
LAC Doc. No. UG-I1050-0000-B

I4DDT USER'S GUIDE

-JUNE 1973

FOREWORD

This document is a user's manual for a version of· DDT

(Dynamic Debugging Technique) referred to as 14. 14DDT

operates under the TENEX time-sharing system, which runs on

the DEC PDP-IO computer. 14DDT can be used for on-line

checkout and testing of programs written in either assembly

or compiler languages for PDP-IO, PDP-II, and ILLIAC IV

software systems.

Section I is an overview of the 14DDT program with more

detailed descriptions of the features and commands contained

in Sections 2 and 3, respectively. Since I4DDT's command

syntax is similar to that of earlier versions of DDT, the

experienced user may need only to refer to the command

summary in Appendix A.

The following conventions are ~sed throughout this manual:

• Upper-case letters, digits, and special characters must

be entered literally as shown in the format representa­

tions.

• Information in lower-case letters in the format representa­

tions is variable data.

• Underlined text in the examples indicates information

typed out by I4DDT, as distinguished from user-typed input.

The special terminal symbols used in this manual are:

SYMBOL CHARACTER REPRESENTED

iii

Carriage Return

The Control Key

ALTMODE or ESCAPE (ALT or ESC)

Tab

SECTION 1

1.1

1.1.1

1.1.2

SECTION 2

2.1

2.2

2.2.1

2.2.2

2.3

2.4

2.4.1

2.4.2

2.4.3

2.5

2.6

2.6.1

2.6.2

2.7

CONTENTS

INTRODUCTION

General Description

Features

Commands

USING I4DDT

Operating Procedures

Executive Functions

Selecting Address Spaces and I/O Modes

File Operations

Internal Registers

Type-in Formats

Symbolic Instructions

Numbers

Text Characters

Typeout Formats

Symbols

Defining and Referencing Symbols

Symbol Tables

Expressions

2.7.1 Forming Expressions with Arithmetic

Operators

2.7.2

2.8

2.8.1

2.8.2

2.8.3

2.8.4

2.8.5

Expression Evaluation Procedure

Breakpoints

Breakpoint Registers

Conditional Breakpoints

The Proceed Counter

Breakpoint Typeouts

Restrictions

1-1

1-1

1-2

1-2

2-1

2-1

2-1

2-2

2-2

2-3

2-5

2-6

2-6

2-7

2-8

2-10

2-10

2-12

2-12

2-12

2-13

2-13

2-15

2-15

2-17

2-18

2-18

SECTION 2

2.9

2.9.1

2.9.2

2.10

SECTION 3

3.1

3.1.1

3.1.2

3.1.3

3.1.4

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

APPENDICES

A

B

C

D

E

F

USING I4DDT (Continued)

Error Correction and Recovery

Deleting Typing Errors

Error Mess-ages

Control Characters

I4DDT COMMANDS

Executive Functions

Address'Space Selection

Input/Output Mode Selection

File Operations

Miscellaneous Exec Functions

Change Typeout Format

Start, Continue, and Exit

Type Out the Contents of a Location

Retype the Contents of a Location

Change the Contents of a Location

Insert a Change and Examine Last Location'

Set and Remove Breakpoints

Symbol Manipulation

Search for a Specified Value

Patching

Command Summary

Error Messages

Glossary

I4DDT Command Implementation Status

Use'of 14DDT irt 'TMU'Address Space

Use of I4DDT in ILLIAC Array Address Space

vi

2-19

2-19

2-19

2-19

3-1

3-1

3-1

3-2

3-3

3-5

3-7

3-13

3-15

3-17

,3-18

3-19

3-20

3-23

3-25

3-2~

A-I

B-1

C-l

D-1

E-l

F-l

SECTION 1

INTRODUCTION

1.1 GENERAL DESCRIPTION

14DDT is a generalized test-driver subsystem which includes an

interactive control language that facilitates on-line checkout and

testing of object programs. I4DDT resides in central PDP-IO memory,

but it provides the user control and interaction with programs (to be

debugged) which occupy any of several different address spaces:

PDP-lO, PDP-II, ILLIAC array memory, ILLIAC disk, or Te~t Maintenance

Unit (TMU). Structurally 14DDT operates on user programs that run in

inferior forks; as such, I4DDT simulates many executive functions. The

user interacts with I4DDT and through I4DDT with the object program by

entering commands from a terminal keyboard.

Examples of some of the checkout features of I4DDT follow: after the

source program has been compiled or assembled, the binary object program

with its symbol table is loaded under I4DDT. The user can specify loca­

tions in his program (breakpoints) where I4DDT is to suspend execution in

order to accept further commands. In this way, the user can check out his

program section by section and if an error occurs, insert the corrected

code immediately. Either before I4DDT begins execution or at breakpoints,

the user can examine and modify the contents of any memory location.

Insertions and deletions can be in source language code or in various

numeric and text modes. 14DDT also performs searches and calls user-coded

debugging subroutines at breakpoint locations.

1.1.1 FEATURES

14DDT's command language enables the user to quickly and easily locate,

examine, and change the contents of any memory location. These facilities

include the following capabilities:

• The user can specify for typeout the contents of any location for

examination or alteration in a variety of formats; e.g., a location

1-1

can be typed out as a symbolic instruction, numeric constant,

floating-point number, ASCII or SIXBIT text, or half-word format.

The output format can be set either permanently or temporarily.

• The user can type in modifications in a variety of formats, e.g.,

symbolic instructions, octal values, decimal floating-point numbers,

ASCII text.

• The user can locate a word by combining symbols and numeric quantities

into arithmetic expressions.

• The user can run all or any portion of the object program using the

breakpoint feature. A breakpoint is set at a memory location to

suspend program operation at that location, thus permitting the user

to examine partial results and debug a program section by section.

The user may also request that the contents of a specified memory

location be typed out when the breakpoint is reached. Breakpoints

can be set conditionally, so that a program stop occurs only if the

condition is satisfied. In addition, a counter can be set up speci­

fying the number of times a breakpoint is passed before a program

stop occurs.

• The user can search through the object program for any quantity or

effective address, and type out the addresses and contents of all

locations where the quantity or effective address is located.

• The user can reference symbols in one address space from another

-address space, and can reference local symbols within a particular

program. The user can also assign values to symbols and restrict or

eliminate the use of defined symbols.

1.1.2 COMMANDS

14DDT's operations are controlled by commands typed in by the user.

Each command consists of one or more symbols or characters and, in many

cases, requires a user-supplied parameter (normally an absolute or symbolic

address). For example, the user may examine the contents of any memory

location by typing the address of the desired location followed immediately

by a slash (I). To type out the contents of a location whose symbolic

address is CAT, the user types:

CAT I

1-2

14DDT now types out the contents (preceded and followed by spaces) on

the same line:

CATI MOVE ACzDOG

The location is now opened; once opened, the user may change its contents

by typing in the desired new contents and a carriage return immediately

following 14DDT's typeout. For example:

CATI MOVE ACzDOG MOVE AC2,DOG+3tw

All 14DDT commands are described in detail in Section 3.

,1-3

SECTION 2

USING I4DDT

2.1 OPERATING PROCEDURES

The user loads the I4DDT program into PDP-lO central memory; the program

to be debugged is loaded into the appropriate address space (see Section

2.2.1 and 3.1.1). The procedures are as follows:

1. Log in to the TENEX Operating System (refer to the TENEX Executive

Language manual).

2. Load and start I4DDT (type I4DDT).

3. Select appropriate address space.

4. Use I4DDT to load the program to be debugged (type ;L, ;;L, or ;G).

These commands are described in Section 3.1.3.

2.2 EXECUTIVE FUNCTIONS

14DDT controls the execution of programs to be tested which run, under

I4DDT, as inferior forks. Since I4DDT is the superior fork in the struc­

ture, it simulates many functions normally performed by an executive. The

14DDT commands that invoke these functions are described in Section 3.1.

The I4DDT executive command mode is entered by typing a semicolon (;) as

the first character of the command.

One set of executive commands is used to select an address space, i.e.,

specify where the program to be debugged resides. The user can select any

of five address spaces: PDP-IO, PDP-II, ILLIAC array, ILLIAC disk, and

Test Maintenance Unit (TMU). When the user selects the TMU address space,

the object program is actually loaded into PDP-lO memory; i.e., TMU programs

occupy PDP-IO address space. Features and characteristics of the TMU

address space are described in Appendix E.

2-1

Another set of executive commands enables the user to move the contents

of files into and out of address spaces and to perform various file manipQ­

lation functions. Other executive conunands are available that enable the

user to perform miscellaneous functions such as selecting a new escape

,character and changing page protection.

2.2.1 SELECTING ADDRESS SPACES AND I/O MODES

When I4DDT is loaded, the user must issue a command to select an address

space, i.e., specify the instruction and word formats of the program to

be executed. Normally the address space specified corresponds to the machine

in which the program executes. The user may, however, interpret locations

in one address space as if they were in another. The input/output mode

commands enable the user to select any combination of address space and mode

(see Section 3.1.2).

Address spaces and input/output modes may be permanently or temporarily

selected. A permanent mode is in effect until it is replaced with another

permanent mode or until I4DDT is reloaded. A temporary mode is in effect

until the user types a carriage return or re-enters I4DDT.

2.2.2 FILE OPERATIONS

The I4DDT executive conunands described in Section 3.1.3 enable the user

to perform the following file manipulation functions:

• Load a file into an address space.

• Load a symbol table into an address space.

• Move the contents of an address space to a file.

• Merge a file with what is already in an address space.

• Bring the loader into the current address space.

• Execute I4DDT command strings from a file •

. 2-2

2.3 INTERNAL REGISTERS

A distinct set of internal registers is associated with each address

space in 14DDT. When the current address space is changed to a new address

space by an appropriate 14DDT command, the corresponding set of internal

registers is automatically mapped into the correct locations. It should be

noted that some internal registers are only meaningful within certain address

spaces, and others are only meaningful to 14DDT and are of no concern to

the user.

The user may examine and explicitly set the internal registers as if

they were in his address space; the registers are also set upon the execution

of certain commands.

All internal registers begin with an ampersand (&) and contain the values

shown below.

REGISTER

&nB

&nB+I

&nB+2

&nB+3

&nB+4

&nB+5

&nB+6

&nB+7

&C

&DDT

CONTENTS

Address of breakpoint n.

Conditional breakpoint instruction at
breakpoint n.

·Proceed count at breakpoint n (number of
times to·proceed past the breakpoint).

String pointer at breakpoint n.

Saved instruction while running user's
program.

-1 if automatic proceed mode; otherwise
zero.

ASCII name assigned to this breakpoint by
14DDT (usually &nB).

Trace value. If -1, trace location zero
in the user fork. If the left half is -1,
the value of the current location is added
to the trace value. The trace value may
also be an internal register.

The radix (2, 8, 10, or 16) used for the
contents of.a location in numeric typeouts
(see Section 3.2).

Location zero in I4DDT memory.

'2-3

REGISTER

&F

&FH

&ICA

&ICB

&IS

&L

&LL

&LMB

&LS

&M

&M+l

&0

&PC

&PL

&PTS

&PWD

&Q

&QS

&R

&S

CONTENTS

Bit size (32, 36, or 64) used in floating-poing type­
outs (see Section 3.2).

Fork name used by I4DDT to reference the user.

Interrupt channels assigned for user.

Interrupt channels with breaks waiting.

Zero if user's interrupt system is off; otherwise non­
zero.

Left half of last quantity typed.

Lower limit used for searches (see Section 3.10).

Lower memory boundary used in moving a TMU address space
to a file.

Left half of last quantity typed (swapped extended).

Mask used in searches (see Section 3.10).

High-order word of mask.

Byte size (1-36) used in typeouts (see Section 3.2).

The user's Program Counter, i.e., the address of the
next instruction to be executed.

Patch location, i.e., location where patch instructions
are placed.

Pager trap status word at memory violation (saved state
information).

Pager write data at memory violation (saved state
information).

Last quantity typed.

Last quantity typed (halves swapped).

The radix (2, 8, 10, or 16) used for the address of a
location in numeric typeouts (se~ Section 3.2).

Instruction class used in symbolic typeouts (see
Section 3.2), where O=PDP-lO, l=short ILLIAC, 2=long
ILLIAC, 3=TMU, 4=PDP-11.

2-4

REGISTER

&T

&UL

&UMB

&UN

&V

&nVB

&nVBl

&nVM

&nVMl

&W

&X

•
@

CONTENTS

Text mode used in typeouts (see Section 3.2), where
5=Radix-50, 6=Sixbit text, 7=7-bit ASCII, 8=8-bit ASCII.

Upper limit used for searches (see Section 3.10).

Upper memory boundary used in moving a TMU address space
to a file.

Saved user subsystem name.

Current register pair used in field typeouts -- default
1 (see Section 3.2).

Boundary bits used in field typeouts (n=current register
pair).

High-order word of field boundary bits (n=current
register pair).

Mask bits used in field typeouts (n=currentregister
pair).

High-order word of field mask bits (n=current register
pair).

Word length used in typeouts (see Section 3.2).

The address of the first of the four words used by the
Execute command ($X). This register initially contains
777774 so that the top four words are used.

Current location •

Indirect bit used to reference an effective address
in a MACRO=lO statement.

2.4 TYPEIN FORMATS

To change the contents of a memory location, the user may type in

symbolic instructions (PDP-lO or ILLIAC IV), numbers (octal integers,

hexadecimal integers, fixed or floating-point decimal), and text characters

(ASCII, SIXBIT, or Radix 50). 14DDT will test the data typed in to

determine how it should be interpreted, i.e., to determine the typein format.

Therefore, the user must follow the syntax rules described below when typing

in changes. The typein format is not affected by the typeout format settings

described in Section 2.5.

2-5 ...

2.4.1 SYMBOLIC INSTRUCTIONS

2.4.1.1 PDP-10 Instructions

PDP-IO instructions are typed in by the user in the same format used

in writing a MACRO-10 assembler language source program statement. For

example, in the following MACRO-IO statement,

ADD ACl,DATE

a space terminates the operation field, and a comma terminates the accu-

mulator field. The operation code determines' the interpretation of the

accumulator field. If an I/O instruction is used, I4DDT inserts the I/O

device number in the correct place; indexed and indirect addresses are

written with an at sign (@) preceding the address to set the indirect

bit, and the index register in parentheses. For example:

ADD 4,@NUM(17)

To type in two ha1fwords, the left and right expressions are separated by

two commas. For example:

-6, ,BEGIN-I

2.4.1.2 ILLIAC IV Instructions

ILLIAC IV instructions are typed in by the user with the same mnemonic

operation codes used in writing an ASK assembler language source program

statement. However, significant syntactic differences exist between

14DDT's ILLIAC instructions and ASK instructions. These differences are

described in Appendix F.

2.4.2 NUMBERS

The user may type in octal integers, or fixed or floating-point decimal

integers. A typed-in number that does not contain a decimal point is

always interpreted as octal. The following are examples of octal typeins:

1234

-10101

772

777777777777

'f Fixed point decimal integers must contain a decimal point with no digits

following. For example:

1234.

~99 •

2-6

Floating-point numbers may be written in either of two formats:

(1) With a decimal point and one or more digits following the

decimal point, e.g.,

101.1

999.0

-2.71828

(2) In fixed point notation, with E indicating exponentiation, e.g.,

l2.0E+2

l2.34E2

31.4159E-l

2.4.3 TEXT CHARACTERS

The user may type in any number of ASCII or SIXBIT characters, and up

to six redix-50 characters.

To type in a single ASCII character, right-justified in an opened word,

the user types a quotation mark, followed by a single ASCII text character,

then by an ALTMODE ($). For example:

"0$

"/$

"?$

To type in more than one ASCII character, left-justified in consecutive

locations,the user types a quotation mark, followed by an arbitrary delimiting

character (any non-blank printing character not used in the text), then the

text characters, terminated by the delimiting character. For example:

"/TEXT/ (the slash is the delimiting character)

"ABCDEFA (the letter A is the delimiting charactett)

"/VERY LONG TEXT STRINGS CAN BE ENTERED/

If a location is not open, I4DDT types out the delimiting character

when the fifth character is typed, and no other characters can be entered.

To type in a singl~ SIXBIT character, right-justified in an opened word,

the user types an ALTMODE ($), followed by a quotation mark, then by a

single SIXBIT character, terminated by an ALTMODE. For example:

$"Q$

$"M$

$U$$

2-7

To type in more than one SIXBIT character, left-justified- in consecutive

locations, the user types an ALTMODE ($) and a quotation mark, followed by

any delimiting character, then the text characters, terminated by the

delimiting character. For-example:

$"/DIVIDE/ (the slash is the delimiting character)

$"EXXXXXXE (the letter E is the delimiting character)

If a location is not open, I4DDT types out the delimiting character when the

sixth character is typed, and no other characters can be entered.

To type in up to six radix-50 characters (in a PDP-lO fork), the user

types the characters followed by 1A. For example:

100/ Q XYZ-+A

$5TlOO/ OXYZ (set typeout format to radix-50)

2.5 TYPEOUT FORMATS

When I4DDT is loaded, it is initially set to type out the contents of

locations in symbolic instruction format, with addresses relative to symbolic

locations. However, it may often be desirable to change the typeout format

depending upon the information that is stored at a particular location. For

example, if numeric data is stored in a location,- a symbolic typeout would

be meaningless; instead, the user may wish to have 14DDT type out 7-bit ASCII

text characters, SIXBIT text characters, floating-point numbers, etc. Or, it

may be more useful to examine an instruction by having the address parts typed

out as absolute addresses rather than as relative to symbolic locations.

Therefore, a set of commands is available that enables the user to change the

typeout format at any time during the debugging session. These commands are

described in detail in Section 3.2.

In addition to having the ability to change the typeout format, the user

also can specify how long the change is to be in effect. The format change

may have one of the following durations:

1. Prevailing or semipermanent. The user sets a prevailing format change

by preceding the typeout format command with two ALTMODE~s. A pre­

vailingcformat is changed by replacing it with another prevailing

format or by reinitializing the system.

2. Temporary. The user sets a temporary format change by preceding the

typeout format command with a single ALTMODE. Temporary formats

remain in effect until the user types a carriage return or reenters 14DDT.

2-8

TABLE 2-1. TYPEIN/TYPEOUT FORMATS IN VARIOUS I/O MODES

TYPEIN FORMATS

~ Syntax Bits PDP-10 (;$P) Bits Short I11iac (;$S) Bits Long Illiac (;$L) Bits THU (;$T)

S;r.::colic opcode operand 36 PDP-10 opcodes 32 I11iac 4 opcodes 32 I11tac 4 opcodes 48 nm opcodes .

Halfword lefthalf,.rlghthalf

Octal n

36 Two halfwords 2x32 32-bit mode integers 2x32 32-bit mode integers £.6,32 16t and 32-bit . n egers .
36 Octal 32 Single word octal 64 Double word octal • 48 48-bit octal

Decimal n. 36 Decimal 32 Single word decimal 64 Double word decimal 48 48-bit decimal

Hexadecimal In! 36 Hexadecimal 32 Single word hexadecimal 64 Double word hexadecimal 48 4S-hit h/fxa-
dccl;i;Cl.

Text "/TEXT/ 3S 7-bit left* 32 8-bit left* 64 8-bit left* 42 8-bit left*

Character "c$ 36 7-bit right 32 8-bit right. single 64 8-bit right, double 48 8-bit right

Sixbit character S"c$ 36 6-bit right 30 6-bit right 60 6-bit right 48 6-bit right

Sixbit text $"/TF.:XT/ 36 6-bit left* 30 6-bit left* 60 6-bit 1eft* 48 6-bit left*

N Radix-50 symbol SYHBOL'f'A 32 Radix-50, tag field zero 32 Radix-50 symbol 32 . Radix-50 symbol 32 Radix-50 right
I

\,Q Floating point n.n or n.nEn 36 PDP-IO floating 64 Illiae floating (in second word) 32 32-bit right

32-bit mode n.nEn"n.nEn 2x32 32-bit mode floating 2x32 32-bit mode floating 64 Illiac floating 2x32 32-bit mode
..

2x32 32-bit mode floating floating •

TYPEOUT FORMATS

~ Syntax

Syn:bol~c $S or $nS 36 . PDP-lO opeodes 32. Illiae 4 ope odes 32 Illiac 4 opcodes 48 TMU opcodes

N~l:'.eric $C or $nC 36 Current radix 32 • Current radix 64 Current radix 48 Current radix

Floating point $F or SnP 36 PDP-10 floating 32 Illiae floating 64 I11iac floating 32 I111.ae floating

Text $7T 35 7-bit text 32 8-bit text 64 8-bit text 42 8-bit text

Sixbit text $6T 36 6-bit text 30 6-bit text 60 6-b1t text 48 6-bit text
, Radix-50 $5T 32 Radix-50 64 Radix-50 64 Radix-50 32 Radix-50 text .

Halfwords $H 36 Halfwords 2x18 64 Integers 2x32 64 Integers 2x32 16.32 Two integers 16

Bytes $0 or $nO 36 Bytes 32 Bytes 64 Bytes and 32 bits

48 Bytes I L_

*As many words as are required.

~TS IN VARIOUS I/O MODES

tort I11iac (; $S) Bits Long Illiac (;$L)' Bits TMU (;$T)

.1iac 4 opcodes 32 Illiac 4 opcodes 48 TMU opcodes

:-bit mode integers 2x32 32-bit mode integers 6.32 16t and 32-bit n egers
.ngle word octal 64 Double word octal 48 48-bit octal

.ngle word decimal 64 Double word decimal 48 48-bit decimal

ngle word hexadecimal 64 Double word hexadecimal 48 48Cibit hixa-eC1ma
bit left* 64 8-bit left* 42 8-bit left*

bit right, single 64 8-bit right, double 48 8-bit right

bit right 60 6-bit right 48 6-bit right

bit left* 60 6-bit left* 48 6-bit left*

dix-50 symbol 32 Radix-50 symbol 32 Radix-50 right-

liac floating (in second word) 32 32-bit right

-bit· mode floating 64 Illiac floating 2x32 32-bit mode
2x32 32-bit mode floating floating

-~~--~-----.-- ---~~-

liac 4 opcodes 32 Illiac 4 opcodes 48 TMU opcodes

rrent radix 64 Current radix 48 Current radix

liae floating 64 Illiae floating 32 Illiae floating

bit text 64 8-bit text 42 8-bit text.
•

lit text 60 6-bit text 48 6-bit text

iix-50 64 Radix-50 32 Radix-50 text

tegers 2x32 64 Integers 2x32 16,32 Two integers 16

64 Bytes and 32 bits :es
48 Bytes

2.6 SYMBOLS

I4DDT allows the user to create defined or undefined symbols, to

restrict or eliminate the use of Symbols, and to reference symbols in

other programs.

A symbol in I4DDT contains from one to six characters from the follow-

ing set:

• 26 letters, A-Z

• Ten digits, 0-9

• Three special characters: $(dollar sign)
% (percent)
• (period)

If the symbol contains numerals and only one letter, that letter must not be

B, D, or E. These letters are reserved for binary-shifted and floating-

point numbers. A symbol may actually have more than six characters, but

characters after the sixth are ignored.

I4DDT accepts both lower and upper case letters. Lower case letters

are internally converted to upper case; except when they are used within

strings.

2.6.1 DEFINING AND REFERENCING SYMBOLS

I4DDT includes a set of commands that enable the user to insert a

symbol in the symbol table and assign it a specified value, to delete a

symbol from the symbol table or restrict its use, and to reference symbols

in other programs. These commands are described in Section 3.9.

Symbols that can be referenced in one program from another are called

global symbols, e.g., symbols defined by the MACRo-lO statements INTERN or

ENTRY. Symbols that can be referenced only within the program in which they

are defined are called local symbols.

2-1cf

14DDT permits the user to reference all global and local symbols.

However, to reference a local symbol that appears with different values in

different programs, the user must first type the command

name$:

where name is the name of the desired program in which the symbol is defined,

followed by an ALTMODE and a colon. For example, the command

GEORGE$:

"unlocks" the symbol table associated with program GEORGE; the user can

subsequently reference all local symbols in program GEORGE until another

name$: command is given, where name represents another program whose symbol

table the user wishes to access.

The user can insert (or redefine) a symbol in the symbol table by

typing a symbol, followed by a colon. The symbol will have a value equal

to the address of the location pointer (.). For example,

400/ ADD 3,N TAG:

puts the symbol TAG in 14DDT's symbol table and assigns it the value 400,

the address of the last location opened.

The user can also directly assign a value to a symbol by typing the

value, a left angle bracket «) and the symbol, terminated by a colon. For

example:

305(TAG:

TAG is now defined to have the value 305.

Undefined symbols may be used in a program by following the symbol

with a number sign (#). The symbol will then be saved by 14DDT, and sub­

sequent uses of the symbol will cause 14DDT to type out #. When an undefined

,2-11

symbol is assigned a value, all previous occurrences of the symbol will

be replaced with the defined value. Undefined symbols may be used only in

the address field, and only in operations involving addition or subtraction.

2.6.2 SYMBOL TABLES

When the user types in a symbol, I4DDT attempts to evaluate it by

searching the following two symbol tables in order:

1. A built-in operation table containing the machine language

instructions and unimplemented operation -codes (UUOs).

2. A symbol table constructed by the loader during the loading

process that contains all the user-defined symbols.

2.7 EXPRESSIONS

2.7.1 FORMING EXPRESSIONS WITH ARITHMETIC OPERATORS

I4DDT permits the user to combine symbols and numbers into expressions

by using the following characters to indicate arithmetic operators.

Operator

+

*

Meaning

Two's complement integer addition

Two's complement integer subtraction

Integer multiplication

Integer division with remainder discarded

Expressions are evaluated from left to right, with multiplication

and division performed first, followed by addition and subtraction. The

following examples show how expressions may be formed:

AC1+7, RHO'3

A-3, BETA*5

2-12

2.7.2 EXPRESSION EVALUATION

Parentheses are used to denote an index field or to interchange the

left and right halves of an expression inside the parentheses. If an arith­

matic operator immediately precedes the left parenthesis, the expression

is treated as a term in the larger expression being assembled. If an arith­

metic operator does not immediately precede the left parenthesis, the

swapped quantity within the parentheses is added to the storage word being

generated. For example, in a PDP-lO program, the expression (17) is

effectively 0000170000008 • This 36-bit quantity is added to the word.

2.8 BREAKPOINTS

Breakpoint instructions are used to help the user monitor the progress

of the program being executed. Up to eight breakpoints may be set subject

to the restrictions described in Section 2.8.5. When a breakpoint is set,

I4DDT replaces the contents of the breakpoint location with a trap instruc­

tion so that when the program is executed and the breakpoint is encountered,

program execution is suspended, the state of the user's program is saved,

and the programmer's original instructions are restored to the breakpoint

location. I4DDT types out the number of the breakpoint, a symbol indicating

the reason for the break, and the address at which the break occurred. (The

breakpoints are automatically restored.when execution is resumed.)

When the user sets a breakpoint, he may request that the contents of

a word be typed out when the breakpoint is reached. When the program stops,

the user may then enter other commands to examine and debug his program.

Breakpoints may be set either unconditionally or co~ditionally.

When an unconditional breakpoint is set,the program will autom~ti­

cally stop when the breakpoint address is reached (but before the instruc­

tion at the breakpoint address is executed).

2-13

Conditional breakpoints may be set in two ways. The user may provide

his own instruction or subroutine to determine whether to stop, or he

may set a proceed counter to specify the number of times a breakpoint is

passed before a program stop occurs. Each of the eight breakpoints has

seven registers associated with it. Three of these registers contain the

breakpoint address, the conditional breakpoint instruction (if any), and

the proceed counter. Thus, to set a conditional breakpoint, the user must

first insert the instruction or proceed count in the proper registers.

These registers are described below in Section 2.8.1.

To set a breakpoint, the user types the symbolic or absolute address

of the location at which he wants the program to stop, followed by $B.

For example:

6004$B

The user may also assign a number to the breakpoint by typing $nB, where

n is the breakpoint number. For example:

CAT$4B

If no number is specified, 14DDT will assign breakpoint numbers in sequence

from 1 to 8.

To have I4DDT type out the contents of a word when the breakpoint is

reached, the user types the address of'the word to be examined, followed by

a left angle bracket «) before the breakpoint address. For example:

DOG <CAT$4B

All of I4DDT's breakpoint commands are described in detail in Section 3.8.

2-14

2.8.1 BREAKPOINT REGISTERS

The user may set a conditional breakpoint or check the status of a

breakpoint by setting or examining the following registers (where n is the

breakpoint number):

REGISTER

&nB

&nB+I

&nB+2

&nB+7

CONTENTS

Address of the breakpoint.

The conditional breakpoint instruction.

Proceed count.

Trace location.

When a breakpoint location is reached, I4DDT enters its breakpoint analysis

routine (see Figure 2-1). This routine consists of the following instruc­

tions:

&nB+1

&nB+1

&nB+2

Is the conditional break instruction O?

No, execute conditional break instruction

Decrement and test proceed counter

SKIPE

XCT

SOSG

JRST

JRST

(Break routine) .

(Proceed routine)

2.8.2 CONDITIONAL BREAKPOINTS

To set a conditional breakpoint,' the user must insert a conditional

instruction or a subroutine call in register &nB+I. He does this by entering

an I4DDT command to change the contents of the word. For example, to insert

a conditional instruction at breakpoint 3:

&3B+I! Q CAIGE ACC,15~

When the breakpoint is reached, this instruction is executed.

2-15

Enter

YES

(&nB+l)!O

Execute
conditional
break
instruction

~--~-- ---

Decrement
proceed
counter
(&nB+2)-l

Proceed
Counter

<'O?

ns &9k'
r-______________________ --~routine

(&nB+2)~0

I

Return to user's
program and
proceed with
instruction at
breakpoint loca­
tion

---- -- -- - ---- - -- ____ ---1

Figure 2.1. 14DDT's Breakpoint !ma1ysis Routine

2-16

If the instruction does not skip or the subroutine returns to the

next sequential location in the breakpoint analysis routine, the proceed

counter will be decremented and tested. Therefore, if the user wishes a

break to occur based solely on the conditional instruction, he should set

the proceed counter to a large positive number so that the proceed counter

will never reach zero.

If the instruction or subroutine causes one instruction to be skipped,

i.e., that which decrements and tests the proceed counter, the program

breaks.

If the conditional break instruction transfers to a subroutine which

returns skipping over two instructions, a break will never occur regardless

of the proceed counter, and the user's program proceeds with the instruction

at the breakpoint address.

Conditional breakpoints cannot be set in the ILLIAC address space.

2.8.3 THE PROCEED COUNTER

If the user wishes to proceed past a breakpoint a specified number of

times,· and then stop, he inserts the number of passes in register &nB+2,

which contains the proceed count. When the breakpoint location is reached,

I4DDT will decrement and test the proceed counter. If it is less than or

equal to zero, a break occurs; if it is greater than zero, execution of the

user's program proceeds with the instruction where the break occurred.

The proceed counter may be set in two ways:

1. Insert the count directly, e.g., &nB+2/ 0 20.sets the counter

to 20.

2. After stopping at a breakpoint, s·et or reset the counter by

typing the count before the proceed command, e.g., 20$p.

·2-17

2.8.4 BREAKPOINT TYPEOUTS

When the breakpoint location is reached, I4DDT types out the following:

• The breakpoint number, assigned by I4DDT or explicitly by the

user in the form &nB.

• A symbol indicating the reason for the break:

>for the conditional break instruction,

»for an unconditional break or for the proceed counter being

equal to zero.

• The Program Counter value at the time the breakpoint is reached,

i.e., the address in the user's program where the break occurred.

• The contents of an address (if any) specified by the user to be

typed out when the breakpoint is reached.

For example, assume that the user has set an unconditional breakpoint as

follows:

DOG (CAT$3B

I4DDT will type out the following when breakpoint 3 is reached:

&3B » CAT DOG/ SOJGE 3,ALPHA

where CAT is the breakpoint address and location DOG contains the instruction

SOJGE 3,ALPHA.

2.8.5 RESTRICTIONS

The locations where breakpoints are set may not

a. be modified by the program.

b. be used as data or literals.

c. be used as part of an indirect addressing chain (PDP-lO a~dress

space).

d. contain the user mode monitor command INIT (PDP-lO address space).

e. be accumulator O.

2-18

2.9 ERROR CORRECTION AND RECOVERY

2.9.1 DELETING TYPING ERRORS

The user can delete any partially t¥ped command by pressing the

Control E (+E) key. This causes I4DDT to ignore the unexecuted connnand,

suspen~ program operation, and type out the following message:

XXX:addr/inst

where addr is the address of the next instruction to be executed, and inst is

the instruction at that address. For example, if the following message is

typed:

XXX:LOC+5/ MOVE A,DAT+2l

the interrupt will have occurred immediately before this instruction, and if

a $P command is typed to restart the program, this instruction will be the

next one executed by the user.

2.9.2 ERROR MESSAGES

AppendixB contains the error messages typed out by I4DDT, their causes,

the recovery procedures.

2.10 CONTROL CHARACTERS

Control characters are input by depressing the CTRL key in conjunction

with the character. The notation for the control key used in this manual is

the symbol +. For example, ~B is input by simultaneously depressing the CTRL

key and the B key.

Six control characters are usable under 14DDT: ","B, +E, ~, -t-H, 1'-T, and -tZ.

The functions of these characters are explained below.

2-19

CHARACTER

tB

-tz

2-20

DESCRIPTION

Type a report on core memory assigned to

the user, i.e., number of pages, location

and length of entry vector, memory map

(page numbers with associated file names

and type of access allowed - read, write,

or execute).

Delete a partially typed command (may be

replaced by using the ;;A command -- see

Section 3.1.4).

Type a report on all inferior forks under

I4DDT.

Change the contents of a location and sub­

tract 1 from the location pointer (see

Section 3.6).

Alternate escape character (may be replaced

by using the ;A connnand -- see Section 3.1.4).

If the last quantity ~yped is zero, ignore

all charac·ters typed in until the next +z;

if the last quantity typed is non-zero,

ignore the next+Z. (Used in I4DDT command

files to ignore or execute selected commands)

SECTION 3

I4DDT COMMANDS

3.1 EXECUTIVE FUNCTIONS

3.1.1 ADDRESS SPACE SELECTION

The following commands enable the user to select the following

address spaces: PDP-la, PDP-II, ILLIAC IV array, ILLIAC IV disk, or TMU.

These address spaces may be selected permanently (in effect until replaced

by another permanent address space command or the system is reinitialized),

or temporarily (in effect until the user types a carriage return or re-enters

I4DDT). Permanent address space commands are preceded by two semicolons (;;).

Temporary address space commands are preceded by one semicolon (;).

Options

a. Select permanent PDP-IO address space.

Syntax: ;;P

b. Select temporary PDP-IO address space.

Syntax: ;P

c. Select permanent ILL lAC IV array address space.

Syntax: ;; I

d. Select temporary ILLIAC IV array address space.

Syntax: ;1

e. Select permanent ILLIAC IV disk address space.

Syntax: j jD

f. Select temporary ILLIAC IV disk address space.

Syntax: ;D

3-1

· .

g. Select permanent PDP-II address space.

Syntax: ;;E

h. Select temporary PDP-II address space.

Syntax: ;E

i. Select permanent TMU address space.

Syntax: ;;T

j. Select temporary TMU address space.

Syntax: ;T

3.1.2 INPUT/OUTPUT MODE SELECTION

The following commands enable the user to interpret locations in one

address space as if they were in another address space. Regardless of the

address space he has selected, the user may specify a different input/output

mode, e.g., he may wish to examine ILLIAC instructions in a PDP-IO address

space. Any combination of address space and input/output mode may be selected,

although many combinations will have little practical use.

Input/output modes are selected by entering one or two semicolons and

an ALTMODE ($), followed by the address space selection letter. As with the

address space commands, input/output modes may be selected permanently or

temporarily.

Options

a. Select permanent PDP-IO mode.

Syntax: ;;$P

b. Select temporary PDP-IO mode.

Syntax: ;$P

c. Select permanent short ILLIAC IV mode (32 bits).

Syntax: ;;$S

3-2

d. Select temporary short ILLIAC IV mode (32 bits).

Syntax: ;$S

e. Select permanent long 1LLIAC IV mode (64 bits).

Syntax: ; ; $L

f. Select temporary long ILLIAC IV mode (64 bits).

Syntax: ;$L

g. Select permanent PDP-Il mode.

Syntax: ; ; $E

h. Select temporary PDP-II mode.

Syntax: ;$E

i. Select permanent TMU mode (48 bits).

Syntax: ;; $T

j. Select temporary TMU mode (48 bits).

Syntax: ;$T

k. Select permanent short ILLIAC disk mode.

Syntax: ;;$D (equivalent to ;;$8)

1. Select temporary short ILLIAC disk mode.

Syntax: ;$D (equivalent to ;$S)

m. Select permanent short ILLIAC array mode.

Syntax: ;;$1 (equivalent to ;;8)

n. Select temporary short ILLIAC array mode.

Syntax: ;$1 (equivalent to ;8)

3.1.3 FILE OPERATIONS

The following executive commands enable the user to load the contents

of files into address spaces and to move the contents .of address spaces into

files.

3-3

Options

a. Load a file and the symbol table into the current

address space.

Syntax: ;G GET FILE: filename

where filename is the name of a SAVE CORE file, created

by the TENEX SAVE command (refer to the TENEX Executive

Language Manual).

b. Load a ne~ symbol table without changing the contents of

the address space.

Syntax: ;;G GET SYMBOL FILE: filename

where filename is the name of a SAVE file.

c. Move the contents of the current address space to a file.

Syntax: ;S SAVE FILE: filename

where filename is the name of a SAVE file.

NOTE: If the current address space is the TMU, pages

specified by &LMB to &u~ will be moved to the

designated file.

d. Move a symbol table to a file.

Syntax: ;;S SAVE SYMBOL FILE: filename

where filename is the name·of a SAVE file.

e. Merge a file with what is already in the current address

space.

Syntax: ;M MERGE FILE: filename

where filename is the name of a SAVE file.

f. Merge a symbol table with what is already in the current

address space.

Syntax: ;;M MERGE SY}mOL FILE: filename

where filename is the name of a SAVE file.

3-4

g. Bring the PDP-lO loader into the current address space

and return control to I4DDT.

Syntax: ;L

h. Bring the PDP-lO loader into the current address space and

start the user's program at a previously specified starting

address.

Syntax: ;;L

i. Execute I4DDT command strings from a file.

Syntax: ;X EXECUTE FROM FILE: filename

where commands will be executed from the specified file

(default extension .CMD) until end of file is reached or a

;X in the file returns input to the terminal. Execute files

may be nested and/or recursive to any level.

3.1.4 MISCELLANEOUS EXEC FUNCTIONS

a. Insert the lower limit into register &LL and the upper limit

into register &UL, and zero memory using these limits. Do not

zero the symbol table.

Syntax: a(b;Z

where a is the lower limit and b is the upper limit. If a is

omitted, the current value of &LL will be used; if b is omitted,

the current value of &UL will be used.

b. Zero memory and the symbol table within specified limits.

Syntax: a<b; ; Z

where a and b have the values described above.

3-5

c. Change protection on pages a through b inclusive according

to the three-bit value of n.

Syntax: a(b;nU

where n=4 means allow read access, n=2 means allow write access,

and n=l means allow execute access.n values may be summed to

specify combinations of access, e.g., n=6 means allow read and

write access. If n is omitted, it is assumed to be 7.

Example: 50(77;6U

where the protection on pages 50 through 77 has been changed to

allow read and write access.

d. Change protection on page a.

Syntax: a;nU

where the bit values of n are as described above.

e. Change protection on current page.

Syntax: ;nU

where the bit values of n are as described above.

f. Open access to ILLIAC and copy virtual ILLIAC image to ILLIAC

memory. *
Syntax: ;0

g. Open access to ILLIAC. *
Syntax: ;;0

h. Copy ILLIAC memory to virtual ILLIAC image and close access to

ILLIAC.

Syntax: ;C

i. Close access to ILLIAC.

Syntax: ;;C

*If the ILL1AC is busy, 14DDT will type out a-message indicating who the current
user is, and will continue trying to acquire ILLIAC.

3-6

j. Replace 17 with a new escape character.

Syntax: jA ESCAPE CRR IS: c

where c is the new escape character (c must be ~ tZ).

k. Replace~E with a new escape character.

Syntax: ;;A ESCAPE CRR IS: c

where c is the new escape character (c must be ~~Z).

3.2 CHANGE TYPEOUT FORMAT-

The Change Typeout Format commands are used to change the format in

which memory contents are typed out by I4DDT, i.e., as symbolic instructions,

numeric constants, etc. When I4DDT is loaded, the typeout formats are

initialized to output symbolic instructions with addresses relative to

symbolic locations. For numeric typeouts, the radix is initially set to

octal. Table 3-1 shows the default values for various typeout formats.

The user also sets the duration of a typeou~ format to be either pre­

vailing (in effect until it is changed to another prevailing format or the

system is reinitialized), or temporary (in effect until the user types a

carriage return or reenters 14DDT). Prevailing format commands are preceded

by two ALTMODES ($$); temporary format commands are preceded by one

ALTMODE($).

In all I4DDT typeouts, leading zeros are suppressed.

Options

a. Type out addresses relative to symbolic locations (I4DDT's

initial setting).

Syntax: $R or $$R

Example: $R addr/ ADD TABL+14,TAB:+13

3-7

b. Type out the address parts of instructions, and both addresses

when the format is halfword, as absolute numbers in the current

radix.

Syntax: $A or $$A

Example: $A addr/ ADD 4002

~. Type out symbolic instructions (I4DDT's initial setting) and

insert n (the i~struction class) into register &8.

Syntax: $nS or $$n8

where n=O (PDP-lO), 1 (short ILLIAC), 2 (long ILLIAC), 3 (TMU),

or 4 (PDP-II).

Example: $08 addr/ ACl,TABLE+3

d. Type out symbolic instructions, with the instruction class

determined by the current contents of register &8 (see the

values of n, above).

Syntax: $8 or $$8

e. Type out the contents of locations as constants, i.e., as num­

bers in the current radix, and insert n (the radix) into register

&C.

Syntax: $nC or $$nC

where n=2, 8, 10, or 16. If the radix is octal, the location

typed out will be divided into halves, separated by two commas.

f. Type out the contents of locations as constants, with the radix

determined by the current contents of register &C.

Syntax: $C or $$C

g. Type out memory location addresses using radix n.

Syntax: $nR or $$nR

h. Type out the contents of locations as floating-point numbers,

and insert n (the bit length) into register &F.

Syntax: $nF or $$nF

where n=32, 36, or 64.

i. Type out the contents of locations as 32-, 36-, or 64-bit

floating-point numbers, depending on the current contents of

register &F.

Syntax: $F or $$F

j. Type out the contents of locations as text, and insert n (the

text type) into register &T.

Syntax: $nT or $$nT

where n=B (B-bit ASCII), 7 (7-bit ASCII), 6 (SIXBIT text), or 5

(Radix-50).

k. Type out the contents of locations as text (7- or 8-bit ASCII,

SIXBIT, or Radix-50) as determined by the current contents of

register &T.

Syntax: $T or $$T

1. Type out the contents of locations as n-bit ,bytes, and insert

n in register &0.

Syntax: $nO or $$nO

where n is a value from 1 to 64.

m. Typeout the contents of locations as n-bit bytes, where n is

determined by the current contents of register &0.

Syntax: $0 or $$0

n. Type out the contents of locations as n-bit bytes, where n is

half the value of the word-length register (&W).

Syntax: $H or $$H

3-9

Table 3-1. Default Values for Typeout Formats

Default Values

Register Contents PDP-10 Array 14 Disk PDP-11 TMU

&5 (instruction) 0,1,2,3, or 4 0 1 1 4 3

&C (data radix) 2,8,10, or 16 8 8 8 8 8

&T (text)* 5,6,7, or 8 7 8 8 7 8

&F (floating point) 32,36, or 64 36 64 . 64 32 64

&0 (byte) 1 - 36 18 8 8 8 8

w &W (word length) 16,32,36, or 64
~

36 32 32 16 48
0

&R (address radix) . 2,8,10, or 16 8 8 8 8 8

* -

5 = Radix-50

6 = SIXBIT Text

7 = 7-bit ASCII

8 i:: 8-bit ASCII

o. Type out the contents of locations in a field format specified

by boundary register &nVB and mask register &nVM, where n (the

current register pair) is contained in register &V.

Syntax: $V or $$V

Example: See Section 3.2.1.

~. Type out the contents of locations in a field format specified

by boundary reg~ster &nVB and mask register &nVM, and insert n

(the current register pair) into register &V.

Syntax: $nV or $$nV

Example: See Section 3.2.1.

3.2.1 FIELD FORMAT TYPEOUTS

The field typeout format enables the user to examine the contents of

a location divided into a number of fields.

Eight pairs of registers are associated with field typeouts, and one

register (&V) contains the number of the current pair to be used when the

field typeout format is selected.

Each of the eight pairs consists of a boundary register (&nVB) and a

mask register (&nVM), where n is a number from 1 to 8 designating the current

pair in register &V. The default value in register &V is 1.

Eech bit set in the boundary register specifies the right-most bit

of a field. For example, the following bit configuration:

0010001

would specify a 3-bit field starting at bit position 0 and a 4-bit field

starting at bit position 3.

3-11

Each bit in the mask register is ANDed with the corresponding bit

in the memory location being examined to form the result (see Example 1).

Example 1:

;;P

&2VB/ Q 40,,200011

&2VM/ Q 17743,777771

20/ 133104,,325

$$2C

20/ 1011011001000100,,11010101

$$2V

20/ 1011001,0,11010,1

&C/ 1 10

20/ 131,0,32,1

Select PDP-10 address space.

Set boundary bits using register pair 2.

Set mask bits.

Examine location 20 (current typeout format
is octal).

Set typeout format to binary.

Examine location 20.

Set typeout format to field, using

register pair 2.

Examine location 20 in field format.

Change typeout radix to decimal.

Examine location 20.

The user may also set field boundary bits by typing the following:

&nV/leftbit,length;leftbit,length; ••• ;

where 1eftbit is a decimal integer specifying the left-most bit of a field,

and length is a decimal integer specifying the length of the field (see

Example 2).

Example 2:

; ;1 Select ILL lAC array address space.

; ;$L Set word size to 64 bits (long mode).

$$8C Set typeout format to octal constants.

3-12

Exaople 2: (cont.)

100/ .Q. -l~ Put -lin the 64-bit word at location 100.

100/ 1777777777777777777777

&2V/ Q 0,37;37,27;2

$$2V

100/ 1777777777777,777777777

&2V/ 0,37;37,27; 0,5;42,22;~

100/ 37, 17777777

3.3 START, CONTINUE, AND EXIT

Examine location 100 in octal format.

Set field registers with two fields: one
37-bit field starting at bit position 0,
and one 27-bit field starting at bit
position 37.

Set typeout format to field, using
register pair 2.

Examine location 100 in field format.

Set a different field format.

Examine location 100 in the new field format.

The following commands are used to start the user's program at a

specified address, to restart the program (i.e., resume execution) from a

breakpoint stop, and to exit from I4DDT. When breakpoints occur, program

execution is suspended and each address space may have its registers manipulated,

addresses and proceed counts changed, etc, at the user's option. To resume

execution, the user selects the proper address space and. gives a command to

proceed.

Options

a. Start at a previously specified starting address. This is

usually the address from the MACRO-IO or ASK END statement.

Syntax: $G

h. Start at a specified address.

Syntax: addr$G

3-13

c. Resume execution of the program at the instruction

location where the break occurred.

Syntax: $P

d. Set the proceed count and proceed.

Syntax: n$P

where n is the proceed count.

e. Proceed from a breakpoint and then proceed automatically

when the program breaks again.

Syntax: $$P

f. Increment breakpoint location by 1 and proceed ($P).

Syntax: $I

g. Increment breakpoint location by n and proceed ($P).

Syntax: n$I

h. Increment breakpoint location by I and proceed automatically

($$P).

Syntax: $$1

i. Increment breakpoint location by n and proceed automatically

($$P).

Syntax: n$$I

j. Execute a single instruction and return control to the user.

14DDT types out one to three dollar signs to indicate the

number of locations skipped; register &X contains the

address of the first word of a four-word block in the user's

fork that is used to execute the instruction (normally 777774).

Syntax: instr$X

k. Execute the given instruction in a new fork for PDP-IO.

Other address spaces default to register &X.

Syntax: instr$$X
3-14

1. Exit from I4DDT.

Syntax: $$Q

3.4 TYPE OUT THE CONTENTS OF A LOCATION

The connnand to type out the contents of a memory location does the

following:

1. Causes the contents of the location in the current address

space to be typed out on the terminal in the current typeout

format, initially symbolic instruction (unless the format has

been changed by a Change Typeout Format command).

2. Causes I4DDT's location pointer to point to the specified

location.

3. Opens the location so that its contents can be changed by typing

the new contents and a carriage return* following the typeout by

I4DDT.

Options

a. Type out the contents of a location in current typeout

format, open the location, and set the location pointer

to this address.

Syntax: addrl

where addr is the symbolic or absolute address of the

location to be typed out.

Example: LocI MOVE A,CCI

b. Examine the current location.

Syntax: .1

Example: .1 MOVE A,CCI

*The line feed (~) or vertical arrow (t) may be used instead of the carriage
return if the user wishes to increment or decrement the location pointer.
lhese commands are described in Section 3.6.

1-15

c. Type out the contents of a location relative to the

current value of the location pointer.

Syntax: .+nl

Example: .+51 ADD B,SUM

d. Type out the contents of the location addressed in the last

typeout.

Syn:tax : I

Example: LocI MOVE A,CCI / ADD 2,SUM

where location LOC contains the instruction MOVE A,CCI and

CCI contains the instruction ADD 2,SUM.

e. Change the temporary typeout format to constant, type out

the contents of a location, open the location, and set the

location pointer to this address.

Syntax: addr [

Example: LOC 9.

f. Change the temporary typeout format to symbolic instruction

format, type out the contents of a location, open the loca­

tion, and set the location pointer to· this address.

Syntax: addr]

Example: LOC] MOVE 15 zLIST+2

g. Open a location to modification, but suppress typeout of

contents until a slash, left bracket, or right bracket is

typed by the user.

Syntax: add~

Example: LOC\MOVE AC,5SS+

(The location LOC is open to modification,

the user. has typed in the new contents, but

3-16

the reverse slash suppresses

typeout.)

Loc+f\

(The line feed (+) has incremented the

location pointer, but the contents of

LOC+l are not typed out because the reverse

slash is still in effect.)

LocI MOVE AC,555

(The slash terminates the effect of the

reverse slash, and the new contents of the

location are typed out.)

3.5 RETYPE THE CONTENTS OF A LOCATION IN A SPECIFIED FORMAT

Three commands are available that enable the user to have I4DDT retype

the last quantity typed in a different specified format. These format changes

are in effect only temporarily; when a carriage return is typed, I4DDT reverts

to the prevailing format previously in effect.

Options

a. Retype the last expression in numeric format, with

numbers in the current radix (initially octal).

Syntax: addr/ contents=

Example: =25411 2 ,4050

b. Retype the last expression as a symbolic instruction.

The address mode is determined by the typeout format in

effect, i.e., absolute numeric address or relative to

symbolic address (see Section 3.2).

Syntax: addr/ contentsi­

Example: ~ADD 4, TAB+l

3-17

c. Retype the last expression in the current format

(normally used when the typeout format has been changed.)

Syntax: addr/ contents;/

Example: TEXT/ANUM 1,342212 (10) $T;/

ABCDE

3.6 CHANGE THE CONTENTS OF A LOCATION

In order to change the contents of a memory location, the user must

first issue a command to cause the current contents of that location to be

typed out. He does this by typing the symbolic or absolute address of the

location followed by a slash. The location is now considered opened, and

the user may change its contents by typing the desired new contents immed­

iately following the typeout produced by I4DDT. A carriage return (~) then

commands I4DDT to make the indicated modification, and the location is now

considered closed.

The contents of a location can also be changed by typing a LINE FEED

(~), vertical arrow (t), or Control H (tH) in place of a carriage return.

A LINE FEED makes the desired modification, but then adds 1 to the location

pointer if the word length (contained in register &W) is 36 or less, or adds

2 to the location pointer if the word length is greater than 36, and types

out the resulting address and the contents of the new address. A vertical

arrow or Control H makes the desired modification, but then subtractsl from

the location point if the word length is 36 or less, or subtracts 2 from

the location pointer if the word length is greater than 36, and types out

the resulting address and the contents of the new address. If the carriage

return, LINE FEED, vertical arrow, or Control H is preceded by-an ALTMODE($) ,

then the next-to-last location examined is used for setting the new value

of the location pointer instead of the last location examined.

3-18

Options

a. Change the contents of a location, and close the location

without moving location pointer.

Syntax: addr/current contents new contents~

Example: LOC/MOVE A,CCI MOVE A,CC2~

b. Cause a carriage return, add 1 to the location pointer,

type out the resulting address and the contents of the new

address.

Syntax: addr/current contents new contents~

Example: LOC/MOVE A, CCI MOVE A,CC2~

LOC + l/ADD 3,CC3

c. Cause a carriage return, subtract 1 from the location

pointer, type out the resulting address and the contents

of the new address.

Syntax: addr/current contents new contentst

Example: LOC + l/ADD 3,CC3~ ADD 4,CC4~

LOC/MOVE'A,CC2

3.7 INSERT A CHANGE AND EXAMINE CONTENTS OF LAST TYPED ADDRESS

The commands in this category cause I4DDT to close the current open

location (making any modification typed in) and to open the following related

locations, causing them to be typed out in the current typeout format.

Options

a. Type out the contents of the location specified by the

address of the last quantity typed, and set the location

pointer to this address.

Syntax:

Example:

3-19

addr/ current contents new contents~l

LOC/MOVE A,CCI MOVE A,CC2~1

CC2/ 666

b. Open the contents of the location specified by the

address of the last quantity typed, but do not change

the location pointer.

Syntax: addrl current contents new contents\

Example: LocI MOVE A,CC2 JRST X\

(The location pointer continues to point to LOC,

but location X is now open and may be modified if

desired.)

3.8 SET AND REMOVE BREAKPOINTS

The following commands enable the user to set and remove breakpoints

and check the status of a breakpoint. Section 2.8 contains additional

information on conditional breakpoints, breakpoint typeouts, and restrictions

on breakpoint locations.

Options

a. Set a breakpoint at a specified location and assign a

number to the breakpoint.

Syntax: addr$nB

~lere addr is the symbolic or absolute address of the loca­

tion at which the user wishes to stop the program, and n is

a breakpoint number from I through 8.

Example: CAT+3$4B (when CAT+3 is reached, I4DDT

types out &4B » CAT+3)

The user may also reassign a breakpoint, e.g., if he has

set breakpoint 2 at location CAT (CAT$2-B), he may reassign

breakpoint 2 to location CAT+I by typing CAT+l$2B. .

3-20

b. Set a breakpoint at a specified location and assign it

the next unused breakpoint number.

Syntax: addr$B

Example: 4002$B

c. Set a breakpoint at a specified location and set automatic

proceed. *
Syntax: addr$$nB

If n is omitted, set the next unused breakpoint with

automatic proceed.

d. Set a breakpoint and open and examine a specified location.

Syntax: x<addr$nB

where addr is the address of the breakpoint and x is the

address of the location to be opened and examined when the

breakpoint is reached. If x=-l, examine location O. If n

is omitted, set the next unused breakpoint and open and

examine location x.

e. Set a breakpoint with automatic proceed and open and examine

a specified location.

Syntax: x(addr$$nB"

where x, addr, and n have the values described above.

f. Remove a specific breakpoint.

Syntax: O$nB

where n is the number of the breakpoint to be removed.

*To get out of automatic proceed mode, type any teletype key during the
typeout, then remove the breakpoint or reassign it with a singleALTMODE.

It may be necessary to type~C and REENTER to return to I4DDT to remove or
reassign the breakpoint.

3-2l;

g. Remove all breakpoints.

Syntax: $B

h. Type out all the set breakpoints and their locations.

Syntax: $$B

i. Check the status of a specific breakpoint (n).

Syntax: &nBI

Location &nB contains the address of the breakpoint.

(If &nB equals zero, the breakpoint is not in use.)

j. Insert a conditional instruction or subroutine call at

breakpoint n.

Syntax: &nB+11

Example: &3B+l/ .Q. CAIGE ACe, 15 i2.

If the conditional instruction does not cause a skip, the

proceed counter is decremented and checked; if 0, a break

occurs. If the conditional instruction causes one skip,

a break occurs. If the conditional instruction causes

two skips, execution of the program proceeds.

k. Set the proceed count at breakpoint n.

Syntax: &nB+21

Example: &3B+2/.Q. 20 ~

1. Execute a string of 14DDT commands when a breakpoint is

reached.

Syntax: $nBXccc ••• cccX

where n is the breakpoint number, X is an arbitrary de­

limiting character, and ecc ••• cee is a text string to be

fed to I4DDT for execution as 14DPT eQmmand$ when hreak ...

point n is reached.

3-2.2

3.9 SYMBOL MANIPULATION

The following commands enable the user to reference a local symbol

within a particular program, assign a value to a symbol, and restrict or

eliminate the use of a defined symbol.

Options

a. Reference local symbols within a particular program, i.e.,

unlock the symbol table associated with that program.

Syntax: name$:

where name is the program name, e.g., the name specified

in the MACRO-lO or ASK TITLE statement.

Example: PAYROL$:

where PAYROL is the name of the program whose symbol table

the user wishes to access.

b. Insert a symbol in the symbol table and assign a numeric

value to the symbol.

Syntax: value<symbol:

where value is any numeric value and symbol is any defined

or undefined symbol.

Example: 30S(XVAR:

XVAR is now defined to have the value 305.

c. Insert or redefine a symbol in the symbol table and assign

it a value equal to the address of the location pointer.

Syntax: symbol:

Example: TAG:

TAG is now defined to have the value equal to the address

of the location pointer.

3-23

d. Remove a symbol from the symbol table, i.e., prevent the

symbol from being used for input or output.

Syntax: symbol$$K

Example: TAG$$K

TAG is now removed from the symbol table.

e. Prevent I4DDT from using a symbol for typeout.

Syntax: symbol$K

Example:' TAG$K

The symbol TAG will be replaced in subsequent typeouts by a

symbol that has the same numeric value.

f. Prevent I4DDT from using the last symbol typed out as a

typeout symbol, and retype the symbol as a quantity in

the current typeout mode.

Syntax: $D

Example: AI MOVE AC,LOC $D MOVE AC,ABC+l

g. Declare an undefined symbol for later definition.

Syntax: symbol#

Example: MOVE 2,SAVE#

SAVE is now saved by I4DDT, and when finally. defined, all

previous occurrences of the symbol will be replaced with

the defined value.

h. Type out a list of all undefined symbols (created by symbol#).

Syntax: ?

Example: ?

SAVE

UNDEF

3-24

i. Type out a list of all symbols and their values.

Syntax: $?

j. Type out a symbol and its value.

Syntax: symbolS?

k. Type out a list of all symbols beginning with a specified

character string.

Syntax: string$$?

where a string consists of one to five alphanumeric

characters.

1. Type out a list of all symbols whose values are equal to n.

Syntax: $n?

3.10 SEARCH FOR A SPECIFIED VALUE

14DDT's search commands enable the user to search a specified portion

of memory for (a) a particular quantity (word search), (b) the absence of a

particular quantity (not-word search), or (c) an effective address. The

lower and upper limits of the search may be specified by the user, or, if one

or both of these parameters are omitted, the values currently in internal

registers &LL and &UL are used.

The word search compares the contents of each memory location with a

specified value. If the comparison shows an equality, the address and con­

tents of the location are typed out; if the comparison shows an inequality,

nothing is typed and the search continues until the upper limit is reached.

The value searched for may be modified by a mask word (located at&M) which

specifies which bit positions are to be compared. (In double-word searches,

register &Ml contains the high-order mask word.) A one bit in the mask word

causes the corresponding bit position in each memory location to be compared;

3-25

a zero bit in the mask word causes the corresponding bit position in each

memory location to be ignored. The mask word initially contains all ones,

so that all bit positions are compared; however, the contents of the mask

word may be set by the user.

The not-word search types out the address and contents of each location

where the comparison shows an inequality; if the comparison shows an equality,

nothing is typed and the search continues until the upper limit is reached.

The effective address search types out the address and contents of all

locations that contain a specified effective address (the actual address

modified by indexing or indirect addressing); if the comparison shows an

inequality, nothing is typed and the search continues until the upper limit

is reached.

Options

a. Insert lower limit in register &LL and upper limit in

register &UL, and type out the address and contents of all

locations that contain a specified value.

Syntax: a c$W

where a is the address of the lower limit of the search,

b is the address of the upper limit of the ~earch, and c

is the value being searched for.

Example: INPT <INPT+lQ> X$W

INPT+2/ X

b. Using the lower limit contained in register &LL and the

upper limit contained in register&UL, type out the address

and contents of all locations that contain a .specified

value.

Syntax: c$W

where c is the value being searched for.

3-26

c. Insert lower limit in register &LL and upper limit in

register &UL, and type out the address and contents of all

locations that do not contain a specified value.

Syntax: a c$N

where a, b, and c are the addresses and value described above."

Example: INPT <INPT+lO> DATA$N

INPT/ 4503,,4502

INPT+5/ 202400,,6736

INPT+7/ 50500,773400

d. Using the lower limit contained in register &LL and the

upper limit contained in register &UL, type out the address

and contents of all locations that do not contain a

specified value."

Syntax: c$N

where c is the value being searched for.

e. Insert lower limit in register &LL and upper limit in

register &UL, and type out the address and contents of all

locations that contain a specified effective address,

following all indirect and index-register chains to a

maximum depth of 6410 levels.

Syntax: a(b)c$E

where a,b, and c are the addresses described above.

Example: 4517<5000)X$E

4517/ SETZM X

4727/ MOVE 2,X

5000/ MOVE 3, @472l (address 4721 indirectly

addresses X)

3-27

f. Using the lower limit contained in register &LL and the

upper limit contained in register &UL, type out the

address and contents of all locations that contain an

effective address.

Syntax: c$E

where c is the effective address searched for.

g. Type out the contents of the mask register, which is then

open for modification.

Syntax: &M/

&Ml/

Example: &M/ 777777777777

&Ml/777777777777

h. Insert a quantity into the mask register.

Syntax: n$M

Example: 46$M

3.11 PATCHING

I4DDT's patch commands enable the user to insert a series of instruc-

tions at the currently opened location in his program. The procedures are

as follows:

1. Open register &PL and type in the address of the location

where the patch instructions will be inserted (if address

775000 is not available).

&PL/ 775000 l'CHSPC!l.

2. Open the location where the patch is to be inserted and type in

$Y

to insert a JRST (Jump) instruction in the location currently

open.

3-28

3. Enter the proper instructions, open the location following

the last instruction in the patch, and type in

$$Y

This concludes the patch.

3-29

APPENDIX A

I4DDT COMMAND SUMMARY

A.I EXECUTIVE FUNCTIONS

A.I.I ADDRESS SPACE SELECTION

SI!!tax DescriEtion

;P Temporary PDP-lO

; ;P Permanent PDP-lO

;1 Temporary ILL lAC IV array

;; I Permanent ILLIAC IV array

;D Temporary ILL lAC IV disk

; ;D Permanent ILL lAC IV disk

;E Temporary PDP-ll

; ;E Permanent PDP-ll

;T Temporary TIfU

; ;T Permanent TMU

A.I.2 INPUT/OUTPUT HODE SELECTION

Syntax DescriEtion

;$P Temporary PDP-lO mode

; ;$P Permanent PDP-lO mode

;$8 Temporary short ILL lAC IV mode (32 bits)

;; $8 Permanent short ILL lAC IV mode (32 bits)

;$L Temporary long ILL lAC IV mode (64 bits)

; ;$L Permanent long ILL lAC IV mode (64 bits)

j$E Temporary PDP-li mode

; j$E Permanent PDP-lI'mode

j$T Temporary TMU mode

;; $T Permanent TMU mode

;$D Temporary short ILLIAC disk mode

(equivalent to ;$S)

; ;$D Permanent short ILLIAC disk mode

(equivalent to ;;$S)

A-l~

A.I.3

A.I.4

Syntax

;$1

;;$1

FILE OPERATIONS

Syntax

;G

; ;G

;S

;; S

;M

; ;M

;L

; ;L

;X

Description

Temporary short ILLIAC array mode

(equivalent to ;$S)

'Permanent short ILLIAC array mode

(equivalent to ;;$S)

Description

Load a file and the symbol table into

the current address space.

Load a new symbol table without changing

the contents of the address space.

Move the contents of the current address

space to a file.

Move a symbol table to a file.

Merge a file into the current address space.

Merge a symbol table into the current

address space.

Bring the PDP-lO loader into the current

addr~ss space and return control to 14DDT.

Bring the PDP-lO leader into the current

address space and start the user's program

at a previously specified starting address.

Execute command strings from a file.

MISCELLANEOUS EXEC FUNCTIONS

Syntax

a(b;Z

a(b; ;Z

Description

Set lower limit (a), upper limit (b), and

zero memory using these limits. Do not

zero symbol table.

Set lower limit (a), upper limit (b), and

zero memory and the symbol table using these

limits.

A-2 "Y.

Syntax

a(b;nU

a;nU

;nU

;0

; ; 0

;C

; ;C

;A
; ;A

Description

Change protection on pages a through b

according to the 3-bit value of n: 4-bit =

allow read access, 2-bit = allow write

access, I-bit = allow execute access.

Default = allow all.

Change protection on page a according to

the above values of n.

Change protection on current page according

to above values of n.

Open access to ILL lAC and copy virtual

ILLIAC image to ILLIAC memory.

Open access to ILLIAC.

Copy ILL lAC memory to virtual ILL lAC image

and close access to ILLIAC.

Close access to ILLIAC.

Replace tT with new escape character.

Replace ~E with new escape character.

A.2 CHANGE TYPEOUT FORMAT - TENPORARY ($) OR PREVAILING ($$)

Syntax

$R or $$R

$nR or $$nR

$A or $$A

$nS or $$nS

$S or $$S

$nC or $$nC

$C or $$C

$nF or $$nF

Description

Address relative to symbolic locations.

Non-data numeric output radix.

Addresses as absolute numbers.

Symbolic instructions, where n=O (PDP-lO),

1 (short ILLIAC), 2 (long ILLIAC), 3 (TMU),

or 4' (PDP-II).

Symbolic instructions, with the class

determined by register &S.

Location contents as numbers in the current

radix, where n=2, 8, 10, or 16.

Location contents as numbers in the current

radix, with the radix determined by

register &C.

n-bit floating-point numbers, where

n=32, 36, or 64.

A-3

A.3

Syntax

$F or $$F

$nT or $$nT

$T or $$T

$nO or $$nO

$0 or $$0

$H or $$H

$V or $$V

$nV or $$nV

START 2 CONTINUE z

SIn tax
;

$G

addr$G

$P

n$P

$$P

$1

n$I

$$1

AND EXIT

Description

32-, 36-, or 64-bit floating-point numbers,

depending on the contents of register &F.

Text characters, where n=8 (8-bit ASCII),

7 (7-bit ASCII), 6 (SIXBIT), or 5

(Radix-50).

Text characters, with the type determined

by register &T.

n-bit bytes, where n is a value from 1 to 36.

n-bit bytes, with n determined by

register &0.

n-bit bytes, where n is half the value

of register &W.

Interpret location according to boundary

field register &nVB and mask field register

&nVM, where n (the current register pair)

is contained in register &V.

Change typeout format to field, and insert

n (field register pair 1 through 8) into

register &V.

Description

Start at a previously specified address~

Start at a specified address.

Restart the program at a breakpoint

location.

Set the proceed count and proceed.

Proceed from a breakpoint and then proceed

automatically when the program breaks again.

Increment breakpoint location by 1 and

proceed.

Increment breakpoint location by nand

proceed.

Increment breakpoint location by 1 and pro­

ceed automatically_

A-4 ...

Syntax

u$$I

instr$X

iustr$$X

. $$Q

Description

Increment breakpoint location by nand

proceed automatically.

Execute a single instruction and return

control to the user.

Execute the given instruction in a new

fork for PDP-IO •

Exit from I4DDT.

A.4 TYPE OUT THE CONTENTS OF A LOCATION

Syntax

addr/

• 1
• -+nl

I

addr[

addrJ

addr\

Description

Type the contents of location addr in the

current typeout format •

Examine the current location •

Type the contents of a location relative to

the current value of the location pointer.

Type out the contents of the location

addressed in the last typeout.

Change the temporary typeout format to

constant and type out the contents of loca­

tion addr.

Change the temporary typeout format to

symbolic instruction and type out the

contents of location addr.

Open a loc.ation to modification, but suppress

typeout of contents until a slash, left .

bracket, or right bracket is typed by the

user.

A.S RETYPE THE CONTENTS OF A LOCATION

Syntax

addr/contents=

addr I contents-t-

Description

Retype the last expression in numeric

format, with numbers in the current radix.

Retype the last expression as a symbolic

instruction.

A-5

Syntax

addr/contents;/

Description

Retype the last expression in the current

format.

A.6 CHANGE THE CONTENTS OF A LOCATION

Syntax

addr/ contents cha~gea

addr/ contents change$l

addr/ contents change+

addr/ contents change$~

addr/ contents changet

addr/ contents change$t

Description

Substitute new contents without moving

location pointer.

Substitute new contents and move location

pointer to the most previous location

examined.

Move location pointer to addr+l, type the

address and contents, and open the address.

Move location pointer to the most previous

location examined + 1, and type the

address and contents.

Move location pointer to addr-l, type the

address and contents, and close the address.

Move location pointer to the most previous

location examined -1, and type the address

and contents.

A.7 INSERT A CHANGE AND EXAMINE LAST LOCATION

Syntax

addr/ contents change~1

addr/ contents change\

Description

Type out t~e contents of the location

specified by the address of the last quantity

typed, and set the location pointer to this

address.

Open the contents of the location specified

by the address of the last quantity typed,

but do not change the location pointer.

A-6

A.a SET AND REMOVE BREAKPOINTS

Syntax

addr$B

addr$nB

addr$$B

addr$$nB

addrl<addr2$B

addrl(addr2$nB

addrl<addr2$$B

addrl(addr2$$nB

O$nB

$B

$$B

&nB/

&nB+l/

&nB+2/

$nBXccc ••• X

A.9 SYMBOL MANIPULATION

Syntax

nameS:

value<symbol:

symbol:

symbol$$K

symbol$K

Description

Set the next unused breakpoint at

location addr.

Set and assign a breakpoint number to

location addr (n=1-8).

Set a breakpoint with automatic proceed.

Set breakpoint at addr2 and type contents

of addrl when the breakpoint is reached.

Remove a specific breakpoint.

Remove all breakpoints.

Type out current settings of all breakpoints.

Check the status of a specific breakpoint.

Insert a conditional instruction or sub-

routine call at breakpoint n.

Set proceed count at breakpoint n.

Submit a command string delimited by

-arbitrary character X to I4DDT for execu­

tion when breakpoint n is reached.

Description

Reference local symbols within a named

program.

Insert a symbol in the symbol table and

assign it a numeric value.

Insert or redefine a symbol in the symbol

table and assign it the value of the loca­

tion pointer.

Remove a symbol from the symbol table.

Prevent a sYmbol from being used for typeouts.

A-7

Syntax

$D

symbolll

?

$?

symbol$?

string$$?

$n?

Description

Prevent the last symbol typed out from

being used as a typeout symbol, and retype

the symbol as a quantity in the current

typeout mode.

Declare a symbol for later definition.

Type out a list of all undefined symbols.

Type out a list of all symbols and their

values.

Type out a symbol and its value.

Type out a list of all symbols beginning

with a specified character string.

Type out a list of all symbols whose values

are equal to n.

A.IO SEARCH FOR A SPECIFIED VALUE

Syntax

ac$W

c$W

ac$N

c$N

Description

Set lower limit (a), upper limit (b), a

location to be searched for (c), and type

out the address and contents of all loca­

tions equal to c.

Using the lower limit in register &LL and

the upper limit in register &UL, type out

the address and contents of all locations

equal to c.

Set lower limit (a), upper limit (b), a

value to be searched for (c), and type.·

out the address and contents of all loca-

tions not equal to c.

Using the lower limit in register &LL and

the upper limit in register &UL, type out

the address and contents of all locations

not equal to c.

A-8

Syntax

a<p>c$E

c$E

n$M

Description

Set lower limit (a), upper limit (b), an

address to be searched for (c), and type

out the address and contents of all loca­

tions that contain the ~ffective address c.

Using the lower limit in register &LL and

the upper limit in register &UL, type out

the address and contents of all locations

that contain the effective address c.

Insert the quantity n into mask register

&M, and &MI.

A-9

A.ll PATCHING

!Int~x

$Y

$$Y

Description

Begin a patch by inserting a JRST (Jump and

Restore) instruction in the currently opened

location, and open register &PL and insert

the proper instructions.

End a patch by inserting the patched instruction

in the current location.

A-IO

Message

u

?

XXX: addr/ inst

APPENDIX B

DIAGNOSTIC MESSAGES

Meaning

The user has typed an undefined symbol which

cannot be interpreted by 14DDT.

The user has committed one of the following errors:

(1) typed an illegal I4DDT command.

(2) referenced a location in non-existent or

read-protected memory.

(3) attempted to write into a location that is

inside a write-protected memory segment.

The user has pressed the ~E key while typing in a

command. The next instruction to be executed

(inst) is at location addr.

B-1

Address space

Array memory

ASK

Breakpoint

APPENDIX C

GLOSSARY'

The memory space(s) associated with. a process

run under 14DDT. The specification of address

space designates to 14DDT the machine in which

a given program executes. Under 14DDT, the user

may specify one of four different address spaces:

PDP-IO, PDP-II, ILL lAC IV array, or ILL lAC IV

disk. Address space specification may be changed

during the running of a process under 14DDT.

Working storage for the ILLIAC IV processor, con­

sisting of 128K 64-bit words or 256K 32-bit words.

Each of the 64 processing elements in the ILL lAC

IV processor has access to one 2K (64-bit) block

of array memory.

The ILLIAC XV assembler that accepts ILLIAC IV

symbolic instructions as input, and generates

relocatable object code for execution on the

ILLIAC IV.

A point in the program at which execution is sus­

pended and control is given to I4DDT, so that the

user may intervene in the execution of the pro­

gram making modification, insertions, and deletions

where necessary. See Sections 2.8 and 3.8.

C-I

Byte

Delimiter

Effective address

File

Fork

Global symbol

Job

Loader

A contiguous set of bits within a memory loca­

tion operated upon as a unit. 14DDT's byte

connnands enable the user to specify a byte for­

mat containing from I to 36 bits. See Section 3.2.

A non-blank printing character that must immedi­

ately precede and follow two or more ASCII or

SIXBIT text characters typed in by the user,

e.g., ITEXT/, where the slashes are the delimiters.

See Section 2.4.3.

An address as modified by indexing or indirect

addressing.

A named, ordered collection of data associated

with a particular user id. and that is uniquely

identified within a user's set of files by its

file name.

See process.

A symbol that can be referenced by a program

other than the one in which it is defined.

See Section 2.6.1.

A set of one or more related processes, each of

which has its own address space, execute inde­

pendently, and can communicate with each other.

A program that loads and links relocatable

binary programs preparatory to execution, and

generates a symbol table in core for execution

under 14DDT.

C-2

Local symbol

Location pointer

MACRO-I 0

Mask

Open location

Process

Radix-50

A symbol which can be referenced only within

the program in which it is defined (i.e., a

non-global symbol). A local symbol is not

accessible to other programs even if the pro­

grams are loaded together. See Section 2.6.1.

A memory location containing the actual (effec­

tive) address of the data or instruction cur­

rently being referenced, or, the register con­

taining the pointer address.

The name of an assembler for the PDP-IO computer.

A string of characters containing all I-bits in

positions where data of another string are to be

preserved, and containing O-bits in all positions

where data of the second string are to be ignored.

The mask is usually combined with its target data

in a logical AND operation.

An open location is a location in a user's memory

space whose contents are available for change.

A memory location is opened by requesting 14DDT

to type out the contents for examination.

An entity that receives scheduling and resource

allocation attention from the system and that

has a separate flow of control and address space.

A condensed 32-bit representation of a six char­

acter symbol (see PDP-lO MACRO-IO Manual,

Appendix F).

C-3 _

Symbol

Unimplemented User

Operation (UUO)

A name consisting of a string of up to six

letters and numbers including the special

characters period (.), percent sign (%), and

dollar sign ($). See Section 2.6.

A mnemonic code that is not a specific instruc­

tion, but must be interpreted by a routine

supplied by the programmer.

C-4

APPENDIX D

1400T COMMAND IMPLEMENTATION STATUS

ADDRESS SPACE SEL,ECTIONa PDP-Ira ARRAY DISK TMU PDP .. 11

,p YES

" P
. YES

II YES
"I YES
,D YES

" 0
YES ,T YES

"T YES
IE

" E

INPUT/QUTPUT MODE SEL.ECTIONS POP-l21 ARRAY DISK TMU PDP·l1

ISP YES YES YES YES
IIIP YES YES YES YES
,IS YES YES yes YES ,,$S YES YES YES YES
ISL. YES YES YES YES
"Sl YES YES YES YES ~"

'SF;
I'SE
,ST YES y£!S YES YES
,'ST YES YES YES YES
ISD YES YES YES YES
"SO YES YES YES YES
'$1 YES YES YES YES
"51 YES- YES YES YES

Ftl-E OPERATIONSI PDP·10 ARRf\Y DISK TMU POP·l1

,G YES YES YES YES

" G
YES I

IS YES YES YES YES
, IS YES ,M YES
, , M YES
,t. YES
, , I- YES
IX YES YES YES YES

\ "l}-l'
I

MISCELLANEOUS FUNCTIONSI POP-10 ARRAY DISK TMU PDP-lt

A..:BJZ
A<B"Z YES YES YES YES
AcB'NU YES V!S YfS YES
AINU YES YES YES YES

" ""'; ~ ~" 'NU YES YES YES YES ~"

" 1O yes
"0 YES
Ie YES
"e YES
'A YES YES YES YES

""A YES YES YES YES

CHANGE TYPEOUT FORMAT. PDP-10 ARRAY D!SK TMU PDP-Ii

SR $$R YES YES YES YES
,SNR $SNR YES YES YES YES
SA S!A YES YES YES YES
$NS $$NS YES YES YES yes
ss sss YES YES YES YES
INC S!NC YES YES YES YES
Ie $SC YES YES YES YES ""

'!!.-

SNF SSNF YES YES YES YES
SF SSF YES yes YES YES
INT liNT YES YES YES YES
ST $ST YES YES YES YES
$NO $SNO YES YES YES YES
10 SIO YES Yt!s YES YES
$H $$H YES YES YES YES
IV SIV YES' YES YES YES
SNV SSNV YES YES YES YES

~TART, CONTINUE, AND EXITe POPwl~ ARRAY DISK TMU POP·it

SG YES YES ~ES

ADDRSG YES yes
$P "YfS YES
NIP YES Y~S
ssp YES YES
$1 YES YES
Nil YES YES
SSI YES YES
NiSI YES YES
IN5TR$X YES YES YES
INSTR$$X YES
S!Q YES YES YES YES

•. j

r- D-2

SYMBOL MANIPULATION. PDP-10 ARRAY DISK TMU PDP-i1

NAMES. YES . YES YES YES
VALUE<SYMBOLI YES YES YES YES
·SYMBOL I YES YES YES YES
SYMBOL$SK YES YES YES YES
SYMBOlSI(YES YES YES YES
SO YES
SYMBOLN YES
1 YES
57 YES
SYMBOLS? YES
STRING$$? YES
IN?'

SEARCH FOR A SPECIfIED VALUE: (POP-10 ARRAY DISK TMU POP~11

AC$W YES YES YES YES
CSW C YES YES YES YES
ACB>!N YES YES YES YES
CSN" YES YES YES YES
A.cB>C$E YES
C$E YES
N$M YES YES YES YES

MISCELL.ANEOUS COMMANDS: POP .. 10 ARRAY DISK TMU PDP~11

SY YES
$$Y YES
$$Q YES YES YES YES

I
\D-4

TYPE OUT CONTENTS OF LOCATION. PDP·10 ARRAY OISI< TMU POP-it

·AOORI YES YES YES YES
.• 1 YES YES YES YES
.6NI YES YES YES YES

..... Nt YES YES YES YES
I YES
.ADDR' 'VES YES YES YES
ADDR] YES YES YES YES
ADDR·\ YES YES YES YES

RETYPE CONTENTS OF A LOCATIONI POP"10 ARRAY DISK TMU PDP~11

·1· YES YES YES YES
"::+- YES yes Y!:S YES
'I Y!S YES YES YES

CHANGe: CONTENTS OF A lOCATION: POP .. tel ARRAY OISK TMU POP"'11

CHANGE. (CR) YES YES YES YES
CHANGE $ (CR) YES YES YES YES
CHANGE ClF) YES YES YES YES
CHANGE $ elF) YES YES YES YES
CHANGE l' YES YES YES YES
CHANGE $ t YES YES YES YES
CHANGE (TAB) YES
CHANGE \ YES

SET AND REMOVE BREAKPOINTS: POP .. 10 ARRAY DISK T~1U POP"'11

ADOR$B YES YES
ADDR$NB YES YES
ADDR$$B YES YES
ADDR$$NT3 YES YES
ADDR1<AODR2$B YES YES
ADDR1<AODR2$NB YES YES
ADDR1<ADDR2$$B YES YES
ADDR1<ADDR2$$NB YES YES
0!NB YES YES
sa YES YES
SSB YES YES
&NB+MI YES YES
SNBXSSSSSSSSSSSX

j'D-3
I

APPENDIX E

USE OF I4DDT IN TMU ADDRESS SPACE

E.l TMU OPERATION

E.l.l PROGRAM EXECUTION

The TMU address space consists of up to 512 TENEX pages containing

64-bit TMU instructions, right justified within pairs of PDP-lO words

(see Section E.3).

To operate I4DDT in TMU mode, the user first selects the TMU

address space by typing ;T or ;;T. After loading the TMU program,

the user starts the program by typing $G or addr$G. The address of

the starting instruction is stored in register &PC; &PC is incremented

by 2 after each instruction is fetched, but before the instruction is

executed.

Program execution continues until one of the following is

encountered:

• The pseudo TMU instruction HALT

• An error condition

• A user-generated interrupt

E.l.2 PROGRAM INTERRUPTION

The user can interrupt a TMU program during execution by typing

any character on his terminal. 14DDT then informs the user where the

program was stopped. Execution can be resumed by typing $G •.

The user can determine where his program is running by examining

register &PC. He can also examine any of the four general registers

by using the pseudo TMU instruction TYPE (see Section E.3). The jump

if Interrupt (~INT) pseudo instruction is used to field interrupts.

If more than three unprocessed interrupts are queued, the queued

interrupts are ignored.

E-l

E.2 INTERNAL REGISTERS

The following internal registers are used in TMU operation:

&PC An IS-bit program counter.

&TCI Storage for the TMU Condition Indicator Register

(TCI) •

&TRO Storage for the TMU Output Register (TRO) •

6 A 64-bit general register.

1 A 64-bit general register.

2 A 64-bit general register.

3 A 64-bit general register.

E.3 PSEUDO TMU INSTRUCTIONS

In addition to the actual TMU instructions described elsewhere,*

14DDT also accepts the following 48-bit pseudo TI1U instructions. The

upper 16 bits of these instructions are stored in the upper 16 bits of

the 64-bit TMU address space word, and the lower 32 bits are stored

in the lower 32 bits of the address space word.

In the following instruction descriptions, (iregl) and (ireg2)

are integers which reference one of the four TMU general registers.

E.3.l ACQUIRE ILLIAC

Syntax: ACQ

Description: Acquire ILLIAC if it is not already acquired.

E.3.2 ADD

Syntax: ADD iregl, ireg2

Description: (iregl) + (ireg2)~(ireg1)

E.3.3 ADD IMMEDIATE

Syntax: ADDI iregl, data

Description: (iregl) + data ~ (iregl)

*ILLIAC IV Systems Characteristics and Programming Manual, Section 5.

E-2

E.3.4 AND

Syntax: AND iregl, ireg2

Description: (iregl) • AND. (ireg2) ~ (iregl)

E.3.5 AND LEFT IMMEDIATE

Syntax: ANDLI iregl, data

Description: LH(iregl) .AND. data ~LH(iregl)

E.3.6 AND RIGHT IMMEDIATE

Syntax: ANDRI iregl, data

Description: RH(iregl) .AND. data~ RH(iregl)

E.3.7 TYPE OUT ASCII TEXT

Syntax: ASCII <delimiter) text (delimiter)

Description: Type out on the user's terminal the ASCII text

enclosed by ~elimiter>. The text is stored

five characters per TMU word as successive

ASCII connnands.

E.3.8 CALL SUBROUTINE

Syntax: CALL address

Description: (&PC) ~ RH(address), address + 2 -?- (&PC)

E.3.9 HALT ~ru PROCESSING

Syntax: HALT

Description: Stop processing TMU conrrnands and return to

14DDT's command scanner.

E.3.l0 JUMP UNOONDITIONAL

Syntax: J address

Description: address -:;; (&PC)

E.3.ll Ju~ IF BIT SET

Syntax: JB iregl, bit no., address

Description: If iregl has bit no. set, then address ~ (&PC).

E-3

E.3.I2:JUMP IF EQUAL TO ZERO

Syntax: JE iregI, address

Description: If iregl = 0, then address ~(&PC).

E.3.I3 JUMP IF GREATER THAN ZERO

Syntax: JG iregl, address

Description: If iregl>O, then address~(&PC).

E.3.14 JUMP GREATER/DECREMENT

Syntax: JGD iregl. address

Description: (iregl) - 1--7 (iregl); if (iregI) > 0, then

address -7 (&PC) •

E.3.I5 JUMP IF INTERP~PT

Syntax: JINT address

Description: If an interrupt occurred, (TCI)~ (&TCI),

(TRO)~ (&TRO), and address ~(&PC).

E.3.I6 JUMP IF LESS THAN ZERO

Syntax: JL address

Description: If (iregl)(O, then address~(&PC).

E.3.I7 JUMP IF BIT NOT SET

Syntax: JNB iregl, bit no., address

Description: If iregi has bit no. reset, then address ~(&PC).

E.3.I8 JUMP IF NOT EQUAL TO ZERO

Syntax: JNE iregl, address

Description: If iregl :f 0, then address ~ (&PC) •

E.3.I9 JUMP INDEXED

Syntax: JX iregl, address

Description: (iregl) + address ~ (&PC)

E.3.20 LOAD

Syntax: L iregl, address

Description: address ~(iregl)

E-4

E.3.21 LOAD RIGHT HALF

Syntax: LRH iregl, address

Description: RH(address)~ RH(iregl)

E.3.22 LOGICAL SHIFT LEFT

Syntax: LSHL iregl, count

Description: Logically shift iregl left by the number of

positions specified by count.

E.3.23 LOGICAL SHIFT RIGHT

Syntax: LSHR iregl, count

Description: Logically shift iregl right by the number of

positions specified by count.

E.3.24 MOVE

Syntax: MOVE iregl, ireg2

Description: (ireg2)---7 (iregl)

E.3.25 MOVE IMMEDIATE

Syntax: MOVI iregl, data

Description: data~ (iregl)

E.3.26 MOVE LEFT IMMEDIATE

Syntax: MOVLI iregl, data

Description: data~LH(iregl)

E.3.27 MOVE RIGHT IMMEDIATE

Syntax: MOVRI iregl, data

Description: data ~ RH (iregl)

E.3.28 OR

Syntax: OR iregl, ireg2

Description: (iregl) .OR. (ireg2)~(iregl)

E.3.29 OR LEFT IMMEDIATE

Syntax: ORLI iregl, data

Description: LH(iregl) .OR. data ~ LH(iregl)

E-5

E.3.30 OR RIGHT IMMEDIATE

Syntax: ORR! iregI t data

Description: RH(iregl) .OR. data~RH(iregl)

E.3.3l READ TRO

Syntax: RDTRO

Description: Transfer TCI and TRO into &TCI and &TRO, respectively.

An implicit RDTRO will be performed after each

SOD (Scan Out Data) TMU instruction.

E.3.32 RELEASE ILLIAC

Syntax: REL

Description: Release ILLIAC IV if it was acquired.

E.3.33 ROTATE LEFT

Syntax: ROTL iregl, count

Description: Rotate iregl left by the number of positions

specified by count.

E.3.34 ROTATE RIGHT

Syntax: ROTR iregI, count

Description: Rotate iregl right by the number of positions

specified by count.

~.3.35 STORE

Syntax: S iregI, address

Description: (iregl)~(address)

E.3.36 STOP CU

Syntax: seu
Description: Stop the CU and clear the TMU.

E.3.37 STORE RIGHT

Syntax: SRH iregI, address

Description: RH(iregl)~RH(address)

E-6

E.3.38 STORE TCI

Syntax: STCI ireg1

Description: Store &TCI into the upper 16 bits of iregl

and clear all other bits in iregl.

E.3.39 STORE TRO

Syntax: STRO iregl

Description: Store &TRO into iregl.

E.3.40 SUBTRACT

Syntax: SUB iregl, ireg2

Description: (iregl) - (ireg2)--7-(iregl)

E.3.41 SUBTRACT IMMEDIATE

Syntax: SUBI iregl, data

Description: (iregl) - data~(iregl)

E.3.42 TYPE OUT

Syntax: TYPE iregI, radix

Description: Type out the contents of iregl on the user's

terminal using the specified radix. If no

radix is specified, use the current I4DDT

data radix (&C).

E.3.43 WAIT

Syntax: WAIT count

Description: Wait for the number of milliseconds specified

by count.

E.3.44 EXCLUSIVE OR

Syntax: XOR iregl, ireg2

Description: (iregl) .XOR. (ireg2)~(iregl)

E.3.45 EXCLUSIVE OR LEFT IMMEDIATE

Syntax: XORLI iregl, data

Description: LH(iregl) .XOR. data ~ LH(iregl)

E-7

E.3.46 EXCLUSIVE OR RIGHT IMMEDIATE

Syntax: XORRI iregl, data

Description: RH(iregl) .XOR. data~RH(iregl)

E.4 PROGRAMMING EXAMPLE

The following ~ru program types out the current contents of the

ADVAST data buffer (ADB) on the user's terminal.

0./

2/

4/

6/

10./

12/

14/

16/

20./

22/

"
24/

26/

30./

32/

10.0./

10.2/

10.4/

10.6/

110./

112/

114/

116/

120./

20.0./

ACQ

SCU

MOVI 0,77

MOVI 1,0

CALL 100

ASCII "D"

TYPE 1.8.

ASCII" "

TYPE 2

ASCII "

ADDI 1,1

JGD 0.,10.

REL

HALT

J 0

L 3,200.

ROTL 3,16.

ADD 3,1

ROTR 3,16.

S 3,114

SOD DOO

STRO 2

J 10.0.

SODDOO

;acquire ILL lAC

;c1ear the TMU

jinitialize counter

;initialize ADB index

jread ADB register into 2

jtype "D"

jtype ADB index(octal)

jtype a couple spaces

jtype contents of 2

jtype a carriage return

; bump ADB index­

jdecrement count, jump

; if more to do

jre1ease ILL lAC

;stop program

;return to caller

jget SOD instruction

;position opcode

;add ADB index

jreposition opcode

;store generated SOD

; instruction

;execute an SOD

;store result in 2

;return

E-8

APPENDIX F

USE OF 14DDT IN ILLIAC ARRAY ADDRESS SPACE

F.! 14DDT ILLIAC INSTRUCTION SYNTAX

The mnemonic operation codes for 14DDT's ILLIAC instructions

are the same as the ASK operation codes. However, the following

differences exist with regard to the syntax used in writing the instruc­

tion operands:

ASK 14DDT

Accumulator Registers (ACAR's)

ACARO (0) (ACO)

ACARI (1) (ACI)

ACAR2 (2) (AC2)

ACAR3 (3) (AC3)

PE Index Register X(RGX): *location @@location

PE Register S (RGS): IIlocation @lIlocation

$S @S

PE Register A'(RGA): $A @A

PE Register B (RGB): $B @B

PE Register R (RGR): $R @R

Literals: =literal @=literal

SKIP Operand: ,location location

Logical Operations: . I.OR. E @I,@!,@E

J.AND.-E @J,@&,@-E

F.2 ARRAY IMAGE RESIDENCE

From I4DDT's viewpoint, an ILLIAC program consists of an array

image which is composed of a set of control registers and a collection

of array memory words. At any given time, the program image is either

loaded in ILL lAC or residing in the address space structure of 14DDT.

Generally, the sequence which is followed when running an ILLIAC program

with I4DDT is as follows:

F-l

1. Get the program image into 14DDT's address space.

2. Make any desired changes to the image.

3. Load the image into the array.

4. Start the program.

S. Wait for program completion or error.

6. Dump the image back into 14DDT's address space.

7. Examine the dumped image to find bugs or look at results.

8. Optionally, dump the image from 14DDT's address space into

a file (for later examination).

It should be noted that most 14DDT commands executed while the

ILLIAC array is acquired (i.e., image loaded) behave exactly in the

same manner as if the commands were executed when the image was in the

address space of ILLIAC.

F.3 CONTROL REGISTERS AND ARRAY MEMORY SUBSPACES

The ILLIAC space actually consists of two subspaces, control

registers and array memory, although for the most part this fact is not

evident. 14DDT switches between the two subspaces as is necessary.

The control' registers address space is entered only when examining

or changing control registers. The only way in which control registers

may be examined and modified is by typing the name of a control register'

followed by the appropriate command character(s), making any desired

changes, and then typing a control character (e.g., carriage return,

line feed, up-arrow). When a carriage return is typed, 14DDT closes

out the currently open control register and switches back to the array

memory subspace. If, however, the user types an up-arrow or a line feed,

14DDT remains in the control registers subspace and automatically

examines the next lower or higher control register.

F.4 ILLIAC ADDRESSES

All addresses opened for examination or modification by 14DDT

are assumed to be syllable addresses. However, in ILLIAC instructions,

the references to array memory are either syllable addresses or row .

addresses, depending upon the instructions. For example:

F-2

'10000 / LDA 2

indicates that syllable 10000 contains a PE instruction, LDA, which

references row 2, but:

10001/ SKIP 2000

indicates a skip to syllable 2000, and finally:

2001/ JUMP 3000

indicates a jump ~o syllable 3000 (must be even) or word 1400 (assuming

octal typeout radix).

F.S CONTROL REGISTER REPRESENTATION

Any control registers which are less than 64 bits in length

are stored right-justified within the standard 64-bit control register

storage word. Registers such as ICR and IIA , which have a syllable

bit in bit 0, are automatically converted into a right-justified syllable

address by I4DDT. CD registers are referenced by using their names as

given in the reference manual. PE registers are referenced by giving a

register type followed by a 2-digit (octal}PE number. For example:

RGAl4 is the name of the A register in PE #14.

RGD33 is the name of the mode register in PE #33.'

F.6 CLEAN AND DIRTY ARRAY IMAGES

An array image is dirty if at least one of the following statements

is true:

1. The image was created by dumping ILLIAC.

2. At least one control register had a quantity deposited into it.

3. The image was the result of getting a previously saved dirty

array image.

If none of the above are true, the array image is clean. The

cleanness of an image affects the way in which I4DDT initializes and loads

the control registers (see paragraph F.7).

F.7 ILL lAC INITIALIZATION AND LOADING

ILLIAC array memory is zeroed before loading.

If the image to be loaded is dirty, then all ~ontrol registers

are loaded with their image values.

F-3

If the image is clean, then all writeable CU registers are zeroed,

all PE registers are zeroed, all PE'sare enabled, and the followingCU

registers are initialized as indicated:

ICR initialized with its image value

ISR initialized to 177777777

AMR set to 177756

ACR

AIN

set to 4220

is zeroed

F.B REGISTER PRESERVATION OVER EXAMINES/DEPOSITS

When 14DDT examines/deposits while ILLIAC is acquired, it saves

and then restores all registers which it uses to perform the indicated

operations. Some registers such as TRO and TRI are used so often that

they are initially saved when an examine or deposit is done, and are then

finally restored when ILL lAC is restarted instead of before and after

every examine or deposit.

F.9 STATE OF ILLIAC AFTER INTERRUPT

When ILLIAC is started and eventually stops as a result of a HALT

instruction or some masked error condition, 14DDT fields the interrupt

and informs the user about the reason for the interrupt. I4DDT then

returns to its command processing mode. The user may examine CU registers

at this point without affecting the state of ILLIAC. However, if the

user attempts to do anything else at this point~ I4DDT is forced to clear

ILLIAC controls and Tce before performing the requested operation. There­

fore~ if the user is interested in looking at some control registers

(e.g., FLP, FRP, ALR), he should do so before anything else.

F.lO STOPPING A RUNNING ILL lAC PROGRAM

Sometimes it is desirable to stop an ILL lAC program to find out

what it is currently doing. At the present time I4DDT allows a user to

do this by typing any character on his terminal while the program is

running. I4DDT then stops the program, and informs the user where the

program was stopped. The user may then type commands to I4DDT.

F-4

F.ll DUMPING THE ARRAY

When ILLIAC is dumped back into I4DDT's address space as an

array image, all PE registers are dumped, all readable CU registers

are dumped, and all non-zero data pages are dumped.

F-5

