIFIED IN ADR 2:6

3-29

MNEMONIC CODE: CSHR

OPERATION: Shift ACAR Right (End Off)

AIR:

00 ACARX/// _Jacar 16 ADR

0 45 7 16 17 19 20 23 24 34

DESCRIPTION: This instruction shifts the specified ACAR to the right end-
off, by an amount specified in ADR 2:6. The ADR field is indexable. Zeros
replace vacated bit positions at the left end of the ACAR.

FLOW CHART:

CSHR

\ as
ADR 2:6 = 0?/
lNO

SHIFT RIGHT END-OFF THE
SPECIFIED ACAR BY THE AMOUNT
SPECIFIED IN ADR 2:6

3-30

MNEMONIC CODE: CSUB

OPERATION: Subtract Local Memory from ACAR

04 WCARX 77 acarl 03 ADR

0 a5 7 16 17 19 20 2324 31

DESCRIPTION: This instruction subtracts the operand in the local address
from the contents of the specified ACAR. The local address field is index-
able; addresses are limited to the ADB, the ICR, the IIA, and the four ACARSs.
Operation is limited to the least significant 24 bits of the ACAR and the local
operand, except that the least significant bit of ICR and IIA are not used.
Overflow is disregarded. Underflow (a negative result) is shown in 2's
complement form. The result is stored in the least significant 24 bits

of the ACAR. ACAR 0:40 is not changed.

FLOW CHART:

CSUB

Y

= ICR| IIA

YES

ADR

ACAR 40:24 - (ADR(x))40:24 —# ACAR 40:24

y

ACAR 40:24 - ICR|IIA 0:24 —» ACAR 40:24

ADR(X) is limited to ICR, IIA, ADB, and the four ACARs.

3-31

OPERATION: Skip if n"" Bit in ACAR is (Not One | One)

AIR:
CTSBF 11 ACARX| SKIP |ACARG/L 02 ADR

o] 45 78 1516 17 18 19 20 2324 31
CTSBT 11 CARX | SKIP |ACARI|G/L 00 ADR

[o] 45 78 15 16 17 18 19 20 23 24 3i

DESCRIPTION: This instruction causes all CUs specified by MCO to be synchro-
nized at the beginning of the instruction. ADR 0:2 contains the number of the

CU to test the bit of its ACAR. ADR 2:6 designates the number of the bit in

the specified ACAR to be tested for logical one. The local address is indexable.
The TF flip-flop is set if the bit is true and reset if the bit is false. If the in-
struction is global, then each CU (relative to MCO and MC?2) executing the test
sends its TF flip-flop to the other CUs. The CU will sample the TF flip-flop
line indicated by ADR 0:2 of the CUs specified by MC2 relative to MCO and if

the TF FF is as specified in the Op Code then the jump is executed. If the in-
struction is local then the CU uses its own TF flip-flop for the test.

The jump address is derived by modifying the ICR by the SKIP field of the
instruction (after stepping the ICR). SKIP 0:1 is the sign bit, where "1"
means subtract and 0" means add. SKIP 1:7 are the magnitude bits of the
modifier, where each count corresponds to a 32-bit word.

FLOW CHART: See next page.

3-32

CTSB
(FIT)

IS
INSTRUCTION

\ GLOBAL ?

YES

NO

ACAR (ADR 2:6):1 —» TF FF]

IS THIS CU NO
EXECUTING?

YES

i

SHOULD THIS CU NO
PERFORM THE TEST ?
(See Table 3-2.)

F FF OF CU =17

TF FFOFCU =01
YES

YES
ACAR (ADR 2:6):1

—s» TF FF
RECEIVE TF FF
STATUS FROM
CU SPECIFIED

BY ADR 0:2

SEND TF FF

STATUS TO

OTHER CU's

IN ARRAY

TF FF OF CU

SPECIFIED BY
ADR 0:2 = 1°?

TF FF OF CU
>PECIFIED BY
ADR 0:2 = 0°?

YES i
\ 'ADVAST

B

3-33

MNEMONIC CODE: DUPL

A — -

Duplicate Inner Half of ADB Memory Word

04 ACARX ¢/ / __jacar] 01 ADR

[¢] 4 5 7 16 17 19 20 23 24 3i

DESCRIPTION: This instruction causes the CU to duplicate the inner half of
the word found in ADB memory into both halves of the specified ACAR,

Bit Alignment:

ADB Memory ACAR
(Inner Word) (Duplicate Word)
8-15 0-7
16-39 40-63
8-39 8-39

The local memory address of the instruction is indexable, and is restricted
to the addresses of ADB; that is, bits 24 and 25 (in ADR) must contain 00,

FLOW CHART:

DUPI

(ADB) 8:8—»ACAR 0:8 =»ACAR 8:8
(ADB) 16:24 —»ACAR 16:24 —» ACAR 40:24

3-34

MNEMONIC CODE: DUPO

OPERATION: Duplicate Outer Half of ADB Memoryv Word

LN J vy L2

AlR:

04 |acARXp 77 //jAcarl 00 ADR

o 45 7 18 7 19 20 23 24 31

DESCRIPTION: This instruction causes the CU to duplicate the outer half of
the word found in ADB memory into both halves of the specified ACAR.

Bit Alignment:

ADB Memory ACAR
(Outer Word) (Duplicate Word)
0-7 8-15
40-63 ' 16-39
0-7 0-7
40-63 40-63

The local memory address of the instruction is indexable, and is restricted
to the addresses of ADB; that is, bits 24 and 25 (in ADR) must contain 00.

FLOW CHART:

DUPO

(ADB) 0:8—» ACAR 0:8 —»ACAR 8:8
(ADB) 40:24 —» ACAR 16:24 % ACAR 40:24

3-35

MNEMONIC CODE: EXCHL

OPERATION: Exchange Local Operand and ACAR

AIR:

o4+ |acarxl /) Acarp 06 ADR

0 45 7 16 17 19 20 23 24 31

DESCRIPTION: This instruction interchanges the contents of the specified

ACAR and the operand in the local address. The local address field is

indexable and only the following addresses are permitted: ADB, AIN, ALR,
AMR, ACO0-3, ICR, MCO0-2, IIA, and TRO. Each local address, except the IIA
and ICR, has its least significant bit aligned with the least significant bit of the
ACAR. The ICR and IIA have their second least significant bit aligned with bit

63 of the ACAR. The most significant bit of the ACAR is interchanged with the least
significant bit of the ICR and IIA. When this instruction loads the ICR, the in-
crementing of the ICR upon completion of the instruction is inhibited and a jump
occurs. If this instruction is executed and the ICR is updated and other branch
trace conditions are met, then an interrupt will occur and program control will
proceed to interrupt processing. Loading MCO or MC1 causes the IWS

presence indicators to be cleared. Resetting of the presence bits does not inhibit
execution of the block currently being executed from IWS, but requires that the
next block entered must be fetched from memory. Loading MCO or MC2 causes
the FINST queue to empty before the interchange is performed.

All bits not replaced by local memory bits will be reset to zero in the accumulator.

FLOW CHART: See next page.

3-36

EXCHL

ADR - ICR IS BRANCH TRACE ENABLED YES
X) (ACR14 = 1) AND IN NON-
INTERRUPT MODE (ACR1 = 0)?,

NO NO
SET BRANCH TRACE
INTERRUPT (1—AIN14)
ICR 0:25—%TRO 39:25

INTERCHANGE:

ACAR 40:24 AND ICR 0:24
ACAR 0:1 AND ICR 24:1

INTERCHANGE:
ACAR 40:24 AND IIA 0:24
ACAR 0:1 AND IIA 24:1

ADR

= MCi | YE
ADR<X) '\/[C1' S

-/

P

NO
. MC2
MCi ?
MC1
“Ilf(\)ghlfggékg WAIT FOR ILA FINST QUEUE
N LOOK-AHEAD EMPTIES
TO FINISH.
— e TO FINISH.
CLEAR IWS — e
. CLEAR IWS
PRESENCE
: PRESENCE
FINST QUEUE)
EMPTIES.
INTERCHANGE:
(ADR ..) AND ACAR

X)
(L.S.B. ALIGNED)

3-37

MNEMONIC CODE: EXEC

00 7//// _jAcar] 04 7/ /%

DESCRIPTION: This instruction causes the least significant 32 bits of the
specified ACAR to be transferred to the AIR. The transfer from IWS to

AIR and incrementing of the ICR are inhibited. Normal operation resumes
with the execution of the instruction just loaded into the AIR. No parity check
is performed on the instruction accessed from the ACAR.

FLOW CHART:

ARE THE OP CODE AND

ACAR FIELDS IN AIR YES

EXEC IDENTICAL TO THE AMRT7=12
ADDRESSED ACAR ?

| NO NO

Y

ACAR 32:32 — AIR 0:32
7
EXECUTE INSTRUCTION IN AIR, SET AIN

ACCORDING TO FLOW CHART FOR
APPROPRIATE INSTRUCTION.

ILA
NI

3-38

MNEMONIC CODE: FINQ

OPERATION: Stop ADVAST Until FINST is Idle

AlIR:

00 N 10 &\W

) 2 19 20 23

DESCRIPTION: This instruction causes ADVAST to stop operating un-
til FINST is idle. ADVAST resumes normal operation at the completion
of the last instruction in FINQ. This instruction is a NO-OP when the
CU is operating in Single Instruction Mode or in Interrupt Mode.

YT TT A

FLOW CHART:

FINQ

IS LAST INSTRUCTION
IN FINQ COMPLETED ?

3-39

MNEMONIC CODE: HALT

OPERATION: Cu Comes to Orderly Idle State

AlIR:

o 2 19 20

DESCRIPTICN: This instruction causes the control unit to stop operating.
This is accomplished by causing ADVAST to cease fetching instructions from
IWS. In turn, FINST will complete the present queued operations and will
stop operating. All pending memory fetches will be completed. However,
all communications with the I/O and between the I/O and main memory
continue normally.

FI.LOW CHART:

SIGNAL I/0O
HALT —» COMPUTER (B6500)
(1—s TCI5)

3-40

MNEMONIC CODE: INCRXC

OPERATION: Modify Index Field of ACAR by Increment Field
of Same ACAR

AlIR:

o .)’cav v

(o] 4 16 17 19 20 23

N

DESCRIPTION: The increment field (bits 1:15) of the specified ACAR is
added to the index field (bits 40:24) of the same ACAR. Bit 15 is justified
with bit 63; bit 1 is the sign bit of the increment. The resultant sum is
stored back in the index field of the ACAR. The other bits of the ACAR are
not disturbed. Any overflow/underflow is disregarded. The most significant
ten bits of the increment operand will be treated as logical zeros.

FLOW CHART:

INCRXC

ACAR 1:1 =1 ? YES ACAR 40:24 - ACAR 2:14 —» ACAR 40:24

lNO

ACAR 40:24 + ACAR 2:14 ~—» ACAR 40:24

3-41

MNEMONIC CODE: INR

OPERATION: Return to Normal Processing after Interrupt

AIR:

o 7 . 2=

DESCRIPTION: This instruction causes the CU to set pertinent registers
and controls to their respective states, as stored in memory relative to the
interrupt base address., These states are not necessarily identical to those
present prior to the interrupt, since the nature of the interrupt may require
the associated interrupt program to modify certain of these data.

FLOW CHART:

INR

'

IS THE CU

IN INTERRUPT NO GENERATE REQUEST INTER-

MODE ? RUPT (1 — AIN9)
(ACR1=1)

l YES

IS THE ALTER-
NATE INTERRUPT NO
MEMORY WORD 8 ACARO
BASE IN USE ? ORY WORD 8 —s= ACAR
(ACR4=1)
YES l
(ITA —s ICR)

LEAVE INTERRUPT MODE

MEMORY WORD 9 —» ACARO +—— 3 (0 —= ACRI) JUMT

REMOVE "HARDWARE'" MASK

AND RETURN TO AMR MASK
(0 —» ACR2)

3-42

MNEMONIC CODE: JUMP

OPERATION: Jump to Address in ADR Field

17 ACARX ADR

DESCRIPTION: This instruction causes the CU to execute a jump to another
part of the instruction stream. The last eight bits of the address field of the -
instruction (24:8) may be modified modulo 256 by ACAR indexing. The result,
24 bits long, is transferred to the most significant bits of the ICR. The least
significant bit of the ICR is set to ""zero". If this instruction is executed and
the ICR is updated and other branch trace counditions are m=t, then an interrupt
will occur and program control will go to the interrupt program.

FLOW CHART:

JUMP
l NO
IS BRANCH TRACE ENABLED \ YES Avliéi%LE
(ACR14 = l) AND IN NON- (ACR15—0)‘>
INTERRUPT MODE (ACR1 = 0) / | e
O YES

SET BRANCH TRACE
INTERRUPT (1-»AIN14)

ICR 0:24 —» TRO 40:24
ICR 24:1—+»TRO 0:1
1— TCI 7

ILA DETERMINES WHETHER
AIR 8:24 —» ICR 0:24 OR NOT THE NEXT BLOCK

0 —» ICR 24:1 | OF INSTRUCTIONS IS IN IWS,
AND IF NOT, FETCHES IT.
THEN NORMAL INSTRUCTION
EXECUTION RESUMES.

3-43

MNEMONIC CODE: LDC

OPERATION: Transfer Specified PE Register to ACAR

AIR:

\

00 ACARX // 1 ACAR 11 ADR

) a5 7 16 7 19 20 23 24 3

DESCRIPTION: This instruction causes FINQ to empty before it or another
ADVAST instruction is executed. When FINST becomes idle, the correspond-
ing registers addressed in all enabled PEs in the quadrant are ORed together
and replace the contents of the specified ACAR. The bit positions in ADR 2:5
correspond to RGA, RGB, RGX, RGS, and RGR respectively. The

register code can be modified by ACAR indexing.

FLOW CHART:

PLLACE THIS
LDC —®™ INSTRUCTION
IN FINQ

IS THIS \
INSTRUCTION NO

THE NEXT OPERATION |
IN FINQ 2 /
lYES

sk
(x) PEi > ACAR

(i=0,1,2, ..., 63)
(L. S. B. ALIGNED)

"OR'" REG. (ADR

“Specification of PE register is limited to RGA, RGB, RGX, RGS, or RGR.

3-44

MNEMONIC CODE: LDL

04 |acARX 7 ///dacarl/ 05 ADR

] 45 7 16 17 19 20 23 24 31

DESCRIPTION: This instruction transfers the operand in the local address

to the specified ACAR. The local address field is indexable and only the
following addresses are permitted: ADB 00-77, ACR, AIN, ALR, AMR, ACO0-3,
ICR, MCO0-2, IIA, TRO, TRI, ACU, and PEM (ARE). With the exception of ICR
and IIA, all of these registers have their least significant bit aligned with the
least significant bit of the ACAR. The ICR and the IIA have their second least
significant bit aligned with bit 63 of the ACAR. The least significant bit of the
ICR and ITA is transferred to the most significant bit of the ACAR.

FLOW CHART:

LDL
]
YES

ADR,.. - (ICR|IIA)? (ICR|ITA) 0:24 » ACAR 40:24
(X) (ICR | T1A) 24:1-»ACAR 0:1

lNO

(ADR(X))——ACAR, WHERE THE L.S. B. OF (ADR(X)) S

ALIGNED WITH THE L.S. B. OF ACAR; ANY REMAINING
BITS OF ACAR ARE UNDISTURBED.

YES 0 —» AIN

0—ILA INTERRUPT

3-45

MNEMONIC CODE: LEAD (0] Z)

OPERATION: Find Leading (One|Zero) in ACAR

LEADO ! 02 4’ ////lGACAiG‘/sL 1 01 2:////////////////
LEADZ ! 02 4///////////////4&(*141%'7&& 1 00 237/////////////////

DESCRIPTION: This instruction causes all CUs specified by MCO to be syn-
chronized at the beginning of the instruction. All CUs specified by MC2
relative to MCO detect the leading "oneizero" in the specified ACAR and notify
each other of their findings. All CUs store the information presented by the
lowest numbered CU which detects a leading "one |zero". The information
is stored in the specified ACAR, after it has been reset. If a "one|zero"

is found, the CU number (relative to MCO0 and MC2) is in bits 56:2 while

the encoded bit position is in bits 58:6. Should no "one| zero' be detected
by any CU, all CUs store a ''zero' in bit 55. Should a 'one zero' be de-
tected by any CU, all CUs store a ''one'' in bit 55. (Bit 0 is the leading

bit of the ACAR.)

In a single quadrant array, the CU records its own information.

FLOW CHART: See next page.

3-46

LEAD (O]2)

l

IS THIS CU
IN THE ARRAY?
(See Table 3-2.)

YES

IS THERE

A ONE IN
THE SELECTED

ACAR 2

IYES

o
Y,

NO

ENCODE THE BIT NUMBER
OF THE HIGH ORDER BIT
POSITION CONTAINING A

ONE INTO A SIX-BIT
VALUE IN ACAR 58:6.

0 —» ACAR 0:55
1 —» ACAR 55:1

ENCODE THE CU NUMBER
RELATIVE TO MCO AND
MC2 INTO A TWO-BIT
VALUE IN ACAR 56:2

BROADCAST THE ACAR
6:64 TO OTHER (CUs

|

IS THERE A CU WITH A
[LOWER NUMBER AND AN
ACAR 55:1 OF ONE ?

NO

0 —» ACAR 0:64

IS THERE A CU WITH
ACAR 55:1 OF ONE ?

YES

REPLACE ACAR 0:64

WITH THE ACAR 0:64

OF THE LOWEST NUMBER
CU WITH ACAR 55:1 OF ONE

NO

3-417

MNEMONIC CODE: LIT

OPERATION: Store Next 64 Bits in ACAR

AIR:

o) car 3}

DESCRIPTION: The 64-bit literal value following the LIT instruction is
stored in the specified ACAR. The next instruction to be executed is lo-
cated in the 32 bits following the literal value.

FLOW CHART:

LIT

IWS (ICR 0:25):32 —& ACAR 0:32
ICR 0:25 +1 — ICR 0:25
IWS (ICR 0:25):32 —» ACAR 32:32
ICR 0:25+1 — ICR 0:25

3-48

MNEMONIC CODE: LOAD(X)

OPERATION: Word Fetch (RGX Indexed) from PE Memory to CU l.ocal

Memory
AIR:
LOAD 06 |ACARX V//////// ACAR G/ L 00 ADR
[o] 4 5 7 16 17 18 9 20 23 24 3
LOADX| 06 |ACARX[Jacarp/L 01 ADR
5} 45 7 16 17 18 1S 20 23 24 31

DESCRIPTION: This instruction reads a word from PE memory and stores it
in the CU local memory. The PE memory address is indicated in the specified
ACAR 40:24. The local memory address is given in the ADR field. It is index-
able and only the following local addresses are permitted: ADB 00-77, AIN,
ALR, AMR, ACO0-3, ICR, MCO0-2, IIA, and TRO (see Table 5-1, page 5-6).
When the local address is TRO, ACR(15) and TCI(04) are set. The instruction
is placed in FINQ to await execution at FINST. The ALR register is used

to hold the unfilled local address until the operation is executed at FINST.

LOAD causes the ADVAST station to stall if a previous BIN/BINX or LOAD/
LOADX has not been completed. If ADR references ADB then ADR(X) 2:6
will be stored in ALR 0:6 and a "'one' will be set in ACR3 (ALR Busy). The
word read from the PE memory will be determined by the address stored in
FINQ (indexed by RGX, if LOADX) and will be broadcast to the proper CUs.
If the instruction is local then only this CU will store the broadcast data into
the ADB as specified by ALR 0:6. If the instruction is global then all CUs
specified by MCO will store the broadcast data into the ADB as specified by
ALR 0:6.

If ADR does not reference ADB then the following will occur. The word
read from the PE memory will be determined by the address stored in FINQ
(indexed by RGX) and will be broadcast to the proper CUs. If the ADR
specifies the configuration control registers MCO or MC1 then the IWS
presence indicators will be cleared to indicate there is no valid information
in the ILA. If the instruction is local then only this CU will store the

3-49

broadcast data into the register specified by ADR 0:8. If the instruction is
global then all CUs specified by MCO will store the broadcast data into their
registers specified by ADR 0:8.

If this instruction is executed and the ICR is updated and other branch trace
conditions are met, then an interrupt will occur and program control will

proceed to interrupt processing.

When this instruction is executed and any address other than the ADB is
specified, then the FINST queue will be emptied.

FLOW CHART: See next page.

3-50

LOAD (X)

PLACE INSTRUCTION
AND ADDRESS FROM
ACAR 40:24 INTO FINQ

IS THIS LOAD(X)

THE NEXT OPERATION

IN FINQ IN ALL CUs
IN THE ARRAY?

ADR = ICR

ADR=ADB?

YES

ADR(x) 2:6 ALR 0:6
1—»ALR BUSY (ACR3)
0—=LOAD/BIN (ACRT)

ILA
NI

IS THIS LOAD(X) .
THE NEXT OPERATION | NO

IN FINQ IN ALT. Clis
IN THE ARRAY?

YES

YES

1E PE
EMORY ADDRESS | NO

?

IS BRANCH TRACE ENABLED
(ACR14 = 1) AND IN NON-
INTERRUPT MODE (ACR1 = 0)
2

NO

YES

IS TRO
AVAILABLE
(ACRl')S = 0)

YES

IS THE
LOAD(X)
GLO

NO

YES

IS THE PE
MEMORY ADDRESS| NO

QUADRANT?
YES

SET BRANCH TRACE
INTERRUPT (1-»AIN14)
ICR 0:25-»TRO 39:25
1 —= TCI7

READ THE WORD FROM PE
MEMORY DETERMINED BY
THE ADDRESS STORED IN FINQ
(INDEXED BY RGX 1F LOADX).
BROADCAST THE WORD TO
THIS CU, AND TO THE OTHER
CUs IN THE ARRAY IF THE

ADR=MCO \NO
OR MC1? [

YES
L.OAD IS GLOBAL.
CLEAR IWS
PRESENCE
INDICATORS

IN THIS
QUADRANT?

YES

READ THE WORD FROM PE
MEMORY DETERMINED BY
THE ADDRESS STORED IN FINQ
(INDEXED BY RGX IF LOADX).
BROADCAST THE WORD TO
THIS CU, AND TO THE OTHER
CUs IN THE ARRAY IF THE
LOAD IS GLOBAL.

1S ADVAST BETWEEN
INSTRUCTIONS AND IS
THE BROADCAST
DATA AVAILABLE?

YES

STORE THE BROADCAST

WORD INTO ADB AT THE

ADDRESS CONTAINED IN
AL.R 0:6

!

0 -+ ALR BUSY (ACR3)

3-51

NO

YES

STORE THE BROADCAST
WORD INTO THE
REGISTER ADDRESSED

BY ADR 0:8

MNEMONIC CODE: ORAC

OPERATION: Inclusive OR of Operand in ACAR of All CUs Executing the
Instruction

AlR:

02 o @ i . ACAR |G/L 05 |

o] 4 16 7 18 19 20 23

DESCRIPTION: This instruction causes all CUs specified by MCO to be
synchronized at the beginning of the instruction. Each CU transmits its
specified ACAR to the other CUs in the array. In turn each CU in the
array receives the operands from the other CUs, performs an INCLUSIVE-
OR of all the operands of the CUs specified by MC2 relative to MCO, and
stores the result in its ACAR. This instruction is a NO-OP in a
single~-quadrant array.

FLLOW CHART:

ORAC

ARRAY
SIZE?

—® (OWN ACAR) "OR" (ARRAY ACAR(S)) —» EACH ACAR

3-52

MNEMONIC CODE: SETC

OPERATION: Specified Mode Bit from PEs to ACAR

AlIR:

00 ACARX / “JACAR 12 ADR

o 4 5 7 16 17 19 20 23 24 31 -

DESCRIPTION: This instruction causes transmission of a particular mode
bit from each of the 64 processing elements to the ACAR specified in AIR
16:2. The local address field of the instruction selects the mode bit; this
field is indexable. The mode bits correspond to ADR bit positions 0 through
7, forH, G, J, I, E1, E, F1, F respectively. If no ADR bits are set,

the result is the logical OR of F and F1. If more than one ADR bit is set,
then the results are undefined. SETC causes ADVAST to stop processing
instructions from IWS until FINQ is empty and the mode bits are returned
by the PE and stored in the ACAR.

FLOW CHART:

‘ IS THIS THE NEXT
SETC | OPERATION IN FINQ

?

NO

[RGD (ADR
(i

j0:8):1] pp; —* ACARi:1
0,1,2,...,63)

(x

3-53

MNEMONIC CODE: SKIP

OPERATION: Skip Forward/Backward

AIR:

w777 sxie 777k %

(o] 4 8 15 19 20 23

DESCRIPTION: This instruction causes the CU to execute an unconditional
skip to another part of the instruction stream. The jump address is derived
by modifying the ICR with the SKIP field of the instruction (after stepping
the ICR). Bit 0 of the SKIP field is the sign bit (''l'" means subtract, "0"
means add) and bits 1:7 are the magnitude bits of the modifier. FExamples
of the skip field values show the following effects:

Skip Value Effect
-1 Infinite loop
0 No operation

+1 Skip next instruction

if this instruction is executed and the branch trace conditions are met,
then an interrupt will occur and program control will proceed to interrupt
processing.

FL.OW CHART:

ADVAST p. 3-63
B

SKIP

3-54

MNEMONIC CODE: SLIT

OPERATION: Replace Address Field of ACAR

AIR:

16 0 [ACAR ADR

3

DESCRIPTION: This instruction causes the address field of the specified
ACAR (bits 40:24) to be replaced by the address field of the instruction (bits
8:24). Bit 5 of the instruction must be "zero", and bits 6:2 specify the ACAR.
ACAR bits 0:40 are not disturbed.

FLOW CHART:

SLIT

AIR 8:24 —» ACAR 40:24

3-55

OPERATION: Store ACAR in Local Address

AlIR:

04 |ACARX | ACARp 04 ADR

Z
o ’ 4 5 7 16 17 19 20 23 24 31

DESCRIPTION: This instruction transfers the contents of the specified ACAR
to the location specified by the local address field. The local address field is
indexable. Cnly the following addresses are permitted: ADB 00-77, AIN, ALR,
AMR, ACO0-3, ICR, MCO0-2, IIA, and TRC. With the exception of ICR and IIA,
all of these addresses have their least significant bit aligned with the least
significant bit of the ACAR. ICR or IIA has its second least significant bit
aligned with bit 63 of the ACAR. The most significant bit of the ACAR is
transferred to the least significant bit of ICR or IIA. When this instruction
loads the ICR, normal ICR updating is inhibited. Normal instruction execu-
tion resumes at the new ICR location. L.oading MCO or MC1 causes the IWS to

be cleared. Loading MCO or MC2 causes FINQ to empty. All bits not replaced
by local memory will be reset to zero.

If this instruction is executed and the ICR is updated and other branch trace
conditions are met, then an interrupt will occur and program control will
proceed to interrupt processing.

FLOW CHART: See next page.

3-56

STL

1

ADR)

= MCi

\ YES

IS BRANCH TRACE ENABLED
(ACR14 = 1) AND IN NON-
INTERRUPT MODE (ACR1 = 0) ?

YES

NO

IS TRO

AVAILABLE
(ACR15 = 0) ?

YES

STORE:

ACAR 40:24 TO ICR 0:24
ACAR 0:1 TO ICR 24:1

STORE:

ACAR 40:24 TO I1A 0:24
ACAR 0:1 TO HIA 24:1

MCoO

MC1

SET BRANCH TRACE
INTERRUPT (1—wAIN14)
ICR 0:25—TRO 39:25

1—TCL7

»

JUMP

WAIT FOR ILA
LOOK-AHEAD
TO FINISH.

CLEAR IWS

PRESENCE
INDICATORS.

FINST QUEUE

EMPTIES.

WAIT FOR ILA
LOOK~AHEAD
TO FINISH.

CLEAR IWS

PRESENCE
INDICATORS.

FINST QUEUE
EMPTIES

ACAR —»(ADR

x)’

(L.S.B. ALIGNED)

3-57

MNEMONIC CODE: STORE(X)

OPERATICN: Store from Local Address into Specified PE Memory Location
(RGX Indexed)

AIR:
STORE| 06 |ACARXY JACAR G/L 02 ADR
0 45 7 16 17 18 19 20 23 24 3
STOREX| 06 |ACARXY////AACAR [IL 03 ADR
[} 45 7 16 17 18 19 20 23 24 31

DESCRIPTION: This instruction stores the operand specified by the local
address into the PE memory location specified by the least significant 24 bits

of the specified ACAR (indexed by PE register RGX if STOREX). The local
address (ADR field) is indexable. Only the following addresses are permitted:
ADB 00-77, ACR, AIN, ALR, AMR, AC0-3, ICR, MCO0-2, IIA, TRO, TRI, ACU, and
PEM (ARE). (See Table 5-1, page 5-6.) The recipient address is
interpreted by ACAR 56:2 and the settings of MC0O and M C2.

The least significant bit of all operands, except ICR or IIA, is aligned with the
least significant bit of the PE memory word. The second least significant bit
of ICR or IIA is aligned with the least significant bit of the word to be stored;
and the least significant bit of ICR or IIA is stored into the most significant

bit of the word. All bits in the PE memory word that are not replaced by the
CU local memory word are set to ''zero''.

The word is stored by the CU whose PE memory contains the specified
address. This instruction is placed in FINQ to be executed in turn

at FINST. The data from the specified local register is found in the FINQ
slot next after the instruction.

FLOW CHART: See next page.

3-58

STORE(X)

|
'

PLACE INSTRUCTION, THE

CONTENTS OF LOCAL MEMORY
(ADR(x) 0:8), AND THE PE MEM-
ORY ADDRESS FROM ACAR40:24

INTO FINQ

0 —=AIN
0»ILLA INTER-
RUPT

|

IS THIS "STORE"
THE NEXT OPERATION

|

INTERPRET
ADDRESS
AS BEING WITHIN
OWN QUADRANT

IN FINQ?
v YES
A
NO / IS
INSTRUCTION
\ GLOBAL?
l YES

IS THE

NO
PE MEMORY ADDRESS

IN THIS QUADRANT?

YES

STORE THE LOCAL MEMORY
DATA WORD FROM FINQ INTO
THE PE MEMORY ADDRESS
STORED IN FINQ

3-59

MNEMONIC CODE: TCCW

QPERATION: Transmit ACAR Counterclockwise (To Next Lower Numbered
‘ CcU) ' :

AlR:

T e«

17 18 19 20 23

DESCRIPTION: This instruction causes all CUs specified by MCO to be syn-
chronized at the beginning of the instruction. All CUs executing the instruc-
tions, as determined by MC2 relative to MCO, transmit the specified ACAR
to the corresponding ACAR in the next lower numbered CU. Also, the ACAR
of the lowest numbered CU is transmitted to the ACAR of the highest num-
bered CU. This instruction is a NO-OP in a single quadrant array.

FLOW CHART:

TCCW
8 ' N\
4 _ 1
ARRAY SIZE ?
N\ J ™
2
'OWN CU \NO
IN ARRAY ? / —>
YES SEND ACAR TO OTHER CU;
—
RECEIVE ACAR FROM OTHER CU. ™
Y
ACAR 0: — :
R0:84 -y n+1, MOD4) ACAR 0:64 -y)

Y ILA

(n=0,1, 2, 3) QE/

3-60

MNEMONIC CODE: TCW

OPERATION: Transmit ACAR Clockwise (To Next Higher Numbered CU)

AlR:

2 77777 Jacar L 02 |7 /%

o a 16 17 8 19 20 23

DESCRIPTION: This instruction causes all CUs specified by MCO to be syn-
chronized at the beginning of the instruction. All CUs executing the instruc-
tions, as determined by MC2 relative to MCO, transmit the specified ACAR
to the corresponding ACAR in the next higher numbered CU. Also, the ACAR
of the highest number CU is transmitted to the ACAR of the lowest numbered

CUu.

In single quadrant array, this instruction is a NO-OP,

FLOW CHART:

TCW
4 1
_.< ARRAY SIZE 2 } =
‘2
OWN CU NO -
IN ARRAY 2 / |

YES SEND ACAR TO OTHER CU: .

; ™ RECEIVE ACAR FROM OTHERCU.
ACAR 0:64 0y) ™ ACAR 0640 L oD) Y

(n=20, 1, 2, 3)

3-61

TEST - SKIP INSTRUCTIONS

MNEMONIC CODES: T ! F!

OPERATION: Test and Skip Conditionally

DESCRIPTION: Each of the TEST-SKIP instructions that follow consists of
four operation codes. The operation mnemonics are suffixed by the four
combinations of T or F and A (that is, TA, T, FA, or F). The true-false
flip-flops in the array are sampled resulting in four conditions: all true (TA),
any true (T), all false (FA), and any false (F). At the completion of the TEST,
the SKIP will be taken if the condition specified in the mnemonic is satisfied.

Each of the instructions causes all the CUs specified by MCO to be synchro-
nized at the beginning of the instruction. At the completion of the test each
executing CU, as determined by MC2 relative to MCO, sets its TF flip-flop

if the result is true, or resets it if the result is false. The CU sends the status
of its TF flip-flop to the other CUs in the array and receives their TF flip-flops.
The CU samples all the TF flip-flop lines, and if the condition specified in the
op-code is satisfied then the jump is taken. Otherwise, the next instruction in
sequence is executed. In single quadrant array, the CU uses its own TF flip-flop
for the test. MCO defines the array to be synchronized at the beginning of the
instruction and the array executing the SKIP; MC2 relative to MCO defines the
TF flip-flops which are examined.

The jump address is derived by modifying the ICR with the contents of the SKIP
field in the instruction (after stepping the ICR). Bit 0 of the SKIP field is the
sign bit of the modifier (''l" means subtract, ""0" means add) and bits 1:7 are
the magnitude bits of the modifier.

If this instruction is executed and the ICR is updaied and other branch trace
conditions are met, then an interrupt will occur and program control will
proceed to interrupt processing.

A general TEST-SKIP flow chart is shown on the next page. Subsequent pages

describe the TEST-SKIP instructions, arranged in alphabetical sequence.

FLOW CHART: See next page.

3-62

) 1, 2, or 4 CUs, depending on the array.

| TEST-SKIP INSTRUCTION]

IS INSTRUCTION

NO (2,3, 4)
nggléggqls) SYNCHRONIZE CUs
__ARRAY? /]
YES
- —————— T m e m e e - e — - o 1

EACH CU PERFORMS FUNCTION
INDICATED BY OPERATION CODE

0 -»TRUE-FALSE FLIP-FLOP

1—=TRUE-FALSE FLIP-FLOP

FOR DETAILS, SEE INDI-
VIDUAL INSTRUCTION

IS INSTRUCTION
YES LOCAL OR IS
ONE CU IN

EACH CU SENDS ITS
TF FF STATUS TO
THE OTHER CU(s) IN
THE ARRAY, AND RE-
CEIVES THE TF ¥F
STATUS FROM THE
OTHER CU(s)

LICR HAS BEEN STEPPED I

)

IS BRANCH TRACE ENABLED YES
(ACR14 = 1) AND IN NON-
INTERRUPT MQDE (ACR1 = 0)

IS TRO
AVAILABLE
(ACR15 = 0)?,

NO

YES

SET BRANCH TRACE

INTERRUPT (1-=AIN14)

ICR 0:25 —= TRO 39:25
1 —»TCI 7

ICR 0:25 - SKIP 1:7 —»ICR 0:25 }

| SKIP 1:7 + ICR 0:25 —= ICR 0:25

L

[]

JUMP

3-63

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: EQLX _ _

OPERATION: Skip if ACAR 40:24

AIR:

EQLXTA

EQLXT

EQLXFA

EQLXF

DESCRIPT

are Equal to Bits 40:24 in the Operand

14 ACARX SKIP ACARG/ 14 ADR
(o} 4 5 7 8 15 16 17 18 19 20-23 24 31
14 ACARX SKIP ACAR|G/L 15 ADR
o] 45 7 8 15 i6 17 18 19 20— 2324 3
14 JACARX SKIP ACAR|G/L 16 ADR
o] 4 5 78 15 16 17 [1:] 19 20—23 24 31
14 ACARX SKIP ACAR|G/L 17 ADR
0 4 5 7 8 15 16 17 18 19 20-23 24 31
ION: This instruction determines if bits 40:24 of the specified

ACAR are equal to bits 40:24 of the operand in the local address.
address field is indexable and addresses are limited to the ADB and the

four ACAR

FLOW CHART:

S.

EQLX

&

(Refer to TEST-SKIP for further details.)

See TEST-SKIP instruction.

NO[ACAR 40:24 = (ADR

(X)

) 40:24 7 PLES

0 »TF FF

1% TF FF

The local

ADVAST

3-64

A

p. 3-63

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE:

OPERATION: Skip if ACAR 40:24 are G

GRTR_

AIR:
GRTRTA | 15 |[ACARX SKIP ACAR G/ L— 00 ADR

(o] 4 5 7 8 ! 15 16 17 18 19 20—23 24 31
GRTRT 15 JACARX SKIP ACARG/1]01 ADR

o 45 7 8 15 16 17 18 19 20-23 24 31
GRTRFA 15 ACARX SKIP ACARG/ L— 02 ADR

[o] 45 7 8 15 16 17 18 19 20-23 24 31
GRTRF 15 ACARX SKIP ACAR G/ L 03 ADR

[¢] 45 7 8 i5 16 17 i8 IS 20—23 24 31

DESCRIPTION: This instruction determines if bits 40:24 of the specified

ACAR are greater than bits 40:24 of the operand in the local address.

The

local address field is indexable and addresses-are limited to the ADB and
the four ACARs. (Refer to TEST-SKIP for further details.)

FLOW CHART: See TEST-SKIP instruction.

GRTR_

ACAR 40:24 > (ADR

(X)

) 40:24 2

0—TF FF

YES

1-» TF FF

Y

3-65

p- 3-63

ADVAST

A

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE:

LESS _

OPERATION: Skip if ACAR 40:24 are Less Than Bits v40:24 of the Operand

AlIR:
LESSTA 15 |JACARX SKIP ACARG/L 04 ADR

o 4 5 7 8 15 16 17 18 19 20-23 249 31
LESST 15 ACARX SKIP ACAR|G/L 05 ADR

o] 4 5 78 15 16 17 18 19 20-23 24 3l
LESSFA |15 |ACARX SKIP CAR|G/1[—] 06 ADR

o 45 78 15 16 17 18 19 20-23 24 31
LESSF 15 |JACARX SKIP ACAR|G/ 07 ADR

[o] 45 78 15 16 17 I8 19 20-23 24 3
DESCRIPTION: This instruction determines if bits 40:24 of the specified

ACAR are less than bits 40:24 of the operand in the local address.

The local

address field is indexable and addresses are limited to the ADB and the four

ACARSs.

FLOW CHART:

LESS_ _

NO

See TEST-SKIP instruction.

(Refer to TEST-SKIP for further details.)

i

ACAR 40:24 < (ADR (X

X)

) 40:24

0—+TF FF

YES

1 TF FF

3-66

ADVAST
N

p.3-63

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE:

ONES

OPERATION: Skip if ACAR 0:64 are All Ones

AlR: :

ONESTA | 10 W/ SKIP ACARG/ L 04 7/////////
o] 49 8 1516 17 18 19 20—23

ONEST | 10 V0 SKIP ACARG/ L] o500 000
o] 4 8 15 16 17 18 19 20--23

ONESFA | 10 [/ SKIP ACARG/ L 06 [/
o} 4 8 15 16 17 18 19 20-—23

ONESF 10 ////A SKIP ACAR|G/ L 07 7/////,/,///
(e} 4 8 15 16 17 18 19 20-23

DESCRIPTION: This instruction determines if bits 0:64 of the specified

ACAR are all "ones'.

FLOW CHART:

ONES _ _

k!

See TEST-SKIP instruction.

NO

ACAR 0:64=1...1 2

0 +»TF FF

(Refer to TEST-SKIP for further details.)

YES

1-»TF FF

'

3-67

ADVAST
A

p. 3-63

TEST - SKIP INSTRUCTIONS {(Cont'd)

MNEMONIC CODE: ONEX

OPERATION; Skip if ACAR 40:24 are All Ones

AIR:

ONEXTA | 10 SKIP ACAR|G/ L 1l 000000
ONEXT 10 Vo SKIP acarle/ L 1s 20000000
ONEXFA | 10 Y/ SKIP ACAR(G/ LI 16 [/ 0]

ONEXF w o SKIP ACAR|G/ L w0000

0 49 8 15 16 17 18 19 20-23

DESCRIPTION: This instruction determines if bits 40:24 of the specified
ACAR are all "'ones'". (Refer to TEST-SKIP for further details.)

FLOW CHART: See TEST-SKIP instruction.

ONEX l

NO YES
\ ACAR 40:24=1...1 7

y Y
¢ —»TF FF| 1 — TF FF
L ADVAST
A
3-68

p. 3-63

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE:

CPERATION: Skip Dependent Upon CU TF Flip-Flop

AlR:

SKIPTA |11 7// SKIP 22 RN
e} 9 8 15 18 19 20—23

SKiPT |11 v SKIP a1 os AP,

'3 8 15 18 19 20 -—23

SKipFA | 11 SKIP i os A]
[o} 4 8 5 18 19 20-23

SKIPF 11 47// SKIP A N ==Y
[0} 8 15 8 19 20—23

DESCRIPTION: This instruction is classified as a TEST and SKIP instruction.

SKIP_

It differs from the preceding TEST and SKIP instructions in that no test is per-
formed during the TEST portion of the instruction and, therefore, the TF

flip-flop in each CU is sampled but not changed.

The test of the flip-flops is

made to determine if the SKIP is to be executed. (Refer to TEST-SKIP for
further details.)

FLOW CHART:

See TEST-SKIP instruction.

SKIP_

ADVAST

p. 3-63

3-69

TEST - SKIP INSTRUCTIONS (Cont'd)

OPERATION: Skip if ACAR 40:24 are Equal to Bits 16:24 in Local Memory

AIR:
TXETA 14 ACARX ' SKIP ACARG/L 10 ADR

[o] 4 5 7 8 15 16 17 18 19 20-23 24 3l
TXET 14 |ACARX SKIP ACARG/L 11 ADR

[0} 45 78 15 16 17 18 19 20—23 24 34
TXEFA 14 |ACARX SKIP ACARG/L 12 "ADR

(o] 45 78 15 18 17 i8 19 20-—23 24 1!
TXEF 14 ACARX SKIP ACARG/L 13 ADR

o] 45 78 i5 16 17 18 19 20—-23 24 31
DESCRIPTION: This instruction determines if bits 40:24 of the specified

ACAR are equal to bits 16:24 of the operand in the local address.
address field is indexable and addresses are limited to the ADB and the
four ACARs. (Refer to TEST-SKIP for further details.)

FLOW CHART:

See TEST-SKIP instruction.

The local

TXE__ _ l
NO [ACAR 40:24 = (ADR x) 16:24 YES
0—TF FF 1 »TF FF o~
l ¥ ADVAST
A

3-70

p. 3-63

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: TXE M

OPERATION: Skip if ACAR 40:24 are Equal to Bits 16:24 (also, 40:24 are
modified by 1:15) of Same ACAR

AIR:

TXETAM 0\1247///3 SKIP lsél\sCA:EjG:a/L - 201_423///////////

TXEFAM [1:24/////,!3 SKIP hcare /i 201_6;3////////////

TXEFM | 12 V000 SKIP WcARlG/L 1T
o = : Py P PR

DESCRIPTION: This instruction determines if bits 40:24 of the specified
ACAR are equal to bits 16:24 of the same ACAR. After the comparison,
ACAR 40:24 are modified by ACAR 1:15, Bit 1 is the sign bit (''1" means
subtract, "0" means add) and bits 2:14 are the magnitude of the modifier.
(Refer to TEST-SKIP for further details.)

FI.OW CHART: See TEST-SKIP instruction.

TXE ACAR 40:24 = ACAR 16:24 2 YES
¥ NO 1-»TF FF
ADVAST
0-»TF FF *{ A

' NO /ACAR1:1= 12
Y \

ACAR 40:24 + ACAR 2:14 -»ACAR 40:24 ¢ YES

p. 3-63

ACAR 40:24 - ACAR 2:14-»ACAR 40:24

3-71

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: TXG

OPERATION: Skip if ACAR 40:24 are Greater Than Bits 16:24 in Local

Memory
AIR:
' T
TXGTA | 14 |ACARX, SKIP ACARG/ L] 00 ADR
[o] 45 78 15 16 17 18 19 20-23 24 31
TXGT 14 |[ACARX SKIP hcarle/ L o1 ADR
o] 45 7 8 I5 16 17 I8 19 20-~2324 31
TXGFA | 14 ACARX SKIP ACARIG/ LI 02 ADR
0. 45 78 1516 17 18 19 20-23 24 31
TXGF | 14 |ACARX SKIP CARlG/LM 03 ADR
o] 45 78 15 16 17 18 19 20—-23 24 3t

DESCRIPTION: This instruction determines if bits 40:24 of the specified

ACAR are greater than bits 16:24 of the operand in the local address.

The

address field is indexable and addresses are limited to the ADB and the
four ACARs. (Refer to TEST-SKIP for further details.)

FLOW CHART: See TEST-SKIP instruction,

y

NO [ACAR 40:24 > (ADR

(X)

) 16:24 2

0—»TF FF

3-12

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: TXG M

OPERATION: Skip if Bits 40:24 are Greater Than Bits 16:24 (also, 40:24
are modified by 1:15) of Same ACAR

AIR:

TXGTAM | 13 L2 SKIP ACAHG/ 00 Vs

[o] 4 8 1516 17 18 19 20-23

. 13 SKTP seaqe/iL o P 2227770

0o 4 8 15186 17 18 19 20-23

TxGFAM | 13 P SKIP ACAHG/ NN,
[e] q 8 15186 17 8 19 20-—23

TXGFM 131/ SKIP CAHG/1}— 03 //////////
[o] 4 8 15 16 17 8 19 20-23

DESCRIPTION: This instruction determines if bits 40:24 of the specified
ACAR are greater than bits 16:24 of the same ACAR. After the comparison,
ACAR 40:24 are modified by ACAR 1:15.. Bit 1 is the sign bit (''1"' means
subtract, "0'" means add) and bits 2:14 are the magnitude of the modifier.
(Refer to TEST-SKIP for further details.)

FLOW CHART: See TEST-SKIP instruction.

YES

TXG ACAR 40:24 >ACAR 16:24 ?

7 <0 1-»TF EF
0% TF FF >
; NO\ACAR 1:1 = 1\? |

ACAR 40:24 + ACAR 2:14-ACAR 40:24 ‘ YE§/ p. 3-63

ACAR 40:24 - ACAR 2:14 »ACAR 40:24

3-73

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE:

OPERATION: Skip if ACAR 40:24 are Less Than Bits 16:24 in Local

Memory
AlIR:
TXLTA 14 ACARX SKIP ACAR G/ L 04 ADR
o] 45 7 8 15 18 7 18 19 20-23 24 31
TXLT 14 ACARX SKIP ACARG/ L 05 ADR
o 45 78 1516 17 18 19 20-~-2324 3l
TXLFA 14 ACARX SKIP ACAR|G/ 06 ADR
o} 45 78 15 16 17 I8 19 20—23 24 31
TXLF 14 ACARX SKIP ACARIG/ 07 ADR
o 43 78 1516 17 18 19 20-2324 3
DESCRIPTION: This instruction determines if bits 40:24 of the specified

ACAR are less than bits 16:24 of the operand in the local address. The local
address field is indexable and addresses are limited to the ADB and the

four ACARs.

FLOW CHART:

(Refer to TEST-SKIP for further details.)

TXL

See TEST-SKIP instruction.

1

NO

ACAR 40:24 < (ADR

(X)

) 16:24 2

0—» TF FF

YES

1—»TF FF

3-74

A

0

p. 3-63

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: TXL M

OPERATION: Skip if ACAR 40:24 are l.ess Than Bits 16:24 (then 40:24 is
modified by 1:15) of Same ACAR

AIR;
TXLTAM |13 [T SKIP BCARG/IL— a2
TXLTM 13 SKIP \CARIG/L—0s5 [/ 77777~
xLFAM |18 P SKIP ©NCARG/LI— 08 Lo

TXLFM |13 (/7] SKIP hearle/L—or o 000202

L L L L L LA
(o] 49 8 15 16 17 18 19 20-23

DESCRIPTION: This instruction determines if bits 40:24 of the specified
ACAR are less than bits 16:24 of the same ACAR. After the comparison,
ACAR 40:24 are modified by ACAR 1:15. Bit 1 is the sign bit ("'1'"" means
subtract, "0" means add) and bits 2:14 are the magnitude of the modifier.
(Refer to TEST-SKIP for further details.)

FLOW CHART: See TEST-SKIP instruction.

TXL ACAR 40:24 <ACAR 16:24°?
: NG 1»TF FF
0-»TF FF ——
g NO/ACAR 1:1 = 1)
ACAR 40:24 + ACAR 2:14 -»ACAR 40:24 T VES

ACAR 40:24 - ACAR 2:14-»ACAR 40:24

3-75

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE:

ZER

OPERATION: Skip if ACAR 0:64 are All Zeros

AIR:

ZERTA | 10 //// . SKIP carle/ Lol 00
0 4 8 15 18 17 18 19 20-23

ZERT ‘10 ///// SKIP A-CAR /L 01 I/////// ’/
° a 8 1516 17 18 19 20-23

ZERFA | 10 PS7 SKIP carbyLHoe 0000000
0. 4 8 i5 16 17 I8 19 20-23

ZERF 10 //A SKIP CAR[G/L 03 //////////A
[0} 4 8 15 16 } 1?7 18 19 20—23

DESCRIPTION: This instruction determines if bits 0:64 of the specified

ACAR are all ''zeros''.

FLOW CHART:

ZER

See TEST-SKIP instruction.

(Refer to TEST-SKIP for further details.)

NO YES
ACAR 0:64 = 0 2
0 TF FF 1 - TF FF
v ADVAST
A
SN
p. 3-63

3-16

TEST - SKIP INSTRUCTIONS (Cont'd)

MNEMONIC CODE: ZERX _ _

OPERATION: Skip if ACAR 40:24 are All Zeros

AIR: |

revocrs [0 P78 sae eada T 2222222222
ZERXT | 104//'//8 SKIP Is{&sCAEGI/aL . 2c1)_123//////////2
ZERXFA | 104’// ZI SKIP___BCARG/ LI 2i_zzz’V/////////A
ZERXF ! 104///4‘i SKIP isiCAiji/;L n ‘1;'_5._///////// g

DESCRIPTION: This instruction determines if bits 40:24 of the specified
ACAR are all "zeros''. (Refer to TEST-SKIP for further details.)

FLOW CHART: See TEST-SKIP instruction.

ZERX _

NO YES
ACAR 40:24 = 0 »

0—»TF FF | | = TF FF
* ADVAST
A
p. 3-63

3-117

MNEMONIC CODE: WAIT

OPERATION: Synchronize All CUs in Array or Join all CUs specified by ADR 4:4

AlIR:

02 |ACA RX7GI/:_, 06 ADR

0 45 19 20 23 24 34

DESCRIPTION: This instruction causes all CUs in the array to be synchronized
at the beginning of the instruction. When ADR 3:1 is OFF, no other action is
taken, and normal operation resumes when all CUs have synchronized. ADR 3:1
ON specifies that this CU is requesting other quadrants (CUs) to join it in
multiquadrant array. After the CUs have joined, they will synchronize and load
MCO with the contents of ADR 4:4 and set ACR5. ACRS5 is the indicator to the
program that the CUs have joined. The desired array is specified by ADR 4:4.

NOTE: The use of the ACARX field can cause this instruction
to be modified from the normal to the special option and the
reverse, by causing the setting and resetting of ADR 27.

FLOW CHART: See next page.

3-78

WAIT

l

IS \\L
INSTRUCTION [NO _
GLOBAL ? /
YES
DOES MCO0 \
NO CONTAIN YES
. = ?
ADR 3:1 = 17 QoNTAIN .
”1” BIT ?
l YES lNO
?ﬂiﬂﬁﬁ% SYNCHRONIZE
CUs IN ARRAY >
CUs
/ ALL CUs \
SPECIFIED BY | NO A
ADR 4:8 HAVE
JOIN BITS ON ?
YES
SEND SYNCH
SIGNAL
TO ALL CUs
ALL CUs - MCO — ADR 44
INADR 4:4 L ACR5 =— 1 L
LA
NI

3-79

CONTENTS

Page
INSTRUCTION FORMAT AND FIELD USAGE 4-1
FINST/PE INSTRUCTION REPERTOIRE e e e e . 4-5
FINST/PE INSTRUCTION DESCRIPTIONS 4-12

(See Index on Reverse Side)

FINST/PE INSTRUCTION INDEX

Mnemonic Octal Ref. Mnemonic Octal Ref. Mnemonic Octal Ref.
Code Code Page Code Code Page Code Code Page
AD 3504 4-17 IXL 2310 4-59 NORN 2307 4-31
ADA 3505 4-17 IXLD 2712 4-62 OFB 2506 4-76
ADB 2606 4-22 JAG 3715 4-52 OR 2304 4-31
ADD 2604 4-23 JAL 3717 4-52 ORN 2306 4-31
ADEX 2500 4-24 JB 3503 4-54 RAB 3701 4-36
ADM 3414 4-17 JLE 3517 4-55 RTAL 3513 4-87
ADMA 3415 4-17 JLG 3315 4-55 RTAR 3512 4-88
ADN 3404 4-17 JLL 3317 4-55 RTG 2413 4-77
ADNA 3405 4-17 JLO 3311 4-57 RTL 2412 4-77
ADR 3506 4-17 JLZ 3313 4-57 SAB 3702 4-36
ADRA 3507 4-17 JME 3515 4-55 SAN 3702 4-38
ADRN 3406 417 JMG 3115 4-55 SAP 3701 4-38
ADRNA 3407 4-17 JML 3117 4-55 SB 3704 4-79
AND 2704 4-27 JMO 3111 4-57 SBA 3705 4-79
ANDN 2706 4-27 JMZ 3113 4-57 SBB 2607 4-82
ASB 2507 4-26 JSE 2513 4-59 SBEX 2501 4-83
ASTRE T+ 4+—26A JSG 2113 4-59 SBM 3614 4-79
ASTRT, 2416 4264 JSL 2313 4-59 SBMA 3615 4-79
CAB 3700 4-33 JSN 3503 4-54 SBN 3604 4-79
CHSA 3700 4-35 JXE 2511 4-59 SBNA 3605 4-179
CLRA 2411 4-39 JXG 2111 4-59 SBR 3706 4-79
COMPA 2211 4-40 JXGI 2711 4-61 SBRA 3707 4-179
DV 3304 4-41 JXL 2311 4-59 SBRN 3606 4-79
DVA 3305 4-41 JXLD 2713 4-62 SBRNA 3607 4-79
DVM 3214 4-41 LB 2107 4-63 SCM 2104 4-85
DVMA 3215 4-41 LDA 2617 4-104 || SETE 2514 4-89
DVN 3204 4-41 L.DB 2700 4-104 || SETE1 2515 469
DVNA 3205 4-41 LDD 2212 4-104) SETF 2516 4-69
DVR 3306 4-41 LDE 2114 4-69 SETF1 2517 4-70
DVRA 3307 4-41 LDE1 2115 4-69 SETG 2714 4-70
DVRM 3216 4-41 LDEE1 2116 4-69 SETH 2715 4-70
DVRMA 3217 4-41 LDG 2314 4-69 SETIL 2716 4-70
DVRN 3206 4-41 LDH 2315 4-69 SETJ 2717 4-70
DVRNA 3207 4-41 LDI 2316 4-69 SHABL 3711 4-89
EAD 2010 4-45 LDJ 2317 4-69 SHABML 3713 4-91
EOR 2505 4-29 LDR 2701 4-104 || SHABMR 3712 4-92
EQV 2504 4-30 +PRAG 2415 | 4~1664 SHABR 3710 4-90
ESB 2410 4-48 EPRAYL. 2414 41068 SHAL 3501 4-93
GB 2106 4-50 LDS 2702 4-104 || SHAML 3511 4-95
IAG 3714 4-52 LDX 2703 4-104 | SHAMR 3510 4-96
IAL 3716 4-52 LEX 2117 4-64 SHAR 3500 4-94
IB 3502 4-54 ML 3104 4-65 STA 2612 4-97
ILE 3516 4-55 MLA 3105 4-65 STB 2613 4-97
ILG 3314 4-55 MLM 3014 4-65 STR 2614 4-97
ILL 3316 4-55 MLMA 3015 4-65 STS 2615 4-97
ILO 3310 4-57 MLN 3004 4-65 STX 2616 4-97
1Lz 3312 4-57 MLNA 3005 4-65 SUB 2605 4-99
IME 3514 4-55 MLR 3106 4-65 SWAP 3103 4-100
IMG 3114 4-55 MLRA 3107 4-65 SWAPA 3303 4-101
IML 3116 4-55 MLRM 3016 4-65 SWAPX 3703 4-102
IMO 3110 4-57 MLRMA 3017 4-65 T3A 2105 4-103
IMZ 3112 4-47 MLRN 3008 4-65 TCY 3100 -
ISE 2512 4-59 MLRNA 3007 4-65 TCYS 3101 -—
ISG 2112 4-59 MULT 2213 4-72 TCYX 3102 -
ISL 2312 4-59 NAND 2705 4-27 XD 2503 4-107
ISN 3502 4-54 NANDN 2707 4-27 X1 2502 4-108
IXE 2510 4-59 NEB 2210 4-73
IXG 2110 4-5¢ NOR 2305 4-3]1
IXGI 2710 4-61 NORM 2013 4-74

SECTION IV
FINST/PE INSTRUCTIONS

INSTRUCTION FORMAT AND FIELD USAGE

The format of FINST/PE instruction words is given below, followed by an
explanation of field usage. Table 4-1 provides a complete listing of the FINST/

PE operation codes.

BIT NO.
[¢] 1 2 3 4 5 6 7 8 9 10 1l 12 i3 14 15 16 17 18 |19 20 21 22 23 24 25 26 27 28 29 30 31
FIELD A OP CODE ACARX |FIELD B OP CODE—— ADR USE ADR
PAF?ITY—j
Field Description
FIEIL.D A OP CODE BITS 0:2, 2:3. First part of operation code
(see Table 4-1). Bit 0 is always "'one'" for
FINST/PE type instructions.
ACARX BITS 5:1, 6:2. When bit 5 is "one'", the contents

of the ACAR specified by bits 6 and 7 are
added tothe ADR field. When bit 5 is "zero',
the values in bits 6 and 7 are irrelevant.

Where a literal is being transmitted, the value re-
ceived by the PE is as follows:

ACARX
None Bits 0:48 = 0;
Bits 48:16 = ADR 0:16
Any Bits 0:48 = ACAR 0:48;

Bits 48:16 = ACAR 48:16
+ ADR 0:16 (high-order
carry is lost).

FIELLD B OP CODE BITS 8:1, 9:3. Second part of operation code.

PARITY BIT 12:1. Odd parity bit.

ADR USE BITS 13:3. These bits govern the use of the ADR
field according to the following:

If BIT 15 is set, the ADR field is a PEM address, and
the other bits have the following meaning:

Bits 13-14 reset: No PE indexing
BIT 13 set: Index by RGS

BIT 14 set: Index by RGX

Bits 13-14 set: Index by RGS

If BIT 15 is reset, then either the operand,
the (shift or bit) value or the register code is
being transmitted from the CU. (A bit value
is considered a shift count.) The balance of
the ADR USE field bits are defined as follows:

BIT 13 set: CU is transmitting a
register code.

BIT 13 reset: CU is transmitting a
literal.

BIT 14: Disregarded.

Where a register code is being transmitted,
the following codes are used:

Corresponding
ADR Bit Register AIR Bit ACn Bit
1 A 17 49
2 B 18 50
3 X 19 51
4 S 20 52
5 R 21 53
6 D 22 54
~ All register codes are allowed with every
instruction except for the instructions LD
(A| D|R|S|X).
ADR BITS 16:16, Address field, designating,

according to instruction type, one of the fol-
lowing: location of the operand, shift count
or bit value, index amount, or routing distance,

4-2

ADR (Cont.)

Normally, the use of this field is defined ac-
cording to the instruction type. For example,
for the RT(G/L) instruction this field contains
a routing distance and the source register
address; for shift instructions, this

field contains only a shift count. (The bit
value is also considered a shift count.) How-
ever, for other instructions, the ADR field
normally contains the source of the operand.

4-3

-7

INSTRUCTION BITS 0:5

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

Table 4-1. FINST/PE Instruction OP Codes
INSTRUCTION BITS 8:4
00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17
EAD * » NORM
SCM T3A GB LB IXG JXG ISG JSG LDE LDE1 LDEE1 LEX
NEB COMPA LDD MULT
OR NOR ORN NORN IXL JXL ISL JSL LDG LDH LDI LDJ
ESB CLRA RTL RTG LDRAL| LDRAG| ASTRI. | ASTRG
ADEX SBEX X1 XD EQV EOR OFB ASH IXE JXE ISE JSE SETE SETE1 SETF SETF1
* * * * ADD SUB ADB SBB * *® STA STB STR STS STX LDA
LDB LDR LDS LDX AND NAND ANDN NANDN| IXGI JXGI IXL.D JXLD SETG SETH SETI SETJ
MLN MLNA MLRN MLRNA] MLM | MLMA MLRM MLRMA
TCY TCYS TCYX SWAP| ML MIA MLR MLRA MO JMO IMZ JMZ IMG JMG IML JML
DVN DVNA DVRN DVRNA DVM DVMA DVRM DVRMA
SWAPA | DV DVA DVR DVRA 1ILO JLO I1.Z JLZ ILG JLG ILL JLI.
ADN ADNA ADRN ADRNA ADM ADMA i o
SHAR SHAL IB/ISN JB/JSN | AD ADA ADR ADRA | SHAMR | SHAML RTAR | RTAL IME JME ILE JLE
SBN SBNA SBRN SBRNA SBM | SBMA e o
CAB/ RAB/ SAB/
CHSA SAP SAN | SWAPX | sB SBA SBR SBRA | SHABR | SHABL |SHABMR|SHABML| IAG JAG IAL JAL
(AD, SB, ML, and DV) Suffix Meaning * These op codes are used by ADVAST instructions
A Unsigned ** These op codes are undefined variants of AD and SB.
M Fixed Point BLANK: Illegal op codes
N Normalized
R

Rounded

FINST/PE INSTRUCTION REPERTOIRE

The next several pages provide a listing of the instructions that comprise
the PE/FINST repertoire. They are arranged in alphabetical order
according to mnemonic and functional group, and in the same order as the

instruction descriptions which comprise the remainder of this subsection.

Octal Op Code
Mnemonic Field A Field B
Code 0:5 8:4 Operation
AD 34 04 Add (ADR) to RGA. Variants are:
ADA 34 05 Suffi y
X eaning
ADM 34 14 -
A Unsigned
ADMA 34 15
M Fixed point
ADN 35 04
N Normalized floating
ADNA 35 05
R Rounded
ADR 34 08
ADRA 34 07
ADRN 35 06
ADRNA 35 07
ADB 26 06 Add (ADR) to RGA in 8-bit bytes
ADD 26 04 Add 64-bit unsigned fixed-point numbers (ADR) to RGA
ADEX 25 00 Add (ADR) exponent field(s) to RGA exponents
ASB 25 07 Place the sign(s) of RGA into the sign(s) of RGB
Boolean Operations: Place the result of the specified logical function of RGA
with (ADR) into RGA;:
AND 27 04 Logical AND of RGA with (ADR)
ANDN 27 06 Logical AND of RGA with complement of (ADR)
EOR 25 05 Logical EXCLUSIVE-OR of RGA with (ADR)
EQV 25 04 Logical EQUIVALENCE of RGA with (ADR)
NAND 27 05 Logical AND of complement of RGA with (ADR)
NANDN 27 07 Logical AND of complement of RGA with complement
of (ADR)
NOR 23 05 Logical OR of complement of RGA with (ADR)
NORN 23 07 Logical OR of complement of RGA with complement
of (ADR)
OR ' 23 04 Logical OR of RGA with (ADR)
ORN 23 06 Logical OR of RGA with complement of (ADR)

Octal Op Code

Mnemonic Field A Field B
Code 0:5 8:4 Operation
Change RGA Bit: Perform the indicated operation on the specified RGA
bit:
CAB 37 00 Complement bit(s) in RGA
CHSA 37 00 Change sign bit(s) in RGA
RAB 37 01 Reset bit(s) in RGA
SAB 37 02 Set bit(s) in RGA
SAP 37 01 Reset sign bit(s) in RGA
SAN 37 02 Set sign bit(s) in RGA
CLRA 24 11 Clear RGA
COMPA 22 11 Complement RGA
DV 32 04 Divide RGA and RGB, double-length mantissa, by
DVA 39 05 (ADR). Variants are:
DVM 32 14 Suffix Meaning
DVMA 32 15 A Unsigned
DVN 33 04 M Fixed point
DVNA 33 05 N Normalized
DVR 32 06 R Rounded
DVRA 32 07
DVRM 32 16
DVRMA 32 17
DVRN 33 06
DVRNA 33 07
EAD 20 10 Recover extended precision after floating-point add
ESB 24 10 Recover extended precision after floating-point sub-
tract
GB 21 06 Test for RGA greater than (ADR) in 8-bit bytes.
(1lgya(Gg|L) RGA arithmetic test to mode bit (for 32-bit mode,
result also goes to G or to H):
IAG 37 14 Place result of test for RGA arithmetically
greater than (ADR) into I (and G)
IAL 37 16 Place result of test for RGA arithmetically less
than (ADR) into I (and G)
JAG 37 15 Place result of test for RGA arithmetically great-
er than (ADR) into J (and H)
JAL 37 17 Place result of test for RGA arithmetically less

than (ADR) into J (and H)

Octal Op Code

Mnemonic Field A Field B
Code 0:5 8:4 Operation
(I]|JNB|SN) Move RGA bit to mode bit:
IB 35 02 Transfer RGA bit(s) to I (and G)
ISN 35 02 " Transfer RGA sign(s) to I (and G)
JB 35 03 Transfer RGA bit(s) to J (and H)
JSN 35 03 Transfer RGA sign(s) to J (and H)
(I (L|M)(E|G|L) RGA logical test to mode bit (for 32-bit mode, results
go to I and G or to J and H):
ILE 35 16 Place result of test for RGA logically equal to
(ADR) into I
ILG 33 14 Place result of test for RGA logically greater
than (ADR) into I
ILL 33 16 Place result of test for RGA logically less than
(ADR) into I
IME 35 14 Place result of test for RGA mantissa logically
equal to (ADR) mantissa into I
IMG 31 14 Place result of test for RGA mantissa logically
greater than (ADR) mantissa into I
IMI1, 31 16 Place result of test for RGA mantissa logically
less than (ADR) mantissa into I
JLE 35 17 Place result of test for RGA logically equal to
(ADR) into J
JLG 33 15 Place result of test for RGA logically greater
than (ADR) into J
JLL 33 17 Place result of test for RGA logically less than
(ADR) into J
JME 35 15 Place result of test for RGA mantissa logically
equal to (ADR) mantissa into J
JMG 31 15 Place result of test for RGA mantissa logically
greater than (ADR) mantissa into J
JML 31 17 Place result of test for RGA mantissa logically
less than (ADR) mantissa into J
(IlJ)(L]IM)(O|z) RGA zeros or ones test to mode bit (for 32-bit mode,
results also go into G or H):
ILO 33 10 Place result of test for RGA logically equal to
all "ones' into I
ILZ 33 12 Place result of test for RGA logically equal to
zero into I
IMO 31 10 Place result of test for RGA mantissa logically
equal to all ''ones' into I
1Mz 31 12 Place result of test for RGA mantissa logically

equal to zero into I

Mnemonic
Code

JLO
JLZ
JMO

JMZ

(I]3)(S|X)(E|G|L)

ISE
SG
ISL
IXE
IXG
IXL

JSE

JSL
JXE
JXG
JXL

(11J3) Xa1
IXGI

JXGI

(1}J) XLD
IXLD

JXLD

Octal Op Code

Field A Field B
0:5 8:4
33 11
33 13
31 11
31 13
25 12
21 12
23 12
25 10
21 10
23 10
25 13
21 13
23 13
25 11
21 11
23 11
27 10
27 11
27 12
27 13

Index

Index

Index

Operation

Place result of test for RGA logically equal to
all "ones' into J

Place result of test for RGA logically equal to
zero into J

Place result of test for RGA mantissa logically
equal to all "'ones'' into J

Place result of test for RGA mantissa logically
equal to zero into J

test to mode bit:

Place result of test for (RGS) arithmetically
equal to (ADR) into I

Place result of test for (RGS) arithmetically
greater than (ADR) into I

Place result of test for (RGS) arithmetically
less than (ADR) into I

Place result of test for (RGX) arithmetically
equal to (ADR) into I

Place result of test for (RGX) arithmetically
greater than (ADR) into I

Place result of test for (RGX) arithmetically
less than (ADR) into I

Place result of test for (RGS) arithmetically
equal to (ADR) into J

Place result of test for (RGS) arithmetically
greater than (ADR) into J

Place result of test for (RGS) arithmetically
less than (ADR) into J

Place result of test for (RGX) arithmetically
equal to (ADR) into J

Place result of test for (RGX) arithmetically
greater than (ADR) into J

Place result of test for (RGX) arithmetically
less than (ADR) into J

add overflow to mode bit:

Add (ADR) 48:16 to RGX; store overflow in
mode register bit I

Add (ADR) 48:16 to RGX; store overflow in
mode register bit J

subtract underflow to mode bit:

Subtract (ADR) 48:16 from RGX; store comple-
ment of overflow in I

Subtract (ADR) 48:16 from RGX; store comple-
ment of overfilow in J

N N
Cctal Op Code

Mnemonic Field A Field B
Code 0:5 8:4 Operation
LB 21 07 Test for RGA less than (ADR) in 8-bit bytes
LDRA (G/L) 24 14 Fetch to RGR from memory, starting at given PEM
number, and align (route), first word to PE O
LEX 21 17 Load RGA exponent(s) from (ADR) exponent(s)
ML 30 04 Multiply RGA by (ADR). Variants are:
MLA 30 0 Suffix Meaning
MLM 30 14
MLMA 30 15 A Unsigned
MLN 31 04 M Fixed point
MLNA 31 05 N Normalized
MLR 30 06 R Rounded
MLRA 30 07
MLRM 30 16
MLRMA 30 17
MLRN 31 06
MLRNA 31 07
Mode Register Instructions:
L.LDE 21 14 Load mode register bit from ACAR
LDE1 21 15
LDEE1 21 16
L.DG 23 14
LDH 23 15
LDI 23 16
LDJ 23 17
SETE 25 14 Set mode register bit with result of logical
SETEL 25 15 function specified in instruction address field
SETF 25 16
SETF1 25 17
SETG 27 14
SETH 217 15
SETI 27 16
SETJ 27 17
MULT 22 13 For 32-bit mode, both halves enabled, multiply
RGA by ADR contents; leave inner double-
length product mantissa in RGA, outer in RGB
NEB 22 10 Test for RGA not equal to (ADR) in 8-bit bytes

Octal Op Code

Mnemonic Field A TField B
Code 0:5 8:4 Operation
NORM 20 13 Normalize
OFB 25 06 Overflow bits of previous 8-bit byte instruction are
transmitted from RGC to RGB
RT (G| L) Route:
RTG 24 13 Transmit register (Y) of every PE to RGR of PE
number (N+D) modulo a, where Y = a specified
PE register, N =initial PE No., D= routing dis-
tance, and a=number of PEs in array (64/128/256)
RTL 24 12 Same as above, except single quadrant (a = 64)
SB 36 04 Subtract (ADR) from RGA. Variants are:
SBA 36 05 Suffix Meaning
SBM 36 14 A Unsigned
SBMA 36 15 M Fixed point
SBN 37 04 N Normalized
SBNA 37 05 R Rounded
SBR 36 06
SBRA 36 o7
SBRN 37 06
SBRNA 37 07
SBB 26 07 Subtract (ADR) from RGA in 8-bit bytes
SBEX 25 01 Subtract exponent(s) of (ADR) from RGA exponent(s)
SCM 21 04 Execute one cycle of a multiplication
Shift Instructions: Shift Variants are:
RTAL 35 13 Variant Meaning
RTAR 35 12
SHABL 37 11 st|rr Shift | rotate
SHABR 37 10 A | AB RGA | RGA + RGB
SHABML, 37 13 (single | double)
SHABMR 37 12 M Full register' mantissa
SHAL 35 o1 LI R Left| right
SHAR 35 00
SHA ML 35 11
SHAMR 35 10

4-10

Octal Op Code

Mnemonic Field A Field B
Code 0:5 8:4
STA 26 12 Store from RGA to memory
STB 26 13 Store from RGB to memory
STR 26 14 Store from RGR to memory
STS 26 15 Store from RGS to memory
STX 26 16 Store from RGX to memory
SUB 26 05 Subtract 64-bit unsigned fixed point
number (ADR) from RGA
SWAP 31 03 Interchange (RGA) and (RGB)
SWAPA 33 03 Interchange the inner and outer operands
in RGA
SWAPX 37 03 Interchange the outer operand of RGA and
the inner operand of RGB
T3A 21 05 Transfer contents of C register (RGC) to
RGA
TCY* 31 00 Transter data from CDB to MAR
TCys* 31 01 Add RGS to CDB and store in MAR
TCYX* 31 02 Add RGX to CDR and store in MAR
Transmit Instructions: Transmit source data to register indicated
in op code. (Source is specified in bits
13:3 and 16:16.)
LDA 26 17 Transmit to RGA
LDB 27 00 Transmit to RGB
LDD 22 12 Transmit to RGD
LDR 27 01 Transmit to RGR
LDS 27 02 Transmit to RGS
LDX 27 03 Transmit to RGX
XD 25 03 Subtract (ADR) 48:16 from RGX
XI 25 02 Add (ADR) 48:16 to RGX

* These instructions, while they have separate operation codes, are actually por-
tions of those instructions which reference main memory. As free-standing
instructions, they set a value into the MAR, but the MAR contents are not ac-
cessible to the program,

4-11

FINST/PE INSTRUCTION DESCRIPTIONS

The remainder of this section consists of descriptions of the various
FINST/PE instructions. These are arranged alphabetically according to
instruction mnemonic, in the same order as presented in the instruction rep-
ertoire previously listed. Each description includes the mnemonic code,

the operation performed, the bit contents for the specific instruction, a brief
functional description and a flow chart of major operations performed during

instruction execution, The word format for these instructions follows:

BIT NO.
0 {2 3 4 5 6 7 8 9 10 il 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3i
FIELD A OP CODE ACARX |FIELD B OP CODE[~— ADR USE ADR

F'AR’ITY—T

The general format used in the instruction descriptions is as shown below.

Shaded fields are used to indicate irrelevant fields for specific instructions.

XX ACARX XX ADR USE ADR

The following notes generally apply to most FINST/PE instructions. The
reader should familiarize himself with these notations before proceeding to

the instruction descriptions.

1. Addressing and Indexing: Addressing and indexing, where

applicable, are effected by the CU and PE in accordance with
the settings of the ACARX, ADR USE, and ADR fields. Follow-
ing is a simplified description of the addressing and indexing

logic,

If bit 5 of the instruction (i.e., the first bit of the ACARX field)

is set, the CU adds the contents of the ADR field to the ACAR

which is specified in bits 6:2 of the PE instruction. If bit 5 is

reset, no such add takes place. In either case, the resultant 16

bits (i.e. (ACAR (48:16)) + ADR (0:16) or ADR (0:16)) are loaded
into the data queue (FDQ) and the proper times are transmitted to the
PE via the CDB into the Address Adder (ADA). At the same time
inputs are enabled into the ADA from RGS or RGX, as specified by
the ADR USE field. The result is enabled into the Shift Count Register
(SCR), Memory Address Register (MAR), or the RGX, depending on
which instruction is being operated. Finally, the CU enables an LDB
(LDR for the DV instruction) to fetch the operand, if the result was
enabled into the MAR.

Relative to the use of these three fields (ACARX, ADR USE, and

ADR), there are five classes of instructions, as follows:

Class 1: This class uses no addressing or indexing at
all, since the source/destination/bit address
is implied within the instruction. Instructions
within this class are as follows: ASB, CLRA,
COMPA, (I| J)(L | M) (O] z), NORM, OFB,
and SWAP (_| A | X).

Class 2: In this class of instruction, the source is a
specified ACAR, and the destination and bit
are implied by the FIELD A OP CODE and
FIELD B OP CODE. Therefore the ACARX
field is used, but ADR USE is disregarded
(all bits are assumed to be off), and ADR is
a DATA field. The instructions belonging to
this class are LD (E|E1|EE1|G|H|I|J) and
the special case of SET (E|E1|F|F1|G|H|I|J),
where no bits are set in the B2 field. (See page
4-70 for an explanation of the LD and SET _
instructions.)

Class 3: The only instruction in this class is the RT(G | L).
The ADR field contains the routing distance, and
can be indexed by an ACAR. However, indexing
by RGS or RGX is not permitted, and the ADR
USE field is disregarded.

Class 4: This class includes the bit-oriented instructions
(C|R|S) AB, (I]J) B, the rotate (RT) and shift
(SH) instructions, and the PE store instructions.
In these instructions the ADR field contains a
bit number or shift count. ACAR, RGS, and
RGX indexing is permitted (that is, bit 15 of the
instruction word, which is the third bit of the
ADR USE field, is ignored and assumed to be on).

Class 5: In the balance of the instruction set, normal
addressing and indexing logic is used. The
result is enabled into the MAR, RGB, or RGR.

E Bits: Mode register bits E and E1 in each PE are used to

protect the contents of PE registers RGA and RGS and the PE
fault bits F and F1 respectively, and also to prevent the PE
from writing data into the PEM. PE register RGX contents
are also protected by the E bit. In 32-bit mode, the E bit pro-
tects the outer word, and the E1 bit protects the inner word;
either bit or both may be disabled. In 64-bit mode, since both
the E and E1 bits act on only their respective half-words, it is
advisable to set both bits to the same state, by programming,
When E # E1, all the logic for instruction execution operates as
if E E1 = 11, but for the results, only certain bytes are loaded
into RGA. (This could cause undefined results due to incorrect
partial stores of intermediate results.) The E bit controls
bytes 1, 6, 7, and 8 (the outer word) and E1 controls bytes

2, 3, 4, and 5 (the inner word)., The following table shows

applicable settings for the various data word formats.

64-Bit Mode: 32-Bit Mode:

E E_l Full Word E _E_l Outer Word Inner Word

0 0 Disabled 0 0 Disabled Disabled

0 1 Partial word results; 0 1 Disabled Enabled
should generally be

1 0 avoided 1 0 Enabled Disabled

1 1 Enabled 1 1 Enabled Enabled

The E and/or E1 bits are set/reset by the LD_or SET _

instructions.

Note: The E and E1 bits do not protect PEM from
transfers via the DC..

3. Zero: When arithmetic operations produce a zero result

(i.e., as a result of exponent underflow, or, in normalized
operation, if the resultant mantissa equals zero) it is always
effected by setting all 64 (or 32) bits to zero. This is inter-
preted mathematically as a +0 mantissa and an exponent of

~(21%). In 32-bit mode the exponent is interpreted as -(26),

4, F Bits: Mode register bits F and F1 (fault bits) in each PE

are used to indicate the following conditions:

a. Exponent overflow.

b. Overflow of the mantissa magnitude, in mantissa-
sized fixed-point arithmetic operations,

¢c. Zero or unnormalized divisor.

d. Exponent underflow, if ACR bit 9 (Exponent Under-
flow Inhibit bit) is reset, and if, in normalized
operations, the resultant mantissa is non-zero,

4-15

The F bit indicates a fault in 64-bit mode, or a fault for the
outer half-word in 32-bit mode, while the F1 bit indicates a

fault for the inner half-word in‘ 32-bit mode,

Setting of the F and F1 bits as a result of one of the above-mentioned
conditions is dependent on the setting of the E and E1 bits as stated
in (2) above, and these conditions can cause only the setting of the
appropriate bit(s), but not the resetting of the bit(s). However,

the F and F'1 bits can be set and reset programmatically by the

SETF and SETF1 instructions, which are not E-bit sensitive.

Exponent Overflow: When exponent overflow occurs as a result

of an arithmetic operation, the resultant exponent is the true ex-

6
ponent modulo 214 (64-bit mode) or 2~ (32-bit mode). The resultant
mantissa will be correct unless the exponent overflow occurred in

response to normalizing a mantissa overflow.

Exponent Underflow: When exponent underflow occurs as the

result of an arithmetic operation, all bits of the underflowed
resultant word (half-word) are set to zero. (See (3) above for

the mathematical interpretation of zero.)

Mantissa Overflow: If neither the M nor N variants are used on

arithmetic instructions (unnormalized floating point), a mantissa
overflow is adjusted by shifting the mantissa right one place and
adding one to the exponent. Rounding, if specified, is not affected

by this operation.

Fixed-point Operands: When using the M (fixed-point) variant on

arithmetic instructions, the exponent field in both operands is

ignored. Therefore the exponent field of the result will be unchanged.

Normalizing: When using the N (normalized) variant on arith-

metic instructions, the input operands are assumed to be nor-

malized for ML and DV, although they need not be for AD or SB.

Inputs to MULT are also assumed normalized.

4-16

MNEMONIC CODE: AD

OPERATION: Add (ADR) to RGA (Additional op codes allow certain variants:
A for unsigned, where the sign of RGA is unchanged by the operation,
M for fixed point, N for normalized floating, R for rounded)

INSTRUCTION WORDS:

AD 34 |ACARX]| o4 ADR USE ADR
o] 4 5 7 9 o2 13 15 16 3l

ADA 34 |ACARX| 05 ADR USE ADR

ADM 34 |ACARX| 14 ADR USE ADR

ADMA 34 |ACARX| 15 ADR USE ADR

ADN 35 |ACARX| o4 ADR USE ADR

ADNA 35 |ACARX| 05 ADR USE ADR

ADR 34 |ACARX| g4 ADR USE ADR

ADRA 34 |ACARX| ¢ ADR USE ADR

ADRN 35 |ACARX| ¢4 ADR USE ADR

ADRNA _ 35 |ACARX| o7 ADR USE ADR

e wm AN T TTYMIT/AANT o

DESCRIPTION: This in

w0

addition remains in RGA. RGB wil

truction adds (ADR) to RGA. The result of the
1 contain (ADR) either unmodified, or

modified by the mantissa portion(s) that were shifted to align with RGA.
RGC and RGR are not used.

This instruction may cause the F bit(s) to be set. (Refer to pages 4-15,
4-16, items 4, 5, and 6.)

The following variants are permitted:

No suffix -
A -

M -

N -

R -

Both operands are treated as floating point, the result is not normalized
Both operands are treated as unsigned values;

Both operands are treated as fixed-point and the result is
in fixed-point;

Result is normalized (after rounding, if specified);

Result is rounded in RGA.

If neither M nor N is specified, the operation is an unnormalized floating
point operation. In this case, exponent and mantissa will be adjusted for any
mantissa overflow, but leading zeros in the result mantissa will not be disturbed.

If both E bits are disabled, RGA will remain unchanged. If E # E1 for 64-
bit mode, the results, for purposes of this manual, are undefined.

In 32-bit mode, there is no loss of accuracy because each half-word is
aligned independently of the other.

Note: The addition is effected as follows (assuming that the E

bits are enabled):

1. The exponent of the result is determined as the larg-
er of the two operand exponents,

2. The mantissa of the operand with the smaller ex-
ponent is shifted right end-off until it is aligned
with the mantissa of the operand with the greater
exponent, Thus, if the difference between the two
exponents is greater than 47, the smaller mantissa
will be set to zero, and the result of the add will
exactly equal the larger value.

3. The aligned mantissa is returned to its source reg-
ister (RGA or RGB).

4-18

4. 'The mantissas are added, and the result

stored in RGA.

5. The exponent portion of RGRB will be set
to the exponent correction whether the
normalized variant (N) is requested or
not.

6. The mantissa portion of RGB will be un-
changed unless the RGB exponent is
smaller than the RGA exponent. (Refer
to paragraphs 2 and 3 above.)

FLOW CHARTS: See the next two pages for 64- and 32-bit modes respectively.

4-19

64-BIT MODE
(AD{SB)

(ADR) =RGB

"M" OPTION?

EXPONENT
OF RESULT
-»RGA (1:15)

YES ‘

ALIGN MANTISSAS BY
SHIFTING (END OFF)

RGA (16:48)

L_»i+] -) RGB (16:48)~’CR" OPTION D&.
—»RGA (16:48)

lNO

SMALLER OF RGA AND
RGB BACK INTO
RESPECTIVE SOURCE

ROUND RGA

C’N” OPTION 2). &5

NO

NORMALIZE RGA

YES NO| RGA(0:1) (+]-)
DID OVERFLOW SET F "A" OPTION RGB(0:1) —»
OCCUR ? BIT RGA(0:1)

I vo
o> UNDERFLOW) NO SIGN OF RESULT= .
OCCUR ? RGA(0:1)
YES
ACR BIT 9 "\ vES SET F
+ 0 — RGA (0:64) S0 o BIT
IO '

RGB (0:64) AND
ENABLED BYTES OF

RGA ARE
MODIFIED

4-20

32-BIT MODE
(AD] SB)

(ADR) —»RGB

IN ALL SUCCEEDING BOXES
ALL RGA OPERATIONS
TAKE PLACE EQUALLY ON
INNER AND OUTER WORDS UNLESS

TR 'DTT'SD'E‘(""T‘TTTT E nIT™ IS

i w S VRS v i) o LG g) ol

DISABLED, IN WHICH CASE
THE RESPECTIVE HALF-WORD
WILL REMAIN UNALTERED.

NO YES

SET EXPONENTS
OF RESULT INTO
RGA

"M" OPTION ?

[BY SHIFTING (END OFF)

ALIGN MANTISSAS

SMALLER OF RGA AND
RGB BACK INTO
RESPECTIVE SOURCE

(ADD} SUBTRACT) RGB
(TO| FROM) RGA
MANTISSAS
—» RGA MANTISSA

"R" OPTION

YES

ROUND RGA
HALF-WORD

?

A

YES

"N" OPTION *?

NORMALIZE BOTH
RGA WORDS

NO

y

DID OVERFLOW \YES

OCCUR ?

NO

SET APPROPRIATE
F OR F1 BIT

vES| SET UNDERFLOWED
PP gé\‘?ﬁfﬁow HALF-WORD TO -0 IN ACRBIT9=0 ? SET APPROPRIATE
' RGA F OR F1 BIT
NO NO
RGA (0:1) (+]-) VES
RGB (0:1) —= "A" OPTION ? SIGN OF RESULT =
RGA (0:1) RGA (0:1)

NI

4-21

MNEMONIC CODE: ADB

INSTRUCTION WORD:

26 ACARX 06 ADR USE ADR

o] 4 5 7 8 2 13 15 16 31

DESCRIPTION: This instruction adds (ADR) to RGA in 8-bit bytes. FEach
group of eight bits is an unsigned fixed-point number. The result of the
addition is placed in RGA. The carries out of the 8-bit bytes are stored in
RGC. (ADR) remains in RGB. When the E bits are disabled, RGA is un-
changed but RGC contains the carries. Execution of this instruction is the
same for 64- and 32-bit modes.

FLOW CHART:

- RGB BYTE j + RGA BYTE j
—
ADB [—» (AIO)E_{_)_»RG%(JB > —» (CPA BYTE j
(G=1,2, ..., 8)

|

ANY CARRIES YES BYTE j CARRY
FROM ADDING GC BYTE iM.S.B
THE BYTES 2 » R 35

CPA OUTER WORD
—» RGA OUTER WORD

|

CPA INNER WORD
——» RGA INNER WORD

* o)

4-22

(

MNEMONIC CODE: ADD

OPERATION: Add 64-bit unsigned fixed-point numbers (ADR) to RGA.

INSTRUCTION WORD:

26 |ACARX 04 ADR USE ADR

¢} 4 5 7 8 H 12 13 15 16 3i

DESCRIPTION: This instruction adds 64-bit unsigned fixed-point numbers
(ADR) and RGA. The result of the addition is placed in RGA if the E bits
permit. Overflow generates an end-around carry, but does not set the F
bit, (ADR) remains in RGB at the completion of instruction execution.
When the E bits are disabled, RGA is unchanged. When operating in

32-bit mode, this instruction operates as if in 64-bit mode.,

FLOW CHART:

ADD [—® (ADR)—» RGB [—™ RGB + RGA —p CPA

CPA OUTER WORD —» RGA OUTER WORD

CPA INNER WORD —» RGA INNER WORD

|

4-23

MNEMONIC CODE: ADEX

OPERATION Add {(ADR) exponent field{s) to RGA exponcnt(s)
INSTRUCTION WORD:
95 |ACARX 00 ADR USE ADR
o 4 5 78 It 12 13 i5 16 3i

DESCRIPTION: In 64-bit mode this instruction adds the exponent field of
(ADR) to the exponent of RGA. This addition treats these quantities as
exponents, not as binary numbers. The sign bit and mantissa field are
unchanged unless underflow occurs, in which case RGA is cleared to all
zeros. When the E and E1 bits are disabled, RGA is unchanged.

In 32-bit mode the instruction is performed on the inner and outer expon-
ents independentl

Exponent overflow or underflow may cause the setting of the F bits (see
pages 4-15, 4-16, items 4, 5, and 6.).

FLOW CHART: See next page.

4-24

LADEXWDR) —» RGB

WORD SIZE
MODE ?

32

= =
00
5 5

RGB
RGB

1:7 —==CPA 1:7
9:7 —a» CPA 9:7

-3 -3
+ +

ADDITION

DID THE OUTER
ADDITION
OVERFLOW ?

DID THE OUTER
ADDITION
UNDERFLOW %

YES

) /
/ DID THE 3

OVERFLOW

?

DID THE
ADDITION
UNDERFLOW ?

0 —=»RGA OUTER
WORD

YES

CPA 1:7—» RGA 1:7

—

0 —» RGA OUTER
WORD

ACR 9:1 =1 o2) LES

NO
-

e

0-—» RGA INNER
W ORD

ACR 9:1 =1 =2

YES

DID THE
ADDITION
UNDERFLOW

L

CPA 8:8 —»]
RGA 8:8

l
|

0 —» RGA INNER
WORD

YES

DID THE INNER
ADDITION
OVERFLOW 2

DID THE INNER
ADDITION
UNDERFLOW

1 —»F1

CPA 9:7T—» RGA 9:7

N

4-25

MNEMONIC CODE: ASB

OPERATION: Place the sign(s) of RGA into the sign(s) of RGB.

INSTRUCTION WORD:

25 700 01 T /27

o] 4 5 7 8 (1] 12 13 3

DESCRIPTION: This instruction places the mantissa sign bit(s) of RGA into
the sign bit(s) of RGB.

FLOW CHART:

WORD 64
ASB SIZE MODE ?

32

lYES

RGA 8:1 —» RGB 8:1 —>

RGA 0:1 —» RGB 0:1 NI

4-26

BOOLEAN OPERATIONS

MNEMONIC CODE: AND

OPERATIONS: Logical AND of (ADR) with RGA | (ADR) with RGA| ADR with RGA|
(ADR) with RGA.

INSTRUCTION WORDS:

AND 27 |ACARX 04 ADR USE ADR
0 4 5 7 8 in 12 13 15 16 31
ANDN 27 |ACARX 06 ADR USE ADR
NAND 27 JACARX 05 ADR USE ADR
NANDN 27 |[ACARX 07 ADR USE ADR

DESCRIPTION: These instructions perform the logical AND of (ADR) with
RGA; either operand may be true, or complemented (shown by "N' as pre-
fix and/or suffix in mnemonic code), giving four combinations for this
function. The result of the indicated operation is placed in RGA. The (ADR)
is first fetched to RGB. The bit-by-bit determination of the result is in
accordance with the following table:

Result of ("A"|NOT "A") "AND" ("'B''| NOT "B")
"A'" Operand Bit '"'B' Operand Bit AND ANDN NAND - NANDN
0 0 0 1

0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

This operation is the same for both the 64-bit and 32-bit modes. (ADR)
remains in RGB. When the E bits are disabled, RGA is unchanged.

FLOW CHART:

AND

(ADR) — RGB

(RGA OUTER WORD | '"NOT" RGA OUTER WORD)
IIANDH
(RGB OUTER WORD | ''NOT'"' RGB OUTER WORD)
—— » RGA OUTER WORD

(RGA INNER WORD | ''NOT' RGA INNER WORD)
”AND”
{RGB INNER WORD |'"NOT" RGB INNER WORD
———» RGA INNER WORD

4-28

BOOLEAN OPERATIONS (Continued)

MNEMONIC CODE: EOR

OPERATION: Logical exclusive-OR of RGA with (ADR) into RGA

INSTRUCTION WORD:

25 ACARX 05 ADR USE ADR

le] 45 78 1R 13 15 16 31

DESCRIPTION: This instruction performs the logical exclusive-OR of
(ADR) with RGA. The (ADR) is first fetched to RGB. The 64-bit adder is
used, The result is loaded into RGA, as determined by the rule shown in
the truth table below. (ADR) remains in RGB. This instruction is the same
for 64- and 32-bit modes. When the E bits are disabled, RGA is unchanged.

"A" Operand Bit

0 1
TRUTH TABLE
0 0 1
"B'" Operand Bit
1 1 0

FLOW CHART:

EOR —*1 (ADR) —» RGB

RGB OUTER WORD "EOR'" RGA OUTER WORD
—»RGA OUTER WORD

RGB INNER WORD "EOR'' RGA INNER WORD
—# RGA INNER WORD

4-29

BOOLEAN OPERATIONS (Continued)

MNEMONIC CODE: EQV

OPERATION: Logical equivalence of (ADR) with RGA into RGA

INSTRUCTION WORD:

25 ACARX 04 ADR USE ADR

o] 4 5 78 n 12 13 15 16 3)

DESCRIPTION: This instruction performs the logical equivalence of
(ADR) with RGA, The (ADR) is fetched to RGB., The result of the operation
is placed in RGA, as determined by the rule shown in the truth table below,
(ADR) remains in RGB, EQV is the same for 64- and 32-bit modes.

When the E bits are disabled, RGA is unchanged.

"A" Operand Bit

0 1
TRUTH TABLE
0 1 0
"B' Operand Bit
1 0 1

FLOW CHART:

EQV — (ADR) —= RGB

RGA OUTER WORD "EQV" RGB OUTER WORD
—» RGA OUTER WORD

RGA INNER WORD "EQV'" RGB INNER WORD
——» RGA INNER WORD

4-30

BOOLEAN OPERATIONS (Continued)

MNEMONIC CODE: OR

OPERATION: Logical OR of (ADR) with RGA| RGA with (ADR) |
(ADR) with RGA | (ADR) with RGA

INSTRUCTION WORDS:

NOR 23 ACARX 05 ADR USE ADR
0 45 78 Wiz 13 5 16 31
NORN 23 ACARX 07 ADR USE ADR
OR 23 ACARX 04 ADR USE ADR
ORN 23 ACARX 06 ADR USE ADR

DESCRIPTION: This instruction is the same for 32- and 64-bit modes and
performs the logical OR of (ADR) with RGA. Either operand may be true,

or complemented (''N"), as indicated by the op code, giving four combinations
for this Boolean function. The bit-by-bit determination of the result is in
accordance with the following table,

Result of ("A"|NOT "A') OR ("B"|NOT '"B")

"A'" Operand Bit '""B'' Operand Bit NOR NORN OR ORN
0 0 1 1 0 1
0 1 1 1 1 0
1 0 0 1 1 1
1 1 1 0 1 1

FLLOW CHART: See next page.

4-31

OR

:

(ADR) —» RGB

(RGA OUTER WORD |''NOT" RGA OUTER WORD)
HORH
(RGB OUTER WORD | "NOT" RGB OUTER WORD)
——» RGA OUTER WORD

(RGA INNER WORD |''NOT" RGA INNER WORD
”OR”
(RGB INNER WORD | "NOT'" RGB INNER WORD
——» RGA INNER WORD

4-32

MNEMONIC CODE: CAB

OPERATION: Complement RGA bit(s) in position(s) specified by address
field

INSTRUC TION WORD:

37 ACARX 00 ADR USE ADR

o] 45 78 1l 2 13 15 16 3

DESCRIPTION: In 64-bit mode, one bit in RGA is complemented; in 32-bit
mode, two bits are complemented. The bit position is specified in the ad-
dress field (indexed if desired), and the resultant six least significant bits
are treated as a 6-bit coded number, N. In 32-bit mode, the corresponding
bits in both the inner and outer words are changed.

When "N plus index" is greater than 63, the bit position is modulo 64 for
64-bit mode; in 32-bit mode, the bit position is modulo 32. A mask, with

a "one" in the affected bit(s) and ''zeros' in the remaining bits is re-
tained in RGB at the end of instruction execution, When E bits are disabled,
RGA is unchanged.

FLOW CHART: See next page.

4-33

CAB |

"NOT" RGA OUTER WORD (N MOD 32):1
— RGA OUTER WORD (N MOD 32):1

"NOT" RGA (N):1 —RGA (N):1

"NOT'" RGA INNER WORD (N MOD 32):1
— RGA INNER WORD (N MOD 32):1

4-34

CHANGE RGA BIT(S}: {(Continued)

MNEMONIC CODE: CHSA

4

OPERATION: Change sign(s) in RGA

INSTRUCTION WORD:

37 0——0 00 0

31

DESCRIPTION: In 64-bit mode, RGA 0:1 is complemented. In 32-bit mode,

the signs of both inner and outer words are complemented. When the E bits

are disabled, the appropriate section of RGA remains unchanged. This is the

CAB instruction, with the value of N equal to zero,

FLOW CHART:

l

"NOT'" RGA 8:1—»RGA 8:1

"NOT'" RGA 0:1 —»RGA 0:1

SR —@

4-35

CHANGE RGA BIT(S) (Continued)

MNEMONIC CODE: (R|S) AB

OPERATIONS: Reset|Set RGA bit(s) in position(s) specified by address
field

INSTRUCTION WORDS:

RAB 37 ACARX 01 ADR USE ADR
0 45 78 no1z 13 15 16
SAB 37 ACARX 02 ADR USE ADR

DESCRIPTION: One bit in RGA is either reset (R) or set (S) in 64-bit mode;
two bits are affected in 32-bit mode. The bit position is specified in the ad-
dress field (indexed if desired) and is treated as a 6-bit coded number, N.

In 32-bit mode, the corresponding bits in both the inner and outer words are
affected.

When ''N plus index'' is greater than 63, the affected bit position is modulo
64; in 32-bit mode, it is modulo 32. A mask is then formed in RGB by in-
serting a '"'one'' into the specified bit position(s). For SAB, the mask is
ORed with RGA. For RAB, the complement of the mask i8 ANDed with

RGA. In 32-bit mode, the mask has a ''one' in both inner and outer words.
The mask remains in RCB. When the E bits are disabled, RGA is unchanged.

FLOW CHART: See next page.

4-36

(R|S)AB

'

WORD ﬂ
64
SIZE

MODE 7 /

x —»RGA OUTER WORD

(N MOD32):1
, RBA, x =0
FOR {SB_A_, x =1

g X

x —» RGA INNER WORD

(N MOD32):1
RBA, x=0
FOR {SBA, x =1

YES

4-37

[72 PPN SRR | Y
BIT{S}) {(Continued)

MNEMONIC CODE: SA (N|P)

OPERATION: Reset| Set RGA sign bit(s)

INSTRUCTION WORDS:

SAP 37 0—0 01 0 0
o 45 78 Nz 13 31
SAN 37 0——20 02 0 0

DESCRIPTION: In order to set (SAN) or reset (SAP) the sign bit, the SAB
or RABinstruction is used, with the value of N equal to zero. This sets| resets
RGA 0:1 in 64-bit mode; both RGA 0:1 and RGA 8:1 are affected in 32-bit mode.

FLOW CHART:

SA(N|P)

x —» RGA 8:1

FOR{SAP,x=O

SAN, x =1

4-38

INSTRUCTION WORD:

24 7 11

DESCRIPTION: This instruction clears RGA. It is the same for 64- and
32-bit modes. Disabled E bits prevent the clearing of RGA.

FLOW CHART:

CLRA 0—» RGA OUTER WORD

0 —=RGA INNER WORD

4-39

MNEMONIC CODE: COMPA

OPERATION: Complement RGA

INSTRUCTION WORD:

22 VA 1 7%

o] 4 5 7 8 " 12 13 31

DESCRIPTION: This instruction complements each bit in RGA. When the
E bits are disabled, RGA is unchanged.

FLOW CHART:

YES "NOT'" RGA OUTER WORD

COMPA E=1 2 —» RGA OUTER WORD
NO
F

"NOT'" RGA INNER WORD
—3 RGA INNER WORD

4-40

INSTRUCTION WORDS:

DV 32 ACARX| 04 ADR USE ADR
o 5 7 noi2 13 t5 16 31
DVA 32 ACARX 05 ADR USE ADR
DVM 32 ACARX| 14 ADR USE ADR
DVMA 32 ACARX 15 ADR USE ADR
DVN 33 ACARX| 04 ADR USE ADR
DVNA 33 ACARX| 03 ADR USE ADR
DVR 32 ACARX| 0% ADR USE ADR
DVRA 32 ACARX 07 ADR USE ADR
DVRM 32 ACARX 16 ADR USE ADR
DVRMA 32 ACARX 17 ADR USE ADR
DVRN 33 ACARX| 06 ADR USE ADR
DVRNA 33 ACARX 07 ADR USE ADR

4-41

DESCRIPTION: In 64-bit mode, this instruction divides RGA and RGB by
(ADR). RGB is considered the low-order extension of RGA, and must have
been loaded prior to the execution of the DV instruction. The 48-bit quotient
will be placed into RGA, while the 48-bit remainder will be placed into RGB.
RGC will contain minus zero {(-0). RGR will contain the divisor.

This instruction may cause the F bit(s) to be set. (See pages 4-15, 4-16,
items 4, 5, and 6.) ' .

The divisor is always assumed to be normalized. The remainder in RGB
will be meaningless if the "R" variant was specified, or if RGA was larger

than the divisor.

The following variants are permitted:

AL SUFEIk =~ [Somm OPSRANDS /7R TREATED AS Lol FI/neG RS INT, AND THE /&S i T -

SS NOT SNorMMBL el

A - Both RGA and (ADR) are treated as unsigned values;

M - Both values are treated as fixed-point and the result is
in fixed-point;

N - Result is normalized;

R - Quotient is rounded in RGA (contents of RGB are meaningless).
If both E bits are disabled, RGA will remain unchanged, and RGB will be
undefined. For purposes of this manual, the results of this instruction

are undefined when E # E1.

In 32-bit mode, the execution of the DV instruction is the same as for 64-
bit mode, with the following modifications:

1. If both E bits are enabled, RGA will contain two 24-bit quotients
and RGB will contain two 24-bit remainders.

2. RGR will be modified by a swap of outer mantissa for inner
mantissa,

3. If either E bit is disabled, the results in the normally
protected half of RGA are undefined.

FLOW CHARTS: See next two pages for 64- and 32-bit modes respectively.

RGB, RGC,
AND ENABLED

BITS OF RGA
ARE MODIFIED

ID EXPONEN
OVERFLOW

OCCTIR?
OCCTURT

DV (ADR)-»RGR
(64-BIT MODE) [0 —=RGC
RGR EXP-»RGB EXP
RGR SIGN —»RGB SIGN

"R" YES | SET UP FOR
OPTION ? ROUNDING
NO |

/

"M NO RGA EXP - RGB EXP
OPTION? —» RGA EXP
YES I

4

A" NO RGA SIGN - RGB SIGN
OPTION ? —» RGA SIGN
‘YEQ J

: ‘;\
YES
SET
:1=0?
(%GR 16‘1_0‘/_—' (ENABLED) F BIT
NO |

o
OPTION? SET F BIT
NO YES
RGA + RGB)
QUOTIENT(~“RGR |*RGB

REMAINDER (

RGA + RGB)
GR *>RGA

MANTISSAS

SWAP RGA AND RGB

N
NO
OPTION? Y

YES

\

NORMALIZE (ENABLED)
WORD
CORRECT (ENABLED)
RGA EXP

ID EXPONEN
OVERFLOW
OCCUR?

YES

SET (ENABLED)
F BIT

DID EXPONENT\y g
UNDERFLOW
OCCUR?

MANTISSA \ YES

Y
OPTION

SET (ENABLED)
F BIT

4-43

—

DV .| (ADR) —» RGR _| RGR EXP —w» RGB EXP
(32-BIT MODE) 0 —»RGC RGR SIGN —»RGB SIGN

.
:
ng" opTion N\.YES | SET UP FOR
ROUNDING
NO T
NO (ENABLED)
"M" OPTION ? RGA EXP - RGB EXP
‘ —= RGA EXP
YES T
NO (ENABLED)
"A" UPTION ? RGA SIGN - RGB SIGN
\ —» RGA SIGN
YES)|
RGR (16:1)/ \YES SET
(40:1) =0 ? (ENABLED) F BIT
SN——
NO J

OVERFLOW OR SET (ENABLED)
OVERFLOW OR |YES [y oprion 2RO A8
UNDERFLOW F
OCCUR_? 75S
.~ | RGA + RGB
QUOTIENT (RGR) *RGB RGA MANT —» RGB MANT
REMAINDER | REA+*RGB\ _ wNABLED) RGB MANT — (ENABLED) RGA MANT
RGR RGA

"N" OPTION

YES

NORMALIZE (ENABLED)
WORD. CORRECT
(ENABLED) RGA EXP

Abre: See Somsnre Frrron
T ' . OF Frow' CHART /R6eC L,

DID EXPONENT
OVERFLOW
OCCUR ?

DID EXPONENT \ YES

UNDERFLOW — (ENABLED) RGA
OocCcurR 2 /

YES NO

SET (ENABLED)
F BIT

SE;?(ABLED) ‘
BIT
YA | NI

4-44

MNEMONIC CODE: EAD

OPERATION: Extended precision add (ADR) to RGA

INSTRUCTION WORD:

20 |ACARX 10 ADR USE ADR

o] 4 5 78 n o122 13 15 16 31

DESCRIPTION: The same floating point single-length result that would be
produced by floating-point add is left in RGB. That portion of the augend,
or the addend, which was shifted off to the right to allow alignment, plus
any bit of significance shifted off of the single-length floating point result
due to normalization of mantissa overflow, are added together. The re-
sult is placed in RGA as a floating point number, with proper sign and
exponent.

The F bit may be set in case of exponent overflow. In case of exponent
underflow in RGA, all 64 bits of RGA will be reset to zero and the F bit
will be set, conditional on ACR(09) (exponent underflow inhibit) being zero.

The unnormalized variant of the add (AD) instruction is assumed (that

1s, the result, both in RGA and RGB, will not necessarily be normalized).
At the conclusion of this instruction, RGR will contain a copy of RGA. If
not in 64-bit mode or if both ¥ bits are not enabled, the results, for
purposes of this manual, are undefined.

Note: The addition is effected as follows (assuming
that the E bits are enabled):

1. The exponent of the result is determined
as the larger of the two operand exponents.

2. The operand with the smaller exponent is
stored in RGR,

3. If the difference between the two exponents
is greater than 47, then the smaller oper-
and is placed into RGA, the larger operand
is placed into RGB, and the instruction is
completed. (Note that the signs may be
different.)

4, Otherwise, the mantissa of the operand with
the smaller exponent is shifted right end-off
until it is aligned with the mantissa of the
operand with the greater exponent. The
shifted-off bits are stored into the RGR,
while the aligned mantissa is returned to
its source register (RGA or RGB).

5. The mantissas are added, and the result
stored in RGB.

6. The shifted-off bits in RGR are stored into
RGA with an exponent equal to the exponent
of RGB, minus 48 (i.e., RGB (1:15) - 48).
The sign of RGA will be the sign of the
original operand with the smaller exponent.
(Note that the signs of RGA and RGB may be
different.)

FLLOW CHART: See next page. (Note that the flow chart is also used for
instruction ESB.)

4-46

EAD|ESB

POSITION THE SHIFTED-
NO IS EXPONENT \ NO OFF BITS INTO RGR
(ADR)—=RGB RGA < RGB RGB—*RGR DIFFERENCE (16:n) WHERE n = 1 TO 47;

> 47 2 / RGR (0:1) = SIGN OF
SMALLER OPERAND

YES YES

RGA —»RGR

i

ALIGN,
(ADD SUBTRACT) DID MANTISSA\ YES CORRETCTSEXPONENT &
RGA AND RGB RGR—=RGB OVERFLOW MANTISSA OF RGB,
MANTISSAS OCCUR? MANTISSA OF RGA,

INTO RGA (16:48) FOR OVERFLOW

NO

SWITCH:
SET RGA (0:1) RGA (16:48)«—»RGB (16:48)
TO SIGN RGB (0:1)«—»RGA (0:1) OVERFLOW SET F BIT.
OF RESULT RGA (1:15) —» RGB (1:19) OCCUR?
RGA (1:15) - 48 —RGA (1:15) k——NO—/
DID YES
UNDERFLOW -0-=RGA (0:64)
CCUR IN RGA?
NO
WAS
EXPONENT
DIFFERENCE [
>47? /
NO
\
RGA—»RGR
RGR—»RGA NI
RGB (0:64)

RGR (0:64) AND

) ENABLE BITS

OF RGA ARE
MODIFIED

4-47

MNEMONIC CODE: ESB

OPERATION: Extended precision subtract (ADR) from RGA

INSTRUC TION WORD:

24 ACARX 10 ADR USE ADR

o] 45 78 1" 12 13 15 186 31

DESCRIPTION: (Same as EAD, except the mantissas are subtracted.)

The same floating point single-length result that would be produced by
floating-point subtract is left in RGB. That portion of the minuend, or the
subtrahend, which was shifted off to the right to allow alignment, plus any
bit of significance shifted off the single-length floating point result due to
normalization of mantissa overflow, are added together. The result is
placed in RGA as a floating point number, with proper sign and exponent,

The F bit may be set in case of exponent overflow. In case of exponent
underflow in RGA, all 64 bits of RGA will be reset to zero and the F bit
will be set, conditional on ACR(09) (exponent underflow inhibit) being zero.

The unnormalized variant of the add (AD) instruction is assumed (that
is, the result, both in RGA and RGB, will not necessarily be normalized).
At the conclusion of this instruction, RGR will contain a copy of RGA. If

not in 64-bit mode or if both E bits are not enabled, the results, for
purposes of this manual, are undefined.

Note: The subtraction is effected as follows (assuming
that the E bits are enabled):

1. The exponent of the result is determined
as the larger of the two operand exponents,

2. The operand with the smaller exponent is
stored in RGR.

3. If the difference between the two exponents
is greater than 47, then the smaller oper-
and is placed into RGA, the larger operand
is placed into RGB, and the instruction is
completed. (Note that the signs may be
different.)

4, Otherwise, the mantissa of the operand with
the smaller exponent is shifted right end-
off until it is aligned with the mantissa of
the operand with the greater exponent. The
shifted-off bits are stored into the RGR,
while the aligned mantissa is returned to
its source register (RGA or RGB).

5. The mantissas are subtracted, and the
result stored in RGB,

6. The shifted-off bits in RGR are stored into
RGA with an exponent equal to the exponent
of RGB, minus 48 (i.e., RGB (1:15) - 48),

7. The sign of RGA will be the sign of the
original operand with the smaller exponent,
if that operand was the minuend. Otherwise,
the sign will be the complement of the sign
of the original operand (subtrahend). (Note
that the signs of RGA and RGB may be
different.)

FLOW CHART: See EAD instruction for combined flow chart.

4-49

OPERATION: Test for RGA greater than (ADR) in 8-bit bytes.

INSTRUCTION WORD:

21 ACARX 06 ADR USE ADR

(o] 4 5 7 8 no12 13 15 16 31

DESCRIPTION: This instruction tests for RGA greater than (ADR), in 8-bit
bytes. The result is stored in the least significant bit of each byte in RGA,
"1" for true and "'0" for false; the other bits of RGA are set to zero. (ADR)
is first fetched to RGB. This instruction uses the 64 -bit adder, CPA. The
true of RGA and the complement of RGB are enabled into CPA. The bit
carries between 8-bit bytes are disabled. The carries out of the CPA are
then stored in RGC; these overflow carries are the test results. (ADR) re-
mains in RGB. When the E bits are disabled, RGA is unchanged. This
instruction is the same for 64- and 32-bit modes.

FLOW CHART: See next page.

4-50

GB

!

(ADR) —» RGRB

RGA BYTE j > RGBBYTE j 2\ NO
(G=1,86,7 8)

NO l YES

0... 01— RGA BYTE j

Y

-
Y

0 — RGA BYTE j

RGA BYTE j > RGB BYTE j 2\ NO
(=2, 3, 4, 5)

NO YESl

0 ... 01— RGA BYTE j

Y

. Y

0 —»RGA BYTE j

4-51

MNEMONIC CODE: (I]J) A (G|L)

OPERATION: If (RGA) is "greater than" | "less than"
(ADR), set mode register bit I|J

INSTRUCTION WORDS:

IAG 37 |ACARX| 14 ADR USE ADR
[0} 4 5 7 8 I 12 13 15 16

IAL 37 |ACARX| 14 ADR USE ADR

JAG 37 |ACARX| 15 ADR USE ADR

JAL 37 |[ACARX| 17 ADR USE ADR

DESCRIPTION: This is a set of four instructions, each of which is a test
to determine if (RGA) is arithmetically "greater than" or '"less than'' (ADR).
In 64-bit mode the test result is stored in the I|J bit of the mode register.
In 32-bit mode the test result for the outer word is stored in I | J and in

G | H for the test result of the inner word.

FLOW CHART: See next page.

4-52

(113) A (G|L)
|

Y

(ADR 0:64) —»RGB 0:64

'

00— (I]J)

32

WORD SIZE ? I

64

'

10— (G| H)

'

RGA INNER WORD
(GREATER | LESS)
RGB INNER WORD

N—

NO

?

lYES

1—» (G| H)

#

RGA OUTER WORD
(GREATER | LESS)
RGB OUTER WORD

?

¢ YES

RGB 0:64

RGA 0:64 \
(GREATERILEsy YES

*NO

— 11— (I|J)

l

4-53

MNEMONIC CODE: (I}J) B

NTIE TS A FTIT ANRT i ” s e 4 N o — e~ A 4 . X v + 1 -
OFERATLIUOIN: ‘I'ranster piils) irom HKUGA TtO Mmode r'eglster DILIS 1 }J
and G| H

INSTRUCTION WORDS:

1B 35 |ACARX 02 ADR USE ADR
(o] 4 5 78 1 12 13 15 16

ISN 35 |0—0 02 0

JB 35 |ACARX 03 ADR USE ADR

JSN 35 0——0 03 0

DESCRIPTION: A selected bit of RGA is transmitted to the I|J bit of the
mode register. In 32-bit mode, two bits are transmitted: one bit to I IJ
for the outer word and the other to G|H for the inner word. The bit is
specified in the address field and is received over the CDB by the PE as a
6-bit coded number (N) which may be indexed. The ISN | JSN instructions
are the same except that the ADR, ADR USE, and ACARX fields are zero,

FLOW CHART:

(I]J) B — ADR (0:64) —»RGB (0:64)

RGA OUTER WORD (N MOD 32):1 —» (I}J)
RGA INNER WORD (N MOD 32):1 —» (G|H)

RGA (N:1) —» (I|J) l w

4-54

MNEMONIC CODE: T|nw|mE|c|n

OPERATION: If RGA (either logical word or mantissa portion alone) is
"equal to"l 'greater than"l”less than'' the corresponding

portion of (ADR), set mode register bit I|J

INSTRUCTION WORDS:

ILE 35 ACARX| 186 ADR USE ADR
0 45 78 noi2 13 15 16
ILG 33 ACARX| 14 ADR USE ADR
ILL 33 ACARX| 16 ADR USE ADR
IME 35 ACARX| 14 ADR USE ADR
IMG 31 ACARX| 14 ADR USE ADR
IML 31 ACARX| 16 ADR USE ADR
JLE 35 ACARX 17 ADR USE ADR
JLG 33 ACARX| 15 ADR ﬁSE ADR
JLL 33 ACARX| 17 ADR USE ADR
JME 35 ACARX| 15 ADR USE ADR
JMG 31 ACARX| 15 ADR USE ADR
JML 31 ACARX| 17 ADR USE ADR

DESCRIPTION:

These instructions test to determine if (RGA) is logically

"greater than", ''less than', or "equal to'' (ADR). The tests are either on

the f1111 B4 hita A+ th

- ~
LIIT 11Ul VT Ul U Url 1<

iantissa fields only.

5z
sult is stored in either the I or J

In 64-bit mode, the test re-
bit of the mode register. In 32-bit mode,

the test result for the outer word is stored in the I or J mode bit and in G

or H for the inner word.

FLOW CHART:

(I1l3I)(LiM) (E|GIL)

ADR (0,64) —»RGB

|

.

0—»(I]J)

WORD SI1ZE ? L’ 32
64
IS TEST NO
LOGICAL 7
YES

IS RGA 16:48

0—»(G|H)

IS TEST NO
LOGICAL ?,

YES

l

IS RGA INNER WORD
(E|GIL)
RGB INNER WORD

?

IS RGA INNER MANTISSA
(ElG|L)

RGB INNER MANTISSA *?

‘ YES

1—»(G|H)

IS RGA OUTER MANTISSA
(E|G|L)

RGB OUTER MANTISSA °?

YES

(ElGIL) YES
RGB 16:48 ?
1—= (G|H)
YES ;:
NO IS RGA 0:64 IS RGA OUTER WORD NO
(ElclL) (E|G|L)
RGB 0:64 ? RGB OUTER WORD ?
YES
1—=(1|J)

NI

4-56

MNEMONIC CODE: (I |J) (L | M) (O | 2)

OPERATION: If RGA (either logical word or mantissa portion alone) is
"all ones'' | "all zeros', set mode register bit I | J

INSTRUCTION WORDS:

ILO 33 4 10
o} 4 5 7 8 I 12
1.z 33 A 12
IMO 31 10
IMZ 31 00 12
JL.O 33 i 11
S
JLZ 33 7777 13
JMO 31 4 11
Mz 31 70 13

DESCRIPTION: These instructions test to determine if RGA is logically
equal to zero (Z) or all ones (O). In 64-bit mode, the tests are either on

the full 64 bits or on the mantissa field only (48 bits). The results are stored
in the I|J bit of the mode register. In 32-bit mode, the results are stored

in the I|J mode bit for the outer word and in GIH for the inner word.

FLOW CHART: See next page.

4-57

(1]J)(L|M)(O|Z)

Y

0—»(1]J)

'

CWORD SIZE ’D?’Z—D

IS TEST
LOGICAL

IS RGA 0:64
(0lz) 2

0—»(G|H) \

IS TEST
LOGICAL *?

IS RGA INNER WO
WORD (Olz) =2 |

IS RGA INNER
MANTISSA (0O1}2)

?

lYEs

1—» (G|H)

)

?

YES
1—» (G|H) IS RGA OUTER
MANTISSA (O] 2)
i YES
IS RGA OUTER
NO
WORD (0O|z) 2
YES
IS RGA 16:48 NO
(0lz) ~» j
lYES ¢
Y y

1—e(I]|J)

4-58

MNEMONIC CODE: (1]J) (S|Ix) (E|lG]| L)

OPERATION: If RGS|RGX is "equal to"] "greater than' | "less than'
(ADR), set mode register bit I]J

INSTRUCTION WORDS:

ISE 25 ACARX]| 12 ADR USE ADR
) a5 78 TEERE 15 16
ISG 21 ACARX]| 12 ADR USE ADR
ISL 23 ACARX}| 12 ADR USE ADR
IXE 25 ACARX]| 10 ADR USE ADR
IXG 21 ACARX/| 10 ADR USE ADR
IXL 23 ACARX| 10 ADR USE ADR
JSE 25 ACARX| 13 ADR USE ADR
JSG 21 ACARX]| 13 ADR USE ADR
JSL 23 ACARX]| 13 ADR USE ADR
JXE 25 ACARX]| 11 ADR USE ADR
JXG 21 ACARX]| 11 ADR USE ADR
JXL 23 ACARX| 11 ADR USE ADR

4-59

TIOMTMAN
DESCRIPT

low-order bits of (RGS) is logically ''greater than', "less than"
to' the 16 low-order bits of (ADR),

I or J bit of the mode register..

FLOW CHART:

(1]3) (sS]|X) (E|G]|L)

'

(ADR 0:64) —» RGB 0:64

l

(RGS 48:16 | RGX 0:16)

(E]GIL)
RGB 48:16 2

‘ YES

1 —»(I]J)

NO

ION: These instructions test to determine if (RGX) or the 186

, or "equal

The test result is stored in either the

0 —(I]J7)

4-60

MNEMONIC CODE: (I]J) XGI

OPERATION: Add (ADR) 48:16 to RGX; store carry-out in mode register
bit I]J

INSTRUCTION WORDS:

IXGI o7 |ACARX| 1g ADR USE ADR
[o] 4 5 7 8 n 12 13 15 16
JXGI 27 |ACARX| 11 ADR USE ADR

DESCRIPTION: These are the same as the XI instruction, but addition-
ally, the carry-out is stored in the I | J bit of the mode register. This
instruction is the same for 64- and 32-bit modes. When the E bit is
disabled RGX is unchanged, but the carry-out (CO = 1 for sum 2216) is
registered in the I | J bit of the mode register.

FLOW CHART:

(I|J) XGI — (ADR) —» RGB —® RGX 0-16 + RGB 48:16
—3» ADA

ADA —» RGX 0:16
WAS THERE
CARRY-OUT FROM)\vyE
THE HIGH-ORDER 1— 1|J
BIT ?
[NO% 0—»1]|J

4-61

MNEMONIC CODE:

OPERATION:

(1]J) XLD

carry-out in mode register bit I|J

INSTRUCTION WORDS:

Subtract (ADR) 48:16 from RGX; store complement of

IXLD 27 ACARX 12 ADR USE ADR

o] 5 78 " 12 13 15 16 31
JXLD 27 ACARX 13 ADR USE ADR
DESCRIPTION: These two instructions are the same as the XD in-

struction, but additionally, the complement of the carry-out is stored in

the 1| J bit of the mode register.
bit and 32-bit modes.

This operation is the same for both 64-
When the E bit is disabled RGX is unchanged, but

the complement of the carry-out is registered in the IIJ bit of the mode
register.

FLOW CHART:

(I]J) XLD

>

(ADR) —» RGB

RGX 0:18 - RGB 48: 15
—» ADA

ADA —» RGX 0:16

WAS THERE

CARRY-OUT FROM \LE

0—s1I|J
THE HIGH-ORDER
BIT?

~ol » 11— 1I]J

-

4-62

NI

MNEMONIC CODE: LB

OPERATION: Test for RGA less than (ADR) in 8-bit bytes

INSTRUCTION WORD:

21 ACARX 07 ADR USE ADR

o] 4 5 78 n 12 13 15 186

31

DESCRIPTION: This instruction tests for (RGA) less than (ADR), in 8-bit
bytes. The result is stored in the least significant bit of the corresponding
byte in RGA; the remaining bits of RGA are zero. (ADR) remains in RGB.
When the E bits are disabled, RGA is unchanged.

FLOW CHART:

LB (ADR) —»RGB
E=1 2 YES RGA BYTE j <RGB BYTE j
) (j=1, 86,7, 8)
NO YES

0... 01— RGA BYTE j 0 —» RGA BYTE j

E1 =1 » o> o RGA BYTE j <RGB BYTE j
- ' (G=2, 3,4, 5

NO YES

0... 01— RGA BYTE j

4-63

MNEMONIC CODE: LEX

OPERATION: Load the exponent field(s) of RGA with the exponent(s) from
(ADR)

INSTRUC TION WORD:

21 |ACARX 17 ADR USE ADR

0 45 78 1l 12 13 15 16 31

DESCRIPTION: This instruction loads the exponent field(s) of RGA with

the exponent(s) from (ADR). The sign(s) and mantissa field(s) are left un-
changed. The RGA exponent is cleared and loaded with the new exponent.

(ADR) remains in RGB. When the E bits are disabled, RGA remains un-

changed.

FLOW CHART:

LEX —® (ADR) —» RGB WORD ke
-EX R SIZE 2 /
32

lbe— RGB 1:7 —» RGA 1.7

RGB 9:7 —» RGA 9:7

4-64

AVALNASAVAN LN

OPERATION: Multiply RGA by (ADR)

INSTRUCTION WORDS:

ML | 30 ACARX 04 ADR USE ADR
[o] 4 5 78 i 12 13 15 16 31
MLA 30 ACARX 05 ADR USE ADR
MLM 30 ACARX 14 ADR USE ADR
MLMA 30 ACARX 15 ADR USE ADR
MLN 31 |ACARX| g4 ADR USE ADR
MLNA 31 |ACARX| g5 ADR USE ADR
MLR 30 |ACARX| g ADR USE ADR
MLRA 30 ACARX 07 ADR USE ADR
MLRM 30 ACARX 16 ADR USE ADR
MLRMA 30 ACARX 17 ADR USE ADR
MLRN 31 ACARX 06 ADR USE ADR
MLRNA 31 ACARX 07 ADR USE ADR

4-65

DESCRIPTION: In 64-bit mode, this instruction multiplies RGA by (ADR).
RGA will contain the sign, exponent, and 48 high-order bits of the result,
while the 48 low-order bits of the result will be placed in the mantissa field
of the RGB. Bytes 1 and 2 of RGB will contain 00 111 111 00 111 111, which
represents an exponent of minus one (-1) for 32-bit mode. RGC will contain
the last subtotal carry.

This instruction may cause the F bit(s) to be set. (See pages 4-15, 4-16,
items 4, 5, and 6.)

The following variants are permitted:
b SUFFIY = BorH OPERANDS AreE TREATED bc Fromrirnd & FPoinNT AND THE LESULT IS
Aot NorRMAL L 2ED

A - Both RGA and (ADR) are treated as unsigned values;

M - Both values are treated as fixed-point and the result
is in fixed-point;

N - Result is normalized (after rounding, if specified);

R - Result is rounded in RGA; RGB (bytes 3-8) will be cleared.

If both E bits are disabled, RGA will remain unchanged, and RGB and RGC
will be undefined. For purposes of this manual, the results of this
instruction are undefined when E # EI.

In 32-bit mode, the execution of the ML instruction is the same as for
64-bit mode, with the following modifications:

1. If both E bits are enabled, RGA will contain both 24-bit
products, while RGRB will contain the 48-bit product of
the outer word. Bytes 1 and 2 of RGB still contain the
minus one (-1) exponent.

2. If either or both E bits are disabled, the RGA half-word

will be properly restored; however, RGB will always
contain the 48-bit outer-word product. '

FLOW CHARTS: See next two pages for 64- and 32-bit modes respectively.

4-66

ML
(64-BIT MODE)

[
L]

7FFF16

RGA (16;48) —»RGR (16;48)
(ADR) —=RGB

—=RGR (0;16)

RGB, AND
ENABLED BITS
OF RGA ARE
MODIFIED
SIGN OF
U NO
PRODUCT
?
OPTION ? —=RGA 0:1
YES J
EXPONENT DID
"M NO. OF PRODUCT EXPONENT \YES SET
OPTION ? —» RGA OVERFLOW F BIT
EXPONENT OCCUR ?
YES NO
[4

'

RGR MANTISSA X RGB MANTISSA
—=» RGA 16:48 AND RGB 16:48;
RGB(0:16) = 00111111
00111111

/ "R" \YES

ADD ONE TO RGA 16:48 IF
RGB 16:1 EQUALS ONE,
0 —= RGB 16:48

NO

i NORMALIZE

PRODUCT
=02

YES

BIT 9 OF
ACR =0 ?

YES

SET

NO

F BIT

0 —= RGA 0:64

NI

4-67

ML TFFFg»RGR (0;16)

) NO SIGN OF PRODUCT
. : . A" OPTION ?
(32-BIT MODE)*RGA({I%:?;'_R;G‘S{ISAB) | —®(ENABLED) RGA (0:1), RGA (8:1)

.....) »RGE "L
- YES
EXPONENT OF S
ot PRODUCT EXPONENT ET
M OPTION —»(ENABLED) OVERFLOW (ENABLED)
RGA EXPONENT ? F BIT
YES NO

RGR INNER MANT X RGB INNER MANT

—— (ENABLED) RGA (16:48) e YES ADD ONE TO
RGR OUTER MANT X RGB OUTER MANT R" OPTION ?] RGB (40:1),
NO

—® RGB (16:48) RGA (40:1) IF ENABLED
00111 111 00111 111 — RGB (0:186)

'

YES| NORMALIZE RGB, (EITHER)
“N" OPTION 2 (ENABLED) RGA PRODUCT =0
NO
YES
' (PrODUCT =0 » JYES
DID UNDERFLOW \ YES o
OCCUR ? >
CLEAR APPRO-
NO ACR BIT 9 PRIATE
. (ENABLED) RGA
HALF-WORD
YES
SET APPROPRIATE
(ENABLED) F BIT o
RGB (16:24)
—» RGA (40:24)
IF ENABLED

RESTORE
DISABLED
HALF-WORD INTO

RGA FROM RGR

]

NI

MODE REGISTER INSTRUCTIONS

MNEMONIC CODE: LD ; SET

e ———

—

OPERATION: LD E |E1 |EE1 |G |H|I|J causes the bit(s) in the mode reg-
ister specified in the mnemonic to be loaded by a bit in the ACAR;
SETE| E1| F|F1|G|H|1|J sets the bit in the mode reg-

ister specified in the mnemonic by the result of a logical function,

INSTRUCTION WORDS:

LDE 21 |ACARX 14 Z DATA
0 4 5 78 [} 12 13 5 16 ! 3l
LDE1 21 |acarx| 15) DATA
LDEE1 21 |ACARX| 16 Z DATA
1.DG 23 ACARX| 14 DATA
L.LDH 23 |ACARX| 15 DATA
LDI 23 |acarx| 18 % DATA
LDJ 23 |AcAarx| 17 'DATA
SETE 25 ACARX 14 LOG FUNC B2 B1
0 45 7 8 " 12 13 15 16 19 20 23 24 3l
SETE1 25 ACARX| 15 % LOG FUNC | B2 B1
SETF 25 |ACARX| 16 /] Los runc | B2 B1

4-69

SETF1

SETG

SETH

SETI

SETJ

DESCRIPTION:

25 ACARX 17 ////// LOG FUNC B2v B1
13 15

16 19 20 23 24 3

27 |ACARX 14 /////// LoG FUNC | B2 Bl

27 |ACARX| 15 /) o6 Fune | B2 B1

27 |ACARX| 16 7///// L0G FUNC| B2 B1

27 |ACARX| 17 /) ros Func | B2 Bl

LD

SET

This instruction causes the mode register (RGD) bit(s) as indi-
cated in the mnemonic to be loaded by a bit of the DATA field.
The first 48 bits of the DATA field are implied ZEROes; the

last 16 are bits 16:16 of the instruction. ACAR indexing may

be used normally, so that when the DATA field of the instruction
is all ZEROQes, each bit of the ACAR can be sent to the indicated
mode bit of the corresponding PE, The ADR USE field is ignored.

This instruction sets the mode register bit as indicated in the
mnemonic with the result of a logic function of two bits speci-
fied in the ADR field of the instruction word. The first bit
(B1) is designated by one of eight bits in the instruction
word, as follows:

Instruction Word
Mode Bit Bl Bit Number

24
25
26
27
28
29
30
31

MO E>S0 D
[=

4-70

FLOW CHARTS:

The second bit (B2) is used as indicated by one of
four bits in the instruction word, as follows:

Instruction Word

Mode Bit B2 Bit Number
El 20
El 21
E 22
E 23

The logical function of mode bits Bl and B2 is speci-
fied in one of four bits in the instruction word, as
follows:

Logical Instruction Word
Function Bit Number
B1 OR B2 16
Bl OR B2 17
Bl AND B2 18
B1 AND B2 19

Note: If multiple ONEs are found in the Bl field, B2
field, or "Logical Function' field, the results are
undefined for purposes of this manual. If no ONEs
are found in the "Logical Function' field, the function
is B1 OR B2. 1If no ONEs are found in the B2 field,
B2 is ZERO.

.D ——3

ACAR i:1 —» RGD__.

PEi
(i=0,1,2,...,63)
RESULT OF
LOGICAL —» RGD ___:1
FUNCTION

4-71

MNEMONIC CODE: MULT

OPERATION: If in 32-bit mode, multiply RGA by (ADR); leave inner double-
length product mantissa in RGA, outer in RGB.

In 64-bit mode, this instruction operates as if in 32-bit mode.

INSTRUCTION WORD:

22 ACARX 13 ADR USE ADR

0 4 5 78 W12 a3 15 16 3

DESCRIPTION: Multiply RGA by (ADR). If both E bits are enabled, leave

the inner double-length product mantissa in RGA and the outer mantissa

in RGB. The exponent of the product of the inner operands is left in RGA

and the exponent of the product of the outer operands is left in RGB, both

in the position occupied by the exponent of the inner word. The sign bit is

in the sign bit position of the outer word. The unused sign and exponent bits

are ZERO. If both E bits are disabled, RGA will remain unchanged and RGB will
contain the correct outer product. If E 74 E1, RGA results are undefined for
purposes of this manual.

No variants are permitted. Both operands will be treated as floating-point signed
values, and the results will be unrounded and normalized.

FLOW CHART:

MULT __»| ADR (0, 64) —> RGB —

(RGA INNER WORD) X (ADR INNER WORD)
— = RGA (ENABLED PORTION) |YES{ p.g1»
(RGA OUTER WORD) X (ADR OUTER WORD)

—— RGB

NO

NI UNDEFINED I E—

MNEMONIC CODE: NEB

OPERATION: Test for RGA not equal to (ADR) in 8-bit bytes

INSTRUCTION WORD:

22 [|ACARX 10 ADR USE ADR

(o] 4 5 78 nore2 13 IS i6 31

DESCRIPTION: This instruction tests for RGA not equal to (ADR), in 8-bit
bytes. Results are stored in the least significant bit of each byte in RGA;

the other bits of RGA are set to zero. (ADR) remains in RGB. The OR of
the carries from the ''greater than' and ''less than' tests remain in RGC.
When the E bits are disabled, RGA is unchanged. The instruction is the same
for 64- and 32-bit modes.

FLOW CHART:

NEB —#{ (ADR)—» RGB
J

RGA BYTE j\ NO

RGB BYTE j
(j=1,6,7, y

NO lYES

0... 01 —» RGA BYTE j | 0 —» RGA BYTE j

- v Y

RGA BYTE j\ NO
RGB BYTE j 2
(G=2,3,4,5)

¢YES

. 01 —» RGA BYTE j 0 —» RGA BYTE j

Y Y

4-73

OPERATION: Normalize

INSTRUC TION WORD:

20 U4 13

(] 4 5 7 8

1 12

WY

DESCRIPTION: This instruction will shift the RGA mantissa left, end-
around, until a ''one' bit is detected. In 64-bit mode, the mantissa of
RGA is shifted, and the exponent is adjusted. In 32-bit mode, the inner

mantissa is acted upon first.

If both E and E1 are zero, the contents of RGA will remain unchanged.

Note: This instruction may cause the F bit(s) to be set.
See pages 4-15, 4-16, items 4, 5, and 6.

FLOW CHART: See next page.

4-74

NORM

32

DETECT
LEADING ONE

YES

L—H
|
—
(v}

E

.

TATATTI T

IN RG LININOL LY

MANTISSA

Y

INNER
MANTISSA LEFT,
END AROUND

!

SET RGB INNER
EXPONENT TO
INNER EXPONENT
CORRECTION

'

MODIFY
RGA INNER
EXPONENT BY

TES SHIFT COUNT
DETECT
LEADING ONE
IN RGA
MANTISSA
E AND E NG |[UNPROTECTED DETECT
‘ AND EL N0 HALF OF RGA LEADING ONE
SHIFT RGA IS UNDEFINED IN RGA OUTER
MANTISSA MANTISSA
LEFT, END YES
AROUND +
SHIFT RGA
RGA OUTER
REMAINS MANTISSA LEFT,
SET RGB UNCHANGED

EXPONENT TO
THE EXPONENT
CORRECTION

v

MODIFY
RGA EXPONENT
BY SHIFT
COUNT

4-75

END AROUND

Y

SET RGB

OUTER EXPONENT
TO OUTER
EXPONENT

CORRECTION

{

MODIFY RGA
OUTER
EXPONENT BY
SHIFT COUNT

MNEMONIC CODE: OFB

OPERATION: Overflow bits of previous 8-bit byte instruction are trans-
mitted from RGC to RGB

INSTRUCTION WORD:

25 1 06 0% iz

8 H 12 13 31

il N

DESCRIPTION: Transmit overflow bits of previous 8-bit byte instruction
from RGC to RGB. RGC is unchanged. This instruction is the same for
64- and 32-bit modes.

FLOW CHART:

RGC (8i:1) — RGB (8i+7:1)

OFB ' (i=0,1,2,...,7

4-76

MNEMONIC CODE: RTG; RTL

OPERATION:

RTG - Transmit register (Y) of every PE to RGR of
PE number (N + D) modulo a, where
Y = a specified PE register
N = initial PE No.
D = routing distance
a = number of PEs in array (64/128/256)

RTL - Same as RTG, except for single quadrant
(a = 64)

INSTRUCTION WORDS:

RTG 24 |acamrx| 13 Y Y D

[o] 4 5 7 8 i 12 13 14 15 16 17 21 22 31
RTL 24 ACARX 12 ! 0 Y D
DESCRIPTION:
RTG Transmit the data found in the PE register (specified in bits

17-21 of the instruction) of every PE to the RGR of every
PE. Data initially found in PE number N is left in PE
number (N + D) modulo a (where '"D" is the routing distance
specified in the ADR field of the instruction and "a' is the
number of PEs in the array, whether 64, 128, or 256). ''D"
and "Y' are indexable by a selected ACAR but not by any
RGX or RGS. The array is defined by the contents of MC2
relative to MCO. The register address bits are as follows:

Register Address Bit
RGA 17
RGB 18
RGX 19
RGS 20
RGR 21

4-T7

RTL Same as RTG, except that this instruction is for single quadrant
only. Data originally stored in the specified register of PE
number N is left in the RGR of PE number (N+ D) modulo 64.

Note: RGD cannot be transmitted. Also, care should be taken
that indexing should not inadvertently change the specified
register address (Y) or the routing distance (D).

FLOW CHART:

RTL RTG

MOVE THE SPECIFIED
REGISTER'S CONTENTS

MOVE THE SPECIFIED
REGISTER'S CONTENTS

TO RGR TO RGR
128 —» a 256 —» a
 J
64—> a Pt
FOR EVERY N IN a,
RGRpp(ny ™ RGRpp(N+D) MOD a

4-78

MNEMONIC CODE: SB

OPERATION: Subtract (ADR) from RGA (Additional op codes allow certain
variants: A for unsigned, M for fixed point, N for normalized
floating, R for rounded)

INSTRUCTION WORDS:

SB 36 |ACARX 04 ADR USE ADR
) 45 78 w12 13 15 18
SBA 36 |ACARX 05 ADR USE ADR
SBM 36 [ACARX 14 ADR USE ADR
SBMA 36 |ACARX 15 ADR USE ADR
SBN 37 JACARX 04 ADR USE ADR
SBNA 37 [ACARX 05 ADR USE ADR
SBR 36 |ACARX 06 ADR USE ADR
SBRA 36 |ACARX 07 ADR USE ADR
SBRN 37 |ACARX 06 ADR USE ADR
SBRNA 37 |ACARX 07 ADR USE ADR

4-79

DESCRIPTION: This instruction subtracts (ADR) from RGA. The re-
sult of the subtraction remains in RGA. RGB will contain (ADR) either
unmodified, or modified by the mantissa portion(s) that were shifted to align
with RGA. RGC and RGR are not used.

This instruction may cause the F bit(s) to be set. (See page 4-15, 4-18,
items 4, 5, and 6.)

The following variants are permitted:

A - Both operands are treated as unsigned values;

M - Both operands are treated as fixed-point and the result
is in fixed-point;

N - Result is normalized (after rounding, if specified);

R - Result is rounded in RGA.

If both E bits are disabled, RGA will remain unchanged. If E # E1 for 64-bit
mode, the results, for purposes of this manual, are undefined.

In 32-bit mode, there is no loss of accuracy because each half-word is
aligned independently of the other.

Note: The subtraction is effected as follows (assuming that
the E bits are enabled):

1. The exponent of the result is determined as the
larger of the two operand exponents.

2. The mantissa of the operand with the smaller
exponent is shifted right end-off until it is
aligned with the mantissa of the operand with the
greater exponent. Thus, if the difference be-
tween the two exponents is greater than 47, the
smaller mantissa will be set to zero, and the
result of the subtract will exactly equal the
larger value,

3. The aligned mantissa is returned to its source
register (RGA or RGB).

4-80

4. The mantissas are subtracted, and the
result stored in RGA.

9. The exponent portion of RGB will not be
changed except when the normalized
variant (N) of the instruction is requested.
The RGB exponent will then be set to the
exponent correction.

6. The mantissa portion of RGB will be
unchanged unless the RGB exponent is
smaller than the RGA exponent. (Refer
to paragraphs 2 and 3 above.)

FI1.LOW CHART: See AD instruction for combined flow chart.

4-81

MNEMONIC CODE: SBB

OPERATION: Subtract (ADR) from RGA in 8-bit bytes

INSTRUCTION WORD:

26 ACARX 07 ADR USE ADR

(o] 45 78 " 12 13 IS 16 34

DESCRIPTION: This instruction subtracts (ADR) from RGA in 8-bit bytes.
The result in RGA will be in one's complement form when no overflow occurs.
When overflow occurs, the carries are stored in RGC. (ADR) remains in
RGB. When the E bits are disabled, RGA is unchanged but RGC contains

the carries. Execution of this instruction is the same for 64- and 32-bit
modes. '

FLOW CHART:

(ADR) RGB RGA BYTE j - RGB BYTE j
SBB [—> —» CPA BYTE j
0 —»RGC G=1,2, ..., 8)
; |

NO ANY CARRIES FROM \YES
SUBTRACTING THE
BYTES ?

BYTE j CARRY —»
RGC BYTE j M. S. B.

(Mosr Sisnisrcni

CPA BYTE j—» RGA BYTE j
(=1, 6, 7, 8)

CPA BYTE j —» RGA BYTE j
G=2,3, 4, 5

4-82

MNEMONIC CODE: SBEX

OPERATION: Subtract the exponent field(s) of (ADR) from the exponent(s)
of RGA

INSTRUCTION WORD:

25 ACARX 01 ADR USE ADR

0 4 5 7 8 w12 13 15 16 31

DESCRIPTION: This instruction-subtracts the exponent of (ADR) from the
exponent of RGA. In 32-bit mode the inner and outer exponents are sub-
tracted independently. When the E bits are disabled, RGA is unchanged and
F bits cannot be set.

This instruction may cause the F bit(s) to be set. See pages 4-15, 4-186,
items 4, 5, and 6.

FLLOW CHART: See next page.

4-83

SBEX

(ADR) —RGB |

MODE ?

32

f—

Y

RGA 1:7 - RGB 1:7 —» CPA 1:7
RGA 9:7 - RGB 9:7T —» CPA 9:7

SUBTRACTION
OQVERFLOW ?

WORD SIZE

64

l

RGA 1:15 - RGB 1:15—» CPA 1:15

YES

DID THE
SUBTRACTION
OVERFLOW?

1l—»F

NO

l—F

DID THE

1 E=1?)

SUBTRACTION
UNDERFLOW?

NO

YES

SUBTRACTION
UNDERFLOW?

YES

DID THE OUTER \ NO

CPA 1:7T—» RGA 1:7

CPA 1:7—w RGA 1:7—

0 —» RGA OUTER
WORD

YES

SUBTRACTION
OVERFLOW?

NO

0 —» OUTER
WORD
\
No ACR 9:1 =17
YES
1—F
YES

DID THE
SUBTRACTION
UNDERFLOW?

YES

NO

/DID THE INNER
SUBTRACTION

\

0 —» RGA INNER
WORD

UNDERFLOW?

CPA 8:8 —»
RGA 8:8

CPA 9:7 —» RGA 9:7

0 —» RGA

1—»F1

INNER WORD

MNEMONIC CODE: SCM

OPERATION: [Execute one iterative cycle of a multiplication

INSTRUCTION WORD:

21) o V777’

0 4 5 78 noo12 13 31

DESCRIPTION: This instruction multiplies RGA mantissa by the nine least
significant bits of RGB mantissa, leaving the product in two parts with unas-
similated carries. The 48 most significant bits of the "partial sum" will be
placed into RGA mantissa, and the eight least significant bits of the ''partial

sum'' will be placed in the eight most significant bits of RGB mantissa, while
the next 16 bits of RGB mantissaare settoONEs. RGCwill containthe 56 bits of
the ''partial carry'.

If both E bits are disabled, RGA mantissa will be unchanged. However, RGB
and RGC contents will be set as defined above., If EfE1, the disabled portion
of RGA will remain unchanged. The enabled portion will be set to the same
contents as if both E bits were enabled. RGB and RGC contents will be as de-~
fined above.

This instruction is independent of word size, and therefore results are the
same in 32-bit and 64-bit modes.

FLOW CHART:

SCM ——-‘I RGA 16:48 —=RGR 16:48
PARTIAL SUM OF RGR 16:48 X RGB 55:9

— (ENABLED) RGA 16:48 AND RGB 16:8;
PARTIAL CARRY—RGC 16:56

4-85

SHIFT INSTRUCTIONS

The next ten instructions are variations of a basic shift instruction. For
brevity, the most frequently used options are described below.

Shift Count with Indexing - The shift count N is a sum of the

contents of ADR plus the contents of ACAR (if specified) plus the
contents of RGX or RGS (if either is specified). These sums are
taken modulo 64 or 32 depending on the word size. Numerically,
these sums take on the following values:

for all shifts: N = ADR + ACAR + RGX (or RGS)"

E Bits Disabled - When the E bits are disabled, the disabled part
of RGA is unchanged by the shift instructions. In double-length
shifts, RGB is modified as though the E bits were enabled.

End-Around Shifts - When an end-around shift occurs, bits shifted
out of the end of a register reappear at the opposite end of the re-
gister.

End-Off Shifts - When an end-off shift occurs, the bits at the end
of the register opposite from the shift direction are filled with
"zeros'' as the register is shifted.

Mantissa Shifts - In a mantissa shift, only the bits which constitute
the mantissa are acted upon. In 64-bit mode, bits (16:48) will be
affected. In 32-bit mode, PE mode bit E controls the outer man-
tissa (bits 40:24), and PE mode bit E1 controls the inner mantissa
(bits 16:24).

Logical Shifts - In a logical shift in 64-bit mode, all of the bits of
a word are acted upon. In 32-bit mode, each half-word is acted
upon separately.

Double-Length Shifts - For a double-length shift, the two 64-bit
registers (RGA and RGB) are effectively acted upon as one 128-bit
register. In 32-bit mode, double-length shifts give results which
are undefined for purposes of this manual.

Note: For purposes of this manual, the results of any of the shift
instructions are undefined when, in 64-bit mode, E # E1.

If not specified, these terms are zero.

4-86

SHIFT INSTRUCTIONS (Continued)

MNEMONIC CODE: RTAL

OPERATION: Shift left, end-around, logical, single-length

INSTRUCTION WORD:

35 ACARX 13 ADR USE ADR

o] 4 5 7 8 n 12 13 15 16 3!

DESCRIPTION: The contents of RGA are shifted and returned to (enabled
portions of) RGA. If the shift is being done in 32-bit mode, the inner and outer
words are acted upon separately. In 32-bit mode, the effective shift amount

is the shift count modulo 32.

FLLOW CHART:

RTAL/ _ [64-BIT \ YES E=02
RTAR >\ MODE 2
NO g
NO(E=-1-») (El =
YES

SHIFT RGA OUTER WORD SHIFT RGA 0:64
LEFT/RIGHT, END-AROUND WORD LEFT/RIGHT,
LOGICAL, (N) BIT END-AROUND, LOGICAL,
POSITIONS (N) BIT POSITIONS
(El HJNO*.
YES

SHIFT RGA INNER WORD
LEFT/RIGHT, END-AROUND,
LOGICAL, (N) BIT
POSITIONS

ENABLED
BITS OF
RGA ARE

MODIFIED
NI

4-817

SHIFT INSTRUCTIONS (Continued)

=
—
2
o
=
=
@)
2
—
®)
~
®
Z
i
o)
-3
>
-~

o
e

OPERATION: Shift right, end-around, logical, single-length

INSTRUCTION WORD:

35 ACARX 12 ADR USE ADR

o] 45 78 (LI 4 13 15 16 31

DESCRIPTION: This instruction is the same as RTAL, except that the shift
is to the right.

FL.OW CIHART: See RTAL for combined flow chart.

4-88

SHIFT INSTRUCTIONS (Continued)

MNEMONIC CODE: SHABL

OPERATION: Shift left, end-off, logical, double-length

INSTRUCTION WORD:

37 ACARX 11 ADR USE | ADR

o] 4 5 7 8 n a2 i3 1S5 16 3l

DESCRIPTION: The contents of RGA are shifted left end-off, and returned
to (enabled portions of) RGA. Next, RGB is shifted right end-off, "ORed"
with RGA, and restored into (enabled portions of) RGA. RGB is then
shifted left end-off and returned to RGB.

The effective result of the shift is as follows:
The (N) high-order bits of RGA were deleted;
- N) remaining bits of RGA and RGB were shifted left to
The (N) low-order bits of RGB became zeros.
For purposes of this manual the results of this instruction are defined only

for 64-bit mode, and when E = E1.

FLOW CHART:

SHABL

’ SHIFT RGA AND
- YES YES YES -
64-BIT E =19 El =12 RGB LEFT, END NI
MODE? OFF, LOGICAL,
(N) BIT POSITIONS

NO NO NO
|

RGB AND ENABLED
PORTIONS OF RGA
ARE MODIFIED

4-89

SHIFT INSTRUCTIONS (Continued)

MNEMONIC CODE: SHABR

OPERATION: Shift right, end-off, logical, double-length

INSTRUCTION WORD:

37 |ACARX 10 ADR USE ADR

o] 4 5 7 8 12 13 15 16 34

DESCRIPTION: The contents of RGB are shifted right end-off, and returned
To RGB. Next, the contents of RGA are shifted left end-off, "ORed" with
RGB, and restored into RGB. The contents of RGA are then shifted right
end-off and returned to (the enabled portions of) RGA.

The effective result of the shift is as follows:
The (N) low-order bits of RGB were deleted;

The remaining (128 - N) bits of RGA and RGB were shifted right
to bit 63 of RGB;

The (N) high-order bits of RGA became zeros.
For purposes of this manual, the results of this instruction are defined

only for 64-bit mode, and when E = E1.

FLOW CHART:

-BI SHIFT RGA AND
NO YES -
ANDE =1 OFF, LOGICAL,
ND E1=12 (N) BIT POSITIONS
NO

RGB AND ENABLED
PORTIONS OF RGA
ARE MODIFIED

4-90

SHIFT INSTRUCTIONS

MNEMONIC CODE: SHABML

(Continued)

OPERATION: Shift left, end-off, mantissa only, double-length

INSTRUCTION WORD:

37

ACARX 13

ADR USE

ADR

o

45 78

12 13 15 16

3

DESCRIPTION: This is the same as the SHABL instruction, with the

following exceptions:

1.

Instead of the entire RGA/RGB being shifted, only the
mantissa portions are used;

There is an added constraint, that if the shift count > 48,
modulo 64 the mantissa portion of RGB and (the enabled
mantissa portions of) RGA will be set by zero.

FLOW CHART:

SHABML/R

YES

0—RGB 16:48;
0—+(ENABLED)
PORTIONS OF) RGA
MANTISSA

64-BIT MODE YES
ANDE =1
AND E1 = 1?

NO

SHIFT RGA MANTISSA
AND RGB MANTISSA
LEFT/RIGHT, END-OQFF,
(N) BIT POSITIONS

RGB 16:48, ENABLED
PORTIONS OF RGA 16:48
ARE MODIFIED

4-91

' @

SHIFT INSTRUCTIONS (Continued)

MNEMONIC CODE: SHABMR

OPERATION: Shift right, end-off, mantissa only, double-length

INSTRUCTION WORD:

37 ACARX 12 ADR USE ADR

o] 4 5 78 n 12 13 15 16 31

DESCRIPTION: This is the same as the SHABR instruction, with the
following exceptions:

1. Instead of the entire RGA/RGB being shifted, only the
mantissa portions are used;

9. There is an added constraint, that if the shift count > 48

modulo 84 the mantissa portion of the RGB and (the enabled
mantissa portions of) RGA will be set to zero.

FLLOW CHART: See the SHABML instruction for the combined flow chart.

4-92

SHIFT INSTRUCTIONS (Continued)

MNEMONIC CODE: SHAL

OPERATION: Shift left, end-off, logical, single-length

INSTRUCTION WORD:

35 ACARX 01 ADR USE ADR

0 45 7 8 n 12 13 15 16 31

DESCRIPTION: The contents of RGA are shifted and returned to RGA. If the
shift is being done in 32-bit mode, the inner and outer words are acted upon
separately.

FLOW CHART:

SHAL/R

SHIFT RGA LEFT/RIGHT,

E=El? ool END-OFF, LOGICAL,
?L_ ~ (N) BIT POSITIONS
NO
ENABLED PORTION
OF RGA IS
MODIFIED
SHIFT OUTER PORTION
OF RGA LEFT/RIGHT,
END-OFF, 1.LOGICAL,
{N) BIT POSITIONS
El-12 20
SHIFT INNER PORTION
OF RGA LEFT/RIGHT, NI
END-OFF, LOGICAL,
(N) BIT POSITIONS

4-93

SHIFT INSTRUCTIONS

MNEMONIC CODE: SHAR

(Continued)

OPERATION: Shift right, end-off, logical, single-length

INSTRUCTION WORD:

35 ACARX

00

ADR USE

ADR

o 45 78

DESCRIPTION: This instruction is the same as SHAL, except that the

shift is to the right.

FILLOW CHART: See SHAL instruction for combined flow chart.

12

13 15 16

4-94

31

SHIFT INSTRUCTIONS (Continued)

AVIINM I0 0 Axathe R DI LLANVD

OPERATION: Shift left,end-off, mantissa only, single-length

INSTRUCTION WORD:

35 ACARX 11 ADR USE ADR

[o] 45 78 w2 13 1S 16 3

DESCRIPTION: The contents of RGA mantissa are shifted left and returned
to (enabled mantissa portion of) RGA. If the shift is being done in 32-bit
mode, the inner and outer words are acted upon separately.

Note: If, in 64-bit mode, the shift count > 48, modulo 64 (24, modulo 32

for 32-bit mode), the enabled portions of the) RGA mantissa will
be set to 0. '

FLOW CHART:

SHAML/R
64-BIT | YES YES SHIFT RGA MANTISSA
MODE ? E=E1? LEFT/RIGHT, END-OFF,
N (N) BIT POSITIONS

NO NO

ENABLED PORTION
OF RGA MANTISSA
IS MODIFIED

SHIFT OUTER MANTISSA
PORTION OF RGA
LEFT/RIGHT, END-OFF,
(N) BIT POSITIONS

—
SHIFT INNER MANTISSA
YES PO
E1=12 RTION OF RGA NI
LEFT/RIGHT, END-OFF,
(N) BIT POSITIONS
NO

4-95

SHIFT INSTRUCTIONS (Continued)

MNEMONIC CODE: SHAMR

OPERATION: Shift right, end-off, mantissa only, single-length

INSTRUCTION WORD:

35 ACARX 10 ADR USE ADR

[o] 45 78 o2 13 15 16 3

DESCRIPTION: This instruction is the same as SHAML, except that the
shift is to the right.

FLOW CHART: See SHAML instruction for combined flow chart.

4-96

MNEMONIC CODE; ST (A|B|R|S|X)

OPERATION: Store from RG (A|B|R|S|X) to memory

INSTRUCTION WORDS:

STA 26 ACARX 12 ADR USE ADR
o] 45 7 8 1 12 13 15 16

STB 26 ACARX 13 ADR USE ADR

STR 26 ACARX 14 ADR USE ADR

STS 26 ACARX 15 ADR USE ADR

STX 26 ACARX 16 ADR USE ADR

DESCRIPTION: These are five store instructions. The ADR field specifies
where the indicated data is stored in memory. These instructions are the
same for 64- and 32-bit modes. RGX data goes to memory bit locations
(48:16). Disabled E bits prevent changing of the data in memory.

FLOW CHART: See next page.

4-97

ST (A|B|RI|S)

YES

RG (A|B|R|S) OUTER WORD
—» MEM WORD OUTER WORD

RG (A|BIRIS) INNER WORD
—» MEM WORD INNER WORD

STX

RGX - MEMORY WORD 48:16
0-» MEMORY WORD 32:16

0+ MEMORY WORD 0:32

NI

MNEMONIC CODE: SUB

OPERATION: Subtract 64-bit unsigned fixed point number {(ADR) from RGA

INSTRUCTION WORD:

26 |ACARX| g5 ADR USE ADR

o] 45 78 i 12 13 15 16 3l

DESCRIPTION: This instruction subtracts a 64-bit unsigned fixed-point
number (ADR) from RGA; the result is placed in RGA if the E bits permit.
(ADR) is first fetched to RGB. Overflow generates an end-around-carry,
but does not set the F bit. (ADR) remains in RGB. When the E bits are
disabled, RGA is unchanged. When in 32-bit mode, this instruction will

opera

te as if in 64-bit mode.

FLOW CHART:

SUB [—® (ADR)—» RGB "] RGA - RGB —» CPA

CPA OUTER WORD
—» RGA OUTER WORD

CPA INNER WORD
—» RGA INNER WORD

'

4-99

MNEMONIC CODE: SWAP

OPERATION: Interchange the contents of RGA and RGB

INSTRUCTION WORD:

o 4 5 78] 2 13 31

DESCRIPTION: This instruction interchanges the contents of RGA with the
contents of RGB., When the E bits are disabled, RGA is not changed. SWAP
can be used in either 64-bit or 32-bit mode.

FLOW CHART:

INTERCHANGE
RGA OUTER WORD
AND RGB OUTER WORD

SWAP

RGA OUTER WORD
—*>RGB OUTER WORD

INTERCHANGE
RGA INNER WORD
AND RGB INNER WORD

RGA INNER WORD .'L /7 N\
—»RGB INNER WORD w

4-100

MNEMONIC CODE: SWAPA

OPERATION: Interchange the inner and the outer operands in RGA

INSTRUCTION WORD:

SSWOB

(o) 4 5 7 8 Ul 12 13

DESCRIPTION: This instruction interchanges the inner and outer words
of RGA. When the E bits are disabled, RGA remains unchanged

FLOW CHART:

INTERCHANGE RGA
INNER WORD AND
RGA OUTER WORD

SWAPA

{l
e e

REPLACE RGA
OUTER WORD WITH
RGA INNER WORD

y

REPLACE RGA
INNER WORD WITH
RGA OUTER WORD

4-101

MNEMONIC CODE: SWAPX

OPERATION: Interchange the outer operand of RGA and the inner
operand of RGB

INSTRUCTION WORD:

37 03 ‘ /7
3

DESCRIPTION: This instruction interchanges the outer word of RGA and
the inner word of RGB. When the E bit is disabled, RGA is not changed;
however, the outer word of RGA is copied into the inner word of RGB.

FLOW CHART:

YES INTERCHANGE:
SWAPX E=1 2 RGA OUTER WORD AND
RGB INNER WORD

RGA OUTER WORD
®» —» RGB INNER WORD

4-102

MNEMONIC CODE: T3A

OPERATION: Transfer contents of RGC to RGA

INSTRUCTION WORD:

Vs F 000000

0 4 5 7 8 n 12 31

DESCRIPTION: This instruction transfers the contents of RGC to RGA, as
follows:

RGC 0:1 is transferred to RGA 0:1

RGC 1:8 are transferred to RGA 8:8

RGC 16:48 are transferred to RGA 16:48

RGC 9:7 are not transferred; RGA 1:7 are set to zeroes

When either or both E bits are disabled, the corresponding portion of RGA is
unchanged.

FLOW CHART:

T3A ——» RGC 0:1 —» (ENABLED) RGA 0:1;

RGC 1:8 —» (ENABLED) RGA 8:8;

RGC 16:48 — (ENABLED) RGA 16:48;
0 —— (ENABLED) RGA 1:7

4-103

TRANSMIT INSTRUCTIONS:

MNEMONIC CODE: LD (A|B|D|R]|S|X)

OPERATION: Transmit source data to register indicated in op code
(Source is specified in instruction word bits 5:3, 13:3,
and 16:16.)

INSTRUCTION WORDS:

LDA 26 ACARX| 17 ADR USE ADR
0 45 7 8 1 12 13 15 16

LDB 97 ACARX| 00 ADR USE ADR

LDD 929 ACARX| 12 ADR USE ADR

LDR 27 ACARX 01 ADR USE ADR

LDS 97 ACARX| o2 ADR USE ADR

L.DX 27 ACARX| 03 ADR USE ADR

DESCRIPTION: The permissible applications of the transmit instructions
are shown in the accompanying table. These instructions are performed
by enabling the source data through a path in the PE to the input of the
destination register, and then clearing and loading the destination register.
All destination registers are 64 bits in length except for the mode register
(RGD) and the index register (RGX). The instruction LLDD is not E-bit
sensitive.

RGD is an 8-bit register. Transfers to RGD are from bits 0:8 in the source
register. Transfers from RGD are to bits 0:8 in the destination register;
the remaining bits in the destination register are undefined.

4-104

The mode bit locations within the RGD are defined as follows:

Mode Bit

RGX is a 16-bit register.

source

Bit Location

0

U W

B
E1
F
F1
I
G

J
H

Transfers to RGX are from bits 48:16 of the
register. Transfers from RGX are to bits 48:16 of the destination

register; the most significant 48 bits of the destination register are cleared.

The transmit instructions are the same for both 64- and 32-bit modes. When
the E bits are disabled, RGA, RGS, and RGX cannot be changed.

Variations of Transmit Instruction

Destination Register

Source Address
of Data Bit RGA RGB RGD RGR RGS RGX
RGA 17 Hk LDB LDR LDS *
RGB 18 LDA Aok LLDD LDR LDS LDX
RGD 22 --- LDB ok --- --- *
RGR 21 LDA LDB --- i kiok LDS LLDX
RGS 20 LDA LLDB -—- LDR KOk L.LDX
RGX 19 LDA LLDB - LDR LDS kKK
MEM L.LDA LLDB --- LDR LDS LDX
Literal * LDA LDB * LDR L.DS LDX

3

Note:

FLOW CHART:

No direct path available.
ADR USE field BIT 15 set; ADR contains memory address; RGS

and RGX indexing is permitted.

ADR USE field BITS 13-15 reset; ADR plus ACAR equal the literal;

RGS and RGX indexing is not permitted.
Illegal instruction

Not used.

In all cases, except where the source of data is memory or a
literal, bit 13 of the ADR USE field is set, bit 15 is reset, and

RGS and RGX indexing is not permitted. ACAR indexing is per-

mitted, however,

See next page.

4-105

LD(A| BID|R]|s|xX)

Y

///’“\\\

YES
RGD-» RGB?

RGD 0:8 —» RGB 0:8

RGB 8:56 —= RGB 8:56

NO+

RGB 0:83—=RGD (0:8)
0—»RGB 0:8

RGB 8:56—»RGB 8:56

&

YES
RGB —+= RGD?

NO

y YES

IS DESTINATION
RGX?

e

YES y

SOURCE 48:16
— RGX 0:16

IS DESTINATIOR NO

RGS OR RGAy

y YES

EITHER E NO

OR El1 =17

Y YES

SOURCE

INNER OUTER
WORD —»
DESTINATION
REG. ENABLED
INNER/OUTER
WORD

' '

0 —»
DESTINATION
REGISTER

Y

SOURCE 0:64 1
—» DESTINA- |
TION 0:64 |

|

4-106

MNEMONIC CODE: XD

OPERATION: Subtract (ADR) (48:16) from RGX

INSTRUCTION WORD:

25 ACARX 03 ADR USE ADR

o] 45 78 no12 13 15 16 3t

DESCRIPTION: This instruction modifies the index value by subtracting

(ADR) from the contents of RGX. The result is returned to RGX. If over-
flow occurred, the result is modulo 16 bits. The instruction is defined for
both 64- and 32-bit modes. When the E bit is disabled, RGX is unchanged.

1 + -
nt (two's complement =

The subtract is effected by taking the 2's compleme
one's complement plus 1) of (ADR 48:16) and adding to the contents of
RGX. No end-around-carry is generated.

FLOW CHART:

) NO
XD [(ADR) —» RGB

YES

RGX 0:16 - RGB 48:16
—» RGX 0:16

4-107

MNEMONIC CODE: XI

OPERATION:

INSTRUCTION WORD:

Add (ADR) (48:16) to RGX

25 ACARX 02 ADR USE ADR
o] 45 78 n 12 13 I5 16 31
DESCRIPTION: This instruction modifies the index value by adding (ADR)

to the contents of RGX. The result, in RGX, is modulo 16 bits.
X1 is defined for both 64- and 32-bit modes.
RGX is unchanged.

FLOW CHART:

XI

—— (ADR) —» RGB

RGX 0:16 + RGB 48:16
—» RGX

4-108

Instruction
When the E bit is disabled,
No end-around-carry is generated.

CONTENTS

WORD FORMATS.

B6700-TMU COMMUNICATION .

REGISTER ADDRESS CODES AND ACCESSIBILITY
OPERATION OF THE TMU

DIAGNOSTIC FEATURES .

TMU DISPLAY.

TMU INSTRUCTION SET

(See Index on Reverse Side)

5-3

5-5

59-7

9-17

5-9

TMU INSTRUCTION INDEX

Mnemonic Octal Reference
Code Code Page
EFA 160 5-16
EFF 164 5-18
LICR 041 5-20
LISR 040 5-21
RPT 001 5-22
RUN 020 5-23
SA 007 5-24
SAT 047 5-25
SIS 120 5-26
SIV 100 5-217
SL 006 5-24
SLT 046 5-25
SOC 011 5-30
SOD 010 5-32
SR 005 5-24
SRT 045 5-25
TIC 121 5-33
TOC 002 5-34
WIS 044 5-35

SECTION V
TEST MAINTENANCE UNIT

The Test Maintenance Unit (TMU) is a functional component of the Control
Unit (CU). It serves three principal purposes: as the control information
input-output interface between an ILLIAC IV quadrant and the B6700 system;
as the controller for the other subunits within the CU; and as the medium by
which manual, semiautomatic, and automatic testing of the system may be

accomplished. Figure 5-1 is a block diagram of the TMU.

Functionally, the TMU acts much like the control panel of a conventional
system. The pushbuttons on such a system actually constitute instructions
with address either implied or set into panel switches that .cause a specific
command to be performed as, for example, loading the instruction counter.
In the TMU this implied structure is mechanized so that control pushbuttons
on the TMU Panel are actually encoded into a command register and then
executed. The B6700 has access to this command register — via the
Descriptor Controller (DC) —and thus can simulate manual manipulation of
system controls. The TMU also functions as the window through which e

operation of the CU may be monitored.

There are two input and two output ports to the TMU (excluding CU intérfaces).
Input may be from the TMU Maintenance Panel, the B6700, or both. Output
from the system may be observed on a CRT display of register names and for-
matted octal values, or the same information may be aécesséd by the B6700

- for display.

DESCRIPTOR CONTROLLER (DC)

?

o

CONTROL PANEL
FUNCTION BUTTONS

& ADDRESS KEYS

TMU COMMAND
REGISTER (TCR)

"y

|

@
|

TMU CONDITION
INDICATOR (TCI)

0?73?15

\j
SETTABLE CU

REGISTERS

0 15

Figure 5-1.

5-2

Test Maintenance Unit

READABLE CU
REGISTERS

@ CONTROL ATC
CONTROL C@ éz
@ CONTROL PANEL
n ' DATA KEYS
0 53 ”
TMU INPUT @D TMU OUTPUT
REGISTER (TRI) REGISTER (TRO)
0 63 0 63
0
/
\
TMU DATA
COMPARATOR (TDC)
0 63
(1)
o/
TMU CONDITION CRT / @9
‘ CONTROL (TCC) DISPLAY,

Data written into the TMU is in the form of instructions to be executed; that
is, address, variants, and data are all included within the contents of the
instruction word. In some cases, the instruction may simply be routed

through the TMU for subsequent execution in ADVAST or FINST.

The DC initiatesthe data write operation by addressing the desired CU. The
TMU will not accept the data until it has completed any operations that are

currently in progress. When the TMU is, or becomes "not busy'', access
is granted to the DC, whichthen reads the instruction into the command

register (TCR). At this time, the TMU ''busy'' flag is set and remains set
until that portion of the instruction execution sequence involving the TMU is
completed. Next, the TMU requests access to the instruction look-ahead (ILA)
section of the CU for further instruction processing. Before proceeding, how-
ever, the contents of the ADVAST instruction timer are copied into a holding
register to permit the CU to return to its current status following execution of
the TMU command. The instruction timer is then reset and execution of the
instruction held in the TCR proceeds. Following completion of the instruction,
the ADVAST instruction timer is restored to its original status and the CU re-
sumes operation at the place where it was interrupted. Should the repeat
latch be set, the instruction in TCR will be repeated before the timer is re-

stored.

WORD FORMATS

All data transmitted from the B6700 system to the TMU is via the TMU command
register (TCR) in the form of a TMU command. The information content of a
command word, which is 48 bits long, is shown in the upper format on the next
page. Words that are accessed from the TMU by the B6700 are also 48 bits in
length. These words comprise the content of the TMU condition indicator
register (TCI) and either the left or right 32 bits of the TMU output register

(TRO). The format of an output word is shown on the lower portion of the next

page.

TMU INSTRUCTION WORD FORMAT

T™MU) DATA
COMMAND | ADDRESS 1 cs // // DATA
.
78 i5 16 17 22 23
Rits Field Function
0-7 TMU Command TMU instruction.
8-15 Address 1 Register designation.
16 Comparison Selector Comparison selector (SOC).
16-47 Data Contains a literal value or
or control information.
23-47 '
/ TCI N/ TRO
DATA
INDICATORS SOURCE DATA
ADDRESS
o] 78 15 16
Bit Field Function
0 Null None {contains zero).
1 Illegal Illegal TMU instruction or address (this includes

2 TCL Equa

1

3 SOC Interrupt

4 TRO Load

5 CU Halted

Data

ed

Left/Right Half Loaded

Data Source Address

illegal instructions or addresses for ADVAST or
FINST via EFA or EFF instructions). See page 2-21.
Illegal CU Addresses.

Set by an SOC command if the comparison result is
true.

SOC interrupt if comparison result matches the
setting of TCC. Comparison may be specified for
either equal or unequal,

Indicates that CU has interrupted the B6700 under
program control.

Indicates that CU has come to a halted condition,

Indicates the section of the TRO from which the data
field came. The bit 6,7 configuration has following
significance:

00 - No valid data

01 - Right half (TRO 32:32)

10 — Left half (TRO 0:32)

11 - Left half sent, right waiting

Indicates the CU register address from which the
TRO was loaded.

Contains 32 bits of the TRO as indicated in bit 6 of

this word.

5-4

- B6700-TMU COMMUNICATION

The B6700 treats a TMU much like a typewriter inquiry station in that it can
expect inputs from it at undefined intervals and that transmissions to or from
it are issued by descriptors which cause the exchange of blocks of data. The
TMU descriptors are processed by the DC. All connected TMUs are acces-
sible either singly or in a group. When the TMUs are accessed as a group, a
block of data may be sent to all TMUs simultaneously — each TMU receiving
every word sent — or a block of data may be exchanged with the TMUs accept-

ing or transmitting a word of the data block in round-robin fashion.

From the DC there is only one 48-bit data path to all connected TMUs and .
thus only one information transfer at a time is possible. Each TMU has its
own set of control lines connecting it with the DC. By using these lines a
TMU can cause an interrupt signal to be sent to the B6700. The DC may be

interrupted for any of the following reasons:

1. If the CU detects an illegal instruction or address as received
from the DC (TCI 01).

2. If a data comparison made in the TMU produces the desired
result (TCI 03).

3. If the TRO has been loaded with data that must be sent to the
B6700 controlling program, such data having been loaded
under program control, presumably the executive, TCI 04 is
not set in response to branch trace.

4, If the CU has halted owing to an ADVAST halt instruction, CU
stalled, breakpoint reached, an interrupt while ACR(01) is set,

or a result of certain TMU instructions (TCI 05).

5. If a CU interrupt is attempted while ACR 01 is set (error interrupt).

5-5

Upon the occurrence of an interrupt, the TMU will expect the issuance of a

read command by the B6700 controlling program requesting additional in-

formation regarding the reason for the interrupt.

For example, the control-

ling program might have to examine the contents of certain CU registers as,

for instance, the AIN, in order to ascertain the full significance of the inter-

rupt.

However, although the read is expected, the TMU is not dependent

upon it and will function in the normal manner without its issuance.

Table 5-1. Address Codes for CU Regis’cers1
Octal Register Octal Register Octal Register
Code Mnemonic Code Mnemonic Code Mnemonic

000 156 TRO 2 224 FRR

to ADB?2 157 ACU 225 FRT
077 200 ADV %3 226 F PS4
100 ACO0? 201 FIN23 230 IAR

101 AC12 202 ILA23 231 IBL

102 AC22 203 MSU?2 3 232 ICT

103 AC32 204 TMU3 233 IRT

104 ICR 205 FRO 234 ISR

105 1A 2 206 FR1 235 IWR
140 ACR 207 FR2 236 IWL

141 ADC 210 FR3 240 MTA
142 AIN?2 211 FR4 241 MTB
143 AIR?2 212 FCC 242 MTC
144 ALR 213 FDQ2 243 MA

145 AMR?2 214 FIQ?2 244 MSR
146 AWR 215 FIR 245 IBR

147 AFR 216 FOR 250 TCC?
151 MCO 2 217 FLP 251 TCI
152 MC12 220 FBZ 252 TCR
153 MC22 221 FRP 253 TIT (AIT)?
154 PEMS® 222 FTC 254 FDR
155 TRI? 223 FOQ 255 FQR

1A11 registers are accessible via SOC and SOD in

2Register has write capability via

3aNot a physical register, that is,
are distributed throughout t

structions, except FPS.
set-transmit instructions (SAT, SLT, SRT).
storage elements included in this category
he major functional area noted.

“Register FPS has write capability (via set-transmit instructions) but is
ad operations.
SPEM represents the ADVAST receivers ARE.

At

11U

a

coocgaibhle

or re

LU OoDaraAw s a =

5-6

The DC uses the controllines to select a TMU and to request the TMU to

perform one of three functions as follows:

1. Accept 48 bits of data into its TCR;
2. Transmit 48 bits of data from its TCI and TRO; or
3. Stop all CU functions and initialize the TMU.

The B6700 can send the following descriptors to the DC for communication

with the TMU(s).

1. Read N words from the selected TMU(s);
2. Write N words to the selected TMU(s);

3. Write each word of a block to the selected TMU(s),
immediately replacing each word written from B6700
storage with a word (or two words) read from the TMU(s);

4. Stop the selected TMU(s) and the respective quadrant(s).

REGISTER ADDRESS CODES AND ACCESSIBILITY

The CU registers and their address codes which may be read from the TMU
are listed in Table 5-1. Registers which may be written into are denoted by

the superscript ''2".

OPERATION OF THE TMU

The TMU command register (TCR) is always available to accept information
from the DC unless it has not completed processing the previously received
instruction which may have been received from the DC the Test
Maintenance Panel, or th2 Test Maintenance Display. Execution of a
command will take place from the TCR whenever the ADVAST instruction
register (AIR) is between instructions or when ADVAST clocks are stopped,

or when the instruction is TIC. which assumes stopped clocks.

Output from the TMU is not initiated by TCR commands, but is controlled
directly by the DC It is possible for the DC to execute read commands

5-17

Table 5-2.

Control

Spare

Initiate
Lock ICR
Repeat

Interrupt #
Interrupt =
ILLA Hold

ILA Lock

MSU Hold
MSU Lock

ADVAST Hold
ADVAST Lock

FINST Hold
FINST Lock

ARRAY Hold

ARRAY Lock

Bit Configurations of TCC Register and SRT Instruction
Data Field for Diagnostic Usage

TCC Reg. SRT Instr.
Bit No. Data Field Bit
0 48
1 49
2 50
3 51
4 52
5 53
6 54
7 55
8 56
9 57
10 58
11 59
12 60
13 61
14 62
15 63

5-8

Function

Used when initializing display
memory (Refer to Automatic
Initialization)

Holds ICR value until bit is reset

Causes next instruction received
to be repeated

Causes DC to be interrupted should
an unequal comparison be made by
an SOC instruction

Causes DC to be interrupted should
an equal comparison be made by an
SOC instruction

Temporarily inhibits clock to ILA

Inhibits clock to ILA until restarted
by B6700

Temporarily inhibits clock to MSU

Inhibits clock to MSU until restarted
by B6700

Temporarily inhibits clock to ADVAST

Inhibits clock to ADVAST until re-
started by B6700

Temporarily inhibits clock to FINST

Inhibits clock to FINST until re-
started by B6700

Temporarily inhibits clock to all PEs
in quadrant

Inhibits clock to all PEs in array
until bit is reset

even though the TRO register has not been loaded; this condition will be

flagged in the TCI information that is accessed with each word transferred.

It is not necessary for information to be passed directly from DC into

registers in the other CU subunits, although this is possible. The TMU input
register (TRI) can be loaded with 64 bits of information which is accessible
using the normal ADVAST instruction set. It is also possible to set a maskable

interrupt bit to notify ADVAST that the TRI contains information,

DIAGNOSTIC FEATURES

To facilitate both automatic and manual diagnostic and maintenance activities,
several features have been incorporated in the TMU. The TMU condition
control register (TCC) permits the major sections of the Control Unit, including
ILA, MSU, ADVAST, and FINST, to be decoupled from the rest of the system
to minimize side effects when debugging is in progress. This is accomplished
by setting the Ilold or Loc
instructions and specifying the unit. The Lock bit can only be changed by use

of another set-transmit instruction. The Hold bit can be changed by either
another set-transmit instruction or by the logic of the TMU which will tem-
porarily turn on the clock for the execution of an instruction sent by the DC,

and then turn off the clock. A repeat control is also included, The TCC can

also enable the issuance of interrupts to the B6700 dependent upon the comparison
between a test value and the value obtained from a CU register. The comparison
is mechanized in the TMU data comparator (TDC), which can be used to set a
value in the TMU condition indicator register (TCI). It is also possible to

freeze the instruction counter for diagnostic purposes. The TCC .is loaded by
means of a Set Right Transmit (SRT) instruction. Setting the address 1 portion
of the instruction word to the address of the TCC causes the least significant

16 bits of the data field to be loaded into the TCC. The bit configuration is
described in Table 5-2.

5-9

TMU DISPLAY

The TMU display provides the means by which the contents of certain CU
registers, controls, and data buffer locations may be monitored. Opera-
tion of the TMU may be accomplished automatically under program control,
or may be done manually using the TMU control panel and keyboard.
Normally, requests for the display of multiple CU registers are handled
programmatically, with manual initiations being limited to those required

during detailed debugging or diagnostic operations.

The display will present the contents of all registers established by the
operator or by program control. The updating of display data occurs at
operator request or upon the completion of any instruction causing the CU to
be left in a new static state. The display capability includes approximately
50 registers, 64 locations of the ADVAST data buffer (ADB), and various
controls dispersed throughout the five major functional areas of the CU, as
listed in Table 5-1 (page 5-6). Hereinafter no distinction is made
between the types of logical elements displayed, all of them being referred

to as CU registers.

The display logic requests register data from the CU by inserting an instruc-
tion in the TMU's command register (TCR). Thke instruction is a Scan Out
Data (SOD) with the proper address inserted in TCR 8:8. The display inter-
face card (T-DISP) in the TMU formats the data as required and transfers

it, bit serial, to the display where it is stored in core memory. This data
is then used to refresh the operator's CRT display. Any data available to

the B6700 is also available to the display in this manner.

5-10

The CRT screen accommodates a 40-line display of 53 characters per line.
This provides for the display of two full 64-bit registers in octal format on
the same line as follows:

MMMXXXXXXXXXXXXXXXXXXXXXX NNNXXXXXXXXXXXXXXXXXXXXXX
where "MMM " and "NNN" represent the mnemonics of the registers being
displayed and "X...X'" represent the 22 octal characters for each of the

registers.

Provisions are made for a read-back of register address information so that
the operator can at any time check the source of the displayed data. To do
this, he presses the VIEW pushbutton on the control panel. The address
information is then displayed in place of the data display. The presentation
for the above 64-bit registers would appear as follows:
MMM 0000000000000000DDDCCB° NNN0000000000000000DDDCCB
where MMM and NNN are the register mnemonics as before,

DDD is the octal encoded contents of the address field,

CC is the octal encoded contents of the format field,

B is the binary/octal control bit.
Note that this format contains the same number of characters as the display
it replaces. Zeros appear in the appropriate number of positions to the left

of the leading character of the octal address.

The display will accommodate any mix of allowable register lengths and
will be in exact multiples of 3-bit groups for octal displays or in the exact
register bit length for binary displays. Further, any mix of binary and
octal displays is allowed at the same time, at the discretion of the initiator
(programmer or operator). The maximum register length that can be
displayed is 64 bits binary (22 octal characters) and the minimum length

is 6 bits if the display is binary or 18 bits (6 octal characters) if the display
is octal. Displays for registers having a length shorter than the minimum
will have zeros inserted in the appropriate number of left-hand bit positions.
The leading bit position of the register contents is displayed left-justified
(to the last filler zero if used), the only variations being produced by the

optional formatting characters that may precede register mnemonics.

o-11

The display is free form in that registers are displayed in the same order

in which they are initiated, without regard to size or address. No protection
is afforded against a register being split, such that part of its contents may
be displayed at the end of one line and the remainder at the beginning of the
next. However, the initialization procedure is operable at any time, so that
additions or corrections may be made to the list of displayed registers.
Thus, the operator can, whenever he chooses, insert a carriage return

before the mnemonic of a split register to eliminate the carry-over.

INITILIZATION

In order to initialize or set up a register for future display, the register
mnemonic must be entered in display memory. To cause the display to be
in binary form instead of the standard octal, the mnemonic is preceded by

a comima.

The TMU keyboard utilizes a system of coding such that a three-character
keyboard entry fully defines the CU register to be accessed for a display

of its contents. For purposes of this display system, the keyboard tabs

are assigned octal positions in an 8 X 8 matrix such that any two octal num-
bers define a unique position on the keyboard. (See Figure 5-2.,) The first
digit of a two-digit number refers to one of rows 0 through 7 proceeding
from top to bottom of the matrix; the second digit, which defines the position
within a row, refers to one of columns 0 through 7 proceeding from left to
right through the matrix. For example, the octal number "32" would refer
to the tab at the unique position established at the fourth row down, third

column in from the left side.

2 A|B|C|D|E|F |G
3|H | T+)] %
4| — | J | K|L|M|N|@ P
5/ Q| R L |

© |SPACE| / S T U vV | W X

Figure 5-2, TMU Display Keyboard Character Set
To initialize the TMU display manually, the operator uses the following
procedure:
1, Depress FIELD key;
2. Enter 3-character mnemonic on keyboard (preceding comma optional);
3. Enter any desired formatting (e. g. I, space, new line, etc.);

4. Repeat (2) and (3) for each register display desired.

-13

()]

The mnemonic will always be displayed ahead of the register contents. After
the register mnemonic is entered, the display automatically generates the
necessary load signals to signify the end of that register. All data entered

from the keyboard is stored in memory, as it is typed, after the field identifier.

TMU INSTRUCTION SET

This section presents descriptions of the instruction set for the TMU. Each
flow chart ends with the notation "O.C.", which signifies "operation com-
plete''. This means that the TMU is free to accept a new command from the
DC as soon as the TMU has accomplished its function. Thus, instructions
such as RUN, which requires that processing in the rest of the CU be initiated
in the TMU, are ready for "complete' as soon as the TMU portion of the oper-
ation has been completed. The instruction repertoire for the TMU is pre-
sented below, followed by the instruction descriptions, which appear in the

same order as listed.

Mnemonic Octal Op Code

Op Code TCR 0:8 Operation
EFA 160 Execute from ADVAST instruction register
EFF 164 Execute from FINST
LICR 041 Lioad instruction counter
LISR 040 Load breakpoint register
RPT 001 Repeat latch set (TCC3)
RUN 020 Run
SA 007 Set all (TRI)

SL 006 Set left (TRI)

SR 005 Set right (TRI)

SAT 047 Set all transmit (TRI)
SLT 046 Set left transmit (TRI)
SRT 045 Set right transmit (TRI)
SIS 120 Single step

SIV 100 Set to initialize value
SOC 011 Scan out compare

SOD 010 Scan out data

TIC 121 Trigger I clocks

TOC 002 Timing oscillator connect
WIS 044 Write instruction storage

()]
1
—
o

MNEMONIC CODE: EFA

OPERATION: Execute from ADVAST Instruction Register

TCR:

160 //) PE OR ADVAST INSTRUCTION

o] 78 16 47

DESCRIPTION: The instruction contained in the data field is sent to the
ADVAST instruction register (AIR) in the CU from where it is executed. The
CU stops when processing of the instruction has been completed at all
applicable CU subunits. Parity is not checked on the instruction. The instruc-
tion assumes that ADVAST and FINST are not locked, and further, that the MSU
is neither held nor locked if o memory operation or PE indexing i=
required by the executed instruction (TCC8, 9, 11, and 13 are zeros).

If bit 8 is true, a single clock option 1s invoked., All clocks arc =hut

off after ADVAST receives the X2 control to sturt the instruciion and
the TMU will exit, leaving those clocks off. If the ADVAST mstruction
is LIT, it will not complete, If the ADVAST instruction is BIN ¢ | OAD
with an ADB address, it will complete only upon the execution of the
next ADVAST instruction, whether called for by EFA or otherwisc,

FI.OW CHART: See next page.

-16

(2]

ENABLE CLOCKS TO
ADVAST AND FINST
(0—e= TCC10,12)

TCR 16:32—% AIR 0:32

START
ADVAST

EXECUTE THE INSTRUCTION
IN AIR COMPLETELY

HOLD CLOCKS FROM
ADVAST AND FINST
(1—s TCC10,12)-

s\ e
?

REPEAT SET
(TCC3=1)

NO

5-17

MNEMONIC CODE: EFF

OPERATION: Execute from FINST

TCR:

r ADDRESS 1
164 / / FIQ

DESCRIPTION: As soon as the queue is not full, the FINST instruction is
transferred from the TCR to the FINST instruction queue. The FINST data
queue is loaded with a 64-bit value which is taken from the Test/Maintenance
Panel data keys or the input register (TRI)., Address 1 being "one' specifies
the TRI and being '"'zero' specifies the data keys. This instruction assumes
that FINST is not locked and that the MSU is neither held nor locked if a
memory operation is required by the FINST instruction (TCC8, 9, and 13
are zeros).

If TCR 8 is set, the contents of TRI will be sent to the data queue (FDQ)

and TCR 16 to 47 will be sent to the instruction queue (FIQ). If TCR 8 is not set.
the Data Switches will be sent to the data queue (FDQ) and the TCR switches 16
to 47 will be sent to the instruction queue (FIQ).

If the instruction is a STORE the first (relative) queue position will be filled as
above. The next instruction queue will be filled with zeros. The accompanyving
data queue will be filled with the contents of TRO.

Data destined for the instruction queue should be formatted the same as if it
were to be preprocessed by advast. The instruction will be packed into twelve
bits at AGF. Note that any advast preprocessing, such as indexing, will not
be done. |

FIOW CHAR'T: See next page.

TRI 0:64 — FDQ

EFF

l«

ENABLE CLOCKS
TO FINST (0—w TCC 12);
FINST INSTRUCTION
—& F'IQ

YES

DATA KEYS 0:64 —» FDQ

an

TRO —» FDQ
00— FIQ

FINST EXECUTES
INSTRUCTIONS

FROM THE
QUEUE

!

VES FIRST PASS
OF STORE
INSTRUCTION?

_lNo

HAS FINST

EXECUTED
ALL QUEUED
INSTRUCTIONS?

IS REPEAT VES

SET ?
(TCC 3=17?)

HOLD CILOCKS FROM FINST
(1—®TCC 12)

5-19

MNEMONIC CODE: LICR

OPERATION: Ioad Instruction Counter (ICR)

ICR:

041 / INSTRUCTION ADDRESS

0 7 23 47

DESCRIPTION: The low order 25 bits of the TCR are transferred into the
instruction counter (ICR). Subsequent instructions will be fetched and
executed beginning with this address value.

FIL.LOW CHART:

LICR

TCR 23:25—ICR 0:25

REPEAT SET
(TCC3=1)7?

-20

5

MNEMONIC CODE: LISR

OPERATION: Load Breakpoint Register (ISR)

TCR:

040 / // BREAKPOINT ADDRESS
A

[¢] 7 23 47

DESCRIPTION: The low order 25 bits of the TCR are transferred into the
breakpoint register (ISR). Should the contents of the instruction counter
register (ICR) become equal to the contents of the ISR while the CU is run-
ning, the CU will come to an orderly halt as though an ADVAST halt instruc-
tion had been executed. The instruction at the breakpoint address will not be
executed and TCI 5 will be set which will cause an interrupt to be sent to the
B6700. '

FLOW CHART:

LISR

=

TCR 23:25 —8 ISR 0:25

|
Y

IS
REPEAT SET
(TCC3-=1) 7

Y ES

MNEMONIC CODE: RPT

OPERATION: Repeat

TCR:

Y/

o] 7 8 47

DESCRIPTION: The TMU will repeat the next instruction indefinitely.
The iteration will end whenever a quadrant disable is received or TCC3
is reset, or when the desired comparison is made on an SOC instruction.

After each iteration of a repeated instruction, a check is made to deter-
mine if the I/O has generated a request to the TMU. If so, the TMU will
answer the request.

FLLOW CHART:

RPT

SET REPEAT LATCH
(1—TCC3)

5~22

MNEMONIC CODE: RUN

OPERATION: Run

TCR:

w g

DESCRIPTION: The CU begins processing instructions starting at the
location specified by the instruction counter (ICR). The CU will continue
to execute instructions until it recognizes any of the conditions that will
cause it to stop or halt (including breakpoint).

FLOW CHART:

RUN

l

BEGIN EXECUTING INSTRUCTIONS
AT THE ICR ADDRESS

9-23

MNEMONIC CODE:

SA, SL, SR

OPERATION: Set All, Set Left, Set Right (Set TRI)
TCR:
SA 007 % DATA
] 7 > 16 47
SL 006 7 DATA
0 7 16 47
SR 005 / DATA
o 7 16 47
DESCRIPTION: The contents of the data field are duplicated into both

halves of the TMU input register (TRI), or replace the high-order or low -
order 32 bits of this register, depending upon the operation code of SA,
SL, or SR respectively.

NOTE: If the TRI is loaded and not read, this instruction will be treated as

an illegal instruction.

FLOW CHART:

SET TRI

l

\No
OP CODE =SL ?

)

YES

TCR 16:32 —» TRI 0:32

OP CODE =84 > }ho
, (SR)

lYES

TCR 16:32 —» TRI 0:32

l

TCR 16:32 —% TRI 32:32 j[t——

!

MNEMONIC CODE: SAT, SLT, SRT

OPERATION: Set All Transmit, Set Left Transmit, Set Right Transmit

(Set TRI Transmit)

TCR:
SAT 047 ADDRESS 1 DATA
[¢] 7 8 15 16 47
SI.T 046 ADDRESS 1 DATA
o 7 8 15 16 47
SRT 045 ADDRESS 1 DATA

o 7 8 15 16 47

DESCRIPTION: The contents of the data field are duplicated into both
halves of the TMU input register (TRI), or replace the high-order or low-
order 32 bits of this register, depending upon the operation code of SAT,
SLT, or SRT respectively. The contents of TRI are then transferred to
the register addressed by the address 1 field. If this field specified TRI,
then no data is moved and the '"TRI loaded'' bit in the ADVAST interrupt
register (AIN 15:1) is set.

SET TRI TRANSMIT OP CODE = SAT ? NO
(SRT)
¢ lYES

NO
(op CODE = SLT ?>— TCR 16:32 —» TRI 0:32
lYES l

T@R16:32 —» TRI 0:32 T@R16:32 —» TRI 32:32 |g—no
F |
1= > O 10:64 —» REG 0:64
ADDRESS1 = TRI ¢ TRI O: (ADDRESST) ©F

& YES

SET TRI LOADED
BIT IN ADVAST INTERRUPT
REGISTER (AIN 15:1)

B-25

MNEMONIC CODE: SIS

OPERATION: Single Step

TCR:

w /...

DESCRIPTION: The non-overlap mode is set. The CU executes the
instruction addressed by the instruction counter (ICR) and stops when the
instruction has been processed at all applicable CU subunits.

FLOW CHART:

SIS

l

EXECUTE ONE INSTRUCTION
COMPLETELY AND STOP

OPERATION:

TCR:

w g

DATA

DESCRIPTION:

caused to be set to their machine idle state.

36 a7

The registers or controls indicated in the data field are
In general, counting and in-

dicator registers are reset (to zero) by this operation. Any combination
of accessible registers and controls may be initialized by this instruction,
A "one'' in the corresponding bit positions of the data field will cause the
following registers to be initialized:

TCR Bit

47
46
“ 45

44
43
42
41

Register

TCI
TCC
MCO

MC1, MC2

MSU Controls
IAM Presence Bits
ILA Controls

FLP
FRP
FIR

FINST Controls

Initialized Value

Zero (except indicators TCl 0:8)
Zero

Own quadrant bit set, all others
reset

High order bit set, all others
reset

Idle state

Vacant

Idle state

Bit 0 set, all others reset
Bit 0 set, all others reset
Zero

Idle state

TCR Bit

40

39

38
37

36

U

R.e gister

FCC
FTC
FOC
AIT

ADVAST CONTROLS
ADC

ALR
ACR (and other
controls)

AIN, AMR
ACO0,1,2,3

TRO, TRI

Initialized Value

Zero
Zero
Zero
Zero
Initial State
Zero
Zero

(See table below)

Zero

Interrupt Index value —ACO
0 - AC1, 2, 3

Zero ~ TRI
One - TRO

" Performed only if quadrant is disabled or if in "Local" operation.

The SIV instruction is executed under program control via the TMU. The

symbols in the table below have the following meaning:’

NC - bit remains unchanged
S - set bit

R - reset bit

ACR Bit

Number SIV
0 NC
1 R
2 S
3 R
4 NC
5 R
6 NC
7 NC

5«28

ACR Bit

Number SIV
8 R
9 NC
10 NC
11 NC
12 R
13 S (NC for the interrupt SIV instruction)
14 R
15 R

FLOW CHART:

SIvV

HALT CU
VIA ISC

y

YES QUAD ‘\ NO

DISABLED OR ,
l K LOCAL? / l

INITIALIZE INITIALIZE
TCR(36:12) TCR(36:8)
TCR(46:2)

5-29

MNEMONIC CODE: SOC

OPERATION: Scan OQut Compare

TCR:

011 ADDRESS 1 [CS W//////////M

o] 7 8 15 16

DESCRIPTION: Nothing happens until the ILA has relinquished control to the
TMU. Then, if the TRO is already loaded for transmission, the instruction
is bypassed. If the TRO is not already loaded, the contents of the register
specified by the ADDRESS1 field are sent to the comparator (VALUEL). At
the same time if the CS bit equals "one'', the contents of TRI are sent to the
comparator (VALUE2); if the CS bit equals "zero', the Test Maintenance Panel
data switch configuration is sent to the comparator (VALUE2). If VALUEL1
equals VALUE2, the TCL EQUAL BIT is set in the test condition indicator
register (TCI2). Further, if VALUE1 equals VALUE2, and the "interrupt
DC on equal bit'(TCC5) is set, or, if VALUEL does not equal VALUE2, and
the "interrupt DC on unequal bit'(TCC4) is set, thén the following steps are
taken:

(a) The TRO is loaded with the contents of the register specified
by ADDRESS1;

(b) Bits 8 through 15 of the TCI register are loaded with the
address of the register specified by ADDRESSI;

(c) The "'left half loaded'(TCI6) and "right half loaded(TCIT)
bits are set in TCI; and

(d) TCI3 is set, causing the DC to recognize an interrupt from
the TMU.

FLLOW CHART: See next page.

5-30

SOC

YES / TRO

1 LOADED
?

\
J

NO

GADDRESS 1)
- COMPARATOR
(VALUE 1)

YES/ CS BIT |NO

l

=/

:

TRI 0:64 DATA SWITCHES
—~ COMPARATOR > —~ COMPARATOR
(VALUE 2) T (VALUE 2)
/ VALUEl 0:64
YES NO
1 VALUE2 0:64 |
_ /
TCC4 =
1—TCI 2:1
(TCL EQUAL (INTS)(E:{%UNPT | NO
BIT) UNEQUAL)?
YES
TCCbH =17 REG A pprEgs1) 0:64
(INTERRUPT \ YES —~ TRO 0:64
DC ON ™ ADDR
EQUAL?) / (REG(s bprESS1)
G —~ TCI 8:8
1—=TCI 6:1
(LEFT HALF LOADED)
4 1=TCI 7:1
(RIGHT HALF LOADED)
1-TCI 3:1
(INTERRUPT CDC)

5-31

MNEMONIC CODE: SOD

OPERATION: Scan Out Data

TCR:

w T 777222

[¢] 78 i5

DESCRIPTION: Nothing happens until the ILA has relinquished control to
the TMU. Then if the test output register (TRO) is already loaded for trans-
mission the instruction is bypassed. If the TRO is not loaded, its contents
are replaced by the contents of the register specified by the address 1 field.
Bits 8 through 15 of the test condition indicator (TCI) are loaded with the
address of the register specified in address 1 and the "Jeft half loaded' and
"right half loaded" bits are set. All other TCI bits are left unaltered.

FLOW CHART:

SOD

l

0:64 —» TRO 0:64

l

ADDRESS1 —» TCI8:8
1—» TCIT7:1
i—» TCIG:1

REG) ppRESS 1)

5232

MNEMONIC CODE: TIC

OPERATION: Trigger I Clocks

TCR:

121 ADDRESS 1/ /// / // A

o] 7 8 15

DESCRIPTION: All enabled stations are advanced through the number of
clock pulses given in the address 1 field.

FLOW CHART:

TIC

y

EXECUTE THE NUMBER OF
CLOCK PULSES GIVEN IN ADDRESS 1

MNEMONIC CODE: TOC

OPERATION: Timing Oscillator Connect

- %////W///////////

DESCRIPTION: This instruction selects one of two frequencies that con-

trol the speed at which the ILLIAC IV quadrant will operate. The frequency

is specified in the high order bit of address 1. If this bit is "one", the quadrant
will operate at one-sixteenth the normal frequency. All instructions or opet -
ations within the CU subsequent to the issuance of this instruction will be per-

formed at the selected frequency.

FLOW CHART:

TOC

l

SELECT THE CLOCK FREQUENCY
SPECIFIED IN ADDRESS 1

5-34

MNEMONIC CODE: WIS

OPERATION: Write Instruction Storage

TCR:

0 7 10 15 27 47

N\

DESCRIPTION: The contents of the TRI are transferred to the instruction
storage word specified in the address 1 field. The 21-bit data field is trans-
ferred to the associative memory in the instruction lookahead unit (ILA) into
the word specified by the address 1 field (three high-order bits) and the
"present'’ bit set in the word. The address 1 field (bits 10-15) are defined
as follows:

Block
Word in block

Bits 10-12
Bits 13-15

1

Bits 10-12 define one of eight blocks in IWS, and bits 13-15 define one of eight
words within the block. The 21-bit data field corresponds to the array ad-
dress (less the three PUC bits) from which the ILA unit will assume that

the instruction was fetched.

FLOW CHART:

WIS

l

TRI 0:64 —» INSTRUCTION STORAGE(ADDRESS 1) 0:64

|
Y

TCR 27:21 —» ASSOCIATIVE MEMORY WORD(TCR 10:6) 1:21
] —» ASSOCIATIVE MEMORY WORD 0:1

SECTION VI
INSTRUCTION TIMING

In addition to the obvious parallelism of the array computer, there is
parallelism (overlap) in ILLIAC IV between consecutive instructions in the
instruction stream. Four significant mechanisms for achieving overlap are:"

a. Parallelism between ADVAST and FINST, which are operating on
different instructions in nearby portions of the instruction stream;

b. Parallelism between automatic hardware actions which are called
upon to complete certain instructions, and the execution of sub-
sequent instructions; and

c. Parallelism between noninterfering portions of successive FINST /PE
instructions.

d. Parallelism between MSU operations and non-interfering
FINST/PE instructions which use common data paths.

The first and primary source of overlap is the execution of instructions at
two relatively independent stations, ADVAST and FINST. An instruction
queue, FINQ, exists between these two stations to smooth the flow of instruc-

tions through both stations.

The second source of overlap is the completion, in ADVAST, of certain in-
structions after the start of subsequent instructions. An example is the ADVAST
instruction, BIN. After ADVAST has initiated the memory access of BIN, the
instruction is sent on to FINST (and the MSU) to be completed while ADVAST
processes subsequent instructions, Only if ADVAST needs to use the data

which have not yet been fetched by BIN, will ADVAST become idle while

waiting for the data. Thus, the access time from ADVAST to memory, which

6-1

FIR

FIAR

Figure 6-1.

-—
- - -

FINQ

n+1

BUSY -BIT

l

Y
~
Y
BUSY-BIT
REGISTERS

FINST Overlap Structure

6-2

DECODE [

FOR

FOAR

is long compared to the ADVAST clock cycle time, is overlapped with other
ADVAST operations. Another example is arithmetic overflow in the PE.
When an arithmetic overflow occurs, it takes time for the fault bit to reach
the CU and cause an interrupt. However, the PE does not wait for the
interrupt to occur before starting to execute the next instruction, Therefore,
the FINST/PE ADD instruction is'not quite finished while the next instruction

in the PE is being executed.

The third source of overlap is provided by two execution stations within FINST.
These stations are called the early, or overlap (''O") station, and the late, or
instruction execution ("I") station. Each station contains a register, FOR or
FIR respectively for the two stations, which receives the next instruction |
from the instruction queue, FINQ, and examines the instruction to determine
when it is time to start the instruction execution. The actual execution of the
instruction is carried out from a second register, FOAR or FIAR respectively.
The "A'" in their designation indicates that these registers serve as the address
register for the microprogram storage at FINST. The two stations receive
their inputs from neighboring slots of the instruction queue, FINQ. The
stations also share a group of "busy bit registers' which record the parts of
the PE that are needed by unexecuted instructions in the instruction station.

This mechanism is shown in Figure 6-1.

The fourth source of overlap is the interlacing of operations over common
data paths by the MSU and FINST. The common data paths consist of the
signal buses between the CU and the MLU, and between registers of the MLU.
For instance, the MSU could be executing a number of memory operations

while FINST was executing instructions which do not require memory accesses.

In any calculations of execution time of an instruction stream, the individual
mechanisms for achieving overlap, which appear reasonable and straight-
forward by themselves, cause great difficulty when taken collectively. There-

fore, a listing of instruction execution times must of necessity be qualified

6-3

with statements of conditions to the extent that the time savings accruing from
the compound overlap of ILLIAC IV will be incorporated. An algorithm for
the approximate timing of ILLIAC programs is to divide the program into
sections, each section having consistency in the ratio of ADVAST to FINST/PE
instructions. Then, determine for each section whether the ADVAST or

FINST/PE time is longer, and sum the longer times of each section.

Some exceptions to this simplified algorithm should be noted. Some instructions
require a variable amount of time depending upon some variant such as the
address field. For example, STL(MCO0) will require more time for execution
than STL(ADB) because the effect of MCO on FINST/PE instructions must be
waited for before the actual change is made. Similarly, shifts of zero length
require less time than shifts of any other length. Also, additional time is taken
by the fetching of instructions. Each block of instructions fetched (see Section I,
Fetching the Program) requires atime equaltothe time of a BIN instruction, assuming
these fetches are not delayed by higher priority memory requests (see Section
III, ILLIAC IV Addressing). With regard to FINST/PE instructions, the total
run time at FINST is somewhat shorter than the sum of the FINST/PE in-
struction times. Operations which occur at the beginning of instructions, and
which are overlapped with the preceding FINST/PE instruction, are generally
memory fetches, other uses of the common data bus, and register-to-register
transfers. In routing the transfer from source register to RGR is executed

from the overlap station, and the transfer between PE's is executed from the

normal execution station,

Instructions with their corresponding execution times expressed in clock times
are given in the following tables: ADVAST Instruction Timing, Table 6-1,
and FINST/PE Instruction Timing, Table 6-2 .

)

>;TMU instruction timing has been omitted since the use of TMU instructions
in manual mode precludes the need.

6-4

In Table 6-1, instruction times are given in terms of the number of clock
cycles required to execute the instruction at ADVAST in the CU, and where
applicable, at FINST in the CU, and at the PE. The execution time of a
sequence of ADVAST instructions, at ADVAST, is the sum of the times listed
in the CU-ADVAST column. The times given in the CU-ADVAST column
assume single quadrant operation and therefore do not include the time required
for synchronization at the various CU stations in a multiquadrant configuration.
In addition, the times given in the CU-ADVAST column do not include waits
caused by FINQ being full or memory access time, i.e., LOAD or BIN operations,
if required. Eight ADVAST instructions (BIN, BINX, LOAD, LOADX, LDC,
SETC, STORE, STOREX) require execution time at FINST in the CU and at the
PE in addition to the execution time given in the CU-ADVAST column. These
times are given in the CU-FINST and PE columns and are the same for both
32-bit and 64-bit modes of operation. The BIN or BINX operation requires 36
clock times to complete, however, the instruction requires only 2 clock times
at ADVAST before the next instruction, if allowed, can start executing. After
FINST, PE, and memory access times have been expended on BIN or BINX,

an additional 16 clock times at ADVAST are required while the information is
loaded into ADB. The execution time added by a BIN or BINX in the program
can therefore be either 2 clock times (the delay until the start of the next
instruction), or 18 clock times (the total ADVAST time), or 36 clock times

(the elapsed time from beginning to end), or some intermediate number de-
pending upon the details of the instruction stream at ADVAST, as noted pre-
viously. In the case of LOAD and LOADX, a similar situation applies, except
that the ADVAST time required by the returning data is only 2 clock times.

In the case of STORE and STOREX, ADVAST is finished with the instruction

as soon as it passes it on to FINST via FINQ. In the case of LDC and SETC,
the FINST and PE operations are required to be simultaneous with the ADVAST
operations, so that the instruction cannot start until FINST is finished with

the previous instruction(s). Therefore the minimum (assuming that execution

time is ADVAST limited) and maximum (depending on the amount of overlap
that can be achieved with other ADVAST instructions) execution times for these

eight instructions are:

Minimum Maximum
BIN 19 36
BINX 19 36
LDC 17 17
LOAD 4 20
LOADX 4 20
SETC 17 17
STORE 4 4
STOREX 4 4

The execution time of the instructions at the PE is not longer than the sum
of the times listed in the CU-FINST and PE columns, and can be less because
of the capability of the PE sequencer to sometimes overlap noninterfering

portions of successive instructions, resulting in the FINST time being masked.

In Table 6-2, instruction times are given in terms of the number of clock

times required to execute the instruction at the PE. All FINST/PE instruc-
tions require one clock time for execution in ADVAST or two clock times if
ACAR indexing is required. Also, any time FINST becomes idle, two clock
times must be added to the next FINST/PE instruction. Except for waits caused
by an idle FINST, or memory access if required, the execution time of a sequence
of FINST/PE instructions is no longer than the times listed in the appropriate
PE mode columns. The times given are those appropriate for the operand
being found in the RGA and in the RGB or RGR as is appropriate to the
instruction. When a second operand is required and is not found in the RGB

or RGR, a memory access time of seven clock times or a literal or register

transfer of one clock time must be added. Examples of minimum (overlap)

and maximum (no overlap) execution times, assuming no memory access
or register transfer is required, 64-bit mode of operation, and subject to

other conditions given in Table 6-2, for several FINST/PE instructions are:

Minimum Maximum
ADD 1 2
SUB 1 | 2
ML 8 9
DVM 52 53

6-17

Table 6-1. ADVAST Instruction Timing
Mn(e:r;:ioenic Operation CIOCCIII{ s N ?;Z?d Notes
ADVAST| FINST| PE™
ALIT Add literal to address field of ACAR 2
BIN Block fetch from PE memory to ADB 18 2 1 Yes a,b, c
BINX Block fetch (RGX-indexed) from PE memory to ADB 18 2 1 Yes a, b, c
CACRB Set/Reset n'h bit in ADVAST control register 2 d
CADD Add 1local memory to ACAR 3
CAND Logical AND of local memory and ACAR 3
CCB Complement nh bit of ACAR 6 e
CEXOR Logical exclusive OR of local memory and ACAR 3
CLC Clear ACAR 2
COMPC Complement ACAR 2
COPY Copy ACAR 4 Yes
COR Logical OR of local memory and ACAR 3
CRB Reset nth bit in ACAR 6 e
CROTL Rotate ACAR left (end around) 3 e
CROTR Rotate ACAR right (end around) 3 e
CSB Set nfh bit in ACAR 6 e
CSHL Shift ACAR left (end off) 3 e
CSHR Shift ACAR right {end off) 3 e
CSUB Subtract local memory from ACAR 3
CTSBF Skip if ntP bit in ACAR is not "one" 4 Yes |gh
CTSBT Skip if nth bit in ACAR is "one" 4 Yes { g, h
DUPI Duplicate inner-half of ADB mnemory word 3
DUPO Duplicate outer-half 6f ADB memory word 3
EXCHL Exchange local operand and ACAR 3 i,o
EXEC Execute 4 j
FINQ Stop ADVAST until FINST is idle 2 k
HALT CU comes to orderly idle state 2 k,1
INCRXC gda?rgief%glAd%X field of ACAR by increment field of 3
INR Return to normal processing after interrupt 20 b,k,1, m,n
JUMP Jumpto address in ADR field 2 g
LDC Transfer specified PE register to ACAR 17 2 1 vk, m, f
LDL Load from local address 3
LEADO Find leading "one" in ACAR 5 Yes
LEADZ Find leading 'zero" in ACAR 5 Yes
LIT Store next 64 bits in ACAR 4 1
LOAD Word fetch from PE memory to CU local memory 4 2 1 Yes | a,b,c, 1,0t
LOADX \i/_?rfi fet_ch (RGX-indexed) from PE memory to 4 2 1 ves la,b ¢, i ot
CU local memory 2.

“PE clock times are the same for 32-bit or 64-bit mode of operation.

6-8

Table 6-1. ADVAST Instruction Timing (Cont.)
Clock Times
Mnemonic Operation CU w Sync Notes
Code PET Req'd
ADVAST | FINST
Inclusive-OR of operand in ACAR of all
ORAC CUs executing the instruction 2 Yes
SETC Specified mode bit from PEs to ACAR 7 14 14 k, f
SKIP Skip forward/backward 4 g.h
SLIT Replace address field of ACAR 2
STL Store ACAR in local address 3 o
STORE Store from local address into specified PE location 4 3 3 c.p
STOREX Store from local address into specified PE 4 3 3 c,p
location (RGX-indexed)
TCCW Transmit ACAR counterclockwise (to next lower 2 Yes
numbered CU)
TCW Transmit ACAR clockwise (to next higher 2 Yes
numbered CU)
Test-Skip Test and skip conditionally:**
EQLX- L. . . 6 Yes | g
“TA-T-FA-F Skip if ACAR 40:24 equal operand 40:24 5 Yos P
GRTR- i oA - ; ; X 6 Yes q.
“TA-T-FA-F Skip if ACAR 40:24 are greater than operand 40:24) Yes o
LESS- L . . 6 Yes q
“TA-T-FA-F Skip if ACAR 40:24 are less than operand 40:24 3 Yes e
ONES- o . " " 4 Yes 1 9
“TA-T-FA-F Skip if ACAR 0:64 are all ‘ones = YVes o
ONEX- PR . " " 4 Yes q.
“TA-T,-FA-F Skip if ACAR 40:24 are all ones = Yes i
SKIP- . . 2 Yes q
“TA-T-FA-F Skip dependent upon CU true/false flip-flop 5 Yos | g v
TXE- - . . oA s 5 Yes q
“TA-T-FA-F Skip if ACAR 40:24 equal bits 16:24 in local memory g Yes ar
TXE- Skip if ACAR 40:24 equal bits 16:24 (also, 40:24 6 Yes q
-TAM; TM;FAM;FM | are modified by 1:15) of same ACAR 8 Yes o, r
TXG- Skip if ACAR 40:24 are greater than bits 16:24 5 Yes q.
-TA,-T,-FA,-F in local memory 8 Yes g, r
TXG- Skip if ACAR 40:24 are greater than bits 16:24 6 Yes q
-TAM;TM;FAM;FM| (also, 40:24 are modified by 1:15) of same ACAR 8 Yes g, r
TXL- Skip if ACAR 40:24 are less than bits 16:24 in the 5 Yes q
-TA,-T,-FA,-F local memory 8 Yes | g, r
TXL- Skip if ACAR 40:24 are less than.bits 16:24 6 Yes q
“TAM;TM;FAM;FM | (also, 40:24 aré modified by 1:15) of same ACAR 8 Yes g, r
ZER- L) " " 4 Yes | g
“TA-T-FA-F Skip if ACAR 0:64 are all 'zeros = Vo5 o
ZERX- i s . 1" " 4 Yes 9
~TA-T, -FA-F Skip if ACAR 40:24 are all zeros = Yes g
WAIT Synchronize all CUs in array or join all 2 Yes
CUs specified by ADR 4:4 5 Yes s
TIO Send descriptor to I/0 4 Yes | u

/FPE c¢lock times are the same for 32-bit or 64-bit mode of operation.

""Variants of the Test-Skip instruction sample the condition of the true-false (TF) flip-flops, as follows:

Variant

F
FA
M

FAM

Meaning Variant
Any false T
All false TA
Any false, magnitude of modifier T™
only
All false, magnitude of modifier TAM

only 6-9

Meaning

Any true
All true

Any true, magnitude of modifier

only

All true, magnitude of modifier

only

Table 6-1. ADVAST Instruction Timing (Cont.)

NOTES

The words of ADB which are to be loaded by this instruction cannot be
referenced for the next 36 clock times (22 for the case of LOAD). Any
ADVAST instruction which references them before this time will cause
ADVAST to hang up until the fetched copy of the word has arrived in ADB.

CU-FINST time includes four clock times for sync.

CU-FINST clock times given for this instruction may be masked by over-
lap operation.

If CACRB13 is resetting ACR13, nine clock times are required.

Clock times given are for the normal case. For the NOOP case, two clock
times are required.

The clock times required for FINST and PE execution are concurrent with
ADVAST time.

Clock times given are for the case of no jump. Four additional clock
times are required if there is a jump and the block is present. If the
block is not present, an instruction fetch time of approximately 36 clock
times is required.

Plus one clock time if ILA adder is busy.

For MC's, one additional clock time is required.

Plus time for execution of instruction after it is loaded into AIR.
Plus time required for FINST to become idle.

Six clock times (minimum) required for ILA to complete Look-Ahead,
if necessary.

ADVAST time given assumes no wait for memory access.

Clock times given are for the case of ACRO1 set. If ACRO1 is not set,
two clock times are required.

If MCO, MC2, note'k" applies. If ICR, note 'g" applies. If MCO, MCI,
note "1' applies.

Clock times given include time for a memory access.
Test failed.
Test successful.

The special option WAIT requires additional time for JOIN in multi-
quadrant mode of operation.

6-10

Table 6-2. FINST/PE Instruction Timing

PE
Program Cleck Times
Mngg:j(;mc Operation 33 64 - Notes
Bit Bit
Mode | Mode
AD Add (ADR) to RGA. Variants are: 6 4
ADA Suffix Meaning 6 4
ADM A Unsigned 5 3
ADMA M Fixed point) 5 3
ADN N Normalized floating 6 5
ADNA R Rounded 6 5
ADR 10 6
ADRA _ 10 6
ADRN 10 7
ADRNA 10 7
ADB Add (ADR) to RGA in 8-bit bytes 1 1
ADD . Add 64-bit unsigned fixed-point numbers {(ADR) to RGA 1 1
ADEX Add (ADR) exponent field(s) to RGA exponents 1 1
ASB Place the sign(s) of RGA into the sign(s) of RGB 1 1
Boolean Operations: Place the result of the specified logical function of RGA ?// //
with (ADR) into RGA:
AND Logical AND of RGA with (ADR) 1 |1 B
ANDN Logical AND of RGA witlf; com;rlement of (ADR) 1 1
EOR Logical EXCLUSIVE-OR of RGA with (ADR) 1 1
EQV Logical EQUIVALENCE of RGA with (ADR) I 1
NAND Logical AND of complement of RGA with (ADR) 1 1
NANDN Logical AND of complement of RGA with complement 1 1
of (ADR)
NOR Logical OR of complement of RGA with (ADR) 2 2
NORN Logical OR of complement of RGA with complement 2 2
of (ADR)
OR Logical OR of RGA with (ADR) ' 2 2
ORN Logical OR of RGA with complement of (ADR) 2 2
Change RGA Bit. Perform the indicated operation on the specified RGA 7////// /m
bit:
CAB Complement bit(s) in RGA 3 2 a
CHSA Change sign bit(s) in RGA 3 2 a
RAB " Reset bit(s) in RGA 3 2 a
SAB Set bit(s) in RGA 3 2 a
SAN Set sign bit(s) in RGA 3 2 |a
SAP Reset sign bit(s) in RGA 3 2 ta
CLRA Clear RGA 1 1
COMPA Complement RGA 1 1

6-111

Table 6-2. FINST/PE Instruction Timing (Cont.)

PE
Program Clock Times
Mnemonic Operation Notes
Code 32-Bit |64-Bit
Mode | Mode
DV Divide RGA and RGB, double-length mantissa, by 65 53
DVA (ADR). Variants are: 65 53
DVM Suffix Meaning 63 52
DVMA A Unsigned 63 52
DVN M Fixed point 68 55
DVNA N Normalized 68 55
DVR R Rounded 66 54
DVRA 66 54
DVRM 64 53
DVRMA 64 53
DVRN 69 56
DVRNA 69 56
EAD Recover extended precision after floating-point add 13 13
ESB Recover extended precision after floating-point sub- 13 13
tract
GB Test for RGA greater than (ADR) in 8-bit bytes. 2 2
- . - . % %
(113) A (GIL) RGA arithmetic test to mode bit (for 32-bit mode, 77
result also goes to G or to H): / /
IAG Place result of test for RGA arithmetically 6 3
greater than (ADR) into I (and G)
IAL Place result of test for RGA arithmetically less 6 3
than (ADR) into I (and G)
JAG Place result of test for RGA arithmetically great- 6 3
er than (ADR) into .J (and H)
JAL Place result of test for RGA arithmetically less 6 3
than (ADR) into J (and H)
9 B Move RGA bit to mode bit: A
IB Transfer RGA bit(s) to I (and G) 5 3 a
ISN Transfer RGA sign(s) to I (and G) 5 3 a
IB Transfer RGA bit(s) to J (and H) 5 3 a
JSN Transfer RGA sign(s) to J (and H) 5 3 a

(HINLIMNEIGI L)

RGA logical test to mode bit (for 32-bit mode, results
gotoland G or to J and H):

.

ILE Place result of test for RGA logically equal to 2 1
(ADR) into I

ILG Place result of test for RGA logically greater 2 1
than (ADR) into [

ILL Place result of test for RGA logically less than 2 1
(ADR) into I

IME Place result of test for 7 - & mantissa logically 2 1

Y

equal to (ADR) mantissa into |

6-12

Table 6-2. FINST/PE Instruction Timing (Cont.)

PE
Program Clock Times
Mnemonic Operation Notes
Code 32-Bitl| 64-Bit
Mode | Mode
IMG Place result of test for RGA mantissa logically 2 1
greater than (ADR) mantissa into 1
IML Place result of test for RGA mantissa logically 2 i
less than (ADR) mantissa into I
JLE Place result of test for RGA logically equal to 2 1
(ADR) into J
JLG Place result of test for RGA logically greater 2 1
than (ADR) into J
JLL Place result of test for RGA logically less than 2 1
(ADR) into J
JME Place result of test for RGA mantissa logically 2 1
equal to (ADR) mantissa into J
JMG Place result of test for RGA mantissa logically 2 1
greater than (ADR) mantissa into J
JML Place result of test for RGA mantissa logically 2 1

less than (ADR) mantissa into J

(TlaLlm)yol z) RGA zeros or ones test to mode bit (for 32-bit mode,
results also go into G or H): %

ILO Place result of test for RGA logically equal to 2 1
all "ones" into I

ILZ Place result of test for RGA logically equal to 2 1
zero into 1

IMO Place result of test for RGA mantissa logically 2 1
equal to all "ones" into I

IMZ Place result of test for RGA mantissa logically 2 1
equal to zero into I

JLO Place result of test for RGA logically equal to 2 1
all "ones' into J

JLZ Place result of test for RGA logically equal to 2 1
zero into J

JMO Place result of test for RGA mantissa logically 2 1
equal to all "ones" into J

JMZ Place result of test for RGA mantissa logically 2 1
equal to zero into J

(TIINSIXNEIGIL) Index test to mode bit: 7 / Z

ISE Place result of test for (RGS) arithmetically 1 1
equal to (ADR) into I

ISG Place result of test for (RGS) arithmetically 1 1
greater than (ADR) into I

ISL Place result of test for (RGS) arithmetically 1 1
less than (ADR) into I

IXE Place result of test for (RGX) arithmetically 1 1
equal to (ADR) into I

IXG Place result of test for (RGX) arithmetically 1 1
greater than (ADR) into I

IXL Place result of test for (RGX) arithmetically 1 1

less than (ADR) into I

6-13

Table 6-2. FINST/PE Instruction Timing (Cont.)

PE
Program Clock Times
Mnemonic Operation N
Code 32-RBit | 64-Bit Notes
Mode | Mode
JSE Place result of test for (RGS) arithmetically 1 1
equal to (ADR) into J
JSG Place result of test for (RGS) arithmetically 1 1
greater than (ADR) into J
JSL Place result of test for (RGS) arithmetically 1 1
less than (ADR) into J
JXE Place result of test for (RGX) arithmetically 1 1
equal to (ADR) into J
JIXG Place result of test for (RGX) arithmetically 1 1
greater than (ADR) into J
JXL Place result of test for (RGX) arithmetically 1 1
less than (ADR) into J
11J) XGI Ind dd flow t de bit:
(117) XG ndex add overflow to mode bi //
IXGI Add (ADR) 48:16 to RGX; store overflow in 1 1
mode register bitI
JXGI Add (ADR) 48:16 to RGX; store overflow in 1 1
' mode register bit J
(1{J) XLD Index subtract underflow to mode bit:
IXLD Subtract (ADR) 48:16 from RGX; store comple- 1 1
ment of overflow in I
JXLD Subtract (ADR) 48:16 from RGX; store comple- 1 1
ment of overflow in J
LB Test for RGA less than (ADR) in 8-bit bytes 2 2
LEX Load RGA exponent(s) from (ADR) exponent(s) 1 1
ML Multiply RGA by (ADR). Variants are: 10 8
MLA Suffix Meaning : 10 8
MLM A Unsigned 10 8
MLMA M Fixed point 10 8
MLN N Normalized ; 10 9
MLNA R Rounded 10 9
MLR 10 8
MLRA : ’ 10 8
MLRM 10 8
MLRMA 10 8
MLRN 10 9
MLRNA 10 9
Mode Register Instructions: l.oad mode register bit from ACAR / A/
IL.LDE 1 1
T DEI Set.mode register bit. \-;vit'nl résult of . 1 1
logical function specified in instruction
LDEE1 address field. 1 1
LDG 1 1
I.DH 1 1
1.DI 1 1
1.DJ 1 1

6-14

Table 6-2. FINST/PE Instruction Timing (Cont.)
PE
Program Clock Times
Mnemonic Operation Notes
Code 32-Bit | 64-Bit
Mode | Mode
SETE Set mode register bit with result of logical 1 1
SETEI1 function specified in instruction address field 1 1
SETF 1 1
SETF1 1 1
SETG 1 1
SETH 1 1
SETI 1 1
SETJ 1 1
MULT For 32-bit mode, both halves enabled, multiply 12 12
RGA by ADR contents; leave inner double-
length product mantissa in RGA, outer in RGB
NEB Test for RGA not equal to (ADR) in 8-bit bytes 3 3
NORM Normalize 3 2
OFB Overflow bits of previous 8-bit byte instruction are 1 1
transmitted from RGC to RGB
7 Y,
N W WY,
RTG Transmit register (Y) of every PE to RGR of PE* 3 5 b
number (N+D) modulo a, where Y = a specified
PE register, N = initial PE no., D = routing dis-
tance, and a = number of PEsinarray (64/128 /256)
RTL Same as above, except single quadrant (a = 64) 3 3 b
SB Subtract (ADR) from RGA. Variants are: 6 4
SBA Suffix Meaning 6 4
SBM A Unsigned 5 3
SBMA M Fixed point 5 3
SBN N Normalized 6 5
SBNA R Rounded 6 5
SBR 10 6
SBRA 10 6
SBRN 10 7
SBRNA 10 7
SBB Subtract (ADR) from RGA in 8-bit bytes 1 1
SBEX Subtract exponent(s) of (ADR) from RGA exponent(s) 1 1
SCM Execute one cycle of a multiplication 2 2

6-15

Table 6-2. FINST/PE Instruction Timing (Cont.)

PE
Program Clock Times
Mnemonic Operation Notes
Code 32-Bit] 64-Bit
Mode | Mode
Shift Instructions: Shift: / /
RTAL Variant Meaning 2 1 a
RTAR SH|RT Shift | rotate 2 1 a
SHABL Al AB RGA|RGA + RGB 3 & | ¢
SHABR (single | double) 3 7| ¢
SHABML _iM Full register | mantissa 3 £ <
SHABMR LIR Left | right 3 " c
SHAL 3 1 a
SHAR 3 1 a
SHAML 2 1 a
SHAMR 2 1 a
STA Store from RGA to memory 1 1
STB Store from RGB to memory 1 1
STR Store from RGR to memory 1 1
STS Store from RGS to memory 1 1
STX Store from RGX to memory 1 1
SUB Subtract 64-bit unsigned fixed point number (ADR) 1 1
from RGA
SWAP Interchange (RGA) and (RGB) 1 1 a
SWAPA Interchange the inner and outer operands in RGA 2 2 a
SWAPX Interchange the outer operand of RGA and the inner
operand of RGRB 2 2 a
TCY T\ransfer data from CDB to MAR 1 1
TCYS Add RGS to CDB and store in MAR 1 1
TCYX Add RGX to CDRB and store in MAR 1 1
T3A Transfer contents of C register (RGC) to RGA 3 3
Transmit Instructions{ Transmit source data to register indicated in op 7 //
code. (Source is specified in bits 13:3 and 16:16.) // //// 7 /
LDA Transmit to RGA 1 1
LDB Transmit to RGB 1 1
LDD Transmit to RGD 9 9
LDR Transmit to RGR 1 1.
LDS Transmit to RGS 1 1
LDX Transmit to RGX 1 1
XD Subtract (ADR) 48:16 from RGX 1 1
X1 Add (ADR) 48:16 to RGX 1 1

a. If overlap does not occur, one (1
b. Routing times given are for D equa
times are either 1 + 4N (for RTG) or 1 + 2N (for RTL)
of distance eight and one required to make u

€. Deuwni€ LEisrd SHisTe S Ee&CUTED Doy o THE FIAST oo

PossiRe v ODUERLAP R SYIRCCEDIMG AL TAAUCTIDNS, LB T £ A NITT

NOTES

ol L e Tl & TR ST s

6-16

) additional clock time is required in both the 32-bit and 64-bit modes.
1 to plus or minus 1 or plus or minus 8, For other D's, the

where N is the number of elementary shifts

p the specified distance D,

ol > STATION, fIANL L4 THEEALRRLE

L DUESRLDSRIED e [T

CONTENTS

I/O SUBSYSTEM TIMING

Obtaining a Descriptor .

CU Response to Descriptor

Lioading Descriptors ifito Queuer - e e
Response Time of Disk to Descriptor Found inQueuer
Data Transfer Rates from Disk to Array .

Data Transfer Rates from BIOM to Array .

Data Transfer Rates Between B6700 and BIOM .

B6700 PERIPHERAL DEVICE TIMING .

SECTION vVII
PERIPHERAL TIMING

IO SUBSYSTEM TIMING

The I/O subsystem receives and passes on control actions from one portion of
the ILLIAC IV system to another. It also passes data from one portion to

another in response to controls.

Each action in the I/O subsystem is initiated by transmitting a command from
the B6700 to the I/O subsystem. This command causes the fetching of a

scriptor from memory. One of a number of things may happen in response

cn
a
u

to a descriptor, as follows:

1. A disk descriptor is written into the disk queuer, from which
it is executed. An option is that a "list" of descriptors can
be loaded into the queuer, or several lists, interlaced in the
same block of memory space, in response to a single

"initiate I/O" command.

2. A descriptor to read or write to the CU will cause action to
take place between the I/O subsystem and the TMU portion
of the CU.

3. A transfer from BIOM to array memory may take place.

Timing information therefore consists of:

(a) The time to get a descriptor from the B6700 into the I/O

subsystem;

(b) The time for the CU to respond to the descriptor, if a
CU descriptor;

(¢) The time to load descriptors into the queuer, if a disk

descriptor;

(d) The time for the disk system to respond to a descriptor

which is contained in the queuer;
(e) Data transfer rates for disk to array;

(f) Data transfer rates for BIOM to array; and

(g) Data transfer rates for B6700 loading BIOM.

From the above, the time for I/O subsystem response can be determined since
the total time for any one such response is the sum of the appropriate times

listed above. A discussion of the individual time components follows.

OBTAINING A DESCRIPTOR

An "Initiate I/O" command is held on the scan bus until the I/O subsystem
responds to the B6700. Therefore, the scan bus is tied up, after the beginning
of the operation, for twice the cable delay {which is constrained to be less than
one clock time in each direction, or 200 nanoseconds maximum) plus the time

- for logic in the I/O subsysiem. Following the scan bus operation, two
(sometimes one) memory cycles are required to fetch the descriptor. At

1. 2 microseconds per memory cycle, 0.2-microsecond response on the

scan bus, and 0. 1-microsecond for logic, the total time required for fetching

the descriptor to the I/O subsystem is 2. 7 microseconds.

-2

CU RESPONSE TO DESCRIPTOR
Descriptors controliing the interaction with the CU are of four types:

Read CU: This descriptor causes a word, obtained from the CU,

to be inserted into B6700 memory;

Write CU: This descriptor causes a word obtained from B6700

memory to be inserted into the designated register in the CU;

Scan CU: This descriptor causes a word obtained from B6700
memory to be inserted into the control register in the CU, and
a word obtained from the CU in response to those controls to be
inserted back into the B6700 memory at the same location (a
"double length'' variation on the scan retrieves two words from

the CU for each word of control information sent to the CU);

Stop CU: This is the ""quadrant disable' descriptor, which issues

a stop command to the CU, and retrieves nothing.

The read, write, and scan CU descriptors all operate in a ""handshaking' mode,
so that cable delays, regardless of the length of cable, are waited out. Fur-
ther, no synchronism between CU and I/O is required, each being treated as
though it were asynchronous with the other; each signal passed back and forth

across this interface is resynchronized.

"Read' requires, as a result of the above, two cycles (200 nanoseconds) of
1/0O clock and two cycles (100 nanoseconds) of CU clock, plus twice the cable
delay from I/O to CU (300 nanoseconds if 100 feet), plus the time for TMU
operations, plus the time for the memory cycle (1.2 microseconds) in the
B6700, The TMU time is seven CU clocks if no action internal to the CU is
taking place, therefore, the total ''read' time takes slightly more than 2

microseconds.

7-3

"Write' requires the same steps as ''read". However, "write" will result in
an instruction being inserted into the TMU's control register (TCR). This
instruction must await an opportunity to be executed (in general, just before
ILA passes the next instruction to ADVAST if the clocks are running, although
there is no wait if the quadrant is in single-siep mode for debugging), and the
instruction will then take time of its own for execution in TMU. A typical
TMU instruction (LICR, LISR, SA, SL, SR, SOC, SOD, TIC, and TOC) is
estimated to be five clocks long in the execution phase, although this varies.
Therefore "write' takes about 2.5 microseconds plus the time that the TMU is

waiting to get control of the CU.

""Scan' is divided in the I/O into separate write and read commands, taking

4.6 or 6.6 microseconds depending on whether the read is single or double.

""'Stop'', or quadrant disable, requires only a one-way cable delay, plus the

TMU time needed to recognize the command, or about 0.400 microsecond.

LOADING DESCRIPTORS INTO QUEUER

The queuer action is divided into scan cycles; a scan cycle being the time it
takes to scan all possible queuer contents for transactions which refer to a
single storage unit. If there are ''S" storage units in the system, there will be
no more than "'S" scan cycles before the first storage unit is scanned once
again, A storage unit for which there is no descriptor in the queuer does not

get a scan cycle.

A scan cycle, for the ith storage unit, takes 0.2 + 0.4 D. microseconds when
there are Di descriptors storéd in the queuer for the ith storage ﬁnit, At the
end of any one scan cycle, one word, if descriptors are waiting to be loaded,
is fetched from memory and inserted into the queuer. The memory access

time of the next word allows the next scan cycle to start. The worst-case for

7-4

loading descriptors into the queuer occurs when there is only one storage unit,

)]

ay j, having valid descriptors, and D, is large. Then each scan cycle takes
.2

(@]

+ 0. 4Dj microseconds, and each two-word descriptor takes two scan
cycles to be loaded into the queuer. There are 24 slots in the queuer. One
descriptor can be loaded when Dj is as high as 23, or one descriptor can take
as long as 18. 8 microseconds. A list of 24 descriptors, all destined for the

same storage unit, can take as long as 249. 6 microseconds to be loaded.

The times given above are worst-case maxima. Typical times are much
shorter, but depend on the number of descriptors in the queuer and their

distribution among storage units.

RESPONSE TIME OF DISK TO DESCRIPTOR FOUND IN QUEUER

The address is offset from its associated information segment by an amount

dependent on circuit settling time. This offset is estimated at two segment's
worth, or 65.4 microseconds. There will be, therefore, a maximum of 65. 4
microseconds between the finding of an address in the queuer and the start of

the associated data segment(s) transfer to or from the disk.

A related question is whether there is any possibility that a disk transaction
when due, can somehow be missed, having to wait an unnecessary revolution.

This cannot happen, as shown by the following analysis.

The time that it takes the queuer to go through a éomplete series of scan

cycles for each storage unit in the system may be expressed as:

S
T=0.1N+ E: (0'2+0'4Di)

i=1

Where S = number of storage units present in the system,
N

D,
i

number of storage units for which no descriptor is found,

.th .
number of descriptors in the queuer for the 1)C storage unit.

7-5

The upper limit on Di is given by:

S

E D.< 24
i

i=1

since there are only 24 slots in the queuer. For any value of N or S up to the
maximum S of 32, the time T is always less than 19.1 microseconds., The
addressable segment on each storage unit therefore is compared at least once
with the contents of the queuer, so there is no possibility of waiting a revolu-
tion unnecessarily. Only during an actual transfer which makes the DFC (disk

file controller) busy will disk transactions be passed over.

DATA TRANSFER RATES FROM DISK TO ARRAY

The time per data segment on the disk is stated to be 32.7 microseconds per
16, 384-bit segment. This is one 1024-bit 1/O word per 2. 04 microseconds in
either or both of the DFCs, and results in interference to memory of a

maximum of one memory cycle per I/O word.

DATA TRANSFER RATES FROM BIOM TO ARRAY

Data from BIOM to array is transferred through the same channels designed
for use by the disk system. Since these channels are designed to keep ahead
of the disk rate of 2.04 microseconds per 1024-bit I/O word, and since BIOM
is an on-demand device potentially much faster than the disk, the disk transfer
rate also serves as a lower bound on the transfer rate between the BIOM and
array. More precise estimates of this rate are not fruitful, since the rate
depends on unspecified cable lengths, and on the phase and frequency

relationships between I/O clock and quadrant clock.

7-6

DATA TRANSFER RATES BETWEEN B6700 and BIOM

To the B6700 the BIOM appears as one of its normal memory modules, as

far as the hardware is concerned. A response time of 1.2 microseconds is

expected when the B6700 is operating one of its own memory modules from a
single processor or I/O. This time is also an estimate of the time per

memory cycle required to load a series of words into the BIOM.

This limit will not usually be the controlling factor in loading the BIOM. One
visualizes loading the BIOM from a peripheral device, or creating within it a
file by executing a program. This file would be written onto the disk or into
the array memory. In one case, the data rate of the peripheral device will be
the controlling factor; in the other case it depends on the execution time of

the program.

Loading the BIOM from the B6700 side is not permitted when the BIOM is busy
with a disk transfer. There is not sufficient time to inject B6700 cycles

between the BIOM cycles required to keep pace with the disk.

B 6700 PERIPHERAL DEVICE TIMING

Table 7-1 presents a summary of the operating times for several typical
B6700 peripheral devices. More detailed information can be found in the
Burroughs B6700/B7500 Information Processing System Characteristics
Manual.

7-7

Table 7-1.

Unit
B-9111 Card Reader
B-9213 Card Punch

B-9243-1 Line Printer
B-9220 Paper Tape Punch
B-9391 Magnetic Tape Unit
B-9382-4 Magnetic Tape

Cluster

B-9375-10 Disk File

Peripheral Device Timing

Characteristics

800 CPM, 2400 card capacity
300 CPM, 1000 card capacity

1040 lines per minute, 120 print
positions (standard)

100 characters per second, BCL or
Baudot code

7 channels, 800/556/200 BPI,
72/50/18 KB per second

9 channels, 1600 BPI, 72 KB per
second

133 X 106 characters, 23 milliseconds
access time

7-8

APPENDIX A
GLOSSARY

ACO0-3
(ACARs)

ACR

ACU

ADA

ADB

ADC

ADVAST

AFR

AIN

APPENDIX A
GLOSSARY

ADVAST Accumulator Registers 0-3: Serve as accumu-
lators for all CU operations; as the source of

memory address for ADVAST memory operations (bits
40-63); as the source of the first operand for instruc-

tions requiring two operands; as a local memory location;
as an index register (bits 1-15 are the increment bits,

bits 16-39 are the limit bits, and bits 40-63 are the ad-
dress bits). Bit 0 is the half-word designator for transfers
between ICR or IIA,

ADVAST Control Register: A 16-bit register that contains
indicators which may be used to determine the state of
various conditions within the CU.

Absolute CU Number: A hard-wired 4-bit register which
contains the CU number of this CU in logical form, i.e.,
CUO = 1000; CU1 = 0100; CU2 = 0010; CU3 = 0001,

PE Address Adder: A 16-bit adder in the PEs used to
generate PE memory addresses and index values.

ADVAST Data Buffer: A 64-word, 64-bit per word
random access memory that is part of local memory.

ADVAST Data Control: An 8-bit register used to control
the loading of local memory.

Advanced Station, CU: Processes all instructions either
completely or transmits them to the final station (FINST) if
they are to be executed by the PUs. Program control

and interrupt handling are accomplished in this station.

ADVAST-to-FINST Instruction Register: A 12-bit register
which contains the instruction which is being transferred to
the FIQ.

ADVAST Interrupt Register: A 16-bit register used to store
the various conditions which will cause the CU to transfer to
the interrupt routine.

A-1

AIR
AAIT
ALR
AMR
APC
Array

AWR

BIOM

Broadcast
BSW
CDB

DC

CPA

ADVAST Instruction Register: A 32-bit register which re-
ceives instructions from IWS during normal instruction
execution.

ADVAST Instruction Timer: - Generates the proper timing
commands for instruction execution at ADVAST,

ADVAST Local Memory Address Register: An 8-bit re-
gister used to store the local memory address. It receives
the address from the AIR for all instructions that require
access to PE Memory.

ADVAST Mask Register: A 16-bit register that establishes
which of the bits in AIR will be permitted to cause an in-
terrupt.

ADVAST Instruction Parity Checker: Used to check parity
of the instruction contained in the AIR, before modification,
for instructions loaded from IWS,

An array is composed of the set of PUs that are being used
in a coordinated manner. The set is specified in the MC
registers.

ADVAST-to-FINST Data Register: A 64-bit register which
contains data that is being transferred to the FDQ.

Buffer Input-Output Memory: A 1024-word, 128-bit memory
when used by the DC and a 2730-word 48-bit memory when
used, by the B6700 system. It functions as a speed differential
buffer between the two systems. Its cycle time is 250 nano-
seconds for a read/restore cycle for 128-bit words.

To make information available to all CUs or PUs in an
array simultaneously.

Barrel Switch: A logic network that accomplishes shifts
of up to 64 bits in one clock time.

Common Data Bus: The set of 64 lines on which addresses,
counts, and data words are broadcast from CUs to PUs.

Descriptor Controller, DC: A section of the
I0S/ DC. It contains the queuer and control registers,

and performs descriptor interpretation and generation

functions.

Carry Propagate Adder: A device in which one output is
a sum representation of the quantities represented by its
inputs. The unit is a 64-bit carry propagate adder par-
titioned into group segments of four bits each. The bit-
and group-level carry signals are propagated in parallel
segments to form the adder summed output.

CU

Descriptor

DEFC

DFDC

Disk, II AP

Driver (DR)

EU

FATR

FCC

FCDA
FCDB
FCDC
FCDD

FCE

FCLDA
FCLDB
FCLDC
FCLDD

Control Unit: The CU is composed of the ADVAST, FINST,
ILLA, MSU, and TMU subunits. Its functions are to control a
quadrant of 64 PUs directly and to synchronize multiquadrant
operation.

A block of control information exchanged between either a pro-
cessor or memory and its connected input-output controllers.

Disk File Control: Controls data flow between a disk storage
unit (SU) and another memory. It can select among five attached
electronics units (EUs) to which the SUs are connected.

Disk File Descriptor Control: That portion of the DC

associated with, and containing the controls for, a
specific DFC.

The bulk storage unit for the ILLIAC IV system. It has an
instantaneous transfer rate of approximately 0.5 billion bits
per second.

A circuit capable of transmitting a signal over long distances
through a cable.

Electronics Unit, Disk: Controls the disk units (SU) attached
to it and the packing and unpacking of data being exchanged
with a disk unit.

FINST Address Transmission Register; These 24 bits of
storage contain the memory addresses for MSU sampling.
Its content is updated for every memory reference required
by the PE instructions processed by FINST.

FINST Control Counter:; This 8-bit counter is used to
control the repetitions of commands within instructions.
From the decremented contents of this register are derived
the controls for the routing interconnections in the

cabinet logic.

FINST Command Drivers: Each group of 260 drivers sends
the PE subcommands from FINST to two PU cabinets, where
subcommands are distributed to each PE. All of these
drivers receive inputs from the FINST control register.

FINST Compare Equal: This logic compares the values of
the load pointer and the read pointer to determine when
the final queue becomes empty or full. Its outputs are
fundamental to the coordination of FINST and ADVAST.

FINST Cabinet Logic Drivers: Each of these four groups

of eight drivers sends controls to the cabinet logic for
routing and other MSU uses of the quadrant data paths. One
group of drivers provides signals to two cabinets where they
are distributed to the separate cabinet and PE Logic.

A-3

FCLR

FCR

FDDA
FDDB
FDDC
FDDD

FDE

FDF
FDH

FDG

FDQO
through

FDQT

FDR

FDS

FGS

FINST Cabinet Logic Register: This 8-bit register stores for
both retiming and buffering the six FINST -generated and six
MSU-generated enables (4 are common) to be sent to the
cabinet logic.

FINST Command Register; The first 260 bits of this
register receive inputs from the ROM which are PE sub-
commands to be retimed before being driven from the CU
cabinet. The next 100 bits of FCR retime the internally
used subcommands generated by the ROM for FINST and
other parts of the CU. The final eight bits of FCR retime
subcommands generated in the MSU for transmission to
the PE concurrently with related subcommands.

FINST Data Buffer: A 16-bit buffer which provides drive
for the outputs of FDS.

FINST Data Drivers: Each group of 64 drivers sends the
PE data, shift amount, or addresses over the common data
bus to two PU cabinets, where the bits are distributed to
each PE. All of these drivers receive inputs from the FDR.

FINST Mode Enables: A group of 64 drivers used to
transmit the contents of a selected ACR to the proper mode
bit of each PE in the quadrant. Each bit is sent to a unique
PE.

FINST Data Queue Select Gates: These units select one
of the five or three, respectively, words of the data queue
for use in FINST.

FINST Data Gates: Select the 64-bit parallel word from
the preceding gates and eight registers of the data queue
for use in FINST or MSU.

FINST Data Queue: Registers 0 through 7. The queue
stores data in these eight registers of 64 bits each. The
data is interpreted by the nature of the instruction to be
literal, address, shift amount, or variant. The queue
is loaded from AWR of ADVAST.

FINST Data Register. This 64-bit register provides
retiming and buffering of the common data bus infor-
mation before it leaves the CU through the data drivers.

FINST Data Selection: Gates for the selection of address
from either MSU or the queue as a 24-bit parallel word.
An adder in FDS corrects shift amounts, and other gates
force special shift values onto the common data bus.

A 5-input operand select gate 64 bits wide used to supply
the TMU with the desired FCR or FDR outputs.

FGT A set of multiple input operand select gates arranged to
format into 64-bit words the outputs of important shorter
registers for display by the TMU.

FIAD FINST Instruction Address Decoder; These gates decode the
instruction into the first (perhaps only) address for accessing
of the read-only memory.

FIA FINST Instruction Addressing Register. A 12-bit register
which stores all instructions as their first (perhaps only)
address is decoded for accessing of the read-only memory.

FIB FINST Instruction Buffer. A 12-bit buffer for driving the
output of the instruction queue to the instruction register.

FICL FINST Instruction Control Logic: These gates participate
in the sequencing of instructions from FIR to the read-only
memory.

FID FINST Instruction Decoder: Logic for the decoding of the
instruction register for use in developing the particular
subcommands.

FIF FINST Instruction Queue Select Gates: These units select

FIH one of four words of the instruction queue for use in FINST.

FIGR FINST Instruction Gating Register: This register contains

one bit for each of the PE instructions executed from the
read-only memory which has more than one clock time.

It is set to the proper value by the FIAD during the first

step of the instruction and cleared at the end of the instruction.

FINQ Final Queue: Eight 80-bit word storage composed of FIQ and
FDQ. It stores instructions and data passed from ADVAST to
FINST before FINST execution. FINST services FINQ on a
first-in first-out basis.

FINST Final Station CU: Accepts partially decoded instructions from
the ADVAST, converts them into fully converted microsequences,
and broadcasts the microsequences and other data to 64
connected PUs.

FIP FINST Instruction Picker: A set of 12 operand select gates
for selection of one of the TMU, FIF, or FIH inputs to be the
instruction for execution.

FIQO FINST Instruction Queue: Registers 0 through 7. The queue
through stores instructions in these eight registers of 12 bits each.
FIQT7 The queue is loaded from AFR to ADVAST.

FIR FINST Instruction Register: A 12-bit register which stores

the output of the instruction queue buffers as the instruction
is being interpreted for execution.

FISC FINST Instruction Step Counter: A set of latches arranged
as a shift register for sequencing the steps in a multiple-
step PE instruction.

- FITE FINST Instruction Gate Enables: This set of AND gates
selects each word address for the steps of the multiple-step
PE instructions in accordance with the outputs of FIAR and
FISC.

i
e
)

FINST I.cad Pointer: An 8-bit shift register used to
select the next register of the FIQ and FDQ to be loaded
to ADVAST.

FOAD FINST Overlap Address Decoder: These gates decode the
overlap into the first (perhaps only) address for accessing
of the read-only memory.

FOAR FINST Overlap Addressing Register: A 12-bit register
which stores all overlaps as their first (perhaps only)
address is decoded for accessing of the read-only memory.

FOB FINST Overlap Buffers: A set of 12 buffers for driving
the output of the instruction queue to the overlap register.

FOCL FINST Overlap Control Logic: These gates participate
in the sequencing of overlaps from FOR to the read-only
memory.

FOD FINST Overlap Decoder: Logic for the decoding of the
overlap register for use in developing the particular
subcommands.

FOGR FINST Overlap Gating Register: This register contains
one bit for each type of overlap executed from the read-
only memory which has more than one clock time. It is
set to the proper value by the FOAD during the first step
of the overlap and cleared at the end of the overlap.

FOP FINST Overlap Picker: A set of 12 operand select gates
for selection of one of the TMU, FIF, or FIH inputs to be
the overlap for execution.

FOR FINST Overlap Register: A 12-bit register which stores
the output of the overlap buffers as the overlap is being
interpreted for execution. :

FOSC FINST Overlap Step Counter: A set of latches arranged
as a shift register for sequencing the steps in a multiple-
step overlap.

FOTE FINST Overlap Gate Enables: 'This set of AND gates
selects each word address for the steps of the multiple-
step overlaps in accordance with the outputs of FOGR and
FOSC.

A-6

FRCL

FROM

0|
s}
d

IAM

ICR

IIA

ILA

105

1/O0 Word

IWS

FINST Route Control Logic: This logic generates the six cabinet
logic control signals needed to arrange the quadrant data paths
for the ROUTE instruction.

FINST Read Only Memory: A transistor matrix memory of 720 -
words and 360 bits. Each word is a step of a PE instruction;
each bit is a PE or FINST subcommand.

FINST Read Pointer: An 8-bit shift register used to select the
next register of the FIQ and FDQ to be read by FINST.

FINST Route Register: An 8-bit register used to store the route
distances derived from the address field of the data queue.

ILA Associative Memory: A content-addressable memory which
contains eight 21-bit block addresses of the words stored in the
IWS. Associated with each of the eight addresses is a ''present
bit (IAMP) which is set when the first word of a block of in-
structions is stored in IWS., Note that it is not necessary to
clear the eight locations on an IWS clear operation; it is suffi-
cient to clear the IAMPs and use their status to establish if

the address stored in IAM is valid.

ILA Instruction Counter: A 25-bit register which contains a
binary number representing the address of the instruction pre-
sently under execution by ADVAST. The binary number is
interpreted by the configuration control logic to determine the

mlhaAnTliidbn rmmnarmAan ity A Amnaca AP +ha Tagtmiiatian
ADULULT 1LICHIIVLY aUUl'Tod UL LLIC Llisti ubiliull,

ILA Interrupt Address: A 25-bit register used to identify the
location of the next program instruction in the interrupted pro-
gram. It is also used as a base for storing pertinent information
which is necessary to return to the noninterrupt program at the
completion of the interrupt program.

Instruction Look-ahead Unit, CU: A subunit of the Control Unit
that maintains a queue of up to 128 instructions for the ADVAST
unit., It contains an associative memory (IAM), the instruction
counter (ICR), and a 64-word bit instruction store (IWS).

Input Output Switch: A buffer between the DC unit and the
ILLIAC IV memory. It blocks 256 words from the DC into
1024-bit words for ILLLIAC IV memory and the reverse.

The package of information transmitted to or from IOS from
or to PEM during a single memory cycle. Initially, this
is 1024 bits.

ILA Instruction Word Storage: A 4096-bit memory of 64 X
64-bit words sectioned into eight-word blocks. The in-
structions are fetched from memory and stored in IWS in
512-bit blocks.

A-T7

List

LOG

Mantissa

MAR

MCO0, MC1,
MC2

MDG

MLU

MPX

MSG

MSU

OSG

PAT

In this manual, a sequence of 1/O descriptors which can be
initiated by a single command from the B6700 processor.

Leading Ones Detector: A set of logic used to generate a
shift count that indicates the bit distance between the high-
order "one' bit and the high-order position of a word.

Logic Unit: A set of logic that performs logical operations
(such as NOT, AND, and OR) on operands

As used in this manual, the fractional portion of a number in
floating-point representation.

Memory Address Register, PE: A 16-bit register that
holds an effective address used to read or write a word in
PE Memory.

MSU Configuration Control Registers: Three 4-bit registers
used to determine which CUs are in the array for a particu-
lar operation. MCO is the array size register; MC1 controls
program fetches and establishes (relative to MCO) the lo-
cation of the stored program; MC2 is used to control
instruction execution.

Multiplier Decoder Gates, PE: Generate the weight values
used by the multiplicand select gates (MSG) for the multiply
algorithm,

Memory Logic Unit: A set of logic and registers that controls
all memory accesses to its associated Processing Element
Memory.

Multiplexor, B6700: The unit that controls the operation
of a B6700 input-output exchange.

Multiplicand Select Gates, PE: Generate subproduct inputs

that are used in mechanizing the multiply algorithm.

Memory Service Unit, CU: A subunit of the Control Unit
that resolves memory request conflicts and converts binary
addresses into array addresses by using the configuration
control logic (see MCO, MC1, MC2).

Operand Sclect Gates: A set of logic that selects one of sev-
eral inputs for transmission to another stage of logic or a
register,

Pseudo-adder Tree: Receives five 56-bit input word signals

in parallel to three carry-save adders (CSA). The pseudo-
adder tree inputs are reduced to sum and carry outputs,
which are in turn added again until the input words are re-
duced to a single pseudo-adder tree sum and carry output.
Implementation of this process requires three CSAs per
bit position.

PE Processing Element: A set of registers and combinational
logic which is capable of executing a large complement of
externally decoded instructions. Each PE can communi-
cate directly with its orthogonal neighboring PE and has
access to its own PE Memory.

PEM Processing Element Memory: Contains 2048-word 64-
bit per word memory which may be accessed from either
its associated PE or the IOS, Its cycle time is approxi-
mately 250 nanoseconds,

PEM The register of PE memory error latches (address 154
on p. 5-8).

PU Processing Unit: A pluggable unit containing one PE,
one MLU, and one PEM.

PUC Processing Unit Cabinet: Holds eight PUs and contains

their power supplies and other common circuitry.

Queuer An associative storage unit in the DC that stores disk
type descriptors from the B6700 and services them in
such a way as to minimize disk rotation access latency.

Receiver A circuit capable of detecting signals transmitted over
(RCVR) long distances through cables.
Result A word of information prepared at the end of the execution of
Descriptor an I/O descriptor and passed back to the B6700 via the

scan bus.
RGA PE Register A: A 64-bit register in which the result of

an arithmetic or logic operation is formed. The register
is operative only when a PE status is enabled.

RGB PE Register B: A 64-bit register in which second oper-
ands are stored for arithmetic or logic operations.

RGC PE Register C: A 64-bit register in which carries are
stored for later propagation. Its contents may be accessed
by the OFB instruction,

RGD PE Register D (Mode Register): Provides intermediate
storage between a PE and its CU. The unit is an 8-bit
register in which a result may be formed by signals ob-
tained locally from executed instructions or remotely
from the CU., Decoded register bit positions form outputs
which specify a PE's status (operative or inoperative),
arithmetic overflow, instruction test results, and the
logic level of a specified bit.

RGR PE Register R: A 64-bit register which provides inter-
mediate storage during instruction execution. The
register is accessible even though the PE's mode status
is disabled.

RGS
RGX
Scan Cycle

Scan Bus

SU
TCC
TCI

TCR

TDC

TMP
TMU
TRI

TRO

PE Register S: A 64-bit register in which intermediate
results obtained during PE processing are stored. The
register is operative only when a PE status is enabled.

PE Register X: A 16-bit register whose content is added
to an operand address or literal field prior to or during
the execution of an instruction,

The time required by the queuer to search its own contents
for all descriptors pertaining to a single storage unit.

A bus linking all elements of the B6700 and the DC, used by
the B6700 processor to initiate I/O operations, and used by
the I/0O controllers to pass result descriptors back to the
processor.

Storage Unit, Disk: A module of disk storage containing
20 million, 8-bit bytes of data.

TMU Condition Control Register: A 9-bit register that
exercises control over operation of the CU subunits.

TMU Condition Indicator Register: A 16-bit register that
describes the content of the TRO register.

TMU Command Register: A 48-bit register that receives
its input from the TMP or the B6700 from which the data
is interpreted as instructions.

TMU Data Comparator: A 64-bit comparator which may
be used to compare test values with CU register contents.

Test Maintenance Panel, TMU: A set of indicators,

switches, and controls which can be manually operated
to control the operation of the CU.

Test Maintenance Unit, CU: A subunit of the Control Unit,
Tt can be used to communicate with the B6700 via the DC
and to exercise control over an ILLIAC IV quadrant,

TMU Input Register: A 64-bit register that may be used
to hold data words sent from the B6700 until required by
other sections of the CU.

TMU Output Register: A 64-bit register which may be
used as a temporary storage register by the ADVAST in-
struction set or as a holding register for data words being
sent to the B6700.

A port of the B6700 1/O multiplexer which allows access to
B6500 memory via the multiplexer's path to memory. Used
for DC access to the B6700's memory.

A-10

APPENDIX B
INSTRUCTION INDEX

ADVAST INSTRUCTION INDEX

Mnemonic Octal Ref. Mnemonic QOctal Ref, I Mnemonic Qctal Ref.
Code Code Page Code Code Page Code Code Page
ALIT 16XX 3-12 INCRXC 0002 3-41 TXEF 1413 3-70
BIN 0610 3-13 INR 0007 3-42 TXEFA 1412 3-70
BINX 0611 3-13 JUMP 17XX 3-43 TXEFAM 1216 3-71
CACRB 0001 3-15 LDC 0011 3-44 TXEFM 1217 3-71
CADD 0402 3-17 LDL 0405 3-45 TXET 1411 3-70
CAND 0410 3-18 LEADO 0201 3-46 TXETA 1410 3-70
CCB 1101 3-19 LEADZ 0200 3-46 TXETAM 1214 3-71
CEXOR 0407 3-20 LESSF 1507 3-66 TXETM 1215 3-71
CLC , 0005 3-21 LESSFA 1506 3-66 TXGF 1403 3-172
COMPC 0006 3-22 LESST 1505 3-66 TXGFA 1402 3-72
COPY 0204 3-23 LESSTA 1504 3-66 TXGFAM 1302 3-73
COR 0411 3-24 LIT 0003 3-48 TXGFM 1303 3-73
CRB 0207 3-25 LLOAD 0609 3-49 TXGT 1401 3-72
CROTL 0015 3-26 LOADX 0601 3-49 TXGTA 1400 3-72
CROTR 0017 3-27 ONESF 1007 3-67 TXGTAM 1300 3-73
CSB 0013 3-28 ONESFA 10086 3-67 TXGTM 1301 3-73
CSHL 0014 3-29 ONEST 1005 3-67 TXLF 1407 3-74
CSHR 0016 3-30 ONESTA 1004 3-67 TXLFA 1406 3-74
CSUB 0403 3-31 ONEXF 1017 3-68 TXLFAM 1306 3-75
CTSBF 1102 3-32 ONEXFA 1016 3-68 TXLFM 1307 3-75
CTSBT 1100 3-32 ONEXT 1015 3-68 TXLT 1405 3-74
DUPI 0401 3-34 ONEXTA 1014 3-68 TXLTA 1404 3-74
DUPO 0400 3-35 ORAC 0205 3-52 TXLTAM 1304 3-75
EQLXF 1417 3-64 SETC 0012 3-53 TXLTM 1305 3-75
EQLXFA 1416 3-64 SKIP 1103 3-54 WAIT 0206 3-78
EQLXT 1415 3-64 SKIPF 1107 3-69 ZERF 1003 3-76
EQLXTA 1414 3-64 SKIPFA 1106 3-69 ZERFA 1002 3-76
EXCHL 0406 3-36 SKIPT 1105 3-89 ZERT 1001 3-76
EXEC 0004 3-38 SKIPTA 1104 3-69 ZERTA 1000 3-76
FINQ 0010 3-39 SLIT 16XX 3-55 ZERXF 1013 3-T7
GRTRF 1503 3-65 STL 0404 3-56 ZERXFA 1012 3-77
GRTRFA 1502 3-65 STORE 0602 3-58 ZERXT 1011 3-77
GRTRT 1501 3-65 STOREX 0603 3-58 ZERXTA 1010 3-77
GRTRTA 1500 3-65 TCCW 0203 3-60
HALT 0000 3-40 TCW 0202 3-61

TMU INSTRUCTION INDEX

Mnemonic Octal Ref. Mnemonic Octal Ref. Mnemonic Octal Ref.
Code Code Page Code Code Page Code Code Page

EFA 160 5-16 SAT 047 5-25 SR 005 5-24
EFF 164 5-18 SIS 120 5-26 SRT 045 5-25
LICR 041 5-20 SIV 100 5-27 TIC 121 5-33
LISR 040 5-21 SL 006 5-24 TOC 002 5-34
RPT 001 5-22 SLT 046 5-25 WIS 044 5-35
RUN 020 5-23 SOC 011 5-30
SA 007 5-24 SOD 010 5-32

FINST/PE INSTRUCTION INDEX

Mnemonic Octal Ref. Mnemonic Octal Ref. Mnemonic Octal Ref.
Code Code Page Code Code Page Code Code Page
AD 3504 4-17 IXL 2310 4-59 NORN 2307 4-31
ADA 3505 4-17 IXLD 2712 4-62 OFB 2506 4-76
ADB 2606 4-22 JAG 3715 4-52 OR 2304 4-31
ADD 2604 4-23 JAL 3717 4-52 ORN 2306 4-31
ADEX 2500 4-24 JB 3503 4-54 RAB 3701 4-36
ADM 3414 4-17 JLE 3517 4-55 RTAL 3513 4-87
ADMA 3415 4-17 JLG 3315 4-55 RTAR 3512 4-88
ADN 3404 4-117 JLL 3317 4-55 RTG 2413 4-77
ADNA 3405 4-17 JLO 3311 4-57 RTL 2412 4-77
ADR 3506 4-17 JLZ 3313 4-57 SAB 3702 4-36
ADRA 3507 4-17 JME 3515 4-55 SAN 3702 4-38
ADRN 3406 4-17 JMG 3115 4-55 SAP 3701 4-38
ADRNA 3407 4-17 JML 3117 4-55 SB 3704 4-79
AND 2704 4-27 JIMO 3111 4-57 SBA 3705 4-79
ANDN 2706 4-27 JMZ 3113 4-57 SBB 2607 4-82
ASB 2507 4-26 JSE 2513 4-59 SBEX 2501 4-83
ASTRG 2443 4—26A JSG 2113 4-59 SBM 3614 4-'9
ASFRE, 2446 | 4364 JSL 2313 4-59 SBMA 3615 4-79
CAB 3700 4-33 JSN 3503 4-54 SBN 3604 4-79
CHSA 3700 4-35 JXE 2511 4-59 SBNA 3605 4-79
CLRA 2411 4-39 JXG 2111 4-59 SBR 3706 4-79
COMPA 2211 4-40 JXGI 2711 4-61 SBRA 3707 4-79
DV 3304 4-41 JXL 2311 4-59 SBRN 3606 4-79
DVA 3305 4-41 JXIL.D 2713 4-62 SBRNA 3607 4-79
DVM 3214 4-41 LB 2107 4-63 SCM 2104 4-85
DVMA 3215 4-41 LDA 2617 4-104 || SETE 2514 4-69
DVN 3204 4-41 LDB 2700 4-104 || SETE1 2515 4-69
DVNA 3205 4-41 LDD 2212 4-104 | SETF 2516 4-69
DVR 3306 4-41 LDE 2114 4-69 SETF1 2517 4-70
DVRA 3307 4-41 LDE1 2115 4-69 SETG 2714 4-70
DVRM 3216 4-41 LDEE1 2116 4-69 SETH 2715 4-70
DVRMA 3217 4-41 LDG 2314 4-69 SET1L 2716 4-70
DVRN 3206 4-41 LDH 2315 4-69 SETJ 2717 4-70
DVRNA 3207 4-41 LDI 2316 4-69 SHABL 3711 4-89
EAD 2010 4-45 LDJ 2317 4-69 SHABML 3713 4-91
EOR 2505 4-29 LDR 2701 4-104 || SHABMR 3712 4-92
EQV 2504 4-30 EBRAG 2445 %—PBGA! SHABR 3710 4-90
ESB 2410 4-48 EBRAE 2414 =864 SHAL 3501 4-93
GB 2106 4-50 LDS 2702 4-104 | SHAML 3511 4-95
IAG 3714 4-52 LDX 2703 4-104 || SHAMR 3510 4-96
IAL 3716 4-52 LEX 2117 4-64 SHAR 3500 4-94
IB 3502 4-54 ML 3104 4-65 STA 2612 4-97
ILE 3516 4-55 MLA 3105 4-65 STB 2613 4-97
ILG 3314 4-55 MLM 3014 4-65 STR 2614 4-97
ILL 3316 4-55 MLMA 3015 4-65 STS 2615 4-97
1LO 3310 4-57 MLN 3004 4-65 STX 2616 4-97
ILZ 3312 4-57 MLNA 3005 4-65 SUB 2605 4-99
IME 3514 4-55 MLR 3106 4-65 SWAP 3103 4-100
IMG 3114 4-55 MLRA 3107 4-865 SWAPA 3303 4-101
IML 3116 4-55 MLRM 3016 4-65 SWA PX 3703 4-102
IMO 3110 4-57 MLRMA 3017 4-65 T3A 2105 4-103
IMZ 3112 4-47 MLRN 3006 4-65 TCY 3100 sus
ISE 2512 4-59 MLRNA 3007 4-65 TCYS 3101 —--
ISG 2112 4-59 MULT 2213 4-72 TCYX 3102 ——-
ISL 2312 4-59 NAND 2705 4-217 XD 2503 4-107
ISN 3502 4-54 NANDN 2707 4-27 X1 2502 4-108
IXE 2510 4-59 NEB 2210 4-73
IXG 2110 4-5¢ NOR 2305 4-31
IXGI 2710 4-81 NORM 2013 4-74

	cover
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-000
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	2-000
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	3-000
	3-001
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	4-0000
	4-0001
	4-001
	4-002
	4-003
	4-004
	4-005
	4-006
	4-007
	4-008
	4-009
	4-010
	4-011
	4-012
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-086
	4-087
	4-088
	4-089
	4-090
	4-091
	4-092
	4-093
	4-094
	4-095
	4-096
	4-097
	4-098
	4-099
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	4-107
	4-108
	5-000
	5-001
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	7-00
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-00
	B-01
	B-02

