
UNIVERSITY OF MANCHESTER

DEPARTMENT OF COMPUTER SCIENCE

MU5 BASIC PROGRAMMING MANUAL

1

This document is an edited recreation of a copy of the MU5 Basic Programming

Manual dating from 1975, parts of which date back to 1972 (at least). The original

manuscript appears to be lost and the editor’s copy, like those held in the special collec-

tions of the University of Manchester library, is in rather poor condition. The original

was produced on a manual typewriter, and whereas this version was created using Latex

and xfig, it has been designed to appear similar to the original. Some typographical and

grammatical errors in the original have been corrected and some of the layout has been

altered to improve self-consistency. A copy of a later (1978) edition of the Manual also

exists, in a different typeface. The 1978 edition contains some corrections and updates

but also includes some new errors. This reconstruction draws on both versions in an

attempt to produce a more accurate description of MU5 as seen by its programmers.

Any remaining errors are the fault of the editor.

Editor’s notes and other additional material are shown in blue. Publication of

this document is by kind permission of the University of Manchester School of Computer

Science.

Thanks are due to Rob Jarratt for his careful proof reading but mainly for hav-

ing inspired this reconstruction through his work on creating a software emulator for

MU51.

Roland Ibbett

June 2017

Roland Ibbett is an Emeritus Professor of Computer Science, University of Edinburgh

and formerly Reader in Computer Science at the University of Manchester. In 1979

he was co-author, with the late Professor Derrick Morris, of the “The MU5 Computer

System”, published by The Macmillan Press.

1
https://robs-old-computers.com/projects/mu5/

2

https://robs-old-computers.com/projects/mu5/

CONTENTS

CHAPTER 1 Introduction

CHAPTER 2 Operand Accessing

CHAPTER 3 B-Arithmetic

CHAPTER 4 Accumulator Arithmetic

CHAPTER 5 Structure Accessing and Store to Store Orders

CHAPTER 6 Organisational Orders

CHAPTER 7 The Interrupt System

CHAPTER 8 The V Store

CHAPTER 9 The Vx Store

CHAPTER 10 The Basic Programming Language - XPL

APPENDIX I MU5 Hardware Block Diagrams

APPENDIX II The Engineers’ Version of the Order Code

APPENDIX III Engineers’ Console Front Panel

3

Chapter 1

1.1 Introduction

The organisation of the machine2 is reflected in its order code which is essentially

of the form:-

F N

where F defines the function and N the operand. There are four classes of orders:-

Computational orders

B-orders

Structure accessing and store-to-store orders

Organisational orders

In the computational orders, which are distinguished by a 1 in digit 0, the

instruction is divided thus:-

|1| cr | f | N |

2 4 9

The cr bits define one of four types of arithmetic:-

signed fixed-point

unsigned fixed-point

decimal

floating point

In MU5 the signed fixed-point operations use a 32-bit register X, while the un-

signed fixed-point, floating-point and decimal operations share a common 64-bit register

A. However, the structure of the instruction code allows for four separate registers. The

f bits define the operation to be performed and N defines the operand. Computational

orders are of the single address type (e.g. A = operand, A + operand).

2see: APPENDIX I. For more information go to

http://www.cs.manchester.ac.uk/about-us/history/mu5/

http://ethw.org/The_University_of_Manchester_MU5_Computer_System

4

http://www.cs.manchester.ac.uk/about-us/history/mu5/
http://ethw.org/The_University_of_Manchester_MU5_Computer_System

The B-orders operate on the modifier register B. They have the form:-

| 001 | f | N |

4 9

The functions provided correspond to those which operate on X but the division orders

are not implemented in MU5.

In the structure addressing and store-to-store orders, it is convenient to think of

the instruction being divided in the same way:-

| 0 | 1 | d | f | N |

4 9

However, the two values of d give a total of 32 possible functions; some of these are used

for manipulating registers in the secondary operand unit, which is closely associated

with all store-to-store operations.

In the organisational orders, the instruction is divided thus:-

| 000 | f’ | N’ |

3 6 7

The cr bits are zero and the 6 f’ bits define both the organisational register and the

operation to be performed. The organisational orders are mainly concerned with control

transfers and the manipulation of organisational registers.

An operand is specified by N (or N’) and is independent of the function. An

operand may be a literal, a ‘named operand’ (more simply, a ‘name’), or a secondary

operand; various internal registers (X, B, etc.) may also be addressed as operands.

5

1.2 Summary of the Order Code

This section summarises the overall pattern of the order code3. The detail is

given in later sections as shown below. Some functions in MU5 differ from the general

form overleaf, which should be taken only as a statement of the general characteristics.

References Chapter

Computational Orders 3, 4

B register 3

Accumulators 4

Structure Accessing and Store to Store Orders 5

Organisational Orders 6

Operand Accessing 2

Literals 2.3

Variables 2.4

Internal Register Operands 2.5

Stacked Operands 2.6

Privileged Operands 2.7

Secondary Operands 2.8

Descriptor Types 0 - 3 2.10 - 2.13

Internal Registers

B, BOD 3

AEX 4

MS 6.2

NB, XNB, SF, (SN) 2.2

CO 6.3

D 2.2

XD, DOD, DT, XDT 5

BN 6.5

Z 2.5

3Appendix II shows the version of the order code used by the design engineers.

6

7

8

Descriptor Formats

Type 0 - General Vector

Type 1 - General String

Type 2 - Address Vector

Format identical with Type 0

Type 3 - Miscellaneous Sub-types

9

Chapter 2 Operand Accessing

2.1 Introduction

The operands for all orders are transferred from source to destination via a high-

way which is 64 bits wide. For a fetch order, the operand part of the order defines how

the highway is loaded and the function part defines the destination (and the operation

to be performed at the destination). For a store order, the function part defines how

the highway is loaded and the operand part defines the destination.

The function part of an order is described in Chapters 3 - 6; this chapter describes

the operand part. With a few exceptions, which will be mentioned when they arise, any

function part may be combined with any operand part, so that the two parts may

conveniently be described separately.

Operands may be of various sizes up to a maximum of 64 bits. If the operand

is less than 64 bits long, then it is loaded on to (or taken from) the least significant

end of the highway. On a fetch order, the remaining bits of the highway are set to zero

(except for literal operands - see Section 2.3). On a store order, the remaining bits are

truncated; for secondary operands only, the truncated bits are checked for zeros.

In addition to various sizes of operand, there are various kinds of operand:-

literals A literal is specified directly as part of the order, e.g. ‘X + 1’ would

add 1 to the (original) fixed-point accumulator.

variables A variable is the value in a store location whose address is specified

by a base register and the displacement from the base.

internal the value in most of the internal registers (B, NB, etc.) can be specified

registers as an operand, e.g. ‘X = NB’ loads the value in NB into the

fixed-point accumulator.

stacked Operands can be sent to and from a hardware implemented stack

operands working on a last-in first-out basis, e.g. ‘A* STACK’ multiplies the

floating-point accumulator by the top operand on the stack and removes

the operand from the stack.

10

privileged These can only be accessed in Executive mode; they are described in

operands Chapter 8.

secondary A special mechanism is provided for accessing secondary operands, i.e.

operands operands contained in some data structure. The operand part of the order

specifies a data descriptor and a modifier. The data descriptor is a 64-bit

animal specified as a variable or stacked operand and is combined with the

modifier in D to produce the size and address of the secondary operand.

For example, consider the orders ‘B = 3, D = FRED, A + D[B]’ where

FRED is a descriptor at address (NB = 5). The action would be to load 3

into the modifier register B, then send the descriptor at address NB + 5 to

DR, modify by the value in B (i.e. 3) to give the size and address of the

secondary operand and finally add this operand to the floating-point

accumulator.

2.2 Internal Registers Relevant to Operand Accessing

Section 1.2 contains a complete list of the internal registers with references to

their descriptions. In this section, only those registers relevant to operand accessing are

described.

The Name Segment Number SN

The name segment number SN is 16 bits long. The two most significant bits are

permanently zero, and the remaining 14 bits define the segment currently being used for

names in a program. Any segment (0, 1, 2, .. 2↑14 - 1) may be used for this purpose;

it is conventional to use segment 0 whenever possible. The value contained in SN may

only be altered by calling an executive procedure.

| 00 | NAME SEGMENT |

2 14

The Name Base Register NB

The name base register NB is 16 bits long. The most significant 15 bits hold

the address of any 64-bit word in the name segment SN; the least significant bit is

permanently zero. When NB is the base register for an operand access, then it is added

11

to the displacement (the name) to give the address of the operand within the segment

SN. If the addition overflows out of the segment, there will be an interrupt.

NB is designed to be the base register for local names in a procedure; its value

will usually only be changed on entry and exit.

Orders which alter NB are described in Sections 6.2 and 6.3

| 64-bit word address |0|

15 1

The Stack Front Register SF

The format of the stack front register SF is identical with that of NB. SF can be used

as a base register in the same way as NB. However, the space in front of SF (i.e. at

addresses > SF) must not be accessed in this way; interrupt routines use the area in

front of SF as working space, so these locations are liable to change at any time.

The stack is designed both to provide temporary working space within a proce-

dure (e.g. for evaluating arithmetic expressions) and also the space required for procedure

calls (see Section 6.4). Certain orders, e.g. STACK B, cause an operand to be stacked -

SF is advanced by 2 (32-bit) words and the operand is stored at the 64-bit word specified

by the new value of SF. These operands may be unstacked by specifying the STACK as

the operand part of an order, e.g. ‘A = STACK’ - the 64-bit word at SF is loaded on to

the highway and SF is decreased by 2. Note that all unstacked operands are assumed

to be 64 bits long.

Orders that alter SF are described in Sections 3.2, 4.4, 6.2 and 6.3.

| 64-bit word address |0|

15 1

The Extra Name Base XNB

The extra name base register, XNB, is 32 bits long. Bits 2-30 hold the address

of a 64-bit word anywhere in the virtual memory; bits 0, 1 and 31 are permanently zero.

XNB is used as a base register in the same way as NB and SF, except that the operand

is in the segment defined by the top half of XNB (instead of SN). Note that the addition

of the name must not overflow out of this segment, or there will be an interrupt.

12

XNB is designed to be a base register for non-local names used in a procedure,

and will often change its value in a procedure. In many programs, the top half of XNB

will be zero (like SN).

Orders that alter XNB are described in Section 6.2.

|00| segment | 64-bit word address | 0|

2 14 15 1

The Data Descriptor Register D

The data descriptor register, D, is 64 bits long and is used to hold the descriptors

required for accessing data structures. The operand part of an order which accesses a

data structure specifies a descriptor and a modifier. The descriptor is loaded into D

and then combined with the modifier to define the size and address of the particular

structure element required.

Details of the descriptor types and the mechanisms for accessing secondary

operands are given in Sections 2.8 and 2.10 - 2.13.

D also plays a major part in the operation of the store-to-store orders.

D manipulation orders are described, with the store-to-store orders, in Chapter 5.

2.3 Literal Operands

A literal operand appears directly as part of the order; if a literal is specified as

the operand part of a store order, there will be an interrupt.

There are several alternatives:-

(a) 6-bit signed

(b) 16-bit unsigned

(c) 16-bit signed

(d) 32-bit unsigned

(e) 32-bit signed

(f) 64-bit

The literals are copied to the least significant end of the highway. The remaining bits of

the highway are set to zeros for unsigned literals and to copies of the sign bit for signed

literals. The precise format of orders containing literals is unexpected.

13

Let L1 denote 16 bits loaded on to highway bits 0-15.

Let L2 denote 16 bits loaded on to highway bits 16-31.

Let L3 denote 16 bits loaded on to highway bits 32-47.

Let L4 denote 16 bits loaded on to highway bits 48-63.

Then the orders appear as follows:-

2.4 Variable Operands

There are two kinds of variable, V32 and V64, of sizes 32 bits and 64 bits

respectively. The operand part of the order specifies the kind of order and also defines

its name and base. NB, XNB, SF or O may be used as its base (it is convenient to

consider O to be a base register which always contains 0). The name is the distance of

the variable from the base counting in units equal to the variable size. Some examples

are shown below - the diagram represents a section of the virtual store marked out in

32-bit words:-

V64 name are in the range -2↑15 ≤ name < 2↑15

V32 names are in the range 0 ≤ name < 2↑16

To calculate the address of the operand, the name is scaled (if necessary) and

added to the base. If this addition overflows out of the base segment, there will be an

interrupt. If NB, SF or O is used as the base, then the variable is taken from the name

segment (SN); if XNB is used as the base, then the most significant half of XNB defines

the segment. In short instructions the 6-bit displacement, n, is always unsigned, i.e. 0 ≤
n < 64.

14

N.B. If XNB points to a segment which is not the name segment, operands relative

to XNB may not be used with the following functions, XNB =>, NB =>,
SF =>, SETLINK.

Note that the organisational commands, input/output and CTL use words in

the name segment. Thus when running under the operating system, 32-bit words:-

0 - 15 should not be used when writing in XPL

0 - 96 should not be used when using the Autocode machine.

2.5 Internal Register Operands

Any internal register may be specified as the operand for a fetch order; a store

order may write to most internal registers, except those within the primary operand unit,

i.e. MS, NB, CO, XNB, SN, SF, BN. A table listing all the registers or combinations of

registers that can be accessed in this way is given in Section 1.2; note that only complete

lines may be accessed, for example, SF cannot be read by itself but only in combination

with SN.

Internal register operands may only be used with computational and store-to-

store orders, not with organisational orders.

The Internal Register Z is a dummy operand which is written to as a means of

suppressing overlap until the order is complete.

2.6 Stacked Operands

When the operand part of the order specifies STACK, the 64-bit word at SF is

loaded on to the highway and then SF is decreased by 2. Note that all operands coming

from STACK are 64 bits long; this does not mean that only 64-bit operands may be

sent to the stack - shorter operands will be extended by zeros on the way.

[A store order specifying STACK will store the operand at SF and decrease SF

by 2. This is not a sensible order but it is allowed.]

2.7 Privileged Operands

Privileged operands are used by the Executive to hold system control informa-

tion. They can only be accessed in Executive mode and are of no interest to the ordinary

programmer.

15

Access can be made in two ways. In the first case, a base register and a name

are specified as for a variable operand; the size is always 64 bits and the address is

calculated exactly as for a V64 variable. However, access is made not to the virtual

store of the program but to the local V-store (i.e. the address is interpreted as a local

V-store address). In the second case, the operand part of the order is STACK; this

action is exactly the same as for other stacked operands but SF is now interpreted as a

64-bit word address in the local V-store. (The local V-store is described in Chapter 8.)

2.8 Secondary Operands

For a secondary operand, the operand part of the order specifies a 64-bit de-

scriptor and a modifier. Normally, the descriptor specifies the type and origin (i.e.

the starting address) of the data structure containing the secondary operand and the

modifier defines which particular operand is required. For example, if A is a descriptor

specifying a vector of 32-bit elements, then the orders ‘B = 25; X = A[B]’ would load

the 25th element (counting from zero) of A into the fixed-point accumulator.

Descriptors can define vectors or strings of elements of various sizes; miscella-

neous special types are also provided. The different types of descriptor are defined in

Sections 2.10 - 2.13.

A descriptor may be specified in the same way as a variable or stacked operand;

it is always 64 bits long and is loaded into the D register. Alternatively, the operand

part of the order may specify that the descriptor is already in D; this avoids unnecessary

loading into D if the same descriptor is used for consecutive secondary operands.

The modifier used is normally B or O (i.e. no modifier). However there are

special functions (see Chapter 5) which allow any operand to be used as a modifier and

also cause a special type of modification. All modifiers are interpreted as signed 32-bit

integers.

When access is made via certain types of descriptor (e.g. vectors) it is possible

to check automatically that the modifier (if any) lies in the range 0 ≤ modifier < bound.

The bound is held in bits 8-31 of the descriptor.

N.B. A secondary operand may not be used in conjunction with the following

functions: D =>, XD =>, XNB =>, NB =>, SF =>, SETLINK.

16

2.9 Length of the Orders

An order may be 16, 32, 48 or 80 bits long. It will be 16 bits long when:-

(a) Operand is 6-bit literal or internal register

(b) Operand is variable or secondary; base register is NB and 0 ≤ name ≤ 63;

function part is computational or store-to-store

(c) Operand is variable, privileged or secondary from STACK

An order will be 48 bits long if the operand is a 32-bit literal and will be 80 bits long if

the operand is a 64-bit literal. In all other cases an order will be 32 bits long.

2.10 Type 0 - Vector Descriptors

Type 0 descriptors are used for vectors of elements of size 1, 4, 8, 16, 32 or 64

bits. The descriptor defines the origin of the vector, the element size and an upper

bound for the modifier (i.e. the number of elements in the vector). The format is :-

|T| SIZE |RO|US|BC | BOUND | ORIGIN IN BYTES |

2 3 1 1 1 24 32

T = 0 Defines type 0.

SIZE Defines the element size as 1, 4, 8, 16, 32 or 64 bits. (Coded as follows:-

000 = 1 bit; 010 = 4 bits; 011 = 8 bits; 100 = 16 bits;

101 = 32 bits; 110 = 64 bits.)

RO If RO = 1, descriptor is read only and any attempt to use it for writing

will cause an interrupt.

US If US = 0, then the modifier is scaled before being added to the origin

- for 1-bit elements the modifier is shifted down 3 bits, for 4-bit elements

down 1 bit, for 8-bit elements none, for 16-bit elements up 1 bit, for

32-bit elements up two bits, for 64-bit elements up 3 bits.

If US = 1, the modifier is not scaled.

BC If BC = 1, then there is no bound check.

BOUND An upper bound for the modifier. If the bound check bit BCH in DOD

(see Chapter 5) is set to 0 and BC = 0, then the modifier (if any) must

lie in the range 0 ≤ modifier < BOUND, otherwise there will be an

interrupt (see Section 5.2).

17

ORIGIN The origin defines the base address of the vector; it is always a 32-bit

byte address. For 16-bit vectors, the least significant bit of the modified

address is ignored, so that all elements start at a 16-bit word boundary.

For 32 and 64-bit vectors, the two least significant bits are ignored, so

elements start on a 32-bit word boundary. Note that vectors of 1-bit

and 4-bit elements must start on a byte boundary.

Action: When an access is made, the modifier (if any) is scaled (according to SIZE

and US) and added to the origin to give the address of the required element.

Provided there is no bound check fail, the element is accessed. On a fetch

order, it is loaded on to the highway (operands < 64 bits long are loaded at

the least significant end and the remaining bits are zeroed). On a store

order, the highway is stored at the element; there will be an interrupt of

any non-zero bit is truncated (see Section 5.2).

2.11 Type 1 - String Descriptors

Type 1 descriptors are used for 8-bit elements. The descriptor defines the origin

and length of the string. The format is:-

|T| SIZE | | | | LENGTH | ORIGIN IN BYTES |

2 3 1 1 1 24 32

T = 1 Defines type 1.

SIZE Must define the element size as 8 bits (011), else an interrupt will occur.

LENGTH Defines the number of elements in the addressed string.

ORIGIN Defines a base address, as in type 0.

Action: The modifier (if any) is added to the origin to give the address of the

start of the string. LENGTH defines the length of the string, i.e. the

number of elements in the string. There is no bound checking.

The final operand is a string of 8-bit elements. In store-to-store orders the whole string

will be used as the operand (see Chapter 5). In computational orders, the operand can

be at most 64 bits long; if the string is less than 64 bits, then it is zero filled for fetch,

truncated with zero-checking for store; if the string is longer than 64 bits, just the first

64 bits of the string are loaded on to or stored from the highway.

18

2.12 Type 2 - Descriptor Descriptors

Type 2 descriptors are identical with type 0 descriptors (except that T = 2

instead of 0). [It’s not clear whether type 2 included the RO bit.]

|T| SIZE |RO|US|BC | BOUND | ORIGIN IN BYTES |

2 3 1 1 1 24 32

It is conventional to use type 2 descriptors to address vectors containing descriptors;

type 0 is used for vectors containing data.

2.13 Type 3 - Miscellaneous Descriptors

Type 3.0 Real Address

T, T’ = 3, 0 define type 3.0

BOUND Upper bound for modifier as in type 0.

ORIGIN Contains the real store address (the physical address, not the virtual store

address) of a 64-bit operand. The three least significant bits are ignoreda.

Action: The operand is accessed in the same way as a type 0 64-bit element.

The modifier is always scaled and bound checked if bit BCHI in DOD

is set to 0. Type 3.0 descriptors may only be used in Executive mode.

Type 3.1 Read/Store Direct

| T | T’ | BOUND | ORIGIN IN BYTES |

2 6 24 32

T, T’ = 3, 1 defines type 3.1

BOUND Upper bound for modifier as in type 0.

ORIGIN Defines a 64-bit word address; the three least significant bits are ignored.

aThe V-Store bit should really have been labelled Vx-Store. The V-Store and Vx-Store (Chapters 8 &

9) are (almost) completely separate and are separately addressed.

19

Action: Access is made in exactly the same way as for a type 0 64-bit

element (assuming US = BC = 0, so that the modifier is scaled and

bound-checked if bit BCHI in DOD is set to 0. Note that the word lies

on a 64-bit word boundary.

The accessing mechanism for this descriptor bypasses all operand buffers

and always accesses the real store corresponding to the defined virtual

address. This type of access is needed in some executive procedures.

Type 3.2 Read and Mark

| T | T’ | BOUND | ORIGIN IN BYTES |

2 6 24 32

T, T’ = 3, 2 define type 3.2

BOUND Upper bound for modifier as in type 0.

ORIGIN Defines a 64-bit word address;

the three least significant bits are ignored.

Action: Access is made in exactly the same way as for type 3.1 descriptors,

bypassing the operand buffers. In addition, for a fetch order, the value

of the 64-bit word in the store is finally set to zero.

Type 3.3 Indirect

| T | T’ | X | ORIGIN IN BYTES |

2 6 24 32

T, T’ = 3, 3 define type 3.3

X Unused

ORIGIN Defines a 32-bit word address; the three least significant bits are ignored.

Action: The 64-bit element at the origin address is loaded into D and then

interpreted according to its type. The new descriptor may be indirect,

in which case the whole process is repeated. If a modifier is specified,

modification takes place at the final (not indirect) stage.

20

Type 3.4 - 3.7 Procedure Call

| T |SIZE | T’ | X | ORIGIN IN BYTES |

2 3 3 24 32

T, SIZE, T’ = 3, 5, 4 - 7 define the procedure call type.

X Upper bound for procedure call vector which must have 32-bit elements.

ORIGIN Contains the address of the procedure call vector. The two least

significant bits of the origin field are ignored.

Action: When an attempt is made to access the operand, the hardware forces a

procedure calla to the address held in the first 32-bit word of the vector,

with the return link including the ‘D set’ bit pointing to the instruction

attempting to make the access. The origin is not modified (even if

a modifier is specified by the operand part of the order).

One example of the use of the procedure call descriptor is an implementation of an

Algol parameter call by name. If the corresponding actual parameter is a simple variable,

then the parameter descriptor can be a normal type 0 descriptor. But if the actual

parameter is an expression, then the descriptor will be a procedure call to code which

evaluates the expression. The value will be stored in some suitable store location and D

replaced by a type 0 descriptor pointing to it; finally, the ‘D set’ bit in the stored link

(c.f. Section 6.2) is set and an EXIT obeyed. The order causing the procedure call will be

re-obeyed - the ‘D set’ bit prevents reloading of D and defines that the current value of D

describes the required operand. (The ‘D set’ bit is automatically reset to 0.)

Note that a procedure call descriptor may be modified; the modification will take place

when the order is re-obeyed after exit from the procedure.

aThis involves executing two hard-wired instructions held in the Instruction Buffer Unit:-

STACKLINK

JUMP D[0].

21

Chapter 3 The B-arithmetic

3.1

There is a separate 32-bit B-arithmetic unit which operates on the modifier

register B. Although B is used mainly for modification, it is also used for some of the

simpler integer arithmetic, for example, i = i + 1.

The bits in B are numbered from 0 on the left hand (most significant end).

The operand connection to the B-arithmetic unit is from the least significant 32

bits of the highway (bits 32-63).

The B-arithmetic unit performs signed 2’s complement arithmetic. Thus B may

take values in the range -2↑31 to 2↑31 - 1. If, after any arithmetic operation, the true

result is outside this range, the overflow bit is set. The overflow bit and a bit which is

used to inhibit the interrupt resulting from overflow are digits 5 and 0 of BOD. Thus

digit 5 of BOD is set to a one if overflow occurs and the interrupt will be inhibited if

digit 0 is also set to one. All other digits of BOD are not significant.

22

3.2 The B-Instructions

The order code provides for 16 B-functions. Only 14 of these are implemented

on MU5 and the rest are dummy instructions. The instructions are:-

LOAD (=)

Load B from the least significant 32 bits of the highway.

LOAD & DECREMENT (=')
Load B from the least significant 32 bits of the highway then subtract 1. If

an overflow occurs, digit 5 of BOD is set.

STACK & LOAD (*=)
The stack front register (SF) is first advanced by 2. The contents of B are

placed on the highway as for a store order (see below). This is then sent to

the 64-bit word whose address is specified by the new value of SF. Finally,

the operand is loaded into B as in the load order (see above).

STORE (=>)
The content of B is placed on the least significant 32 bits (bits 32-63) of the

highway and zeros are placed on the most significant 32 bits (0-31). The

operand specifies the destination of this information.

ADD (+)
The operand is added to B, leaving the result in B. If an overflow occurs,

then digit 5 of BOD is set.

SUBTRACT (-)
The operand is subtracted from B, leaving the result in B. If an overflow

occurs, then digit 5 of BOD is set.

MULTIPLY (*)
B is multiplied by the operand to produce a 32-bit result which is the least

significant 32 bits of the true 64-bit signed answer. If the true product has

more than 32 significant bits, then B contains the least significant 32 bits

of the true answer and digit 5 of BOD is set.

DIVIDE (/) A dummy instruction

23

NON-EQUIVALENCE(�)
B and the operand are non-equivalenced to produce a result in B.

OR (V)

B and the operand are or’ed to produce a result in B.

AND (&)

B and the operand are and’ed to produce a result in B.

SHIFT (↑)
B will be shifted arithmetically (left) by the number of places specified by

the signed integer in digits 57-63 of the operand. If overflow occurs, digit 5

of BOD is set.

COMPARE (COMP)
The operand is subtracted from B. Bits T1 and T2 of the test register are

set from the result of the subtraction (see Section 6.4). A true result is

always generated and no overflow may occur. The overflow bit in BOD is

copied to bit T0 of the test registera. The contents of B are not altered.

REVERSE SUBTRACT (�)
B is subtracted from the operand leaving the result in B. If an overflow

occurs, then digit 5 of BOD is set.

COMPARE & INCREMENT (CINC)
A compare operation is performed (see above) then B is incremented by 1.

If B overflow occurs as a result of being incremented, then digit 5 of BOD

is set after the compare operation has been completed.

REVERSE DIVIDE (�) A dummy instruction.

aThis should have said ". . . no overflow interrupt may occur, i.e. if the result overflows, bit T0 in the test

register is set instead of digit 5 in BOD."

24

Chapter 4 Accumulator Arithmetic

4.1 The Accumulator and its Associated Registers

The function code contains a set of 16 functions for each of the following kinds

of arithmetic:-

fixed point signed

fixed point unsigned

floating point

decimal

In MU5 there are two associated registers:-

X, which is used by the signed fixed point orders,

and

A, which is used by the unsigned fixed point, floating point and decimal orders.

Each accumulator register is conceptually 64 bits long but digits 0-31 of X will

not exist on MU5. There are two other visible 64-bit registers in the arithmetic unit,

namely AOD and AEX. The bits of AOD are concerned mainly with interrupts whereas

AEX (the accumulator extension register) serves to hold the least significant part of dou-

ble length results. Because the accumulator ‘A’ is shared, the load and store functions

would be the same in the fixed point unsigned, decimal and floating point instruction

sets. Therefore, the load and store functions in the fixed point unsigned set are made

to operate on AOD and those in the decimal set on AEX.

It is convenient to consider the operand for each function to be the 64-bit ac-

cumulator input buffer AIB. Thus the operation of the accumulator functions will be

described by reference to the registers:-

A, X, AOD, AEX, AIB

25

4.2 Allocation of Digits in AOD

digit

51 Operand size (0/1 meaning 32/64 bits)

52 Inhibit floating point overflow interrupt

53 Inhibit floating point underflow interrupt

54 Inhibit fixed point overflow interrupt

55 Inhibit decimal overflow interrupt

56 Inhibit zero divide interrupt

57 Floating point overflow indicator

58 Floating point underflow indicator

59 Fixed point overflow indicator

60 Decimal overflow indicator

61 Zero divide indicator

62 Inhibit rounding

63 Double length +

26

4.3 Formats for Arithmetic Data

The formats marked with an asterisk are software concepts only and have no

significance in the hardware.

(a) Fixed-point signed

Data is signed binary, held in 2’s complement form. For multiplication and divi-

sion, the binary point is at the least significant end, i.e. data is interpreted as an integer.

(b) Fixed-point unsigned

Data is unsigned binary. For multiplication and division, the binary point is at

the least significant end, i.e. data is interpreted as an integer.

27

(c) Decimal

Data is in sign-modulus form. The modulus consists of 7 or 15 decimal digits

occupying 4 bits each and the sign occupies 4 bits at the least significant end. Each dec-

imal digit is coded in binary (0 ≡ 0000, 1 ≡ 0001 . . . 9 ≡ 1001); the sign code 1101 means

-ve, all other combinations mean +ve (1111 is preferred). For multiplication and divi-

sion, the decimal point is at the least significant end, i.e. data is interpreted as an integer.

28

(d) Floating-point

Da ta is stored as a 2’s complement mantissa m with an 11-bit exponent e stored

at the most significant end. The most significant bit of m gives the sign of m and the

interpretation of m assumes a binary point after the sign digit. The exponent has the

base 16 and is interpreted as an unsigned 11-bit integer plus 1024, i.e.

00000000000 -> -1024

00000000001 -> -1023

.

.

10000000000 -> 0

.

.

11111111111 -> 1023

This code has been chosen so that floating-point zero has all bits = 0.

29

4.4. The Signed Fixed Point Accumulator Orders

The arithmetic functions in this set assume X and the operand to be signed

integers.

LOAD (=)

Copy digits 32-63 from AIB to X.

LOAD DOUBLE (=') Dummy instruction.

STACK & LOAD (*=)
Stack X in digits 32-63 of the next free 64-bit word on the stack, making

digits 0-31 in this word zero. Then operate as for LOAD.

STORE (=>)
Copy X to digits 32-63 of the highway and zeros to digits 0-31 of the high-

way.

ADD (+)
Digits 32-63 of AIB are added to X and the result is returned to X. If the

addition overflows, digit 59 of AOD is set. In this case the result in X will

be the least significant 32 bits of a 32-bit answer.

SUBTRACT (-)
Digits 32-63 of AIB are subtracted from X and the result is returned to X.

If the result overflows, digit 59 of AOD is set.

MULTIPLY (*)
X is multiplied by digits 32-63 of AIB to form a signed single length result

in X. If the result overflows, digit 59 of AOD is set and the result is the

least significant bits of the 64-bit answer.

DIVIDE (/)
X is divided by digits 32-63 of AIB to form a quotient in X, which will be

rounded down. If the divisor is zero, then digit 61 of AOD is set and X will

be unaltered.

NON-EQUIVALENCE(�)
The logical non-equivalence of digits 32-63 of AIB with X replaces X.

30

OR (V)

The logical or of digits 32-63 of AIB with X replaces X.

SHIFT (↑)
X will be shifted arithmetically (left) by the number of places specified by

the signed integer in digits 58-63 of AIB. Digit 59 of AOD will be set if the

result overflows.

AND (&)

The logical and of digits 32-63 of AIB with X replaces X.

REVERSE SUBTRACT (�)
X is subtracted from digits 32-63 of AIB and the result is stored in X. If

overflow occurs, digit 59 of AOD is set.

COMPARE (COMP)
The operand in digits 32-63 of AIB is subtracted from X. Both are treated

as signed integers. Bits T1 and T2 of the test register are set from the result

of the subtraction. Note that a true result is generated and no overflow may

occur. Bit 59 V bit 61 of AOD is copied to bit T0 of the test registera.

The content of X is not altered.

CONVERT (CONV)
The only conversion function implemented in the ‘X’ set is the conversion

from integer to floating. The standardised floating result is left in AEX.

REVERSE DIVIDE (�)
Except that digits 32-63 of AIB are divided by X, this function operates as

for DIVIDE.

aThis should have said ". . . no overflow interrupt may occur, i.e. if bit 59 or 61 would have been set, the

logical OR of the inputs to these bits is formed in the hardware and used to set T0."

31

4.5. The Unsigned Fixed Point Accumulator Orders

The arithmetic functions in this set assume the least significant 32 bits of A and

the operand in digits 32-63 of AIB to be 32-bit unsigned integers. They return a 64-bit

signed result to A. If the most significant 32 bits of A or AIB are initially non-zero, they

are set to zero prior to arithmetic.

LOAD (=)

Copy digits 51-63 from AIB to AOD.

Note: floating point LOAD DOUBLE is the correct order to use in

conjunction with unsigned arithmetic.

LOAD DOUBLE (=') Dummy instruction.

STACK & LOAD (*=)

AOD is stacked and loaded

STORE (=>)
Copy digits 51-63 of AOD to the highway, setting the other digits of the

highway to zero.

ADD (+)
Digits 32-63 of AIB are added to digits 32-63 of A and the result is stored

in digits 0-63 of A.

SUBTRACT (-)
Digits 32-63 of AIB are subtracted from digits 32-63 of A and the result is

stored in digits 0-63 of A.

MULTIPLY (*)
Digits 32-63 of A are multiplied by digits 32-63 of AIB to form a 64-bit

product which is stored in A.

DIVIDE (/) Dummy instruction.

NON-EQUIVALENCE(�)
Digits 32-63 of A are non-equivalenced with digits 32-63 of AIB and the

result is stored in digits 32-63 of A. Digits 0-31 are set to zero.

32

OR (V)
Digits 32-63 of A are or’ed with digits 32-63 of AIB and the result is stored

in digits 32-63 of A. Digits 0-31 are set to zero.

SHIFT (↑)
A is shifted logically (left) by the number of places specified by the signed

integer in digits 57-63 of AIB. This order operates on all 64 bits of A.

AND (&)
Digits 32-63 of A are and’ed with digits 32-63 of AIB and the result is

stored in digits 32-to 63 of A. Digits 0-31 are set to zero.

REVERSE SUBTRACT (�)

Digits 32-63 of A are subtracted from digits 32-63 of AIB and the result is

stored in digits 0-to 63 of A.

COMPARE (COMP)

As for COMP in the signed fixed point set, except that the comparison

applies to digits 32-63 of A and is on an unsigned basis. T0 of the test

register is set to zero.

REVERSE DIVIDE (�) Dummy instruction.

4.6. The Decimal Mode Accumulator Orders

LOAD (=) Dummy instruction.

LOAD DOUBLE (=')

Load AEX from AIB.

STACK & LOAD (*=)

Stack and load AEX.

STORE (=>)
Store AEX.

ADD (+) Dummy instruction.

SUBTRACT (-) Dummy instruction.

33

MULTIPLY (*) Dummy instruction.

DIVIDE (/) Dummy instruction.

NON-EQUIVALENCE(�) Dummy instruction.

OR (V) Dummy instruction.

SHIFT (↑)
Digits 59-63 of AIB are interpreted as a signed binary integer which specifies

the number of decimal places by which A is to be shifted (left). The shift

is logical over digits 0 to 59. Digits 60-63 are unaltered. If a left shift

overflows, digit 60 of AOD is set.

AND (&) Dummy instruction.

COMPARE AOD
Digits 51-63 of AIB are and’ed with digits 51-63 of AOD. The overflow

digit of the test register will be set to 0/1 depending upon the result being

non-zero/zero.

COMPARE (COMP)
A is interpreted as a decimal number according to the formats in Section

4.3. Bit T2 of the test register is set as the sign (bits 60-63) of A. The

logical & of A and AIB is formed and bit T1 of the test register is set

according as the result is = or ≠ to zero. Bit T0 of the test register is set

to bit 60 of AOD (decimal overflow)a.

UNPACK
This instruction sets AEX (32-59) = AIB (32-59) and AEX (60-63) = AIB

(60-63) V A (0-3). AEX (0-31) are unaltered. It also shifts digits 0-59

of A four places left. Digits 56-59 of A are set zero and digits 60-63 are

unaltered.

REVERSE DIVIDE (�) Dummy instruction.

aAs in the case of other COMP orders, an overflow is recorded in test bit T0 rather than in AOD.

34

4.7. The Floating Point Accumulator Orders

For some of the floating-point arithmetic instructions, A and AEX are regarded

as a double-length result register, A holding the most significant half and AEX the least

significant half. Both will have the format shown in Section 4.3.

In all instructions AIB will form the 64-bit operand if digit 51 of AOD is one.

If AOD is zero, digits 32-63 of AIB will form the most significant part of the 64-bit

operand of which the other half is zero.

The operation of the floating-point instructions is dependent upon the setting of

digits 62 and 63 of AOD. Digit 62 is the inhibit rounding digit. Rounding is performed

by forcing 1 into digit 63 of A if the mantissa of AEX is non-zero. Digit 63 is set to

select the special double-length versions of add, subtract and reverse subtract and is

ignored by all other operations.

LOAD SINGLE (=)
First, digit 51 of AOD is set to zero, then digits 32-63 of AIB are copied to

digits 0-31 of A. Digits 32-63 of A are cleared.

LOAD DOUBLE (=')

First, digit 51 of AOD is set to a one, then AIB is copied to A.

STACK & LOAD (*=)
A (or digits 0-31 of A) is stacked, then A is loaded as in = / ='if digit 51

of AOD is 0/1. Digit 51 of AOD is unaltered.

STORE (=>)
A (or digits 0-31 of A, as for X) is stored depending on whether digit 51 of

AOD is 1 or 0.

35

ADD (+)
The operand from AIB is added to A. First the exponents of A and AIB

are compared and the exponent field of A is replaced with the larger. The

mantissa associated with the smaller exponent is then shifted right by the

number of hexadecimal places given by the exponent difference. Also the

digits that are shifted out are placed in the mantissa field of AEX, the rest

of AEX being cleared. The mantissa field of A is set to the sum of the

mantissa fields of A and AIB (one of which may have been shifted). The

normalisation shifts that follow apply across the mantissa fields of both A

and AEX, with a maximum shift of 13 hexadecimal places. If both mantissa

fields are zero, a standard floating point zero is generated (Section 4.3). The

exponent of A and AEX are both set to the exponent of the double-length

result and rounding is performed as described above. When digit 63 of

AOD is set and A and AEX contain a double-length number smaller than

AIB, a correct unrounded double-length result will be formed. If either of

the above cause exponent overflow/underflow, digit 57/58 of AOD will be

set.

SUBTRACT (-)
The operand from the highway is subtracted from A. The operation pro-

ceeds in the same general way as ADD. However, if the number to be sub-

tracted is smaller, it is negated and then the add operation is performed.

MULTIPLY (*)
A is multiplied by the operand to give a double length result in A and AEX.

This result is standardised and AEX exponent is set as above. Rounding

will occur if digit 62 of AOD is not set. On exponent overflow/underflow,

digit 57/58 of AOD is set

DIVIDE (/)
A is divided by the operand to give a single-length standardised (possibly

rounded) result in A. If the divisor is zero, digit 61 of AOD is set or if

exponent overflow or underflow occurs, digit 57/58 of AOD is set.

36

NON EQUIVALENCE (�)
The result of combining A with AIB with logical � is returned to A.

OR (V)

The result of combining A with AIB with logical V is returned to A.

SHIFT (↑A)
A is shifted circularly (left) by the number of places specified by digits 58-63

of AIB.

AND (&)

The result of combining A with AIB with logical & is returned to A.

REVERSE SUBTRACT(�)
This is the same as SUBTRACT, except that A is subtracted from the

operand.

COMPARE (COMP)
A is compared with the operand in AIB and the test register is set. Both

are assumed to be floating-point numbers. T0 of the test register is set if

any of bits 57, 58, 61 are (i.e. would have been) set.

CONVERT (CONV)
The only conversion function provided in the floating-point set is one that

converts the integer part of A to a signed fixed-point number, leaving the

result in AEX. If the result is too big, digit 58 of AOD is set.

REVERSE DIVIDE (�)

This is the same as DIVIDE, except that the operand is divided by A.

37

Chapter 5 Structure Accessing and Store to Store Orders

5.1 Introduction

This chapter defines the registers D, XD and DOD (Section 5.2) and describes

the orders associated with the secondary operand unit. The orders fall into three classes:-

(a) Register manipulation (Section 5.3)

(a) Structure access (Section 5.4)

(a) Store to Store (Section 5.5)

The register manipulation orders are concerned with loading and storing the registers

D and XD. The structure access orders are concerned with modifying descriptors and

accessing elements of data structures. The store to store orders enable operations to

be carried out on strings of bytes of any length, e.g. moving one string to another or

comparing strings. The registers D and XD are used to hold the descriptors of the

strings.

The STACK order is described in Section 5.3, chiefly because it isn’t described

anywhere else.

This chapter assumes the reader is familiar with the different types of descriptor

defined in Sections 2.10 - 2.13.

5.2. Internal Registers in the Secondary Operand Unit (SEOP)

The two main registers in the SEOP are D and XD. They are both 64 bits long

and are used to hold descriptors, so they have type, bound and origin fields as shown

below:-
d0 d63

D | TYPE | BOUND (DB) | ORIGIN (DO) |

8 24 32

XD | TYPE | BOUND (XDB) | ORIGIN (XDO) |

8 24 32

38

The following notation is used for the various parts of D, XD:-

DO the origin field of D (d32-63)

XDO the origin field of XD (d32-63)

DB the bound field of D (d8-31)

XDB the bound field of XD (d8-31)

DT the top half of D (d0-31)

XDT the top half of XD (d0-31)

The only other register in SEOP that can be used by the programmer is DOD; DOD,

D, XD, DT AND XDT may all be read from or written to as internal register operands.

DOD is a 32-bit register that contains the interrupt and interrupt inhibit bits for SEOP

as follows:-

d31 XCH XCHK digit

d30 ITS Illegal Type/Size

d29 EMS Executive mode Subtype used in non-executive mode

d28 SSS Short Source String in store to store order

d27 NZT Non-Zero Truncation when storing secondary operand

d26 BCH Bound Check Fail during secondary operand access

d25 SSSI SSS Interrupt Inhibit

d24 NZTI NZT Interrupt Inhibit

d23 BCHI BCH Interrupt Inhibit

d22 Read only interrupt, attempt to write using type 0

descriptor with read only bit set.

ITS and EMS will always cause an interrupt. SSS, NZT or BCH will cause an interrupt

unless SSSI, NZTI or BCHI respectively, are set.

39

5.3. D and XD Manipulation Orders and STACK

STACK Stack the operand (advance SF by 2, then store operand at new SF).

DO = Load the origin of D from bits 32-63 of the operand.

Bits 0-31 of D are unaltered.

D = Load D from bits 0-63 of the operand.

D *= Stack D (advance SF by 2, then store operand at new SF).

Then load D from bits 0-63 of the operand.

D => Store D in bits 0-63 of the operand.

DB = Load the bound of D (bits (8-31) from bits 40-63 of the operand.

The rest of D is unaltered.

Note: Some of these orders may be used with secondary operands.

For S[B] and S[0] operands, the effect is as follows:-

(a) DO =, D =, DB =

D will first be loaded with the S operand descriptor; then the

secondary operand will be accessed and will replace the whole

or part of the new value of D.

(b) D *=

The original contents of D will be stacked before the S descriptor

is loaded into D.

(c) XDO = , XD =, XDB =

Work as expected.

The orders D => and XD => may not be combined with any secondary operand (S[B],

S[0], D[B] or D[0]).

40

5.4. Structure Access Orders

[None of these orders may be used with secondary operands4.]

MOD Uses bits 32-63 of the operand as a signed integer modifier for the

descriptor in D. The modifier is added to the origin field (after scaling

if US = 0 in type 0 or 2 descriptors) and subtracted from the bound

field. A bound check interrupt will occur unless 0 ≤ modifier < bound

(assuming bound checking is not inhibited). The bound check applies

to descriptors of types 0, 1, 2, 3.0, 3.1 and 3.2. For type 3.3, the

indirectly addressed descriptor is loaded into D before the modification

takes place. Similarly for type 3.4 - 3.31, the procedure is called first.

XMOD Exactly the same as MOD except that it works on XD instead of D.

(Types 3.3, 3.4 - 3.31 are illegal.)

SMOD As for MOD, but DB is unaltered and there is no bound check.

MDR Equivalent to MOD followed by a D = D[0].

RMOD Bits 0-31 of the operand are loaded into bits 0-31 of D.

Bits 32-63 of the operand are added to bits 32-63 of D.

XCHK If 0 ≤ operand bits 32-63 < XDB, then bit 31 of DOD is set to 1,

otherwise it is set to 0.

4 It might have been helpful for there have been a reminder here that 1-bit and 4-bit vectors must

start on a byte boundary, meaning that if MOD, etc. are used with these vectors, they can only take

operands that are multiples of 8.

41

SUB1 A complicated order that works as follows:-

XD = operand (bits 0-63)

D = 0 (clear all bits of D)

B - XD[0] (B - operand addressed by XD)

B * XD[1]

DB = XD[2]

MOD B

XMOD 3

XD must be a vector descriptor (type 0 or 2) addressing 32-bit elements.

SUB2 Omits the first two steps of SUB1:-

B - XD[0]

B * XD[1]

DB = XD[2]

MOD B

XMOD 3

Use of structure access orders

MOD (and XMOD) can be used for constructing substrings of larger strings,

e.g. ‘D = S; MOD I; DB = L’ creates a descriptor for the string of length L starting at

the Ith byte of the string S. MOD can also be used to step through a vector, since ‘D =

V; MOD 1’ creates a descriptor to a vector consisting of all but the first element of V.

MDR can be used for moving through a list structure or for creating arrays via

an Iliffe vector.

RMOD is used for ‘reverse modification’. This is useful when used in combination

with the ‘dope vector’ orders SUB1 and SUB2 described below. It can also be used to

make data structures relocatable.

XCHK is a special order that is used to check for overlapping strings. The only

dangerous case is when the start of the destination string (for a move or logical store

to store order) lies within the source string. So the idea is to put the source string

descriptor in XD and then use XCHK with operand = destination origin - source origin.

42

Dope Vector Orders

The SUB1 and SUB2 orders are used for accessing arrays via dope vectors. For a general

array:-

X[l1 : u1, l2 : u2, ln : un]

we want to access X[i1, i2, . . . in]. The address can be expressed in the form:-

X0 + (i1 - l1)*m1 + (i2 - l2)*m2 + . . . + (in - ln)*mn

where m1, m2, . . mn are suitable multipliers; in addition we must have l1 ≤ i1 ≤ u1,

l2 ≤ i2 ≤ u2, .. ln ≤ in ≤ un. When the array is declared, a dope vector is created that

contains a triple of 32-bit elements for each dimension of the array; a triple consists of

the lower bound l, the multiplier m and a checking value c. For the array X above, the

dope vector will look like:-

A descriptor X’ is created which points to this vector. To access the element, the

appropriate sequence is:-

B = i1 1st subscript

SUB1 X’ Load XD with dope vector descriptor and clear D.

Subtract l1 from B, multiply by m1, check result is in range

0 ≤ B ≤ c1 and add to DO.

(Hence DO = (i1 - l1)*m1 and l1 ≤ i1 ≤ u1).

B = i2 2nd subscript

SUB2 DO + (i2 -l2)*m2 l2 ≤ i2 ≤ u2

.

.

B = in nth subscript

SUB2 DO + (in - ln)*mn ln ≤ in ≤ un

There are now two ways of accessing the element itself:-

RMOD X or B = DO

A = D[0] A = X[B]

[The checking values c are clearly (u1 - l1 + 1)*m1.]

43

5.5. Store to Store Orders

The store to store orders fall into three main classes: string-string, byte-string

and table-string orders; there is also one special table look-up order. The string-string

orders operate on a source string and a destination string; operations are provided that

move (i.e. copy), compare and logically combine the strings. The byte-string orders use

a byte and a destination string; they are the same as string-string orders in which the

source string consists of the specified byte repeated as often as necessary. The table-

string orders make it possible to translate the characters of a string into a different code

specified in a table or to check a string to see if it contains any of the characters specified

in a table. The table look-up order scans the table for a particular element.

The MASK

For all the store to store orders except table look-up (TALU), bits 48-55 of the

operand are an eight-bit MASK. In each byte processed by the order, bits corresponding

to 1’s in the mask are ignored; when any byte is used in an operation, the corresponding

bits are taken to be zeros, and if a byte is put into store, the corresponding bits in the

store are unaltered. For example, if MASK = 11000011, then a move order will only

change bits 2-6 of the bytes in the destination string.

44

String-String Orders

For all string-string orders, XD contains the source string descriptor and D the

destination string descriptor. The descriptors must have type 0, 1 or 2 and element size

8 bits, otherwise there will be an ITS interrupt. The operand defines the MASK (see

above) and a FILLER. The FILLER is not in fact used for all the orders.

d48 d63

OPERAND | MASK | FILLER |

8 8

SMVB Moves one byte from source to destination. If the source string is a null

string, move FILLER to destination. If DB = 0 there will be a BCH

interrupt. Updates DO, DB, XDO, XDB.

[(if DB = 0 then BCH interrupt

if XDB = 0 then (FILLER => D[0]; MOD 1)

else (XDO[0] => D[0]; XMOD 1)]

*SMVE Moves source to destination. If source is shorter than destination there

will be an SSS interrupt; but note that this will simply terminate the

operation if the inhibit bit SSSI is set. Updates DO, DB, XDO, XDB.

[Li: if DB ≠ 0 then (if XDB = 0 then SSS interrupt

else (XD[0] => D[0]; MOD 1; XMOD 1); -> L1)]

SMVF Moves source to destination. If the source runs out, then uses FILLER

for remainder of destination. Updates DO, DB, XDO, XDB.

[L1: if DB ≠ 0 then (SMVB OPERAND; -> L1)]

* See note below under Table-String Orders

45

SCMP Compares source and destination strings looking for inequality in two

corresponding bytes. If source runs out, FILLER is used. The test

register is set = 0 if no inequality is found, > 0 if source byte >
destination byte, < 0 if source byte < destination byte; for comparison

purposes, the bytes are treated as unsigned integers. DO, DB, XDO,

XDB are updated.

[L1: if DB = 0 then (T = ‘=’; -> L4);

if XDB = 0 then (if FILLER ≠ D[0] then -> L2 else

(MOD 1; -> L1))

else if XD[0] ≠ D[0] then -> L3 else (MOD 1;

XMOD 1; -> L1);

L2: if FILLER < D[0] then T = ‘<’ else T = ‘>’ ; -> L4 ;

L3: if XD[0] < D[0] then T = ‘<’ else T = ‘>’ ;

L4:]

SLGC Source and destination are logically combined and the result stored in

destination. The logical operation is the same for each bit of each byte

and is defined by bits 44-47 of the operand.

d44 d45 d46 d47

| L0 | L1 | L2 | L3 |

The result of the operation is defined by the table below:-

If the source string runs out, there will be an SSS interrupt.

[L1: if DB ≠ 0 then if XDB = 0 then SSS interrupt;

(XD[0] lgc D[0] => D[0]; MOD 1; XMOD 1; -> L1)]

46

Byte-String Orders

The byte-string orders are the same as the string-string orders except that the

source consists of copies of the BYTE specified in operand bits 56-63. The MASK

appears as usual in operand bits 48-55. D contains the destination string descriptor

which must have type 0, 1 or 2 and element size 8 bits, otherwise there will be an ITS

interrupt; XD is not used.

d48 d63

OPERAND | MASK | FILLER |

8 8

BMVB Moves one byte to destination.

BMVE Moves BYTEs to destination until full.

BSCN Scans destination looking for a byte = BYTE. The test register is set = 0

if an equality is found, < 0 otherwise. DO and DB are updated.

[L1: if DB = 0 then (T = ‘<’; -> L2);

if BYTE = D[0] then (T = ‘=’; -> L2) else (MOD1; -> L1);

L2:]

BCMP Scans destination looking for a byte ≠ BYTE. The test register

is set as for SCMP.

BLGC Combines BYTE with destination string using logical operation defined

by operand bits 44-47 as for SLGC. Result is stored in destination.

47

Table-String Orders

For both the table-string orders, XD contains a string descriptor which must

have type 0, 1 or 2 and element size 8 bits. D may contain any descriptor. The operand

contains no information other than the MASK, specified as usual in bits 48-55.

*TRNS Each byte of the XD string is processed in turn. First, it is used as a

modifier for the descriptor in D to access a secondary operand. Then the

least significant 8 bits of the secondary operand replace the original byte.

There may be a BCH interrupt during the D access. D will usually contain

a byte vector descriptor.
[L1: if XDB ≠ 0 then (D[XD[0]] => XD[0]; XMOD 1; -> L1)]

*TCHK Each byte of the XD string is accessed as above and used as a modifier for

the descriptor in D. If the least significant bit of the secondary operand

is a 1, then the operation is terminated with BN = 0. If no 1 is found for

the whole of the XD string, then BN = 1. D will usually contain a bit

vector descriptor.
[L1: if XDB = 0 then BN = 1 else

(if l.s. bit of D[XD[0]] = 0 then (XMOD 1; -> L1)

else BN = 0)]

* TRNS, TCHK, SMVE These orders are not commissioneda. If an attempt is

made to execute any of them the effect will be that of

a DUMMY order, except that an interrupt may occur

if the wrong type, size or length has been specified as

described above and TCHK will set the Test Register

in an unspecified manner.

a i.e. in the particular MU5 processor built at the University of Manchester to execute this order code.

48

Table Look-Up

TALU This order enables a fast scan to be made for an element equal to the

operand. D contains a descriptor that defines the table - origin in DO,

length in DB. The length is expressed in byte units. The descriptor must

have type 0 or 2 and element size 32 bits. XDO contains a MASK that is

used in exactly the same way as the mask in the other store to store orders;

bits corresponding to 1’s in the MASK are ignored. The least significant

32 bits of the operand are compared with each element of the table in turn

for equality (under control of MASK). If no equality is found, then the

operation terminates with the test register set > 0 and the descriptor in D

updated (DB = 0, DO points after the end of table). If inequality is found,

then the test register is set = 0 and the descriptor in D will point to the

element found, with the bound field updated.
[L1: if DB = 0 then T = ‘>’ else

(if operand ≠ D[0] then (MOD 1; -> L1) else T = ‘=’)]

N.B. TALU takes operands directly from store.

49

Chapter 6 Organisational Orders

6.1 Introduction

The format for the organisational orders is shown below.

| cr = 0 | f’ | N’ |

3 6 7

The cr bits are zero and the f’ bits define the function to be performed. N’ defines the

operand for the order as described in Chapter 2; the only kind of operand that cannot

be addressed is an internal register.

The organisational orders fall into the following groups:-

(a) Register operations - orders manipulating NB, XNB, SF, MS.

(b) Control transfers and procedure call orders.

(c) Conditional control transfers.

(d) Boolean orders - operating on the 1-bit Boolean register BN.

(e) Special orders.

50

6.2 Register Operations

NB, SF and XNB Orders

The registers NB, SF and XNB are defined in Section 2.2 and may be regarded as

unsigned registers. In the following orders, it should be remembered that the least sig-

nificant digit of each register is permanently zero, so that the least significant bit of the

operand will have no effect.

NB = Load NB from bits 48-63 of the operand.

SF = Load SF from bits 48-63 of the operand.

XNB = Load XNB from bits 48-63 of the operand.

NB + Add operand bits 48-63 to NB; interrupt on segment overflow.

SF + As for NB +, but add to SF.

XNB + Add operand bits 48-63 to the least significant 16 bits of XNB;

interrupt on segment overflow (carry into top half of XNB is not allowed).

SF = NB + Add NB to operand bits 48-63 and store result in SF;

interrupt on segment overflow.

NB = SF + Add SF to operand bits 48-63 and store result in NB;

interrupt on segment overflow.

For each of the orders NB+, SF+, XNB+, SF = NB+ and NB = SF+,

the base register (or registers) involved are unsigned integers but the

operand is a signed 16-bit integer. The result must be in the range

0 ≤ result ≤ 2↑16 or there will be a segment overflow interrupt.

NB => The name segment number SN is stored at bits 32-47 and NB at bits

48-63 of the operand. The operand may not be a secondary operand.

SF => As for NB =>, but store SN and SF.

XNB => As for NB =>, but store (all 32 bits of) XNB.

SN = Load SN from bits 32-47 of the operand [bits 32-33 of SN remain = 0].

This order only alters SN if in Executive mode.

51

The Machine Status Register MS

The machine status register contains 16 bits of system information numbered

MS0 - MS15. MS8 - MS15 are concerned with the interrupt organisation and can only

be set in Executive mode; they are described in Chapter 7. MS0 is the ‘D set’ bit whose

use is explained under the procedure call descriptor in Section 2.13. MS2 & MS3 are

used in conjunction with the System Performance Monitor (Section 9.8). MS4 - MS7

are the test bits T0, T1, T2 and the Boolean BN, described in Sections 6.4 and 6.5.

0 1 2 3 4 5 6 7

MS |DS | | SPM |T0 |T1 |T2 | BN |EXECUTIVE |

1 1 2 1 1 1 1 8

↑
Inhibit Program Faults

MS = This order sets various bits of MS to 0 or 1 depending upon bits 32-63

of the operand.

Let 0 ≤ i ≤ 7. Then

(a) if operand bit (56 + i) = 0, MS(8 + i) is unaltered

(b) if operand bit (56 + i) = 1, MS(8 + i) is set to operand bit (48 + i)

(c) if operand bit (40 + i) = 0, MS(i) is unaltered

(d) if operand bit (40 + i) = 1, MS(i) is is set to operand bit (32 + i)

If not in Executive mode, MS8 - MS15 are unchanged and only

(c) and (d) above apply.

Example: The order MS = 00010111 11001111

would set MS8 = MS9 = MS12 = 0, MS13 = MS14 = MS15 = 1

and leave MS10 and MS 11 unaltered.

MS is also altered by the EXIT and RETURN functions (Section 6.3). When

any order altering MS causes the By-pass CPRs5 digit to be altered, an Acc => Z

instruction must precede it in order that all store accesses will be completed before the

CPRs are turned on or off. Care must also be exercised in turning the Name Store or

Level 0 bit on or off, and when altering bits 12 and 13.
5The CPRs are the Current Page Registers in the Store Access Control Unit (see Appendix I)

52

6.3 Control Transfers and Procedure Calls

The link is a 64-bit register with format:-

| MS | NB | CO |

16 16 32

MS and NB are defined in Sections 6.2 and 2.2 respectively. CO is the 16-bit word

address of the order currently being obeyed; the most significant bit of CO is always

zero.

–> Relative jump; bits 32-63 of the highway are taken to be a signed

2’s complement integer and are added to CO. An attempt to transfer

control across a segment boundary will cause an interrupt.

JUMP: Absolute jump; CO is loaded from bits 33-63 of the highway.

STACKLINK CO and bits 32-63 of the highway are added as for the relative

jump and the result, together with MS and NB is stored. Symbolically:-

STACK [MS, NB, CO + operand]

The addition CO + operand may give overflow as for –>.
RETURN The operand part of this order must specify the STACK. The order sets

SF = NB and then unstacks the link. Symbolically:-

SF = NB

[MS, NB, CO] = [SF]

SF - 2

Bits 8-15 of MS are only reset if in Executive mode. If any operand other

than STACK is specified, then the order is exactly the same as EXIT.

(Note that if the operand specifies that the STACK is to be used as a

descriptor, then SF is reset as above.)

SETLINK The link is stored at the address specified by the operand. Symbolically:-

[OPERAND] =[MS, NB, CO]

The operand may not be a secondary operand.

EXIT The link is reset from the operand. Symbolically:-

[MS, NB, CO] = [OPERAND]

Bits 8-15 of MS are only reset if in Executive mode.

53

The following example illustrates how STACKLINK and RETURN can be used

to call a procedure P with three parameters A1, A2, A3. Note that procedure calls

implemented in the compilers are slightly more complicated (see The MU5 Compiler

Writers Manual). Before the call, the stack will be:-

| | | | | | | | | |

↑
SF

The call will look like:-

STACKLINK L1

STACK A1

STACK A2

STACK A3

JUMP P

L1:

so that after the call the stack looks like:-

| | | |LINK| A1 | A2 | A3 | | |

↑
SF

The procedure itself will contain orders:-

PROCEDURE P

NB = SF - 6 to set NB for use as a base in the procedure

SF + n for the local names of the procedure

RETURN

The order NB = SF - 6 sets NB -> LINK in the stack; SF + n advances SF.

| | | |LINK| A1 | A2 | A3 | - - - | |

↑ ↑
NB SF

The RETURN will reset MS, NB, CO from the LINK in the store and return SF to its

original position.

54

6.4 Conditional Control Transfers

The test bits T0, T1, T2 are bits 4, 5 and 6 of the machine status register MS

(see Section 6.2). They are set by the computational orders COMP and CINC (see

Chapters 3 and 4) and by some of the store to store orders. The significance of these

bits is generally as follows:-

T0 set to 1 if overflow

T1 set to 0 if result =0, i if result ≠ 0

T2 set to 0 if result ≥ 0, 1 if result < 0

A set of seven orders is provided that cause a relative jump if MS is suitably set. If the

test succeeds, then the jump is carried out in exactly the same way as for –>.
IF = 0, –> jump if T1 = 0

IF ≠ 0, –> jump if T1 = 1

IF ≥ 0, –> jump if T1 = 0 or T2 = 0

IF < 0, –> jump if T2 = 1

IF ≤ 0, –> jump if T1 = 0 or T2 = 1

IF > 0, –> jump if T1 = 1 and T2 = 0

IF OVERFLOW, –> jump if T0 = 1

There is an eighth conditional jump order that may be used to test the BOOLEAN,

BN, described in the next section.

IF BN, –> jump if BN = 1

6.5 Boolean Orders

The Boolean, BN, is bit 7 of the machine status register MS. There are two

kinds of order that set BN. The first kind combines BN with the result of a test and

uses the operand to define what logical operation to perform; the second kind combines

BN directly with the operand.

55

The first kind of order tests MS in one of 8 ways to produce a result R equal to

0 or 1.

= 0 R = 1 if T1 = 0, 0 otherwise

≠ 0 R = 1 if T1 = 1, 0 otherwise

≥ 0 R = 1 if T1 = 0 or T2 = 0, 0 otherwise

< 0 R = 1 if T1 = 1, 0 otherwise

≤ 0 R = 1 if T1 = 0 or T2 = 1, 0 otherwise

> 0 R = 1 if T1 = 1 and T2 = 0, 0 otherwise

OVFLOW R = 1 if T0 = 0, 0 otherwise

BN R = 1 if BN = 1, 0 otherwise

Bits 59-63 of the operand define the way in which this result R is to be combined with

BN as follows:-

0000 BN = 0 set BN = 0

0001 BN & and BN with R

0010 BN /& invert BN, then and with R

0011 BN = load BN with R

0100 BN &/ and with inverse of R

0101 BN = BN dummy order

0011 BN � not equivalence with R

0111 BN V or with R

1000 BN/&/ invert BN, then and with inverse of R

1001 BN ≡ equivalence with R

1010 BN/ invert BN

1011 BN/V (implies) invert BN, then or with R

1100 BN =/ load BN with inverse of R

1101 BN V / or with inverse of R

1110 BN/V/ invert BN, then or with inverse of R

1111 BN = 1 set BN = 1

The second kind of order uses 4 of the f’ bits to specify the function as above and takes

the operand R from the least significant bit of the highway.

56

6.6 Special Orders

XC0-6 Stack the operand and jump to segment 8193, 32-bit word locations

0-6 respectivelya.

DL = The 32 Display Lamps on the Engineers’ Console (See Appendix III)

are set equal to bits 32-63 of the operand. The Display Lamps may

also be written to as a V-line (see Chapter 8).

SPM This function is for use with the System Performance Monitor

associated with the MU5 Computer Complexb.

aThese functions set the Executive Mode bit in MS, as noted in Section 7.2.
bi.e. it does not affect the MU5 processor in any way, it simply sends a pulse to the SPM.

57

Chapter 7 The Interrupt System

7.1 The Interrupt Structure

There are eight types of interrupt divided into two groups of four, the System

interrupts and Process based interrupts. The system interrupts are concerned with

activities external to the current process (e.g. peripheral control). The process based

interrupts occur as a result of specific actions in the current process. The interrupts are

shown below, each associated with a three bit interrupt number.

When interrupts occur simultaneously, the first to be dealt with is the one with

the smallest interrupt number.

When an interrupt occurs, the hardware stops what it is doing and enters an

interrupt sequence. During this entry sequence the ‘Interrupt Entry Bit’ is set. This

allows the sequence to run in a special non-interruptible mode of operation described

by the table in Section 7.2.

The first action of this sequence is to retain the state of the machine in a compact

form to allow a straightforward return to the current process after dealing with the

interrupt. This is achieved by storing a 64-bit link word. The format of this link is the

same as that of the control register consisting of 16-bit Machine Status register6 (16

bits), Name Base register (16 bits) and the 32-bit control address.

In addition to retaining this link, the interrupt sequence also transfers control

to the appropriate interrupt procedure. This control transfer is achieved by resetting
6 In the original version of Chapter 7, this register was called the Machine State register, which is

inconsistent with earlier chapters, so it has been corrected herein to avoid confusion.

58

the 64 bits (MS, NB, CO) from the second half of the Ith double word entry of a table

(I is the interrupt number). The first word of this entry is used to hold the stored link.

This table is 16 x 64 bits long and starts at word 16 of the first of the common segments

(segment 8K)7.

When a CPR � interrupt occurs the link will point to the next instruction to be

obeyed but the previous instruction may not be complete. Incomplete instructions are

held in the OBS buffer and the CPR � interrupt routine must preserve (and restore) this

buffer before using any instructions which could alter its content. On other interrupt

entries, all instructions up to the one addressed by the link will be complete.

Unserviced interrupts may be read in PROP V-line 26.

Before discussing the interrupts in detail, it is necessary to describe the Machine

Status register.

7It would have been helpful if this description had referred to the mechanism used to implement this

sequence i.e. the use of two hard-wired instructions:-

SETLINK System V-Store (k’ = 7) Base = 0 Name = 2*I

EXIT System V-Store (k’ = 7) Base = 0 Name = 2*I + 1

with System V-Store addresses being mapped to segment 8192.

59

7.2 The Machine Status Register

The machine status register (MS) is 16 bits long and only bits 0, 1, and 4-7 may

be directly altered by user programs; bits 4-7 are test register bits.

Bits 2 & 3 & the l.s. 8 bits are known as the system mode bits and they may

be altered if the Executive mode bit is set. This bit is set by interrupt entry or by the

functions XC0 . . . XC6 (see Section 6.6). MS is arranged as follows:-

BIT

0 Force D[] instead of S[]

1 Inhibit program fault interrupts (A, B, D, etc.)

2 System Performance Monitor

3 0 - Runs in mode set on console

1 - Run CPU on NO OVERLAP if MS02 = 1

4 Overflow

5 ≠
6 -ve

7 Boolean

8 Bypass CPRs

9 Bypass Name Store

10 Instruction Counter Inhibit

11 B and D faults to System Error in Exec mode

12 A faults to System Error in Exec mode

13 Executive mode flip-flop

14 Level 1 Interrupt flip-flop (L1IF)

15 Level 0 Interrupt flip-flop (L0IF)

The use of bits 0, 1 and 4-7 is described in Section 6.2. The use of bits 2 and 3 is

described in Section 9.8.

60

Effects of System Mode Bits

B or D interrupts will be forced as system errors if bit 11 is set and an ACC

interrupt will be forced as a system error if bit 12 is set. All other program faults will

be forced as system errors if bit 13, 14 or 15 or the Interrupt bit is set.

(N.B. The Name Store is bypassed when the interrupt entry bit is set since access to

common segments cannot be made via the name store.)

L0 Name Store

In L0 mode (bit 15 set) the 8 32-bit lines of Name Store are used as fast registers.

The hardware interprets only the bottom 3 bits of a ‘name type’ operand address and

maps it into this name store. No store accesses occur. These fast registers may be used

as 8 x 32-bit names or 4 x 64-bit names.

61

7.3 System Interrupts (Level 0)

The procedures that service these interrupts must be written so as not to cause

any other Level 0 system interrupts, for example, the Peripheral Window Interrupt

procedure should not cause a CPR Non Equivalence Interrupt. This requires that a

few CPRs are permanently allocated to cover the program and working store used by

these Level 0 Interrupt procedures [in fact there were 4 - see Section 8.6]. If a CPR �
interrupt occurs while the Level 0 Interrupt flip-flop is set, then a System Error Interrupt

is caused. This also occurs if an illegal hardware function is executed while the Level 0

Interrupt flip-flop is set. In this sense the System Error Interrupt differs from the other

System Interrupts. However, once it does occur, it cannot recur until the System Error

Status register is reset or unless the Engineers ‘Interrupt’ is pressed.

The System Error Interrupt

A System Error Interrupt is caused by a hardware or Executive failure. The

System Error Status register shown below can pinpoint the exact cause. The software

action is to perform error diagnosis and restart normal operations if possible.

bit error indication

48 Engineers Interrupt (Console - forces CPR bypass)

49 Early Warning Power Failure

50 SAC Parity

51 Name Store Multiple Equivalence

52 OBS Multiple Equivalence

53 CPR Multiple Equivalence

54 Spare

55 IBU Multiple Equivalence

56 B or D error & (MS11)

57 Acc error & (MS12)

58 Illegal function & (L0IF + L1IF + EXEC)

59 Name adder overflow & (L0IF + L1IF + EXEC)

60 Control adder overflow & (L0IF + L1IF + EXEC)

61 CPR exec illegal

62 CPR � & (L0IF)

63 Spare

62

CPR Non-Equivalence Interrupt

This interrupt can be produced by a user program or by an Executive mode

procedure. It occurs when an attempt is made to access an address that does not lie

within the address field defined by the contents of the CPRs. if the required address lies

in the local store, the procedure will free a CPR and allocate it to the page containing

the address. Control is then returned to the interrupted process.

If the page containing the required address is not in local store, then the pro-

cedure will locate the page and organise its transfer to local store. In this case control

is not returned to the interrupted process (which is halted awaiting the termination of

the transfer) and a process change may occur.

Exchange Interrupt

This interrupt is set by the Block Transfer Unit on completion (or termination)

of a Core to Core Transfer8.

Peripheral Window Interrupt

This interrupt is caused by an external device (e.g. peripheral processor, drum)

writing to the Peripheral Window V-line or by an interrupt from the Console (e.g.

TTY, CLOCK). The two are distinguished by bits 61 and 60 in V-line %011A, the first

indicating peripheral window. The information sent to this 32-bit V-line consists of a

sending unit number and a message. The Peripheral Window procedure must queue up

this message for subsequent processing.

Writing to the Peripheral Window V-line sets it not busy in readiness for an-

other message. The Peripheral Window procedure runs with interrupts inhibited, so a

subsequent message won’t be acknowledged until the procedure is exited.

This interrupt is also entered for console interrupts (Teletype and clock). PROP

V-line 26 contains the cause of the interrupt.

8This terminology is a hangover from the days of Atlas, which had a ferrite core main store. In the

case of MU5, the first level of backing store was a ferrite core Mass Store but the Local Store was built

using plated-wire technology. Also, the required page might have been on the second level of backing

store, the Fixed-head (magnetic) Disc Store (see Appendix I.)

63

7.4 Process Based Interrupts (Level 1)

The Instruction Counter Zero Interrupt

This interrupt is set when the instruction counter becomes zero. It may be in-

hibited by the ‘instruction counter inhibit’ bit being set in the Machine Status Register.

The Illegal Order Interrupt

This interrupt is caused by program fault conditions detected by the hardware;

these conditions set bits 48-53 in the program fault status V-line (see next section).

The Program Fault Interrupt

This interrupt is also caused by program fault conditions detected in the hard-

ware that set bits 56-589 in the program fault status V-line.

The following table relates the assignment of bits in the Program Fault Interrupt Status

V-line to specific fault conditions:-

V-line bit condition

48 Illegal function & L0IF + L1IF +EM
49 Name Adder overflow & L0IF + L1IF +EM
50 Control Adder overflow & L0IF + L1IF +EM
51 Illegal V store access

52 CPR EXEC illegal (illegal access via CPRs when not in Exec mode)

53 Parity

54 System Performance Monitor (see Section 9.8)

55 Spare

56 B fault & MS1

57 D fault & MS1

58 Acc fault & MS1

When a program fault occurs, the hardware may not wait until the arithmetic and

control units have finished their current operation(s), so that multiple fault conditions

may not be completely recorded in the Program Status register.

The Software Interrupt

This interrupt occurs in user mode only when the software interrupt bit is set

(see Section 8.3).
9After the SPM was built, bit 54 was included in this set.

64

Chapter 8 The V-Store

8.1 Introduction

The V-store contains hardware registers used to control and/or diagnose parts

of the MU5 processor. The V-store does not include the Internal Registers, which are

addressed by a different mechanism. The V-store is not generally accessible to a user

program but is accessible from within MU5 to Executive, interrupt routines (Section

7.2) and certain control or hardware diagnostic programs.

The figure in Section 1.2 shows the instruction format required to obtain a V-

store operand.

The V-store is divided into 128 blocks of 256 lines each. Each line is normally

a 64-bit quantity but many of the lines will contain less than 64 bits, in which case the

bits will appear right justified in a 64-bit word. The bits in a V-line are numbered as

they would appear on a 64-bit wide highway. The following table gives the allocation of

block numbers to section of the V-store in the central part of the machine.

BLOCK NO. V-STORE TYPE

0 SYSTEM V-STORE (S8192)

1 PROP V-STORE

2 OBS V-STORE

3 CONSOLE V-STORE

4 SAC V-STORE

5 IBU V-STORE

6 PERIPHERAL V-STORE

7 PARITY V-STORE

65

8.2 System V-store (S8192)

These 256 V-line addresses are mapped into the first 512 x 32-bit words in

segment 8192, the first of the common segments, by the PROP before using them

to access store. This gives the executive a simple means of communicating between

processes and approximates to the Atlas working store.

Starting at the 32nd 32-bit word of segment 8192 are 8 pairs of new and old

links used by the interrupt entry sequence.

V-line Virtual Address (S8912) Name size

(Decimal) Hex specifying

64-bit 32-bit boundaries

boundaries

16 20 System Error Old Link 64

22 System Error Entry Link 64

18 24 CPR � Old Link 64

26 CPR � Entry Link 64

20 28 Exchange Old Link 64

2A Exchange Entry Link 64

22 2C Peripheral Window Old Link 64

2E Peripheral Window Entry Link 64

24 30 Instruction Count Old Link 64

32 Instruction Count Entry Link 64

26 34 Illegal Order Old Link 64

36 Illegal Order Entry Link 64

28 38 Program Fault Old Link 64

3A Program Fault Entry Link 64

30 3C Software Old Link 64

3E Software Entry Link 64

66

8.3 Primary Operand Unit V-store (Block 1)

The following is a list of the registers in the V-store of the Primary Operand

Unit, giving size, type of access and references to more detailed descriptions of usage

and construction:-

Address Name Size Access

(Decimal)
64-bit boundaries

0 PROGRAM FAULT STATUS 16 R/W=Reset
This line records fault reasons for the Program Fault Interrupt (bits 56-

58), the Illegal Order Interrupt (bits 48-53) and the System Performance

Monitor (bit 54) (Section 7.4).

1 SYSTEM ERROR STATUS 16 R/W=Reset
This line contains the flip-flops used to record system error conditions for

the System Error Interrupt (Section 7.3).

2 PROCESS NUMBER 4 R/W
This line contains the number of the current process and is used to generate

the ‘P’ part of a virtual address. Writing to this line clears the JUMP

TRACE in the Instruction Buffer Unit by resetting the Valid bits for each

line (Section 8.7).

3 INSTRUCTION COUNTER 16 R/W
This contains the number of instructions remaining to be executed be-

fore the Instruction Counter Interrupt occurs (i.e. 64K machine instruc-

tions/Instruction Count Interrupt.) The counter may be stopped by setting

MS10.

8 SEARCH ADDRESS 12 W

67

Bits 48-59 specify the block address of a 16 x 32-bit word block in the name

segment of the process specified in PROCESS NUMBER (line 2). The line

number is ignored. Writing to this line causes an associative search of the

name store using the SEARCH MASK (line 9) which must have been set

up previously. If a line of the specified block exists in the name store, the

test register is set non-zero.

9 SEARCH MASK 12 W

The mask operates on the search (block) address. A ‘1’ specifies that the

bit is to be ignored.

16/17 NS LINE COPY 16+16 R
(%10/%11) These lines contain a bit significant indicator showing which name store

entry received the last valid name store access.

These lines have only READ access. However, writing to these addresses

results in hardware action in the PROP V-store without disturbing NS

LINE COPY.

Writing to the address line 16 causes LINE POINTER to be reset. This is a

hardware pointer to an entry in the name store. Resetting sets the pointer

to the first entry in the name store. The pointer can only be altered by

reading line 24 which causes it to be incremented by 1 (modulo 28). Writing

to address line 17 causes all entries in the name store to be marked unused

and unaltered. The core copies of any existing entries are not updated.

68

24/25 NS NEXT LINE VIRTUAL ADDRESS 4+15 R
(%18/%19) These lines contain the virtual address in the associative name store pointed

to by the LINE POINTER.

The normal virtual address format contains a segment number. Here the

segment number is implied. It is the name segment of the process given by

line 24. The line address in line 25 references a 64-bit word boundary in

the name segment.

Reading line 24 causes the name store LINE POINTER to be incremented

(cyclic modulo 28).

Although access to these line is limited to READ only, writing to the address

line 24 causes special action without the contents of line 24 being disturbed.

Writing to line 24 causes the name store to be purged throughout and the

line pointer to be reset.

26 DISPLAY LAMPS 32 R/W
(%1A) Writing sets the engineers’ display lamps. When read, the following bits have

the meaning:-

69

27 SOFTWARE INTERRUPT 1 R/W
(%1B) Bit 63 of this line is set by the software trapping mechanism and by process-

based interrupts (Section 7.1). It only causes an interrupt in user mode.

8.4 The OBS V-store (Block 2)

The following short description of the main features of the OBS system will

clarify points in OBS V-store control.

The OBS contains an operand store similar to the PROP name store but which

is not restricted to dealing with only name segment operands (names). All operands that

are not names and all operands in accumulator orders (names included) are buffered in

the OBS operand store. (This means that the OBS has a name store of its own and the

PROP name store only buffers names associated with ‘non-accumulator’ orders.)

An entry in the operand store consists of virtual address and contents; this means

an operand may be altered in the operand store without the main store version having

been updated. The update only takes place when the operand is displaced by a new

operand request. This replacement is normally cyclic, depending on other activities in

the OBS.

A request to the OBS consists of a function and its operand. All accumulator

orders are passed to OBS which queues the function part and if necessary buffers the

operand. The Acc queue has a maximum of six entries, each of which references an

entry in the operand store. Operands referenced by the Acc queue are avoided by the

operand replacement mechanism described above.

A ‘non-accumulator’ order sent to the OBS bypasses the queuing mechanism

and may be dealt with out of program sequence provided there is no possibility of a

clash between its operand and those referenced by the Acc queue.

When an Acc order causes a CPR �, processing of the Acc queue is halted. The

leading entry is responsible for the � and the remaining functions can only be processed

sensibly when the � has been serviced.

The following is a description of the OBS V-lines.

70

Address Name Size Access

(Decimal)

0 OBS.CLEAR

OBS.PURGE 1 W

Writing a ‘0’ to bit 63 causes the OBS to be CLEARED. This means all

‘altered’ operands in the OBS operand store are written back to main store.

They are also retained in the operand store and reset to ‘unaltered’. Writing

a ‘1’ to bit 63 causes the OBS to be purged. This means all ‘altered”

operands are written back as in the CLEAR but in addition all lines in the

operand store are set empty, i.e. the OBS operand store is left in a RESET

state.

1 (unassigned)

2 OBS.MASK 12 W

This is used to mask the X field of the OBS.FIND line (see below). A ‘1’ in

the mask causes the corresponding bit in the Find operation to be ignored.

3 OBS.FIND 30 R/W

This address defines an 8 x 64-bit block boundary. Writing to this V-line

initiates a masked associative search of the OBS operand store (see also

line 2). If association equivalence occurs, bit 63 of this V-line is set to a ‘1’;

otherwise it is set ‘0’. If association equivalence occurs, the test register is

set non-zero, otherwise the test register is set equal to zero.

71

4 OBS.DUMP 29 W

Writing to this line causes the functions in the Acc queue and their operands

to be written to the specified 16 x 64-bit block. All useful information in

the operand store is retained (i.e. the lines are not all RESET) but the Acc

queue is returned to the ‘empty’ state. Each dumped entry consists of 2 x

64-bit words.

This contains the Acc function (FUNC) and some hardware information

(DOP). The operand virtual address is P, S, X, L and the mode at the time

of access is in E (executive). The T bits specify the type of operand:-

Type no OPERAND

0 Invalid (Empty entry)

1 Literal

2 Vector

3 Name

If the operand is a literal, the virtual address field is irrelevant and the

literal is held in the second word of the entry.

Note that when the operand is not a literal type, word 1 is irrelevant.

72

5 OBS.UNDUMP 29 W

The above address specifies the 16 x 64-bit block from which the OBS is to

be reloaded. Writing to this V-line firstly causes a CLEAR operation to be

performed (see line 0). Then the Acc queue is retrieved. Operands (other

than literals) associated with the new Acc queue consist only of a virtual

address part (see line 4 - OBS.DUMP). Any such operand which does not

exist in the operand store at this time is now inserted in an ‘unfilled’ state,

i.e. its ‘contents’ are not accessed from main store at this stage (see line 6

- OBS.RESTART).

No OBS orders may be executed between the Undump and Restart/Exit

orders.

6 OBS.RESTART - W

An UNDUMP operation can leave the operand store with ‘unfilled’

operands. Such operands have to be filled by causing accesses to main

store before normal operation may continue. Writing to this V-line causes

the above action to be initiated when the next EXIT or RETURN order

is obeyed. No order that makes use of the OBS must appear during this

period. The restart sequence forces all its operand accesses in executive

mode. This means that if a parity occurs at this time, a System Error will

be generated.

7 (Unassigned)

8 OBS.INSPECT 28 R/W

73

Writing to this line causes all virtual addresses in the operand store to be

written to the specified 32 x 64-bit block of store. Each virtual address will

have the following format:-

P, S, X and L are described above (Line 4).

The C bits have the following meaning:-

bit 31 = 1 means ‘in use’

bit 32 =1 means ‘referenced’ from the Acc queue’

Reading this V-line yields the following information:-

NOTES
OBS V-store addresses should not be used with organisational functions.

In REMOTE mode, if PROP is sending orders to OBS, any attempt to

access OBS V-store from a PPU through Exchange may produce spurious

results.

15 OBS.RESET
(%F) Writing to this V-line causes a reset of the OBS Buffer Store. Lines will

be set ‘not in use’ and unaltered. No updating of the main store will take

place.

74

8.5 Control Console V-store (Block 3) [c.f. Appendix III]

The console V-lines are as follows:-

Address Name Size Access

(Decimal)

64-bit boundaries

0 CONSOLE INTERRUPT 4 R/W

Each of these is ‘1’ when set.

F.C.I is the fast clock interrupt (currently 1/100 sec).

T.C.I is the teletype character interrupt

T.E.I.I. is the teletype external incident interrupt.

S.C.I is the slow clock interrupt (currently 1 sec).
External incidents are ‘accept’, ‘cancel’ and ‘input request’ (see Line 7).

Writing to this line cannot cause the T.E.I.I bit to be reset. This can only

be achieved by resetting line 7. Writing a ‘1’ to bit 62 resets bit 62. Writing

a ‘1’ to bit 63 resets bits 60 and 63.

2 TIME UPPER 13 R

Hours and minutes appear in binary coded decimal in tens and units as

shown.

3 TIME LOWER 15 R

75

Seconds and fractions of seconds in b.c.d. as shown. This line is staticised

by reading TIME.UPPER.

4 DATE LOWER 11 R

Months and days appear in binary coded decimal in tens and units as shown.

5 DATE UPPER/HOOTER 8 R

The year is in b.c.d. Although this line has read only access, writing to

bit 63 at this address will operate the hooter [The hooter was a loudspeaker -

writing a 0/1 moved the diaphragm in/out].

6 TELETYPE DATA 8 R/W

To output a character, TELETYPE CONTROL must be in output mode,

then writing to this line starts the transfer. On reading, BIT 56 is the

character parity

7 TELETYPE CONTROL 8 R/W

Each bit has individual significance and is ‘1’ when set active.

Digit

56 PRINT ON/OFF (OFF = ‘1’)

57 CANCEL INSTRUCTION

58 Input/Output Teletype (‘1’ for input)

59 ‘Input Request’

76

60 ‘Accept’

61 ‘Cancel Message’

62 Teletype Start

63 Teletype online

When the TTY is online, bits 59, 60, 61 will cause an interrupt.

ON LINE (Peripheral)

OFF LINE (Instruction Source)

10 MODE SWITCHES 16 R

(%A) The least significant 8 bits and the most significant 4 bits of this line

specify various modes of operation when set to ‘1’.

Digit

48-55 These are used for switching the stacks of the

Local and Mass stores off-line.

56 Level 0.

57 Inhibit Clock Interrupt 1.

58 Inhibit Interrupts.

59 No overlapping of instructions.

60 Bypass Name Store.

61 Inhibit Clock Interrupt 0.

62 Allow Exchange Resets.

63 Reset Parity.

11 ENGINEERS HANDSWITHCHES 16 R

(%B) All 16 bits (48-63) are used to control hardware diagnostic programs and

error recovery procedures.

77

12 ENGINEERS CONTROL SWITCHES 10 R

(%C)
These appear in the 10 l.s. bits of the line and have the following significance.

In ‘Auto’ all bits are zero.
Digit

54 Remote OFF/ON (Chapter 9)

55 Reset

56 Interrupt

57 Single Shot

58 KCs (i.e. not TEST)

59 STEP (i.e. not AUTO)

60 Increment OFF

61 PREPULSE ON

62 HANDKEYS for instruction source (i.e. not TELETYPE)

63 Instruction buffer/manual instruction

N.B. The above description of the Console V-store is only true as long as the

REMOTE switch is OFF (digit 54 line 12). If REMOTE is ON, lines 10, 11 and

12 have their access permission increased from READ only to READ/WRITE

with the exception of bits 54 and 62 of line 12 which remain READ only.

8.6 SAC V-store (Block 4)

The following is a list of registers in the V-store of the SAC unit. The list gives

the address size, access and references to more detailed descriptions and constructions:-

Address Name Size Access

(Decimal)
64-bit boundaries

0 CPR SEARCH 30 W

78

The use of this line is described later under line 5, the CPR FIND vector.

1 CPR NUMBER 5 W

This contains the 5-bit CPR number (0-31).

2 CPR VA 30 R/W

3 CPR RA 32 R/W

The 4 LZ bits represent the page sizes 64K - 16 words as the values 12-0

respectively. The AC bits are the access control on the page (shown below).

bit 32 = 0 Executive Mode only

= 1 Any

bit 33 READ Permission

bit 34 WRITE Permission

bit 35 OBEY Permission

Lines 1-3 are used for reading from and writing to one of the 32 CPRs10. Each

of these is conceptually divided into Virtual Address part and Read Address part of

the format illustrated in CPR VA and CPR RA. Writing to either CPR VA or CPR

RA initiates a write operation to the VA half or RA half of the CPR specified by the

contents of CPR NUMBER. Similarly, reading from CPR VA or CPR RA initiates a

read from the VA or RA half of the CPR specified. A restriction involved in loading a

CPR is that the Real Address part must be written to immediately before the Virtual

Address part. This restriction does not apply when reading from a CPR.

10CPRs 28-31 were permanently allocated to Level 0 Interrupt procedures; the hardware of CPR 31

was modified to allow it to map 1 Mword pages.

79

4 CPR IGNORE 32 R/W

This consists of 32 bits, each of which corresponds to a CPR and when set

to ‘1’ means that the CPR is empty. This vector of bits is ordered so that

the most significant refers to CPR 0.

5 CPR FIND 32 R/W

This has the same format as CPR IGNORE but is used in conjunction

with the CPR SEARCH (line 0) and CPR FIND MASK (line 9) in an

equivalence search through all the CPR registers. The CPR FIND MASK

line specifies which bits in the PSX part of the virtual half of the CPRs are

not used in the equivalence check and CPR SEARCH specifies the required

bit pattern. Writing to CPR SEARCH initiates the operation. Each CPR

that causes equivalence has a ‘1’ ORed into its corresponding bit in the

CPR FIND line.

6 CPR ALTERED 32 R/W

7 CPR REFERENCED 32 R/W

Lines 6 and 7 are vectors of the Altered and References bits. These lines

have the same formats as lines 4 and 5. An attempted access via a CPR

causes a bit to be set in line 7 (& 6 if write access) even on access violation.

Writing to a CPR (line 2) resets its bit in lines 4 - 7.

9 CPR FIND MASK 16 W

The use of this line is described under line 5 CPR FIND. The Find mecha-

nism operates over each bit of the segment field whereas the P and X fields

both merely have a ‘do’ or ‘do not’ single bit specification. A ‘1’ means do

not search on this bit.

80

11 CPR X FIELD 24 R

(%B)

Reading this register initiates a read from the Virtual Address half of the

CPR specified by CPR number. This line is required for engineering pur-

poses and is fully described in the MU5 Hardware Manual, Chapter 6.

16 CPR NOT EQUIVALENCE PSX 30 R/W=Reset

(%10)

17 CPR NOT EQUIVALENCE S 14 R

(%11)

Line 16 holds the virtual address of the 16-word block that contains a line

address that is to be presented to the CPRs for equivalence. Line 17 holds

the segment field of this address. When a CPR Not Equivalence occurs,

these lines remain set although further addressing though the CPRs can

take place.

The action of writing to the PSX line returns both to their normal state.

Any CPR � interrupts that occur during the CPR � interrupt procedure

will be monitored as systems errors. If these occur before the PSX line

has been reset, there will be no information in the PSX about the address

causing the system error CPR �.

81

20 SAC PARITY 8 R/W=Reset bit 57

(%14)

A data parity error locks out bits 57-63 until reset.
Bit 56 records the occurrence of all exec. parity fails.

21 SAC MODE 5 R/W

(%15)

Interrupt inhibits do not inhibit the setting of the parity fail bits in lines

20 and 23. All bits in this line are cleared by general reset.

82

22 ACCESS VIOLATION 3 R/W=Reset

(%16) Bits 61 & 63

Bit 61 is only valid when bit 62 is set and refers to program faults only

Bits 60, 62 and 63 are reset by:- General reset

Writing to this line

23 SYSTEM ERROR INTERRUPTS 7 R/W = reset

(%17) (see below)

These bits are all set independently of on another, as their respective faults

are detected. Writing to this line resets all bits except bit 58 and also resets

line 20 and block 7 line 1. Bit 58 detects a hardware fault that cannot be

cleared by software and can only be reset by general reset. General reset

resets all bits. Writing to block 7 line 1 clears the bottom 4 bits

24 UNIT STATUS R

(%18) 1 - 1905E OPERATIONAL (Bit 63)

2 - EXCHANGE OPERATIONAL (Bit 62)

25 1905E INTERRUPT W

(%19) Writing to this line causes an interrupt signal to be sent to the 1905E.

83

8.7 The IBU V-store (Block 5)

The instruction buffer unit maintains a record of the eight most recent control

transfers in the form of a ‘jump from’ address with a ‘jump to’ address. This table is

known as the JUMP TRACE and software communicates with it by means of the IBU

V-lines. The JUMP TRACE is not maintained in any interrupt mode. Since V-store

access can only be obtained in these modes, this ensures that the IBU V-store is used

sensibly when the JUMP TRACE is static.

Address Name Size Access

64-bit
boundaries
0 FILL-POINTER 4 R/W

The line points to the entry in the JUMP TRACE that is the next to

be filled. When the hardware fills an entry, the FILL-POINTER is incre-

mented by 1 (modulo 8). Reading this line gives the format shown above.

The Valid bit (bit 32) indicates whether that entry has been filled by the

hardware since the last process change (see Section 8.3, PROP V-store).

When writing to this line, the format is as follows:-

Bit 59 causes the FILL-POINTER to be written to when bit 60 (Trace On)

is zero i.e. the Trace is switched off. To switch the Trace on, the line must

be written to again with bit 60 set to a one or a general reset given.

84

1 JUMP FROM 32 R

This line contains the ‘JUMP FROM’ address (the address of the last 16-

bit section of the JUMP instruction) in the entry in the JUMP TRACE at

the FILL-POINTER. It can only be read if bit 60 in line 0 has been set to

zero.

N.B. The ‘JUMP TO’ addresses in the JUMP TRACE cannot be read as V-store.

8.8 Peripheral Window V-store (Block 6)

Address Name Size Access

0 MESSAGE WINDOW 32 R/W=Reset

This register belongs to the MU5 V-store but in addition may have infor-

mation written to it from other units in the system. The writing of this

information causes an interrupt in MU5. The information may be read but

any attempt to write to the line will merely cause the line to be set not busy.

85

8.9 Parity V-store (Block 7)

Address Name Size Access

(Decimal)
64-bit boundaries

0 MU5 RIPF 1 R/W

This provides a means of inhibiting further requests from MU5 to Exchange

(see also Section 9.2).

General reset resets this to zero.

1 EXCHANGE REQUEST PARITY 4 R/W=Reset

Writing to this line resets all bits and resets the l.s. 4 bits of Block 4 line

20.
This line is reset by:- General reset

Writing to this line

Writing to Block 4 line 23.

This line is duplicated in Block 4 line 20.

86

Chapter 9 The Vx-Store

9.1 Introduction

The Vx-store consists of registers that control and/or diagnose system hardware

and which are communicated with from MU5 and other units in the system. It defines

the means of communication between MU5 and the other units of the system. MU5 may

only access Vx-store when in executive mode or any interrupt mode. Access is achieved

by a real address in a real address descriptor or by CPR bypass. Below is a list of the

system Vx-stores:-

9.2 MU5 Vx

9.3 Disc (Drum) Vx

9.4 Block Transfer unit Vx

9.5 1905E Vx

9.6 Local Store Vx

9.7 Mass Store Vx

9.8 System Performance Monitor Vx

N.B. A problem exists when writing to the Vx-store and then changing the status of the

machine. As far as MU5 is concerned, a write order is complete when it is accepted by

the store access control and it is possible for a large number of instructions to be obeyed

before the order is actually executed. A software interlock must be applied in cases

where this could cause trouble, e.g. writing to reset a BTU interrupt and then releasing

the interrupt flip-flops in Machine Status may result in a second BTU interrupt, that

will apparently vanish and may look like a message interrupt in the worst case. A similar

problem could arise with parity interrupts and local store fail soft.

There are many ways of preventing such an interlock and two such ways are

illustrated:-

a) => Vx-store b) => Vx-store

Bn = same Vx-store B � same Vx store

(destroys Bn) B � 0 (innocuous)

A and X orders do not provide a satisfactory interlock.

87

9.2 The MU5 Vx-store

The normal MU5 Vx-store consists of the following:-

The Peripheral Window (Block 6, Line 0)

This line falls into the Vx category because it is the means by which other units

in the system communicate with MU5. These have write only access and use this to

put information into the 32-bit line. This causes an interrupt in MU5 which allows the

information to be read.

The Parity V-store (Block 7)

MU5 RIPF is bit 63 of line 0 of MU5 V-store block 7. It has read/write access

from all units in the system including MU5. When any bit in the Exchange Vx line

UPF becomes set (see Section 9.4), Exchange sends a signal to every unit in the system.

This is ignored if the unit has the manual ‘ignore parity’ switch set. If not, and the

RIPF bit is set to ‘1’, then no further accesses are permitted from MU5 to Exchange

until appropriate action is taken.

Remote V-store access

In normal circumstances this is a complete description of MU5 Vx-store. How-

ever, if the REMOTE switch is set in MU5 Console V-store (line 12 bit 54, see Section

8.5), then blocks 2-5 of MU5 V-store become available is Vx-store in addition to the

two lines just described. The MU5 V-store is completely described in Chapter 8. All V

lines in block 2, 3 and 5 become treated as Vx lines and with the same access as before.

However, block 3, the Console V-store (Section 8.5) does have some changes on access.

Lines 10, 11 and 12 as V-store have only READ access. The permissible access as Vx

lines is READ/WRITE with the exception of bits 54 and 55 of line 12 which stay READ

only.

Access to Peripheral Window and MU5 RIPF is unaltered on REMOTE.

88

9.3 The Disc (Drum) Vx-store

The Disc Vx lines exist in one block (Block 0) which consists of 32 lines of 64

bits.

Address Name Size Access

(64-bit word)
0 DISC ADDRESS 22 R/W

P is the internal read request bit and if set (i.e. = ‘1’) overrides

bit 33. (Therefore normally a zero.)

R/W specifies whether reading from or writing to the disc

(‘1’ = READ.)

D specifies the disc number 0-3. Each has 64 bands containing 37

blocks of 256 words (32 bits + 4 parity bits).

SIZE specifies the number of block requested for transfer.

Writing to this line initiates a disc transfer.

Note The block and size digits are updated during a transfer.

1 STORE ADDRESS 28 R/W

The 28 bits specify the real address in what is the receiving or sending unit.

Hardware ignores the l.s. eight bits of the address; it is assumed to point

to at least a 256 word block boundary (minimum transfer size). This line

is altered during a transfer.

2 DISC STATUS 32 (see below)

The description below is of the status bits when set = ‘1’

89

Digit

32 - Decode the rest of the status line. This is examined by

software on completion of each transfer. If set, some further

action is required. This bit is reset by writing a ‘1’ to it.

33 - Decode Vx line 7.

This indicates an operator’s request to go onto SELF TEST.

Further information about the request is held in line 7.

34-41 - Eight bits reserved for discs 2 & 3 having the same significance

as bits 42-49.

42 - Disc 1 absent. Set manually to indicate disc is off-line, i.e. cannot

be read from or written to by CPU.

43-44 - Spare

45 - Disc 1 on Self Test.

46 - Disc 0 absent.

47-48 - Spare

49 - Disc 0 on Self Test.

50 - Illegal request to the disc.

51-52 - When input parity error occurs these bits define whether it

occurred in data, address or control information.

53 - (PF0). Input parity error. This causes a bit to be set in the

Exchange Vx line UPF.

Resetting both bits is achieved by writing a ‘1’ to this bit.

54 - Bound locked out (see line 5).

55 - Data late (hardware error).

56 - Column parity error (internal to disc).

57 - Row parity error (internal to disc).

58 - Ignore parity fault - applies to ‘input parity error’ (bit 53) only

59 - End transfer. ‘1’ = ENDED.

60-63 - Disc unit number (= 0).

Access

All bits of STATUS can be read. Only bits 32, 50, 53, 58 and 59 can be

written to. Each is reset by writing a ‘1’ to its bit position.

90

WARNING

The fault bits in this line are only valid when written to the address in line

4. Some of them are reset by the disc straight after the transfer completes.

3 CURRENT POSITIONS 24 R

This line gives the current positions of each of the discs and also records

which packing density is current (‘0‘ = HALF P.D., ‘1’ = FULL P.D.).

4 COMPLETE ADDRESS 28 R/W

This line holds the address to be written to on disc transfer complete. The

information written is the STATUS line 2. This address must not be a disc

address.

5 LOCKOUT 01 32 R

This contains 16 lockout switches for each of discs 0 and 1. These are set

manually. Each bit locks out 4 bands.

6 LOCKOUT 23 32 R

91

7 REQUEST SELF TEST 5 (see below)

Digit

59-60 - Reserved for Request Self Test on discs 2 and 3.

61 - ‘Request self test’ on disc 1. (‘Request self test’ is set manually.)

62 - ‘Request self test’ on disc 0.

63 - ‘CPU permission to self test’.

Access

All bits can be READ. Only bit 63 can be written to.

8 SELF TEST COMMAND 7 R/W

Digit

57-59 - Margins

60 - A/D required

61 - Self Test

62-63 - Disc number

9 SELF TEST STATE 26 R

A/D holds the A/D conversion value. The current BAND,

BLOCK and TRACK are maintained.
Digit

59 - Max/Min Signal.

60 - Print A/D

61 - Surface Error

62 - Address Error

63 - Self Phasing Error

92

9.4 The BTU Vx-store

The Block Transfer Unit is designed to perform autonomous block transfers

between six possible stores in the system (2 mass stores and 4 local stores). Up to

4 block transfers may be specified concurrently and these are carried out on an equal

priority, time-shared basis.

A block transfer from mass to local, for instance, is carried out one word at

time through the Exchange. The word to be transferred is buffered in the BTU before

being sent on to the local store. Thus the transfer mass → local actually consists of two

transfers:-
Mass → BTU followed by

BTU → Local

A block transfer has 4 controlling V-lines associated with it. There are 4 sets of these

V lines allowing 4 concurrent transfers. Each is situated in one of the 4 block addresses

0-3 of this unit’s address field. A block of BTU Vx-store consists of 32 lines of 64 bits.

Within blocks 0-3 the Vx lines have the following significance:-

BLOCKS 0-3 (Transfer control Vx lines)

Address Name Size Access

(Decimal)

64-bit boundaries

0 SOURCE ADDR 32 R/W

The hardware interprets this address as referring to a boundary that is a

multiple of the block size obtained by rounding the transfer size up to the

nearest power of 2. In addition, the least significant address bits are always

interpreted by the hardware as zero (16 word minimum boundary). A transfer

of all zeros (null transfer) is achieved when bit 41 of the source R.A. is set to

1 and the unit no (bits 36-39) are 9 (i.e. local).

93

1 DESTINATION ADDRESS 28 R/W

This address is interpreted by hardware in the same way as the source

address.

2 SIZE 20 R/W

At the start of a block transfer N specifies the transfer size as 2 less than

the number of 32-bit words due for transfer. (N/2 will always be odd.) The

maximum transfer size is 64K and the minimum theoretical size is 2 words.

The transfer is carried out from the final word of the block backwards to

the first. Each time a 64-bit word is transferred, N is decremented by 2.

On completion of the transfer N will be -2. Ui is the number of the unit

which is to be interrupted on completion of the transfer.

3 TRANSFER STATUS 4 R/W

Bit 60 is the Transfer in Progress bit. Setting this bit initiates a block

transfer. It may be reset by software to terminate the transfer midway.

Hardware resets this bit on transfer complete (successful or not).

94

Bit 61 is the Transfer Complete bit. Hardware sets this bit on completion

(successful or not) of the block transfer. This is what causes the Block

Transfer Complete interrupt in Ui. The interrupt may be turned off by

resetting this bit. Bit 62 is the Parity during Transfer bit. When set, this

bit indicates that the current transfer has been terminated by hardware

because of a parity fault (see BTU Block 4 - Parity Vx lines. Bit 63 is a

spare fault bit.

BLOCK 4 (Parity Management)

0 PFO 1 R=Reset

Bit 63 of this line is set if a parity error is detected on address or control

bits sent to the BTU from the Exchange. This signal is passed back to

the Exchange and sets a bit in the UPF line in the Exchange Vx-store (see

BTU Vx-store Block 5 line 2). Both these bits are reset by reading the PFI

bit only,

1 BTU RIPF 1 R/W

Bit 63 of this line is a means of inhibiting further requests from the BTU to

Exchange. When any bit in the UPF Vx line (see block 5 line 2) becomes set

as a result of some parity fault, Exchange sends a signal to each unit in the

system. When this signal appears in the BTU, provided parity interrupts

are uninhibited, the RIPF line, if set, will stop further Exchange requests.

2 TRANSFER COMPLETE 4 R

Bits 56-59 contain the transfer complete bits for channels 0-3 respectively.

N.B. Early morning reset sets these bits to zero.

95

BLOCK 5 (Exchange Vx Lines)

The Exchange does not have the status of a unit and its Vx lines are addressed

via the BTU. The Exchange Vx lines constitute block 5 of the BTU Vx-store.

0 SUPF 13 R/W=Reset

This line indicates sending unit parity fail. For each transfer through Ex-

change, the data, address and control information is checked for correct

parity. If the check fails, a bit is set in SUPF corresponding to the unit

that sent the information.

Bits 52-63 correspond to wrong parity from units 0-11 respectively. Thus

Exchange does not stop the transfer if a parity failure is detected, but

merely notes which unit was responsible for it. Reading this line causes

it to be cleared. Bit 51 is known as CAP. If set, it indicates a control or

address parity.

1 UPF 13 R

Bit 51 of this line is set if any of the bits of SUPF (line 0) are set. It

represents any parity fail on information entering Exchange. Bits 52-63

represent any parity signal sent to Exchange from units 0-11 respectively.

All units parity check information coming from Exchange. Any failure

causes a bit to be set in the unit and a signal returned to Exchange which

sets the appropriate bit in UPF.

Bits 52-63 of UPF are reset by resetting the parity fail bit in the appropriate

unit. Bit 51 is reset by reading SUPF.

96

9.5 The 1905E Vx-store

This Vx-store consists of 4 lines in block 0.

Address Name Size Access

(Decimal)

64-bit boundaries

0 VXINT 1 W

Writing to this line interrupts the 1905E at the next Normal Mode instruc-

tion fetch time (the value of bit 63 is irrelevant). Writing to this line sets

bit 220 in the 1905E’s internal V-line (known as SR129).

1 5ERIPF 1 W

Writing a ‘0’ to bit 63 of this line resets the 5ERIPF flip-flop (thus allowing

requests through the Exchange in the event of a parity fail). Writing a ‘1’

to bit 63 sets 5ERIPF (thus inhibiting requests in the event of a parity fail).

5ERIPF appears as bit 221 in the 1905E’s internal V-line 129.

2 RPS 1 W

Writing to this V-line resets the 1905E’s PFO flip-flop (the value of bit 63

during writing is irrelevant). PFO, which indicates a parity fail detected

by the 1905E on information received via Exchange, also appears as bit 218

in the 1905E’s internal V-line 129.

3 Spare 1 W

Writing to this line causes no action.

Notes

a) Writing to higher Vx addresses causes the address to be decoded modulo 4.

b) Incoming Read and Read-and-Mark requests are ignored by the 1905E, except

that ‘Buffer Free’ signals are returned to Exchange. Note that the ‘Store Free’

flip-flop does not exist in the Exchange for the 1905E.

97

a) In order to aid system development, there exist further signals between the

1905E and MU5. The following is a list of the relevant bits in the 1905E’s

internal V-line 129.

digit in V-line 129 Meaning

21 Advance Warning Power Failure

(similar to bit 49 in MU5 System Error V-line).

22 MU5’s Remote switch on/off.

23 Exchange operable/inoperable

(similar to MU5 V-line 24 in block 4).

215 Allow/Inhibit MU5 communication

(a manual switch on the 1905E).

216 Unit fail (similar to the Exchange Overdue

signal at bit 60, MU5 V-line 23 in block 4).

217 DINTO (Diagnostic Interrupt Outwards);

this is set by writing to MU5 V-line 25 in block 4.

222 BTU End-of-Transfer interrupt.

The 1905E also sends a signal that appears in bit 63 of MU5 V-line 24 block 4, to indicate

that the 1905E is operational. Finally, the 1905E software may produce a signal DINTI

(Diagnostic Interrupt Inwards) that interrupts MU5 at Level 0 and appears as bit 54 in

the System Error V-line (as yet not implemented).

Further description of the 1905E/MU5 interface may be found in the relevant

1905E documentation11).

11It’s unlikely that this documentation still exists.

98

9.6 The Local Store Vx-store

This Vx-store consists of 5 lines in block 0.

Address Name Size Access

(Decimal)

64-bit boundaries

0 PFO 4 R/W=Reset
Bit 63 is set when a parity failure occurs in incoming addresses or control

bits from Exchange. This results in a bit being set in Exchange V line UPF.

Both bits are reset by writing to PFO.

8 FAILSOFT 8 R/W

Digit

56-59 These bits can be set to specify a failsoft mode (see below).

60-63 These bits are set manually to indicate that a stack (0-3

respectively) is OFF LINE. Writing to these bits has no effect.

Bits 56-59 of Line 8

These may be set to 11 meaningful numbers. Each number corresponds to a

mode of operation of the Local Store, as below:-

NUMBER MODE

0 1 2 3

0

4

99

5

6

7

8

9

10

11

12

13

100

Modes 1, 2 and 3 also give normal interleaving.

Suitable precautions must be taken to ensure that the setting of this line is not changed

unless the Local Store is completely inactive.

16 SELF TEST CONTROL 11 R/W

(%10)

Digit

53-54 Margins - these bit specify three states as follows;-

00 - Normal

01 - Normal

10 - Inverse of console switches

11 - Obey console switches

55 End action - ‘0’ - Continuous self test

‘1’ - One cycle of the stack

56-57 Fixed Address Bit

These bits specify the range of the 64-bit addresses to be tested

on this stack.

00 - All 64-bit words

01 - Only the odd 64-bit words

10 - Only the even 64-bit words

58-60 Pattern for testing

61 Function

‘0’ - Clear Write

‘1’ - Read Restore

62-63 Stack on test

101

24 READ ADDRESS 12 R

(%1B)

This allows the current self test address to be read (e.g. after stop on error).

The address is in the form of 12 bits referencing a 64-bit word in the stack

on test. The stack in question must already be on self-test.

32 PST 5 See below

(%20)

Digit

58-62 READ ONLY Fault bits - one per stack

63 R/W - this bit initiates and terminates self-test when set = 0.

102

9.7 The Mass Store Vx-store

Address Name Size Access

(Decimal)

64-bit boundaries

0 POWER STACK 0 8 R/W

1 POWER STACK 1 8 R/W

2 POWER STACK 2 8 R/W

3 POWER STACK 3 8 R/W

These first 4 Vx lines define the operation of power supplies in the stacks

0-3 with the following format:-

Digit

56-57 Power Supply 0

58-59 Power Supply 1

60-61 Power Supply 2

62-63 Power Supply 3

Each stack has 4 power supplies and the digits above define whether these have to work

at nominal values or at increased or reduced margins.

Value

00 Nominal

01 Reduced margin

11 Increased margin

103

4 OFF LINE STACKS 4 R

These bits when set to ‘1’ define a stack to be OFF LINE. This is achieved

manually.

5 WORKING STACKS 4 R/W

This line has the same format as line 4. Each bit when set specifies a stack to be

working normally. Reset to put a stack on test.

6 STACKS ON TEST 2 R/W

Bits 62 and 63 of this line define which of stacks 0-3 is on self test.

7 ON TEST INDICATOR 1 R/W

Setting bit 63 initiates self test on the stack specified in line 6. To reset testing

after a stoppage, e.g. stop on error, OTI must first be reset to zero, then set back

to ‘1’.

8 SELF TEST CONTROL 6 R/W

Before putting any stack on self test, patterns (58-60) and operating modes (61-

63) can be written to this line.

104

9 END ACTION 3 R/W

Bit 61 is SEQ and specifies only one cycle of all addresses of the stack on test

(‘1’) or continuous cycling (‘0’).

Bit 62 is ST and for the stack on test specifies ‘stop at end of current store cycle’

(‘1’).

Bit 63 is CON and specifies (for each stack on test) ‘stop on error’ (‘0’). To

continue after stop on error this bit can be reset to ‘1’ then back to ‘0’ again.

19 TRANSFER ADDRESS 17 R

(%A)

This line holds the address at which an error occurred when on self test.

11 TRANSFER DATA OUT 36 R

(%B)
This line may be read to obtain 9 bits, the data involved in an error on self test.

Data is regarded as 36 bits (32 data bits + 4 parity bits). This is conceptually

divided into 4 sets of 9 bits. When line 11 is read, line 17 defines which set of 9

bits is to be read.

12 PARITY FAIL 7 R=Reset

(%C)

105

Digit PARITIES

57 (INVAL) INVALID ADDRESS sent to interface

i.e. too high for number of stacks working

58 (PFV) V-store I/P data

59 (PF0) Stack 0 I/P or O/P data

60 (PF1) Stack 1 I/P or O/P data

61 (PF2) Stack 2 I/P or O/P data

62 (PF3) Stack 3 I/P or O/P data

63 (PFAC) Address or Control bits from Exchange

If any of these bits is set, a signal is sent to Exchange and to the Engineers’ Door

and Console.

13 STACK 0 STATUS 3 R

(%D)

13 STACK 1 STATUS 3 R

(%E)

13 STACK 2 STATUS 3 R

(%F)

13 STACK 3 STATUS 3 R

(%10) The formats of these 4 lines are all the same.

Digit

61 Power Supply on margin

62 Stack on self test

63 Error during self test

17 TRANSFER PART 2 R/W

(%11)
This specifies which section of the data or address word is to be read when reading

TDO or TA lines 24 and 26.

‘0’ refers to the most significant section.

‘3’ refers to the least significant section.

106

9.8 The System Performance Monitor Vx-store

The System Performance Monitor (SPM) was a bespoke system built as part of the MU5

Project to allow hardware monitoring of activity within the MU5 Processor. Cables

attached to various registers and logic signals in the Processor were connected as inputs

to the SPM where they could simply be counted or could be recorded in the form of

a histogram showing, for example, the relative number of occasions on which a given

event occurred ‘n’ times between occurrences of some other event. As well as a set of

fast counters and a data (histogram) store, the SPM included a title store (to enable

histograms to be labelled) and its own visual display unit on which the contents of

its store(s) could be displayed. The SPM could be controlled externally via its V-line

and MS2 in MU5. MS2 controlled recording in the SPM, i.e. the SPM only recorded

data when MS2 was set to 1, allowing selective recording of specific processes such as

benchmark programs. With MS2 = 1, setting MS3 caused instructions to be executed

one at a time, rather than being pipelined. The SPM stores could be accessed by other

units in the MU5 Complex to allow large amounts of data to be accumulated and printed.

System Performance Monitor Real Store

This consists of 3 blocks of store addressed as follows:-

Address Name Size Access

(64-bit word)

0 SPM.DATA.STORE 512 x 16 bits R/W

To read/write from this store, bits 48-63 of the highway are used.

512 SPM.FAST.COUNTERS 16 x 32 bits R

To read these counters, bits 48-63 of the highway are used. The more

significant half of a fast counter is at address 512 + 7 + 16*N, the least

significant half is at address 512 + 15 + 16*N where N is the fast counter

required.

768 SPM.TITLE.STORE 256 x 7 bits R/W

To read/write from this store, bits 48-55 of the highway are used.

107

System Performance Monitor V-line

This line is accessed by using a real address descriptor (Type 3.0), with V-store

specified in the origin. The real address part specified is irrelevant. The top 32 bits of

the V-line are write only (if read, they return 0). The bottom 32 bits are read only.

Digit

0 Enable bits 1, 2, 3

1 RC1 Resets and initiates histogram logic

2 RCVAL Overrides validation lines for histogram input pulses

3 INTOFF Reset Interrupt

4 Enable bits 5, 6 7

5 RCNT1 Initiates fast counters

6 RCNTVAL Overrides validation lines for fast counters

7 RCNTR Clears fast counters

8 Enable bits 9, 11

9 RAI0 Identifies the activity required for software monitoring

10 Not used

11 RAI1 Used as for RAI0

12 Enable bits 13, 14, 15

13 RIMA } Control the input mode on the

14 RIMB } two histogram input channels

15 RDYW Allows Dwell Histogram logic to continue upon overflow of

Y counter

16 Enable bits 17, 18, 19

17 RSF**4 Set the scale factor on the Prescaler

18 RSF**2 "

19 RSF**1 "

20 Enable bits 21-31

21 Not used

108

22 Writing to this bit causes an interrupt (see bit 60)

23 RSAC Allows CPU to write to or read the real store via Exchange

24 RSAD Initiates the display of the store contents on the VDU

25 RSAIH Interval Histogram mode

26 RSAIDH Increment/Decrement Histogram mode

27 RSARCH Clears Title store

28 RSADH Dwell Histogram mode

29 RSADAD Direct Addressing mode

30 RSARD Clears Data store

27 & 30 Clears Title store and Data store

28 & 29 Snap-shot mode

NOTE: Except for those pairs noted, only one bit in the above

group should be set at a time

31 PFLR Reset parity fail indicator

32-59 Not used

60 RINT An interrupt has been forced by writing to bit 22

61 RM*C Monitor is in Manual mode

62 RIGNEX Monitor has ignored Exchange request

this causes an interrupt

63 GIGNEX Monitor is ignoring Exchange except for V-reads

i.e. Monitor is in one of the following modes:-

MANUAL, DISPLAY, CLEAR-STORE

Interrupts Three conditions cause an SPM interrupt:-

STORE FULL The SPM has accumulated all the data it can handle

and must be dumped.

RIGNEX (see bit 62)

RINT (see bit 60)

109

Chapter 10 The Basic Programming Language - XPL12

Table of Contents

The Metalanguage . 10.1

Program & Statements .10.2

Names, Literals & Labels . 10.3

Tables & Texts .10.4

Blocks . 10.5

Declaratives .10.6

(1) Variable Declarations

(2) Literal Declarations

Instructions . 10.7

(1) Computational

(2) Store to Store

(3) Organisational

(4) Conditional

Procedure Call Facilities . 10.8

Special Directive Statements . 10.9

Alternative Punching Conventions for the VDUs . 10.10

The Test Bits in MS . 10.11

12 The XPL compiler originally ran on both MU5 and the ICL 1905E but only the MU5 version was

used once MU5 was fully commissioned.

110

10.1 The Metalanguage

Modified BNF (Backus Naur Form) is used to define any XPL syntactic element.

The modifications to the BNF are as follows:

(1) In the order of alternatives and of elements within alternatives:-

a. Any alternative which is a stem of another comes after it.

b. If any one alternative is a special case of another, it must come first.

c. In recursive definitions, there must be at least one left-most element not

recursive.

(2) Metalinguistic Bracketing:-

Several alternatives may be specified as an element of another by enclosing

them in square brackets.

111

10.2 Program & Statements

<XPL.PROGRAM> ::= <PROGRAM.OF.A.SEGMENT>[<XPL.PROGRAM>|<NIL>]

<PROGRAM.OF.A.SEGMENT> ::= *SEGMENT<SP><SEGMENT.NO><NL>
BEGIN <NL>
<program> <NL>
END <NL>
*END OF SEGMENT <NL>

The <program> consists of a number of statements and hence:-

<program> ::= <STATEMENT>[<PROGRAM>|<NIL>]

The statements are:-

<STATEMENT> ::= <LABEL>|
<LABEL><SEP>|
<TABLE><SEP>|
<TEXT><SEP>|
<BLOCK><SEP>|
<DECLARATIVE><SEP>|
<INSTRUCTION><SEP>|
<SPECIAL.DIRECTIVE.STATEMENT><SEP>|
<SEP>

where <sep>, a separator is:-

<SEP> ::= <NL>|<COMMENT>
and where <comment> commences with two colons and terminates with a newline. For

line continuation purposes ⇡ <NL> is ignored.

The seven types of XPL statement are explained in the following sections.

112

10.3 Names, Literals & Labels

Since the basic operands in the language are names and literal, it is convenient

to define them first.

(1) Names & Literals

<LITERAL> ::= <DECIMAL>|
%<HEX.DIGITS>|
"<CHARACTER.STRING>"|

<NAME>|
<DR.LIT>

<DECIMAL> ::= [+|-|<NIL>]<INTEGER>[.<INTEGER>|<NIL>]
<INTEGER> ::= <DECIMAL.DIGIT>[<INTEGER>|<NIL>]
<HEX.DIGITS> ::= [<HEX>|<HEX>(<INTEGER>)]

[<HEX.DIGITS>|<NIL>]
<HEX> ::= 0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F

<CHARACTER.STRING> ::= [<CHARACTER>|<HEX.PAIR>]
[<CHARACTER.STRING>|<NIL>]

<HEX.PAIR> ::= <VB><HEX><HEX><VB>
<VB> ::= a vertical bar

<NAME> ::= <LETTER>|<LETTER><NAME.SYMBOLS>
<NAME.SYMBOLS> ::= [<LETTER>|<DECIMAL.DIGIT>|.]

[<NAME.SYMBOLS>|<NIL>]
<DR.LIT> ::= D<QUA><OCT><OCT>/[<INTEGER>|<NAME>]

/[<INTEGER>.<INTEGER>[.<INTEGER>|<NIL>]|
<NAME>]

<QUA> ::= 0|1|2|3

<OCT> ::= 0|1|2|3|4|5|6|7

(2) Labels

A label takes the form of a name followed by a colon, i.e.

<LABEL> :: = <NAME>:
Any number of labels may precede an instruction; references to labels are opti-

mised by XPL.

113

(3) Further Notes on Literals

There are five different types of literal, each of which is explained below. The

XPL complier will attempt to optimise their lengths.

a. DECIMAL NUMBER (not currently implemented on MU5) in which a decimal

point implies that the number be coded as a floating-point literal. All decimal

numbers are signed.

Examples:-

Signed fixed point:-

2 :: 6-bit

51 :: 16-bit

+51 :: 16-bit (the positive sign is optional)

327680 :: 32-bit

Floating-point (all 64-bit):-

1.0 :: 1. will be faulted

-0.23 :: -.23 will be faulted

b. BINARY LITERAL is a % (percent) sign followed by a string of hexadecimal

digits. Right justification is adopted.

Examples:- %1F :: 6-bit signed

%2F :: 16-bit unsigned (6-bit is impossible, since

:: the sign bit will be propagated)

%F903 :: 16-bit unsigned

%4F903 :: 32-bit unsigned

%800000000004F903 :: 64-bit

%80(10)4F903 :: gives the same literal as in the above

:: example

114

c. CHARACTER LITERAL is a string of characters enclosed by single characters

that represent double quotes. Hexadecimal pairs can be used to represent

characters not available on the input device. A compiled literal is packed eight

bits per character (in ISO code) and right justified.

Examples:-

"ABCDE" :: Double quotes represented by " on most

:: Flexowriters.

"ABCDE|0A|XYZ" :: The hexadecimal pair |0A| is compiled

:: as a newline character.

d. NAME LITERAL can either be a name declared as a literal or the name of

a label, in which case the absolute address is used.

Examples:-

MAX.VALUE = 100

MASK = %FOF

ENTRY.POINT = "START"

NINE = 9

BASE:

e. DR LITERAL is a descriptor literal

In XPL, the bound field can either be a previously defined name or an integer,

whereas the origin field can be either a name or ‘SEGMENT.WORD.BYTE’,

which specifies the address of the start of the string (in the absence of the ‘.BYTE’,

the byte position is taken to be zero).

115

Examples:-

D033/19/8196.74.3

:: This is a vector descriptor (type 0), defining a string of 8-bit

:: elements. Modifier is not scaled and there is no bound check.

:: There are 19 elements, starting at byte position 3 of line 74 in

:: segment 8196.

D260/NINE/BASE

:: This is a descriptor (type 2), defining a string of 64-bit

:: elements. Modifier is scaled and there is a bound check. There

:: are ‘NINE’ elements, starting at the label ‘BASE’. (The name

:: literal ‘NINE’ must be declared prior to this DR literal,

:: whereas the label ‘BASE’ can be a forward reference.

N.B. When a vector is accessed by using a name corresponding to a descriptor

literal, two orders will be compiled, e.g.

A = DESCRIPTOR.1[B]

will be compiled into:-

D = DESCRIPTOR.1

A = D[B]

116

10.4 Tables & Texts

Table is used to plant literals within the compiled code, whereas text is used to

plant a string of symbols

(1) Tables

<TABLE> ::= DATAVEC<SP><NAME>(<LENGTH>)
<NL><LIT.LIST><NL><END

where <NAME> ::= a literal descriptor set up to access the content of the

TABLE.

<LENGTH> ::= an <INTEGER> specifying the length of the literals in the

TABLE. (The length can be 1, 4, 8, 16, 32 or 64 bits).

<LIT.LIST> ::= <LIT.LINE><NL><LIT.LIST>|<LIT.LINE>
<LIT.LINE> ::= <LIT.ITEMS>[<LB><INT><RB>|<NULL>]

where <integer> indicates the number of times that

the preceding items on this line are to be repeated.

Nested repetitions are not allowed.

Example:-

DATAVEC TABLE.1 (64)

99

%14A76F02F

"AB"

-1,[5] :: -1 to be planted 5 times

4,FRED,[2] :: 4, FRED to be planted twice

0

END

(2) Texts

<TEXT> ::= DATASTR<SP><NAME>"<CHARACTER.STRING>"
where <NAME> ::= a string descriptor set up to access the

<CHARACTER.STRING>
Example:-

DATASTR CAPTION.1 "**FIX LINEPRINTER**"

117

10.5 Blocks

<BLOCK> ::= [BEGIN|PROC<SP><PROC.NAME>]
[(<LABEL.LIST>)|<NIL>]<NL>
<program>
END

where <PROC.NAME> ::= the <NAME> of the procedure.

<LABEL.LIST> ::= <NAME>[,<LABEL.LIST>|<NIL>]
Basically, a block consists of two declaratives, BEGIN and END, and serves to define

the scope of labels. Declarations other than labels have a global scope equivalent to that

of a forward reference. Redefinitions of names within this global scope are not allowed.

Blocks can be nested to any depth.

If PROC is used instead of BEGIN, a jump instruction is planted by XPL to

jump round the procedure.

If the BEGIN is followed by some names of labels, e.g. BEGIN (L31, L32), then

entries to that block can be made to these labels from the enclosing block.

Example:-

BEGIN

L1: – – –
-> L31
– – –
-> L32
– – –
BEGIN (L31, L32) :: implying L31 and L32 are in the

:: same level as L1 an L2.
– – –

L31: – – –
– – –

L32: – – –
– – –

END
L2: – – –

END

118

10.6 Declaratives

There are two types of declarative, both of which give the name a global scope,

namely:-

(a) variable declaration <VAR.DEC>
(b) literal declaration <LIT.DEC>

<DECLARATIVE> ::= <VAR.DEC>|<LIT.DEC>
(1) Variable Declarations

The variable declarations assign a name to a displacement relative to a base,

which can be NB, XNB, SF, 0 or STK (for accessing the stack).

<VAR.DEC> ::= V[32|64|V]/[NB|XNB|SF|0|STK]<VAR.SPEC>
<VAR.SPEC> ::= <NAME>:<DISPLACEMENT>[,<VAR.SPEC>|<NIL>]
<DISPLACEMENT> ::= [-|<NIL>]<INTEGER>|%<HEX.DIGITS>

A name declaration must start with a V, followed by the size of the variable. The size

is either 32 or 64-bit, or a V indicating that the variable will be used in privileged mode

to access a V-store location.

Example

V32/NB FRED:3 :: FRED can be found three 32-bit words away

:: from NB and is of size 32 bits.

V32/STK TOP.32.bits:0 :: The displacement must be zero with STK.

119

Notes

1. The hardware of the machine treats all V-store as 64-bit quantities. This means

that VV quantities are equivalent to V64 quantities.

2. The positions of variables in MU5 are governed by a base address contained in

one of the registers NB, XNB, SF and a displacement. It should be noted that

the value of the Base address and the value of the displacement cannot be freely

interchanged as may have been expected.

Thus:-
V64/NB FRED.1:6 :: sets up a displacement of 6

NB = 0 :: and a Base of 0

and:-

V64/NB FRED.2:0 :: sets up a displacement of 0

NB = 6 :: and a Base of 6

will not access the same location in the store. This is because the base registers

always count in units of 32 bits whereas the displacement counts in units of the

size of the variable, in this case 64 bits. The example therefore says that zero units

of 32 bits plus 6 units of 64 bits is not the same as zero units of 64 bits and 6 units

of 32 bits.

120

(2) Literal Declarations

A literal declaration assigns a value to a name. When the name appears as an

operand, its value will be coded as a literal in the instruction. (As already shown in (3)

of Section 10.3, XPL will optimise the lengths of the literals).

<LIT.DECL> ::= L/<LIT.SPEC>
<LIT.SPEC> ::= <<NAME>=<LITERAL>[,<LIT.SPEC>|<NIL>]

Examples:–

L/ MAX.VALUE = 100

L/ MASK = %44420F

L/ NAME.STRING = "ACCUMULATOR"

N.B. a. A number of declarations can be placed on a line, e.g.

V32/SF VAR.0:0, VAR.1:1, VAR.2:2, VAR.3:3

L/ MAX.VALUE = 100, MIN.VALUE = -100

b. Newline or a comment would terminate the sequence, hence

declarations requiring more than a single line would have to

be written as:

V32/SF VAR.0:0, VAR.1:1, VAR.2:2 VAR.3:3

V32/SF VAR.4:4, VAR.5:5

121

10.7 Instructions

There are four types of instruction, namely:

(1) computational <COMPUT>,
(2) store to store <STS>,
(3) organisational <ORG> and

(4) conditional <CONDIT>.

Each type of instruction is dealt with separately. However, it is convenient to

define the syntax of an operand first.

<OPERAND> :: = <SIMPLE.OPERAND>|<NAME><LB>[B|O]<RB>
where <SIMPLE.OPERAND> ::= <NAME>|<LITERAL>

<LB> ::= left square bracket

<RB> ::= right square bracket

(1) Computational Instructions

<COMPUT> ::= [<B.ORD>|<X.ORD>|<A.ORD>|<AOD.ORD>|<AEX.ORD>]
<OPERAND>

<B.ORD> ::= B[=|='|*=|=>|+|-|*|�|V|<=|&|-:|COMP|CINC]

<X.ORD> ::= [XS|X][=|*=|=>|+|-|*|/|�|V|<=|&|-:|COMP|CONV|/:]

<A.ORD> ::= [AFL|A][=|='|*=|=>|+|-|*|/|�|V|<=|&|-:|COMP|CONV|/:] |

[AU|AX][+|-|*|/|�|V|<=|&|-:|COMP] |

[ADC|AD][<=|COMP|CONV]

<AOD.ORD> ::= AOD[=|*=|=>|COMP]

<AEX.ORD> ::= AEX[=|*=|=>]

N.B. Where the operator -: is reverse subtract

and /: is reverse divide

122

(2) Store to Store Instructions

This group of orders uses the secondary operand unit; they operate on strings.

<STS> ::= <FN.1><OPERAND> |

<FN.2><SIMPLE.OPERAND> |

SUB1 <NAME> |

SUB2

<FN.1> ::= D=|D*=|DO=|XD=|XDO=|STACK

<FN.2> ::= D=>|XD=>|DB=|XDB=|

MOD|RMOD|SMOD|XMOD|MDR|XCHK|

BMVE|BMVB|BCMP|BLGC|BSCN|

SMVE|SMVB|SCMP|SLGC|SMVF|TALU|TCHK|TRNS

123

(3) Organisational Instructions

This group of orders defines internal register operations.

<ORG> ::= RETURN |

[EXIT|JUMP|XJUMP|STKLINK|]<OPERAND> |

SETLINK<SIMPLE.OPERAND> |

<MS.ORD> |

<XC.ORD> |

<SF.ORD> |

<NB.ORD> |

<XNB.ORD> |

<MISC.ORD> |

<DUMMY.ORD> |

<MS.ORD> ::= MS = <OPERAND>
<XC.ORD> ::= [XC0|XC1|XC2|XC3|XC4|XC5|XC6]<OPERAND>
<SF.ORD> ::= SF[=|+|=NB+]<OPERAND> |

SF => <SIMPLE.OPERAND>
<NB.ORD> ::= NB[=|+|=SF+]<OPERAND> |

NB => <SIMPLE.OPERAND>
<XNB.ORD> ::= XNB[=|+]<OPERAND> |

XNB => <SIMPLE.OPERAND>
<MISC.ORD> ::= [SN =|DL =|SPM =]<OPERAND>
<DUMMY.ORD> ::= D[1|2|3|4]

(for coding up dummy organisational orders)

The XJUMP order will search the Common procedure Name List for the name and

plant an absolute jump to it. The STKLINK order plants a 64-bit operand.

124

(3) Conditional Instructions

This group of orders deals with control transfers and the setting of the BOOLEAN,

BN.

<CONDIT> ::= <JUMP.SPEC><NAME> |

IF <COND>, <JUMP.SPEC><NAME> |

BN <B.FN> IF <COND> |

BN <B.FN><OPERAND>
<COND> ::= =0|≠0|<0|≤0|>0|≥0 |

OV|BN

<BN.FN> ::= / |

≡|� |

= |=/ |

&|&/|/&|/&/ |

V|V/|/V|/V/

<JUMP.SPEC> ::= [<LONG>|<SHORT>|<NULL>] –>
<LONG> ::= +

<SHORT> ::= –

The jump instructions (–>) are relative; XPL will compile the optimum code.

As indicated by the + or – preceding the jump, either a long (32-bit) operand or

a short (6-bit) operand is assumed. The default option of NULL will result in a 16-bit

operand.

125

10.8 Procedure Call Facilities

There are 6 types of procedure call available:-

CALL :: Plants a relative jump

ACALL :: Plants an absolute jump

XCALL :: Plants an absolute jump

:: to the specified LIBRARY procedure.

:: (plants for 16-bit operand)

CALL <PROC.NAME>(<LINK>, <PARAMETERS>)
Where <PARAMETERS> are any operands permitted after the instruction STACK.

The above expression will be compiled into:-

STKLINK <LINK>
STACK PARAMETER.1

STACK PARAMETER.2
.
.

STACK PARAMETER.N

–> <PROC.NAME>
ENTER :: Plants a relative jump

AENTER (or SCALL) :: Plants an absolute jump

XENTER :: Plants an absolute jump

:: to the library procedure.

ENTER <PROC.NAME>(<PARAMETERS>)
This expression will be compiled into:-

STKLINK L1 (6-bit operand planted)

STACK PARAMETER.1

STACK PARAMETER.2
.
.

STACK PARAMETER.N

JUMP <PROC.NAME>
L1:

126

10.9 Special Directive Statements

*SEGMENT<SP><EXECUTE.SEG.NO>[,<COMPILE.SEG.NO><NL>|<NL>]
where <EXECUTE.SEG.NO> has a value of –1 or 1 to 214–1

and <COMPILE.SEG.NO> has a value of 1 to 213–1

:: <EXECUTE.SEG.NO> specifies the segment

:: in which the code is to be executed.

:: <COMPILE.SEG.NO> specifies the segment

:: in which the code is to be compiled. If this is

:: unspecified, the compiler will select the next

:: available segment.

:: If <EXECUTE.SEG.NO> is equal to -1, the

:: compiler will select the execution and

:: compilation segment numbers.

*LINE<SP><LINE.NO><NL> :: Specifies the line (in 16-bit quantities) within

:: the segment at which the next instruction is

:: to be planted.
or

*LINE<SP>.<SP>+<LINE.NO><NL> :: Adds the operand to the current line number.

*END :: Prints a list of unmatched references on the

:: CTL currently selected output stream, sets

:: the information and returns.

*PRINT ON, *PRINT OFF :: Control the listing of the program text and

:: compiled code.

*NL<SP><NLADDR> :: <NLADDR> is the address in 32-bit words

:: of the library name list.

*N :: Normally the compiler removes any relative

:: jumps to the next order. The first time the

:: directive is encountered, it turns off this

:: optimisation. The next time, it turns the

:: optimisation on, etc.

*MAP ON, *MAP OFF :: Control the printing of the compile map.

127

10.10 Alternative Punching Conventions for the VDUs

Paper Tape VDU

(1) Not Equal ≠ /=

(2) Equivalent = –=

(3) Not Equivalent ≠ –/=

(4) Greater Than or Equal To > >=
(5) Less Than or Equal To < =<

10.11 The Test Bits in MS

A table giving the test bit combinations in MS, corresponding to the conditional

orders in XPL.

Condition Test Bits

= T1/

=/ T1

≥ T1/ V T2/

< T2

≤ T1/ V T2

> T1 & T2/

OV T0

BN BN

128

Appendix I MU5 Block Diagrams

The MU5 Processor

The MU5 Computer Complex

129

Appendix II The Engineers’ Version of the Order Code

130

131

Appendix III Engineer’s Console Front Panel

132

	Title Page
	Contents
	Chapter 1 Introduction
	 Sec 1.2 Summary of the Order Code
	Chapter 2 Operand Accessing
	 Sec 2.2 Internal Registers Relevant to Operand Accessing
	 Sec 2.3 Literal Operands
	 Sec 2.4 Variable Operands
	 Sec 2.5 Internal Register Operands
	 Sec 2.6 Stacked Operands
	 Sec 2.7 Privileged Operands
	 Sec 2.8 Secondary Operands
	 Sec 2.9 Length of the Orders
	 Sec 2.10 Type 0 - Vector Descriptors
	 Sec 2.11 Type 1 - String Descriptors
	 Sec 2.12 Type 2 - Descriptor Descriptors
	 Sec 2.13 Type 3 - Miscellaneous Descriptors
	Chapter 3 The B-arithmetic
	 Sec 3.2 The B-Instructions
	Chapter 4 Accumulator Arithmetic
	 Sec 4.1 The Accumulator and its Associated Registers
	 Sec 4.2 Allocation of Digits in AOD
	 Sec 4.3 Formats for Arithmetic Data
	 Sec 4.4 The Signed Fixed Point Accumulator Orders
	 Sec 4.5 The Unsigned Fixed Point Accumulator Orders
	 Sec 4.6 The Decimal Mode Accumulator Orders
	 Sec 4.7 The Floating Point Accumulator Orders
	Chapter 5 Structure Accessing and Store to Store Orders
	 Sec 5.1 Introduction
	 Sec 5.2 Internal Registers in the Secondary Operand Unit (SEOP)
	 Sec 5.3 D and XD Manipulation Orders and STACK
	 Sec 5.4 Structure Access Orders
	 Sec 5.5 Store to Store Orders
	Chapter 6 Organisational Orders
	 Sec 6.1 Introduction
	 Sec 6.2 Register Operations
	 Sec 6.3 Control Transfers and Procedure Calls
	 Sec 6.4 Conditional Control Transfers
	 Sec 6.5 Boolean Orders
	 Sec 6.6 Special Orders
	Chapter 7 The Interrupt System
	 Sec 7.1 The Interrupt Structure
	 Sec 7.2 The Machine Status Register
	 Sec 7.3 System Interrupts (Level 0)
	 Sec 7.4 Process Based Interrupts (Level 1)
	Chapter 8 The V-Store
	 Sec 8.1 Introduction
	 Sec 8.2 System V-store (S8192)
	 Sec 8.3 Primary Operand Unit V-store (Block 1)
	 Sec 8.4 The OBS V-store (Block 2)
	 Sec 8.5 Control Console V-store (Block 3)
	 Sec 8.6 SAC V-store (Block 4)
	 Sec 8.7 The IBU V-store (Block 5)
	 Sec 8.8 Peripheral Window V-store (Block 6)
	 Sec 8.9 Parity V-store (Block 7)
	Chapter 9 The Vx-Store
	 Sec 9.1 Introduction
	 Sec 9.2 The MU5 Vx-store
	 Sec 9.3 The Disc (Drum) Vx-store
	 Sec 9.4 The BTU Vx-store
	 Sec 9.5 The 1905E Vx-store
	 Sec 9.6 The Local Store Vx-store
	 Sec 9.7 The Mass Store Vx-store
	 Sec 9.8 The System Performance Monitor Vx-store
	Chapter 10 The Basic Programming Language - XPL
	 Sec 10.1 The Metalanguage
	 Sec 10.2 Program & Statements
	 Sec 10.3 Names, Literals & Labels
	 Sec 10.4 Tables & Texts
	 Sec 10.5 Blocks
	 Sec 10.6 Declaratives
	 Sec 10.7 Instructions
	 Sec 10.8 Procedure Call Facilities
	 Sec 10.9 Special Directive Statements
	 Sec 10.10 Alternative Punching Conventions for the VDUs
	 Sec 10.11 The Test Bits in MS
	Appendix I MU5 Block Diagrams
	Appendix II The Engineers' Version of the Order Code
	Appendix III Engineer's Console Front Panel

