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1 Introduction 

MU5 is the fifth computer system to be designed and built at 
the Uni versi ty of Manchester. The development of the systems 
leading up to MU5 is described by Lavington [1]. This book is 
concerned with the design, implementation and performance of 
MU5. It covers both hardware and software as these have been 
designed as an integrated system by a closely knit group of 
'Engineers' and 'Programmers'. No attempt is made to assign 
individual credit. 

A precise starting date for the project is difficult to 
pinpoint. Many of the ideas it embodies grew out of the 
previous Atlas Project. The records show that talks with ICT 
(later to become ICL) aimed at obtaining their assistance and 
suppor~ began in 1966. An application for a research grant was 
submitted to the Science Research Council in mid-1961, and a 
sum of £630 446 spread over 5 years became available in 
January 1968. In 1968 an outline proposal for the system was 
presented at the IFIP 68 conference [2]. The feasibility of 
constructing a big computer system for the amount of the grant 
relied upon the availability of production facilities, at 
works cost price, at the nearby ICT West Gorton Works. Even 
so, the finance was a limiting factor, and it was accepted 
that the hardware produced would only be a small version of 
the potentially large system that was to be designed. 

The level of staffing may be of some interest. In 1968 a 
group of 20 people was invol ved in the design, made up as 
follows 

11 Department of Computer Science st.aff 
5 Seconded ICT staff 
4 SRC Supported staff 

The peak level of staffing was in 1911 when the numbers, 
including research students, rose to 60. This fell during the 
commissioning period to 40. In the evaluation stage, from 
1913, only 25 people were involved. 

Motivation for the project was twofold. First there was the 
desire to continue the tradition of designing and building 
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advanced systems, pioneering ideas which could be exploited by 
the computer industry. In addition there was a requirement for 
a system to support the research school of the Department of 
Computer Science. Significant expansion of this research 
school was planned beginning with the first year of the 
Computer Science graduates in 1968. Experience had shown that 
research into hardware/system software could not be carried 
out on a computing service machine. It is excluded by both the 
nature of the work and by the excessive computing requirements 
of the simulation studies, and the automation of hardware and 
software design which dominate the research. 

The design objectives are best covered by the following 
quotations from the grant application to the Science Research 
Council dated May 1967. It was felt that a computer should be 
provided 'off the shelf' to initiate the project. 

'The computer required is an ICT 1905E specially fitted 
with a 750 ns store .•• The 1905E will be transformed into 
a multi (initially 2)" computer system by the addition of a 
completely new high-performance computer with a target 
throughput of 20 times that of Atlas It will be 
constructed by ICT (their agreement has been obtained) and 
will be charged at works cost price ... The 1905E, with 
the proposed modifications in view, will provide a vehicle 
which permits an immediate start on software developments 
aimed at the full system programs of the multi-computer 
system. The system programs will be written in a modular 
way to facilitate changes and extensions when these are 
required as the hardware develops.' 

Thus the emphasis was on a multi-computer system containing 
at least one new high-performance machine having a target 
throughput 20 times that of Atlas. 

'This factor will be achieved as follows 

(1) Integrated circuits and interconnection techniques 
will give a basic computing speed of seven times 
Atlas. 

(2) A 250 ns core store will be used, this is eight 
times the speed of the Atlas store. 

(3) The design will include 

Fast operand registers 
Register to register arithmetic 
Multiple arithmetic units 
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Items (1) to (3) will give a factor of' about 
ten, indeed the time for the inner loop of a scalar 
product is expected to be 1 ~s as compared with 12 
~s on Atlas. 

(4) An instruction set will be provided which will 
permit the generation of more efficient object code 
by the compilers. Particular attention will be 
given to the techniques for computing the addresses 
of array elements. Array bound checking will be 
provided as a hardware feature. 

(5) The efficiency of the Atlas supervisor is 
approximately 60%. The provision of special 
hardware and the information obtained from a 
detailed study of the Atlas system over the past 
two years will permit this efficiency to be 
significantly increased. 

Items (4) and (5) will give at least a further 
factor of two.' 

Clearly, performance was to be measured in terms of system 
throughput rather than raw machine speed. Significant factors 
were to be sought from optimising the hardware to meet the 
software requirements and an available production technology 
was to be used. Indeed the chosen technology was that to be 
used in the construction of ICT 1906As. However, it was 
anticipated that associative storage would play a significant 
role in the system design [3] and that suitable integrated 
circuit elements would be developed for this purpose. 

On the hardware side this book is mainly concerned with the 
design and implementation of the MU5 processor. However, the 
design was intended for a range of machines and the actual 
processor built is one example, which is towards the top of 
the range, with a scientific bias. The range was intended to 
go from machines of about PDP-11 cost to a mUlti-computer 
system incorporating several MU5s with differing biases at the 
top of the range. Thus the MU5 built has an 'Exchange' to 
which reference is made in several places. This is the 
hardware unit which connects the various computers of the 
total system. The software description takes into account both 
the range and the mUlti-computer aspects. 

Al though the design team had set themselves the task of 
designing a range of machines which could be marketed, it had 
no formal commitment to the computer industry. The ICT 
involvement was through the secondment of individual members 
of ICT to the University Team. Nevertheless, it could hardly 
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be fortuitous that the design of the ICL 2900 is so similar to 
MU5 that in 1969 the possibility of MU5 being marketed as an 
early member of the 2900 range was seriously considered. After 
a three-month 'convergence' exercise in early 1970, when the 
designs were drawn even closer together, the idea was 
abandoned because of ICL' s fear that the cost of maintaining 
compatibility would outweigh any advantage of early 
availability. During this period some changes were made to the 
detailed design of MU5 in the name of compromise, not all of 
which have been beneficial. Although there has been no attempt 
to maintain compatibility since that time the MU5 operating 
system and compilers can be transferred to 2900 with ease. The 
converse is not true. 

Software plans for the project were geared as much to the 
MU5~multi-computer system and the range concept as to the MU5 
processor. 

'The initial operating system will be for a single 
computer system but it will be extended to accommodate 
additional computers whose structures and order codes are 
different from those of the 1905E. It will be modular and 
easily changed in order to accommodate future hardware and 
software developments. The detailed design of the 
operating system has not been completed. However, it will 
have the following features 

(1) Some form of file storage and on-line access 

(2) Job queueing and scheduling for base load jobs 

(3) Priority routes through the system for urgent jobs 

(4) The basic supervisor will be kept to a minimum and 
most of the operating system facilities will run as 
non-privileged programs.' 

Compilers were to be produced using ideas developed from 
the Atlas Compiler Compiler. The emphasis was to be on 
efficiency, compactness and machine independence. 

These initial objectives remained as the project developed 
and the reader will judge the extent to which they have been 
achieved. 
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2 The Architecture of the 
MUS Processor 

The design of the MU5 processor was approached through its 
order code, this being the natural interface between software 
requirements and hardware organisation. Full interplay between 
the two aspects was considered vital throughout the design. 
Efficient processing of high-level language programs was the 
prime target. In 'number crunching' applications, this meant a 
fast execution rate for the high-level language programs. 
However, the system envisaged would be interactive, and to 
combat the system overheads this entails, it was considered 
important to produce small compilers and compiled programs. 
Thus, an order code was sought which satisfied the following 
conditions 

(1) Generation of efficient code by compilers must be easy 

(2) Programs must be compact 

(3) The instruction set must allow a pipeline organi·sation 
of the CPU leading to a fast execution rate· 

(4) Information on the nature of operands (scalar or array 
element, for example) should be available to allow 
optimal buffering of operands. 

In this chapter the order code of MU5 is examined from the 
point of view of its use and implementation. However, a large 
'part of the order code of such a highly structured system is 
concerned with address generation, and before discussing this 
it is appropriate to establish the policy relating to address 
validation, the mechanism which protects one user from 
another. 

2.1 INTERPRETATION OF ADDRESSES 

The most far reaching decision in the design of an order code 
is whether the addresses it generates are real or virtual. If 
real addresses are generated they will be used directly to 
access the store. Therefore the address must have been 
previously validated, as it was being computed, say. The 
-alternative offered by the IBM system, of tagging store blocks 
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to indicate ownership, was not considered flexible enough for 
a multi-access system in which the core allocation would be 
constantly changing. In effect, the real address based systems 
considered require that all address words contain an origin 
and a limit, and hence relate to bounded contiguous sections 
of store. Also the CPU must know which words in the store are 
address words. It then checks that each operand address is 
calculated from an address word, and that it falls within the 
specified limits. Since all address words are known to the 
system, out-of-use information can be moved out of main store 
until next required, provided the address words involved are 
appropriately marked and updated. A classic example of this 
type of machine is the Basic Language Machine [4], although it 
has never progressed beyond the prototype stage. Also the 
Burroughs machines since the 5000 series have had a similar 
type of controlled address formation, and currently the 
'capability machines' promote a similar idea. Alternatively, 
if the order code generates virtual addresses, then special 
hardware is needed between the CPU and the store to validate 
the address and translate it into a real address. Sometimes 
the address will relate to information not in the main store, 
and the hardware will detect this and initiate its transfer, 
usually with software assistance. This special hardware may be 
a single datum and limit as for example in ICL's 1900, or 
multiple datum and limit as for example in the PDP-11, or a 
paging system as in Atlas. 

The real address based systems have several attractions. 
Perhaps foremost from the performance point of view is the 
fact that the address generated by the CPU can be presented 
directly to the store, thus avoiding the time delay inherent 
in paging systems. Also the units of information delimited by 
address words, which would be the units the system might 
automatically move from one level of store to another, would 
be complete logical entities (procedures or arrays, for 
example). It can be argued that this is more efficient than 
moving fixed-size pages which represent arbitrary fragments of 
a program and its workspace [5]. The other side of this 
argument is that the problems of allocating and retrieving 
store in variable sized areas lead to some store not being 
utilised, for example because the empty areas may be too 
small. This has to be offset against the paging problem in 
which, even when all pages are in use, some will be partially 
occupied by unwanted information. It is by no means clear 
where the balance lies. 

Two additional considerations led to the choice of virtual 
addressing for MU5. First it was felt that the most 
significant task of the operating system was store management, 
the dominant part of which is concerned with the automatic 
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movement of information between levels of store. Such movement 
requires that the real addresses of the information moved be 
changed. If these real addresses are allowed to scatter 
through each program's private store, this task becomes 
complex. For example, the address words that require changing 
because of movement of information between levels of store are 
themselves subject to moving. Also, the same address might 
appear in several places. It was felt to be a cleaner solution 
to hold all information relating to the way a program maps 
into real store in a separate data structure outside the 
program and entirely under operating system control. 

The second consideration was that a program should not be 
constrained in the way it might build a data structure within 
its own workspace by the mechanism for address validation. 
Close examination of, for example, the system proposed by 
Iliffe [4] will reveal the awkward constraint that arrays must 
be homogeneous. 

Once the decision to base the system on virtual addressing 
had been taken, it was not difficult to reject the single 
da tum and limit approach. Al though such a sys tem lead s to an 
extremely simple organisation within the operating system, the 
entire program must be placed in a contiguous area of store 
each time the CPU is assigned to it. In contrast, one of the 
main attractions of Atlas had been the large virtual address 
space available to every user job, which could be used 
sparsely without significant penalty. For example, the 
compilers and operating system used the top half of the 
virtual store, user code was compiled into t~e bottom quarter, 
and the next quarter was used for the stack work space. Other 
smaller entities such as input and output buffers were fitted 
into the gaps in between. From this informal partitioning of 
the store on Atlas grew the idea of formalising the division 
into a segmented virtual store, which is also exploited in the 
Multics system [6]. 

In MU5 the final decision was to use a large virtual 
address, and to subdivide it into a segment number and a 
displacement within the segment. It was anticipated that large 
systems would be paged, but . that small ones might employ 
multiple datum and limit registers (one per segment). 

2.2 THE ORDER CODE 

2.2.1 Choice of Instruction Format 

The first step in choosing an instruction format is to decide 
how many operand addresses an instruction will have. Obviously 
this is influenced by the size of an operand address. If the 
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instruction contains only register addresses, so that main 
store is addressed indirectly through registers, several 
addresses can be accommodated. If full store addresses are to 
be used, then one is usually the limit, although some 
machines, for example the PDP-11 , have variable sized 
instructions and allow up to two full store addresses to occur 
in the long instructions. 

It was decided from the start of the MU5 design that in 
o.rder to comply with condition (1) above, there would be an 
address form corresponding to each form of operand permitted 
by high-level languages. Furthermore it was felt that to have 
more than one such operand per instruction would conflict with 
conditions (2) and (3). Only one facet of high-level language 
programs caused concern on account of this decision. This was 
the known high rate of usage of simple instructions such as 

I := I + 1 

Clearly, three instructions would be required to implement 
this in a one address code. However, the high execution rate 
expected of these simple orders and the possibility of them 
overlapping with adjacent orders was thought to compensate. 
For other reasons the possibility of using addressable fast 
registers for frequently used operands or addresses was 
rejected in favour of hardware optimisation using associative 
memory. First there was the desire to simplify the software by 
eliminating the need for optimising compilers. Equally 
important though was the desire to have fast procedure entry 
and exit, unfettered by the need to dump and restore 
registers. Thus through general design considerations the 
choice of format was restricted to the zero address (stacking 
machine) type or some form of one address code. 

From a compiler point of view the stacking machine is 
attractive. The simple algorithm for translating from Algol to 
Reverse Polish (and hence to stacking machine code) which 
forms the basis of the 'Burroughs Compilogram' is a convincing 
demonstration of this. Its simplicity stems from the fact that 
operands carry directly over to Reverse Polish without any 
relati ve change of position and a simple push down stack is 
all that is required to sort the operators into correct 
sequence. Consider for example 

(A + B) • «C + D) / (E + F» 

which in Reverse Polish becomes 

AB + CD + EF + / • 
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There were two arguments which steered the MU5 design away 
from the stacking machine form. The first is related to 
efficiency of hand-coding, which is something of a paradox 
since MU5 is a high-level language machine. However, 
observations on Atlas indicated that while high-level language 
programs were running, the CPU typically spent half its time 
executing in a small set of library procedures concerned with 
1/0 handling, mathematical functions, etc. This basic library 
would be hand-coded. Thus from the performance point of view, 
this small amount of hand-coded software was just as important 
as all the compiler generated code. Unfortunately most of the 
hand-coded sequences worked out worse in stacking machine code 
than in single address code. This was because the main 
calculation, the address calculations and the control 
counting, tended to interfere with each other on the stack. 
The problems are illustrated by the following example of a 
simple move sequence, although either machine could have a 
single function for this purpose. 

Single Address Code Stacking Machine Code 

LOAD MODIFIER 
X: ACC = SOURCE[MODIFIER] 
ACC => DEST[MODIFIER] 

STACK MODIFIER 
X: DUPLICATE 
DUPLICATE 

INC AND TEST MODIFIER STACK SOURCE[TOP OF STACK] 
swap IF NOT END BRANCH X 
STORE DEST[TOP OF STACK] 
STACK 1 
SUBTRACT 
IF NOT END BRANCH X 

The point being made is that a single stack is under 
pressure when it has to support all the (unctions involved in 
counting, address calculation and main calculation. In any 
given context, detailed changes to the specification of ~. 

instructions would ease the problem, but only at the expense 
of it recurring in a different context. A machine with several 
stacks would have worked better, for example 

a control stack 
an index stack 
an address stack 
the main stack 

This sort of arrangement would also fit the pipeline 
requirement better since the stacks could be distributed along 
the pipeline. 

fhe second argument against the stacking machine would 
apply equally to a multi-stack organisation. Consider the 
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example 

A := B + C 

For the two types of instruction format under consideration it 
would be coded as follows 

ACC = B 
ACC + C 

ACC => A 

STACK B 
STACK C 
ADD 
STORE A 

If the operands normally come from main store the execution 
times of each of the above sequences would be about the same, 
since they will be controlled by the access times for A, Band 
C. However, if an operand buffering scheme is utilised, giving 
a high hit-rate (say> 90%) for operands such as A, Band C, 
the access time to the stack becomes important. On MU5 the 
stack and the operand buffers would be the same speed, and the 
above example would have caused six stack accesses in addition 
to the three operand accesses. Some, but not all, of the 
acc~sses could have been overlapped. 

o#A 

The instruction format eventually chosen for MU5 
represented a merger of single address and stacking machine 
concepts. All the arithmetic and logical functions take one 
operand from an accumulator and the other operand is specified 
in the instruction address. Thus a sequence such as 

ACC = B 
ACC + C 
ACC => A 

typifies the style of simple calculations. However, there is a 
stack, and a variant of the load order (*=) causes the 
accumulator to be stacked before being re-Ioaded. Also a 
special address form exists (STACK) which unstacks the last 
stacked quantity. Thus, the above example could be written in 
MU5 code in a form approximating to Reverse Polish, as 
follows 

ACC = B 
ACC *= C 
ACC + STACK 
ACC => A 

A more realistic use of the stack is in conjunction with 
parenthesised subexpressions. For example, the expression 

(A + B) * «C + D) / (E + F» 
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would compile into 

ACC = A 
ACC + B 
ACC *= C 
ACe + D 
ACC *= E 
ACC + F 
ACC I: STACK 
ACC * STACK 

It is interesting to observe that if the operand to the left 
of an operator is stacked, it _ subsequently appears as the 
right hand side of a machine function. Therefore, for the 
non-commutative operations '-' and 'I', the reverse operations 
denoted '-:' and '/:' have to be provided. In the notation 
used throughout this book 

ACC I OPERAND means 
ACC I: OPERAND means 

etc. 

ACC = ACC / OPERAND 
ACC = OPERAND I ACC 

Only one stack is provided in MU5, but there are five 
'accumulators' or 'computational registers'. Each may stack 
its contents, and hence the effect is the same as having five 
stacks, provided the order of unstacking corresponds to the 
way the stacked quantities are interleaved. This condition is 
usually met. If it were not, the conventional stacking machine 
would not be acceptable. The significant difference in MU5 is 
that the top words of each of the five stacks are 
simultaneously available in the computation~l registers. Each 
of the registers serves a dedicated function and they are 
distributed along the pipeline in close proximity to the 
arithmetic unit associated with that function. These 
arithmetic units are 

The B-unit - used for index arithmetic and control qounting 

The D-unit - used for address modification and bound checking 

The A-unit - the main arithmetic unit providing fixed-point, 
floating-point and decimal facilities 

The registers are 

B 
DR 
XDR 
X 
A(ACC) 

- a 32-bit modifier register 
- a 64-bit register for vector 'descriptors' 
- similar to DR and used by the string move orders 
- a 32-bit fixed-point register in the A-unit 
- a 64-bit register in the A-unit. 
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The existence of two registers X and A in the main 
arithmetic unit is largely historical, although there is some 
advantage in being able to perform control calculations in X 
without disturbing a partial result in A. Originally the 
system had two registers in the B-unit. These were notionally 
thought of as a modifier (BM) and an integer accumulator (BA) 
to be used for control calculations. However, the order code 
was symmetrical allowing both to be used as modifiers, and 
this could be usefully exploited in some of the hand-coded 
library procedures. During the 'convergence' exercise with 
ICL, the BA register was forfeited and replaced by the X 
register in the A-unit. However, the success of the pipeline 
approach described later is dependent upon the control and 
address calculations proceeding independently of the queue of 
orders waiting for the A-unit. Thus as well as being used as a 
modifier, B may also be used for simple integer calculations 
such as 

I := I - J + 2 

The X register is only used when the operands of the 
calcula tion require B to be used as a modifier, or when the 
operation is not provided by the B-unit (divide, for example). 

The instruction format provided for operating on these 
registers is 

CR 
3 

F 
4 

ADDRESS 
9 

One combination of the CR (computation register) bits 
distinguishes a second format for the 'Organisational 
Instructions' concerned wi th control branching and 
manipulation of 'addressing' registers. The remal.nl.ng seven 
combinations qualify the function (F) as follows 

1 fixed-point operations on B 
2 fixed-point operations on X 
3 floating-point operations on A 
4 decimal operation on A 
5 unsigned fixed-point operations on A 

(used for -multi-length working) 
6 manipulation of DR and XDR 
7 string processing functions (mainly for Cobol) 

Even with these seven groups of functions, the existence of 
only four function (F) bits is restrictive, but the operators 
necessary for high-level language translation can be 
accommodated. It is the orders more commonly associated with 
hand-coding, such as shift operators, that have to be 
curtailed. This was not felt to be a serious omission because 
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such orders are used mainly for the selection of packed 
operands which in MU5 is carried out automatically by the 
D-unit. Groups 6 and 7 are discussed later. 

There is close similarity in the functions provided in 
groups 1-5, the following being typical 

= load (32-bit operand) 
=' load (64-bit operand) 
*= stack and load 
=> store 
+ add 

subtract 
* multiply 
/ divide 
-= logical non-equivalence (exclusive or) 
V logical or (inclusive or) 
<- shift 
& logical and 
-: reverse subtract 
COMP compare 
CINC compare and increment 
/: reverse divide 

In the case of organisational instructions it was felt that 
more functions were needed, so the address field was shortened 
to give the format 

CR = 0 
3 

F' 
6 

ADDRESS 
7 

These F' functions are summarised in Appendix 1. It can be 
seen that they fall into four main groups, namely 

Control transfers including procedure entry and exit 
addressing register manipulation 
conditional control transfers 
boolean 

Some of the procedure entry functions (XCO, XC1, ••. , XC6) 
provide entry to seven groups of Operating System procedures. 
Their action is to stack the operand, which defines the 
Operating System procedure required; then after setting the 
executive mode bit (section 2.3.1) they force control to fixed 
addresses in the Operating System. This controlled entry to 
Operating System is vital in maintaining the security of the 
system. ,Another form of entry to the Operating System occurs 
as a result of an 'interrupt' (section 2.3.1). 

The addressing register manipulating functions are 
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self-explanatory. They are used mainly at procedure entry and 
exit time to achieve the effeats described in section 2.2.2. 

Conditional control transfers usually only branch a short 
distance. Therefore to help keep instruction sizes down their 
operands are interpreted as relative addresses to be added 
into the Control Register. As a further minor convenience to 
the software writers, provision is made for the complementary 
form of each standard condition to be specified (both ,>, and 
'~' are provided, for example). The shortage of functions 
precludes the possibility of the tests applying to the 
registers. Instead, they apply to condition bits which are set 
by the compare (COMP) and compare and increment (CINC) 
functions. 

There are two kinds of boolean function included in the 
order code to facilitate the implementation of boolean 
statements in Algol-like languages. Both allow the standard 
logical operations to be applied to the Boolean Register BN 
and a boolean operand. In one set the least significant bit of 
the instruction operand is taken as the boolean operand, while 
in the other the operand part of the instruction is used to 
extend the function, and it defines the operation. The 
function itself specifies a conditional test to be applied to 
the condition bits. The result of this test is taken as the 
boolean operand. 

The use of these boolean functions is demonstrated by the 
translation of the Algol conditional statement 

IF (a = b OR x > y) AND t THEN 'ST1' ELSE 'ST2'; 

where a and b are type INTEGER, x and yare type REAL and t is 
type BOOLEAN. With only straightforward local optimisation it 
is 

B = a 
B COMP b 
BN = IF= 
ACC = x 
ACC COMP Y 
BN V IF > 
BN & t 
BN -= 1 
IF BN, -> L1 
'ST1' 
-> L2 
L 1: 
'ST2' 
L2: 
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Unfortunately it was realised too late that the function 
'IF-BN' should have been provided, hence BN sometimes has to 
be inverted before the test as in the above example. It could 
be eliminated if the compilers were clever enough to compile 
code to compute the 'not' of the condition. 

Until the mechanics of address generation have been 
described, the example below may not be completely understood. 
It is given at this point to emphasise the close 
correspondence between the high-level language form of 
arithmetic assignments and the machine code. Each line except 
the JUMP order would be a 16-bit instruction if the example 
was taken from an average Algol program. 

W := Z[I - 1] * F + C(P,Q) / Y[J * 3 + K]; 

becomes 

B = I 
B - 1 
ACC = Z[B] 
ACC * F 
STACK ACC 
STACK LINK L1 
STACK P 
STACK Q 
JUMP C 

L1: B = J 
B * 3 
B + K 
ACC / Y[B] 
ACC + STACK 
ACC => W 

The total size is 32 bytes and this includes automatic 
bound checks on Z and Y. The reader is invited to compare this 
with the size of the corresponding sequence on other machines. 

2.2.2 Address Generation 

The aims of having an address form for each kind of high-level 
language operand, and having compact instructions conflict. It 
was therefore decided to allow different sizes of address and 
to choose an encoding which represented the most common 
operand forms in the shortest addresses. It was also decided 
to have dedicated addressing registers whose functions relate 
to the layout of the data space of high-level languages, 
rather than general purpose modifiers. This helps to satisfy 
condi tions (3) and (4) as well as keeping the address size 
down. 
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An examination of the operands in high-level languages 
indicates that provision should be made for 

SCALARS 
ELEMENTS FROM ARRAYS OR OTHER STRUCTURE~ 
STRINGS 
LITERALS 
FUNCTIONS (PROCEDURE CALLS) 

Also the procedure organisation of languages allows operands 
to be 

LOCAL (to the current procedure) 
NON-LOCAL (or COMMON) 
GLOBAL 
STACKED 

Clearly the scalar variables have names and provision is 
made in the order code to accommodate these names together 
with an indication of whether they are local or non-local, 
etc. This identification of names becomes very important when 
considering the hardware design of the processor. Studies of 
programs run on Atlas indicated that over a large range of 
programs, 80% of all operand accesses were to the named 
operands, and that only a small number of these named operands 
was in frequent use at anyone time. Thus a system which kept 
these operands in fast registers would be able to achieve high 
performance, but for the reasons already discussed, the use of 
addressable fast registers was rejected. The alternative 
solution adopted in MU5 involves the use of an associatively 
addressed 'Name Store' which forms part of a 'one-level store' 
with the main store of the processor, and in which the 
allocation of named operands to registers is performed solely 
by the hardware. 

It has already been mentioned that the design of MU5 
incorporates a special functional unit (the D-~nit) for 
providing access to arrays, strings and other structures. The 
route into these structures is via 'descriptors' which are 
themsel ves accessed like scalars. Thus the operand accesses 
for the named operands consist of a 'primary' access for an 
operand which could be a SCALAR or an ARRAY DESCRIPTOR, and in 
the latter case the operand is passed to the D-unit for it to 
make a 'secondary' access. This detachment of secondary 
address from the instruction fulfils two purposes. Not only is 
it the means whereby instructions are kept short, but it also 
facilitates the implementation of dynamic allocation of space 
to arrays and the handling of array parameters in procedures. 
For convenience at compile time, prov1s1on is made for 
Ii terals of up to 64 bits to be coded explicitly into the 
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instruction. Also, to provide the generality required for the 
Algol-like languages, a mechanism for procedure calling is 
integrated into the stack concept. 

Before considering the address generation in detail it is 
necessary to describe the intended store layout and the 
function of the dedicated addressing registers. These are 

NB a pointer to the scalars and descriptors of the 
current procedure 

XNB a pointer used to access any non-local or common 
scalars and descriptors 

SF a pointer to the stack 
o this is a pseudo-register always giving zero 

for access to global scalars and descriptors 

The overall storage organisation provides each program with 
a segmented virtual store. One segment (or more in the case of 
languages which allow parallelism) is used for the named 
operands and the stack (the scalars and descriptors), while 
the rest are used for code and the secondary operands 
(elements of arrays and other structures). The segment holding 
the named operands is called the Name Segment or Procedure 
Stack. Its layout is given below. 

! DISPLAY ! GLOBALS ! 1st PROe ! CURRENT PROC 
T T 
NB SF 

There is a 'level of stack' in the Name Segment associated 
with each activated procedure, which is released when the 
procedure ends. Each level starts with a 'Link' to be used to 
exit from the procedure. The parameters and the local named 
variables of the procedure follow. Thus on entry to a new 
procedure, the Link (containing the return control address and 
NB) is stacked, next the parameters are stacked, and finally 
the procedure is entered. Inside the procedure NB is set to 
the address of the Link, and SF is advanced over the space 
required by the local names. SF may be further incremented, as 
operands .are stacked, by means of the *= function and 
decremented, as they are unstacked, by means of the special 
operand STACK. In the case of languages which allow non-local 
access to the names of other procedures, an entry is also made 
in the Display. 

The Display has one entry for each textual level in the 
program. Each time a procedure is called the NB value for the 
procedure is recorded in the entry corresponding to its 
textual level. Any non-local references to the variables of 
the procedure from nested subblocks are implemented by loading 
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XNB from the Display and then accessing relative to XNB. In 
recursive situations it is necessary to stack the old Display 
value on procedure entry, so that it may be re-set on exit. 
This mechanism is obviously geared to the dynamic storage 
allocation of Algol-like languages. If the allocation scheme 
is static, as in Fortran, the Display does not exist and XNB 
is used to address 'common' variables. The global variables at 
the beginning of the stack segment are conceptually 'own' 
yariables. They are perm"anently allocated, and hence can 
remember information between different calls of a procedure. 
Exit from a procedure requires that the Display be re-set if 
it was stacked on entry, then SF is re-set to NB, and NB and 
control are re-set by unstacking the Link. 

Thus the standard procedure call is a minimum of two 
instructions 

STACK LINK 
JUMP 
L 1 : 

L1 
procedure name 

If the procedure has parameters, additional instructions are 
needed between these two to stack each parameter. Inside a 
procedure which has no nested procedures making non-local 
access to its names there will be three more instructions 
concerned with the 'red tape' of procedure calling. 

NB = SF - space accepted by LINK and PARAMETERS 
SF = SF + space required for local names 

EXIT 

The more general case involves manipulation of the Display as 
already described. 

For reasons which will become clear after the buffering 
strategies are described, the Name Segment is not used for 
arrays. Therefore the software must run its own 'secondary 
stack' for dynamically declared arrays. 

A point of detail to which reference is made later is that 
NB and SF are 16-bit registers. They always address into the 
Name Segment whose number is specified by a separate register 
(SN) usually zero and rarely changed. XNB is a 32-bit register 
containing segment and position within segment. Thus XNB based 
names can be in any segment. Full 32-bi t addresses are also 
used in the Display, hence the Cactus Stack of Algol 68 can be 
implemented. 
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2.2.3 Address Encoding 

The machine is designed to recognise that high-level language 
operands are referenced by name (or are constants). Hence the 
instruction addresses corr-espond to names (or literal 
constants). 

In the 16-bit instruction format the encoding chosen is 

CR(3) F(4) N(6) 

or in the case of organisational functions 

CR=O F' (6) k' (1) N(6 ) 

The N field corresponds to the operand name; thus the first 
declared name has N = 0 the second N = 1, etc. Of the eight 
combinations 
name, one is 
the rest are 

k = 0 
k = 1 
k = 2 

k = 3 

k = 4 

k = 5 
k = 6 

of k, which notionally specifies the kind of 
reserved to distinguish an extended address, and 

use N as a 6-bit signed literal 
use N as a register name (B, DR, etc.) 
use N as the name of a 32-bit local scalar 
i.e. operand is 32-bit store line (NB+N) 

use N as the name of a 64-bit local scalar 
i.e. operand is 64-bit store line (NB+2N) 

use N as above but pass operand to the D-unit 
for a modified secondary access (name[B]) 

spare 
as k = 4 but secondary access is unmodified 
i.e. name[O] 

Obviously only two of the above forms can be associated with 
k' and these are 

k' = 0 
k.' = 1 

use N as a signed literal 
extended address 

There are three other requirements not met by the above 
which have to be provided by the extended address of longer 
instructions. First, there are the names relative to the other 
addressing registers, XNB, 0, SF (the non-locals, the globals 
and the stacked operands, respectively). Second, there are the 
local variables in procedures where more names are declared 
than can be encoded in the 6-bi tN. Third, there are the 
literals bigger than six bits. Thus both the k field and the N 
field have to be extended, and the general form of extended 
instruction has the 32-bit format 
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CR(3) 
N'(16) 

F(4) K(6) 

From the detailed encoding of K (giv:en in Appendix 1) it 
can be seen that in some cases the N' is omitted and the 
instruction again reduces to 16 bits. Also, in the case of 
Ii terals, more 16-bi t pieces may be added up to a maximum 
instruction size of 80 bits. 

2.2.4 Secondary Operands 

In order to access data structure elements, descriptors are 
passed to the D-uni t, together with an indication of whether 
or not modification is required. The unmodified descriptor is 
retained in the DR register and can be used again. If 
modification is specified the modifier is taken from B. 

Two main types of descriptor are provided. They are 

String Descriptors 

Vector Descriptors 

Ts 
8 

Tv 
8 

LENGTH 
24 

BOUND 
24 

ORIGIN 
32 

ORIGIN 
32 

String descriptors describe strings of bytes. If the string 
is short enough it can be accessed as a normal operand. Short 
strings are always right justified and filled out to the 
register size with zeros. A more usual use of the string 
descriptor is in conjunction with the string processing 
functions. 

In the vector descriptors the type bits (Tv) control the 
modification, and give the size of element in the array. This 
may be 1, 2, 4, 8, 16, 32, 64 or 128 bits, but the present MU5 
hardware does not implement the sizes 2 and 128. As with 
strings, short operands are right justified and zero filled. 
Normally the modifier is checked against the bound (and that 
it is 2. 0), and an interrupt is caused if the check fails. 
Before addition of the modifier and or1g1n occurs, the 
modifier is scaled. This means that the displacement caused by 
modification is in units of element size. Special bits within 
the type allow both the bound check and the scaling to be 
inhibited. 

The introduction of arithmetic type into descriptors was 
considered, but its extension to the named operands, which 
could not be dynamically typed except at the individual word 
level, seemed less attractive. Since the benefits were not 
tangible in a machine intended for high-speed execution of the 

20 



standard programming languages, the idea 
few occasions where the operand type is 
time, a software escape is provided 
descriptor type which forces a procedure 
used. The main use of this mechanism 
implementation of Algol 'thunks'. 

was dropped. For the 
not known at compile 

through a special 
call whenever it is 
though, is in the 

It has been a constant source of regret that only one bound 
could be fi t ted in to the final descriptor format. Until the 
'convergence' exercise the design was based on the following 
descriptor format containing two bounds 

LOWER 
BOUND 

16 

UPPER 
BOUND 

16 

TYPE/ORIGIN 

32 

This had the additional advantage that programs which 
forfeited the bound checking could use 32-bit descriptors. The 
main argument in favour of the alternative format was based on 
the need for·a very large virtual address. In the original MU5 
descriptor the address size changed with element size, being 
24 bits for 32-bit elements, 25 bits for 16-bit elements and 
so on. Experience with the MU5 system to date indicates that 
the above address, giving 256 segments each of 1/4 Mbyte size, 
would have been more than adequate. Of course the 16-bit 
bounds were marginally restrictive and the hardware bound 
check had to be forfeited in some very large programs. To 
compensate for the loss of double bound checking, facilities 
are provided for the XDR register to point to a 'dope vector' 
while the address of an element in a multi-dimensional array 
is buil t up in DR. This dope vector contains triples, which 
are the two bounds and the multiplier (or stride), for each 
dimension. Each subscript is computed.. in B and a special 
function is then used which checks against both bounds and 
computes the displacement before adding it into DR. 

Aqother deficiency of the present format is that string 
descriptors apply only to byte strings. In an earlier design 
strings could be of any size of element from single bits up to 
words. This, combined with the ability to manipulate complete 
strings (provided they were not too big) in the registers, was 
a powerful means of handling the 'structures' of more modern 
languages such as Algol 68. Perhaps too much emphasis was 
placed on Cobol and Fortran, and the growing importance of the 
Algol 68 type of data structures in, for example, system 
programming languages not fully appreciated. Even so, the 
descriptor system, which is common to both MU5 and ICL 2900, 
offers more facilities in support of Algol 68 than most 
machines. 

21 



2.2.5 Array Operations 

The instructions and operand forms available for vector 
operations in a conventional language are now examined in more 
detail. Data structures, and fields wi thin such structures, 
are described using vector descriptors of the form 

Tv BOUND ORIGIN 

The type bits (Tv) include the size of each element of the 
vector, which may be between 1 and 64 bits. The Bound Field 
contains the number of elements in the vector, while the 
Origin Field comprises the address of the start of the vector. 
The instructions required to access element i of a vector z 
are 

B = i 

ACC = z[B] 

Load the B (modifier) register 
with the subscript i 

accumulator = the Bth element of z 

Th.e instruction ACC = z[B] first loads the descriptor z 
into the DR register. Then B is scaled according to element 
size, added to the origin of DR and the required element is 
accessed. Simultaneously, a check is made that B is in the 
range 0 ~ B < Bound, and an interrupt occurs if this check 
fails. This coding, and that in subsequent examples, assumes 
that the lower bound of the array is zero. If this is not the 
case, an additional instruction is needed to subtract the 
lower bound from B. On conventional machines, even omitting 
the bound check, several orders are used to access a dynamic 
array element. This is the principal reason why many compilers 
attempt to optimise subscript calculations. 

A simple example of the use of vector accessing orders is 
the scalar product loop 

which becomes 

FOR i .- 1 STEP 1 UNTIL n DO 
sum := sum + x[i] * y[i]; 

B = 1 
LOOP: B => i 

ACC = x[B] 
ACC * y[B] 
ACC + sum 
ACC => sum 
B CINC n 
IF /=, ->LOOP 
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This assumes that the compiler optimises out three unnecessary 
B : i orders but that it does not optimise to the extent of 
moving the B :> order to outside the loop. Hence the loop 
comprises seven 16-bit instructions. The performance of this 
loop is discussed in Chapter 11. 

The group 6 functions mentioned above are concerned with 
manipulating descriptors and the registers of the D-unit. Some 
of these functions, namely DR:, SUB1, SUB2 appear in the 
examples below. A full list is contained in Appendix 1. 

A descriptor z may describe a vector of descriptors so that 
the sequence 

B : i 
DR : z[B] 
B : j 
ACC : DR[B] 

could be used to access an element z[i,j] of a two dimensional 
array. Use of a multiplication technique with the subscript 
arithmetic taking place in B has the advantage that the 
subscript calculation is independent of operations queued for 
the main accumulator. It does, however, require a fast 
multiply function in the B-unit. In this case z[i,j] becomes 

B : i 
B * n 
B + j 
ACC : z[B] 

In this case only the final access, not individual subscripts, 
is bound checked. 

A further, more elaborate, hardware facility is provided to 
deal with the full generality of array accessing in Algol. 
This is convenient for arrays with dynamic upper and lower 
bounds, or cross-sections of arrays. It uses a dope vector 
containing three 32-bit elements for each dimension, namely, a 
lower bound which is subtracted from the subscript, an upper 
bound against which the subscript value is checked, and a 
stride by which the subscript is multiplied. The hardware 
instructions SUB 1 and SUB2 use this dope vector for such 
subscript calculations. Thus z[ i, j] with full bound checking 
becomes 

B : i 
SUB1 z1 
B : j 
SUB2 

process first subscript using dope vector z1 

process next subscript 
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B = DO 
ACC = z[B] 

move composite subscript to B 
access element 

The SUB 1 order causes the XDR register to be loaded with 
the descriptor of the dope vector and, after bound checking B, 
it sets the origin of the DR register (DO) to the product of 
(B - lower bound) and the stride of the first triple. Each 
subsequent application of the SUB2 order steps DO on to the 
next triple, and after bound checking the value in B, it adds 
the product (B - lower bound) * (stride) into DO. 

2.2.6 String and Vector Operations 

Special purpose orders are provided for the string processing 
functions which occur in Cobol and PL/1. These fall into two 
classes string-to-string and byte-to-string. The 
string-to-string orders operate on two fields, or strings, 
each described by a descriptor. The descriptor of the 
destination string is held in the DR register while that for 
the source string is held in a second descriptor register, 
XDR. As the operation of the instruction proceeds, the 
descriptors in DR and XDR move along the strings. No visible 
register is used by the strings themselves. The operand of the 
order is an 8-bit mask, that determines which bits within each 
byte are to be operated on, together with an 8-bit filler and 
in some cases four 'function' digits used as described below. 
Provision is made in the hardware for these orders to be 
interrupted (section 7.4.3). Examples of the orders are 

SMVB Move one byte from the source to the destination 
string, or use the filler byte if the source is 
exhausted. 

SMVF Move the whole source string to the destination 
string followed by filler bytes if the source is 
shorter than the destination. 

SCMP Compare the source and destination strings byte by 
byte ending when inequality is found, or the 
destination string is exhausted. 

SLGC Logically combine the source and destination strings 
into the destination. The form of combination 
(logical OR, for example) is selected' by the 
'function' bits in the operand. 

Consider the use of .these orders in the implementation of 
the MOVE verb in Cobol. Suppose that two fields C and Dare 
specified 

24 



02 
02 

C 
D 

PIC 
PIC 

In MU5 descriptors would be created at compile time for C and 
D, each describing a 7 -byte field starting at the required 
byte address. The Cobol sentence 

MOVE C TO D 

would then become in MU5 instructions 

XDR = C 
DR = D 
SMVF 

If D is specified as 

02 

set source descriptor for C 
set destination descriptor for D 
move the field described by XDR to that 
described by DR 

D PIC X(9) 

then the final two bytes of D must be spaces. The filler 
option of SMVF allows this to be carried out automatically. 
The sequence becomes 

XDR = C 
DR = D 
SMVF 'space' 

If the source field is too long, then the SMVF order 
terminates when the destination field is full, and an optional 
interrupt enables this condition to be monitored if required. 

Extension of the above technique to vector operations of a 
mathematical form was considered. For example a vector add of 
the form 

would become 

F:= F + E 

DR = F 
XDR = E 
VECTOR ADD 

However, in the standard high-level languages for which MU5 
was intended, operations of this type would be programmed out 
into loops. Thus the idea was dropped in favour of a pipeline 
approach which would lead to execution rates for such loops 
approaching the peak rate at which the store could deliver the 
vector operands. 
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2.3 ORGANISATION OF THE HARDWARE 

The design of the hardware of the MU5 Processor initially 
centred around the Name Store and the descriptor mechanism. 
Simulation studies of the Name Store indicated that a hit-rate 
of around 99% could be obtained with 32 words of store. The 
special associative circuits designed for this store were 
expected to be capable of operation in 70 (later to become 40) 
ns, but an additional 70 ns was necessary to read the value 
from the conventional field. However, a fixed-point arithmetic 
unit could be constructed to perform simple functions such as 
addi tion and subtraction in under 50 ns, using the MECL 2.5 
technology from which MU5 was to be built, and clearly the two 
activities in the Name Store would have to be overlapped if 
the store speed was I to approach the arithmetic speed. 
Furthermore, the additibn, of name to base register, required 
a comparable amount of time, and so the design was based on an 
instruction pipeline (with 5 stages) eventually called the 
Primary Operand Unit (or PROP). PROP would receive 
instructions at its input and supply at its output functions 
and primary operands ready for execution or further 
interpretation by the descriptor system. 

The descriptor system was seen to require two logically 
distinct pieces of hardware, one to form addresses (the 
Descriptor Addressing Unit) and one to select the operand from 
wi thin the corresponding store word (the Descriptor Operand 
Processing Unit). These two parts, known individually as Dr 
and Dop, formed the D-unit. The A-unit (containing principally 
the floating-point execution hardware) clearly had to be 
placed after Dop in the overall design of the Processor, since 
it would be processing the array elements accessed by the 
D-unit. In contrast the B-unit was better placed in parallel 
with the Descriptor Addressing Unit, since it was to supply 
modifier values, and would, therefore, operate mostly on named 
quantities rather than array elements. Thus the final 
configura tion of the Processor became that shown in figure 
2.1. PROP is supplied with instructions by the Instruction 
Buffer Unit (IBU), and the virtual to real address translation 
takes place within the Store Access Control Unit (SAC), which 
coordinates requests to the Local Store. SAC also developed 
into a pipeline structure, to keep pace with the demands of 
the other units. 
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Figure 2.1 The MU5 Processor 

A number of consequences flowed from the adoption of this 
configuration, ·particularly in relation to the positioning of 
the Control Point (the position an instruction must reach 
before the Control Register, or Program Counter, is 
incremented). On the one hand the Control Point should be as 
far along the pipeline as possible so that any interrupts 
caused by an instruction can occur before the Control Register 
is altered, while on the other hand it should be as early in 
the pipeline as possible, since fewer instructions must then 
be discarded (and hence replaced) if the wrong sequence of 
instructions is proceeding behind a control transfer 
instruction. The need to preserve the state of the Processor 
at an interrupt is also important, so the fact that 
instructions alter registers at different points along the 
pipeline has to be considered carefully. In MU5 it was decided 
that the Control Point should be placed at the end of PROP, 
which itself executes all the organisational orders, and from 
which point orders proceeding to the B-unit can be guaranteed 
to complete. Furthermore, each instruction reaching the end of 
PROP will have obtained its primary operand or given a page 
fault interrupt due to its unavailability. Having made the 
Control Point decision, there remained two problems 
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( 1) how to supply instructions to PROP at a high enough 
rate, especially after control transfers, 

(2) how to deal with page faults arising from secondary 
accesses. 

The problem of fetching instructions in normal sequence 
appeared comparatively straightforward. The design speed of 
PROP increased, as experience was gained with the associative 
circui ts, to a nominal maximum rate of one operation, or 
'beat', in 40 ns. Each beat could require 16 instruction bits 
from the IBU, giving a maximum data rate of 400M Bps. The main 
store, a 250 ns cycle-time plated-wire system, was to be 
constructed of 128-bi t wide stacks, and would therefore be 
able to supply, without interleaving, 500M Bps. Interleaving 
would improve this rate, so that even allowing for operand 
accesses (and the Name Store would intercept most of these), 
there would be no problem in supplying instructions at the 
required rate. Problems would arise for control transfers, 
however. These were expected to occur on average once every 
ten orders, and would create long gaps in the instruction 
stream because, despite the high data rate, the store access 
time was comparatively long. A number of alternative solutions 
were considered, and simulation studies were made of the 
different possibilities. The solution chosen is based on a 
'Jump Trace' mechanism (section 4.1), which attempts to 
predict the result of an impending control transfer 
instruction. Consideration of measurements taken from Atlas, 
and simulation studies of this system, showed that it was 
possible to predict correctly the sequence of instructions 
following control transfers in about 65% of cases, and that 
only eight lines of Jump Trace store would be necessary to 
obtain this efficiency. 

The problem of page fault interrupts caused by secondary 
operand accesses is also tied in with the access time/data 
rate problem. Considering this latter problem first, the time 
gap between the generation of a secondary operand address, and 
the receipt of the corresponding store word, was expected to 
be over 600 ns. Since floating-point addition and subtraction 
would take only around 100 ns, this figure was unacceptably 
high. However, the difference between the access patterns for 
named variables and data structure elements precluded the use 
of a system corresponding directly to the Name Store for 
secondary operands. In effect, a small group of named 
variables is generally used repeatedly, while a large group of 
data structure elements is generally selected sequentially. 
Therefore the' technique adopted was a 'Function Queue'. As 
each address is generated by Dr, the corresponding function, 
together with control information, is entered into the Queue. 
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A function leaves the Queue when the word containing its 
operand is received from store. Since the store accessing 
system is itself a form of pipeline, the effective access time 
is reduced by a factor corresponding to the number of 
posi tions in the Queue. In a synchronous system, no extra 
operand buffering would be required, but because the MU5 
Processor operates asynchronously, it is essential that as 
many buffers as Queue positions be available to receive the 
returning store words. Thus an Operand Buffering System (OBS) 
became an essential part of the Processor design. This system, 
together with the D-uni t, forms the Secondary Operand Unit 
(SEOP). Simulation studies of this system showed that by 
fetching 128-bit store words containing the required operand, 
and retaining these words in associatively addressed buffers, 
many operands are thereby automatically pre-fetched, and the 
corresponding store requests avoided. 

A significant fraction of the access time for secondary 
operands is taken up with generating a virtual address and 
obtaining either a real address or a page fault interrupt. In 
the case where such an interrupt arises, however, the Control 
Register will have been incremented on beyond the address of 
the corresponding instruction. Therefore in order to be able 
to re-execute the instruction after the interrupt has been 
serviced, the Queue is designed to contain all functions for 
which store requests are outstanding. The Page Registers can 
then be manipulated by the Operating System using orders which 
do not involve the Queue, or, if a process change is required, 
the whole of the Queue and its associated buffer registers can 
be preserved (for subsequent restoration) in the store, 
thereby unblocking the Queue and allowing other processes to 
be run. 

The inclusion of a Queue in the design generates additional 
problems because of the different types of operand to be sent 
to the A-unit. ACC orders using named variables are ready for 
execution at the end of PROP, but since orders must be obeyed 
in correct program sequence, they cannot be allowed to 
overtake ACC orders awaiting secondary operands. Various 
solutions to this problem are possible, but the one adopted in 
MU5 is to send all ACC orders through SEOP, by providing a 
bypass to the descriptor mechanism for named variables. A 
second problem is the long separation of the A-unit from the 
Name Store in PROP. Thus if a name held in the PROP Name Store 
were to be used to accumulate a total calculated by ACe orders 
in a small program loop, the order reading the total from the 
Name Store would have to be held up until the value calculated 
by the previous pass through the loop had been returned. The 
solution adopted to overcome this problem is the provision of 
some buffering for named variables used by ACC orders close to 
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the A-unit, the logical place for which is within the Operand 
Buffer System. Thus OBS actually contains 8 lines x 128 bits 
of Vector Store, 24 lines x 64 bits of Name Store together 
with 8 lines x 64 bits for literals supplied by PROP. The 
hardware automatically ensures that names used with ACC 
functions are normally kept in OBS, and names used with 
non-ACC functions in PROP, and also deals with any necessary 
interactions. 

2.3.1 Interrupts 

In the previous section we were mainly concerned with the 
normal execution of instructions, but the design .must also 
provide for exception cQnditions which give rise to 
interrupts. Already mentioned is the page fault, or 
non-equi valence, interrupt which is discussed more fully in 
section 9.3. There are other interrupts, and they can· be 
broadly classified into 

program based interrupts 
external event based interrupts 
system error interrupts 

Examples of the first kind are 

the CPR non-equivalence interrupt 
illegal store access interrupts 
descriptor faults (e.g. bound check fail) 
arithmetic overflow 

of the second kind 

transfer complete interrupts 
timer interrupt 

and of the third kind 

parity error 
power failure warning 

From the point of view of hardware organisation, the first 
group are the most difficult to deal with, because ideally 
they require the pipeline to stop precisely on or before the 
instruction causing the interrupt. In the case of arithmetic 
faul ts in the A-unit, for example, a precise interrupt can 
only be obtained if there is no overlapping of instructions 
between the A-unit and the Control Point, a situation quite at 
variance with the hardware design. Imprecision of arithmetic 
interrupts can generally be tolerated, however, and in cases 
where precise interrupts are essential, the overlapping of 
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orders in the pipeline can be inhibited by program. In fact, 
by using a register-register order which stores the content of 
the ACC into an imaginary 'Z' register in the B-uni t, no 
further orders can leave PROP until the A-unit has completed 
all outstanding orders (section 4.2.4). Normally this order is 
not used, but the compilers allow the user to choose to have 
it inserted in cases where the source of error is difficult to 
trace. One option is to have 'ACC => Z' compiled after the 
last machine instruction in the translation of each source 
statement. This enables the error condition to be related to a 
particular source instruction. Another extreme option would be 
after every machine instruction. 

Some descriptor faults (illegal type/size combinations, for 
example) occur precisely in MU5, but the bound checking occurs 
too late in the cycle of events in the D-unit to allow a 
precise interrupt. The reasons for this are discussed in 
Chapter 5. This imprecision restricts the usefulness of the 
bound checking facility, and a different organisation of the 
hardware would be used in a redesigned machine. As it stand s 
the program knows of the interrupt, but cannot in general 
rectify the condition and continue, because a few orders 
overrun might have occurred. In the case of CPR 
non-equivalence, the interrupt must at least be made to appear 
precise, since the order causing it cannot complete until the 
interrupt is serviced. Hence the special arrangements 
involving the Function Queue in OBS, described above. 

With the second and third groups it is enough to inject the 
interrupt into the pipeline and allow preceding orders to 
complete. 

From the software point of view, interrupts are best 
classified according to the action they require. Thus in MU5 
there are eight types of interrupt, divided into two groups of 
four, the System Interrupts and the Process Interrupts. These 
interrupts are 

System 
Interrupts 

Process 
Interrupts 

System Error 
CPR Non-equivalence 
Exchange Transfer Complete 
Peripheral Window and Timer 

Instruction Count Zero 
Illegal Order 
Program Fault 
Software Interrupt 

Some protection and privileged facilities are needed by the 
procedures which service these interrupts. These are obtained 
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by the setting of bits in the Machine Status register, such as 
the ' Level 0' and ' Level l' digits. The Level 1 digit is 
normally set during the running of a Process Interrupt 
procedure, and, as well as allowing access to the privileged 
V-store operands, it inhibits any other Process Interrupts. 
System Interrupts can still occur, how:ever, since these are 
only inhibited by the setting of the Level 0 digit. The 
Machine Status register also contains an Executive Mode digit 
which allows fully interruptable but privileged code to run, 
digits which inhibit the types of Process Interrupt a program 
may wish to deal with itself, the Test bits used by control 
transfers, and other miscellaneous digits. 

Associated with each type of interrupt are two words of 
protected core resident information, known as the Old Link and 
New Link. When an interrupt occurs, the existing instructions 
in the PROP pipeline are abandoned, and the contents of the 
Control Register, Name Base and Machine Status registers are 
preserved in the Old Link. These registers are then 
overwritten, by a control transfer instruction, with the 
information held in the New Link. Thus it is the setting of 
bits in the Machine Status part of a New Link that determines 
the interrupt inhibit status of the procedure which services 
an interrupt. At the end of the interrupt procedure, the 
information preserved in the Old Link is normally used to 
restore the Processor to its original state. 

2.4 THE STORE HIERARCHY 

The decisions concerning the stores for MU5 were taken in 
1968. This was before large capacity high speed semiconductor 
stores had become feasible, and the most promising development 
among the analogue store technologies was plated-wire. Plessey 
had a plated-wire store under development with an expected 
cycle time of 250 ns. Unfortunately the price of £16 750 per 
2K stack of 128-bit words was restrictive. 

MU5 was being designed as a machine to run very large 
programs, and support the order of hundreds of interactive 
terminals. Although the terminal activities would be very 
variable, their store requirements were not be expected to be 
less than thousands of words. Thus a total store requirement 
of several million words was anticipated. Clearly it could not 
be by plated-wire store only. In fact, for this size of store, 
even medium speed (2.5 J.ls) core store available from Philips 
at £41 500 per 128K stack of 32-bit words was too expensive. A 
store hierarchy with some plated-wire store to obtain 
performance, and drum or fixed-head disc to obtain capacity 
was the only solution. 
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Ideally the store at the fast end of the hierarchy should 
be large enough to accommodate the active parts of several 
interacti ve jobs, and a background job. If an Atlas type of 
'one-level' store with demand paging is to be used, the 
transfer time for pages must be matched to the machine speed. 
Consider an MU5 with a 10 MIPS instruction rate and a modest 
sized main store backed up by a drum with a 20 ms revolution 
time. Even with very high packing density on the drum, page 
transfers would cost on average 10 ms. This time would be 
equivalent to 100 000 instruction times. If a page size of 1K 
bytes was used, then for 75% CPU utilisation to be achieved, a 
program must obey 300 instructions for every byte of each new 
page brought in to store before requiring further new pages. 
Clearly, this intensity of CPU usage would not apply to the 
pages that might be considered to be the active part of a 
program such as those containing 

(1) the frequently used facilities and working space of a 
compiler 

(2) an array to which a simple cyclic algorithm applies 

unless, of course, they could simul taneously fit into store. 
Therefore, the conclusion was that if the plated-wire store is 
not big enough to accommodate the active parts of several 
jobs, an intermediate store, very much faster than the drum 
(for demand paging) , is needed between the two. 

This line of thought has resulted in MU5 having a 
'one-level' store which maps on to a hierarchy of three levels 
as shown in figure 2.2. The CPU operates on the Local Store 
and pages are brought on demand from either Drum or Mass 
Stores. They are rejected first to Mass and later to Drum. In 
practice this means that bulk of the paging traffic is between 
Mass and Local and residual traffic to Drum is at a bearable 
level. The actual !mplementation uses fixed-head disc but it 
is convenient to refer to it as a Drum to avoid confusion with 
the other discs in the system which are used for file storage. 

The 'one-level' store of MU5 contains all the working space 
and files needed by the current terminal users and the active 
background jobs. Most of the files are stored on further large 
capacity discs, or archive discs or tapes. Thus the full 
storage hierarchy has at least two more levels than are shown 
in figure 2.2. 
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Drum (10 Mbytes) 

Mass (1 Mbyte) 

Local 
----... ---~ (128 Kbytes) ~---""-----' 

Figure 2.2 The Store Hierarchy 

2.5 THE EXCHANGE 

The data routes needed to implement the store hierarchy and 
the mUlti-computer connections are extensive. To increase the 
flexibility and allow scope for future development it was 
decided to generalise these connections into a highway system 
known as the 'Exchange' into which all the storage devices and 
computers of the MU5 complex are connected. This Exchange has 
been buil t as an integral part of the MU5 Project using 
basically the same technology as that used for the MU5 
Processor. Logically it is a multiple-width OR gate operated 
as a packet switching system at the star point of the 
interconnections. This configuration involves only a very 
short common path for transfers between the various units and 
was chosen in preference to a distributed highway or 'bus' 
system in order to accommodate the high data rate associated 
with paging transfers. Thus transfers can occur at a rate of 
one every 100 ns, and each can involve a 64-bit data word 
together with address and control bits. 

As an example of the use of the exchange consider the 
paging transfers between the Mass and Local stores which are 
organised by a Block Transfer Unit (BTU) attached to the 
Exchange. When MU5 requires a block of data to be transferred 
from the Mass Store to the Local Store, it writes into the 
BTU, via the exchange, the starting addresses for the transfer 
in each store, together with the block size and start command. 
The Processor is then free to continue computation, while the 
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BTU generates the necessary requests, via the Exchange, to the 
Mass and Local Stores to carry out the transfers. Reading from 
a store involves two Exchange transfers, one in which the 
address is sent to the store, and one in which data is 
returned. In between these two transfers, however, the 
Exchange is free to carry out transfers between other units in 
the system. 

The addressing sch.eme used for the Exchange allows up to 
16 units to be accommodated, although technological 
considerations have limited the actual number of units to a 
maximum of 12. The units actually connected are shown in 
figure 2.3 The mu5 machine has not been previously mentioned. 
It is a machine designed as the bottom end of the range. In 
the MU5 complex its role is to provide a graphics work 
station. 

The overall system organisation shown below is discussed 
again in Chapter 9. First the technology used and the detail 
design of the MU5 processor are described. 
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Figure 2.3 The MU5 Multi-computer System 
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3 Technological Implementation 

The implementation of any computer system design in hardware 
requires the use of a number of different technologies. These 
may be roughly divided into the areas of circui t technology, 
including the techniques used for interconnection, and sto~age 
technology. Some overlapping of these areas is inevitable, 
however, since the fastest levels of storage are normally 
compatible with the circuit technology. The circuit technology 
used in MU5 is basically that developed by ICL for their 1906A 
computers, but in o~der to accommodate the diffe~ent 

architecture of MU5, a number of additions and extensions have 
been made. Furthermore, because there was to be no prototype 
for MU5, and the ICL automated interconnection technique was 
to be used, it was very important to verify the logical design 
by simulation. A logic simulator was therefore developed as an 
additional design aid. The storage technologies used in the 
MU5 complex cover a wide range of speeds and capacities. At 
the fastest level integrated circuit stores are used, backed 
up by p~ogressi vely slower but larger devices. These include 
plated-wire stores, bulk core stores and fixed-head disc 
stores. 

3.1 CIRCUIT TECHNOLOGY 

The ICL 1906A circuit technology used in the MU5 P~ocessor is 
based on Emitter Coupled Logic (ECL) integrated logic 
circui ts, mounted, with appropriate discrete resisto~s, on 
p~inted circuit boards to form 'modules'. A number of factors, 
pa~ticularly the use of associatively addressed fast stores in 
the MU5 Processor, has required the extension of the range of 
1906A modules, and some of these involved new circuits 
developed du~ing the project. Modules are inte~connected by 
insertion into connectors mounted on multi-layer platters, 
each with a capacity of up to 200 modules (figure 3.1). The 
platters themselves are housed in bays, each capable of 
holding 33 platters in five groups, and two such bays make up 
the MU5 Processor (figure 3.2). 

Interconnections between platters within a group are made 
by means of pressure connectors along adjacent edges, while 
connections between groups of platters and between bays are 
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made through co-axial cables. The co-axial cables are 
terminated on printed circuit boards which are themselves 
connected to the platter by pressure connectors along the 
outer edges of each group. The Exchange is also constructed 
from this technology, but the ~~rge number of signals involved 
in data transfers between units cannot be accommodated by the 
available edge connectors. The platters forming the Exchange 
OR gate are therefore unique in having co-axial cables 
connected directly on to their surface. 

Figure 3.1 MU5 Modules 

Figure 3.2 MU5 Logic Bays 
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3.1.1 The ECL Logic Family 

The circuit of the basic ECL 2.5 gate is shown in figure 
3.3 (a). A logic swing of less than 1 V is used, the logic 0 
level being -0.8 V and the logic 1 level -1.76 V. The circuit 
operates by switching current in the reference transistor, 
which has its base held at -1.3 V by the voltage reference 
source contained within each integrated circuit. Thus, if one 
or more of the inputs A, B, C is held at the 0 level, the 
corresponding input transistor is turned ON, and the reference 
transistor is turned OFF~ This in turn results in a 0 level at 
the output F. If all the inputs are held at logic 1, the 
reference transistor conducts and a logic 1 level appears at 
output F. The function obtained from the circuit is therefore 

F = A.B 

with the complementary phase also being available. 

F 

c -1.3V 

(a) The Basic Gate 

(b) A 2-level Gate -5.2 V 

Figure 3.3 ECL Circuits 

More complex functions are obtained by joining the 
collectors of the reference transistors of two or more basic 
gate circuits together and inserting an additional transistor 
as a diode across the common load resistor to limit the 
voltage drop. Thus the function performed by the circuit shown 
in figure 3.3(b) is 

F = A.B v C.D 

A range of integrated circuits is available containing various 
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combinations of these gates packaged together as shown in 
figures 3.4(a)-(d). 

(a) 3- input AND (b) 5- input AND (e) 3--3 AN D-O R (d) 4-3-3-3 AND -OR 

Figure 3.4 Basic Logic Elements used in MU5 

Another, more complex integrated circuit contains two 
flip-flops of the type shown in figure 3.5. If the CLOCK and 
GATE signals are both held at logic 1, then the SET/HE-SET 
inputs are locked out and the output follows the DATA input. 
When CLOCK and GATE become 0, the output remains static, 
independent of DATA, but can be changed by application of SET 
or HE-SET. The propagation delay through the flip-flop for a 
CLOCK/GATE change is similar to that for a logic gate (around 
2 ns), but a longer delay (of around 4 ns) is incurred by a 
SET/RE-SET change. RESET 

OUT 

DATA 

OUT 

SET 

Figure 3.5 Logical Representation of a Flip-Flop 

These integrated circuits are mounted on modules to give a 
range of gate and flip-flop types, and some modules contain 
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passive delay elements and hybrid networks to effect active 
delays and pulse forming circuits. Figure 3.6 summarises the 
numbers of each type of module (and other devices) used in-the 
MU5 Processor. The pipeline structure of the Processor'" is 
reflected in the relatively large number of dual flip-flop 
modules, mainly used as storage registers in the various 
stages of the pipeline. Between pipeline stages gating of data 
and decoding, etc. is mainly performed by multiple-input 
AND/OR gates of the type shown in row 2. The most complex 
devices used are in the 16-bi t random access memory, the 
associative circuits and their associated level translators. A 
fuller description is given in [7]. 

1000 2000 3000 4000 5000 
I I I I I 

Flip-Flop I 
4-3-3-3 AN D--O R J 

3- input AND I 
3-3 AND-OR I 
Power AND I 
15- input AND 

I Delay Line 

I Hybrid Network Kbh A"oc;,,;v, S'o" 

16-bit RAM 

Level Trans lator Transistors I 

Figure 3.6 Numbers of Devices in MU5 

3.1.2 Associative Storage 

In a conventionally accessed store, each of N physical 
locations within the store is specified by an address, and 
every address corresponds to an actual location. In 
applications such as the MU5 Name Store, however, only a 
subset of the range covered by operand addresses is actually 
required in high-speed storage at any time and these addresses 
are sparsely distributed throughout the total range. To avoid 
extravagant use of high-speed storage, an associatively 
accessed store may be used in this situation. Such a store is 
made up of two fields, an associatively accessed field and a 
conventionally accessed field. The associative field contains, 
in random order, M currently required operand addresses, while 
the conventional field contains the corresponding values. 
Although the associative field may be loaded and examined by 
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conventional techniques (figure 3.7), it is used during a 
store access in a different manner. In this case the required 
operand address is presented to the associative field as an 
'interrogate address'. If a word in the associa ti ve field is 
exactly equivalent to the interrogate address, one of the 
addressing lines to the conventional field is activated, 
allowing access to the desired operand either for 'read out' 
or 'write in'. If no word gives equivalence, an NEQ 
(non-equivalence) signal is generated to inform the store 
control mechanism that attention is required, normally to load 
a new line. Multiple equivalence is usually regarded as an 
error condition. Thus the associative field is accessed by 
examination of its contents rather than by specification of a 
location, and is also known as a Content Addressable Memory. 

Load 
Address ----,.-

(lo9~M / 
bitsl : -----

/ / 

(l) I 

u M 
0 
u Lines (l) 

0 I 

~~ / 

I nterrogate/ 
Write Control 

t 

Associative 
Field 

M Words x 1092 N bits 

~- -log2 N bits-- 4 
Interrogate 
Address 

ReadIWrite Data 
~ 

: 
Conventional 

M Field 
Lines 

I 
I M Words x D bits 

Figure 3.7 An Associatively Addressed Store 

In order to carry out an associative search of the store, 
each of the memory elements in the associative field must 
perform not only the storage function, but also the logical 
equivalence operation between the interrogate digit value and 
the stored digit value. The principles involved are 
illustrated by the model in figure 3.8. The storage function 
is represented by two-way switches, and words 0, 1 and 2 are 
shown containing 011,101,111 respectively. The Word Lines 
are all held at some fixed voltage Vx, and each bit .in the 
interrogate word controls the voltage levels of the pair of 
Digit Lines associated with its digit position. A logic 1 
causes Da to be raised from the quiescent level Vq to the 
higher level V1, where 

Vq < Vx < V1 

while a logic 0 causes Db to be raised instead. Thus current 
flows from a raised Digit Line into all words where the switch 
is selecting the raised Digit Line. For the interrogate 
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pattern 101 shown in figure 3.8, word 0 has two such units of 
current flowing from the two non-equivalent digits. Word 1, 
which is identical to the interrogate word, has no current 
flowing, and word 2 has one unit of current flowing. 
Equivalence is therefore recognised by the absence of current 
in a Word Line. 

Word 2 

Word 1 

--~----~-----+--~--~~--~~~----~----4---
-

Word 0 

DaO DbO Da1 Db1 Da2 Db2 

r- ----1---- - ---0---- ----1------, 
L. _____________ I~~r~g~e~~~ _____________ 1 

Figure 3.8 Model of an Associative Memory Matrix 

The associative memory matrix used in the MU5 associative 
stores is described in detail in [8]. Each matrix consists of 
eight elements arranged as four words of two bits within one 
integrated circuit, and four such circuits are mounted on one 
modul~ to form an 8-word by 4-bit array. The speed of 
operation within each element of the matrix is such that 
association or reading requires typically 5 ns, whereas 
wri ting requires 30. ns. In order to form a complete 
associati ve store, however, additional modules are required 
such as Word and Digit Drivers, Equivalence Receivers, 
Non-equi valence Detectors, etc., all of which involve level 
translators, and the total associate or read time depends on 
the delays introduced. by these circuits and on the size of 
store. Additional modules are also needed to form the 
conventional field of the store. The latter is made up of 16 x 
1-bit memory circuits mounted eight to a module to form a 
32-word by 4-bi t random access store, and additional Decode 
Driver and Write Driver modules are also required. 

3.1.3 Interconnections 

The majority of the integrated circuits used in MU5 are 
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mounted on 1.6 in. x 2.1 in. plug-in pri,nted circuit modules 
wi th 20 pins as shown in figure 3. 1. Up to 200 of these 
modules can be interconnected by means of a single 12-layer 
printed circuit platter. The packing density of circuits on 
these modules is relatively poor, however, and commonly used 
complex logical entities such as adders and the associative 
stores have been designed on 40-pin macro boards measuring 1.6 
in. x 4.4 in. and 3.0 in. x 4.4 in. (these are also shown in 
figure 3.1). The platters measure approximately 13 in. x 16 
in. and are mounted in eleven columns of three within a logic 
bay. Eight columns are mounted on movable double doors to 
allow access for commissioning and maintenance, while the 
remaining three columns are mounted in a fixed central plane 
(figure 3.9). Figure 3.10 identifies the platters in the two 
Processor Bays with the functional units to which they are 
allocated (cf. figure 2.1). The Local Store is contained in 
Bay 3 and the Exchange in Bay 4. 

3-platter Column 

BAY 1 

r------- ---I 
1 c:::::::J ~ 0 1 

1 44 41 I i 51 54 0: 
1 r:=:==J r====J 0 1 L ____________ I 

31 34 37 
c===J c===J c===J 

,-------------, 
: r===1 r====J i 
10 14 11 I 
1 21 24 1 
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Hinges 

BAY2 BAY3 

,-------- --- --, 
I c::=::::J c:::::::J 0 1 

1 44 41 I 
1 I 
I 51 54 I 
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31 34 37 
r====J c===J r===1 

r-------------, 
1 0 ~ c::::::J 1 

1 14 11 I Module 
: 0 21 24 tr---+I ----1- Side 
I 0 ,----, ~ 1 
L _________ -' - __ .J 

Wiring 
Side 

Figure 3.9 Plan View of Processor Layout 

This arrangement of the circuits gives relatively short 
lengths for interconnections whose source and destination are 
situated on the same platter, but interconnections crossing 
platter boundaries must travel an average of 12 in., and those 
passing from a fixed plane to a door, or from one side of a 
door to the other , travel an average of 8 ft along co-axial 
cables. A histogram of the distribution of interconnection 
lengths in the MU5 system, measured from the output pin of the 
source circuit to the input pin of the destination circuit is 
shown in figure 3. 11. Since a maximum of three integrated 
circuits can be mounted on a 20-pin module, or seven circuits 
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on a 40-pin module, relatively few interconnections are 
between circuits on the same module, and a typical connection 
involves a distance of about 1 in. to reach the platter, 4 in. 
on the platter and a further 1 in. from the platter to the 
destination on a second module. This gives a typical signal 
propagation delay of about 1 ns. Approximately 80% of all 
interconnections in MU5 are actually between integrated 
circuits on the same platter, 13% travel between adjacent 
platters, 5% go through cables to other platters in the same 
bay and 2% travel distances of up to 50 ft from bay to bay. In 
this last case the propagation delay is of the order of 80 ns. 

11 14 Bay 1 41 44 
ACC ACC B-unit OBS 
12 15 42 45 

ACC ACC B-unit B-unit 
13 16 31 34 37 43 46 

ACC· ACC OBS Dop Dop B-unit B-unit 
32 35 38 

ACC Dop Dop 

21 24 33 36 39 51 54 
ACC ACC ACC Central Highway OBS OBS 

22 25 52 55 
ACC ACC OBS OBS 

23 26 53 56 
ACC ACC OBS aBS 

11 14 Bay 2 41 44 
PROP IBU SAC SAC 

12 15 42 45 
PROP NAME SAC SAC 
13 STORE 31 34 37 43 46 

PROP 16 PROP Dr Dr SAC SAC 
32 35 38 

PROP Dr Dr 
21 24 33 36 39 51 54 

PROP PROP PROP Dr Dr CPRs IBU 

22 25 52 55 
PROP IBU CPRs IBU 

23 26 53 56 
PROP PROP CPRs IBU 

Figure 3.10 Platter Allocation 

The edge time of the EeL circuits is typically 2 ns, and to 
minimise the possibility of reflections due to the relatively 
long delays introduced by the interconnection distances, a 
matched transmission line approach is used. Thus each gate can 
drive two series matched 75 ohm lines from each output, and 
each line is capable of driving up to two input loads at the 
recei ving end. Associated with each out put is a group of 
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resistors, the output load resistor (excluded from the 
integrated circui t itself to reduce power dissipation within 
the package) and two series matching resistors. These are 
fabricated on a single ceramic chip in thick film technology 
and over 45 000 such chips are used in the MU5 system. The 
rise time at a gate input is degraded as a result of the 
capacitance which each input load represents and the series 
resistance of the line matching resistor, and an effective 
extra delay of 0.6 ns per input load is introduced. The rise 
time also increases as the distance between the two driven 
inputs increases. This has led to the adoption of a '3 Inch 
Rule' in the laying out of modules on platters, whereby module 
input pins connected to a common line are placed so as to be 
no more than 3 in. apart. An average gate thus introduces a 
delay of 2 ns due to propagation through the ECL circuit 
itself, 1 ns transmission time along the 6 in. interconnection 
pa th and a further 1 ns delay due to input loading, giving a 
typical delay per gate in the system of approximately 4 ns. By 
comparison, the circuit delay in CDC 7600 logic is about 2.5 
ns, but the packaging is such that for large numbers of 
adjacent gates the additional transmission delay is very much 
less than 1 ns. 

o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 
I nterconnection Length (I nches) 

Figure 3.11 Interconnection Lengths 

3.1.4 Platter Production 

The multi-layer platters into which the modules are connected 
are made up of four logic layers, two outer layers containing 
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the pads for the edge connectors, and various power layers. Of 
the logic layers, two 'X' layers contain horizontal tracks and 
two 'Y' layers contain vertical tracks. Logic signal 
interconnections are made between module pins by the selection 
of a path composed of a sequence of X and Y segments joined by 
means of plated-through holes. The selection of these paths is 
made by a computer program which forms part of a Design 
Automatidn system developed by ICL. This system requires as 
input a specification of the types and placement of logic 
elements and their logical interconnection. From this 
specification the Design AutC¥l1ation system produces not only 
logic drawings, module placement charts, 3 Inch Rule violation 
lists, etc. , but also data for a numerically controlled 
plotter, which produces photographic plates for the 
manufacture of the X and Y layers. Clearly it is essential 
that the original logic specification should be as accurate as 
possible, not only because the production process is itself 
time consuming and expensive, but also because errors detected 
afterwards involve breaking the existing connections and 
adding 'hand-wires' on the platter surface. This problem of 
itself is not too serious, in that all connections to module 
pins are actually made via links on the surface of the 
platter. In any case some hand-wires are inevitable due to 
track breaks in manufacture and the finite tracking capability 
available wi thin the logic layers. More serious, however, is 
the case where a change to the logic requires that additional 
modules be inserted, and finding a convenient free module 
position which will satisfy path length constraints may be 
difficul t. A solution to these problems was sought through 
simulation of the logic before production was started, and a 
suite of simulation programs was developed for this purpose 
from earlier exploratory work carried out on Atlas [9]. 

The effectiveness of this system can be gauged from the 
results obtained with the B-unit. This unit contains 
approximately 2200 gates and flip-flops and during simulation 
46 logical errors were detected. These faults would have 
involved over 500 wiring changes on the platters during 
commissioning, whereas in fact only one further fault was 
actually found during the commissioning phase. 

3.1.5 The MU5 Logic Simulator 

Simulation of the MU5 logic was carried out on each functional 
unit by means of a simulator program run on the 1905E 
computer. The simulator accepts the same description of the 
logic network as the ICL Design Automation system and 
exercises it by applying sequences of input patterns. Three 
basic types of information are required by the simulator; a 
list of the logic gates in the network and their 
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interconnections, details of the input pattern to be applied 
to the network, and a precise description of the operation of 
each type of logic gate used. Networks may be synchronous or 
asynchronous. A synchronous network is one which is controlled 
by external clock signals and contains no internal timing 
circui ts, so that the input patterns normally consist of an 
initial setting of the data signals followed by a series of 
clock pulses. In this case the simulator is simply required to 
propagate the signals through the logic levels, using 
truth-table models to represent the operation of the different 
types of logic gate, and to produce output in the form of a 
timing diagram showing the state of signals at the end of each 
clock phase. Fault monitoring may also be provided to 
indicate, for example, that the number of levels of gating in 
a clock phase is too large. 

The MU5 logic simulator is considerably more complex than 
this, however, since it is designed to deal with asynchronous 
networks. Thus the language used for the specification of 
input patterns allows the sequencing of input data signals to 
be controlled by internal timing circuits as well as by 
external clock pulses. Furthermore, the models of the logic 
gates used by the simulator are more complex and reflect their 
true operation by taking into account such details as pulse 
widths and propagation delays. Output from the simulator takes 
the form of timing diagrams, fault monitoring which identifies 
timing errors such as short pulses, and detailed listings 
showing changes of state of network signals as they occur. 

The central feature of the simulator itself is a 
time-ordered event list. Entries in this list indicate that, 
as a result of a change of state at the inputs to a gate, a 
new output state for that gate has been predicted. When an 
entry is removed from the top of the list,. the predicted 
signal change can 'occur'. The simulator then examines the 
gates to which this signal is an input, thereby generating 
further predicted events which, are entered into the event 
list. Al though this technique is particularly well sui ted to 
the efficient simulation of asynchronous networks, it may also 
be used equally well for testing synchronous logic. 

The internal data structures used to represent a logic 
network reflect the direct logical connection between a gate 
output and other gate inputs to which it is connected. Figure 
3.12(a) shows a simple network and figure 3.12(b) the 
essential features of the internal representation of a part of 
that network. If, at simulated time t, either of the inputs to 
G1 changes, an 'AND-GATE' routine will predict a new state of 
the output signal A. This prediction will then be entered into 
the time ordered event list with an associated time of (t + 
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propagation delay). When the current simulation time reaches 
(t + propagation delay), this prediction appears at the top of 
the list and a test is made to see if it actually involves a 
change of state of A. If no state change occurs, the 
prediction is ignored. If a state change does occur, the 
appropriate inputs to gates G2 and G3 are changed and further 
predictions are made for signals Band C. Current simulated 
time is always set to the time associ'ated with the entry at 
the top of the time-ordered event list. Thus if no signal 
changes are predicted for a long period, computer time is not 
wasted on the evaluation of signal states in the quiescent 
network. 

The simulator uses individual routines to model the 
operation of AND gates, OR gates, AND-OR gates, flip-flops, 
pulse generators, etc. For each logic element, the 
corresponding routine assumes a suitable nominal propagation 
delay. The gates in figure 3.4, for example, are assumed to 
have a delay of 5 ns. The operation of more complex function 
macros is represented by appropriate combinations of the basic 
gates. This representation is then substituted in the network 
whenever a macro is encountered in the network description. 

G2 

~---~ 
G3 

(a) A Simple AND-gate Network 

Gate Output Input Fan-out Details 
Type Name States Fan-out , .... , 
AND A 2 I 

Input 1 

I 
Input 0 

I to G2 to G3 

(b) Internal Representation of Logic Networks 

Figure 3.12 Representation of Logic Networks 

The network description, used initially by the simulator 
and subsequently by the ICL Design Automation system, is 
encoded from original logic diagrams and entered into a logic 
source file via a simple editing system. Information is 
supplied about the grid reference of each gate on the logic 
drawing, the gate type, its physical placement within a logic 
bay, the names of its input waveforms and its unique output 
waveform name. This description is first checked, in order to 
ensure that the encoding is syntactically correct, by a 
'compiler' which uses the specified waveform names to produce 
logic files. This compiler also substitutes the appropriate 
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combinations of basic gates for the complex function macros. 
After the logic files have been created or updated, the 
simulator extracts information about the gates and their 
interconnections and forms its own internal representation of 
the network. Simulation can then be initiated and controlled 
by a program of 'Driving Instructions' supplied by the user of 
the simulator. 

Records kept during the simulation phase of the project 
show that during the period mid-1970 to mid-1971, 600 hours of 
1905E Processor time (with the CPU operating at 5 us per 
order) were used for the simulation of 84 platters. The 
amounts used for individual groups of platters varied 
considerably according to the nature of both the logic and its 
designers. Thus, some groups required less than 200 minutes of 
processor time per platter, several required around 600 
minutes, and one group of six platters required over 1000 
minutes per platter. One fact which became obvious was that, 
although the simulator was found by most users to be of great 
benefit, it did not turn poor designers into good ones. Some 
of the platters which soaked up large amounts of simulation 
time soaked up even more during commissioning. 

3.1.6 Exchange Connections 

As noted earlier, the Exchange involves more signals than can 
normally be accommodated by the platter edge ~onnectors. Thus 
each pressure connector at the edge of a platter has 40 
contacts, of which 20 are normally signal contacts and 20 are 
normally earths, g1v1ng a signal to earth ratio of 1:1. 
Varying this ratio to allow a greater number of signals 
reduces the noise immunity of the system, and 24 signals to 16 
earths is the highest ratio which can be tolerated. Thus 
although 360 signals can normally be connected at the edges of 
an isolated platter, this number can, if necessary, be 
increased to 432, and an additional 80 or 96 connections can 
also be made via four vertical entry connectors mounted in 
pairs close to the ends of the platter. In the case of the 
Exchange, the logic necessary to implement ,the multiple-width 
OR gate which connects together the Units in the MU5 complex 
is contained on three adjacent platters. These platters are 
mounted in the centre column of the fixed centre plane in the 
Exchange Bay and have a maximum of 1104 external connections 
available. The OR gate is actually 120 bits wide, of which 113 
are used and 7 are available for expansion or repair, thus 
requiring a total of 2880 input and output connections for 
twel ve Units. Clearly this number of connections cannot be 
made by the normal technique, and a different method is 
employed whereby the co-axial cables which would normally be 
connected via printed circuit boards and pressure connectors 
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are soldered directly on to the platter surface (figure 3.13). 
At their other ends the co-axial cables are terminated in 
mul ti-pin connectors mounted on panels in the outer column 
positions of the centre plane of the Exchange Bay. Connections 
to the Uni ts are then made via separate cable bundles and 
connectors which mate with the fixed connectors on the panels. 

Figure 3.13 The Exchange OR Gate 

3.1.7 Asynchronous Timing 

The timing of operations within a central processor can either 
be synchronous or asynchronous, and both systems have their 
advantages and disadvantages. In the MU5 Processor it was 
decided that an asynchronous system would be used for 
interactions between functional units. Thus a 'handshake' 
sys tem is used such that func tions and data are passed from 
one unit to another when the sending unit has the data 
available and when the receiving unit is not busy. It was felt 
that this type of operation, in which data transfers take 
place asynchronously, would allow the system to operate at a 
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greater speed than a completely synchronous system where 
transfers only take place at fixed times. This is particularly 
important when the units concerned are not heavi+y used. Where 
a number of communicating pipeline stages are heavily used, 
however, the time penalty incurred by the handshake becomes a 
dominant factor, and a synchronous system may be preferred. 
Thus the CDC 7600 central processor, for example, is 
completely syncnronous, and some units of the MU5 Processor 
are internally synchronous. Asynchronous systems can also give 
rise to additional problems, particularly when a unit can 
accept requests from a number of sources. 

This problem, which occurs in a number of places in the MU5 
system, is illustrated by the paths through the Store Access 
Control (SAC) to the Local Store (section 6.4.2). Here three 
different functional units may request a store cycle at any 
time, and in the event of a clash, SAC must decide which 
request to accept. Each incoming request pulse is staticised 
on a flip-flop, and the outputs of these three flip-flops 
drive a combinational priority logic circuit. The outputs from 
this circuit, only one of which can be a 1, form the inputs to 
a set of decision flip-flops. These flip-flops are strobed 
when SAC is free to accept a request ..a.rul sufficient time has 
elapsed for the priority circuit to have settled after receipt 
of the first request. 

Because a second request may occur a short time after the 
first request, however, it is possible for the inputs to the 
decision flip-flops to change state just before the end of the 
strobe, leaving the outputs somewhere between a 0 and a 1 
level. Under these conditions the time taken for the flip-flop 
outputs to reach proper logic levels may be long compared with 
the normal propagation delay, and it is possible for 
subsequent circuits to operate inconsistently. 

Clearly sufficient time must be allowed for the decision 
flip-flops to settle to a constant level, or failure of the 
control circuits may occur. The settling time of the circuit 
used here is a function of its gain-bandwidth product, and the 
displacement of the output from the mid-level at the time the 
strobe is removed. In the case of an output starting from the 
exact mid-level, it is possible for an infinitely long 
settling time to be required, but the probability of such an 
occurrence is extremely low. It can be shown [10] that an ECL 
flip-flop with a propagation delay of 2.2 ns requires over 30 
ns settling time for the failure rate to be reduced to 1 per 
month. Since the number of decision flip-flops required in a 
system is relatively small in most cases, however, 
considerable advantage can be gained by using a special 
circuit with a higher gain-bandwidth product than the standard 
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device. Thus a flip-flop with 1.8 ns propagation delay 
requires around 20 ns settling time for the same reliability, 
and moving to an even faster device, such as a tunnel diode, 
reduces this time further. An ECL compatible flip-flop using 
tunnel diodes has therefore been developed for use in critical 
decision circuits in MU5. The measured delay through the 
flip-flop is still quite long (approximately 1 ns) because of 
the level conversion circuits, but the actual decision time is 
of the order of 100 ps. This gives an MTBF of 136 years for a 
settling time of 3 ns or a total delay through the flip-flop 
of 10 ns. 

3.2 STORAGE TECHNOLOGY 

As in any large computer system, a number of different storage 
technologies are used in MU5 in order to provide an economic 
balance between speed and capacity. Thus at the fastest level 
in the hierarchy ( figure 3. 14) associa ti vely addressed 
integrated circuit stores are used, while the main storage 
unit associated with the MU5 Processor, the Local Store, uses 
plated-wire technology. At the next level in the hierachy is 
the Mass Store, a 2.5 l.lS cycle-time core store, and beyond 
that is the Fixed-head Disc Store, which incorporates a Disc 
Transfer System capable of organising data transfers through 
the Exchange between anyone of up to four discs and the Mass 
or Local Stores. These are high-speed discs offering a limited 
capacity of about 10 Mbytes. Bulk file storage is therefore 
provided on other computers in the complex. 

Transfers of information between the integrated circuit 
stores and the Local Store are controlled entirely by hardware 
under normal running conditions, while transfers between the 
Local Store and the rest of the hierachy are controlled by 
software (section 9.3). 

3.2.1 The Local Store 

The MU5 Local Store consists of four plated-wire memory stacks 
each containing 4096 12-bit words (64 data bits + 8 parity 
bits), and having a 260 ns cycle time. Plated-wire stores are 
essentially 2-D systems and each of the stacks of the MU5 
Local Store is internally organised on a 2048 144-bi t word 
basis as shown in figure 3.15. No parity checking is performed 
within the store and so no distinction is made between data 
and parity bits. The stacks are individually controlled by 
timing circuitry in the Local Store Interface logic (section 
6.3) which connects the stacks with SAC and the Exchange, so 
that under normal running conditions the stacks are 
interleaved and successive accesses to separate stacks may be 
overlapped to give a higher overall access rate. In the event 
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of a hardware failure in one or more stacks, a Fail-soft 
capability allows the store to be re-configured, so· that the 
best use can be made of the remaining stacks. Thus, for a read 
request to a given stack, the appropriate twelve address bits, 
as selected by the Fail-soft logic in the Local Store 
Interface, are copied into the Address Buffer, and the eleven 
least significant digits select a line in the stack for 
reading. The data from all 144 digit wires is copied into the 
Data Buffer and the least significant address digit then 
selects the even or odd half. The requested half is copied 
into the Output Buffer 130 ns aftEir the Address Buffer was 
strobed. The reading process is destructive, as in a core 
store, so the outputs of the Data Buffer are fed back to the 
digit drivers and a write operation is performed in order to 
restore the contents of the line. The complete read/write 
cycle is completed after 260 ns. 
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Figure 3.14 Storage Technologies in the MU5 Sysytem 

The store is constructed in a 144-bit wide arrangement 
mainly in order to reduce the number of word drivers required 
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for a given amount of storage (these circuits drive very much 
more current than the digit drivers, and are therefore much 
more expensive), but advantage can be taken of this fact when 
serv~c~ng 128-bit word requests from units within the 
Processor. By setting the appropriate control digit when a 
request for an even-addressed 64-bit word is made, the 
corresponding odd-addressed 64-bit word (which is of necessity 
available in the Data Buffer) is automatically copied into the 
Output Buffer 50 ns after the even-addressed 64-bit word, and 
the two halves of the 128-bit word can be returned to the 
requesting unit in rapid succession. 

Digit Drivers 

... • Cll enl :::: Even Words Odd Words "EI ::s I Address co °1 
en 1 3: 1 '" I ~I In ~ 

-72 bits----l-- -72 bits--"C ~I "C « t 
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Data ~ 
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Control 0-- Read 
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Data 
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Figure 3.15 Internal Organisation of a Local Store Stack 

A write request begins with a normal read phase, but before 
the contents of the data buffer are written back into store, 
the appropriate half is overwritten with new information. 
Although there is no reason in principle why 128-bit word 
wri te requests should not be organised on a similar basis, 
there seemed no justification for incorporating such a 
facility at the time when the specification of the stores was 
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agreed with the manufacturer. In the light of experience 
gained during the subsequent design of the Processor, 
particularly with regard to the implementation of the 
store-to-store orders (section 7.4), there might have been 
some justification for its inclusion. 

3.2.2 The Mass Store 

The Mass Store interface logic allows up to four individual 
stores to be connected, but as a result of cost 
considerations, only two are connected. These stores are 
fairly straightforward 2.5-D core stores, each containing 128K 
words of 36 bits (32 data bits + 4 parity bits). The interface 
logic interleaves addresses to allow access to 64 data bits in 
one cycle, and also contains fail-soft logic which re-orders 
the addresses and allows the system to operate at reduced 
efficiency in the event of a hardware malfunction in one of 
the stores. 

3.2.3 The Fixed-head Disc Store 

The Fixed-head Disc Store developed for use as part of the MU5 
complex is designed to accommodate four 'head per track' disc 
units linked to the Exchange via a Disc Transfer System. The 
first two disc units each contain eight 12 in. diameter 
rec'ording surfaces with 64 t.racks per surface. Data bytes are 
recorded in parallel on eight tr~cks in blocks of 1024, and 
each 20.5 ms revolution gives access to 37 blocks. The total 
capaci ty is thus 2.4 Mbytes per unit. The recording code is 
Modified Non-Return to Zero (NRZI) recorded at a constant bit 
frequency of 2.2 MHz. The maximum packing density is 1520 bits 
per inch ~n the inner track and the data rate is 1 byte every 
450 ns [11]. The 'programmers' would have been happy to accept 
a system engineered to a less exacting standard, and to 
sacrifice some capacity for the convenience of having 32 
blocks per revolution. The task of computing addresses of 
empty blocks, for example, is greatly simplified if the total 
number of blocks is a power of 2. (The positions of empty 
blocks are recorded in a bit list and the positions of bits in 
this list are used in the computation.) The 'engineers' were 
concerned to push the limits of performance, however, and to 
maximise the storage capacity. 

The limit on information packing density in any hig~

performance recording system is usually imposed by the timing 
variations which occur between writing and read-back, and 
these are of two distinct types, 'skew' and 'peak shift'. Skew 
is a long term phase variation on read-back between parallel 
tracks which were initially recorded using the timing from a 
common 'write clock'. The major contributions to skew in a 
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flying head system are the positioning accuracy of the 
retractable heads, variations in head inductance, differing 
cable lengths associated with individual heads, delays in the 
selection and read-back circuits, and gyro-precession of the 
rotating surface. On the disc used in the MU5 system, a figure 
of 250 ns was specified by the manufa9turer for the maximum 
skew between heads using a common write and read amplifier. 

Peak shift arises from the super-position of read-back 
pulses at high packing densi ties and the amount of shift is 
dependent upon the pattern. Thus, unless adaptive writing 
techniques are used, this shift must be considered as purely 
random. On the MU5 discs, the worst-case peak shift is 3% of 
one bit period (equivalent to approximately 14 ns) at 1500 
flux reversals per inch, rising to 25% at 3000 flux reversals 
per inch. Further random timing variations occur due to noise 
in the read-back channel. These are usually circuit dependent 
and are of the order of 20 ns in the MU5 system. 

Thus skew is the dominant effect and in most. systems leads 
to the adoption of self-clocking codes such as Phase 
Modulation, Frequency Modulation and Delay Modulation. The 
conventional NRZI detection system cannot deal with skew of 
this magnitude, but, by use of a 'Self-Phasing' technique, the 
effect of skew can be reduced to acceptable levels. In this 
situation the NRZI recording code yields a higher bit-packing 
density than any of the three self-clocking codes and was 
therefore adopted for use in the MU5 system. (More recent 
commercial disc systems employ different techniques, using 
block codes, which allow even higher densities to be 
achieved. ) 

The Self-Phasing system operates by measuring the skew on 
each data track at the start of every data block and holding 
its value constant throughout the reading of the block. Since 
the block is only a small proportion of a revolution, the 
gyro-precession effects can be neglected. The measurement is 
per formed on a preamble pattern of 5 successi ve bits (00100) 
recorded in NRZI format on each track immediately prior to the 
normal data. This isolated 1 does not undergo any peak shift 
and can therefore be used for accurate skew measurement. 

The measurement is carried out by digital techniques and 
permits a total skew of two bit periods, equivalent to gOO ns 
at 1500 bits per inch. The value of skew is held as a 3-bit 
binary number, thus dividing the two-bit period into eight 
separate skew values and allowing the skew to be measured to 
within 112 ns. When this is used to re-align the parallel data 
streams, a margin of 337.5 ns remains to accommodate peak 
shift and other dynamic timing variations. 
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4 The Primary Instruction Pipelin 

In Chapter 2 we saw how the MU5 Processor developed into two 
pipeline systems, the Primary and Secondary Instruction 
Pipelines. In this chapter we shall follow the flow of 
instructions through the units which constitute the Primary 
Instruction Pipeline (figure 4.1). The Primary Instruction 
Pipeline operates at a maximum rate of one instruction per 50 
ns. This performance is achieved by dividing each unit into a 
number of stages, each of which can complete its part of the 
instruction processing within the 50 ns period and then accept 
the next instruction [12J. The design is presented in some 
detail to illustrate how conceptual elegance sometimes has to 
be compromised in order to achieve practical solutions. 

r--- --- ----- - --- - - ------- ----l 
I Primary Instruction P.ipeline I 
I C entral , 
I 
I 
I 
I 
L_ 

Addres 
to Stor 

-
ses 
e 

Instruction Primary Highway 
Buffer ~ Operand 
Unit Unit -
--- ---------- ----

Instructions 
from Store 

,-- ----
I 
I Secondary 
I Operand I 
I Unit 

I 
B-unit I 

I 
I 
I 

~-------' 

---------

~ A-unit 

-, 
I , 
I 
I 
I 
I 

IL Secondary Instruction Pipeline J' 
----------------

Figure 4.1 The Primary and Secondary Instruction Pipelines 

Instructions enter the pipeline as 128-bit words supplied 
from store by the Store Access Control Unit, and the 
Instruction Buffer Unit arranges to send 16-bit instruction 
'parcels' to the Primary Operand Unit (PROP) in the correct 
program sequence. PROP accesses the primary operand in each 
case so that instructions which enter PROP in the form of 
'function/operand-specification' leave it five stages later in 
the form of 'function/operand'. B-orders and Organisational 
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orders requ~r~ng only a primary operand are then ready for 
execution and can be sent via the Central Highway either to 
the B-uni t or back to PROP. Orders requi ring a secondary 
operand access, and all ACC orders, are sent to the Secondary 
Operand Unit. Operands are also returned across the Central 
Highway from the B-unit to PROP in the case of store orders, 
and via a private highway from the B-unit to the Descriptor 
Addressing Unit when the contents of the B-Register are 
required as the modifier in a data structure access. 

4.1 THE INSTRUCTION BUFFER UNIT 

In any computer system there is clearly a need to supply 
instructions to the processing section at a rate matching its 
execution rate. For sequential instructions in MU5 the 
required rate can be achieved quite easily since the maximum 
execution rate requires one 16-bit instruction every 50 ns and 
the Store Access Control Unit can supply successive 128-bit 
words from the Local Store at intervals of 65 ns. However, 
because the access time is much longer than this, a system is 
required which can send out instruction requests well in 
advance of their being required by PROP ,and which can also 
buffer the corresponding replies. The Instruction Buffer Unit 
provides these facilities. It contains three buffer registers, 
each capable of holding 128 bits, which together with their 
control logic, constitute the Data Flow (figure 4.2). The Data 
Flow control logic unpacks instructions from the first buffer 
and assembles them in cyclic order in the second and third 
buffers ready for PROP to take them as required. The necessary 
store requests are made by the Store Request System, which 
issues store addresses formed by a counter at a rate matched 
to that at which instructions are taken from the Data Flow. 
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This system operates satisfactorily until a control 
transfer occurs as a result of either an unconditional control 
transfer instruction, or 
instruction for which the 

a conditional control transfer 
condition is met. Then all the 

pre-fetched instructions must be abandoned, and the correct 
new instruction cannot be sent to PROP until the store has 
been accessed, using the new control address, and the 
instruction has passed through the Data Flow. Thus a large gap 
occurs in the instruction stream, and the 50 ns rate is not 
maintained. The net effect of this on the performance of the 
Processor clearly depends on the frequency with which control 
transfer instructions occur J and the extent of this problem is 
well illustrated by performance measurements taken from the 
Atlas computer. 

The average execution time of Atlas computational orders 
was 2 11s, but observations of the number of orders actually 
obeyed over long periods of time indicated an average order 
time of 3 11S. At the time it was thought that the discrepancy 
might be due to store clashes between instruction and operand 
accesses. However, statistics collected over a large sample of 
programs showed that 20% of all orders obeyed were control 
transfers, a much larger figure than had been expected, and 
high enough to explain the reduced instruction rate. Control 
transfers required 7 11S for their execution, giving an average 
instruction time of 

2 * 80/100 + 7 * 20/100 = 3 us 

The expected times for execution of control transfer 
instructions and the fastest computational instructions in MU5 
were 950 ns and 50 ns respectively. Thus, even if the 
frequency of control transfers could be reduced to one order 
in ten, the comparable average execution time would be 

50 * 90/100 + 950 * 10/100 = 140 ns 

This represents a reduction by a factor of almost three from 
the peak rate. 

A system similar to that used in the CDC 7600 computer 
[13J, in which recently used instructions and their addresses 
are preserved in a high-speed loop-catching buffer, might be 
expected to improve this situation. However, this system is 
only satisfactory if the number of instructions being obeyed 
within the loop is less than the buffer size. For MU5 a system 
was sought which would operate satisfactorily without 
constraints on loop size. The first system considered had 
buffer registers containing the first few instructions at the 
destination or 'jump-to' addresses of recently obeyed control 
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transfers. Access ·to these instructions would be via an 
associative search on their addresses (figure 4.3). The 
pre-fetching mechanism would proceed normally until a control 
transfer occurred, and the destination address would then be 
presented to the associative store. If a match was found, the 
instructions in the corresponding buffer register would be 
read out and sent to the Primary Operand Unit. If no match was 
found, one of the set of associative and buffer registers 
would be updated when the instructions had" been obtained from 
store. 

Associative 
Address 
Field 

Jump-to 
Instructions 

Address 

PROP 
Pipeline 

Figure 4.3 An Associatively'Addressed Instruction Buffer 

Simulation studies of this technique [14] showed that only 
eight lines of store would be needed to trap 80% of jump 
instructions and that increasing the number of lines to 
sixteen would only produce an extra 1% improvement. The 
problem in implementing this scheme was the width of the 
buffer store. In order to allow the pre-fetching mechanism to 
catch up after a control transfer, each line of the buffer 
would need to hold up to 950 ns worth of instructions. At 50 
ns per 16-bit instruction the number of bits needed in each 
line amounts to over 300. 

In order to retain the advantage obtained by using an 
associatively addressed store, without incurring the cost of 
buffering large amounts of data, an alternative system is used 
in practice. This system uses an eight-line associatively 
addressed 'Jump Trace' store (figure 4.4) to predict the 
outcome of an impending control transfer [15]. Whenever a new 
instruction address is generated by the IBU it is presented to 
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the associative 'jump-from' address store before being sent to 
SAC. If an equivalence is found, this address is replaced by 
the corresponding 'jump-to' address, so that pre-fetching of 
the new sequence takes place instead. When the control 
transfer instruction which gave equivalence in the trace is 
sent to PROP, it is accompanied by a bit indicating that the 
instructions following it are 'out of sequence'. This bit ill 
used in PROP to determine the action after execution of the 
control transfer. If the following instructions have been 
correctly predicted, execution of instructions continues 
uninterrupted. If the instructions are not out of sequence, 
but should have been, a request is made to SAC for the 
instructions at the 'jump-to' address, and at the same time a 
line in the Jump Trace is loaded with the 'jump-from' and 
, jump-to' addresses. Thus when the ' jump-from' address 
re-occurs wi thin the IBU, the instructions at the 'jump-to' 
address are automatically pre-fetched. 

L...-._C_h-:-~C_k_--Jt : 
Jump-from 
Addresses 

+2 ~ Counter I 
-1 ---'----..-----'I~ 

Address to SAC 

Unpack 
Record 

Control 
Transfer 

Figure 4.4 The Store Request and Jump Trace Systems 

Simulation studies of this system indicated that about 75% 
of control transfers could be trapped using an eight-line 
store, and that, as before, increasing the number of lines in 
the store did not significantly improve the performance. The 
apparent drop in performance as compared with the system of 
figure 4.3 occurs because the prediction mechanism sometimes 
predicts a transfer which does not occur. No attempt is made 
to correct the Jump Trace when a predicted branch does not 
occur, however, since the drop in performance is more than 
offset by the fact that the prediction mechanism allows useful 
overlapping of instructions to continue in PROP when the 
prediction is correct (section 4.2.7). 
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4.1.1 Data Flow within the IBU 

The Data Flow section of the IBU is concerned with rece1v1ng 
the store words returned by the Store Access Control Unit and 
supplying a stream of 16-bit instruction parcels to PROP. 
Instructions are normally accessed in groups of 128 bits 
(equi valent to one full line of the Local Store) but for 
technological reasons all data highways in the system are 
limited to 64 bits. A 128-bit word is therefore returned to 
the IBU as two successive 64-bit words which are copied into 
the appropriate section of the input register IP (figure 4.2). 

Instruction parcels are transferred from IP to the 
additional Storage Register AS, via the 16-bi t Intermediate 
Buffer lB. (IB is incorporated to overcome skew timing 
problems associated with the sending of parallel data through 
several logic levels and then over long distances wi thin the 
Processor, and is not logically necessary). The filling 
mechanism associated with AS attempts to keep it full of valid 
instructions, while the filling mechanism associated with the 
next register, the Close Pack Register (CP) attempts to keep 
CP full by emptying AS. CP is itself emptied by the actions of 
PROP, which takes inst'ructions from it at a maximum rate of 
one per 50 ns. Monitor registers associated with AS and CP 
keep track of the valid instructions as they pass through the 
buffers, recording a bit for each instruction position to 
indicate whether it is currently valid. A further register, 
the Advance Control Register (AC), is useq. to indicate which 
is the next instruction parcel to be taken by PROP, and this 
register is incremented by 1 every time an instruction parcel 
is actually taken. 

The 128-bit word in IP may contain a number of instruction 
parcels which are not required in the sequence of instructions 
being obeyed. This can occur following the execution of a 
control transfer instruction, for example, which may jump to 
any position within the 128-bit word. The three least 
significant digits of the requested address and the number of 
instruction parcels required from the 128-bit word are 
therefore contained in one of four registers in an Unpack 
Record. This Unpack Record is filled at one end by the Store 
Request System as requests are sent to SAC (figure 4.4), and 
emptied at the other end by the Data Flow control logic as 
data returns from SAC. The Unpack Record also contains a 
Sequence bit, a Same Word bit and a Control Overflow bit. 

The Sequence bit is set to a 1 if the last instruction to 
be unpacked from the word is to be followed by an instruction 
which is out of sequence as a result of the actions of the 
Jump trace. This bit is used by PROP when. obeying control 
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transfer instructions (section 4.2.7). 

The Same Word bit indicates that loop catching is in 
operation. Al though no additional buffers are incorporated 
into the IBU to allow for conventional loop-catching, the 
existing buffers can be used for this purpose in cases where 
the jump-from and jump-to addresses are in the same 128-bit 
word. When a jump-to address is read out of the Jump Trace, 
the presence of the Same Word bit indicates to the Store 
Request System that the required word is already available and 
that no further request need be made. 

The Control Overflow bit indicates th~~ the request is for 
an instruction beyond the end of the segm~nt addressed by the 
Control Register, a fault condition which can arise as a 
result of pre-fetching. This bit is used by PROP to cause an 
interrupt if an attempt is made to execute the instruction 
( sec tion 4.2.8). 

4.1.2 The Store Request System 

The Store Request System (figure 4.4) initiates requests for 
128-bit words from SAC at the required intervals. Two 
different types of request may occur according to 
circumstances, ordinary requests and priority requests. 
Priority requests are made whenever PROP signals a 
discontinuity in the instruction stream, that is, that the 
instructions following the one currently being executed must 
be replaced by a different sequence. Following such an event, 
the instruction address received from PROP is loaded into both 
the Advanced Control Register, AC, and the Store Request 
Register, SR, and a priority request made to SAC. AC is then 
incremented at 40 ns intervals (it operates at a faster rate 
than PROP) and whenever a carry across the 128-bit word 
address boundary occurs, the new address is copied into SR and 
an ordinary request is made to SAC. In addition, each new 
address generated in AC is checked against the contents of the 
associative jump-from field of the Jump Trace. If an 
equi valence occurs the corresponding jump-to address is read 
out and used instead. The Store Request System then continues 
to make ordinary requests starting from this new address. 

Ordinary requests normally continue to be made until an 
instruction sequence discontinuity arises. This happens 
whenever 

(1) An Interrupt occurs 

(2) An Escape Descriptor access is made (section 5.1.3) 
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(3) The IBU sends an incorrect sequence of instructions 

In cases (1) and (2) the output of CP is inhibited and a pair 
of hard-wired instructions is sent to PROP instead (figure 
4.2). When an Interrupt occurs, the current orders in the PROP 
pipeline are abandoned, and a special instruction is sent 
through the SEOP to SAC to ensure that all previous orders 
have completed their CPR equivalence checks (section 6.4.2). 
Once this action is complete, an eight-bit Interrupt Entry 
register is strobed, and the instructions 

SET LINK 
EXIT 

System V-store Address 
System V-store Address 

are sent to PROP. The System V-store addresses refer to the 
core resident links (section 2.3.1), and in order to select 
the correct links, contain an encoding of the contents of the 
Interrupt Entry register. The encoding is such that if more 
than one interrupt is present, the address corresponds to the 
one with highest priority. 

Escape Descriptors are detected by SEOP, which sends a 
special reply to PROP instead of its normal handshake signal. 
PROP abandons all current orders and signals the IBU, which 
sends the orders 

STACK LINK 
JUMP 

Literal 
D[a] 

= a) 

In either case the second instruction of the pair is a control 
transfer which causes a priority request for the newly 
addressed instructions and re-enables the output of CPo Case 
(3) occurs whenever an unpredicted control transfer 
instruction causes a jump or when a predicted control transfer 
does not cause a jump. 

The operation of the Store Request System can also be 
temporarily halted as a result of interlocks incorporated into 
the IBU to ensure that no loss of information occurs as a 
result of asynchronous operation. These interlocks simply 
cause time delays before the next ordinary request can be 
sent. For example, the rate of issuing of requests from the 
IBU to SAC is normally geared to the maximum rate at which 
PROP can process instructions. When PROP executes an 
instruction which requires a long interval of time for its 
completion, however, a hold-up occurs and this hold-up 
propagates back through PROP to the IBU data-flow buffers. 
Since the IBU is obliged to accept data from SAC as soon as it 
becomes available, sufficient space must be maintained in 
these buffers to receive it. In order to meet this condition 
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and to be able to maintain the maximum throughput rate, IBU 
ordinary requests may be held up in SAC after the address 
translation stage (section 6.4.2), until the IBU can guarantee 
to accept the requested instructions. 

4.1.3 The Jump Trace 

Although the Jump Trace is in principle a fairly 
straightforward system, a number of factors complicated its 
implementation. For example, although most control transfers 
use a literal (and therefore invariant) operand, some do not, 
and in these cases the jump-to address will vary on some 
subsequent executions of the instruction. No attempt has been 
made in !V1U5 to take advantage of cases where this variation 
occurs infrequently, however, since it was felt that the extra 
hardware complication needed to check the correctness of the 
predicted jump-to address would not be cost-effective. 
Instead, the problem of variable j~~p-to addresses is avoided 
by only loading the Jump Trace for those control transfers 
which use a literal operand . 

.A. further problem arises from the variable instruction 
length. The Control Register always addresses the first parcel 
of a multi-length instruction, but clearly jump-from addresses 
must always correspond to the last. This address must 
therefore be computed specially, since it is not otherwise 
requLred. Consider, however, the action of a conditional 
control transfer. The value in the Control Register after its 
execution will either be the address of the first parcel of 
the next instruction in sequence (the jump-from address + 1), 
or some qui te different address (the jump-to address). The 
first alternative can be generated immediately, since it 
requires no operand, whereas the second must await the arrival 
of the operand and the resul t of the condition. The Control 
Adder associated with the Control Register in PROP can 
therefore perform two cycles with no loss of performance, and 
when an unpredicted control transfer using a literal operand 
occurs, both values are sent to the IBU. The first is loaded 
.into register AC (figure 4.4) and then decremented by the 
address counter before being used to load a line in the 
jump-from field. The second is loaded into AC and thence into 
the jump-to field and also into SR to be sent to SAC as a 
priority request. The line used in the Jump Trace is selected 
by a Fill Pointer according to a cyclic replacement algorithm 
and as each line is overwritten a 'use' digit associated with 
it is set. These use digits are normally only re-set, and the 
Trace thereby cleared at a process change, when the Process 
Number Register in PROP is altered. 

The technological problems which arise in the 
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implementation of the Jump Trace are mainly concerned with 
timing. All instruction addresses are presented to the 
jump-from field as they are generated by the Advance Control 
Register CAC), and the association proceeds in parallel with 
the operation of the counter. This allows the 40 ns address 
generation rate to be sustained. However, if an equivalence is 
found, the next address is not that generated by the counter 
but that read out of the jump-to field. This action requires 
an additional 40 ns. To sustain an average 40 ns rate, 
advantage is taken of the fact that the addresses generated in 
AC are sequential, and association is performed simultaneously 
on two addresses differing only in their least significant 
digit. Thus the associative field is actually 30 bits wide 
wi th the 31 st bit of the full virtual instruction address 
being held in a separate non-associative flip-flop. This bit 
is then used to determine whether or not an equivalence is 
genuine. When a genuine equi valence does occur, the 
corresponding jump-to address is read out and copied into AC 
and into SR. 

4.2 THE PRIMARY OPERAND UNIT 

The provision of separate Primary and Secondary Operand Uni ts 
in the MU5 Processor arose from the distinction made in the 
order code between different types of operand, particularly 
between named or literal operands and data structure elements. 
The basic idea was that the Primary Operand Unit (PROP) would 
be concerned with accessing the operand specified directly by 
the instruction and routing the instruction, together with its 
primary operand, to the appropriate following unit for 
execution or further processing. PROP would therefore contain 
the Name Store, and if the primary operand was a named 
variable or literal for example, the instruction would be 
ready for execution at the end of PROP. An instruction 
invol ving a descriptor would be sent to the Secondary Operand 
Uni t (SEOP). As described in section 2.3, however, a Name 
Store was also incorporated into SEOP, and some instructions 
can therefore leave PROP without their primary operand. 

Figure 4.5 shows the basic hardware in PROP and the variouS 
stages of operation involved in processing a typical 
instruction. Instructions are received from the IBU into 
registers DF (function) and DN (name). The first action is the 
decoding of the instruction to select the appropriate base 
(NB, XNB or SF) and the name part of the instruction. For 
access to a 32-bit variable, the name is shifted down one 
place relative to the base and the least significant digit is 
used later to select the appropriate half of the 64-bit word 
obtained from the Name Store. 
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Figure 4.5 The Basic Components of the Primary Operand Unit 

In the second stage the name and base are added together to 
form the address of a 64-bit word. This address is 
concatenated with the 4-bit Process Number (PN) and presented 
to the Associative Field of the Name Store. If the address is 
found, access is made to the 64- bi t word in the Name Store 
Value Field. If the required address is not in the associative 
store a request is made to the Store Access Control Unit, and 
the value returned from store, together with its address, is 
written into an empty line in the 32-line Name Store (section 
6.1.2). This number of lines was chosen both on the results of 
software simulation (section 2.3) and on technological 
considerations. Thus, for example, the modules needed to make 
up a 32-word associa ti ve store and a 32-word flip- flop store 
could each be fitted on to one platter. 

The next stage of processing is the assembly of the 
operand. A 32-bit integer, for example, may be taken from 
either half of the 64-bit store word, but must always appear 
at the least significant end of the data highway when 
presented to a succeeding unit. Registers FN and HI form the 
input to the Central Highway of the Processor and register HO 
is connected to one of its outputs to receive operands 
resulting from store orders. 
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4.2.1 Design of the PROP Pipeline 

The pipelining of the five stages in PROP is achieved by 
staticising the information obtained at the end of each stage 
in a buffer register (figure 4.6). An important aspect of the 
design of a pipeline is the timing of the strobes to the 
buffer registers, because some outputs from a stage (the 
function bits, for example) will derive directly from its 
inputs. With master/slave flip-flops the various registers can 
be strobed simultaneously, but these devices are inherently 
slower than the D-type flip-flops used in MU5 (section 3.1.1). 
'A different technique is therefore used in which the result 
obtained at the end of anyone stage is only copied into its 
buffer register when the resul t . of the following stage has 
itself been staticised. The strobes used to copy information 
into the buffer registers are therefore staggered, as shown in 
figure, 4.7. 
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F 0 1 1 2 2 3 3 4 4 5 
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Figure 4.6 The Complete Primary Operand Unit 

The shaded portions of figure 4.7 show the progress of one 
instruction through the PROP pipeline. It is first copied into 
DF and DN (function and name respectively) and the Decode 0 
logic carries out the decoding of the instruction necessary to 
control the first stage. The decoding logic of figure 4.5 is 
spread out in the pipelined version into separate decoders for 

68 



each stage. In many cases, however, the necessary decoding 
cannot be carried out in sufficient time to control the action 
of a given stage. In these cases it is carried out i'n the 
previous stage, and the various control signals appear as 
additional function digits, along with the original function, 
as inputs to the stage requiring them. 

Stage 0 ---- Decode--

Stage 1 --Add ---

Stage 2 - Associate --

j Ur---.... ~AJ ~--

Stage 3 ---Read----.... 

10 ns 
~ -- -Assemble --

40 ns Stage 5 __ 

U~-U U""'-----'U 

Control 

J
....--... 

LJ u u u 
Time-

_Increment __ 
Control 
~--~ 

Figure 4.7 The Basic PROP Timing Diagram 

The next pipeline strobe is timed to arrive no earlier than 
when the outputs of the first stage have settled and are ready 
to be strobed into the registers F1 (function), NM (name) and 
BS (base). The addition of name and base now takes place and 
after the appropriate time has elapsed, the result is copied 
into IN, the Interrogate Register. The output of IN is 
concatenated with PN, the Process Number, to form the input to 
the associative field of the Name Store. The result of the 
association is then copied into the PROP Line Register (PLR), 
the out put of which accesses the line in the Value Field 
containing the required operand. The Value Field output is 
copied into the Value Field register (VF), and thence, after 
assembly, into the Highway Input register (HI). 

Once an instruction has reached HI, PROP must wait until it 
has been accepted by another unit before taking any further 
action. Instructions therefore proceed through PROP in series 
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of 'beats', the rate at which these beats occur being 
determined by the maximum operating .rate of PROP and the 
acceptance rates of the succeeding units. The generation of a 
beat is initiated by the setting of a 'data gone' flip-flop 
(figure 4.8), which when any other necessary conditions at the 
end of the PROP pipeline have been satisfied, allows a 20 ns 
pulse to propagate through the pipeline delay chain. The 
pulses from the chain drive 10 ns pulse-forming modules at 
each stage, and the delays in the chain are adjusted to 
produce a 10 ns stagger between stages. The progress of one 
pulse through the pipeline is shown heavily drawn in figure 
4.7. 
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Some problems arise as a result of the physical dimensions 
of the Processor and the layout of the platters within it 
[16]. Thus it is not feasible to locate all registers 
pertaining to one stage in close proximity either to each 
other or to the timing control logic. As a result, all the 
registers of one stage cannot be strobed simultaneously, since 
, far' strobes would have to be sent out in advance of 'near' 
strobes by up to 20 ns. Alternatively, all 'far' registers 
could be str6bed late (the strobes and data must all travel 
the same distance) but some control signals must travel back 
from the far registers to the near registers, and the double 
delay would slow the pipeline down. The problem has been 
overcome in practice by deriving far strobes from the earliest 
level of fan-out in each section of the delay chain, and by 
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designing for only three levels of logic in paths whi~h 

involve data travelling from near to far registers. Thus the 
50 ns within each stage is typically made up as follows 

Input Buffer Settling Time 
Operation Within Stage 
Inter-platter Cable Delays 
Output Buffer Strobe 

TOTAL 

5 ns 
30 ns 
5 ns 

l.Q. ns 

50 ns 

So far we have assumed that each stage of the pipeline 
contains one 16-bit order. However, circumstances arise which 
prevent full utilisation of each stage. For example, the order 
code allows for multi-length orders (section 4.2.2) and some 
orders involve mul tiple accesses (sec tions 4.2.3 and 4.2.4). 
These can normally be dealt with by ~ purely logical control 
mechanism which does not affect the main pipeline timing, but 
may involve the creation of gaps (unused stages) in the 
pipeline. These gaps, or 'dummy orders', are distinguished by 
means of an a'dditional function digit, which, when set, 
inhibits the actions of each stage, including the Control 
Register updating. Other conditions can also arise which 
require hold-ups wi thin the pipeline and hence also produce 
gaps. They occur when some necessary information is not 
immediately available, and can arise from most stages of the 
pipeline. Apart from hold-ups which arise from the fifth 
stage, they cannot be detected in time for the next beat .of 
the pipeline to be inhibited and therefore operate 
independently of the beat generating logic, by simply 
preventing subsequent beats from propagating back beyond the 
stage from which they arise (figure 4.8), and by causing dummy 
orders to be propagated forwards. 

Hold-ups ariSing from the fifth stage are normally ones 
involving a complex action within PROP or an interaction with 
another unit, both of which require the pipeline to be 
stopped. The need for one of these hold-ups is indicated by 
the setting of one or more bits in a 'WAIT' Register as the 
instruction is copied in to F5 (figure 4.8). On completion of 
the highway transfer the 'data-gone' flip-flop is set as 
usual, but the next beat is prevented from being released by 
the presence of the digit in the WAIT Register. Instead, a 
hardware rout ine is entered appropriate to the most 
significant digit in the WAIT Register. When the routine is 
completed the corresponding WAIT digit is re-set and either 
the beat is released or another hardware routine is entered 
appropriate to the next most significant digit in the WAIT 
Register. 
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4.2.2 Multi-length Instructions 

Mul ti-Iength instructions are those using a 16-bi t name or a 
16, 32, or 64-bit literal operand. The actions required to 
implement these orders, and also the stack mechanism, are 
controlled by three digits in each of registers DF and F1 and 
the decoding logic between them. Thus following a DF strobe, 
the inputs to these three control digits in F1 take up states 
determined both by the function and the states of the control 
digits in DF. When the next beat pulse reaches F1, the F1 
control digits take up their new: states and are then copied 
back into the corresponding DF digits by the same beat pulse 
10 ns later, so that the digits in DF and F1 act as a 
master / slave comb ina tion. For example, when a long name is 
used, the next beat copies a dummy order into F1 and the 
16-bit name into DN, the DF strobe being inhibited. On the 
following beat the order enters F1 with the execute digit set 
to 1 and the 16-bit name in NM (figure 4.6). 

16-bit literal operands are dealt with in the same way as 
16-bit names, except that the content of DN is copied into L1 
instead of NM, and thence into L2, L3 and VU as the order 
proceeds down the pipeline. 32-bit and 64-bit literal operands 
start off in the same way as 16-bit literals but require three 
and five phases respectively. Following the decoding of the 
literal, the next beat copies a dummy order into F1, and the 
first 16 bits of the literal into DN. The valid order i tsel f 
proceeds to F1 on the subsequent beat and is then followed by 
dummy orders until the whole literal has been copied into the 
pipeline using registers DN, L1, L2 and L3. 

For any size of literal the complete value is copied into 
VU from some or all of DN, L1, L2 and L3, as appropriate, when 
the order itself enters F4. For a 16-bit literal, sign 
extension, if specified, takes place to 32 bits between L3 and 
VU (a 6-bit literal is extended to 16 bits between DN and L1) 
and sign extension to 64 bits, again if specified, takes place 
between VU and HI. Figure 4.9 shows the pattern of the phases 
for a 32-bit literal superimposed on the pipeline timing 
diagram. 

This technique for dealing with long literals was adopted 
because it avoided the need for the IBU-PROP interface to be 
extended beyond 16 data bits, and also the need to provide a 
64-bit data buffer at each pipeline stage. The obvious penalty 
for this saving in hardware is the number of extra pipeline 
beats necessary whenever a long literal is used. However, for 
a parallel system to operate satisfactorily, a higher IBU data 
rate would also be necessary to ensure the availability of all 
Jarcels of a multi-length instruction. 
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Figure 4.9 Pipeline Patterns for a 32-bit Literal 

This requirement also applies in the serial system used in 
MU5. Various circumstances can arise where PROP requires an 
instruction from the IBU before it has been obtained from 
store and made available through the IBU Data Flow, 
particularly following unpredicted control transfers. In these 
cases a 'data valid' signal accompanying the function copied 
into DF is set to zero. PROP therefore treats this instruction 
as a dummy order and a gap occurs in the stream of orders in 
the pipeline. 

In the case of mul ti-length instructions, it may not be 
possible to proceed even when the information copied into DF 
is valid, since sufficient additional instruction parcels may 
not be available to complete the instruction. Additional 'data 
available' signals are therefore copied into DF, along with 
the 'data valid' signal, to indicate whether there are two, 
three, four, or five instruction parcels immediately 
available. If the required number of parcels is not available 
for the order involved, a dummy order is propagated forwards 
and the strobe to the IBU is inhibited. In addition, however, 
the strobe to the DF function digits is inhibited so that 
successive pipeline beat pulses only copy in the 'data 
available' digits until sufficient parcels are available for 
the order to proceed normally. 

4.2.3 The Stack Mechanism 

The stack is used for storing and retrieving partial results 
and for procedure links and parameters. For example, during 
the evaluation of expressions such as 

a = b*c + d*e 
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partial results are stacked by the use of the '*=' (stack and 
load) function. They are later unstacked by use of the operand 
form STACK (section 2.2. 1). Stacked operands are therefore 
contained in the MU5 Processor storage system in exactly the 
same way as names, their addresses being generated relative to 
the Stack Front register (SF), which points to the most 
recently stacked operand wi tl:lin the Name Segment. Thus SF is 
advanced by both the '*=' function and functions concerned 
with procedure entry (STACK and STACK LINK), and all these 
functions require two operand accesses to be made. Hence they 
are divided into two phases. 

For the STACK functions an access is first made for the 
specified operand followed by an access to the stack, while 
for the '*=' order the first access is to the stack, in order 
to store the content of the specified register, and the second 
is for the operand. For the stack writes the name/base adder 
is used to create the address SF+2 and at the same time SF is 
updated to this new value. The two phases of these ord'ers are 
distinguished by extra digits carried through the pipeline 
with the function. These digits override the normal operand 
accessing mechanisms when access to the stack is required and 
also prevent the incrementing of the Control Register when the 
first phase passes the Control Point. 

For the unstacking operation the access to the stack must 
use the current value of SF as the address, and SF must then 
be decremented. Two passes through the name/base adder are 
therefore required, one to present the address SF and one to 
create address SF-2. Thus this type of order is also split 
into two phases, one of which is essentially a dummy order 
serving simply to decrement SF. 

The implementation of this stack mechanism wi thin a 
pipeline gives rise to additional problems in relation to 
control transfer orders. An order implicitly changing SF does 
so while there are still several orders ahead of it, but not 
past the Control Point, and therefore not yet completed. Any 
one of these orders could be a control transfer order 
requiring that the partially processed orders behind it in the 
pipeline be abandoned. Should this si tua tion occur, the SF 
Register may contain an incorrect value. The correct SF value 
could be maintained by preventing overlap in such situations, 
but this would seriously deteriorate the pipeline performance. 
The alternative solution adopted is to allow the SF register 
to change as and when required and to carry along the pipeline 
with the order the new value of SF created by it (registers 
S3, S4 and S5 in figure 4.6). When the Control Register is 
updated for the order, the value in S5 is copied into s6. 
Therefore when a control transfer occurs, the value in S6 is 
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correct and is used to restore SF. 

4.2.4 Register-Register Orders 

Since all the central registers in MU5 serve dedicated 
purposes, the need for register-register transfers occurs far 
less frequently than in machines such as the PDP-11 and 
System/360. Indeed, transfers between these dedicated 
registers are not really compatible wi th a pipeline 
organisation. However, it is sometimes convenient to use 
orders such as 

x + B 
B => DO 

where B (the Modifier Register) and DO (the Origin Field of 
the Descriptor register) are specified as Internal Registers 
(section 2.2.3). A general scheme for organlslng these 
transfers was therefore implemented. It involves splitting the 
order in to two phases, one to obtain the operand from the 
source register, and one to carry out the required operation 
on the destination register. Since the Control Register can 
only be incremented once the second phase is complete, it is 
convenient to split the order before the Control Point, and to 
use the hold-up and WAIT mechanisms to control the necessary 
actions. In retrospect it is doubtful whether the engineering 
complications required to implement these orders are justified 
by the advantage gained in the software, and a different 
solution to the overall problem would be sought in a 
re-designed system. 

The first action in the pipeline for a register-register 
order is the setting of a hold-up digit in the Stage 3 
function register, F3 (figure 4.6) ... When the next beat pulse 
occurs a control digit is set in F4, the output of which is 
fed back to F3 in order to act as a counter and to release the 
hold-up. Thus when the first phase of the order reaches Stage 
5, the second phase enters Stage 4 and a new order enters 
Stage 3. The first phase of the order sets a WAIT condition 
(section 4.2. 1) and no further action takes place in PROP 
until the appropriate operand is returned via the Central 
Highway to register HO. This operand is then copied into 
register VU to line up with the second phase of the order in 
F4. A beat is then generated, without the Control Register 
being incremented, to put the second phase of the order into 
Stage 5 where it behaves qS a simple order. 

Slightly different actions are required in each of the two 
phases for the two examples given above. In the first case, 
the first phase of the order is sent to the B-unit accompanied 
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by a control digit which indicates that the '+' function 
should be ignored and the value in the B-Register simply 
routed on to the Central Highway. The second phase of the 
order proceeds normally to the A-unit with the operand being 
trea ted as a literal in SEOP. In the second case, the first 
phase of the order proceeds to the B-unit, where it is treated 
as a normal store order. The second phase is sent to the 
D-unit, again accompanied by a control digit which indicates 
that the '=>' function should be ignored and the operand 
simply loaded into the least significant half of the 
Descriptor Register. 

4.2.5 Store Orders 

An order of the type 'B => name' does not reach the B-unit 
until some time after the access has been made to the Name 
Store, so that the operand is not immediately available. Thus, 
in the absence of any additional technique, a hold-up 
equivalent to at least four pipeline stages would be needed to 
awai t the return of the operand from the B-uni t. In the case 
of store orders involving registers within PROP (NB =>, etc.) 
or SEOP (DR =>, etc.) this delay is less important since these 
orders occur infrequently and 'ACC => name' orders are dealt 
with separately by the Secondary Pipeline (section 5.2.6). For 
the 'B => name' order, however, special action is taken in 
order to avoid the hold-up. 

When a 'B => name' order enters Stage 4 of the PROP 
pipeline, the content of the PROP Line Register (PLR in figure 
4.6) is preserved, for later use, in an additional register 
BW y and the order proceeds normally through the pipeline 
wi thout impeding t,hose following, except as described below. 
When the function is executed by the B-unit, the Central 
Highway copies the resul t into register HO, and sets a WAIT 
condition (section 4.2.1), which stops the pipeline before the 
next beat is generated. The information held in register BW is 
then used to select the appropriate line in the Value Field of 
the Name Store and the content of register HO is written into 
it. The ~dditional information needed to select one half of 
the line for over-writing is held in the F2 Function Register, 
together with a 'B => outstanding' digit which indicates that 
the BW Register is in use. When the action of writing into the 
store has been completed, the 'B => outstanding' digit is 
re-set and the pipeline is re-started. 

While the 'B· => out stand ing' digit is set, two pipeline 
hold-ups can occur, one at Stage 2 and one at Stage 4. The 
hold-up at Stage 2 occurs if a second 'B => name' instruction 
enters that stage. This hold-up prevents subsequent beats from 
prop~gating back beyond the input registers to Stage 3 (F3 
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etc.) and causes dummy orders to be copied into Stage 3. The 
hold-up at Stage 4 occurs if any instruction tries to access 
the same line in the Name Store as that indicated by BW. This 
hold-up prevents subsequent beats from propagating back beyond 
the input registers to Stage 5 (F5, etc.) and causes dUrrL.llY 
orders to be copied into Stage 5. Both these hold-ups are 
automatically released when the 'B => outstanding' digit is 
re-set, or if the contents of the pipeline are discarded by 
the action of a control transfer before the 'B =>, orde"r has 
left the end of PROP. If a control transfer occurs after a 'B 
=>, order has left the end of PROP, then the store updating 
action must still be carried out since the Control Register 
will have been incremented for this order. 

4.2.6 Lock-outs 

Two types of si tuation occur in which an order reaching the 
end of the PROP pipeline cannot be allowed to proceed until an 
action arising from a previously issued instruction has been 
completed. In such cases the earlier order will have set a 
lock-out digit as it left PROP, and the order which must be 
held up is copied into F5, but is not issued, until the 
lock-out digit has been re-set. 

The first type of situation occurs when a B-function 
requires a secondary operand access. The order is sent from 
PROP to Dr and thence via OBS and Dop to the B-unit. Once an 
order has been accepted by Dr, PROP would normally be free to 
send orders using primary operands direct to the B-unit, but 
these would arrive ahead of the order proceeding through the 
SEOP. The B lock-out digit prevents this. 

The second type of situation occurs when a comparison order 
is sent to the B-unit or A-unit (CaMP or CINC, for example) or 
to the D-unit (SCMP). The final action of any of these orders 
is the setting of the Test Digits in the Machine Status 
Register in PROP, according to the result of the comparison 
(zero, negative or overflow). Subsequent orders which copy the 
Machine Status Register into store (STACK LINK, for example), 
mus t therefore be held up un til the resul t is received. In 
addition, further comparison orders must also be held up. This 
is not a normal programming si tua tion, but a faulty program 
could issue two comparison orders in succession before a 
conditional control transfer, and the control transfer 
following the second comparison order would proceed on the 
result of the first, leaving all subsequent pairs of 
comparison and conditional control transfer orders out of 
step. Thus any comparison order leaving PROP sets a lock-out 
digit and any order copying the Machine Status Register into 
store or any further comparison order is held up until the 
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lock-out is re-set by the return of the comparison result. 
Control transfer orders are not held up by this mechanism. 
Instead, these orders are held up after the operand has been 
returned to register HO (but before execution), so that the 
Central Highway transfer time can be overlapped with the 
execution of the previous comparison order. 

4.2.7 Organisational Orders 

The Organisational orders, which are all carried out by PROP, 
set a WAIT digit (section 4.2.1) as they enter Stage 5 of the 
pipeline, thereby holding up the next pipeline beat until the 
operand has been returned to register HO and the order 
executed. Some of these orders (conditional control transfers 
and conditional Boolean setting orders) must also wait for the 
return of any outstanding comparison order result to be 
returned to PROP before they can be executed, while orders 
al tering the base registers, Name Segment Number or Machine 
Status Register cannot operate under the normal overlapped 
condition of the pipeline. An order altering the content of 
the Name Base, for instance, must be completed before a 
succeeding order can be allowed into register DF, since it may 
use the content of NB to form an address. In these cases the 
decoding logic in Stage 0 of PROP sets a 'no-overlap' digit 
which prevents further orders from being copied into DF until 
the order has been executed. 

The manipulation of the base registers is carried out using 
the same adder as that used for address calculations (figure 
4.6). If the order is of the type 'NB +', then the base forms 
one input to the adder, via the same route as that used for 
address calculations, and the operand forms the other input, 
in place of the name. The adder output is routed back to the 
inputs of all the base registers and when the addition is 
complete the appropriate one is updated. If the order is of 
the type 'NB =', then the actions are exactly as for the 'NB 
+' type except that no base register is selected as input to 
the adder, so that the operand is effectively added to zero 
before being copied into the base register. Clearly the 
operand could be copied directly into the appropriate register 
in this case, at the expense of fifteen AND/OR selection 
gates, together with fan-out gates to drive the selection 
inputs. The saving in time thus made would only be about 10% 
of the total order time, however, which was not felt to be 
sufficient to justify the extra hardware involved. 

The control transfer orders are carried out in a similar 
way using the Control Adder. Thus for relative transfers the 
operand is added to the current value of the Control Register 
before the latter is updated, while for absolute transfers the 
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operand is added to zero. Absolute transfers al so update the 
Segment Field of the Control Register by copying the operand 
directly to the appropriate bits. 

All the conditional control transfers run with normal 
overlap since, although their actual result is not known until 
they are executed, the IBU can attempt to predict their result 
(section 4.1), and if it is correct the pipeline will contain 
valid functions behind the control transfer when it is 
executed. The unconditional jumps, on the other hand, only run 
with overlap if the IBU has predicted that they will jump, and 
the Sequence bit (section 4. 1 .1) is set to 1. If subsequent 
instructions were allowed into the PROP pipeline behind an 
unpredicted unconditional jump, then these would have to be 
discarded when the control transfer was executed and the IBU 
would also have made additional, unnecessary pre-fetches. 

4.2.8 PROP and IBU Interrupts 

Four program-generated interrupts and one hardware-generated 
interrupt can arise from the different stages wi thin PROP. 
Action is taken to deal with both internal and external 
interrupts at Stage 5, so for each internal interrupt a digit 
is carried thr04gh the pipeline from the stage at which it is 
generated. Should the contents of the pipeline be discarded as 
a result of a control transfer, these unprocessed interrupts 
are also discarded. The program-generated interrupts are 
'Illegal Func tion' (' B => Literal', for example), 'Name Adder 
Overflow' (which can arise either as a result of an address 
calculation or the execution of an Organisational order such 
as 'NB +'), 'Control Adder Overflow' (an overflow into tne 
Segment Field of the Control Register during the execution of 
a relative control transfer), and 'Illegal V-store Access' 
(which occurs in user mode if an order specifies a V-store 
location as its operand). The hardware-generated interrupt 
occurs if more than one line in the Associa ti ve Field of the 
Name Store indicates equivalence (section 6.1.1). In each case 
PROP does not execute the instruction, but sets the 
appropriate digit in the Program Fault or System Error V-lines 
(section 6.5. 1), and when the order reaches Stage 5, all 
orders in the pipeline are discarded and the Interrupt entry 
orders are requested from the IBU (section 4.1.2). 

Three types of IBU interrupt can arise, one from a hardware 
malfunction (multiple equivalence in the Jump Trace) and two 
from the use of the pre-fetching mechanism. Thus, the address 
counter associated with the Advanced Control Register (section 
4.1.2) may produce a carry-out from its most significant 
digit, indicating an overflow into the Segment Field (Control 
Segment Overflow), or, alternatively, an address generated by 
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the incrementing of the Advanced Control Register may cross a 
page boundary and cause a Non-equivalence in the Current Page 
Register (CPRNEQ) when the request is sent to SAC. For an IBU 
priority request or a PROP request, the latter condition would 
immedia tely produce an interrupt, but for an IBU ordinary 
request the occurrence of the CPRNEQ is signalled to the IBU 
separately. 

After either Control Segment Overflow or CPRNEQ has 
occurred, the IBU continues to send instructions to PROP, but 
the ones corresponding to the illegal or unobtainable 
addresses have an interrupt digit set with them. In many cases 
a control transfer will have been obeyed before the first 
marked order reaches Stage 4 of PROP, and the interrupt will 
have been discarded, but should' the interrupt be genuine, the 
action taken in PROP depends upon which interrupt is involved. 
Thus the Control Segment Overflow interrupt is treated in 
exactly the same way as a Control Adder Overflow in PROP, 
whereas the CPRNEQ interrupt causes a dummy control transfer 
to the current Control Register address, and hence forces an 
IBU priority request to the failing address. This then causes 
an immediate interrupt when CPRNEQ is detected by SAC. 

Multi-length instructions cause an additional problem in 
the case of CPRNEQ. The forced priority request is to the 
address of the first 16 bits of the instruction, which may be 
the last 16-bit word of a page. In this situation the failing 
address is accessed by an ordinary request subsequent to the 
forced priority request and does not cause an interrupt when 
CPRNEQ is obtained. This condition was not catered for in the 
original design', and when it first occurred (after many months 
of Processor operation) the Processor simply went into a 
closed loop, continuously causing control transfers to the 
partially obtainable instruction. The problem was overcome by 
incorporating an additional flip-flop in PROP. This flip-flop 
is set whenever a dummy control transfer occurs for an IBU 
CPRNEQ and re-set when an interrupt is detected. While it is 
set, all IBU requests are treated as priority requests by SAC, 
so that they can all cause a CPRNEQ interrupt to be generated. 

4.3 THE CENTRAL HIGHWAY 

The Central Highway [17] provides the non-dedicated function 
and data paths within the MU5 Processor needed to connect the 
operand accessing units with the func tion execution units. 
These paths are shown heavily drawn in figure 4.10. The paths 
from PROP to Dr, from the B-unit to Dr, from Dop to the A-unit 
and between the units of the SEOP are dedicated routes and do 
not form part of the Central Highway system. Thus the Central 
Highway is principally concerned with loading functions and 
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operands into the B-unit and returning store order values from 
the B-uni t or A-uni t to PROP or Dop. The data path consists 
basically of two sets of 64-bit wide gates (G1 and G2 in 
figure 4.10) which provide all the necessary interconnection 
routes. In the quiescent state the PROP input is held open and 
all others are closed. Any other input is opened only as a 
resul t of requests from the other units and a set of fixed 
priorities is invoked in the event of a clash. Thus PROP has 
priori ty over Dop at the input to G 1 and the descending order 
of priority at G2 is G1, the B-unit and the A-unit. 

B-unit ~ 

I 

~ I 
PROP ...... Dr r- OBS ,..... Dop r-- A-unit 

t ! 
Figure 4.10 The Central Highway 

4.3.1 PROP Requests 

Whenever an order enters Stage 5 of the PROP pipeline, the 
'data gone" flip-flop is re-set, and decoded information from 
Stage 4 is copied into a special register which determines the 
destination of the order. Orders destined for the B-unit or 
PROP travel via the Central Highway, while Dr is connected by 
a separate dedicated highway. A dummy order reaching Stage 5 
has no destination and simply causes the generation of a beat 
50 ns after the one which brought it into Stage 5. 

The B-uni t completes most functions wi thin 45 ns, and can 
therefore accept a stream of such functions from PROP at a 50 
ns rate. Because some functions take considerably longer, 
however, (multiply, f.or example) a handshake mechanism must be 
implemented between PROP and the B-unit. Figure 4.11 shows the 
minimum hardware needed to implement a handshake system 
between two units and a schematic timing diagram of its 
opera tion. Assuming a delay of 5 ns per circui t and a cable 
delay of 1.8 ns per foot, however, the maximum distance 
between units for -a 50 ns operating rate is approximately 8 
feet. 
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l'tgure 4. 11 A Basic Handshake System 

The cable lengths between PROP and the B-uni t are almost 
double this figure, however, and so an alternative solution 
has been adopted, in which the Central Highway breaks the 
handshake mechanism into two handshake loops by making use of 
the input buffer of the B-uni t. Thus for a PROP to B-uni t 
transfer, a pulse is sent to the Central Highway, which checks 
that the B-unit can accept the function and operand. If these 
condi tions are satisfied a pulse is sent to the B-uni t to 
strobe the input buffer and to set the input buffer busy. At 
the same time a pulse is sent to PROP, which can then initiate 
a further transfer. As soon as the B-uni t has received the 
function it determines whether it is a short or long order. If 
it is a short order it sends a buffer free signal to the 
Central Highway immediately, to complete the second loop of 
the handshake. If it is a long order then the buffer free 
signal is not sent until the order has been transferred into 
the arithmetic unit proper and been completed. Thus the buffer 
free signal indicates that the B-unit can accept the function 
currently being sent to it plus a further function after 45 
ns. Since PROP can only send orders out 50 ns apart, any order 
it sends to the B-unit is guaranteed to be accepted. 

In the case of a PROP to PROP transfer, the Central Highway 
simply checks that PROP is ready to receive the operand and if 
or when it is, the Central Highway sends a control pulse to 
PROP which causes the operand to be strobed into its input 
buffer (HO) and also returns a signal which indicates that the 
transfer is complete. Al though PROP ac tually ini tia ted the 
request, HO may nevertheless be busy as a result of the 
execution of a 'B => name' order. Since PROP continues with 
the processing of subsequent orders once a store order has 
been sent to the B-unit (section 4.2.5), the transfer of the 
operand back to PROP is initiated by the B-unit (section 
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4.3.3) and can occur at any time relative to the subsequent 
sequence of events in PROP. 

4.3.2 Dop Requests 

Dop makes requests to the Central Highway in order to send 
operands to the B-unit or PROP. Thus when a B-function 
requires a secondary operand, the instruction is first sent 
from PROP to Dr. After the necessary actions in Dr, OBS and 
Dop have taken place (Chapter 5), Dop sends a request pulse to 
the Central Highway. Provided that there is no PROP initiated 
transfer in progress, the Central Highway sets up the data 
path from SEOP into G1 ~nd checks that the B-unit input buffer 
is free. When both conditions are satisfied a control pulse is 
sent to the B-unit to strobe its input buffer and a transfer 
complete signal is sent to Dop. At the same time a pulse is 
sent to PROP to re-set the B lock-out digit (section 4.2.6). 

A Dop to PROP request occurs when an Organisational order 
requires a secondary operand, or when a Name Store 
non-equi valence in PROP requires a store word to be returned 
from the OBS Name Store (section 6.1.2). It proceeds as for a 
transfer to the B-uni t, except that no lock-out is involved, 
and as in the case of PROP to PROP request, HO may be busy as 
a result of an outstanding 'B => name' order. The Dop to PROP 
route is also used when the contents of one of the registers 
in Dr is to be written to store or is required for a 
register-register transfer (section 4.2.4). This is because 
there is no direct route from Dr on to the Central Highway. 
Such a route would have considerably reduced the execution 
time of these orders, but was impracticable because of pin 
limi tat ion problems. 

4.3.3 B-unit and A-unit Requests 

The B-unit and A-unit make requests to the Central Highway as 
a result of executing a store function or a register-register 
order (section 4.2.4). A control signal accompanying the 
function indicates whether the operand is to be returned to 
PROP or Dop. This control signal is preserved with the 
function and sent to the Central Highway along with the 
request for a transfer. Upon receipt of a request, the Central 
Highway checks that no higher priority transfer is in 
progress, opens the appropriate data path, and if or when the 
receiving unit is free, sends a control pulse to both the 
receiving and sending units to complete the transfer. 
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5 The Secondary Instruction 
Pipeline 

fhe Secondary Instruction Pipeline (figure 5.1) is mainly 
<.;oncerned with accessing and processing the data structure 
elements specified as secondary operands by means of 
descriptors. It consists of three major sections, the D-uni t 
[18], the Operand Buffer System [19] and the A-unit. The 
D-unit is itself made up of two units, the Descriptor 
Addressing Unit (Dr) and the Descriptor Operand Processing 
Unit (Dop). Although these two units are actually separated in 
the Processor, by the Operand Buffer System (OBS), their 
actions are complementary and they will be considered together 
in this chapter. The D-unit and the Operand Buffer System can 
be considered as a Secondary Operand Unit (SEOP), 
corresponding with the Primary Operand Unit in the Primary 
Instruction Pipeline. 
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Descriptor 
Input 

A-unit 

Figure 5.1 The Secondary Instruction Pipeline 

Instructions enter the Secondary Instruction Pipeline from 
PROP. For an instruction specifying an array element as its 
operand, the descriptor supplied by PROP is loaded into the DR 
Register within Dr, and Dr proceeds to generate the required 
addres,s using the content of the B-Register as a modifier. 
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- This address is then sent to OBS, which, like the Name Store 
in PROP, is invisible to the programmer and its only function 
is to improve the instruction execution rate. OBS makes the 
necessary store request and sends the required 64-bit word to 
Dop, which contains masking and shifting circui try to select 
the array 'Z!lement from the appropriate position in the word. 
Dop is controlled by a combination of a control field 
genera ted by Dr (at the same time as the address) and the 
original function code, which accompanies the instruction as 
it passes through the pipeline. Instructions leaving Dop are 
normally sent direct to the A-unit, and exceptionally returned 
to PROP or the B-unit via the Central Highway, or to Dr via an 
additional, dedicated route. In the case of the store-to-store 
functions, the operand processing takes place entirely within 
the D-unit. The operation of these functions and of the A-unit 
are dealt with in Chapter 7. 

5. 1 THE D-UNIT 

The basic tasks of the D-unit are comparatively simple. They 
involve the formation of the address of an array element, by 
the addition of the modifier to the origin address contained 
within the descriptor, and the subsequent selection of that 
element from within the corresponding store word. These tasks 
are complicated, however, by a number of factors, such as the 
existence of different descriptor types and different operand 
sizes, the possibility of an operand straddling across two 
store words, and the need for bound checking. In addition, the 
two 64-bi t descriptor registers, DR and XDR, can be 
manipulated in whole o~ in part by various functions. Also the 
origin and length fields of one or both of these registers 
must be incremented and decremented, respectively, during each 
cycle of the execution of the store-to-store orders (section 
7.4). For both this task and the bound checking operation, it 
would clearly be desirable to use a subtractor, separate from 
the adder used either to increment the origin or to add the 
modifier and orlgln, since the appropriate additions and 
subtractions could then proceed in parallel. However, the 
alternative solution of employing one adder to carry out these 
tasks sequentially appeared in the early stages of design to 
require less hardware, and was somewhat regrettably chosen. 
This not only decreases the execution rate for array element 
accesses, but also leads to some restrictions on the 
programming use of the bound checking facility, since a bound 
check failure is only detected after the corresponding access 
has moved irretrievably along the pipeline. The hardware 
structure of the existing Dr unit is thus as shown in figure 
5.2. 

85 



Operand from PROP 
Name Address 
from PROP 
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Figure 5.2 The Descriptor Addressing Unit 

The two descriptor registers each consist of a top and 
bottom half (DRT and DRB, XDRT and XDRB). DR is the main 
descriptor register, used for array accesses and the 
destination address in store-to-store orders. DRB contains the 
origin and DRT the type and 'number of elements' field. XDR is 
similarly divided and is used to hold the source address 
required by some of the store-to-store orders. DR and XDR are 
normally loaded from PROP, but may in some circumstances be 
loaded from Dop. 

The 32-bit modifier is held in register MO, which is loaded 
from the B-unit during an array access or from PROP during the 
execution of functions such as MOD, SMOD, etc., which 
manipulate DR or XDR. The true output of MO is connected to 
one side of the 32-bi t adder via a shift network, and the 
complementary output directly to the other side. The modifier 
normally refers to the position of an element within an array, 
regardless of its size, and must therefore be shifted relative 
to the origin, which always refers to a byte address. The 
complementary output is used in the bound checking operation, 
where the subtraction of the modifier from the bound (equal to 
the number of elements in the array) is performed by adding 
the complement of the modifier to the bound and forcing a 
carry into the least significant digit position of the adder. 
Following the formation of the address, the output of the 
adder is passed on to OBS, via the OBS Address buffer (OA). 
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This address may also be used internally for the updating 
action of the store-to-store orders and for array accesses 
which involve elements straddling store-word boundaries 
( sec tion 5. 1 .2) . 

Register DN is a 64-bit temporary buffer used for holding 
primary operands (names, literals or internal register values) 
associa ted with those ACC functions which do not require a 
secondary operand access. These functions pass through the 
Secondary Instruction Pipeline en route to the A-unit in order 
that the correct program sequence be preserved (section 2.3), 
but must not disturb the contents of the descriptor registers 
in Dr. The contents of the descriptor registers themselves 
al so pass through the primary operand route to 'OBS (via the 
OBS Operand Buffer, 00) when required for orders such as 'DR 
=> '. A route through Dr is also required for addresses of 
names used with ACC functions and held in the OBS Name Store. 
This is provided via register NA, which is loaded from PROP 
and can be gated as an input to the Dr address adder. Register 
DOD is concerned with D-unit interrupts (section 5.1.5). 

Orders leaving Dr are forwarded to OBS, which obtains the 
operand (section 5,.2) and sends it to Dop. Control information 
generated by Dr during the address formation is buffe'red with 
the function in OBS, and is supplied to Dop with the store 
word. Using this information, Dop selects the required array 
elem.ent from wi thin the store word, and in the case of a load 
order, routes it to the least significant end of its output 
highway, ready to be sent to the appropriate execution unit. 
In the case of a store order, Dop updates the appropriate part 
of the store word and returns the updated version to OBS. 

Dop consists of two sec tions ( figure 5.3), one with a 
64-bit data path used for operands associated with 
computational orders, and one with an 8-bit data path used for 
operands associated with the store-to-store orders (section 
7.4). The main input register (FR) has masking facilities 
which permit the selection of left or right hand masks to any 
bit position over the full 64-bit width, while the shift 
mechanism allows any circular shift from 0 to 63 bits in 
single bit increments. This is achieved by three levels of 
logic, the first allowing shifts of 0, 16, 32 or 48 bits, the 
second shifts of 0, 4, 8, or 12 bits and the third shifts of 
0, 1, 2 or 3 bits. The output of the shifter is copied into 
the main output register (GR) if the order is destined for the 
A-:uni t or the Dr unit, or gated directly on to the Central 
Highway if the order is destined for PROP or the B-uni t. The 
route from GR back into FR is used during the execution of 
store orders. 
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To CBS 

To Highway 

From From 
CBS Highway 

3-Level Shifter 

To A-unit 
and Dr 

Store-to-Store 
Processing 

Figure 5.3 The Descriptor Operand Processing Unit 

Figure 5.4 illustrates the actions taken for a load order. 
requiring a 1G-bit operand. The store word containing the 
operand is loaded into FR (a), and the shi fter routes the 
required 16-bit operand to the least significant end of the 
input to GR At the same time, the most significant 48 bits of 
the input to GR are set to zero by inhibiting the appropriate 
section of the data path in the third leve.l of the shifter 
(b). GR is strobed when sufficient time has elapsed for the 
shifter outputs to settle, following the receipt of a store 
word in FR, and when the previous order in GR has been 
accepted by another unit. 

-------Store Word from CBS -----~ 

I 
(a) FR 

(b) GR 

To Execution Unit 

Figure 5.4 Dop Actions for a Load Order 
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The actions for a store order are more complex. The order 
first passes through Dop as if it were a load order, en route 
to the appropriate execution unit, and is only processed by 
Dop when the execution unit indicates that the required 
operand is available. The operand is received from the Central 
Highway (figure 5.3) and is copied into the least significant 
end of register FR (figure 5.5 (a) ). It is· then shifted to its 
eventual alignment in the store word, copied into GR (b) and 
copied back from GR into FR (c). The store word of which it is 
to form part is then sent again from OBS and selectively 
copied into FR around the operand, using the masking facility 
(d). The updated version of the store word is then returned 
from FR back to OBS. 

Operand from Execution Unit 

l 
(a) FR 

(b) GR 

(c) FR 

-------Store Word from OSS ------

l 
rMask-j 

(d) 

Updated Store Word to OSS 

Figure 5.5 Dop Actions for a Store Order 

5.1.1 Vector Accesses 

The actions taken within Dr for secondary operands depend upon 
the instruction type and the descriptor type. The instruction 
can specify two pairs of al ternative actions giving rise to 
four variations. Thus the access mayor may not .involve 
modification ([B] or [0] respecti~ely)~ and the descriptor may 
be loaded with the instruction or may be the one currently 

89 



held in the DR Register (S[] or D[] respectively) .. The actions 
corresponding to the different descriptor types (figure 5.6) 
fall into three main categories, vector accesses corresponding 
to Types a or 2, string accesses corresponding to Type 1 
(section 5. 1 .2) and special actions corresponding to Type 3 
( sec tion 5. 1 . 3) • 

o 
Type 0/2 

Type 1 

Type 3 

8 

Size Spare 

Sub-type 

Bound 

Be 
us 
Spare 

Length 

Bound 

31 32 

Origin Byte Address 

(a) 

Origin Byte Address 

(b) 

Origin Byte Address 

(e) 

Figure 5.6 Descriptor Formats 

63 

For a Type a or 2 access the basic action is the addition 
of the shifted Modifier (or zero in the case of an unmodified 
access) to the Origin, followed, in the case of a modified 
access, by the subtraction of the Modifier from the Bound. The 
amount of shift is controlled by the Size bits held in 
register DR, or may be inhibited if the Unscaled digit (US in 
figure 5.6(a» is set. If an 8-bit operand size is specified, 
for example (size bits = 011), or if the unscaled digi tis 
set, the Modifier is added directly to the Origin; if a 64-bit 
operand size is specified (size bits = 110) and the Unscaled 
digi t is not set, the Modifier is shifted up 3 bit positions 
relative to the Origin; if a 1-bit operand size is specified 
(size bits = 000) the Modifier is shifted down 3 positions. In 
the latter case the 3 least significant digits do not pass 
through the adder, but are copied into the output buffer as 
'Dop bits'. 

The Dop bits are carried through OBS together wi th the 
function digits and control the operation of Dop. Figure 5.7 
shows the Dop bits used to control the shifting and masking in 
Dop. The first nine of these define the positions of the most 
significant and least significant ends of the operand. Thus 
the Most Significant Byte Address digits (MSBA) refer to the 
arithmetically most significant (left hand) end of the 
operand, and are simply the least significant three digits 
from the adder. Since the descriptor origin is a byte address, 
and since OBS is only concerned with pr6viding 64-bit words to 
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Dop, only the most significant 29 digits from the adder are 
required as a store address. The Most Significant Bit Address 
digits indicate the position of the most significant bit of 
the operand within the most significant byte and only take on 
non-zero values for vector accesses to 4-bit or 1-bit 
elements. For these sizes the Modifier is shifted down by 1 or 
3 bit positions respectively, and the bits shifted below the 
adder constitute the Most Significant Bit Address digits. Thus 
for a 4-bit access, bit 31 of the Modifier defines which half 
of the byte is to be selected, and for a 1-bit access bits 29, 
30 and 31 of the Modifier define the single bit to be used. 

°2 } Most Significant Byte Address 

4
3

5 

} 
Most Significant Bit Address 

8

6
7 

} 
Least Significant Byte Address 

Figure 5.7 Table of Dop Bits 

The Least Significant Byte Address digits (LSBA) refer to 
the arithmetically least significant (right hand) end of the 
operand. For operands of less than 16 bits only one byte is 
ever necessary, and the LSBA digits are identical to the MSBA 
digits. For 16-bit and 32-bit operands, which must lie on 
16-bit or 32-bit word boundaries respectively, it can be seen 
from figure 5.8 that in the 16-bit case, the least significant 
of the LSBA digits must always be 1, while the other two must 
equal the corresponding MSBA digits, and that in the 32-bit 
case, the two least significant LSBA digits must always be 1, 
and the most significant LSBA digit must equal the 
corresponding MSBA digit. For 64-bit operands, which are 
aligned on 64-bit word boundaries, the LSBA digits are all set 
to 1. 

Once the address and Dop bits have been formed by Dr, they 
are copied into the output buffer registers, and a request is 
sent to OBS, thus allowing Dr to proceed with the bound check. 
Normally, asynchronous communication between two units would 
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require that the output buffer be set busy at this point, and 
not freed until OBS acknowledged acceptance of the request. In 
order to overcome the 30 ns communication delay caused by the 
physical separation of Dr and OBS, however, OBS guarantees 
al ways to accept a first request wi thin 80 ns of its being 
sent. Thus Dr records the fact that it has sent one request to 
OBS and declares the output buffer free immediately. The 
output buffers can then be overwritten if necessary, and a 
second request sent (provided it is not less than 80 ns after 
the first) before OBS acknowledges receipt of the first 
~equest. The first request must be acknowledged, however, 
before the buffers can be overwritten for a thi~d request. 

---------64-bit Store Word --------
16-bit 

Operand 

Least Significant Byte Address 

Most Significant Byte Address 

----32-bi.t Operand-

10 a 010 a 11 01010 1 1~ 01 10 111 011111 
Most Signifkaot By" Add"" - J 

Least Significant Byte Address 

Figure 5.8 Type O· Operand Byte Addresses 

The' bound check . involves determining whether or not the 
Modifier lies in the range 

o ~ modifier < bound 

The check against the implicit lower bound of zero simply 
involves checking the sign of the Modifier, while the check 
against the explicit upper bound involv@s a full subtraction. 
Thus the Bound is routed toone side of the Dr adder, the 
inverse of the' Modifier to' the other side, and carry forced 
into the least significant digit. When the subtraction is 
complete, the adder output is tested for a zero or negative 
result, and provided that neither of these conditions, nor a 
negative modifier value is detected, Dr is ready for next 
instruction. If any of these fault conditions is detected, 
however, the Bound Check Fail digit is set in the DOD Register 
(section 5.1.5). Unless the corresponding inhibit is set in 
DOD, an interrupt is signalled to PROP, which takes 
appropriate action (section 4.1.2). The whole action of 
checking the Modifier can itself be inhibited if the Bound 
Check Inhibit digit (BC in figure 5.6(a)) is set. In this 

92 



case, and in the case of an unmodified access, Dr is ready for 
the next instruction as soon as the address and Dop bits have 
been copied into the output buffer. 

5.1.2 String Accesses 

The Type 1 string descriptor (figure 5.6(b» differs from the 
Type 0 vector descriptor in that only 8-bit (1-byte) elements 
may be specified, and a length (equal to the number of bytes) 
is specified instead of a bound. This type of descriptor is 
used principally in conjunction with store-to-store functions, 
but may also be used with computational functions to handle 
items of variable length within a data structure (section 
2.2.4). In the case of store-to-store orders the strings are 
handled one byte at a time, and can therefore be of any length 
up to the maximum allowed by the 24-bit length field of the 
descriptor. In the case of computational orders, 64 bits (8 
bytes) at most can be handled, and if the string length is 
greater than 8 bytes, only the first eight are actually 
supplied. A further distinction between Type 1 and Type 0 
descript~rs is that in the Type 1 case, operands are only 
obliged to start on byte address boundaries, so that a 32-bit 
(4-byte) operand for exa.mple, does not have to start on a 
32-bit word boundary and ffiQy even straddle a store-word 
boundary. In this case two st9re words must be accessed and 
Dop selects and combines the appropriate parts of each. 

The actions taken in Dr for a Type 1 are initially similar 
to those for a Type 0 access, involving the addition of the 
Origin and Modifier to form, in this case, the address of the 
most significant byte of the operand. The formation of the 
address of the least significant byte requires a second 
addition in which the Length (or 8 if the Length is greater 
than 8) is added to the address of the most significant byte. 
Until this addition has been performed, by routing the adder 
output back to one input and the Length to the other (figure 
5.3), no request can be sent to OBS. This is because both OBS 
and Dop require a control digit, the Extra Store Word (ESW) 
digi t, to be sent with the request if the operand crosses a 
store-word boundary. If a store-word boundary is not crossed, 
the processing of the order in Dr is finished as soon as this 
request has been sent to OBS. If a store-word boundary is 
crossed, a second OBS request is made. 

The value obtained after the second addition actually 
addresses the first byte beyond the required operand (figure 
5.9), and the check for store-word boundary crossing must take 
this into account. The LSBA digits (figure 5.7) must also be 
set up correctly. 
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---------lst 64-bit Store Word -------~ 

---5-Byte---

1000100110 010 111001101111011 1\ 

Origin + Modifier = m.s. Byte Address =oJ 
---------2nd 64-bit Store Word -------

----Operand---

Origin + Modifier + Length 

Figure 5.9 Type 1 Operand Byte Addresses 

....... I-------lst Store Word from OBS -----l.~ 

(a) 
FR 

....... I-------2nd Store Word from OBS ----~.~ 

-Mask--

(b) 
FR 

(e) 
GR 

l 
To Execution Unit 

Figure 5.10 Dop Actions for an ESW Load Order 

The actions taken in Dop for an ESW load order involving an 
operand such as that illustrated by figure 5.9 are shown in 
figure 5.10. The first store word is loaded into FR from OBS 
(a), as in the single word case (figure 5.4), but before being 
shifted into GR, the second store word is selectively copied 
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over it with the appropriate operand bytes being protected by 
the masking facility (b). FR is then shifted into GR, with 
zeros in the byte positions arithmetically more significant 
than the most significant byte of the operand (c). Since the 
shifter operates circularly, shifting the least significant 
bytes of the operand to the least significant end of GR aligns 
all the bytes correctly. As in the case of a single word 
access, the actions for an ESW store order are correspondingly 
more complex. 

5.1.3 Special Descriptor Accesses 

The Type 3 descriptor format (figure 5.6 (c)) is basically of 
the vector type, but bits 2-7 are used to specify the 
following sub-types, each of which involves some special 
action 

Real Address 
Read/Store Direct 
Read & Mark 
Indirect 
Escape 

The actions in Dr for Real Address, Read/Store Direct and Read 
& Mark descriptor accesses are similar to those for Type 0 
accesses, except that a fixed operand size of 64 bits is 
assumed. Real Address and Read/,Store Direct accesses cause 
spec ial ac tion in OBS and SAC, however ( sec tions 5.2. 7 and 
6.4), and Read & Mark accesses cause special actions in OBS 
and in the Local and Mass Stores (section 6.6.2). 

The Indirect Descriptor causes t~e 64-bit operand addressed 
by its Origin to be accessed from store and then loaded into 
DR and treated as a new descriptor. This new descriptor can 
itself be Indirect, in which case the whole action is 
repeated. Since this action can occur any number of times, the 
system must be capable of being interrupted and re-started at 
any point in the event of a CPR non-equivalence (CPRNEQ). At 
such a re-start the original order is re-issued from PROP, but 
the eXisting descriptor in DR must be used; rather than the 
original one, so that an S[] order must be treated as a D[] 
order. This is achieved through a special bit contained in the 
link preserved at the time of the interrupt, and automatically 
re-set after the order has been re-issued to Dr. 

All descriptor accesses are initiated in the first instance 
by the setti.ng of a 'START' flip-flop and either an 'S[]' or a 
f D[] t flip-flop, and during the course of the corresponding 
actions in Dr, these flip-flops are all re-set. For an access 
using an Indirect Descriptor, Dr sends a request for the 

95 



64-bit operand to OBS with the function digits modified to 
appear as 'D =', and then itself sets the 'START' and 'S[]' 
flip-flops again. No .immediate action occurs, however, since 
an 'Operand Outstanding' flip-flop is also set. When the order 
reaches Dop, the operand is returned to Dr, and the 'Operand 
Outstanding' flip-flop is re-se~. This allows the forced S[] 
request to be started. If the new descriptor is also Indirect, 
the cycle is repeated, but when a String or Vector Descriptor 
is encountered, the forced request is treated normally, with 
modification if appropriate, and sent to OBS accompanied by 
the origi.nal func tion digits. 

When an attempt is made to access an operand by means of an 
Escape Descriptor, Dr initially carries out its normal Type 0 
actions, but instead of sending a request to OBS, it sends a 
special control signal to PROP, sets an ' Escape' flip-flop 
internally, and terminates the order. PROP abandons the order 
and signals the IBU to send the two fixed instructions 
(section 4. 1 .2) 

STACK LINK 
JUMP 

literal 0 
D[O] 

which in effect force a procedure call to the address given by 
the first element in the vector addressed by DR. The software 
is free to store 'parameters' in subsequent elements. Either 
of the forced instructions could cause a CPRNEQ interrupt, and 
the detail of the mechanism has to guard against the errors 
this could produce. 

The Escape Descriptor is used principally in Algol programs 
to evaluate 'thunks' (section 2.2.4). The associated 
instructions evaluate the required operand, set up a Type 0 
descriptor in DR which addresses it, and exit to the link, 
thus causing a return to the calling instruction. This time, 
however, it is executed as a D[] request rather than an S[] 
request, due to the presence in the link of the same bit as 
that used for an interrupted Indirect descrip~or access. The 
same effect can also be achieved as a result of using the MOD 
order (section 5.1.4), rather than by an S[] request, in which 
case the Escape Descriptor mechanism is invoked during the 
first execution of the order instead of the actions required 
by MOD. When the order is re-executed, DR contains a Type 0 
descriptor and the MOD order is executed normally. 

5.1.4 Structure Access Orders 

In order to allow flexibility in accessing data structures, a 
number of orders are provided for direct manipulation of the 
Origin, Bound and Type fields of the DR and XDR registers. 
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Typical of these are the MOD order, in which the operand is 
used to increment the origin and decrement the Bound in DR, 
and the XMOD order, which operates in the same way on XDR. In 
either case, a bound check is carried out as for a descriptor 
access and an interrupt is generated if the check fails. 

More complex than the MOD type of order are the SUB 1 and 
SUB2 orders. These are concerned with accessing structures 
defined by 'dope' vectors (section 2.2.5), and each involves 
the accessing and manipulation of the dope vector 'triples'. 
From a performance point of view, these orders are little 
short of disastrous, since little or no overlapping can occur 
in the pipeline during their execution. In the sequence common 
to both SUB1 and SUB2 

B - XD[O] 
B * XD[1] 
DB = XD[2] 
MOD B 
XMOD 3 

the individual orders are created by Dr, which performs 
several cycles of operation in order to generate the necessary 
function and operand requests to OBS. An immediate problem 
which arises is that anyone of the three vector accesses 
could cause a CPRNEQ to occur, and once the order has been 
partially executed it cannot be re-started from the beginning. 
This and other problems associated with these orders have been 
solved in MU5, but with little elegance, and the details are 
best left to the reader's imagination. 

5.1.5 D-unit Interrupts 

Four different types of interrupt can arise within Dr and Dop 
as a result of descriptor accesses or the execution of 
structure access and store-to-store orders. They are 

Bound Check Fail 
Non-Zero Truncation 
Short Source String 
Illegal Access 

Should anyone of these errors occur, a corresponding digit is 
set in the DOD register (figure 5.2). In the Illegal Access 
case, the setting of the digit in DOD always causes a 'D 
Interrupt' signal to be sent to PROP, while in the other three 
cases this signal can be inhibited by the presence in DOD of a 
corresponding 'Interrupt Inhibit' digit. 
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The Bound Check Fail has already been discussed (sections 
5. 1 . 1 and '5. L 4). A Non-Zero Truncation (NZT) error arises if 
an array element being returned to store exceeds its specified 
length~ Dop detects this situation and sets the NZT digit in 
DOD. A Short Source String (SSS) error cah arise during the 
execution of the SLGC store-to-store order (section 7.4), in 
which the bytes of a source string and a destination string 
are logically combined and returned to the destination string. 
If the source string runs out before the destination string 
has been filled, the SSS digit is set in DOD and the order is 
termina.ted. 

Illegal Access interrupts can be generated in a number of 
ways. A descriptor access using a Type 0 descriptor can 
specify a 128-bit element, for example, but the hardware can 
only d-eal with elements up to -64 bits in length, and an 
interrupt would be signalled in this case. The store-to-store 
orders', which are concerned with manipulating strings of 
bytes, are obliged to use Type 1 string descriptors, and 
specifying any other type therefore generates an interrupt. 
Among the Type 3 descriptors, the Real Address and Read/Store 
Direct types are reserved for use by the Operating System and 
an interrupt occurs if an attempt is made to use either of 
these types in a user program. 

5.2 THE OPERAND BUFFER SYSTEM 

The Operand Buffer System (OBS) is invisible to user programs 
and exists simply to match the average accessing rate of array 
elements to the average rate of execution of instructions in 
the A-unit. Since array processing usually involves large 
arrays, OBS does not attempt to buffer large amounts of data 
in the hope that it will be used repeatedly. Instead it 
streams requests from its input stage out to SAC and queues 
the functions as they await the return of their operands from 
store. At the output stage of OBS these functions are 
re-connected with the stream of store words returning from 
SAC. In order to implement this scheme, however, sufficient 
operand buffers must be provided to accept data from all 
outstanding store requests. Because the buffer si~e of 128 
bits is larger than the average operand size, and because of 
the sequential nature of many array calculations, these 
buffers may frequently contain the operands corresponding to 
new requests from Dr. Thus by performing an associative search 
on these buffers at the input stage of OBS, many store 
requests can be avoided. The eight buffers incorporated into 
OBS for this purpose constitute a Vector Store. In addition, 
for the reasons outlined in section 2.3, OBS contains a Name 
Store, and since literal operands must sometimes be sent 
through the Secondary Instruction Pipeline to the A-unit, a 
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Literal Store is also needed (figure 5.11). 

A request sent to OBS from Dr normally consists of a 
function, accompanied by control information, and either a 
valid address without an operand (a vector or name address, 
for example), or a valid operand such as a literal, which has 
no address. In the latter case, the operand is simply written 
into the Li teral Store, while in the former case the address 
is looked up in the Vector Address or Name Address Store, and 
the appropriate action taken according to whether or not a 
match is found. 

Dr 

r-- --.-----
I OperanL 
I Buffer 

------------------- -1 
r-- I 

I System (OBS) 
Queue Bypass I 

I 
I 
I 
I 
I 

I 

Functions 

] 
I 

Vector 
Address 
Store 
Name 
Address 
Store 

ACC Function Queue r----L.-..., 
____________ Vector 

Literal Operands 

Dperands 

Name 
Operands 

Literal 
Operands 

l 

____________________ ..J 

Operand Address to SAC Data from SAC 

Dop 

Figure 5.11 Overall Diagram of the Operand Buffer System 

The function queue is only used for ACC instructions. Thus 
if an instruction sent from Dr is destined for the A-unit, it 
is written into the Queue, and when it reaches the output of 
the Queue, the Operand Store provides the appropriate operand 
store word to be sent to Dop with the function. If the 
function is destined for the B-unit, PROP or Dr, the Queue is 
bypassed by copying the function into the Queue' Bypass Line, 
which allows it to overtake ACC functions in the Queue. This 
is done for two reasons; firstly the B-unit, PROP and Dr are 
si tua ted at earlier positions in the Processor pipeline and 
are mainly concerned with supplying operand addresses to OBS 
in order to keep the A-unit (which is executing the 'useful' 
part of the program) busy, and al though they use secondary 
operands relatively infrequently, there would be no point in 
queuing these functions behind ACC functions. Secondly, in the 
case of an ACC order in the Queue causing a CPRNEQ, this order 
will lodge at the head of the Queue and will be joined by 
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subsequent ACC orders released by PROP before action is taken 
on the CPRNEQ interrupt. The CPRNEQ procedure itself requires 
access to secondary operands for use with B functions, and 
must therefore be able to bypass the Queue when the latter is 
blocked. 

The normal operation of the Operand Buffer System can be 
considered in terms of a number of functional control 
processes as shown in figure 5.12. The Input Process receives 
requests from Dr and decodes the function. It presents the 
operand address to the Virtual Address Store and makes a new 
entry when no match is found. The function, together with the 
appropriate Operand Store line number, encoded as a 'Tag', is 
then written into the Queue or Bypass Line. The Output Process 
reads a function from the Queue or Bypass Line and passes it 
on to Dop when its operand is available from the Operand 
Store. Data transfers into the Operand Store from SAC, Dop or 
Dr are also made under the control of the Output Process. The 
Store Request Process provides the interface with SAC, and 
organises transfers to and from SAC on behal f of other OBS 
processes (section 6.2.3). The Buffer Line Selec tion Process 
(section 6.2.2) selects the next line to be freed when a new 
entry into the Virtual Address Store is made by the Input 
Process. If the line to be freed has been altered since it was 
read from Local Store, then its contents are read out and the 
Local Store is updated before the line is overwritten. In the 
detail which follows it will be seen that much complexity 
arises out of the possibility of any store access causing a 
CPRNEQ interrupt. The Organisational Facilities of OBS 
(section 6.2.4) are concerned mainly with the actions taken 
following the occurrence of such a CPRNEQ interrupt and are 
controlled by means of V-lines. 

Dr 

Input 
Process 

Output 
Process 

Dop, 

Figure 5.12 OBS Control Processes 
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5.2.1 The OBS Input Process 

The Input Process controls the actions of the first two stages 
of OBS, which are mainly concerned with finding or creating an 
entry in the buffer stores for the operand associated with 
each order (section 6.2. 1 ) . The position of the entry is 
encoded as a Tag which is then carried through OBS, and if 
necessary SAC, with the order. In the output stage of OBS this 
Tag is used to obtain the operand from the buffer stores, and 
in the case of an order requiring an operand from SAC, the Tag 
is also returned with the corresponding store word, enabling 
the correct entry to be made into the Operand Store. 

In the case of a Ii teral operand, a new Tag is always 
generated, and as well as being sent to the Queue or Bypass 
Line, it is also used to make an immediate request to the 
Output Process for the literal to be written into one of the 
Literal Buffers. A better organisation of the system would 
have been to have the Literal Buffers as part of the Queue, in 
order to avoid the time penalty involved in writing into the 
buffer store, but cost and platter space considerations 
prevented this. 

For orders destined for the Bypass Line, the Control 
Register in PROP is not incremented until and unless CPR 
equivalence is obtained. lhese orders are abandoned by OBS in 
the event of a CPRNEQ, and are therefore prevented, by a 
'Function Hold', from proceeding beyond the input stages until 
the check for CPR equivalence has been successfully completed. 
Certain Queue functions are also held up and may be abandoned 
in this way. An ACC COMP order, for example, returns a result 
from the A-unit to the Test Digits in the Machine Status 
register in PROP, and since the latter is preserved by the 
interrupt entry instructions, but cannot be written to store 
while a COMP result is outstanding (section 4.2.6) such an 
order must not be allowed to lodge in the Queue as a result of 
a CPRNEQ. 

5.2.2 The Queue Read/Write Process 

To avoid long delays in OBS in cases where functions pass 
through a largely empty Queue, the Queue is implemented as a 
six-line random access store addressed by two counters, the 
Queue Read Counter and the Queue Write Counter (figure 5.13). 
Information is entered into the 'tail' of the Queue at the 
location addressed by the Queue Write Counter, and is read out 
again when that location has become the 'head' of the Queue, 
as a result of being addressed by the Queue Read Counter. Thus 
if the Queue is empty when a new request is received, both 
counters address the same location and the time for the 
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function to pass through OBS is around 200 ns. If the Queue 
had been organised as a straightforward pipel:i.ne, this time 
would have been around 800 ns. The operation of the Queue 
Counters is organised by the Queue Read/Write Process, which 
accepts read requests from the Output Process and write 
requests from the Input Process (figure 5.12). 

Queue 
Read 
.counter SRM RM 

WM 

Address 
Buffers 

Normal 
RS 

WS 

Input to Output from 
Queue Queue 

Figure 5.13 The Queue Function Addressing System 

Queue 
Empty 

Queue 
Full 

A write operation is requested by the Input Process when a 
function is ready to be -transferr'ed into the Queue. Provided 
that the Queue is not full, and that a read request (which has 
higher priority) is not outstanding, the write sequence is 
started as soon as the Queue Read/Write Process has finished 
its previous cycle of operation. The address of the tail of 
the Queue is held in the Write Counter Slave register (WS in 
figure 5. 13), which is therefore selected for decoding. The 
new function, Tag, and Dop, bits are then written into the 
line addressed by WS 1 and at the end of the cycle WS is 
updated from the Write Counter Master WM. WM is incremented at 
the start of a write cycle to allow a check for the 'Queue 
Full' condition to be carried out in parallel with the write 
opera tion . The Queue becomes full if WM addresses the same 
location as the Second Read Counter Master (SRM) which 
normally indicates the position of the function which was last 
read from the queue, and which may be read again following a 
CPRNEQ (section 5.2.5). When Queue Full occurs, further write 
cycles are inhibited until a read cycle causes SRM to be 
incremented, and the Queue Full condition to disappear. 

Read cycles of the queue are initiated by the Output 
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Process, which specifies whether or not the read count should 
advance for a particular cycle. This enables a read/re-cycle 
to take place when the operand required by a function read 
from the queue is found to be unavailable. If the operand is 
available, a counter advance is required, and the position of 
the next line to be read is specified by the Queue Read 
Counter Slave RS. In this case RS is normally copied into both 
read counter masters RM and SRM.. If the operand is 
unavailable, no advance is required, and since the next line 
to be read is already specified by RM, no copying takes 
place. 

During a read cycle, the contents of RM are selected to 
address the Queue. RM is also compared with the Write Counter 
Master WM, and if a match is found, the 'Queue Empty' 
condition occurs. Queue Empty indicates that the line 
currently being read has not yet been filled by the write 
sequence, and hence its contents are non-valid. When 
appropriate, RS is incremented at the end of the cycle to 
indicate the line to be read by the next cycle. 

5.2.3 The OBS Output Process 

The Output Process controls the interface which passes orders 
from OBS to Dop, and organises all accesses to the Operand 
Store. The issuing of an order from OBS to Dop involves 
extracting a function from the Queue or Bypass Line and 
passing it on to Dop with the appropriate store word read from 
the Operand Store. The Operand Store may be accessed from 
various sources (section 6.2), so that Operand Store lines may 
be filled, altered, used to update the Local Store, etc. 

Provided that the Queue is not empty, the Output Process 
normally requests another read cycle of the Queue Read/Write 
Process as soon as action on the preceding function has been 
completed. When a Queue Read/Write Process response indicates 
that the Queue has been read, the Output Process action 
starts. The Queue Tag is selected and is used to address the 
Operand Store for a read cycle, and to access the 
corresponding digit in the 'Full Register' (section 6.2). The 
Full Register contains one digit for each line in the Operand 
Store indicating whether or not its contents are valid. 
Following a non-equivalence in the Virtual Address Store, for 
example, it indicates whether or not the store word has been 
returned by SAC. If the Full digit is 0 for the selected line, 
a second request is made to the Queue Read/Write Process, but 
the- Queue Read Counter is not advanced, so that the same 
function is read from the Queue as before. The Output Process 
cycles again, and the sequence is repeated until the required 
store word is found to be available. The store word is then 
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read out and sent to Dop together with the function and Dop 
bits. The next cycle of the Queue Read/Write Process will then 
advance the Queue Read Counter, so that the next function in 
sequence is extracted from the Queue. 

In the case of a Bypass function, a request for action is 
made to the Output Process as soon as a function is 
transferred into the Bypass Line. The action taken by _ the 
Output Process in this case is similar to that for a function 
from the Queue so that if the Output Process finds that the 
store word required by the Bypass -function is available, it 
reads it out and sends it to Dop, together with the function 
and Dop bits, whereas if the store word is not available, it 
re-cycles until the store word becomes available, and then 
sends the function, Dop bits and store word to Dop. 

5.2.4 Queue Management after a CPRNEQ 

When a store request made to SAC from any unit in the MU5 
Processor causes a CPRNEQ, subsequent requests from all units 
are abandoned by SAC. Thus OBS requests subsequent to one 
causing CPRNEQ are not answered, and the first such function 
to reach the head of the Queue effectively blocks the Queue to 
all subsequent Queue functions. Meanwhile, however, SAC 
informs Dr and PROP of the CPRNEQ and these units take 
alternative action. Functions trapped in the Queue cannot be 
re-executed from PROP, since the Control Register is 
incremented for them as soon as they are accepted by Dr. 
Furthermore, it is essential that in this situation it should 
still be possible to execute Bypass functions, so Dr and the 
input stages of OBS should not contain Queue functions after 
the Queue has been blocked. For this reason action is taken on 
every request from Dr to OBS to regulate the number of entries 
in the Queue. 

Thus whenever action is initiated in Dr for a Queue 
function" the contents of a 'Queue Gauge' are raised up by one 
position, or by two in the case of a String Descriptor access 
crossing a store-word boundary. The Queue Gauge is lowered by 
one whenever a CPRNEQ reply is received from SAC in response 
to either a Queue function access or a 'CHECK ONLY' request. A 
CHECK ONLY request is one made specially for this purpose by 
OBS to SAC when the operand for a Queue function is already in 
the OBS buffers. Once such a request has passed the CPR 
equivalence checking stage in SAC and a reply has been sent to 
OBS, it is abandoned. Thus, since any new order entering Dr 
can cause one or two Queue entries to be made, an output is 
taken from the Queue Gauge indicating whether or not the OBS 
Queue contains room for two or more new entries. If, at the 
~nd of the current order in Dr, there is room for two more new 
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entries, the order terminates normally and a new order can be 
accepted. If there is not room for two more new entries, one 
of three si tua tions may occur. If the next order does not 
require a Queue entry, the current order terminates normally 
and action for the next order is begun. If the next order 
requires a Queue entry, termination of the current order is 
held up until sufficient entries have been deleted from the 
Queue Gauge, or else a CPRNEQ reply is received. In the latter 
case the next order , which ~as not yet been accepted by Dr, 
and for which the Control Register has therefore not been 
incremented, is abandoned, and the interrupt entry sequence 
(section 4.1.2) is entered instead. 

The address causing CPRNEQ is available as a V-line in SAC 
(section 6.4.3) and is examined by the CPRNEQ interrupt 
procedure which establishes the location of the required block 
using only primary operands or bypass functions. If this block 
is currently contained in the Local Store, then it is only 
necessary to set up a CPR. If the required block is currently 
contained in some other level of the storage hierachy, 
however, then a block transfer is required between storage 
levels before a CPR can be loaded (section 9.3). 

If a CPR can be loaded, the interrupted process can be 
re-entered immediately. The OBS store requests which were 
abandoned when the CPRNEQ occurred are then remade under the 
control of a 'Re-start' sequence (one of a set of 
organisational commands controlled by the V-store mechanism 
(section 6.5)), after which the execution of the process can 
continue. If a block transfer is required as a result of the 
CPRNEQ, then a significant delay is involved, and a change to 
another process is necessary if efficient use is to be made of 
the Processor. In order to effect this change, the Queue must 
be cleared, and the functions of the interrupted process 
preserved, so that when the Processor is ready to resume the 
in terrupted process, the Queue can be restored to its former 
state, ready for the Re-start sequence. Two further 
organisational commands, the 'Dump' and 'Undump' Sequence are 
used by the Operating System to preserve and restore the Queue 
for this purpose. The Dump may take place to any address 
specified by the software, and a number of dumped queues may 
thus be in store at any time. 

5.2.5 Double Access Orders 

Double access orders originating in the Secondary Instruction 
Pipeline (cf. double access orders originating in the Primary 
Instruction Pipeline (section 4.2.4)) are of two types, those 
involving one operand which, due to the addressing flexibility 
available through the Type 1 descriptor mechanism, is partly 
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contained in one 64-bit store word and partly in an adjacent 
store word (section 5. 1 .2) and those involving two operands 
which constitute the source byte and destination byte 
respectively of a store-to-store order pair (section 7.4). In 
either case, Dop can only process these double accesses. as an 
entity, and special action is required in the case of CPRNEQ. 

If the access is for an ACC order, then the Input Process 
enters the two phases of the order into the Queue normally. If 
a CPRNEQ occurs for the first access, then this will cause 
both accesses to lodge in the Queue, and the normal techniques 
used for Queue management after a CPRNEQ can be applied. If a 
CPRNEQ occurs for the second access, however, then the first 
order will have been issued to Dop, but must be abandoned, and 
must be re-issued when the Queue is re-started. These actions 
require the use of the two Read Counter Masters, RM and SRM, 
(figure 5.13), one of which records the position in the Queue 
of the first phase of the order, while the other addresses the 
second. RM and SRM normally advance synchronously when 
functions are read from the Queue, but when the first phase of 
a double access order is read, its address is frozen in SRM, 
until the second phase has been read using RM, which continues 
to increment normally. If the two phases are issued to Dop 
wi thout interruption, RM and SRM are resynchronised when the 
next function after the double access pair is read and RS is 
copied into RM and SRM. In the situation where the second 
phase causes a CPRNEQ, the Output Process receives a 'Run 
Down' signal from SAC, after the first phase has been sent to 
Dop, indicating that no further operands will be returned 
(section 6.4.3), and it therefore sends a control signal to 
Dop which causes the first phase of the order to be abandoned. 
The Output Process also makes a last read request to the Queue 
Read/Write Process, accompanied by a control digit which 
causes SRM to be copied into RM. The counters are thus 
resynchronised and address the first phase of the double 
access order again. The first phase is then ready to be 
re-issued to Dop when the process is re-started, or is 
available to the Dump Sequence for preservation and subsequent 
restoration and re-issue by the Undump and Re-start Sequences. 

5.2.6 Store Orders 

As in the case of orders which write to a primary operand 
(sec tion 4.2.5), special action is taken to deal with store 
orders in the Secondary Instruction Pipeline. In this case, 
however, the commonly occurring store orders are 'ACC => name' 
and 'ACC => vector', rather than 'B => name'. Thus, just as a 
'B => name' order does not reach the B-uni t until some time 
after the required access has been made to the PROP Name 
Store, an 'ACC =>, order does not reach the A-unit until "some 

106 



time after the required access has been made to the OBS' 
Operand Store. A similar arrangement to that in the Primary 
Instruction Pipeline is used to avoid the consequential 
hold-up. 

When an 'ACC =>, order is sent from OBS to Dop, the Dop 
bits and the Tag are preserved in an AW register and the Full 
digit of the corresponding line in the Operand Store is set to 
O. When the operand becomes available from the ACC it is 
copied into the Dop input buffer and a request is made to the 
OBS Output Process. The Tag held in AW is used to re-access 
the Operand Store and the required 64-bit store word is sent 
to Dop, together with the Dop bits .held in AW. Dop performs 
the appropriate merging of the store word from OBS and the 
operand from the ACC (section 5. 1) and then signals to OBS 
that it requires to write the altered store word back to the 
Operand Store. This action is performed by the Output Process, 
again using the Tag in AW to address the Operand Store. The 
Full bit of the line, which was cleared when the store order 
was originally sent to Dop, is now set to a 1. As long as the 
Full bit is zero, any subsequent order trying to access the 
line is held up at the output stage of OBS, just as if the 
store word had not been returned from SAC following a 
non-equivalence in the Virtual Address Store. 

5.2.7 Special Descriptor Actions 

Special action is necessary in OBS for Real Address, 
Read/Store Direct and Read & Mark descriptor accesses, since 
it is a requirement of these accesses that no entry should be 
left in the OBS store. The In~ut Process proceeds normally for 
these accesses, and enters the address into the empty line in 
the Name part of the Virtual Address StQre. The free name line 
is used because each of these Descriptors refers specifically 
to a 64-bit quantity, and' the use of the line is to be 
transi tory. The appropriate request to SAC is then made but 
the order is held up in the input stages. In addition', the 
action of the Buffer Line Selection Process, which normally 
creates a new empty line at this point, is suspended. Provided 
that CPR equivalence is obtained from SAC, the order is 
released by the Input Process, enters the Queue or Bypass line 
as appropriate, and is then passed on to Dop as soon as the 
required operand is received from SAC. When the normal OBS 
action for this order is complete, including., if necessary, 
the receipt of the response to a write order, the Buffer Line 
Selection Process is allowed to continue its line freeing 
sequence with the constraint that for the next name access it 
must re-allocate the line used for ~he special descriptor 
access. 
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6 Store Organisation 

During the running of a process in the MU5 Processor, the 
information referred to by the virtual addresses it generates 
may exist in anyone of the several real stores which make up 
the MU5 storage hierarchy (figure 6. 1 ). Thus most operand 
requests are satisfied by the high-speed integrated circuit 
stores contained within the Processor, but some require access 
to a higher level of storage. Interactions between the 
Processor and the Local Store are organised entirely by 
hardware, but interactions between other levels in the 
hierarchy involve a combination of both hardware and software 
techniques. The software aspects of the system are discussed 
in Chapter 9, while in this chapter we consider the hardware 
techniques. 
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Addresses are genera ted wi thin three uni ts of the 
Processor, instruction addresses in the IBU, and operand 
addresses in PROP and SEOP, both of which contain high-speed 
associatively addressed integrated circuit stores. When an 
operand access cannot be satisfied by this level of storage, 
the hardware automatically sends a 'Main Store' request to the 
Store Access Control Unit (SAC). SAC co-ordinates the 
interaction between the Processor and its Local Store and 
between both of these Units and the Exchange. It also contains 
the Current Page Registers (CPRs) which effect the translation 
of the virtual addresses sent as 'Main Store' requests by the 
Processor into the real addresses required for accessing the 
stores. Normally these addresses refer to the Local Store, but 
may refer to some other store in the complex (the Mass Store, 
for example), by suitable loading of the real address field of 
the CPRs. In the event of the CPRs giving non-equivalence, an 
interrupt is generated, and the Operating System organises any 
necessary transfer of pages (section 9.3) and the loading of a 
CPR. The interface between the hardware and software 
components of the store organisation system is provided 
through the V-store, which is also described in this chapter. 
In addition, the Operating System may use Real Address 
descriptors (section 5.1.3), for which the CPR address 
translation mechanism is bypassed, to address certain areas of 
real store directly. 

6.1 THE PROP NAME STORE 

We saw in Chapter 2 how the original single Name Store 
developed into two parts, a 32-line store in PROP (section 
4.2) dealing mainly with names used by the B-uni t, PROP and 
SEOP, and a 24-line store within the Operand Buffering System 
( sec tion 5.2) deal ing mainl y wi th names· used by the A-unit. 
The PROP Name Store [20] constitutes two stages of the PROP 
pipeline. Its address field (figure 6.2) is 20 bits wide, 4 
bi ts for the Process Number (PN), 15 for the address wi thin 
the Name Segment and 1 bit to distinguish 4 lines which are 
reserved for Level a interrupt procedures (section 2.3.1). The 
segment address is not included since it was assumed that the 
Name Segment would usually be segment zero. In the rare event 
of a process using a Name Segment different from zero, the 
Operating System must purge the Name Store on each entry to 
and exit from that process. In any case it was not expected in 
general that the names in use by a process would still be in 
the Name Store after another program had run. The PN bits are 
really provided to allow brief and rapid excursions through 
Operating System modules which run as separate processes. Each 
of the 28 normal lines also has a bit in each of three status 
registers. These are the Line Used register (LU), indicating 
whether the line contains valid information, the Line Altered 
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register (LA), indicating whether the contents f)f the value 
field have been overwritten by the action of a store order, 
and the Line Pointer register (LP), indicating the line of the 
Name Store to be used when a new name is next entered into it. 
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Figure 6.2 The PROP Name Store 
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The normal action in the PROP pipeline is for a virtual 
address generated in the first two stages to be copied into 
the Interrogate Register (IN) and concatenated with the PN 
bi ts, at each pipeline beat. If a match is found in the 
associative store, and the corresponding Line Used digit is 
set to 1, then an equivalence has occurred, and on the next 
pipeline beat a digit is set in the PROP Line Register, PLR. 
The digit in PLR then selects a register in the Value Field, 
and the 64-bit word is read out and copied into the Value 
Field Register (VF) by the next beat. At the same time, checks 
are made to determine whether 

(1) an equivalence occurred 

(2) a 'B Write Equivalence' occurred 

(3) multiple equivalence occurred 

The check for equivalence simply requires an OR operation 
on the digits in PLR. If no digit is set, however, this 
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indicates non-equivalence, and the Name Store is updated by 
transferring a new word into it and discarding an old one. It 
would clearly be inefficient to enter software to organise 
this one-word transfer, so the transfer is controlled directly 
by hardware. A 'B Write Equivalence' occurs if the line giving 
equivalence is the target line of an outstanding 'B => name' 
order, and this causes a pipeline hold-up (section 4.2.5) 
until the operand value has been returned from the B-unit and 
written into the Name Store. A multiple equivalence occurs if 
a hardware malfunction in the associative field causes more 
than one line to give equivalence. In this case a System Error 
interrupt is generated (section 4.2.8). 

When a Name Store entry is replaced the hardware must take 
into account the effect of store orders. To maintain the speed 
advantage of the Name Store, store orders only update the 
value of an operand in a Name Store. (This arrangement is 
significantly different from the IBM Cache Stores, for 
example, where both the buffer and the main store are updated 
togethe~). Thus the old word may have to be copied back to the 
Local Store before it is overwritten. The decision concerning 
which line to replace requires the use of a replacement 
algori thm, and the effects of various replacement algorithms 
were studied by simulation before the Name Store was built 
[21]. These varied from a simple cyclic replacement algorithm, 
requiring a mlnlmum of additional hardware for its 
implementa tion, to a mul tipl~-use digit algorithm requlrlng, 
for a 32-line store, 32 5-digit counters. Very little 
difference in performance was found among these different 
algorithms, and the simple cyclic one was therefore chosen~ 

The actions which take place when a non-equivalence is 
detected also depend upon whether the order is destined for 
the A-unit and whether the requi~ed operand is already in the 
OBS Name Store. The OBS Name Store is meant to keep names used 
by ACC functions and the PROP Name Store to keep those used by 
non-ACC functions. Thus for a non-ACC order the normal 
situation is for equivalence to occur in the PROP Name Store, 
while for an ACC order the normal situation is for a 
non-equi valence to occur in the PROP Name Store and 
equivalence to occur in the OBS Name Store. However, the same 
name might be accessed by both kinds of orders, and the 
hardware must guard against the possibility that a name is in 
the 'wrong' Name Store. 

'6.~.2 Non-equivalence Actions 

A PROP Name Store non-equivalence is detected as the 
corresponding order enters Stage 4 of the PROP pipeline. It is 
signalled by a 'non-equivalence' digit set in register F4, 

111 



which creates a hold-up, and causes the normal control signals 
decoded for the instruction to be overridden. The address of 
the required operand is in register VA at this s,tage, and 
register VF contains zero. When the next beat occurs, and the 
order is copied into Stage 5, the control signals set up by 
the 'non-equivalence' digit cause a WAIT condition to be set 
(section 4.2. 1) and a special order is sent via D'" to OBS. 
This order carries the non-equivalence address (including the 
Name" Segment number) through to OBS and causes OBS to access 
its Name Store. If OBS finds equivalence, it returns the 
64-bi t store word to PROP via Dop and the Central Highway, 
while if it finds non-equivalence, it makes an access to SAC 
on behalf of PROP so that the 64-bit store word will be 
returned direct to PROP from the Local Store. 

The setting of the WAIT condition in PROP causes the 
initiation of the next beat to be held up until the 
appropriate actions have been completed (figure 6.3). The 
first actions are the preparation of a line in the Name Store 
to receive the new address and store word and the copying of 
the new address, currently held in register VA, into the 
Interrogate Register (IN). The Name Store line to be replaced 
is indicated by the Line Pointer Register (LP), which contains 
one bit corresponding to each line in the Name Store and has, 
a t any time, only one digit set to a 1. Thus LP is simply 
copied into register PLR (using the set/re-set inputs of the 
flip-flops), in order to select the line for replacement. Two 
possible conditions are checked, however, and if necessary 
deal t with, before the line is ready to be overwritten with 
the new address and value. The first is that the selected line 
may be the target line of an outstanding 'B => name' order 
(section 4.2.5). If it is, LP is moved on to select the next 
line. This is done by first copying the content of PLR back 
into LP, and then copying LP into PLR. The outputs from PLR 
are routed back to the Line Pointer with a 1 digit shift, thus 
implementing the simple cyclic replacement algorithm. The 
second condition is that the contents of the selected line may 
have been al tered by the action of a store order. This is 
checked using the appropriate digit in the Line Altered 
register. If it has, the virtual address and value are read 
out, and a write request is made to SAC. The selected line is 
then ready for overwriting. 

The next action which occurs depends on whether the store 
word is returned from SAC or OBS, or on whether a CPR 
non-equivalence occurs, in which case no store word is 
returned, but the interrupt sequence is entered instead. If 
the store word comes from SAC, then when it arrives the 
address and value are written into the Name Store, the content 
of PLR is copied back into the Line Pointer in preparation for 
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the next non-equivalence, and the correspondtng btts in LU and 
LA are set to 1 and 0 respectively. 

Copy LP-PLR, VA-IN 

Yes 

Copy LA & LP--PLR 

Operand from 
SAC Available 

~--------~--------~ 

Yes 

Send Address + Value to SAC 
Re-set LA 

Figure 6.3 The Name Store Non-equivalence Routine 

Al though the actions needed to update the Name Store are 
complete at this point, the contents of the PROP Line Register 
and Interrogate Register no longer correspond to the orders in 
Stages 2 and 3 of the pipeline, and must be restored. PLR is 
restored first by copying the address in register VQ into IN, 
and after a delay to allow for association, PLR is re-strobed. 
(Preserving a previous copy of PLR for use at this time would 
not be satisfactory, since it might be the line newly 
overwritten.) The address in register NQ is then copied into 
IN, and the actions are complete. Had a longer PROP pipeline 
beat time been adopted at the outset of the design, these 
complications could well have been avoided. 
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In the case where OBS indicates that the required store 
word is in its Name Store, then if all 64 bits are to be 
overwritten by a store order, the store word is not actually 
returned to PROP. In this case OBS simply deletes its copy and 
PROP assumes it to have ?rrived immediately, thereby reducing 
the non-equivalence delay time. In cases where the operand is 
not deleted from the OBS Name Store, then the only further 
action required in PROP is the restoration of PLR and IN 
before the routine is complete. (The clearing of a line 
earlier in the routine only copies its content back to the 
Local Store and sets it 'unaltered', so the Name Store is not 
disturbed.) If the operand has been deleted from OBS and 
returned to PROP, the actions are as for an operand from SAC. 

6.1.3 Actions for ACC Orders 

Al though the normal si tua tion for an ACC order using a named 
operand is for non-equivalence to occur in the PROP Name Store 
and equivalence to occur in the OBS Name Store, equivalence 
may be found in the PROP Name Store on some occasions. For 
example, a 32-bit variable required for an ACC order might be 
contained in the same 64-bit store word as a 32-bit variable 
already in use by Borders. Unless the ACC order finding 
equivalence is a store order, then the operand is read out as 
for a non-ACC order and carried through to OBS as though it 
were a literal, so that no access is. made to the OBS Name 
Stor&. If the ACC order finding equivalence is a store order, 
however, (ACC Write Equivalence) then action is taken to 
delete the word from the PROP Name Store. 

The actions for an ACC Write Equivalence are initiated in a 
similar way to those for a non-equivalence for a non-ACC 
order. Thes,e actions are similar tc)' those involved in 
preparing a line for a non-equivalence and in restoring the 
pipeline at the end. The appropriate address and value are 
read out of the Name Store and sent to SAC, and the 
appropria te digits in the LU and LA digits are then set to 
zero, in order to mark the line empty. When the order reaches 
OBS its operand will not, of course, be found in the OBS Name 
Store, and the normal OBS non-equivalence actions will be 
initiated (section 6.2.1). It will now be clear that the 
management of the name stores of MU5 is complex by comparison 
with the Cache approach. The complication was thought 
acceptable because it gives rise to a high 'hit-rate' and a 
high rate of instruction execution between 'misses'. 

6.1~4 Organisational Facilities 

Ideally the Name Stores should be transparent to the software. 
They mostly are, but some par.ts of the paging and program 
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· changing software need to take account of their existence. The 
organisational facilities in the PROP Name Store are provided 
for this reason. They are controlled by the use of V-lines, 
and apply to the 28 user lines. An organisational facility is 
acti vated when the appropriate V-line is specified as the 
operand of a store order. Thus, writing to one of the V-lines 
associated with the PROP Name Store causes all the Line 
Altered and Line Used digits to be re-set to' zero, and another 
causes the Line Pointer to be re-set to pOint to Name Store 
line O. Re-setting the Line Used and Line Altered digits 
effectively destroys information contained in the store since 
the Local Store is not updated for those operands which have 
been altered. The purge facility allows the store to be 
emptied without loss of information. The Line Pointer is 
re-set to line 0 when a purge is initiated and each line is 
then read in turn. As each line is read, it is checked for 
being al tered , and if it is, an access is made to SAC to 
return its value to the Local Store. The line is then set 

~ 

unused and the pointer is incremented. This facility is 
normally used by the CPRNEQ interrupt procedure if the CPR 
being overwritten has references to it within the Name Store. 
The software can check for this situation by using the search 
facility. 

A Name Store Search requires two V-lines to be set up, one 
containing a mask corresponding to the page/block size 
involved, and one the virtual block address. When the address 
is set up, association occurs over all non-masked digits, and 
one or more lines may give equivalence (the multiple 
equivalence interrupt is suppressed in this case). The output 
from the equivalence detecting logic is used to set one of the 
Test Register digits, so that a subsequent control transfer 
order will jump ·to the appropriate sequence of instructions 
according to whether or not references to ~ the block address 
exist in the Name Store. 

6.2 THE OBS STORE 

The 'Operand Buffer System buffers three kinds of operand, 
vectors, names and literals. The vector and name parts require 
both Virtual Address and Value Fields, while the literal part 
requires only a Value Field to provide temporary storage for 
the literal operands of functions in transit through the OBS 
Queue (section 5.2). Thus the Virtual Address Store contains 
32 associa ti vely addressed registers (figure 6.4). Of these, 
24 are dedicated to name entries, and are 33 bits in length (4 
Process Number bits, 14 Segment bits and ~5 bits addressing a 
64-bit word), while the remaining eight are dedicated to 
vec tor en tr ies , and are 32 bi ts in leng th (4 Process Number 
bits, 14 Segment bits and 14 bits addressing a 128-bit word). 
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Figure 6.4 The OBS Store 

In addition, each line in the Virtual Address Store has a 
corresponding bit in each of two Status Registers, the 'Write 
Line Pointer' (WLP) and the 'Ignore Register' (IG). The Write 
Line Pointer normally has two bits set, one pointing to the 
next free line to be used in the event of a vector 
non-equivalence and one pointing to the next line to be used 
in the event of a name non-equivalence. The Ignore Register 
corresponds to the Line in Use Register in the PROP Name 
Store, except that the meaning of the digits is inverted. A 
bit set in the Ignore Register causes any equivalence 
occurring in the corresponding line in the Virtual Address 
Store to be ignored. 

The Operand Store contains 24 lines for holding 64-bi t 
words, eight lines for holding 64-bit literals and nominally 
eight lines for holding 128-bi t words, although these are 
actually implemented as 16 lines each holding a 64-bit word. 
Corresponding to each line in the vector and name fields is a 
digit in each of two further Status Registers, the 'Full' 
Register (FL) and the 'Line Altered' Register (LA). The Full 
Register indicates whether the contents of a name or vector 
line in the Operand Store are available. When the Full bit of 
a line accessed by the Output Process (section 5.2.3) is not 
set, then either it is waiting to be filled by the return of a 
store word requested from SAC, as a result of a 
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non-equivalence in the Virtual Address Store, or to be updated 
from Dop by an outstanding store order. The Line Altered 
Register is exactly equivalent to the Line Altered Register in 
the PROP Name Store. If the Altered bit of a line is set, then 
its contents have been altered by the action of a store order. 

6.2.1 Normal Operation 

In the PROP Name Store the address and value fields constitute 
adjacent stages of the pipeline and the action in the event of 
non-equivalence is to inhibit the normal operation of the 
pipeline until the Name Store has been updated. In OBS the 
address and value fields are separated by the Queue, and the 
basic aim of the system is to stream requests out to SAC while 
queuing up functions awaiting the return of the corresponding 
operands. The normal operation of the OBS Store is therefore 
different from that of the PROP Name Store. When an address is 
copied into IA for association in the Virtual Address Store, 
it l.s also written} at the same time, into a free line in each 
of the name and vector areas, as selected by bits in the Write 
Lj.ne Pointer. The outputs of the associative registers are 
combined with the corresponding bits in the Ignore Register 
and copied into the OBS Line Register (OLR), so that the 
latter will only contain a 1 if equivalence occurred between 
the interrogate address and a line already in use. The 
position of this bit in OLR is encoded into a Tag (section 
5.2.1) and copied into the Queue or Bypass Register according 
to the type of function. In the output stage of OBS this Tag 
is used to access the Operand Store. 

In the case of non-equivalence, no digit will be set in 
OLR, but the only action now required to create a new entry in 
Virtual Address Store is tpe re-setting of the appropriate 
digit in the Ignore register. In this case the Tag is supplied 
by the Buffer Line Selection Process (section 6.2.2), which 
must then create a new free line so that the normal action of 
association/writing can be carried out on the next address. 

6.2.2 The Buffer Line Selection Process 

The function of the Buffer Line Selection Process is to ensure 
the availability of a free line in both the name and vector 
parts of the Virtual Address and Operand Stores prior to each 
cycle of the Input Process, and to update the Local Store when 
necessary. In order to carry out this function, it uses the 
Tag system to access and manipulate the information contained 
in the Status Registers associated with the buffer stores. In 
addition, before freeing a line for re-use, it checks that the 
line is not currently referenCed by a function in the Queue or 
Bypass Line. This 'Referenced' Status is obtained by comparing 
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the Tag for the line to be cleared with the contents of the 
Tag Queue and Bypass Tag Buffer. 

A Buffer Line Selection Process cycle is initiated whenever 
an Input Process cycle is started, the latter indicating 
whether a name, vector or literal cycle is required. The line 
freeing sequence uses three counters, one each for names, 
vectors and literals, to determine the line to be freed, so 
that the replacement algorithm is cyclic in each case. In the 
case of a literal cycle the new line will always be needed, 
while in the case of a name or" vector cycle the delay incurred 
in the event of a non-equivalence is minimised by overlapping 
the two activities. In the case of equivalence, no new line is 
needed and the Buffer Line Selection Process cycle is 
abandoned. If non-equivalence occurs, the Input Process 
re-sets the Ignore bit of the name or vector line 
corresponding to the bit in WLP, and the corresponding Tag is 
written into the Queue or Bypass Line and sent to SAC with the 
store request. The new line to be freed is then selected by 
incrementing the appropriate counter. Provided that the 'Full' 
and 'Referenced' signals indicate that the line is not waiting 
to be filled from SAC or Dop, and that it is not currently in 
use by a function in OBS, then it can be freed. Otherwise the 
selected counter is re-incremented until an available line is 
located. The position of this line is then set in WLP, and the 
corresponding Ignore bit set. If the selec ted line is not 
Al tered, then the line may be freed .. immedia tely by clearing 
the Full bit, whereas if it is Altered, its contents must 
first be sent back to store via SAC. 

6.2.3 The Store Request Process 

The Store Request Process organises data transfers between OBS 
and SAC, making requests to SAC on behalf of the Input Process 
(section 5.2.1), the Buffer Line Selection Process (section 
6.2.2) and the Organisational Facilities (sections 5.2.7 and 
6.2.4). The Input Process makes a request for a transfer from 
Local Store whenever a name or vector operand is required, but 
no action is taken by the Store Request Process until the 
resul t of the association of the input address is known. If 
non-equivalence is obtained, a store request is made to SAC 
accompanied by the Tag generated by the Buffer Line Selection 
Process. The Tag is carried through SAC and returned to OBS 
with the required store word, and is then used by the Output 
Process to select the appropriate line in the Operand Store 
when writing in the store word. The data returning from SAC 
may be a 64-bi t word or 128-bi tWOI'd, but as in the case of 
the SAC IBU interface (section 4.1.1), the data highway is 64 
bi ts wide, and a 128-bi t word is returned as two successive 
64-bit words. If equivalence is obtained; a request is still 
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made to SAC, but a control digit accompanying the request 
indicates to SAC that the request is a 'CHECK ONLY' request 
and no store access is required (section 5.2.1). 

6.2.4 Buffer Store Organisational Facilities 

The Buffer Store organisation facilities in OBS are similar to 
the organisational facilities in the PROP Name Store (section 
6. 1 .4) and are similarly controlled by the use of V-lines. 
Thus writing to one of the OBS V-lines causes the Ignore, Full 
and Altered bits to be cleared, sffectively destroying all the 
information contained in the stores, while writing to another 
V-line can initiate Clear or Purge actions. The Clear facility 
involves scanning through the Vector and Name lines of the 
store, and updating the Local Store whenever a line is found 
to have been altered. The Altered bit is then cleared, but the 
line remains otherwise unaffected. The Purge facility is 
similar to Clear, but in addition, the Ignore bit of each li~e 
is set so that the store is left in an empty state. The Searen 
facility is used in the same way as the PROP Name Store Search 
to check that a CPR which is about to be overwri tten is not 
required by an entry in the Buffer Store. The resul t is 
combined with the result from the PROP Name Store Search so 
that the Test Digit indicates whether or not references to the 
block address exist in either store. 

6.2.5 Interactions between the PROP and OBS Stores 

The interactions which occur between the PROP and .OBS Stores 
as a result of name accesses have already been described. 
Additional interactions occur, however, if a descriptor access 
is made into the Name Segment (Name Segment Equivalence). The 
checking of name addresses in the PROP Name Store normally 
occurs for all functions as part of the PROP pipeline actions. 
A name address arising from a descriptor access is generated 
at a later stage in toe pipeline than the PROP Name Store, 
however, although earlier than the OBS Name Store. Thus in the 
case of Name Segment Equivalence (NSE) occurring, the aBS Name 
Store can be checked normally, whereas special action must be 
taken to check the PROP Name Store. This is one of the most 
difficult problems arising in MU5 from the use of the naming 
concept and a pipeline structure in its design. The ad hoc 
solution adopted is far from ideal and arises partly from pin 
limitation problems around platter boundaries. 

The occurrence of a Name Segment Equivalence is detected by 
Dr, which does not send its normal accept signal to PROP, but 
instead signals that an address check with the PROP Name Store 
may be required. The order is passed on to aBS in the normal 
way, together with an NSE control digit (figure 6.5). This 
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digit causes a hold-up in OBS and also causes OBS to treat the 
access as a name rather than a vector. The association of the 
address takes place in OBS, and if non-equivalence is found, 
an access must be made to the Local Store. Before this can 
occur, however, the PROP Name Store must be checked. OBS 
therefore makes a special request to SAC, since no direct 
route exists to PROP, with a control digit set to indicate 
that the request should be sent to the PROP Name Store. If the 
PROP Name Store contains the address, the word is returned to 
SAC, its Use digit is set to zero and a proceed signal is sent 
to OBS. If the PROP Name Store does not contain the address, 
the proceed signal is sent immediately. 

NSE Request Enters OBS 

Yes 

Send Virtual Address via SAC to PROP 

No Send 'OBS =' to PROP 

Yes 

Release NSE Hold-up 

Figure 6.5 Name Segment Equivalence Actions 

When OBS receives the proceed signal it clears the Ignore 
bit of the free line in the name field of the Virtual Address 
store, makes the normal request to SAC for the required store 
word, and clears the NSE hold-up. At the same time, if the 

120 



operand was found in the PROP Name Store, PROP abandons the 
orders in its pipeline and re-executes them all by forcing a 
control transfer to the order following that which found Name 
Segment Equivalence. This is essential since the descriptor 
access could be writing to the operand concerned, and this 
operand could also be required by the order in Stage 4 of the 
PROP pipeline at the time when the Name Segment Equivalence 
occurred. In this case an out-of-date value would have been 
obtained from the PROP Name Store. If OBS equivalence occurs, 
then no check in PROP is required. This case is signalled to 
PROP and the NSE hold-up is cleared immediately. 

6.3 THE LOCAL STORE INTERFACE 

Operand accesses which cannot be satisfied by the stores in 
PROP and OBS, and all instruction accesses, cause requests to 
SAC. In most cases these requests are directed to the Local 
Store, the individual stacks of which are linked to SAC (and 
to the Exchange) through the Local Store Interface (figure 
6.6). The operation of this logic is largely controlled by 
SAC, but is best explained before the operation of SAC itself. 
The stacks themselves are individually controlled by timing 
circuitry in the Interface, so that under normal running 
conditions the stacks are interleaved and requests to separate 
stacks are overlapped to give a higher overall access rate. 

ill 

·1 
Stack 0 

I 
SAC 

Stack 1 

Local 
Store 
Interface 

Stack 2 

Exchange 

Stack 3 

Figure 6.6 Overall Diagram of the Local Store 

A request is initiated when SAC sends an address to the 
Address Buffer AB .( figure 6. 7) and in the case of a wri te 
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request from the Processor, data to Buffer DB. Data 
correspond ing to write requests from the Exchange is al so 
copied into DB, but only when the address corresponding to the 
request has passed through SAC, in order to be fitted into the 
stream of Processor requests, and sent back to AB (section 
6.4.2). Data read out of a stack is copied into register DS or 
DE to be sent to SAC or the Exchange according to the source 
of the request. 

+ 
SAC Stack 0 
Address Fail-
--.- soft 

Logic 
To 
SAC 

Stack 1 SAC:::J 
Exchange 
Address 

EXChange~ Data Stack 2 

V D 
B 

SAC Data & 

Stack 3 

t 
Figure 6.7 The Local Store Interface 

SAC contains four busy flip-flops to indicate the busy 
status of the stacks. Each time a reguest is sent to the 
Interface, the appropriate flip-flop is set to busy and while 
the flip-flop is set, any subsequent request to the 
corresponding stack ~ is held up. Subsequent requests for 
different stacks can proceed, however, since SAC contains four 
parallel output buffers. During the stack read/write cycle, a 
pulse is generated and returned to SAC to re-set the 
corresponding busy flip-flop. This pulse is timed to arrive in 
SAC so that the next request can reach the stack just after 
the completion of its cycle. 

In the fully interleaved condition a stream of requests for 
sequential instruction or vector addresses can be processed at 
a rate of four 128-bit words per store cycle time (260 ns). In 
practice the data rate of the Processor is limited to one 
128-bit word per 50 ns (equivalent to 160 Mbps) , so that, 
under ideal operating conditions, the store speed is not a 
limiting factor. The addressing of words within the stacks is 
organised, in this case, as in figure 6.8(a). If a stack 
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failure occurs, however, then a Fail-soft capability allows 
the store to be re-configured, so that the best use can be 
made of the remaining stacks, and self-test functions can be 
performed on a malfunctioning stack, either manually or under 
Processor control. The Fail-soft logic, which re-orders the 
address bits according to the contents of the Fail-soft 
V -line, can also change the stack number to which a given 
address corresponds, and part of this logic is therefore 
situated within SAC. By setting an appropriate Fail-soft Mode, 
the addressing can be re-organised to be sequential through 
the remaining stacks, so that if stack 1 fails for example, 
setting Fail-soft Mode 5 allows addresses 0-12K to be used 
starting at stack 2 (figure 6.8(b». If two stacks are out of 
commission together, then the remaining two can again be 
interleaved, as in figure 6.8(c). Ten different Fail-soft 
modes are available al together, so that if anyone or two 
stacks are out of commission, the remaining stacks can be 
addressed sequentially from address O. 
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Figure 6.8 Local Store Address Organisation 

6.4 THE STORE ACCESS CONTROL UNIT 

The Store Access Control Unit (SAC) forms the interface 
between the MU5 Processor and all but the fastest level of 
storage in the MU5 Storage Hierarchy (figure 6.1). It accepts 
virtual address requests from the Instruction Buffer Unit and 
the Primary and Secondary Operand Units, translates them into 
real addresses using the 32 CPRs [22J and passes the requests 
on to the approp~iate real store, either directly in the case 
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of the Local Store or via the Exchange in the case of the Mass 
or Disc Stores. For a read request, data returned from the 
store is routed back to the requesting unit via SAC. In 
addition, SAC controls most of the V-store within the MU5 
Processor and also detects the occurrence of CPR 
non-equivalenceR, access permission violations and parity 
failures. 

The various actions required to implement these facilities 
are carried out by an asynchronous pipeline mechanism which 
attempts to minimise the service time for a single request 
while at the same time providing the maximum possible 
repetition rate [23]. The main registers and interconnecting 
highways wi thin this pipeline are shown in figure 6.9. When 
SAC receives a request from PROP, OBS or IBU, it waits, if 
necessary, un til it is in a position to accept the request, 
copies the address and relevant tag and control information 
into the Stage A address register SA, and sends an 'accept 
signal to the requesting unit. In the event of more than one 
request being present at the input, it makes a priority 
decision as to which to accept. Thus IBU Priority requests 
have high priority for acceptance, above PROP or OBS requests, 
whereas IBU Ordinary requests, although they are the most 
frequent, have low priority since otherwise they could, if a 
tight predicted loop were entered, saturate SAC with requests 
and hold up OBS requests from earlier instructions. 

The block address in SA is presented to the associative 
Virtual Address Field of the CPRs (figure 6.11) which operates 
in the same way as the PROP and OBS Stores, and the signal 
from the line giving equivalence is copied into the SAC Line 
Register (SLR). SLR selects the corresponding line in the Real 
Address Field and the content of this line is copied into 
register RA. Meanwhile the line address bits, together with 
tag and control information, are copied from SA through SB to 
the Stage C address register SC, and a check is made for the 
occurrence of equivalence or multiple equivalence, as in the 
case of the Name Stores (section 6.1.1). If equivalence 
occurs, the concatenation logic takes the appropriate page and 
line digits (according to the page size) from RA and SC 
respectively and forms the real address. In the case of a Real 
Address descriptor access (section 5.1.3), the output from RA 
is ignored, and the whole of the address taken from SC, thus 
bypassing the CPR mechanism. In all cases the real address is 
routed to the Local Store or the Exchange via DA (in the case 
of an IBU request) or via DB or DC (in the case of an OBS or 
PROP request). If non-equivalence or multiple equivalence 
occur, an interrupt is generated, the failing address is 
preserved in NA, and the access is abandoned (section 6.4.2). 

124 



IBU 

OBS 

PROP 

Data 
Out 

to CPRs from CPRs Exchange to Local Store Address 

Exchange 
Address 

Local 
Store 
Address 

Local 
~ __ !""IL .... ____________________ ..... Store 

D Dab 

______________________ .... 1- Exchange 
Data 

OBS Data to L I;] ~ Exchange 
~-D-a-ta-I-n-----------------~· ~ ~~cal 
PROP Store 

Figure 6.9 The SAC Pipeline 

For requests to the Local Store, the address is copied into 
AL and the tag and control information into register Q1. The 
four Q registers form a queue for the tag and control 
information as it waits to be connected with the corresponding 
data being returned from the Local Store. Since SAC controls 
the Local Store (section 6.3) and only sends requests out to 
free stacks, the replies are always guaranteed to come back in 
the same order as the outgoing requests. Thus information 
copied into Q1 is automatically moved into the furthest 
available empty register in the que.ue and data returning from 
the Local Store is copied into the Local Store data register 
LD, together with the information in Q4, thereby emptying that 
register. Requests to Exchange are sent through AE, with their 
tag information in QE. Once set, QE remains busy until a 
response is received from Exchange, since Exchange requests 
occur infrequently compared with Local Store requests and .are 
not overlapped. Data returning from the Exchange is accepted 
when there is a sui table gap in the flow of data from the 
Local Store, and all replies to read requests are sent back to 
the appropriate unit together with a 'data available' pulse. 
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When a write request is accepted by SAC, the accompanying 
data is copied into register WA. For reasons of hardware 
economy, and because, under normal operating conditions, write 
requests only occur very infrequently (when an 'altered' line 
in the Name or Vector Stores is selected for replacement), 
data buffers are only provided at the input and output stages. 
Thus registers WA and WB act as a small independent pipeline, 
with the data in WA being copied into WE when the latter is 
free. 

6.4.1 The Current Page Registers 

MU5 is nominally defined as a 32-bit computer, with each 
32-bit word in the virtual store having an address of the form 
shown in figure- 6.10(a). The 4-bit Process Number allows up to 
sixteen currently active processes to co-exist, each with a 
14-bit Segment Number allowing up to 16K segments of 64K 
32-bit words. The actual size of quantity addressed at 
different pOints in the Processor varies between 1 bit and 128 
bits, however, and the number of bits in the corresponding 
virtual address varies accordingly. Thus the mlnlmum 
instruction size is 16 bits and the Control Register addresses 
16-bit words, while the Instruction Buffer Unit normally 
accesses 128-bi t words from store and sends addresses with 
correspondingly fewer bits to SAC. Similarly, names may be 
32-bit or 64·bit quantities, but the Name Store always holds 
6!~ bits per line and is addressed using 15 digits wi thin the 
Name Segment. The line number of the line in the Name Store 
giving equivalence with the virtual address presented to it 
forms, in a sense, a real address. This address is never 
communicated to software, or to other parts of the hardware, 
however, nor can such an address originate from outside the 
Name Store. In the case of a non-equivalence, the virtual 
address is sent to SAC, where the CPRs produce a corresponding 
Main Store real address to be sent, normally, to the Local 
Store, to access the required operand. In the event of a 
non-equivalence in the CPRs, software action is required 
either to move a block of data into the Local Store ~nd to set 
up a CPR to address it (using V-store operations) or simply to 
set up a CPR to point to a block of data already contained in 
the Local Store. In the former case the block of data must be 
moved into the Local Store via the Exchange, from the Mass or 
Fixed-head Disc Store using real addresses appropriate to each 
store. Thus real addresses referring to the Local, Mass and 
Fixed-head disc Stores must be communicated both between 
software and hardware and between Units connected to the 
Exchange. The real address format used in the CPRs is 
therefore defined by the Exchange addressing format (figure 
6.10(b», which can refer to anyone of sixteen Units. 
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(a) Virtual Address Process Segment Block/Line 

(b) Real Address ~ Ivi Address 

(c) CPR Virtual Field P S X 

(d) CPR Real Field ~ Ivi Address 

~igure 6.10 Real and Virtual Address Formats 

Within each Unit the address is three bytes long, with the 
most significant bit indicating whether the remaining 32 refer 
to real store or V-store. Thus 8 million 32-bit words of real 
store can be directly addressed within anyone Unit. The 
posi tioning of the real address digits in relation to the 
virtual address digits 1s arranged so that there is a 
one-to-one correspondence between the line number in a virtual 
block and the line number in the corresponding real page, and 
also so that for real address accesses the four most 
significant segment address bits form the Unit number. The 
corresponding address formats used in the CPRs are shown in 
figure 6. 10 (c) and (d) and figure 6. 11 shows the CPR overall 
diagram. 
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F!gure 6.11 The Current Page Registers 
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The associa ti ve, virtual address field is made up of two 
major parts, the Process Number and Segment Number (PS) field 
and the X field. The PS field is constructed in the same way 
as the associative stores in PROP and OBS, while the X field 
requires two flip-flops per bit in order to implement the 
dynamically variable page size facility. This requires pages 
of different sizes to co-exist in the CPRs, and it is 
therefore necessary to store in the CPR associa ti ve field 
information about the position of the block/line boundary for 
each CPR in use. Bits in the X field which are less 
significant than this position are masked so as to give 
equivalence regardless of the interrogate information. 

The real address field contains 4 bits for the Exchange 
Uni t number, 20 bits for the page address wi thin a Uni t , 4 
size bits and 4 access permission bits. A 20-bit page address 
corresponds to the minimum page size of 16 words, and for 
larger pages up to twelve of the least significant bits of the 
field may be unused. In addition each CPR has a bit in each of 
four Status Registers. These are the Altered Register (AL), 
the CPR Used Register (CU), the CPR Found Register (CF), and 
the Ignore Register (IG), all of which form part of the 
V-store. 

The Altered Register corresponds to the Line Altered 
Registers in the PROP and OBS Name Stores, and is used in an 
analogous manner by the Operating System to determine whether 
or not to copy a block of information out of Local Store 
before it is overwritten. A digit in the Altered Register is 
set for a given CPR whenever a write access is made to the 
corresponding page. Digits in the CPR Used register, on the 
other hand, are set when any aecess is made to the 
corresponding page, and this register is used by the Operating 
System to help determine which CPR to overwrite following a 
CPRNEQ. Digits in the CPR Found Register are set whenever the 
corresponding CPR gives equivalence during a 'Search' 
operation (similar to the PROP and OBS Name Store search 
operations). This register is used by the Operating System, 
when releasing a Process or Segment, to determine which digits 
to set in the CPR Ignore Register. This register corresponds 
exactly to the Ignore Register in the OBS Virtual Address 
Store (section 6.2.1). The CPR Number Register (eN) is used to 
address the CPR for overwriting following the occurrence of a 
CPRNEQ, so that it is used by software in a manner analogous 
to the hardware use of the Line Pointer in the PROP Name 
Store. Overwriting a CPR automatically brings it into use 
since this action re-sets the corresponding Ignore digit. 

It can be seen that there are many points of similarity 
between the Current Page Registers and the associative stores 
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in PROP and OBS. This similarity could have been extended 
further, by the use of hardware CPR loading, but this facility 
was consciously rejected at the design stage to allow full 
flexibility for software investigation of different 
organisations. The major responsibility for the management of 
the CPRs is therefore placed on software in MU5, with hardware 
providing sufficient facilities for .this to be possible, 
through the V-store mechanism, and to ensure a clean 
transition from User Process to System Process. 

6.4.2 SAC Interrupts 

SAC interrupts fall into two classes, those concerned with the 
inaccessibility of data (CPRNEQ, CPR Multiple Equivalence, 
Access Violation, etc.), and those concerned with erroneous 
data (parity faults). SAC is also indirectly involved with the 
occurrence of any interrupt, since there may be several 
instructions in the Secondary Pipeline at the point when PROP 
detects an interrupt, and anyone of them could cause a SAC 
interrupt to be generated. If PROP were to act on a non-SAC 
interrupt immediately, and obey the two fixed instructions 
causing entry to the appropriate interrupt procedure, a CPRNEQ 
for an outstanding request in the Secondary Pipeline could be 
erroneously treated as a System Error (section 6.5.1). PROP 
guards against this possibility by sending the dummy 
'interrupt order' through the Processor (section 4.1.2) before 
obeying the fixed instructions. 

The occurrence of a CPRNEQ causes an interrupt signal to be 
sent to PROP for all virtual address requests except IBU 
ordinary requests, for which CPRNEQ is dealt with separately 
by the IBU (section 4.2.8). A request generating a CPRNEQ also 
causes SAC to enter a 'Run-down' mode of operation and 
inhibi ts strobe pulses to register NA (figure 6.9). During 
normal operation of SAC, NA is strobed at the same time as se, 
so that following a CPRNEQ it contains the failing address, 
and may be examrned as a V-line by the CPRNEQ interrupt 
procedure. After entering its Run-down mode, SAC discards all 
normal requests until the request from· PROP corresponding to 
the first of the two fixed instructions causing entry to the 
CPRNEQ interrupt procedure, which restores SAC to normal 
operation. During Run-down, all requests ahead of the failing 
address are processed normally, and the Run-down condition is 
then signalled to OBS, so that the Queue can also be set into 
a Run-down state (section 5.2.5). 

CPR Mul tiple Equivalence is basically similar to multiple 
equivalence in any of the other associative stores in the 
Processor. It occurs when two or more associative lines give 
equivalence at once, but whereas this condition can only arise 
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in the IBU, PROP and OBS stores as a result of a hardware 
failure, it can also arise in the CPRs as a result of a 
software failure. An Access Violation occurs whenever the 
access type bits associated with a request do not correspond 
wi th the Access Permission bits read out from the CPRs with 
the real address. SAC records the occurrence of any Access 
Violation in an Access Violation V-line, the outputs from 
which cause an appropriate interrupt. 

Parity checks are carried out by SAC on all data returning 
from the Local Store and the Exchange to ensure that it has 
correct parity (odd parity in each byte) and in the event of a 
parity failure being detected, returns zeros to the requesting 
unit and sets the appropriate digit in a SAC Parity V-line in 
order to cause an interrupt. Additional checks are made on the 
address and control information associated with requests 
coming from Exchange, and in the event of a parity failure in 
either of these fields, the appropriate digit is set in the 
SAC System Error V-line and the Exchange Request Parity 
V-line. 

6.5 THE MU5 V-STORE 

Al though the MU5 V -store does not form part of the main 
storage hierarchy, it plays an essential part in the 
management of the hierachy and in the general running of the 
Processor. The V-store is nominally divided into 128 blocks 
each containing 256 lines, although in practice only eight 
'blocks are used, and wi thin each block only a few lines 
actually exist. The lines are nominally 64 bits long but apart 
from thos~ in System V-store, contain at most 32 useful bits. 

The System V-store is used by the hard-wired Inter:t:'upt 
Entry instructions (section 4. 1 .2) to access the necessary 
links. These are contained in segment 8192, the first of the 
common segments in the virtual store, and the mapping of the 
System V-store addresses into this area is achieved by simple 
address digit manipulation in PROP. PROP V-line requests 
(section 6.5.1) are dealt with internally by PROP itself, but 
all others are dealt with by SAC, since it already has data 
path connections with most of the units containing V-lines, 
and actually contains much of the V-store itself. 

The SAC V-store consists of two parts, one concerned with 
providing the facilities needed by the Operating System to 
manage the CP Rs (sec tion 6.4. 1) and one conc erned wi th the 
interrupts generated within SAC itself (section 6.4.2). Within 
the CPRs, the Real and Virtual Address fields of the CPR 
addressed by the CPR Number Register can be accessed as 
V-lines, as can the four Status Registers (the Ignore, 
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Altered, CPR Used and CPR Found Registers) and the NA Register 
in SAC, which contains the address giving non-equivalence. 

6.5.1 The PROP V-store 

The Primary Operand Unit contains V-lines concerned not only 
wi th the control of the organisational facilities wi thin its 
own Name Store (section 6.1.4) but also with the general 
running of the Processor, particularly the interrupt system. 
The System Error V-line, for example, contains fliP-flops 
which record individual system errors which arise in different 
parts of the Processor. Among these are the occurrence of 
multiple equivalence in any of the associative ~tores, and the 
occurrence of a CPRNEQ during some interrupt procedures. The 
Program Fault V-line, on the other hand, records the 
occurrence of errors within a process, examples being 
arithmetic faults and bound check failures. 

PROP also contains an Instruction Counter, a 16-bit 
parall~l master/slave counter which is normally decremented by 
1 whenever the Control Register is incremented, or whenever a 
store-to-store order cycle is completed in the D-unit. When it 
reaches zero an interrupt is generated. This counter is used 
by the software for scheduling purposes, and in order to 
ensure reproducibility of user statistics, despite variable 
system activity, counting can be inhibited for System 
Processes by the setting of a digit in the Machine Status 
Register. 

6.5.2 The Operating Console V-store 

The Operating Console of the MU5 Processor includes various 
control and mode switches, which can be accessed as read-only 
V-lines and provides for communication with, and direct 
control of tne Processor. In addition, it contains a 
program-readable digital clock, which also provides regular 
interrupts and a programmable loudspeaker. This facility is 
useful for test and diagnostic purposes, but has also led, 
inevi tably, to the writing of music-playing programs. These 
programs, which play four-part harmony, also provide a visual 
display by assuming a piano keyboard layout for a set of 
display lamps. 

The mode switches indicate the availability of Local and 
Mass Store stacks (for use with the Fail-soft facilities 
(section 6.3.1» and also whether each of the clock interrupts 
is allowed or inhibited, etc. "The control switches allow the 
Processor to run at full (' Auto') speed, in which case PROP 
beats occur normally, or to run at a selected clock rate, in 
which case each PROP beat is held up until the next clock 
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pulse occurs. The source of instructions can also be altered, 
so that instead of being taken from the IBU, PROP can obey 
functions set on console handkeys, or read in directly from a 
Teletype. 

The three most frequently used Operating Console co"ntrols 
are the 'Re-set', 'Interrupt' and 'Go' switches. The 'Go' 
switch injects a single pulse into PROP to cause one pipeline 
beat, which, in 'Auto' mode, is sufficient to set the 
Processor running. The 'Interrupt' switch sets the Engineers 
Interrupt digit in the System Error V-line, while the 'Re-set' 
switch re-sets all essential timing and control flip-flops in 
the Processor to their 'initial' state. Thus from being 
stopped, the Processor is normally re-started by operation of 
the 'Re-set' 'Interrupt' and 'Go' switches in sequence. For 
commissioning purposes these three switches can be set to 
inject their pulses in the correct sequence at a selected 
clock rate. Since the Processor is asynchronous, very many of 
the faults which occurred during commissioning simply caused 
it to stop, thus preventing continuous observation by 
oscilloscope. By using the continuous 'Re-set', , Interrupt' , 
'Go' system, a continuous trace could once more be obtained. 
Certain faults only occurred several seconds or even minutes 
after a Processor re-start, however, and in order to obtain an 
observable oscilloscope trace of signals near to the fault 
point, it was necessary to re-start the Processor with the 
central registers, CPRs, stores, etc., set up to a state close 
to the fault point. Thus, during the running of a 
fault-producing proces~, the contents of the central 
registers, CPRs and stores can be 'photographed' at a selected 
CPRNEQ prior to the fault, and preserved on disc. At a 
subsequent re-start the information on the disc can be used to 
restore the 'photographed' state of the Processor before the 
fault-producing process is itself re-started. 

6.6 THE MU5 EXCHANGE 

We saw in Chapter 2 how the idea of the MU5 Exchange [24] 
arose out of the need to provide a simple, fast and flexible 
means of allowing a number of computer and storage devices to 
communicate with each other. The present MU5 Exchange has a 
theoretical maximum capacity of 16 Units, but technological 
considerations have limited the number of Units to a practical 
maximum of ten. These Units each provide a set of parallel 
inputs to a multiple width OR gate and each is connected, via 
its own buffer register, to the output of this OR gate (figure 
6.12). The Exchange operates by time sharing the OR gate 
between the Units. Thus the transfer of a block of words from 
the Fixed-head Disc Unit to the MU5 Local Store, for example, 
involves a succession of 64-bit word transfers from the Disc, 
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as 'Sending' Unit, to the Local Store as 'Receiving' Unit, 
with the OR gate connecting these Units for the duration of 
each word transfer rather than for the whole duration of the 
block transfer. Other transfers can therefore be accommodated 
during this period, so that the 1905E computer, for example, 
can make read requests to the Mass Store. Two transfers are 
required for a read request, one in which, in this case, the 
1905E as Sending Unit sends the address and appropriate 
control information through the Exchange to the Mass Store as 
Recei ving Unit, and subsequently one from the Mass Store as 
Sending Unit to the 1905E as Receiving Unit in order to return 
the data read out from the specified location in the \'i,:4.33 

Store. 

Fixed-head 
Disc Store 

PDP - 11/10 

M U5 Processor 

Local Store 

1905E Processor 
and Store 

Mass Store 

Figure 6.12 The MU5 Exchange System 

The requests from different Sending Units arrive at the 
Exchange completely asynchronously, and much of the control 
logic wi thin the Exchange is therefore concerned with 
scheduling transfers through the actual OR gate on a priority 
basis. A substantial proportion of these transfers are paging 
transfers between the Local and Mass Stores. Since these are 
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both passive Units, the transfers are activated by the Block 
Transfer Unit (section 6.6.4), itself connected. as a Unit to 
the Exchange and physically housed wi thin the same logic bay. 
The Exchange is also concerned with checking the parity of 
information passing through it, and, being connected to each 
Unit, it acts as a focal point for parity errors .arising 
within any Unit in the complex. 

6.6.1 The Exchange OR Gate 

The design of the Exchange OR gate is affected by two 
important criteria 

(1) the number of digits which need to be transferred 
between Units in order to effect a transfer 

(2) the time required to complete a transfer. 

These criteria are to some extent related in any given 
technology, since on the one hand an increased width involves 
the control of a larger number of gates at any instant, and 
hence involves additional delays in the control fan-out logic, 
while on the other hand a data path narrower than the full 
width of the connected devices involves additional propagation 
delays through the fan-in and fan-out logic needed to connect 
the several parts of the device data path to the OR gate data 
path. 

In practice the width of the data path was chosen to be 8 
bytes (64 data bits plus one parity bit per byte). This figure 
corresponds to the wid th of the data paths wi thin the MU5 
Processor, and also exceeds the minimum width necessary for 
some of the Units to be able to communicate at all. Thus the 
Fixed-head Disc has an effective data rate of 0.5 11s/byte, 
while the storage modules constituting the Mass Store have a 
cycle time of 2.5 11S, and both these devices and the data path 
between them must therefore be capable of dealing with at 
least 5 bytes (40 bits) per transfer for communication to be 
possible. 

The width of the address field is determined by the size of 
the largest directly addressable store which might reasonably 
be expected to be connected to the Exchange, with the 
additional constraint that it is convenient to make this field 
an integral number of bytes. Allowing one digit to select 
V-store or normal addresses within a Unit, a 3-byte address 
(24 addre,ss digits plus 3 parity digits) allows up to 8M words 
to be addressed. This compares with 256K words available in 
the Mass Store, the largest directly addressable store 
currently connected to the Exchange. 
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The control field contains some information which is copied 
directly through the OR gate from the Sending Unit to the 
Receiving Unit (the tag bits, for example), some information 
which is copied through the OR gate and is also used by the 
Exchange Control System (section 6.2.2) and some information 
(the Unit number) which is transmogri.fied by the Control 
System before being sent to the Receiving Unit. In all, 14 
control digits pass between Units via the Exchange, making the 
total width of the OR gate 113 bits, and some additional 
control signals pass between the Exchange Control System and 
each of the Units. 

The timing of transfers through the Exchange is dependent 
on the nature of the communication between a Sending Unit and 
the Exchange and between the Exchange and a Receiving Unit. A 
Sending Unit initiates a transfer by sending a Strobe Outwards 
signal (SO) to the Exchange (figure 6'. 13), timed to arrive as 
soon as the data, address and control information in the 
Sending Unit output buffer has become valid at the Exchange 
(allowing for cable length, etc.). This output buffer is 
necessary since, at the time SO is sent, either the Receiving 
Unit may not be free, or a higher priority transfer may be in 
progress, and the Sending Unit therefore has no means of 
knowing when the transfer will actually occur. 

RAI 

Unit 
etc. 

Tag 
etc. 
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d 
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D 

Sending Unit 

iii 
'x 
'1' 
8 

From 
Other 
Units 

....- - --OR Gate- - --.... 
x 113 
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etc. 
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Other 
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d 

D 

etc. 

Figure 6.13 Exchange Control and Data Paths 

The timing control logic of the Exchange itself is governed 
by a free running oscillator, so that the Exchange operates 
synchronously, at a rate of one transfer per 100 ns. Each 
transfer requires two 100 ns periods or 'slots' for its 
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complet.ion, one for the actual transfer through the Exchange 
OR gate, and a previous one in which the Exchange control 
logic determines which of the incoming requests to service. 
Within the Exchange these two activities are overlapped for 
successi ve transfers. When a request has been selected for 
servicing in one time slot, the information from the Sending 
Uni t is gated into the OR gate in the next time slot by the 
appropriate decoded output from the Select Unit Register (SU 
in figure 6. 13). The output signals from the OR gate then 
propagate to the input buffers of all the Units but only the 
buffer corresponding to the Receiving Unit of the current 
transfer is strobed, at the end of the slot. A Strobe Inwards 
pulse (SI) is then sent to the appropriate Receiving Unit, 
thereby completing the transfer as far as tpe Exchange is 
concerned. The Receiving Unit, on receipt of SI, deals with 
the data in its buffer at its own convenience and then returns 
a signal to the Exchange indicating that its buffer is free to 
be overwritten by a further Exchange transfer. 

The input buffers for all the Units are contained on the 
same platters as the OR gate itself, in order to minimise the 
transfer times. Although the data could in principle be 
allowed to propagate over the long cables connecting the 
Exchange to the Units as wide. pulses, with a narrow control 
pulse accompanying them, variations in cable delays and the 
deterioration in edge times of signals propagated over these 
long distances would in practice lead to the need for a much 
longer Exchange slot time in order to ensure reliable 
operation. 

6~6.2 The Exchange Control System 

The Exchange Control System, in conjunction with the Exchange 
Priority System (sec~i0n 6.6.3), provides the gating and 
strobing signals necessary t6 organise transfers through the 
OR gate. Transfers can be initiated by any Uni~ sending its SO 
signal to the Exchange, accompanied by the necessary data, 
address and control information. Two of the control digits RO 
(Read Oufwards) and WO (Write Outwards) are encoded to 
indicate the type of transfer, as follows 

RO WO TYPE OF TRANSFER 

0 0 Data Available 
1 0 Read Request 
0 1 Write Request 
1 1 Read & Mark Request 

Read requests and write requests normally originate from 
Processor Units and are sent to Store Units. The processor 
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send s the Unit number and real address wi thin the Uni t in 
either case, and the data in case of a write request. In the 
case of a read request, the Receiving Unit accesses the 
required data and subsequently initiates a data available 
transfer back to the original Sending Unit. Read & mark 
requests (section 5.1.3), involve a reading and writing 
action, and are therefore accompanied by both address and 
data, as for a write request. The data is used to mark the 
addressed location, after the data already contained in it has 
been read out and sent back to the original Sending Unit by 
means of a data available transfer. 

Before taking any action on an incoming request, the 
Exchange must know that the Receiving Unit is free to accept 
an incoming request. The Exchange therefore keeps a record of 
the state of each Receiving Unit by means of two flip-flops 
per Unit, the Buffer Free and Store Free flip-flops (BF and SF 
in figure 6. 13). The Buffer Free flip-flop is re-set to the 
busy state whenever a transfer is made to a Unit, and no 
further transfers can be "made to that Unit until the Unit 
itself has sent a signal to set the Buffer Free flip-flop, 
after it has assimilated the information in the buffer. The 
Store Free flip-flop is essentially identical to the Buffer 
Free flip-flop in many Units, but serves a distinct purpose in 
Processor Units which can both initiate read requests (and 
hence receive data available replies) and themselves be 
accessed by read or write requests from other Units. Thus if a 
Uni t' s Buffer Free and Store Free flip-flops are both in the 
free state, then it can accept .any type of transfer, whereas 
if the Buffer Free flip-flop is in the free state but the 
Store Free flip-flop is in the busy state, then it can only 
accept a data available transfer. ::t:f the MU5 Processor is 
interrupted by another Unit writing to its Peripheral Window 
V-line for example, it can prevent further similar interrupts 
occurr~ng during the servicing of this interrupt by 
maintaining the Store Free flip-flop in the busy state, while 
at the same time remaining free to accept data available 
replies corresponding to its own read and write requests. 

The first action at the start of each slot time is the 
strobing of the incoming SO signals into register RQ. When 
sufficient time has elapsed for the RQ register flip-flop 
outputs to settle, those requests for which the states of RO 
and WO, and the BF and SF of the Receiving Unit, are such that 
the transfer is possible become candidates for' selection by 
the Exchange Priority System (section 6.6.3).' The latter 
encodes the Unit number of the selected Sending Unit, and 
selects the appropriate Receiving Unit number for copying into 
registers SU and RU at the start of the next time slot. The 
value in SU, which when decoded, selects the appropriate 
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inputs to the OR gate, is sent to the Receiving Unit as the 
Unit number in the control information field. For a write 
request or data available transfer this information is 
irrelevant to the Receiving Unit, but for a read or read & 
mark request the incoming Unit number value is preserved in 
the Receiving Unit and is then returned to the Exchange as the 
Unit number with the subsequent data available transfer. The 
value in RU, which selects the appropriate buffer and BF and 
SF flip-flops for updating and the Unit to which SI is to be 
sent, is discarded at the end of the transfer. 

If all Units connected to the Exchange could only accept 
one read request before returning a data available reply, then 
the Unit number sent with the read request could equally well 
be preserved within the Exchange. By sending it to each Unit, 
however, those Units within an internal pipeline or parallel 
accessing structure can accept sequences of read requests from 
different Units and guarantee to return each data available 
reply to the appropriate requesting Unit. A further 
possibility is that one Unit may send out several requests 
before receiving data available replies, and must be able to 
distinguish between these replies when they arrive. This is 
achieved by means of the tag bits, which are used in a similar 
fashion to the tags used by OBS to distinguish between replies 
it receives from SAC. The Block Trans,fer Unit (section 6.6.4) 
for example, has four separate channels capab}e of controlling 
nata transfers between Units, and data available replies 
corresponding to requests from one channel are distinguished 
from those for another channel by means of the tag bits sent 
with each'read request. A Receiving Unit passes the tag bits 
through its system, along with the Unit number, and returns 
both tag and Unit number to the Exchange as part of the 
corresponding data available reply. 

6.6.3 The Exchange Priority System 

The Exchange Priority System determines which request is to be 
serviced next by the OR gate when more than one request is 
present in the RQ register. Each Unit attached to the Exchange 
is assigned a priority inversely proportional to its Unit 
number, so that Unit 0 has highest priority. The priority of a 
request which has become a candidate for selection by the 
Priority System is determined by the priority o~ the Sending 
Unit or Receiving Unit associated with it, according to the 
type of request. For all except data available requests, the 
Sending Unit priority always applies, while for data available 
Requests, the Sending Unit priority applies only if the 
ReceiVing Unit is not a crisis time device. If the Receiving 
Unit is a crisis time device, then the Receiving Unit priority 
applies. 
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Units are classified into four priority categories, 
Peripheral Processing Units (PPUs), Central Processing Units 
(CPUs), Stores (Mass and Local), and the Block Transfer Unit. 
PPUs have highest priority since they are generally concerned 
with organising transfers which involve crisis time devices. 
The Ftxed-head Disc, for example, with a 4 ~s crisis time, is 
classified as a PPU, and is connected as Unit O. CPUs normally 
maintain an intense traffic to and from their own local 
stores, via dedicated highways, and only make occasional 
requests to stores via the Exchange. Apart from PPU transfers, 
most of the store transfers are paging transfers between the 
Mass and Local Stores organised by the Block Transfer Uni t • 
Since this Unit can control up to four block transfers 
simultaneously, it can easily saturate the Mass Store, and 
although CPUs have a crisis time extending to infinity, it 
would be unreasonable to hold up their requests for the 
duration of a block transfer. Thus CPUs have the second 
highest priority and the Block Transfer Unit has the lowest. 
The changeover from Sending Unit to Receiving Unit priority 
for data available requests from the stores, which have third 
highest priority, ensures that crisis-time Units are serviced 
promptly both in the outwards and inwards direction. 

6.6.4 The Block Transfer Unit 

The Block Transfer Unit (BTU) is closely associated with the 
Exchange in that its sole function is the transfer of blocks 
of information through the Exchange from one store to another, 
and it is physically housed within the Exchange logic bay. 
Transfers are carried out on a word by word basis, with the 
BTU making alternate read and write requests to the Source 
Unit and Destination Unit respectively. The BTU actually 
contains four channels, each capable of organising a transfer, 
and data available replies for the different channels are 
distinguished by means of the Exchange tag bits (section 
6.6.2). Each channel is made up of a number of registers and a 
counter as shown in figure 6.14. 

The registers form part of the V-store and in order to 
initiate a transfer, the initiating processor writes into 
registers Sand D the page address and Unit number of the 
source page, and the page address and Unit number of the 
destination page. Register L is set up to contain the number 
N-1, where N is the number of word to be transferred. This 
facility corresponds directly to the variable page size 
facility in the Current Page Registers (section 6.4.1) and so 
problems of concatenating the overlapping digits of Land S or 
D do not occur since an N-word transfer. must always start on 
an N-word page boundary within each store. 
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Figure 6.14 A Block Tran~fer Unit Channel 
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Each word transfer involves three Exchange requests, a read 
request to the Source tInit, a data available request to the 
BTU which buffers the data word, and finally a write request 
to the Destination Unit. Alternative schemes involving only 
two Exchange requests were considered as part of the BTU 

'design exercise, but these suffered from obvious 
disadvantages, such as the fact that while the data could be 
sent directly from the Source Unit to the Destination Unit, 
provision has to be made for the transfer of the Destination 
Unit address from the BTU. 

Once the write request has been accepted by the Exchange, 
the value in register L is decremented in preparation for the 
next read request. Thus transfers proceed from the highest to 
the lowest address wi thin a block, thereby simplifying the 
detection of the end of the transfer, since the transfer is 
complete when register L contains zero, regardless of its 
initial content. The end of transfer is communicated to a 
processor by means of a message sent by the BTU to the 
'communication window' specified in register E. Register E is 
loaded by the initiating processor at the start of the 
transfer and allows the initiating processor to deal with the 
end of transfer signal itself or to delegate the task to a 
separate processor. Furthermore, it allows the end of transfer 
to appear as an MU5 interrupt, by specifying the communication 
window as being the MU5 Peripheral Window. Al terna ti vely the 
communication window can be a location in the Local or Mass 
Store which is polled by the interested processon. 
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7 The Execution Units 

Computational functions are executed in three.units of the MU5 
Processor, the A-unit, the B-unit and the D-unit. The A-unit 
is the main computational unit, capable of carrying out 
fixed-point (signed and unsigned) and floating-point 
operations, while the B-unit carries out fixed-point signed 
arithmetic, and is used mainly for calculating modifier values 
to be used during data structure accesses. Orders concerned 
with byte processing, the store-to-store orders, are carried 
out by the D-unit, with bytes being accessed by the descriptor 
mechanism in Dr and manipulated by the byte-processing logic 
in Dop. Addition is an important operation in all these units, 
and it is therefore convenient to present the general 
technique used for carryin~ out addition in MU5 before 
considering the design of the individual units. 

7 • 1 ADDITION 

Many techniques for performing fast addition have been 
proposed, but in practice most of them cannot be implemented 
successfully when circuit limitations such as fan-out, fan-in, 
etc., are taken into consideration. The method used in MU5 can 
be considered as ~eriving from two techniques, the Block-carry 
Adder and the Conditional Sum Adder [25], as well as relying 
on the particular properties of the flip-flop in the ECL logic 
family [26]. The basic problem with fast adders is that a 
carry generated at the least significant end of the adder may, 
in the worst case, be propagated through to the most 
significant end. 

Thus in any parallel adder a carry may be genera ted or 
propagated at the kth bit position according to the state of 
its inputs X(k) and Y(k). A carry is generated according to a 
signal G(k) given by 

G(k) = X(k).Y(k) 

and a carry is propagated from the less significant position 
(k + 1) through to the next most significant position (k - 1) 
according to a signal P(k) given by 
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P(k) = X(k) v Y(k) 

The carry from bit position k is therefore given by 

C(k) = G(k) v P(k).C(k + 1) 

By expanding, the carry at any bit position may be written as 

C(k) = G(k) v P(k).G(k + 1) 
v P(k).P(k + 1).G(k + 2) 

v 
v 

v peN - 2).P(N - 1).Cin 

where operands are N bits long. 

For large values of N, however, such an expression cannot 
be implemented in a single AND-OR combination due to both 
fan-out and fan-in limitations of the circuits. P(k) appears k 
times in the expression and the OR gate must have a fan-in of 
k + 1. In the Block-carry Adder the N bits of the adder are 
divided into B block of r bits, and in each block two extra 
signals are produced. For block q these signals are 

G(r,qr) - a carry appears from bit qr which may have been 
generated there or propagated through from any 
of the previous r - 1 bits. 

P(r,qr) - a carry into bit (q + 1)r -
these r bits. 

Hence 

G(r,qr) = G(qr) v P(qr).G(qr + 1) 

is propagated past 

v P(qr) .•• P«q + 1)r - 2).G«q + 1)r - 1) 

P(r,qr) = P(qr).P(qr + 1) ... P«q + 1)r - 1) 

and so 

C(qr) = G(r,qr) v P(r,qr).G«q + 1)r) 

v 
v 

v P(rtqr) ..• P(r,(B - 1)r).Cin 

Figure 7.1 illustrates such a system. The signals C' are 
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combined with the G(k) and P(k) signals to form carries into 
individual bits. 

X(r-1) Y(r-1) X((B-1)r) Y((B-1)r) 

G(O) P(O) G((B--1)r) P((B-1)r) 

G(r,O), P(r,O) 
Cr' 

G(r,(B-1)r) 

C'(B-1)r P(r,(B-1 )r) 

C'a .-_.1..-____ ---J._---lL---___ -L-_--L.... _____ ..I-----, c
in 

Figure 7.1 Block-carry Addition 

When large numbers of bits are involved, the logic 
expressions are still too complex for direct implementation, 
and the system is developed further by grouping the B blocks 
into S super-blocks. Thus B = N/r and S = Bit, where t is the 
number of blocks in a super-block. This process may be 
repeated as ,often as necessary, with each division adding , ro 
logic stages to the carry path. Using the MU5 ECL > •• logic 
family, the fan-out and fan-in capabilities fix rand t at 4, 
giving, for an 8-bit adder 

G(4,0) = G(O) v P(0)G(1) v P(0)P(1)G(2) v P(0)P(1)P(2)G(3) 

G(4,4) = G(4) v P(4)G(5) v P(4)P(5)G(6) v P(4)P(5)P(6)G(7) 

P(4,0) = P(0)P(1)P(2)P(3) 

P(4,4) = P(4)P(5)P(6)P(7) 

C(1,4) = G(4,4) v P(4,4)Cin 

C(1,0) = G(4,0) v P(4,0)G(4,4) v P(4,0)P(4,4)Cin 

C(2) = G(2) v P(2)G(3) v P(2)P(3)G(4,4) v P(2)P(3)P(4,4)Cin 

The second technique which is of interest is Conditional 
Sum Addition. In this method two sums are formed, one assuming 
the carry will be zero and one assuming it will be 1. The 
correct one is then selected by the carry signal. As with the 
Block-carry Adder, b1 ts can be grouped together, as in the 
example shown in figure 7.2. Considering the first level of 
logic for bit 5, if the carry in is 0, then S5 = 1 and C5 = 0, 
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while if the carry in is 1, then S5 = 0 and C5 = 1. In the 
second level of logic, pairs of bits are considered. Taking 
bi ts 6 and 7, 37 will be the same as in the first level. If 
the carry in is 0, then C7 = 0 (from the first level) and 
hence 36 = 0 and C6 = 1. If the carry in is 1, then C7 = 1 and 
hence s6 = c6 = 1. The value of C7 need not be copied. 
Considering bits 2 and 3, C3 is always 1, regardless of the 
input carry, and hence the second row of values from bit 2 are 
selected in both cases. This procedure may be continued as 
necessary. 

1 1 

0 1 

CO SO C1 

0 1 1 

1 0 1 

1 0 

1 0 

1 0 

1 0 

1 0 

1 0 

0 1 1 0 1 

0 1 0 1 1 

S1 C2 S2 C3 S3 C4 S4 C5 S5 C6 S6 

0 0 0 1 0 0 1 0 1 1 0 

1 0 1 1 1 1 0 1 0 1 1 

0 0 1 0 0 1 1 1 0 

1 0 1 1 1 0 0 1 1 

0 1 0 1 0 0 0 

0 1 1 1 0 0 1 

0 1 1 0 0 0 

0 1 1 0 0 1 

Figure 7.2 Conditional Sum Addition 

1 

0 

C7 

0 

1 

S7 

1 

0 

1 

0 

1 

0 

1 

0 

x 
y 

C=O 

C=1 

c=o 

C=1 

c=o 

C=1 

c=o 

C=1 

This method of addition has the advantage that the maximun 
fan-in is 2, but the disadvantage that the maximum fan-out is 
N/2. If a conditional sum addition is performed on each group 
of 4 bits, however, fan-out is no longer a limitation. It is 
now only necessary "to form carries at 4-bit intervals, and 
signals such as C1, C2 and C3 are not required. The carries 
CO, C4, etc., can be formed by a suitable block-carry network, 
and used by the conditional sum system to select the correct 
values of sum. 

A further advantage can be gained from the properties of 
the ECL flip-flop. One of the characteristics of adders is 
tha t both phases of the carry signal are normally required. 
-This requirement is eliminated by connecting the flip-flop as 
shown in figure 7.3, which is a logic diagram of the 2-bit sum 
module used in MU5. The signals 3(k)IC = 0 and 3(k)IC = 1 are 
formed from the true and inverse phases of the inputs X(k) and 
Y(k) and gated with an input strobe. These signals, applied to 
the set and re-set inputs of the flip-flop, cause the -latter 
to take up the value of the sum corresponding to a carry in 
(Cin) of O. If Cin is actually found to be °a 1, the state of 
the flip-flop must be changed. Thus E(k) is connected to the 
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Data input of the flip-flop and Cin to the Gate input (cf. 
figure 3.5). The Clock input is the OR of S( k) I C = 0 and 
S(k) I C = 1, one of which will always occur. The Clock input 
therefore always starts and ends one gate delay after the 
set/re-set pulses, and since the D-type inputs override the 
set/re-set inputs (contrast TTL flip-flops), the correct 
result is always obtained. This type of adder has been termed 
a Sequential State Adder. 

Strobe 

Strobe 

X
k 

Y
k 
------+--+-~ 

Cin ----+---If-------i-------. 

Strobe 

X
k

_
1 

Yk - 1 

X
k

_
1 

Yk - 1 

X
k

_
1 

Y k - 1 

X
k

_
1 

Yk - 1 
Strobe ------+---+-............ 

Figure 7.3 The MU5 Sum Macro Module 

A modification of this system is used for the second, more 
significant digit (S(k - 1), since Cin is simply the carry in 
to the first digit. S(k - 1)lc = 0 and S(k - 1)lc = , are 
formed from the inputs corresponding to bit positions k and k 
- 1 in order to allow for the case where a 'carry is generated 
at bit position k. The result is now only incorrect, and must 
be changed to E(k - 1), if Cin propagates through the first 
bit~ (E(k) = 1). Thus Cin is still connected to the Gate input 
of the second flip-flop, but the strobe to the Clock input is 
gated with E(k). 
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The packaging of the adder in 2-bit macro modules requires 
c,arries to be generated at intervals of two bits, even though 
the basic block size is four bits. The carry logic is 
partially contained in a carry macro module which produces the 
generate and propagate signals over groups of four bits in two 
levels of logic and partially made up from standard modules. 
For a 16-bi t adder one extra level of logic is needed in the 
carry path, giving an overall addition time corresponding to 
four gate delays, while for larger adders two extra levels are 
needed, giving an overall addition time of five gate delays. 

7.2 THE A-UNIT 

The A-unit is the main arithmetic unit of MU5, situated at the 
end of the Secondary Instruction Pipeline (chapter 5), and 
capable of performing fixed-point and floating-point 
arithmetic, logic and shifting. Figure 7.4 shows an idealised 
schematic diagram of this unit. The X-Register is used for 
32-bit signed fixed-point numbers, while the 64-bit 
Accumulator Register (ACC) is used for all other types of 
operand '. AEX, also 64 bits long, is used mainly in 
floating-point operations as an extension of ACC at its least 
significant end. AOD contains 13 special digits such as the 
32/64 bit floating-point mode coritrol digit, interrupt 
conditions and interrupt inhibits. 

Input 

I I nput Buffer I 

, , , 1 , 
Shift Multiply Add/ Logic 

Subtract 

I '--- J I J 
T , , , , 

ACC AEX Y I ADD I 
I l I 

T 

+ 
Output 

Figure 7.4 Idealised A-unit Schematic 
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Functions are executed by four main arithmetic/logic 
sections, each of which can receive operands from, and send 
operands to, any of the four registers. Loading of the 
registers (as a result of an '=' function) is achieved via the 
logic section, in order to reduce the number of internal 
highways. The add/subtract section performs all 64-bit 
additions and subtractions, forms 3 • D (where D is the 
multiplicand) for multiplication and carries out the final 
addition required for multiplication (section 7.2.3). It also 
contains the pre-arithmetic and normalising shift network 
required for floating-point operations, and the highway 
between this section and the registers is therefore notionally 
128 bits wide. The shift section contains a unidirectional 
(left) shifter. Right shifts are achieved through the use of 
'twist' gating connections at the input and output stages of 
the shifter which allow the order of bits in the operand to be 
reversed. The multiply section carries out multiplication of 
two signed 2's complement numbers up to 53 bits long (the 
mantissa size) and produces a signed 2's complement number up 
to 106 bits long. Thus it is capable of dealing with both 
32-bit fixed-point humbers and with the mantissae of 
floating-point numbers. In the latter case the corresponding 
exponent arithmetic is carried out in the add/subtract 
section. The A-unit is actually required to carry out a 
variety of different orders, all of which are implemented by 
adaptations of these four sections. In particular, division 
(section 7.2.4) is performed by an iterative process involving 
multiplication, addition and shifts. 

In practice, constraints introduced by the physical 
configuration of the hardware led to the logical configuration 
shown in figure 7.5. The principal differences between this 
scheme and the idealised scheme are that transfers between the 
registers and the shift section all take place via the 
add/subtract section, and the least significant half of a 
double-length result is fed to the appropriate part of AEX via 
a separate dedicated highway. This allows the main path from 
the execution sections to the registers to be only 64 bits 
wide. In addition, the extra input buffer incorporated into 
the A-unit is shown in figure 7.5. Input Buffer 2 holds the 
operand and function corresponding to the order currently 
being executed in the A-unit, which cannot normally be 
overwritten until the order has been completed. Individual 
orders require varying amounts o~ time for their completion, 
however, some more and some less than the typical average time 
required by the Secondary Operand Uni t to supply success,i ve 
functions and operands. Timing interlocks between the units 
prevent orders being sent to the A-unit before it can accept 
them, and without further buffering no advantage could be 
gained from the faster orders. For example, if Inpu~ Buffer 2 
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held a slow order and the next order was fast, then in the 
absence of Input Buffer 1, the A-unit would be held up, once 
it had completed both these orders, until the Secondary 
Operand Unit had had time to supply a third order. By 
incorporating Input Buffer 1, the overlap between the A-unit 
and the Secondary Operand Unit is ·improved and the third order 
can have been made available earlier. Clearly the general 
effect of Input Buffer 1 is to smooth out variations in the 
acceptance rate of orders into the A-unit and, depending on 
the actual sequences of orders, more buffers could improve the 
situation further. A law of diminishing returns operates, 
however, and one extra buffer was considered sufficient for 
the present design. 

Input 

l 
I liP Buffer 1 I 

I 1 

f l 
I liP Buffer 2 I 

• • 
Shift Multiply Addl Logic 

Subtract 

I 1.. I J 
I 

• • • f , 
ACC ! AEX r- I X I I AOD I 
I J I 

Output 

Figure 7.5 Practical A-unit Schematic 

7.2.1 Number Representation 

The number formats used in MU5 are shown in figure 7.6. Apart 
from the floating-point format they are fairly conventional. 
Even the floating-point format has no exceptional virtues 
relative to any other systems in use, except possibly the use 
of a hexadecimal radix, and was chosen by ICL during the 
'convergence' exercise (chapter 1) because it met certain 
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customer requirements. In the absence of such virtues, it 
might have been better to adopt a number system compatible 
with that used by IBM, a course subsequently adopted by ICL 
for the 2900 Series. 

32 63 
(a) Fixed-point Signed I 

t Value 

Sign 

o 3132 63 
(b) Fixed-point Unsigned 1 

Zeros Value 

(e) Decimal 1 
Magnitude t 

Sign 

o 1011 63 
(d) 64-bit Floating Point .... 1 __ --11 ______________ -----1 I 

Exponent t 
Sign 

Mantissa 

32 4243 63 
(e) 32-bit Floating Point I I 

Exponentt Mantissa 

Figure 7.6 Number Formats 
Sign 

Tbe virtue of the hexadecimal radix lies in the speed 
advantage which can be obtained during the execution of 
floating-point addition and subtraction (section 7.2.2). It is 
a fact that in many calculations most of the operands are of 
similar magnitude and with increasing radix value the number 
of occasions on which pre-alignment shifting is required for 
addition and subtraction decreases. This advantage must, 
however, be off-set against the reduction in accuracy caused 
by retaining fewer mantissa digits during normalisation and 
rounding. 

7.2.2 Addition and Subtraction 

The add/subtract section of the A-unit carries out addition 
and subtraction of both fixed-point and floating-point numbers 
and therefore contains not only an adder/subtractor, but also 
a shifter and exponent arithmetic unit. For floating-point 
addition or subtraction the exponents must be equalised and 
the mantissae correspondingly aligned before the addition or 
subtraction can be carried out. Thus the exponents are 
compared, and the mantissa of the smaller number is shifted 
right (towards the least significant end), until the exponents 
are equal. However, as a consequence of using a hexadecimal 
radix, the probability of such a shift being necessary is only 
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around 50% [27], and advantage is taken of this fact in MU5 by 
starting the addition or subtraction immediately, on the 
assumption that no shift will be necessary. Corrective action 
is then taken later if necessary. Similarly, normalisation at 
the end of addition or subtraction is unnecessary in over 80% 
of cases. With a hexadecimal base, normalisation involves 
shifting the mantissa until it is in the range 

-1/8 L m L -1 
or 

1 > m L 1/16 

Thus the normalising shifter is initially set to zero shift, 
and the result of the operation made ready to be copied into 
the appropriate register on the assumption that normalisation 
is not required. Again, corrective action is taken later if it 
found to be necessary. 

x-input v-input 

Adder 

MR 

s 

Exponent 
Arithmetic 

R 
EY 

Figure 7.7 The Add/Subtract Section 

Figure 7.7 shows the overall diagram of the add/subtract 
section of the A-unit. For floating-point addition the 
mantissae corresponding to the incoming operand and the ACC 
Register are routed to the x and y inputs of the adder 
respectively through the t no shift t gates (NO-Sh) and the 
addition is started. At the same time, the 11-bit exponents 
are compared in the exponent arithmetic unit and the 
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difference set in the Exponent Result register ER. EY is set 
with the larger exponent value which is also the exponent of 
the floating-point result. The exponent arithmetic unit is 
actually 12 bits long, since an overflow condition may cause 
the 11th bit to indicate a shift of the wrong mantissa. The 
12th bit is also used for checking floating-point overflow or 
underflow. 

If ER is non-zero, then the first addition must be 
abandoned and a second addition initiated. If the difference 
is positive, then the S-Sh gates are opened and the incoming 
operand (S) is shifted by the number of hexadecimal digits 
indicated by ER. If the difference is negative then the A-Sh 
gates are opened, and the ACC Register content is shifted by 
one more hexadecimal digit than the number indicated by the 
inverse of ER. (Negating a 2's complement number involves 
inverting and adding 1; in this case the extra 1 is 
incorporated into the shift at the entry to the ASB gates by 
wiring the A inputs four bits shifted relative to the S 
inputs.) 

The shifter itself is 105 bits wide so that bits shifted 
below the significance of the adder can be retained for 
double-length results. These bits are held in the Accumulator 
Extension Buffer (AEB) at the end of the addition, while the 
result of the addition proper is held in the Mantissa Result 
register (MR). The shifter is re-set to zero shift after the 
addition, in preparation for normalisation. Normalisation 
requires a left shift (towards the most significant end) and 
since, for reasons of economy in modules and platter 
in terconnec tions , the same ( unidirec tional) shi fter is used, 
the order of the digits is reversed. Thus MR is connected to 
the input to the least significant half of the shifter, and 
AEB to the most significant input, both either directly or via 
a 4-digit shift which allows for the super-normal case. The 
output from the shifter forms the input to the ACC Register 
and AEX, with the digits in an appropriately inverted order, 
and if no normalisation is required, the result can be copied 
in immediately. Where normalisation is required, an extra 
delay is incurred while the data paths through the shifter 
settle to the new conditions. Rounding occurs if the content 
of AEB is non-zero, the least significant digit of the ACC 
Register being forced to 1 in this case. 

The fastest time for floating-point addition, when no 
pre-arithmetic or normalisation is involved, is 170 ns. 
Normalisation involves an additional delay of approximately 70 
ns, and pre-arithmetic shifting an additional delay of 
approximately 125 ns, so that the longest floating-point 
addition requires 365 ns. The expected average time s_ however, 
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is around 250 ns, when account is taken of the relative 
frequency of occurrence of the various cases [27]. These times 
are, in fact, considerably longer than those which could be 
achieved with the existing logical design. The extra time is 
mainly incurred because of layout difficulties and pin 
limitations which require extra cable delays and highway gates 
within the system. 

Fixed-point subtraction is performed by inverting the 
subtrahend and adding an extra 1 (via the carry-in entry) to 
the least significant digit. In floating-point subtraction a 
difficul ty arises in cases where the subtrahend mantissa is 
shifted before subtraction, since the position at which the 
extra 1 must be added is variable .. This difficulty could be 
overcome by extending the subtrahend to double length at its 
least significant end and always adding the 1 to the least 
significant digit of the double-length value. This would 
require a complete double-length adder however, and an 
al terna ti ve approach has therefore been used. In the cases 
where the subtrahend is shifted (the incoming operand (S) in 
Subtract, or the ACC . Register content in Reverse Subtract), 
this number is first complemented by a separate pass through 
the adder and then added to the minuend to form the result. 
The time taken for subtraction is obviously increased in this 
case, the actual amount being approximately 100 ns. This only 
leads to an average expected floating-point subtraction time 
25 ns longer than the average floating-point addition time, 
however, when account is taken of the relative frequencies of 
occurrence of the different possibilities [27]. 

Fixed-point addition and subtraction both take 
approximately the same time as the fastest floating-point 
addition. This is because the same data paths through the 
adder and shifter are used, although only 32 bits are actually 
of significance. In the case of fixed-point signed arithmetic 
orders, an overflow can occur. This situation is detected by 
examining digits from the adder of higher significance, and 
its occurrence is recorded as a digit in the AOD Register. 
Unless the corresponding Interrupt Inhibit digit is set in 
AOD, an interrupt is signalled to PROP, which takes 
appropriate actions (section 4.1.2). In the unsigned case, 
overflow is not meaningful, and since unsigned arithmetic is 
performed on numbers in the 64-bit ACC Register, a 33-bit 
result may be returned. 

7.2.3 Multiplication 

In most computers multiplication is implemented as repetitive 
addition, and a number of techniques are available for 
enhancing its speed [28]. In MU5 the number of additions is 
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reduced by decoding three multiplier digits at a time, and the 
time for a single addition is reduced by use of the carry-save 
addition technique. 

Multiplier 
Decoding Digit Pair 

0 0 (+) 0 
0 1 + D 
1 0 + 2D 
1 1 + 3D 

(a) 

Multiplier m.s. Digit of Decoding Digit Pair Previous Pair 

0 0 a (+) a 
a 1 a +' D 
1 a a - 2D 
1 1 a - D 
a a 1 + D 
a 1 1 + 2D 
1 a 1 - D 
a a 1 (-) a 

(b) 

Multiplier m.s. Digit of 
Digit Triple Previous Triple Decoding 

a a a a (+) a 
a 0 1 a + D 
0 1 a a + 2D 
a 1 1 0 + 3D 
1 0 a a - 4D 
1 a 1 0 - 3D 
1 1 0 0 - 2D 
1 1 1 0 ... D 
a a a 1 + D 
a 0 1 1 + 2D 
0 1 0 1 + 3D 
0 1 1 1 + 4D 
1 0 0 1 - 3D 
1 0 1 1 - 2D 
1 1 0 1 - D 
1 1 1 1 (-) 0 

(c) 

Figure 7.8 Multiplier Digit Decoding 

Figure 7.8(a) shows the decoding of multiplier digits taken 
two at a time. In order to carry out the multiplication, twice 
the multiplicand (2D) and three times the multiplicand (3D) 
are required. Furthermore, in order to produce the correct 
result in a 2's complement system, provision must be made for 
a subtraction to be performed in the last cycle when the 
multiplier is negative. By allowing subtraction in any cycle, 
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however, a further advantage can be gained, as shown in figure 
7.8(b). In this case only 2D has to be formed, and the case of 
a negative multiplier is taken care of automatically. This 
particular scheme also has the advantage that the most 
significant digit of the pair indicates whether addition or 
subtraction is required. The method can be extended to more 
mul tiplier digi ts , but as the number increases, more 
pre-additions are required. Thus 3-bi t decoding requires one 
addition to produce 3D, 4-bit decoding requires additions to 
produce 3D, 5D and 7D, and as more time is saved by reducing 
the number of product additions, more time is lost in forming 
multiples of the multiplicand. In MU5 three digits are decoded 
in each cycle, as shown in figure 7.8(c). 

The carry-save addition technique relies on the fact that 
for repetitive additions it is unnecessar~ to propagate the 
carry. Instead, the result is in the form C?f a 'pseudo-sum' 
and t pseudo-carry' which can be added to the next product to 
form a new pseudo-sum and pseudo-carry, as shown in figure 
7.9. This arrangement requires the use of master/slave 
flip-flops for the pseudo-sum and pseudo-carry registers. Thus 
using the ECL D-type flip-flops (section 3.1.1) a second pair 
of registers is required. The minimum strobe width used with 
these flip-flops is 10 ns, although the propagation delay is 
only 5 ns, and since the carry-save addition can also be 
carried out in 5 ns, a second carry-save adder (CSA*) can be 
in"serted between the two registers (figure 7.10) such that a 
single carry-save addition can be performed every 10 ns. 
Figure 7.11 shows the ECL logic required to implement the 
carry-save adder; xk and yk are the inputs to digit position 
k, one of which' is a previous pseudo-sum result, and ck is the 
pseudo-carry in to position k. 

Selected Multiplicand Triple 

D 

3-bit Shift 2-bit Shift 

Carry-save Adder 

Figure 7.9 Simple Carry-save Adder Arrangement 
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At the start of a multiply order, the appropriate register 
content is fed to multiplicand register DO and to the 
add/subtract section to form 3D. The latter is copied into 
register TD, and the incoming operand associated with the 
order (S) is copied into the multiplier register RR. The 
decoding and selection logic forms a double pipeline feeding 
the carry-save adders; since the two carry-save adders operate 
in anti-phase, the inputs to the D and D* registers must be 
correspondingly staggered. Thus signals decoded from the three 
least significant digits of register RR select 0, 2D, 3D or 4D 
to be fed to register D1, and the content of RR is then fed to 
HR* where similar signals decoded from the next three digits 
select the appropriate multiple of D to be fed to register 
01*. The content of RR* is then fed back toRR, with a 6-digit 
shift which causes the appropriate digits of the multiplier to 
be used in the next cycle. D, 2D and 4~ are obtained simply by 
connecting digits k, (k + 1) and (k + 2) of DO to the inputs 
corresponding to digit k of D1. In the second selection stage 
the true and inverse of D1/D1* are selected and copied into 
02/D2* using the appropriate information copied from RR/RH* 
into RS/RS*. 

s 

Figure 7.10 The Multiplier Section 
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Carry-save additions proceed until all the digits in the 
mul tiplier register have been used. During this time carry 
propagate additions of the digits shifted down below the 
significance of the adders are carried out in a special 3-bit 
adder, so that at the end only a single-length propagate 
addition is required to form the result. This is carried out 
in the main adder in the add/ subtrac t sec tion , to which the 
final pseudo-sum and pseudo-carry are sent. 

Figure 7.11 ECL Carry-save Adder Logic 

This multiplication technique has been shown to be 
particularly cost-effective with the logic used in MU5 [28], 
and it appears to remain so for more recent developments in 
LSI circuits, though it might be better to use only two 
mul tiplier bits at a time. As far as is known, this type of 
multiplier was first used in the English Electric KDF9 
computer, built around 1960, while the IBM System/360 Model 91 
[29] used a variation of the scheme, in which more carry-save 
adders were used, and hence more multiplier digits handled in 
each (rather longer) cycle. 

7.2.4 Division 

Division is carried out in MU5 by means of a successive 
approximation technique which avoids the use of repeated 
subtractions. A similar technique was used in the IBM 
System/360 Model 91 computer [29] and it has also been used 
subsequently in the CraY-1 computer [30]. The latter provides 
better accuracy than MU5, mainly because MU5 retains fewer 
digits during the course of the operation. The successive 
approximations are obtained by an algorithm which is derived 
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by letting X = 1 /D , where D is the divisor, and considering 
the func tion 

f(X) = D - 1/X = 0 

If Xn is the nth successive approximation to X and h is a 
small deviation from Xn, then 

f(Xn + h) - f(Xn) + hf'(Xn) 

where f' = df/dX. Now since f(X) = 0 

f(Xn) + hf'(Xn) - 0 
i.e. 

h = - f(Xn)/f'(Xn) = (D - 1/Xn)/(1/XnT2) 

Let 
X(n + 1) = Xn + h 

then 
X(n + 1) = Xn - DXn12 + Xn 

= Xn (2 - DXn) 

Suppose that initially XO = RO - 1/D from a table, then 

X1 = RO (2 - D * RO) 

If we now wri te 
R1 = 2 - D * RO 

then 
X1 = RO * R1 

and 
X2 = X1 (2 - D * X1) 

= RO * R1(2 - D * RO * R1) 

If we again write 
R2 = 2 - D * RO * R1 

and proceed, then 
X2 = 1/D = RO * R1 * R2 

Now D * RO can be written as D1, D * RO * R1 can be written as 
D2, etc., and hence 

D(i + 1) = D * RO * R1 * ... Ri -> 1 

Furthermore 
Ri = 2 - Di 

and if Di is fractional, then Ri is simply the 2's complement 
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of Di. (For the mantissae of floating-point operands this 
condition is true b~ definition, and fixed-point operands can 
be treated with a scale factor). Thus, once RO has been 
determined, forming the reciprocal of the divisor involves 
only the multiplication and complementing of partial results, 
and if at each stage the dividend N is multiplied by Ri, the 
quotient Q = N/D is obtained as the end result. In practice 
the 2' s complement operation is replaced by a l' s complement 
operation, which is faster but slightly less accurate. 

The number of successive approximations which must be made 
depends on the required accuracy. Suppose 

RO = 1/D + e 

where e is an error, then 

D1 = D * RO = + De 

R1 = 2 - D1 = - De 

D2 = D1 * R1 = (1 + De)(1 - De) 

= - (DE)f2 

R2 = 2 - D2 = 1 + (DE)12 

D3 = D2 * R2 

= 1 - (DE)f4 

Since D ~ 1, then if e < 21-7 

(DE )f 2 < 21 -1 4 

(DE)f4 < 21-28 

(DE)18 < 2i-56 

and so on. 

which corresponds to more bits than there are in the ACC 
Register. Hence D4 gives the correct answer provided that RO 
is sufficiently accurate. The number of different values of RO 
needed to obtain the required accuracy depends on the range of 
values of D. It can be seen from figure 7.12 that if 1;> is 
small then 1/D varies rapidly with changes in D and many 
values ofRO are needed. This suggests that I D I should be 
normalised, and in fact bit normalisation of IDI reduces the 
required number of values of RO to four. The range of D is 
then divided into four, and a pair of numbers generated from 
the second and third most significant bits. These numbers are 
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A = 4 * DMH/(DMHT2 + DH * D(H - 1» 
and 

B = 2/(DMHT2 + DH(H - 1» 

where DMH is the middle of the interval and DH and' D(H-l) are 
the ends of the interval. RO is then given by 

IW = A - B * D 
For example, if 

D = 0.100 
then 

D(H - 1) = O. 100 

DH = O. 101 

DMH = O. 1001 
and thus 

A = 3.5776 

B = 3. 1801 

Clearly A and B cannot 'be held in the floating-point ACC 
Register since their values are greater than 1, and values of 
RO/4 are used in practice. Furthermore, since 1/D = 2 is a 
possible value, Di must also be calculated as Di/4. 

1 
5 

4 --

I 
I 
I 
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2 --+--
I I 
: I 

~ ---r--i--
I I I __ L ___ 

1 
___ + __ 

I I: 
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I I I 
I I I 
I I I 

Figure 7.12 Graph of D Versus liD 
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appropria te timing control Idgic, a means of determining RO, 
and an extra register for storing partial results. This 
register is connected to the output of the shift section 
(figure 7.5) and forms an input to the add/subtract section 
and to the roul tiply section. With careful layout of all the 
logic involved, a division time of 3 llS could be achieved, 
al though in practice the time required is 4 llS. The Cray-1 
computer uses a bigger look-up table (and hence requires fewer 
iterations) and also has a faster multiplier than MU5. This 
leads to a quoted time for division of 360 ns. 

7.3 THE B-UNIT 

The B-uni t is a fairly straightforward arithmetic and logic 
unit which carries out fixed-point arithmetic, logic and shift 
operations involving an incoming operand and the contents of 
the 32-bi t B-register. Its main use is in handling modifiers 
used in data structure accesses. Thus when a modified 
descriptor request is sent from PROP to Dr, a modifier request 
is sent, in parallel, to the B-unit. No function is executed 
as a result of this request, but as soon as any previous 
orders have been completed, the B-unj.t signals to Dr that the 
value on the dedicated modifier highway is valid. Dr always 
wai ts for this signal before commencing modification, since 
any previous value may have been invalidated by the execution 
of one or more B functions. The time taken to complete most of 
these functions is 45 ns, the main exceptions being Multiply 
and Shift, which take a variable time according to the values 
of the operands involved. 

Multiplication is carried out by simple accumulation of 
subproducts, using pairs of multiplier digits in successive 
cycles, and once all significant multiplier digits have been 
considered, the order is terminated. Clearly the time for 
multiplication can be reduced if the operand with fewer 
significant digits is chosen as the multiplier. A test is 
therefore carried out at the start of each Multiply order in 
the B-unit to determine which operand to use as multiplier and 
which as multiplicand. Thus the time required for 
multiplication is 100 ns for starting up plus 45 ns for each 
cycle. The result of multiplying two 32-bit numbers together 
is normally a 64-bit number. However, one of the principal 
reasons for implementing the Multiply' function in the B-uni t 
was for the manipulation of dope veetors (the lack of a 
fixed-point multiply order on Atlas had been felt to be a 
significant omission in this respect), and a 32-bit integer 
result would normally be expected. Therefore, the less 
significant half of the result from multiplication is copied 
into the B-register, and a result with higher order digits 
causes an interrupt. 
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7.4 THE STORE-TO-STORE ORDERS 

The store-to-store orders (section 2.2.6) are executed 
entirely within the D-unit and involve the use of the 
descriptor registers in Dr and the byte-processing logic in 
Dop [31]. These orders fall into two main classes, byte-string 
and string-string. The byte-string orders involve only one 
string, defined by a descriptor held in DR, while the 
string-string orders involve both a source string defined by 
XDR and a destination string defined by DR. Since the A-unit 
is inactive during the execution of these orders, the need for 
the extra descriptor register (XDR) could have been avoided by 
using ACC instead. This possibility was rejected in MU5 
however, since the widely separated positions of XDR and ACC 
in the pipeline would have created significant timing problems 
in the hardware. 

7.4.1 Operation of the Store-to-Store Orders 

The store-·to-store orders are controlled by logic in the Dr 
unit·, which, by incrementing the or1.gl.n field( s) of the 
descriptor(s) at each access, generates the appropriate series 
of addresses, and by decrementing the length field(s), until 
zero is reached, determines the point at which to terminate 
the order. The descriptors themselves are loaded into DR and 
XDR by preceding orders, while the filler/mask, which is the 
operand associated with the actual store-to-store order, is 
automatically transferred to Dop by a preliminary access 
during the execution of the store-to-store order itself. A 
'Dop bit' accompanying this access indicates its special 
nature and causes the operand to be loaded into the 
filler/mask register within the store-to-store processing 
logic in Dop (figure 5.3). 

During the execution of these orders, the main data path is 
used to extract bytes from the source and destination store 
words, and to return them to the destination store words as 
appropriate. Thus, for the SMVB and SMVF orders, for example, 
Dop performs 'load' operations to extract bytes from the 
source string, and for the SMVB, SMVF, BMVB and BMVE orders, 
performs 'store' operations to return bytes to the 
destination~ For the logic orders, SLGC and BLGC, bytes are 
also extracted from the destination string before being 
logically manipulated and returned to the destination string. 
For the SCMP, BCMP and BSCN orders, only 'load' operations are 
required since the destination string is not updated. 

The sequence of operations in a store-to-store order is 
best illustrated by reference to the patterns of bytes in the 
strings as the order proceeds. Figure 7.13(a) shows the 
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.pattern of bytes in the destination string at the start of a 
BMVE order. The origin of the descriptor initially points to 
the first byte of the string, and the length is set to the 
total number of bytes L. At the end of the first cycle, the 
position is as shown in (b). The (masked) filler has been 
moved into the first byte, but the origin and length are 
unchanged; the only route to the OBS address highway is 
through the Dr adder, and since the first address to be sent 
must be that contained in the descriptor origin, the updated 
value is not available for loading into the descriptor. For 
the second and subsequent cycles, the address sent to OBS is 
the origin plus 1. The origin is then updated with this new 
value, and finally the length field is decremented by 1. The 
string patterns are as shown in (c) and (d). 

(a) Pattern at Start ··r-I--,I--r-.,.....--r- -= = ~ ~ ~ = = ~ ~ ~ ~ = = --,---,.---, 
Origin + Length = L .. 

(b) 
End of 1st Cycle ~ I rr==~~~~~======~_....L.I----L~ 

Origi;r- Length = L 

(c) End of 2nd Cycle ""'_~~"---'--~_ = =~~-~~~~~ =~~= = -m 
Origin~ Length = L-l 

• 
(d) EndOfLthCYcle_===~~~-=-~-_~~=~~~ 

~ 
Length = 1 

(e) End of Last Cycle .~-~===-=~ ___ -_~~~= __ 

Origin. 
Length = 0 

Figure 7.13 String Patterns in a Byte-string Order 

The end of the move sequence is reached when the length 
becomes equal to 1. This indicates that the last byte has been 
filled, as shown in (d). Since the descriptor must pOint after 
the end of the string when the order terminates, however, an 
extra cycle is needed (without a store access) to increment 
the origin by 1 and. decrement the length by 1. The final 
string pattern is shown in (e) apd figure 7.14 shows the event 
sequences in the various cycles, 

The event sequence for a 4 normal' cycle of a string-string 
order is shown in figure 7.15. The source byte address is 
generated first and sent to OBS, and then the source origin is 
updated. The destination byte is then accessed in the same way 
and the destination origin is updated. Finally, the two length 
fields are decremented by 1. The order is normally terminated 
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when the destination length reaches zero, or when equality is 
found in SCMP. If the source length reaches zero before the 
destination length, the action taken depends on the order 
involved. ·SLGC is terminated immediately, and an interrupt is 
generated, whereas SMVF and SCMP are converted to the 
corresponding byte orders. This is illustrated in the complete 
event sequences for SMVF (figure 7.16). 

1st Cycle ~ Start 

2nd - Lth Cycles ~ Start 
I Access Destination Byte 
, I Update Origin 

, I Update Length 

, ~ End 

Last Cycle ~ Start 

I Update Origin 
, I Update Length 

, ~ End 

Figure 7.14 Event Sequence in Byte-string Order Cycles 

, Start 

I Access Source Byte 

f I Update Source Origin 

f ~I Access Destination Byte 

f I Update Destination Origin 

t I Update Source Length 

t ~ Update D~~~:tion Length 

Figure 7.15 Event Sequence in a String-string Normal Cycle 

In the first cycle, the origin fields are sent out directly 
as addresses and the two descriptors are left unchanged at the 
end of the cycle. 'Normal' cycles are then executed until the 
source string runs out. For subsequent cycles only the 
destination address is generated, and the function code 
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associated with these accesses is changed to BMVE, so that the 
rest of the destination string is filled with the filler byte 
held in Dop. The first of the BMVE cycles is also a 'last' 
cycle for the source descriptor, in which the origin and 
length fields are updated so that the descriptor finally 
pOints after the end of the string and has zero length. 

1st 2nd SLth (SL+1)th (SL+2)th DLth Last 
Cycle Cycle Cycle Cycle Cycle Cycle Cycle 

~ 
I I I I 

Transfer Operand I I I I 

I I I I 

iHH iH 
I I 

Access Byte l l~ :~ 
I I 

I I I 
I 

II l ~ ~ ~ ~ ~ 
I 

~ ~ Update Origin I 
I I 

r---J I i---1 
I I I 

I 

~ l: 
I 

~ ~: ~ ~ r I ~ ~ Update Length I I 
I I 

I I I I 
I I ! i 

Figure 7.16 Complete Event Sequence for a String-string Order 

7.4.2 Byte Processing 

The additional hardware required in Dop to pr'ocess the bytes 
selected by the main data path is shown in figure 7.17. 
Register DS contains the store-to-store operand (the filler, 
the mask, and the four LC digits which control the logical 
operation involved in the orders BLGC and SLGC) , while SSA and 
SSB are used to hold copies of the byte( s) currently being 
processed. Thus, during the execution of the SLGC order, for 
example, the source byte. selected by the main data path is 
loaded from GR (figure 5.3) into SSB and the destination byte 
into SSA. The appropriate combination of corresponding digits 
of SSA and SSB is then selected, according to the setting of 
the LC digits and the result is copied back to the destination 
byte via FR. The BLGC order operates in a similar fashion, 
except that the filler byte is taken from DS instead of a 
source byte from GR. 

The orders SMVF, SMVB, BMVE and BMVB operate in 
correspondingly similar ways, except that they only involve 
the copying of source or filler bytes to destination bytes, 
and so the destination byte itself never needs to be copied 
into SSA. Both registers are used in SCMP, BCMP and BSCN, but 
during the execution of these orders the destination string is 
not updated, and no copying back to FR takes place. These 
orders terminate either when the destination string is 
exhausted or when the comparison logic indicates 
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non-equivalence (or, in the case of BSCN, equivalence) between 
the source and destination bytes. At termination, signals are 
sent to the Test ~its in the Machine Status register in PROP 
to indicate the cause of termination, and in the case of 
non-equivalence, whether the source byte was greater or 
smaller than the destination byte. 

To F R (Masking) 

From 
GR 

Logical. Combination 

LC~ 
SSAk 
SSBk 

LC1 
SSAk 

...... --...-, SSBk 

LC2 
SSAk 
SSBk 

LC3 
SSAk 
SSBk 

Ds.. 

Figure 7.17 Byte Processing Logic 

The mask digits in DS control the input gates to both SSA 
and SSB such that a zero is copied into these registers at any 
bit position for which the mask is set to 1. This arrangement 
affects SSA and SSB for all the orders, but is only relevant 
for SCMP, BCMP and BSCN. In the rema1n1ng store-to-store 
orders, the value in SSA or SSB for masked digit positions is 
irrelevant, since the mask digits in DS are also incorporated 
into the masking facility associated with FR. Thus digits in 
the destination store word in FR for which the mask is set 
remain unaltered when copying from the store-to-store byte 
processing logic takes place. 

7.4.3 Special Store Management Problems 

Since the addresses generated by the store-to-store orders are 
virtual addresses, the execution of a store-to-store order 
will generally involve the crossing of one or more page 
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boundaries, and hence require access to a page of data not 
currently available. A system which attempted to overcome this 
problem by ensuring the availability of all the necessary 
pages of data before the start of the order would involve 
different hardware constraints on the length of strings which 
could be handled in different implementations of the 
instruction set, and was therefore not considered. The 
alternative approach adopted in MU5 is to allow the 
store-to-store orders to be interruptable, so that only parts 
o·f each string need be resident in the Local Store at anyone 
time. Thus it is possible to interrupt execution of a 
store-to-store order at a partially completed stage and 
re-start it from the same point when a new ·page of data has 
been made available. 

In a pipelined implementation two different situations 
arise. In the case of the comparison orders (BCMP and SCMP, 
for example), a new cycle can only be initiated in Dr once Dop 
has compared the values of the bytes for the current cycle 
(which must therefore have obtained CPR equivalence), since 
the descriptor(s) must be left pointing to the byte(s) 
concerned. In the case of the move orders, however, Dr 
operates independently of Dop, and can continue generating 
addresses at will. The corresponding requests are buffered in 
the aBS Queue and should a CPRNEQ occur, the requests trapped 
in the Queue can be dealt with in the normal way (section 
5.2.4). Dr therefore samples the interrupt signal at the start 
of each cycle, and when an interrupt occurs it converts the 
new cycle to a 'last' cycle in order to terminate the order 
normally with the origin( s) pOinting to the byte( s) 
immediately following those already in the aBS Queue. Requests 
in the aBS Queue are automatically re-issued after a CPRNEQ 
has been serviced, and when an interrupted store-to-store 
order is re-issued, the first cycle generates the addressees) 
of the next byte( s) in sequence. Clearly for this system to 
operate properly, all the registers involved must be preserved 
and restored if the interrupt causes a process change. 
Unfortunately this fact was overlooked in MU5 in the case of 
register DS, and in practice each cycle of all the 
store-to-store orders must wait for CPR equivalence on the 
addresses it generates before the next cycle can begin. 
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8 The Software Tools 

From the start of the MU5 project it was clear that the 
productivity of the software gr~up would be a critical factor, 
and a lot of emphasis was placed on the provision of software 
tools. The project aim of designing the hardware to fit the 
software requirements meant that the software design had to 
run ahead of the hardware design. Also, since the evaluation 
of the completed system was to be based on its high-level 
language job processing ability, 'good' software would be 
required soon after the hardware commissioning was complete. 
It was felt very strongly that the only way to achieve good 
software was by expending effort in producing prototypes of 
each component, and that only by running them on other 
machines, or possibly on partially commissioned hardware, 
would the timescale be met. In fact during the 10 years from 
1968 to 1977 the MU5 software group (of about 20 people) 
produced 10 operating systems and 15 compilers in addition to 
the software tools programs. Furthermore, it was recognised 
that to be useful as a basis for the design of their 
successors, these prototypes had to have a readily 
understandable external representation. It could not be 
assumed that there would be continuity in the staff to carry 
forward the experience. 

8.1 INTRODUCTION 

The software tools used on the MU5 project were intended to 
assist all phases of software production, namely 

Design and Specification 
Implementation 
Development 
Maintenance 
Documentation. 

Al though documen ta tion , in the sense of final system 
documentation, appears at the end of the list, the MU5 
software tools are mainly concerned with documentation. In the 
design phase the need is for documentation which records 
decisions and focuses the design effort. Owing to the 
iterative nature of design this documentation is subject to 
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frequent change and its production needs to be automated. It 
is all too easy to lapse into the state where the 
documentation is obsolete, and the design only really exists 
in the minds of the designers. It is fairly obvious, that the 
documentation must also be clear, concise, and easy to read. 
In the academic world of Computing Science a solution to all 
these problems has been sought through the disciplined use of 
better high-level languages (Pascal, for example)" and other 
approaches have been followed in commercial systems. The MU5 
approach has been to develop a methodology to apply at a level 
above the programming languages, which provides a way of 
describing the programs before they are written. Wherever 
possible a graphical representation is used, although a word 
processing facility also exists to assist the production of 
wri t ten descriptions. In fact, it has been used to assemble 
and print the copy for this book. 

8.2 DATA DRAW 

In the early stages of the design of system software, given 
that its functional characteristics are understood, the first 
ideas that solidify relate to the content, layout and 
disposition of the data structures to be used by the software. 
The design of the main algorithms takes place around these 
data structures. This is particularly true of those parts of
the Operating System that are main store resident, but even in 
virtual store, tables which are too large, or have a structure 
unsympathetic to the access pattern, can degrade performance. 
In both cases there will be interaction between the 
informatiorl content of the data structures and the choice of 
algorithms. Thus, a system called Data Draw was provided to 
produce a graphical representation of the data structures. 

The structures represented are one dimensional. They 
contain entries subdivided into logical fields as in figure 
8.1, but sometimes more implementation detail is added, 
because even at this early stage, implementation detail has to 
be considered in some parts of the system where it is felt 
that space and time will be critical. 

The data draw input language is not particularly remarkable 
and it offers much more flexibility than the software 
designers have required. An example is given in figure 8.2 
which is the encoding for the right hand part of figure 8.1. 

The current design language (section 8.6.5) allows 
sufficient information to be given in the declarations for a 
pictorial representation of the data structures to be produced 
automatically, and is more convenient to use. 
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CORE UTILISATION TABLEcCUT) 

I 
PACE NO 

1 
11 I I I 

A~JJ 
PT 

IN USE 

BI 

TITLE CHT 
SCALE 1 
HEIGHT 32 

CORE MFlPPIN: TABLEcOO> 

~NO 

LOCKlN j 
6SA I PTPTR 

EMPTY LINK 

Figure 8.1 Store Control Tables 

SECTION1[12]LEFT -"PAGE NO">,ABOVE "CORE MAPPING TABLE(CMT)" 
1 [ "BSA" , 16] 
2[ "PTPTR" , 16] 
END 

Figure 8.2 Encoding of Figure 8.1 

As the ideas for the main algorithms in the system are 
formulated, they also need to be recorded. The emphasis here 
is on recording the ideas as they dev~lop. At this stage they 
are in outline rather than detail form, and they relate to the 
logic of the situation rather than the detail of the 
implementation. This description of the system is for people, 
not computers. Later, the individual functions of tne 
software, the context in which they· apply and their 
interrelationships, clarify, and the programming detail 
emerges. In order to record this gradually evolving (' top 
down') design an automatic flowcharting system called Flocoder 
was produced. 
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8.3 FLOCODER 

Flocoder is a system for designing, documenting and generating 
programs using flowcharts. A file of flowchart descriptions is 
created, from which the charts may be drawn on any sui table 
output device (lineprinter, plotter or VDU, for example). The 
chart descriptions may of course be edited, and the charts 
re-drawn as necessary. 

To enable Flocoder to generate or display the required 
program, the user provides a 'translation' for each box. If 
the action required in a box is Simple, it will translate into 
a sequence of statements in a programming language; if it is 
complex, the translation may reference other flowcharts. In 
this way a hierarchy of flowcharts is created to represent the 
program. In fact, several translations can be given for each 
box. The first would normally be an English statement 
describing the logical function of the box and would be for 
display purposes only. The programming language translations, 
for each of the required languages, would be added later. 

In effect the Flocoder system comprises a language for 
describing flowcharts and two procedures for processing this 
language. One of these 'DRAW' will draw the flowcharts. The 
other 'FLIP' will ~orm a linear ~rogram by correctly ordering 
the boxes and adding labels and 'goto's as necessary, although 
this latter representation is only seen by compilers. 

The syntax of the Flocoder input language is simple and 
straightforward. Each statement in a chart description begins 
with the symbol '@' as the first character of a line, followed 
by a keyword, and continues until the start of the next 
statement. The keywords can be abbreviated to single letters 
since they are recognised by the first letter only; after 
that, all characters up to the next space or decimal digit are 
ignored. A complete chart description consists of 

A TITLE statement 
One or more COLUMN statements 
Zero or more ROW statements 
Zero or more FLOW statements 
Zero or more PARAMETER statements 
One or more BOX statements 
An END statement. 

In the descriptions of th~se statement types which follow, the 
examples relate to the flowchart shown in figure 8.3. 

170 



ClEAR DRlI1 an IN TRfNlFERS 
IN PROt:RESS VORl> &. RESET INTERRlPT 

f'fU .. TY 

Figure 8.3 Flowchart Produced by Flocoder 

8.3.1 The TITLE Statement 

Example 
@TITLE MUSS3(1,1) 

The TITLE statement indicates the start of a new chart, and 
gives a title, which serves two functions. First, it appears 
on the flowchart whenever it is drawn, and thus serves to 
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identify the drawing. Second, it is used in cross-references 
within the code. A chart title may consist of any sequence of 
characters, terminated by a newline symbol. By convention, 
however, they are usually chosen so as to provide an index 
into the software. Thus the title in the example above is for 
the first chart of section 3 of the MUSS. 

Anything appearing in a title after a left hand bracket is 
ignored by the cross-referencing mechanism, so that further 
information for the human reader may be placed in brackets 
after the title proper. (In the above example, as in all of 
the MUSS software, this facility is used to give a version 
number and generation number for the chart.) Apart from this, 
the title used in a cross-reference should be identical to 
that given in the TITLE statement. 

8.3.2 The COL Statement 

Example 
@COL 1S-2R-4T-5R-6R-7T-8R-9R-10R-11R-12F 

The column statements provide, for each box: a numeric 
identifier in the range 1-63, the type (shape) of the box, and 
the position of the box on the flowchart. A chart may contain 
up to eight columns. The first column statement describes the 
leftmost column, and the last one the rightmost column. If 
there is more than one box in a column, the first one 
specified is the highest in the column and the last one the 
lowest, etc. The box types, which follow the box numbers, 
consist of single letters with the following meanings 

Letter 

A 
C 
F 
N 
R 
S 
T 

Meaning 

Annotation box (no outline) 
Circle box (used for external flows) 
Finish box (lozenge outline) 
Null box (a pOint) 
Rectangle box 
Start box (no outline) 
Test box 

8.3.3 The ROW Statement 

Example 
@ROW 5-20 

Each row statement gives a list of boxes to be horizontally 
aligned. The ordering of the box numbers in the row statements 
has no significance. Normally the boxes within a column are 
placed a minimum distance apart, and may be imagined as being 
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connected to the box above (if any), or to the top of the 
diagram (in the case of the first box of a column) by 
invisible elasticL This means that boxes tend to be as high in 
their columns as possible. The effect of the ROW statement is 
to force horizontal alignment by 'stretching the elastic'. 

8.3.4 The FLOW Statement 

Example 
@FLOW 1-2-4TRANS OK-5-6-7N-B-9-10-11-12 

These statements specify the logical interconnections of the 
boxes. Text which is to appear at the point where a flowline 
leaves a box may also be specified in the flow statements. Any 
string of characters excluding newline and terminated by a 
hyphen is allowed. Except for test boxes, which may have two, 
there should be not more than one flowline leaving each box. 
Of course, the finish box will have no flow out. 

8.3.5 The BOX Statement 

Examples: 
@BOX4.0 
TRANSFER FAILED OR OVERDUE? 
@BOX4.1 
IF TRAN.COMP OF V.DRUM.CONTROL 1= 1 

! TRAN.FAIL OF V.DRUM.CONTROL = 1 

These statements specify the text contained wi thin each box, 
which may consist of any number of lines ~ up to the start of 
the next statement. Several 'translation levels' may be 
defined for each box, corresponding to translations in several 
different languages. The example above gives translations in 
English at level 0 and the system design language (MUDL) at 
level 1. When the charts are drawn any translation level can 
be selected for display in the boxes. Figure 8.3 was produced 
by specifying level 0 (English) and figure 8.6 by specifying 
level 1 (MUDL) . Similarly, the procedure FLIP can be 
instructed to generate code from any translation level. 

In addition, it is possible to specify alternative 
translations for a box at a particular level. This facilitates 
the production of several versions of a program (in the same 
language) which differ in only a few boxes. It is a useful 
feature when the program is to be compiled for several 
machines. Alternatives are defined by appending an 
'alternative number'. Thus 

@BOX 3.2.4 
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specifies alternative 4 of level 2, box 3. The procedure FLIP 
may be instructed to select a particular alternative wherever 
it is defined, and the default (zero) elsewhere .• 

Flowchart cross-references may be inserted in the code by 
giving the name of the chart to be included, preceded by the 
character £ at the start of a line, thus 

£MUSS3.1 
£MUSS3.2 
£MUSS3.3 
£MUSS3.4 

appear in the translation for BOX1 of MUSS3. As a result, the 
code for these subcharts will be inserted at the head of MUSS3 
whenever code is generated for it. 

A chart reference may also, where appropriate, include 
parameters consisting of character strings, enclosed in 
brackets, and separated by commas; thus 

£TITLE(ABC,DEF) 

Inside the chart definition warning characters can be used to 
reference the parameters. Each time code is generated for such 
a chart the actual parameter will be substituted. 

8.3.6 The END Statement 

Example 
@END 

This statement terminates the description of a flowchart. 

8.4 SYNTAB 

In sections 8.2 and 8.3 facilities have been described which 
are for general use. This section is concerned with a more 
specialised tool. It is a syntax processing package, which 
automatically generates the parser for a programming language, 
from a 'BNF-like' description of its syntax. It represents an 
approach to compiler writing which has developed out of the 
Compiler Compiler for Atlas [32] and the SPG system for the 
ICL 1900 [33]. Both of these earlier systems consisted 
essentially of two parts. First they included a BNF type of 
language, by means of which the syntax of the statements in a 
programming language were described, and second a system 
programming language, in which the procedures to generate code 
were written. The main difference between the two systems was 
that the Compiler Compiler was purely a compiler writing 

174 



system, while SPG was a more general system programming 
language incorpo.rating facilities for table-driven syntax 
analysis, which made it convenient for compiler writing. In 
both cases the compiler writing facilities could be used to 
extend the basic language of the system. Although this feature 
has some attraction, it also has disadvantages. 

When a programming team are given a self-extensible 
language, some of the less desirable traits of human nature 
begin to show through. For example, the most prolific 
producers of new statements do not always make the wisest 
choice about what is needed. Nor are they over conscientious 
about documentation. Thus the size of the system can mushroom, 
and its operation and use moves into the folklore of the 
project. In a fairly short time the group as a whole can 
become separated from the reality of the hardware by a large 
'fuzzy' layer of software, and the efficiency suffers. 

Properly controlled, the facility to add new statements to 
the system programming language can be very valuable, and its 
control is only a management problem. Nevertheless, the 
management of the MU5 project felt that it had enough 
problems, and the decision was taken that the MU5 system 
programming language would not be self-extensible. This 
removed the need for the syntax defining facilities to be 
closely integrated into the language. It was therefore decided 
to have a system in which the parsing phase of the compilers 
was generated by a pre-processor, and the rest of the compiler 
was writ ten in the standard sys tem programm ing lang uag e. The 
sys tem is called Syntab. It accepts input in the form of 
'BNF-like' formulae and produces a table-driven parser as 
output. This parser is in the system programming language and 
it will be seen, in the description given below, that psuedo 
syntactic elements can be placed anywhere in the syntax, in 
order to interrupt the parsing process and pass control to 
user-provided code. This code may then take over the parsing 
function, or generate code for those statements already 
parsed. 

The main statements of the Syntab system are the SYNE 
definitions, which define the ~tactic ~lements of the 
language, for which a parser is required. They use a similar 
notation to BNF, except for the ordering, which is arranged to 
suit the left-to-right parsing algorithm. When a syntactic 
element has several alternative forms, and if one is a stem of 
another, it must come second. If one is a special case of 
another, however, it must come first. Also, the first element 
in an alternative must not recurse. For example, a character 
string would be defined as 

175 



SYNE(CH.STR):=(CHARACTER)(CH.STR)!(CHARACTER) 

not as 

SYNE(CH.STR):=(CHARACTER)!(CHARACTER)(CH.STR) 

nor as 

SYNE(CH.STR): =(CH.STR)(CHARACTER) !(CHARACTER) 

Parenthesis can be used in a SYNE definition, usually after 
a common stem, to delimit a group of alternatives which have 
no formal name. For example the above· could be written 

SYNE(CH.STR):=(CHARACTER)[(CH.STR)!(NIL)J 

where NIL is built in to the system and has its usual meaning. 

Names denoting ~ded ~tactic ~lements (COSYNES) can also 
appear in SYNE definitions. They must subsequently be used as 
labels on sequences of code written by the user to take over 
control of the parsing process. There are several uses for 
COSYNES, but the main one is to connect the interpretive 
parser into the user-written code generation procedures. This 
is often done in two stages. Some COSYNES scattered liberally 
through the syntax will generate an analysis record, and 
others placed at the ends of statements will transform this 
analysis record into code. A number of COSYNES is built into 
the system to assist this process. Also, there is a further 
software package to assist in code generation known as the 
Compiler Target Language. 

8.5 THE COMPILER TARGET LANGUAGE 

At an early stage in the design of the MU5 software it was 
decided, as an aid to compiler writing, to introduce a 
.Q,ompiler ,Iarget .L.anguage (CTL), into which the -high-level 
languages would be translated [34]. For each high-level 
language a translator would be provided to convert from the 
language to CTL, while a single compiler would convert from 
CTL to machine code. The objective was to simplify the 
individual translators by forcing the CTL to as high a level 
as possible. For example, the CTL allows for declarations with 
the characteristics of those found in high-level languages, so 
that the name and property list management problems are passed 
to the CTL compiler. This scheme also enables the mode of 
compilation, for example, 'output semi-compiled form' or 'load 
for immediate execution', to be determined within the CTL 
rather than within each translator. 
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Subsequently, and as a result of the convergence exercise 
with ICL, a further role for the CTL emerged. The MU5 
translators could be used on a wider range of machines, 
provided a CTL compiler could be written for each machine. 
This machine independence could extend to machines with 
structural differences, provided the data and address formats 
were compatible. This idea is summarised in figure 8.4. It is 
similar to the UNCOL idea [35] except that, whereas UNCOL 
attempted to span the significant differences between existing 
machines, the CTL has been designed to suit machines 
originating from MU5, or at least having a register structure 
on to which the MU5 dedic'ated registers could be mapped. There 
is, however, a more significant difference; the communication 
between the translators and the CTL compiler is two-way. Some 
of the CTL procedures return information to the translators. 
£o'or example, there is a procedure for interrogating property 
lists. It is this two-way communication that makes it possible 
for the whole property and name list organisation to be 
handled by the CTL compiler. 

The CTL does not have to be encoded in character form by 
the translators, then decoded by the CTL compiler. Instead, 
there is a CTL procedure corresponding to each type of 
statement, so that the CTL compiler is really a body of 
procedures rather than a written language. The main input 
parameter of each procedure is a vector, whose elements define 
the nature of the statement. In the case of an arithmetic 
assignment these elements comprise a sequence of operator 
operand pairs. 

Algol 

Fortran 

PL/1 

Virtual Machine 
Order Code 

CTL 

Compiler 

I 
I 
I 
I 

Real Machine 
Order. Codes 

Figure 8.4 The Compiler Target Language 
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Only a small increase in compile time results from using 
the CTL procedures to generate code, because they form part of 
a natural progression from source to object code. However, a 
loss of run time efficiency could arise from the translators 
losing the ability to control completely the code which is 
generated. This problem does not arise with MU5 because of the 
high-level nature of the order code. For example, the 
addressable reg~sters serve dedicated functions which 
correspond to identifiable features of the high-level 
languages. Also, the machine dynamically optimises the use of 
the fast operand store (section 2.2.2). For the other machines 
in the complex satisfactory optimisation can only be achieved 
at the price of complicating the CTL compiler. 

In the overall software structure the CTL can be thought of 
as the instruction set of the MU5 virtual machine (section 
9.1). Hence compatibility in the notional MU5 range of 
machines is at the CTL rather than the order code level. There 
is an associated written form of CTL, MU5 Autocode, which was 
used as the standard system programming language. The detailed 
facilities of the CTL are best described through this written 
form (section 8.6.2), and the example below assumes this 
description. 

8.5.1 An Example of the Parametric Form of CTL 

As an example of the way that CTL is used, suppose that an 
Algol translator wishes to translate 

x, := y + 10 

where x and yare declared integer. 

The corresponding Autocode statement (section 8.6.2.1) 
would be 

I32, y + 10 => x 

The translator must do two things to process this statement. 

(1) Assemble a parametric form of the statement into a 
vector. 

(2) Call the CTL.COMPUTATION procedure with the vector as 
parameter. 

This CTL procedure then generates the corresponding MU5 binary 
instructions, semi-compiled or other forms. 

Suppose that the translator is assembling the parametric 
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form into a vector CODE, then the elements of code are used as 
follows 

CODE [0] Computation is in 132 mode and next operand 
is a name. 

[1] Name y. 
[2] Operator +, next operand is a constant. 
[3] Constant 10. 
[4] Operator =>, next operand is a name. 
[5] Name x. 
[6] Terminating mark. 

This vector, in effect, contains an operator operand 
sequence. Each word containing an operator also describes the 
type of the operand following. The operator is held in the top 
16 bits and the operand type in the bottom 16. Thus, in the 
preceding example, since '=>' is operator 9, and a name is an 
operand type '16', CODE[4] = 00090010 in hexadecimal. 

A name is replaced at the lexical analysis stage by an 
internal identifier, an integer, which is handed back to the 
translator by the CTL • ADD . NAME procedure. Such integers are 
placed in CODE[1] and CODE[5]. This form of operand assumes 
the use of the standard form of name and property lists 
mentioned previously. CODE[O], which is specially coded to 
indicate the mode of the sequence, can be regarded as 
describing a load operation. The complete hexadecimal 
representation of the previous example is 

CODE [0] 
[1] 
[2] 
[3] 
[4] 
[5] 
[6] 

%80150010 
Integer corresponding to y (internal identifier) 
%00012001 
%OOOOOOOA 
%00090010 
Internal identifier corresponding to x 
%00320000 

8.6 SYSTEM PROGRAMMING LANGUAGES 

The software tools described above ease the task of providing 
software and improve its design and documentation. However, 
none can be said to be as essential as the programming 
languages and their compilers. Four programming languages have 
been used during the MU5 project, including the Autocode 
mentioned in section 8.5, and to complete this account of the 
programming tools, a brief summary of the role and 
characteristics of each is given. They range from an assembly 
language to a very high-level language. 
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8.6. 1 XPL 

This is the eXecutive .f.rogramming .L,anguage or basic assembly 
language. The question ' why use an assembly language on a 
machine designed specifically for high-level languages?' might 
well be asked. The short answer is perhaps 'lack of courage 
and confidence', but there is some pragmatic justification for 
this in an environment involving complicated prototype 
hardware. On the first day a system of this kind is ready for 
a test program, some functions will not have been 
commissioned, and all will be suspect. There are added 
problems, if these initial test programs are written in a 
high-level language. The compiling problem is easily solved in 
the case of MU5, because the compiler can be run on another 
machine in the complex, but the kind of control required over 
the code generated is the main problem. Also, and this is 
perhaps the strongest justification, the behaviour of these 
early test programs is never as intended. Many hours of 
combined hardware and software effort go into diagnosing 
'funny' symptoms, and behaviour which defies logical analysis. 
During this time it seems inconceivable that the fault could 
be in any area under examination. Only full confidence that it 
cannot be due to external causes, such as a compiler, can 
maintain the concentration required to locate the fault. 

These problems would, of course, be less severe with a 
simple machine, but a pipeline architecture with many operand 
buffers can be very pattern sensitive. This feature also means 
that some faults remain undetected until the system is running 
jobs. For this reason it was decided to extend the use of XPL, 
to the full Operating System and XPL compiler up to the point, 
in fact, where the system can recreate itself on MU5. 

This is not as bad as it might seem. The existence of the 
Flocoder system makes the use of assembly language more 
palatable than is usually the case, and the MU5 instruction 
set lends itself to a very readable format. For example 

B = 0 
L1:X COMP LIST[B] 
IF =, -> FOUND 
8 CINC 10 
IF 1=, ->L1 
NOT.FOUND 

is the assembly language encoding of a loop to find an element 
equal to the value in the X register in the one-dimensional 
array LIST. 
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8.6.2 MU5 Autocode 

Two principal decisions have determined the overall 
characteristics of the Autocode (and CTL). The first of these 
was that they should be structurally the same language. It is 
thus possible for the CTL compiler to generate the Autocode 
equi valent of a program in any source language. A number of 
minor advantages stem from this, ranging from the debugging of 
compilers, to the hand optimisation of important programs. In 
the light of past experience it was also considered 
advantageous for the compilers to be written in the same 
language that they generate. The second decision was that the 
Autocode (and CTL) should be a high-level representation of 
the MU5 machine code. For example, the declarations relate to 
physical data items in the machine, rather than logical data 
types. Also, the variables are typeless, as are operands in 
the machine, permitting arbitrary manipulation using any kind 
of arithmetic. Consequently, in MU5 Autocode, information 
about data structures is embedded in the code, rather than 
just in the declarations as it is in PL/1 or Algol 68. 

PROC SORT(A,N) 
PROC SPEC SUB.OF.MAX(S,I32,I32)I32 
V32,P,SUB 
V64,DUMP 

PROC SUB. OF • MAX ( A, P, N) 
V32,SUB,I 
P => SUB 
CYCLE I = P+1,1,N 
IF[R64,A[I]>A[SUB]]THEN 
I => SUB 
CONTINUE 
REPEAT 
RESULT = SUB 
END 

CYCLE P = 1,1,N-1 
SUB.OF.MAX(A,P,N) => SUB 
R64,A[SUB] => DUMP 
R64,A[P] => A[SUB] 
R64,DUMP => A[P] 
REPEAT 
RETURN 
END 

Figure 8.5 An Example of an MU5 Autocode Procedure 

Practical considerations reinforced this decision. Firstly, 
because the hardware and software of MU5 were to be 
commissioned together, it was considered preferable for the 
language to reflect the hardware. Secondly, the dependence of 
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the rest of the software on the CTL and the Autocode 
necessitated a short time scale for their development. 

The overall form of the language can be seen from figure 
8.5. This is a procedure for sorting an array into descending 
order using linear selection. In the following sections the 
form of declarations, the operations available, and the 
overall control structure are described. 

8.6.2.1 The Autocode Computation Statements 

Each arithmetic computation requires an implicit or explicit 
specification of the type and size of arithmetic required. The 
Autocode provides many arithmetic modes, but 32-bit integer is 
considered to be the fundamental mode. It was expected that 
only those modes justified by the style of use of any 
particular member of the MU5 range would be provided in 
hardware, the rest being provided by software. The arithmetic 
modes are signed and unsigned integer, real, and decimal, of 
size 32, 64 or 128 bits, and a Boolean mode. In the MU5 
actually built 32-bit signed and unsigned integer, 32 and 
64-bit real, and Boolean modes are provided in hardware, 
together with some functions to aid the software 
implementation of the other modes. The mode is normally 
specified at the start of each statement, unless it is 32-bit 
integer mode (in. which case it may be omitted), and this is 
followed mainly by operator operand pairs. Each of these pairs 
generally corresponds to a machine instruction, hence the code 
compiled is closely controlled. 

The operator precedence, in contrast to most high-level 
languages, is strictly left to right. There are several 
reasons for this. First, the operations in system programs are 
of a logical rather than an arithmetic nature, and they use 
operators for which precedence rules are not well established. 
Second, it is easier to ensure that efficient code is being 
compiled when the evaluation is left to right than when 
implicit stacking of partial results is taking place. Third, 
since different languages have different precedence rules, an 
equal precedence convention is the most convenient for use in 
the CTL. Precedence can be forced by the use of bracketed 
sub-expressions, which explicitly demand the stacking of a 
partial result on the opening bracket, and the application of 
a reverse operation on the closing bracket. This is shown in 
the following example 

Algol E := (A + B)/(C + D) 

CTL R64,A + B/(C + D) => E 
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In MU5 this statement would translate into 

ACC = A 
ACC + B 
ACC *= C 
ACC + D 
ACC /: STACK 
ACC => E 

8.6.2.2 Operands and Declaratives 

The names which are used to represent operands must be 
declared before use. Thus single pass compilation is possible. 
The user has control over the store layout and implicit 
declarations are not permitted. The scope of the declaratives 
is organised on a block structure basis. The basic items which 
may be declared are scalars, vectors and strings. The 
declaratives specify the operand size in the case of vector 
elements and 32 or 64 bits in the case of scalars. Vector 
element operands consist of the vector name and a subscript 
expression of arbitrary complexity. An example of the use of 
vector elements is 

R64,X[I * N] + Y[J - 2] => Z 

This statement translates into 

B = I 
B * N 
ACC = X[B] 
B = J 
B-2 
ACC + Y[B] 
ACC => Z 

The Autocode also provides for more complicated data 
structures such as operands accessed through several levels of 
descriptors and multi-dimensional arrays. These cases are 
always explicitly described rather than being implicit. Hence, 
for example, if X is a vector of vector descriptors, X[I][J] 
causes element J of the Ith vector to be accessed. 

The allocation of store for these data structures may be 
dynamic or static. In the latter case, store allocation is 
controlled by declared areas. An example of a static vector 
declaration is 

VEC/$AREA[64,100]A 

This declares a vector with 100 64-bit elements numbered 0-99 
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in the store area AREA. A descriptor of the vector is placed 
in the local namespace of the current procedure and may be 
referred to as A. 

8.6.2.3 Autocode Control Statements 

The order of execution of statements in a program is 
determined by various control statements. In MU5 Autocode 
these are intended to encompass the corresponding features of 
standard high-level languages. A Boolean facility similar to 
that of Algol 60 is also provided, since this is catered for 
at the hardware level in MU5. The general form of the 
conditional statement, and the conditional expression, is also 
similar to that of Algol 60. A relatively restricted looping 
facility is provided. Because there are significant structural 
differences in the 'do loops' of the various high-level 
languages, it is expected that compilers will, in general, 
generate the equivalent conditional statements. The simple 
facility provided deals only with the frequently occurring 
cases for which speCial hardware, such as test and count 
instructions, can be used. 

A principal design consideration for MU5 has been to 
provide the means for efficient implementation of recursive 
procedures (section 2.2.2) at the hardware level, and the 
Autocode includes this facility in a form which reflects that 
of the standard high-level languages. Autocode procedures may 
have static or dynamic namespaces and parameters which are 
expressions, corresponding to call-by-value parameters, or 
descriptors. Descriptor parameters enable reference, 
substitution, procedure and label parameters to be simply 
programmed. Procedures which yield a result may be called, as 
functions, in the course of evaluating an expression. 

In figure 8.5 it can be seen that a procedure is preceded 
by a specification. This specification gives the mode of each 
parameter and of any result yielded by the procedure, while 
the procedure heading gives only the formal parameter names. 
Further, the specifications must be given before the first 
call. Thus, the compilation of procedure calls is simplified 
because the parameters' modes are known. 

8.6.3 MUPL 

After the MU5 software had been commissioned, and at a time 
when performance studies were being conducted, it was decided 
to transfer it to the ICL 2900. The machines were still 
similar enough for theCTL, and hence the MU5 Autocode and the 
other compilers to transfer easily, but detailed differences 
meant that the software coded in XPL would need to be recoded. 
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The more' drastic step of recoding all the software in a new 
,Manchester Jl.ni versi ty .f..rogramming .L..anguage (MUPL) was taken 
instead, because it complemented the eval ua tion exercise on 
MU5. 

Part of this evaluation exercise was concerned with the 
size and performance of the software. In the case of the 
compilers it was of interest to establish the cost of forcing 
all compilations through the CTL. One danger with this 
approach was that the high-level language translators would be 
as large and complex as conventional compilers, and the CTL 
compi ler would be an equally complex addition. In .fact, to 
take Algol as an example, its translator was 30 Kbytes, CTL 
was 56 Kbytes and the compiling rate was 8 000 lines/min. 

Al though this was not a disaster, it was felt that a few 
small changes would make a big difference. For example, the 
CTL interface was at the high-level statement level, but with 
its own (Autocode) precedence rules. This meant that ~he 
translators had to transform the high-level statements into 
CTL statements, and the CTL compiler had to then decode these 
statements. With hindsight it had become clear that a lower 
level interface having an approximate one-to-one 
correspondence with MU5 instructions would be better. 

For the price of rewriting the compilers to target on to a 
new ~arget Hachine .L..anguage (TML), and implementing the 
simpler TML instead of the CTL, these ideas could be put to 
the test. This approach, when applied to the Algol compiler 
mentioned above, showed a distinct improvement. Its size 
increased to 34 Kbytes, but the TML is only a further 12 
Kbytes. The compiling rate became 10 500 lines/min. Fortran 
shows an even better improvement, with the size of the 
translator also reducing. 

The change from Autocode to MUPL was a relatively small 
step. Although some work had been done on the .omuch higher 
level language described below, it was not felt to be the 
right time to commit the software to this high-level language. 
So MUPL is really a cleaned up Autocode. The changes stem 
mainly from the fact that it was not required to be a 
representation of the CTL (or TML). Also, it was designed to 
include a low level machine dependent dialect (approximating 
to XPL) for each of the machines to which it applies. This 
facili ty is used only where complete control over the code 
generated is necessary, such as in test programs and some 
parts of the Operating System. 
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8.6.4 MUDL 

As was stated above, for pragmatic reasons, a complete 
operating system was created for MU5 in assembly language. 
Furthermore, the use of Flocoder meant that it was as well 
structured as any high-level language implementation would be. 
Thus it provides the ideal vehicle for the evaluation of the 
efficiency of any high-level language into which it is 
translated. 

It is in this environment that the .Manchester jlniversi ty 
Qesign kanguage (MUDL) has evolved. Unlike the earlier 
languages, user convenience and power of expression have not 
been compromised for efficiency, but the efficiency has been 
constantly measured, and until a compiler is produced which 
approaches the efficiency of the handcoding, the language has 
only the status of being the design specification language. It 
was realised at an early stage that such a language was needed 
because the English style flowcharts were not rigorous enough. 
They can express very clearly the logical significance of 
actions and tests, but still leave too much scope for bad 
interpretation by the coders. So the general rule is that the 
designers get their ideas sorted out using English, and then 
firm up the specification using MUDL. As a 'temporary' 
expedient, translations into more efficient languages are then 
added. 

An example of MUDL is ~iven in figure 8.6. A full 
description would be inappropriate but some of its main 
features may be of interest. 

In common with the more modern system programming 
languages, MUDL is a typed language, and the user can define 
his own composite types. The computational expressions are 
arbi trary operator operand sequences and operators are given 
equal precedence wi th a left to right rule determining the 
order of eval ua tion , as in the Autocode and MUPL. Thi s has 
proved convenient in practice. Results or partial results can 
be assigned to store at any pOint. In fact almost any operator 
may be followed by'>' meaning, first the operator is applied 
(reversed if not commutative) to the current result and the 
following operand, then the new result is assigned to the 
following operand as well as carrying forward to the next 
stage of the computation. Some examples of this will be seen 
in figure 8.6. 

The control structures of MUDL are simple and 
straightforward because most of the control is expressed 
through the flow diagrams. However, the usual facilities of 
'If-Then-Else', 'For Loops' and 'While Loops' are provided. 
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These are intended for use in boxes where the action, although 
logically simple (find an entry in a list, for example) 
requires some conditional or repeated action. 

SJ1USS3.1 lIMAKE DTQ ENTRY 
SMUSS3.2 I'OBTAIN DRUM BLOCK 
1MUSS3.3 llRELEASE DRUM BLOCK 

SMUSS3.4 nSTART DRUM 
PROC DTC 

INT DRUM.ADDR. CORE ADDR 
ADI>RPROC TC.PROC 

~--------4~--------~ 
If TRAfMllPIP OF V.DRUM.CONTROL 1= 1 

I TRAN.FAIL OF" V.DRlJiII.CONTROL = 1 

~8llK 

D.AI>DR OF DTQ[CURR.DTQ.ENTRY] => DRUM.ADDR 
C.AI>DR OF DTQ[CURR.DTQ.ENTRY] => IllRE.ADDR 
TC.LINK OF OTQ[CURR.DTQ.ENTRYl => TC.PRQC 

F"RlJLTY 

~------------~~------------~ 
CURR.OTQ.ENTRY + 1 '" DTQ.LENI;TH => ClIRR.DTQ.ENTRY 

Figure 8.6 Drum Control Written in MUDL 
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It is the operand forms of MUDL which are its greatest 
novel ty. As well as having the usual indexing facility for 
selecting elements in an array, elements can be selected by 
'selection condition'. For example 

VOL OF Z[TEMP)1000] 

refers to the VOL field of the first element in the array Z 
when TEMP field is greater than 1000. There are a number of 
more complicated variants of this facility which make ita 
powerful language for handling the lists which occur in an 
operating system. One is the facility to precede an operand 
involving a selection condition by the word ALL. The meaning 
is that the computation in which it appears is repeated for 
all elements which satisfy the condition. Thus 

ALL VOL OF Z[TEMP)1000]+)TOT 

will add the VOL of every element of Z for which TEMP is 
greater than 1000 into TOT. 
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9 The MUS Operating System 
Structure 

The MU5 software comprises the Operating System, compilers for 
the standard languages and runtime packages to support the 
compiled code. It is the job of the Operating System to 
provide the environment in which the rest of the software and 
user programs will run, and to provide an interface between 
users and the machine. In this chapter we are concerned with 
the internal organisation of the Operating System. The user 
interface is the subject of Chapter 10. 

9.1 INTRODUCTION 

There are two contrasting approaches open to the operating 
system designer in deciding its internal structure, although a 
spectrum of compromises is possible between the two extremes. 
First, the design could centre around the idea of the system 
allocating actual machine resources such as blocks of store 
input/output devices, etc., directly to the user programs. In 
this case the environment provided by the operating system is 
a partition of the real machine. It has ~ll the basic 
facilities of the hardware and its po§sihle failings and 
complexity. Of course, the high-level language user would, to 
a large extent, be screened from this by the compiler and its 
runtime package, but not so the software writers. Hardware 
assistance would be required to restrict the access to the 
store and peripherals according to the chosen allocation. The 
second approach is to design an operating system which creates 
a virtual machine for each other piece of software, and each 
user program, with idealised facilities. In this case a 
combination of hardware and operating system software is 
needed to map these virtual machines on to the real hardware. 
Thus the choice of approach impacts the hardware design, 
particularly in the area of store addressing, and is an early 
decision that must be taken in the design of the total system. 
It is obvious that the resulting software structures will be 
qui te different. For example, resource allocation can be a 
dominant problem in the first approach and almost non-existent 
in the second. 

In MU5 the second approach has been followed, and there are 
both pragmatic and philosophical arguments to support this 
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decision. Firstly Atlas, MU5's immediate predecessor, had 
pioneered the virtual machine concept with significant 
success. The relative ease with which the software was 
produced by a mere handful of people (less than ten in fact) 
owed much to the simplification resulting from 'the 'one-level 
store' of the virtual machine [36] and the isolation of most 
of the software effort from the detail of the hardware. Also, 
the throughput achieved by the modest configuration at the 
University of Manchester [37] is testimony to the cost 
effectiveness of the technique. In a more philosophical vein, 
the virtual machine concept separates out a kernel of the 
operating system and places it behind a well defined 
interface, being the specification of the virtual machine. To 
a large extent, programmers on each side of this interface see 
only this interfac'e and their own software. This focuses and 
concentrates effort which can all too easily be dissipated if 
the horizons are too wide. The domain of a programmer should 
not be beyond his comprehension ,which the total operating 
system might be. Furthermore, additional structuring and 
parti tioning .al"e possible wi thin the virtual machine as a 
result of its relative sophistication. 

It could be argued that interfaces are restricting, but 
this is their virtue. They must, however, be well chosen, 
which is where the art of large system design lies. It is 
important that the partitions created are logical both from 
the pOint of view of the total system and of the individual 
parti tions, and that the interfaces form natural boundaries. 
It can also be argued that there is a loss of flexibility, but 
any design which maintains maximum flexibility has not 
progressed very far. The ultimate end of this attitude is a 
ponderous monolith as exemplified by the efforts of the 
computer industry. In the end these are usually partitioned 
arbitrarily by committee in order to apply the 'Chinese Army' 
approach to the implementation. Imagine a car or aeroplane 
produced in such a manner. 

9.2 THE VIRTUAL STORE 

An important part of any machine is its store, or in the case 
of a virtual machine, its virtual store. The virtual store of 
MU5 was introduced in Chapter 2 when the treatment of 
addresses by hardware was under discussion. It is a 
two-dimensional store having 16K segments eacn of 256 Kbytes. 
The format of the 32-bit address ¥ords is 

14 18 
SEGNO POS IN SEGMENT 

Obviously the Operating System must maintain tables which give 
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the position of each segment (or its page table) in t.he real 
store. If there is a separate segment table for each virtual 
machine, and the addresses they contain are unique, then the 
segments of each virtual machine will be protected from all 
other virtual machines and they are said to be private. 
Clearly, it is also possible for the same entries to appear in 
several tables in which case these several virtual segments 
map on to the same actual store locations, and the result is a 
shared segment. Another form of sharing can be achieved by 
using the same table to map from virtual to real address for 
all virtual machines. In this case their virtual stores 
totally overlap and the segments are said to be cOmmon. 

In the MU5 system the upper half of the address space, 
segments 8192 through 16383, is mapped through the same 
segment table, and is therefore common to all virtual 
machines. The reason for this is that many segments, such as 
those containing the Operating System and Compilers, need to 
be shared by most of the virtual machines in the system. 
Although this could be achieved by replicating the entries 
through all the segment tables, it would be less efficient 
than using common segments. It is not only space in the tables 
which is at issue, there are logical complications associated 
with having several virtual addresses mapping on to one real 
area of store which influence the overheads involved in 
managing the stor.e. Also, program changing can be marginally 
faster when some of the store mapping registers stay the same 
for all programs. 

For the lower half of each virtual store, there is a 
separate table mapping the segments, which will normally be 
private, but two facilities exist which allow virtual machines 
to share their segments. First, a segment can be sent as a 
message from one virtual machine to another, in which case the 
segment table entry is transferred to the receiving machine, 
rather than a copy of the segment. Second, files equate to 
segments, and if 'several virtual machines choose to access the 
same file simul taneously they share the same copy. More will 
be said about this in sections 9.6 and·9.7. 

It is desirable in a segmented store to be able to 
associate some access control with each segment. If segments 
are shared or common it is essential to have this protection. 
Five access control bits are used in the MU5 system. A 
separate group of these bits is associated with each private 
or common segment and a shared segment has a different group 
for each virtual machine sharing it. In fact they are kept in 
segment tables as shown in figure 9.1. The first three access 
control bits indicate the type of access which is to be 
permitted, as follows 
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operand read access 
operand write access 
instruction (obey) access 

A fourth bit, which only has relevance in the software, 
controls the permission to alter any Q[ these first three bits 
and itself. A private segment normally would have the al tel" 
permission bit set, which means that the other bIts can be set 
to suit the use being made of the segment. For example, a 
compiler would probably compile code into a segment with 
read/write/alter permission set, and at the end of compilation 
change the access to read/obey only. The fifth bit, the 
executive mode bit, gives the segment executive status, which 
means only privileged Operating System procedures may access 
it. Thus, from the point of view of protection, the MU5 
Operating System is a two-state system. The multi-level 
protection that would derive from having several executive 
mode bits was deemed unnecessary because the Operating System 
is distributed among several virtual machines instead of 
across different protection levels as it is in MULTICS. 

Segment 
Number 

Permission 
: 

Segment I 
Bits I Pointer 

I 
I 
I 
I 

~ I 
I 

I ~ I ~ I ~ It: ..-- ( 
: 
I 
I 
I 
I 
I 
I 
I 
I 
I 

- Read 
'--- Write 

Obey 
Alter 
Executive 

Figure 9.1 Segment Table Structure 

Segment 

When a virtual machine is first created for a user job, it 
contains only one private segment, segment zero (the name 
segment), and the common segments. Segment zero will have 
read/write access only and the common segments will either 
have obey/read access or executive status. There are several 
ways in which further private or shared segments may be added. 
For example, they can be created by use of the appropriate 
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command or received as messages. A typical job would have, in 
addition to segment zero 

a segment of code 
a segment of arrays 
a segment for input/output control 
a segment for each open file. 

The common segments contain a set of library procedures 
which are regarded as an extension to the instruction set of 
the virtual machine. Some will have privilege, and provide the 
interface into the Operating System. All are available to 
programs, written in any language, and to the statements of 
the job control language. The mechanism controlling entry to 
the Operating System is described in section 2.3.1. 

In effect there are two forms of entry to the Operating 
System. One is a voluntary entry due to a program executing a 
call for an Operating System procedure. The second is an 
involuntary entry resulting from the hardware noticing an 
~nterrupt event, such as access to an undefined segment. These 
'interrupt procedures' are also in the common virtual store. 

9.3 THE IMPLEMENTATION OF THE VIRTUAL STORE 

In MU5 the virtual stores are paged, and the hardware this 
involves has already been described (section' 6.4). This 
section is concerned with the software organisation of the 
paging system, but a reminder of the operation of the current 
page registers (CPRs) is an appropriate starting point. 

There are 32 CPRs each containing a virtual address, a real 
address, the access control (or permission bits) and a use 
bi t • Each store access requires the CPR hardware to find the 
page part of the virtual address in the associative field of a 
CPR, check the access type against the permission bits, and 
use the real address from the CPRs with the line bits from the 
virtual address to access the store. This action is shown in 
figure 9.2. Two exception conditions can arise which require 
software intervention, hence they cause interrupts. First, 
there is the fault condition due to the access type being 
invalid, write access to a read only segment, for example. 
Second, there is the more usual CPR non-equivalence interrupt 
caused by the absence of the required address from the CPRs. 
The software action on a fault interrupt is to cause the 
corresponding virtual machine interrupt. In the case of CPR 
non-equivalence there is the possibility that the required 
page is already in main store, in which case the action will 
be to load a CPR and re-start the program at the instruction 
which caused the interrupt. 
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Figure 9.2 The CPR Action 
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In most systems this CPR loading would be done by hardware. 
The reason this is tlOt so on MUS is that MUS is a research 
vehicle and the paging system was felt to be an area needir1g 
research. For the same reason, the CPRs allow the page size to 
be varied (in powers of 2 from 64 bytes to 256 Kbytes). In 
fact each CPR contains its own page size indicator, so that 
different page sizes might be applied to different segments, 
or even wi thin the same segment, but this has never been 
exploited. 

Three types of paging system have been implemented on MU5, 
and they are described separately below. If it were to be 
built as a productioir machine,. one of these systems would be 
chosen and put into hardware'. The cost of CPR loading on MU5 
can average as much as 10%, but this was considered an 
acceptable price for the facility to conduct continuous paging 
experiments on a live system. 

In the ICL 2900, which for reasons already stated is very 
similar to MUS, the paging system corresponds to the fixed 
page size one described in section 9.3.1. It is unlikely that 
this scheme would be chosen for MU5, because al though the 
paging studies are not yet complete, there is evidence of a 
significant reduction in store occupancy and paging traffic in 
the variable page schemes. 
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9.3.1 Paging With Fixed Sized Pages 

The emphasis in this version of the paging system was on 
simplicity. It is convenient to consider first how it works on 
a machine with only one level of main store. A fixed page size 
of 1 Kbyte was chosen because this· resul ted in a maximum of 
256 pages per segment, hence the page table for a segment, 
which requires a 32-bit address for each page, itself fits 
into a page. This is significant, because the size of the 
backing store, which determines the total page table size, 
requires that the page tables are themselves paged. There is 
an obvious simplification if the page table for each segment 
can be treated as a page. 

Segment 
Tables 

8 
D 
D 

SST 

SSN 

Page Table Page 

D 

Figure 9.3 The Page Table Structure 

Figure 9.3 gives the overall structure of the tables used 
to locate a page. Each virtual machine has its own segment 
table which, for each segment, indicates whether or not it 
exists, and gives the access control bits and system segment 
number (SSN). This segment table (together with the register 
dump and accounting information for the process) also fits 
into a page, which can be moved out of store when the virtual 
machine is inactive. As a result of segment sharing, several 
segment tables might have entries giving the same SSN. It is 
mainly this sharing of segments which makes it useful to 
introduce the System Segment Table (SST) as an extra level of 
indirection between a segment table entry and the page table 
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for the segment. Otherwise, the same page table address could 
be in several segment tables, and this would create problems 
when the paging system moved the page table. All the 
information the system needs to know about a segment is kept 
in the SST, including a count of the number of segment table 
entries its SSN appears in, so that the system knows when the 
segment can be deleted. 

The main component in an SST entry is the current page 
table address. The entries in this page table give the current 
positions of the pages. When a new segment is created it will 
not have any pages, they are allocated as they are accessedJ 
Thus the page table entries have a page status component, and 
the following states are recognised 

in main store 
on drum 
in transfer 
nO,t allocated 
not allowed. 

When a page is in transfer, i twill either be because a 
non-equivalence interrupt for the page has occurred in one of 
the virtual machines on the execute list ( section 9.4), or 
because the page is out of use and is being rejected from 
store. In this latter situation the address part of the page 
table entry indicates which virtual machine is halted waiting 
for the transfer. As a result of segment sharing, it can 
happen that other virtual machines cause non-equivalence 
interrupts for a page in transfer To accomodate this 
situation, in which two (or more) virtual machines become 
halted for the same page transfer, the individual bits of the 
page table entry are used to indicate which execute list 
process~s are halted. When the transfer completes, these 
processes are freed, and the new address of the page is placed 
in the page table. 

Thus the tables above allow the sdftware to find the 
posi tion and sta tus of a page, for which a non-equivalence 
interrupt has occurred, and if it is in main store, load a 
CPR. If the page is not in main store, a transfer is initiated 
to bring it there, and the virtual machine causing the 
interrupt is halted until it arrives. It is then re-started to 
cause the interrupt again when ,usually, the CPR will be 
loaded. It can happen that not only the required page but also 
the page table is out of main store. In this case a transfer 
is started to bring the page table into store, after which the 
virtual machine is allowed to re-start, and the second 
non-equivalence interrupt will cause the page to be brought in 
to store. Some careful thought will establish that only one 
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step at a time can be taken towards servicing a 
non-equivalence interrupt. The virtual machine is then made 
free to re-start and possibly cause the same non-equivalence 
interrupt again, because the combined effects of segment 
sharing and program changing can alter the context. For 
example, in the extreme case, in the time between a virtual 
machine causing a non-equivalence interrupt for a drum page 
and being re-started, all its pages (including the last one 
paged in) might be removed from main store due to the actions 
of other higher priority virtual machines. Alternatively, in 
the case of shared segments, some unexpected pages might have 
been paged in. 

The other major component of the paging system is activated 
when the main store becomes full and some pages and/ or page 
tables have to be moved out (rejected). To assist this 
function the system needs some further tables (Core Use 
Tables), giving information about the individual pages in 
store. First, a page has to be selected for removal, and use 
information provided by the CPR loading algorithm is 
desirable. When a page is selected, three other pieces of 
information are needed to answer the questions 

where is its page table entry? 
where did it come from? 
has it altered? 

A number of different algorithms has been explored on the 
MU5 system for selecting pages for rejection. The simplest 
system is based on a single use digit and a cyclic scan of the 
store. This approximates to finding the least recently used 
page, and it has been effective in normal running. It is less 
satisfactory when a single very large job fills the store, but 
the more usual situation is to have the active parts of 
several interactive jobs in store, some of which will have 
finished their timeslice (section 9.4). 

In fact, MU5 has two levels of main store, the Local Store 
and the Mass Store (section 2.4), and the actual page flow was 
shown in figure 2.2. Pages are brought into the Local Store on 
demand, and when space is required they are rejected to the 
Mass Store. When space is required in the Mass Store they ar9 
rejected to the Drum (implemented as Fixed-head Disc in MU5). 
To make this extra organisation possible, the state 'in main 
store', in the page tables, is replaced by two sta tes 'in 
Local' and 'in Mass'. Also there have to be 'Core Use Tables' 
for both levels of main store. A further point of detal.l is 
that there are some Operating SysteJD tables which need to be 
main store resident. These are kept in either Mass or Local 
according to their size and frequency of use. The hardware 
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allows the same sort of access to be made to either store, but 
direct access to the Mass Store is slow and is only used by 
the Operating System, for infrequently used information. 

9.3.2 Paging with Super-pages 

A degree of variation in page sizes can be added to the above 
scheme by allowing 'super-pages'. These are power-of-2 
multiples of the basic page size on which the system operates. 
They can be implemented without introducing a different table 
structure, but a page size indication has to appear in each 
segment entry in the SST. Using this size information, each 
non-equi valence addres~ can be properly partitioned into its 
page and line parts, and the appropriate sized (single, 
double, quadruple, etc.) page brought into store. Also, when a 
CPR is loaded for a page already in store, its size is given 
to the hardware. The core use tables must also contain page 
size informat~on, and double sized pages will take two 
entries, quadruple ones four entries, and so on. 

This scheme has been implemented on MU5 using a basic page 
size of 1 Kbyte with superpages of 2 and 4 Kbytes. It shows a 
significant improvement in CPU utilisation when superpages are 
used for segments which have a large active part collected 
into consecutive addresses. For example, the inner loop of the 
compilers can be organised this way. 

AC Use SSN Page No. Page Size Real Address 

Entries found 
by Associative Search 

Figure 9.4 Page Tables for Sub-pages 
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9.3.3 Paging with Sub-pages 

If very small page sizes 'are to be allowed, a different 
approach is needed. The gain with small pages is better 
utilisa tion of space for sparsely used segments, and this is 
particularly relevant in the small high-speed stores. On the 
Drum Store and even the Mass Store, the total number of pages 
to be managed can become a problem, hence small pages are less 
attractive. Also, if the access to the store is dominated by 
the latency time, the balance is in favour of large pages, 
because this acts as a kind of look ahead for sequentially 
accessed information. Hence a third variant of the paging 
system has been implemented which uses moderate, fixed-sized 
pages (4 Kbytes) on the Drum, and allows smaller (binary 
fractions) to be used in the Mass and Local. As in the 
previous system, the sizes used within a segment do not 
change, but each segment has its own page size for Mass and 
Local. The Local page size may be equal to or less than the 
Mass page size, which may be equal to or less than the Drum 
page size. 

A table structure similar to that of section 9.3.1 is still 
used to locate pages on the Drum, but a completely new 
structure is needed to locate the sub-pages in the Mass and 
Local. For each of these stores there is an additional page 
table, structured as shown in figure 9.4. A special Table Look 
Up instruction (TALU) has been provided to search these 
tables. In principle its operation is similar to the 
store-to-store orders (section 7.4), but special additional 
logic in the D-unit is used in its implementation in order to 
allow comparisons between a 32-bit operand and sequential 
table entries to occur once every 40 ns. The action of the CPR 
non-equivalence routine for this system is summarised in 
figure 9.5. Some points of extreme detail, such as the paging 
of the page tables, and the 'no space in store' condition, 
have been omitted. The abreviations LPT and MPT refer to the 
extra page tables required for the pages currently in the 
Local and Mass stores. 

9.4 PROCESSOR SCHEDULING 

After store control, the next most important task of the 
kernel of the Operating System is the allocation of the 
processor (or possibly processors) to the virtual machines. It 
should be pointed out that there might be another level of 
scheduling applied above this one by the job initiation 
modules introduced in section 9.5. They can choose to apply 
their own high-level scheduling rules before requesting 
virtual machines to run the jobs. 
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Figure 9.5 CPRNEQ Procedure for Sub-pages 

Here, the problem is simply one of choosing the virtual 
machine( s) to which the processor( s) are to be applied, but 
account must be taken of their relative priorities and of the 
fact that some contain interactive jobs, while others do not. 
It is the priority number assigned to a virtual machine by its 
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user that determines both. The accounting system bases its 
charges on this priority number, which discourages users from 
making unreasonable choices. There are 16 priority numbers, 
but 0 through 7 are reserved for the system. Of the remainder 
8 through 11 give the virtual machine interactive status and 
12 through 15 give background status. Within each group the 
highest priority is given to the lowest numbers. 

There are two parts to this scheduling system, and they 
interface through an 'execute list' which specifies 16 virtual 
machines, ordered according to priority. One part of the 
scheduling system, termed the 'low level scheduler', is 
concerned with allocating the processor(s) to these 16 
machines, so as to maximise processor utilisation. The other 
'medium level scheduler', is concerned with choosing the 16 
entries on the execute list, to match theers relative 
priorities and interactive requirements of the virtual 
machines competing for the processor. 

Whenever a processor is available, the basic afm of the low 
level scheduler is to allocate it to the highest priority 
virtual machine on the execute list which is free to run. 
Those not free to run will be hal ted, for a page transfer or 
other reason of short duration. Howeve~, the low level 
scheduler must guard against creating an increase in total 
paging traffic as a result of running more virtual machines 
than the main store will accommodate. It will sometimes be 
better to allow a processor to idle until a page transfer 
completes, than to run another program whose demands on space 
cause pages which will soon be required to be removed from 
main store. A full discussion of this problem cannot be 
included here. Briefly, the low level scheduler and the paging 
system between them attempt to estimate continuously the core 
requirement of each virtual machine. The sum of thes.e 
estimates determines how many of the virtual machines on the 
execute list are considered as candidates for the processors 
before they are allowed to idle waiting for page transfers to 
complete. 

If a virtual machine on the execute list is awaiting input, 
or file retrieval, both of, which really mean waiting for a 
message, it is removed from the execute list. Another reason 
for removal, which applies in the interactive case, is the 
expiry of its 'time slice'. When entries are removed, others 
move up thus improving their chances of being allocated a 
processor. The composition of the execute list is determined 
by the medium level scheduler. It aims to cycle through all 
the interactive virtual machines, giving each one that is not 
waiting for a message a short burst (or ttimeslice t ) of active 
processor time. During this cycle it maintains the highest 
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priority background job that is free to run at the low 
priority end of the execute list. At the end of the cycle, if 
the proportion of processor time requested by the Computer 
Operator for background work has not been obtained, the next 
cycle is delayed until the background job 'catches up'. In 
fact, the cycle is further complicated by the need to take 
account of interactive priority. Only those virtual machines 
wi th priority number 8 are considered every cycle. The rest 
are considered every two, four or eight cycles respectively. 

9.5 THE OPERATING SYSTEM USE OF VIRTUAL MACHINES 

We have already seen that each user program is run in its own 
virtual machine, and that the Operating System occupies the 
upper half of each virtual machine. In addition, some parts of 
the Operating System have their own virtual machines. This 
structure can best be clarified by considering how it would 
apply to a hypothetical machine with an arbitrarily large 
number of processors connected into a common store. Imagine 
that each user job in this hypothetical system is given its 
own ·processor. Each of these processors would have access to a 
common area of the store and would also have some store 
dedicated to the job it is running. It would be natural for a 
program requiring an Operating System facility to execute the 
appropriate procedure using its own processor. In addition, 
there is need to run other Operating System activities in 
parallel. For example, the input for new jobs has to be read 
in, and previously buffered output has to be driven out 
through the output devices as they become available. 
Therefore, in this hypothetical system, it is convenient to 
assign a processor to each input/output device. Other 
Operating System activities which are still not provided for 
are the global organisational tasks; for example, job queueing 
and ini tia tion, file archiving, etc. Further processors are 
allocated to each of these. 

This hypothetical system is modelled in the MU5 Operating 
System by applying a virtual machine to each of the above 
ac ti vi ties assigned to a processor. To summarise its 
structure, there is a small kernel of Operating System 
software which implements an arbitrary set of virtual machines 
which are analogous to a corresponding set of processors. The 
store containing the Operating System code and its tables 
appears inside every virtual machine (the common segments). 
Also, in each virtual machine, there is the store private to 
the job it is executing (the private segments). Anyone of the 
virtual machines can enter Operating System mode in order to 
execute an Operating System function, on behalf of the 
activity running in that machine. In addition, some virtual 
machines contain no user job and they execute the Operating 
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System tasks which are not directly related to any single user 
job. These tasks are concerned with driving input/output 
peripherals and providing system wide services. The overall 
mapping of the MU5 Operating System into virtual machines is 
depicted in figure 9.6. 

System 
Accountant 

File Archive 
Manager 

Mailbox 

Printer 
Control 

EDS 
Control 

Dedicated Transaction 
System 

User Jobs User Transactions 
Figure 9.6 The Virtual Machines in the MU5 Operating System 

This system structure applies to all members of the MU5 
range. Modest configurations would probably have only one 
actual processor, which would be shared by all the virtual 
machines. Larger systems might have several processors, but 
not enough to assign one to each virtual machine. The largest 
systems might comprise several different computers, each with 
its own store and operating system kernel, and the rest of the 
virtual machines of the operating system would be distributed 
across these in an optimum manner. For example, the virtual 
machine running the file store archiving process would be in 
the machine that is connected to archiving devices. The actual 
MU5 complex at the University of Manchester (figure 2.3) is an 
example of a distributed system of this kind. One consequence 
of this distribution is that the virtual machines of the MU5 
Operating System cannot rely upon shared segments as a means 
of communication. Instead, communication facilities between 
the virtual machines are provided by the message system 
described in the next section. 

The operation of this structure when typical jobs flow 
through the system is illustrated in figure 9.7. Initial input 
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is passed from the device controllers to the JOB INITIATION 
module. If the jobs are batch jobs, all their inputs are 
collected by this module, and then, when the scheduling rules 
allow, a new vir tual mac hine is created to run the job, and 
the inputs are passed on. A request to start an interactive 
job will receive immediate attention and subsequent input will 
bypass the JOB INITIATION module and go straight to the 
virtual machine assigned to the job. Output generated by 1ihe 
user jobs flows out through the output control modules where 
it may again be subject to queueing and scheduling unless it 
is to an on-line terminal. 

I nput Devices 

/ 
.1 

Output Devices 

Figure 9.7 Job Flow 

9.6 COMMUNICATION BETWEEN VIRTUAL MACHINES 

Device 
Control 

Device 
Control 

Communication between the virtual machines is necessary for 
several reasons. Clearly input/output has to flow through the 
system from one virtual machine to another • Also , Operating 
System procedures called in a user virtual machine might need 
to request the services of an Operating System module running 
in another virtual machine. For example, if access is 
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requested to a file which has been transferred on to archive 
media, the 'OPENFILE' procedure will require the services of 
the file archive manager, in order to retrieve the file. 
Finally, virtual machines sometimes have to synchronise, 
either because they are collaborating on the same job and need 
to keep in step or because they are in competition for a 
common resource. 

At the time of designing the MU5 Operating System, two 
techniques for synchronising virtual machines (or the 
processes they contain) were widely known and there were 
various ways in which each could be adapted as a communication 
system. These wer'e the semaphore system formalised by Dijkstra 
[38], and the event system used by a number of designers but 
perhaps most elegently by Bernstein, Kerr and Detlefsen [39]. 
Since the MU5 team at that time included Detlefsen, there was 
a natural tendency to move towards an event based system. The 
semaphore concept was only considered appropriate as a 
technique for synchronising access to the system tables within 
the kernel. For the general communication requirement it 
seemed too contrived. The activities in an operating system 
are not really analogous to rail way trains moving about a 
network. They are more analogous to people in a large 
organisation each carrying out their own task, sometimes 
passing results and queries to other people and sometimes 
using shared facilities. Events seemed a more natural basis 
for the design. It is events such as 

new job arrives 
tape deck becomes available 
card reader started by operator 

that trigger many operating system activities. However, the 
system design never quite crystallised around the event 
concept, mainly because it did not lead to ~ satisfactory 
system for input/output propagation. To return to the analogy 
of people in an organisation, they are driven by in-trays and 
out-trays of messages and other more urgent(?) messages 
arriving by telephone. Eventually, the idea evolved of 
providing a message system wi thin the Operating System, into 
which all the virtual machines are connected, even if they are 
in different computers. 

In effect, this system allows any virtual machine to send a 
message to any other virtual machine, but the facility is 
provided for a virtual machine to exert some control over the 
messages it is to receive. This control derives fr:om the 
decision that two procedures must be executed in order to 
achieve the transfer of a message from one virtual machine to 
another, and the notion of channels (see below). The sending 
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machine calls the 'SEND.MESSAGE' procedure which makes the 
message available to the receiving machine. It is only taken 
into the receiving machine when it calls the 'READ.MESSAGE' 
procedure. It would obviously be undesirable to hold up the 
sending machine until the receiving machine was ready, hence a 
queue of messages· is allowed to form for each machine. Some of 
these may be more urgent than others. For example, if there 
was a virtual machine in the system with responsibility for 
queuing and initiating background jobs, it might wish operator 
messages such as 

'HOW MANY JOBS ARE QUEUED?' 

to have priority over messages requesting the initiation of 
new jobs. To avoid the need for the software in a virtual 
machine to examine all waiting messages in. order to find the 
most urgent, they are streamed on to 'channels'. A virtual 
machine has several (in fact 8) input channels, each with its 
own queue of messages. The SEND.MESSAGE procedure has a 
parameter giving the channel number in the destination 
machine, and the READ.MESSAGE procedure also has a channel 
number parameter to specify the channel from which the message 
is to be read. On each channel the messages are queued in 
arrival time order. 

It is now evident that if channels are to be associated 
with particular sorts of message, some control over the 
messages that can be sent to a channel is necessary. The 
mechanism is that the channels have status bits which are set 
by a SET.CHANNEL.STATUS procedure and inspected by the 
SEND.MESSAGE procedure; Obviously, it is not possible for the 
status to refer to the logical nature of the messages to be 
accepted on each channel. Instead it is used to specify which 
other virtual machines may send messages to the channel. The 
detail of this mechanism has been subject to much change as 
the Operating System has evolved. What has been sought is a 
simple but sufficient system. One obvious solution would be to 
attach to each channel a list of the authorised senders, but 
this is not done because of the relative high cost of handling 
these variable sized lists. In this kind of system the cost of 
sending messages is a critical overhead. The present system 
uses only one word to indicate the status of a channel. This 
provides the following states 

closed - meaning no messages will be accepted 
open - meaning all messages will be accepted 
dedicated - meaning only messages from a specified 

VM will be accepted 
open to exec - meaning only messages from VMs running 

in executive mode will be accepted 
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The status contains one other bit, which determines the 
action to be taken when a new message is linked to a channel. 
It gives the choice between the message simply being queued, 
until the program running in the virtual machine chooses to 
read it, and the message causing an interrupt wi thin the 
virtual machine. This, then, is the mechanism for passing 
messages, but what constitutes a message? 

Some messages will consist of large and variable sized 
units of information, for example, a file, or a copy of a deck 
of cards, or a listing to be printed. Therefore, the 
SENDMESSAGE command allows a segment of the sending machine's 
virtual store to contain the message. The combined effect of a 
sender issuing a SENDMESSAGE command, and the recipient 
issuing a READMESSAGE command, is to transfer the segment from 
one virtual store to the other. This is achieved by copying 
pointers from one segment table to the other and does not 
involve copying the information. Unless, of course, the 
sending and rece~v~ng virtual machines are in different 
computers, in which case a copy is required. Usually the 
sender would release his access to the segment, but it could 
be retained in which case the segment would become shared, 
provided only one computer was involved. In some cases the 
information to be conveyed in a message is quite small, and it 
would be wasteful to create and pass a segment. Thus, each 
message incorporates a short header, in addition to the 
segment, which is in fact optional. When a message is sent, 
the header is copied into the system message queue and when it 
is read the header is copied into the receiving machine's 
virtual store. The message headers are used, without segments, 
to propagate on-line input/output through the system, and, 
with segments, to specify the action required on the segment. 
This might for example be 'print it on two ply paper' or 'file 
it' • 

9.7 THE FILE SYSTEM 

Since the segment of virtual store is the unit of information 
tha t can be passed as a message, and shared between virtual 
machines, it is natural to equate files with segments. A 
command is therefore provided which allows a program to file 
one of the segments in its virtual machine. The converse 
command is also provided, by means of which an existing file 
can be introduced as a segment into a virtual machine. Files 
may be segments of text, code, or data. Of course, this means 
that files are subject to the same size limit as segments, but 
the user will not normally directly access these files 
himself. A library of input/output procedures exists to map 
arbi trarily large text files on to several of these basic 
files. 
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The implementation of the above mentioned file commands 
requires a directory structure which restricts each user to 
his own set of files and relates each file name to the 
position of file. This directory structure is the data base on 
which the file commands operate. Some file systems maintain 
the bulk of their data base in the file store itself (as 
additional files). This has an obvious elegance and fits well 
the hierarchical nature of the directories. For example, a 
file can be a directory to files which themselves are 
directories and so on. The first implementations of the MU5 
file system worked this way but it led to heavy paging 
traffic, even for simple file store operations, and 
particularly for changes such as defining a new file, which 
necessitate directory changes. The alternative is to keep the 
file system data base separate from the file store. This is 
the way the later implementations have been organised. 

In any file system, account must be taken of the physical 
characteristics of the devices available for file storage. The 
MU5 system has foul' notional types of store, namely: Core, 
Drum, Disc and Tape. These might in practice be provided by 
various physical devices as follows 

Core - might be core, plated-wire or LSI store 
Drum - might be drum or fixed-head disc 
Disc - might be large moving head disc or EDS 
Tape - might be magnetic tape or EDS. 

The Core and Drum stores are integrated into a 'one-level' 
store by means of the paging system. There will be a one-level 
store for each machine in the co'mplex containing the segments 
of its virtual machines and any recently active files. The 
Disc is the first level of file backup and out of use files 
are moved there from the one-level stores as space is 
required. Similarly, when the Disc becomes full, the longest 
out of use files are archived to Tape. This integrated file 
system, in which all computers share the same overall file 
system, even though they have there own one-level stores, is 
the basis of the design of the MU5 system. It requires that 
the file system data base is kept on the Disc, that facilities 
exist to synchronise changes to this data base from different 
computers, and that newly created or altered files in a 
one-level store can be forced back to the disc if they are 
required by another computer. 

At the time of writing, the MU5 system has not had suitable 
hardware to serve as the Disc, therefore each computer in the 
complex runs its own separate file system. A temporary 
mechanism is provided which allows a job in one computer to 
access the files in another. This is achieved by having a file 
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manager process from which files can be obtained in reply to 
requests sent via the message system. The file commands 
automatically generate these messages and service the replies 
once they have been told which file system is to be accessed. 

The actual file system, which runs on MU5, models the full 
design. It has three components. These are the procedures 
implementing the user commands which are part of the kernel, 
and two processes which act as off-load manager and archive 
manager r'unning in their own virtual machines. The kernel 
commands allow the user to create and access files in the 
one-level store, but they communicate with the off-load and 
archive ~anagers when the requested files have been previously 
off-loaded or archived. . I . 

9.8 MACHINE INDEPENDENCE AND ADAPTABILITY 

The MU5 Operating System has to run in all the computers of 
the complex, hence it is desirable to make it machine 
independent. It must also support and survive research, and 
must therefore be adaptable. Thus its design must anticipate 
change and it must be applicable to 

different hardware configurations/architectures 
different types of workload 
different user requirements and expectations. 

This is not merely a question of simple tuning measures, which 
could be parameterised. Fundamental changes may be required to 
the algorithms used in ~~veral parts of the system. 

The adaptability of an operating system is affected by 
several factors, but the most important is that the system be 
designed in a modular fashion. Of course, ..all systems are 
modular! It is the nature of the modules and the ways in which 
they interact that determine the degree of adaptability that 
results. For adaptability, it is essential that modules be 
isolat.ed from one another, in the sense that no module assumes 
in its own implementation anything about the implementations 
of other modules. This has nothing to do with compiling 
modules separately, or separating them by means of a 
protection mechanism. It is essentially concerned with 
distributing the data structure of the operating system so 
that each module is responsible for some part of the data 
structure, and 'hides' it from the rest of the system. 

The overall structure of the MU5 Operating System may be 
viewed as a hierarchy of four levels, each of which is further 
subdi vided into modules. The four main levels in the system 
are 
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The resident system processes. 
The library procedures providing basic 1/0 

and JCL facilities. 
The basic interface procedures of the 

virtual machine (command level). 
The core-resident code (interrupt level). 

Considering first the question of machine independence, there 
is no significant problem with the system processes, since 
they run in the virtual machines created by the rest of the 
system. Thus they need not be discussed further in this 
connection. 

The basic library procedures also run in the virtual 
machines in normal user mode, and again there is no 
significant problem. Some procedures, however, access a global 
data structure whose form may vary according to the size and 
structure of the virtual store provided in the virtual 
machines. Therefore, the library procedures are grouped into 
modules which reflect this possibility. 

Command level contains the implementation of the procedures 
which allow a process to manipulate its virtual machine 
environment. These conveniently fall into functional classes 
such as 

store control commands 
process control commands 
communication commands. 

Hence these classes are the major modules of command level. 
The command level and interrupt level procedures together form 
the system kernel which creates and supports the virtual 
machines in which the previous two levels of the system and 
the user jobs run. 

At interrupt level the modules were initially chosen to 
correspond to those sections that would run autonomously. Thus 
there are modules for each class of peripheral, and for the 
functions of store management and processor manag~ment. In the 
context of machine independence, these same modules correspond 
with the components that might require change in moving to a 
different machine. In fact, such changes are mainly restricted 
to interrupt level since the modules here interface directly 
with the real machine. However, the effects of hardware 
differences can filter through to command level modules, for 
example: to enable a process to manage a non-paged, rather 
than a paged virtual store. 

The requirement for several. different versions of a module 
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to exist, and be maintained simultaneously, has led to the 
production of a much cleaner specification of the modules and 
their interfaces, so that any version of a module can be used 
with the rest of the system provided its hardware requirements 
are met. Given this structure, it has proved useful to 
introduce alternative versions of modules for reasons other 
than hardware differences, for example, to provide varying 
degrees of sophistication in areas such as scheduling. 

The end. result is that the total Operating System exists, 
in source form, as a matrix of files,' in which each row 
contains all versions of one module of the Operating System. A 
particular system is built by selecting one module from each 
relevant row. The selection criteria are that first, one 
element is chosen from each row which offers a facility 
required in the given system, and second, the chosen element 
must have the required degree of sophistication and compatible 
hardware requirements. 

As mentioned earlier, this interchangeability of modules is 
only realisable because of the distribution of the entire 
Operating System data structure among its modules. Each module 
has its own set of lists and tables, which are not accessed 
directly by any other module. Obviously the modules are not 
logically independent, and an event might occur in one module 
which requires an alteration to the data structure of another. 
This is provided for by 'interface procedures'. Each module 
may have associated with it a set of interface procedures 
which can be called by other modules to perform specific 
interfacing functions. For example, the scheduling module has 
interface procedures to activate and de-activate a specified 
process. These are called at the appropriate logical points by 
other modules. For example, de-activate is called by the 
communication commands whenever a process waits for input 
which is not available, and activate is called when it becomes 
available. The exact implementation of activate and 
de-activate is thus hidden within the scheduling module. Since 
we are not concerned with protection among modules of the 
system kernel, any potentially embarrassing overheads 
resulting from using interface procedures are avoided by the 
use of macro expansions rather than formal procedure calls 
wherever this is appropriate. 
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10 A User's View of MUS 

The user sees a computing machine through its software. In the 
case of MU5 this is the Manchester ~niversity ~oftware ~stem 
(MUSS). This system is machine independent and it runs on 
several machines in addition to MU5. In fact, we have already 
seen that the MU5 complex contains at ieast one of each of the 
following machines 

MU5 
ICL 1905E 
PDP-11 
MEMBRAIN 7700 

and the MUSS integrates them into a single system as far as 
the user is concerned. It can also run as a stand alone system 
in each of these machines and some others such as ICL 2900. 
The description given here applies to the MUSS in general 
rather than just to the particular MU5 version. 

10.1 PROCESSES 

From the user point of view the software in the machine can be 
regarded as consisting of a number of concurrent activities, 
or processes, fQr example 

control of the lineprinter 
management of the system accounts 
execution of a user job. 

In principl~ each of these processes can be thought of as 
executing wi thin its own dedicated computer, but having some 
means of communicating wi th the other processes. However, it 
is a characteristic of many operating system activities, and 
user jobs, that they require the use of a processor for only 
relati vely small amounts of time. The rest of the time is 
spent waiting for something to happen. For example, waiting 
far the lineprinter to finish printing the current line, for a 
user process to supply more output for printing, or for an 
on-line user to type his next line of input. Consequently, it 
is possible for all of the processes to share the use of a 
single processor, and the kernel of the operating system 
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allocates the processor to processes as required in order to 
provide a 'virtual machine' for each. process. This structure 
was described in chapter 9. 

An important feature of a virtual machine is that the 
process it contains appears to have an entire machine to 
itself, with complete freedom to organise itself within this 
machine. Thus processes need not be wri t ten in the knowledge 
that they will be sharing the computer with other processes. 
However, each process has a unique name, by means of which 
other processes may communicate with it, if the need arises. 
This is most likely in the case of system processes, and their 
names are chosen to relate to their function. For example the 
process controlling the lineprinter is called LPT and the 
process for starting new jobs is called JOB. For a user 
process, the name is assigned by the user. In addition to its 
name, a process also has an 'internal address' which enables 
the system to locate its virtual machine in order, for 
example, 'to deliver messages. The internal address consists of 
two integers, the System Process Number (SPN) and the Process 
Identifier (PID). The PID is a unique identifier for the 
process, whereas the SPN is the number of the virtual machine 
it uses, which may be reallocated when the process terminates. 
A system command is provided to convert between names and 
internal addresses, and the user interface procedures normally 
accept names and obtain the internal address for themselves. 
In the MUSS, communication between processes is achieved using 
the message system (section 9.6) which allows any process to 
send a message to any other process by specifying its internal 
address. A single message may conve¥ any amount of 
information, up to 256 Kbytes, although in many instances it 
would be only one line of text. This message system also forms 
the only means of communication between a virtual machine and 
the outside world. Peripheral devices are controlled by system 
processes called device controllers, which communicate with 
other processes via the message system. Thus, information to 
be printed on a lineprinter must be sent as a message to LPT, 
the device controller in charge of the lineprinters. 

10.2 SUPERVISORS 

User jobs are introduced into the system by processes called 
supervisors. A supervisor is a process which services requests 
(in the form of messages) from users to start jobs. Its main 
function is to create and start new processes to execute these 
user jobs, but it can also exert some control over the 
execution of any process which it has created by use of the 
appropriate operating system procedures. There is a basic 
supervisor permanently resident in the system called JOB. In 
fact, in the MU5 complex there is a version of this supervisor 
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in each machine, each with its own unique name (JOB5E, for 
example is its name in the ICL 1905E). Thus a user can start a 
job in any machine in the complex from any terminal by 
addressing his input to the appropriate supervisor. In 
addition, any other process may act as a supervisor to provide 
alternatives to the basic system facilities. It was 
anticipated originally that this facility would be used to 
provide several alternative supervisors, each with its own job 
control language, specialised towards the needs of different 
user groups. In practice this has not been necessary because 
the basic system has proved to have sufficient flexibility for 
all users. The role of the basic supervisor is simply to 
create a virtual machine to run a process. This process then 
interprets its own job control commands. In fact, the job 
control commands take the form of calls on library procedures 
which are to be made wi thin the virtual machine running the 
process. Differing user needs are met by the variety of 
procedures available. Some procedures might in practice be 
interpreters of other job control languages. However, even 
thi~ facility has not been exploited because job control 
procedures, like other library procedures, can be called from 
programs written in the high-level languages and complicated 
job control sequences involving conditional and repeated 
actions can be written in the standard high-level languages 
[39]. 

10.3 THE LIBRARY 

Pre-loaded into every virtual machine created by the MUSS is a 
set of fully compiled library procedures. These provide the 
process with access to all of the facilities of the system, 
and include 

mathematical functions 
basic input/output procedures 
compilers 
editors 
job control procedures 
JCL interpreters 
operating system interface procedures 

('SEND.MESSAGE', for example). 

The average user would not normally have contact with the 
operating system interface procedures. They are used by the 
supervisors, the basic input/output procedures which interface 
the users read and print commands into the message system, and 
the job control procedures. The job control procedures are 
mainly concerned with defining the environment in which 
programs are to run. This usually means defining the 
'documents' which form the inputs and outputs of a program. 
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10.4 INPUT/OUTPUT DOCUMENTS 

Most user jobs begin as a 'document' submitted to one of the 
input devices attached to the system. A document, for example, 
may be a deck of cards, a reel of paper tape, or on-line input 
at a terminal. The document is read by the device controller, 
responsible for the input device to which it is presented, and 
converted to a message in a standard internal format. It may 
be routed by the user to any process in the system. 

To facilitate the entry and routeing of documents, the 
input device controllers recognise a rudimentary control 
language. Any line of input beginning with the sequence '*1*' 
is interpreted as a command to the device controller. The 
commands are distinguished by the following character which 
should be a letter (usually an 'A', 'M' or 'Z'). The commands 
***A and ***M mark the start of a new document. In the first 
case, the entire document up to the terminator ***Z is 
buffered and then sent to the receiving process as a single 
(long) message. This form of input is appropriate for use with 
bulk input devices such as card readers. The command *I*M 
causes the subsequen~ input to be sent, one line at a time (as 
a short message), to the destination process, and is thus more 
suitable for use with interactive terminals. The input/output 
library facilities used by most programs mask the difference 
between these two forms of input and a program ca~usually be 
run with either buffered or on-line input/output without it 
knowing the difference. 

The detail format of device controller commands is 

***<LETTER) PROCESS. NAME USER.NAME PASSWORD 

where PROCESS. NAME, USER. NAME and PASSWORD follow standard 
system conventions for names and specify the name of the 
destination process, and the name and password of the user, 
respectively. Further information may be placed on the same 
line, but it is not interpreted by the device controller. This 
command line is sent to the destination process either as part 
of the long message, or as the first of a sequence of short 
messages. Thus the destination process may make use of any 
further information it contains. 

The most common destination for an input document is a 
supervisor such as the JOB supervisor which is described in 
the following section. However, a number of other possible 
destinations are useful, in particular 

(1) An output device controller, in order to obtain a copy 
of the input document. 
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(2) Any user process, in order to 'connect' a terminal 
into an already running user process. As a consequence 
of this user processes may act as supervisors. 

Inside a virtu'al machine its input/output documents are 
organised into streams. A process may have up to 8 input 
streams and 8 output streams which it can switch between at 
will. The basic input/output commands operate on the currently 
selected stream, and the 'SELECT. INPUT' 'SELECT. OUTPUT' 
commands allow a new current stream to be selected. When a 
stream ceases to be the current stream, the position of the 
last character processed is noted. If it is later re-selected 
as the current stream the input/output processing will be 
resumed from the point where it was left. The job control 
commands allow the user to associate input streams with files 
or (incoming) message channels, and output streams with files 
or outgoing messages. Depending on the 'mode' that the user 
assigns to an input stream, reading past the last character of 
the last message will either put the process into a waiting 
state or cause a fault interrupt. The 'mode' assigned to an 
output stream determines whether it is to be sent a line at a 
time or buffered. It also indicates whether the output is to 
be sent to, a file, a named process, or as a reply to an input 
stream. In this latter case the destination will be variable. 

-·It. will be to the process which sent the current message on 
the' assoe-i·ate!L.i.nput stream. Further to this general policy of 
simplifying the input/output for the program in a virtual 
machine, a single internal code (ISO) and text format is used 
for all documents, regardless of source. User programs are 
normally designed to operate on streams, to which any type of 
document is assigned, at command level, before the program is 
entered. The main text processing procedures of the library 
such as editors, compilers, etc., do not require streams to be 
pre-defined. They have 'name' type parameters which specify 
ei ther the names of files or device controllers or streams 
which are to be used as the input/output. Within these 
procedures new streams will be assigned as appropriat~. 

10.5 THE JOB SUPERVISOR 

This is the only supervisor built into the basic system, and 
it provides simple facilities for the initiation of user jobs 
in both background and interactive mode .. It interprets each 
message that it receives as a request to start a new user job. 
Messages are normally documents entered via the device 
controllers, but they may also be generated internally. In 
particular, there is a RUN. JOB command by means of which 
existing jobs may generate new job requests. 

The form of job request allowed by the JOB supervisor is 
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***<A or M> JOB USER. NAME PASSWORD JOB. TITLE <options> 

where USER. NAME and PASSWORD are names, checked by the device 
controller, and JOB. TITLE is the name to be assigned to the 
process that will be created to run the job. The <options> are 
optional parameters specifying, for example, the amount of CPU 
time required for the job (T<integer» and the priority level 
at which it is to run (P<integer». In general low numbers 
mean high priority, but priorities 12-15 are scheduled as 
background jobs and priorities 8-11 as interactive jobs 
subject to timeslicing (section 9.4). Priorities 0-7 are 
reserved for the system processes. If any of the optional 
parameters are omitted, defaults are assumed which suit the 
needs of typical users. 

A '***A' job heading is normally used to initiate a 
background job, so if the priority is not stated, P14 is 
assumed. Priority 15 is 'cheaper' (section 9.4) but the 
turnaround time would be longer. All the input following the 
initial line up to '***Z' is passed to the created job as its 
input stream zero. It should contain further job control 
commands and possibly input data for the job. The alternative, 
'* •• M', is used to initiate an interactive job, and is the 
'LOG-IN' command for the system. Here the default .priority is 
11. After JOB has processed the ***M line and created a 
process to run the user job, control of the interactive 
terminal is handed to the created process, and subsequent 
input is directed straight to this process, again as its input 
stream zero. Output stream zero of the process is defined to 
be a reply stream, hence it is automatically routed back to 
the terminal. 

The basic JOB supervisor exists in two variants. The 
simplest one performs no 'high-level' scheduling at all. It is 
intended for the smaller machines running MUSS. All jobs 
submitted to it ·are made available for running immediately. If 
at any time the system resources are insufficient to satisfy a 
request to start a new job, then it is abandoned with a 
message to the user or operator. The more sophisticated 
version of the supervisor, capable of queueing jobs which 
cannot be run immediately, schedules according to information 
given by additional <options>. In either case, jobs made 
available for running by a supervisor are subject to the 
'medium level' and 'low level' scheduling builtin to the 
basic system. As described in chapter 9 the medium level 
scheduler 'timeslices' the interactive jobs and allocates a 
proportion of the CPU specified by the operator to the highest 
priority background job free to run. If interactive jobs with 
different priority numbers are competing for the CPU, ones 
with lower priority numbers will receive more timeslices. 
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10.6 JOB CONTROL COMMANDS 

After the initial ***A or M line, which causes a process to be 
created to run a job, commands should follow which direct the 
execution of the job. It was mentioned above that the system 
allows for the co-existence of many different job control 
languages, but here only th.e facilities available under the 
basic system are described. They are available without 
distinction to both background and interactive jobs. 

Every user process begins execution in the same 'START' 
procedure, which first creates an output stream zero, directed 
at the default output device associated with the input device 
from which the job was submitted. For background jobs this 
would normally be a lineprinter (and the mode would be 
buffered), and for on-line jobs the user's terminal (and line 
by line mode). Next it reads and processes the commands on 
input stream zero. Each command is interpreted as a call to a 
library procedure, and successive commands are executed in 
sequence, unless one of the commands signals an error, in 
which case special action is taken. For background jobs, this 
usually involves monitoring the error and terminating the job. 
For an interactive job, after the error has been monitored, 
the faulty command is abandoned and a further command from the 
user is awaited. 

A user at an interactive console may interrupt his· job by 
pressing the 'BREAK' key on the console and the effect is to 
abandon the current command, and await a further command from 
the user. 

Whenever the system is waiting for input from an on-line 
terminal, an invitation to type is printed. If a job control 
command is required, this prompt will be '**'. At other times 
the usual prompt is '->', but the procedure processing the 
input has the option of pre-setting its own prompt message. 
For example, when input text for insertion into a file is 
expected in the NEW command, and in certain editing commands, 
the character that will terminate the input text is used as a 
prompt symbol. 

10.6.1 Command Format 

A command consists of the name of a procedure to be called, 
followed by its parameters, if any. Parameters are normally 
enclosed in brackets and separated by commas, but spaces are 
also acceptable as separators, and newline as the command 
terminator. Parameters may be omitted by typing consecutive 
commas, and trailing parameters may be omitted completely. In 
both cases, the omitted parameters are filled out as zero, 
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which is treated a sensible default by most procedures. 
Examples of commands are 

**EDIT(FILEA,FILEB) 
**ALGOL(FILEC) 
LIST.FILE FILED LPT* 

Throughout command interpretation, non-significant spaces 
and blank lines are ignored. Commands may also, optionally, be 
preceded by '**'. This is mainly used in order to embed job 
control commands in program text for execution at compile 
time. The '**, serves as a warning to the compiler that it is 
a job control command, rather than further text for 
compilation that follows. 

For the convenience of on-line users, most of the 
procedures in the Basic System Library have unique 
abbreviations of two or three letters, which may be used in 
place of the full procedure name. These abbreviations are 
listed with the summary of commands in Appendix 2. 

10.6.2 Parameters 

Procedures in the basic library are restricted to having only 
a few different parameter and result types. The main ones from 
the pOint of view of job control are 

I a single length integer 

II a 64-bit unsigned integer, which in job control 
contexts represents short packed character strings, 
such as file names, user names, etc. 

S a descriptor addressing a vector or a character 
string. 

Private Library procedures may also be used in job control 
contexts provided they restrict themselves to the above 
parameter types. 

The basic command interpreter accepts three textual forms 
of parameter, namely 

H 

A decimal integer (10, for example) 

A hexadecimal constant, preceded by '%' (such as %10F) 

A character string, which must not contain the separator 
symbols ',' 'I' ')', space or newline or begin with 
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the symbol %. Non-representable characters may be inserted 
by writing their hexadecimal equivalent enclosed by 
exclamation marks. 

The decimal integer form is the normal representation for 
parameters of type I. If it is placed in one of the other two 
contexts, it is interpreted as a character string of decimal 
digi ts , except for the decimal integer 0, which is always 
treated as the zero default. The hexadecimal form is intended 
as an escape mechanism and as such is a valid substitution for 
any parameter type. It is for this reason that strings 
beginning with % may not, be represented. Character strings are 
permitted in both II and S parameter contexts. For parameters 
of type II, the characters are packed right-justified into a 
word of appropriate size; if too many characters are supplied, 
the required number are taken from the right hand end. The 
string 0 is treated specially, and is replaced by the value 
zero. For an S-type parameter the string is stored, and a 
descriptor to the string is created as the parameter. 

10.6.3 Files 

Many of the commonly used system commands (such as those for 
compilation and editing) operate upon files. A file is a 
segment of information, stored within the computer system, and 
identified by a filename. It may be text, compiled code or 
other binary information. Obviously, the commands which 
operate on files have filenames as parameters. 

Mainly as a convenience to the on-line user, the sy'stem 
allows the filename parameter to be omitted in some 
circumstances. When this is done, a file known as the 'current 
file' is used automatically. The current file is a temporary 
file, which exists only for the lifetime of the process, and 
wi th a unique filename which cannot be confused with any of 
the user's filenames (in fact it is '0'). The ability to omit 
filename parameters and have the current file automatically 
assumed is useful in the common case where several successive 
commands operate on the same file. 

At the start of a job, the current file does not exist. 
Certain commands allow the user to create and alter the 
contents of the current file. Some of these are defined in 
Section 10.6.4 below. Once a current file has been defined, 
omission of an input filename parameter automatically results 
in the current file being used instead. 

10.6.4 Commands 

Since job control commands are in fact simply library 
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procedures, it would be inappropriate to deal with them all in 
detail in this book. To convey the flavour of the system the 
commands most commonly used for manipulating files are 
described, and then some typical job control sequences are 
given in the next section. A complete list of library commands 
is given in Appendix 1. They should, in the main, be 
intelligible to readers familiar with interactive 
systems. 

The following commands allow the user to manipulate files 
and set up the current file. In the headings the parameter 
types are shown as I, II, S. If the description needs to refer 
to particular parameters, P1 will denote the first P2 the 
second and so on. 

(1) NEW(II,II) 

This oommand is used to create a new file from the input 
immediately following it. Its paramete~s are 

Pl - The Name of the permanent file to be created. If 
P1 is left unspecified (=0), the data input will 
become the current file. 

P2 - A single character terminator. The input 
following is terminated by this character 
appearing at the start of a line. If the 
terminator is unspecified, 'I' is used. 

(2) OLD (II) 

This command designates a copy of an existing file (name 
P1) to be the current file. 

(3) SAVE(II) 

This command preserves the current file as a permanent 
file (with name P1). The file also continues to be the 
current file. 

(4) DELETE (II) 

This command is used to erase a permanent file (with 
name P1) from the filestore. 

(5) LIST.FILE(II,II,I,I) 

This command lists the file specified by P1 on the 
device specified by P2. If the last two parameters are 
zero the whole file is listed, but they can be used to 
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specify a first and last line. 

(6) EDIT(II,II) 

This command invokes the editor to modify a text file. 
This editor has the usual insertion and deletion 
facili ties, and positions may be specified by page and 
line number or by context. A more detailed specification 
of the editing facilities would not be appropriate here, 
but some examples appear later. 

P1 - The name of the input file to be edited. If this 
is left unspecified (=0) the current file is 
used. 

P2 - The name of the permanent file on which the 
output file is to be saved. If this is left 
unspecified, the output becomes the new current 
file. 

10.7 EXAMPLES OF JOB CONTROL SEQUENCES 

(1) A 'Null' Job 

This is an example of a background job which does nothing 
useful, but it illustrates the small amount of red tape 
required by all jobs. The meaningful commands would be placed 
before the STOP command. 

***A JOB USER PASS NULLJOB 
STOP 
***Z 

(2) A 'Null' Algol Job 

This job illustrates the structure required to compile and run 
an Algol program. The actual program would be placed between 
the 'BEGIN' and 'END' statements. The *END statement is needed 
at the end of all programs submitted to the MUSS compilers in 
order to end the compilation and switch back to command mode. 
A temporary return to command mode, for example to select a 
new input stream, can be made by embedding commands preceded 
by ,**' in the program text. If a program requires input data 
it should be placed between the RUN and STOP commands. A user 
program may return to command level by executing the final 
end. 

/ 
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***A JOB USER PASS NALG 
ALGOL 
'BEGIN' 

'END' ; 
*END; 
RUN 
STOP 
***z 

(3) An Algol Job Using a File 

This job illustrates two actions which would normally be used 
only by on-line users. The first is the creation of a file 
(FILEX) which is followed by a calIon the Algol compiler to 
compile the file, after which is a RUN command to run the 
program. 

***A JOB USER PASS FJOB 
NEW(FILEX) 
'BEGIN' 

'END' ; 
*END; 
/ 
ALGOL (FILEX) 
RUN 
STOP 
***z 

(4) An Algol Job Using the Current File 

The facility illustrated here would again be used by on-line 
rather than background jobs, but it suffices to illustrate the 
mechanism. It is similar to the previous example, except that 
the file name has been omitted in the case of both the NEW and 
ALGOL commands, hence the current file is used. This ceases to 
exist when a job ends, unless it is saved as a permanent file 
by the SAVE command also illustrated here. It should be noted 
that if any command fails, those following will not be 
executed. Thus if the program is faulty the file will not be 
saved. 
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***A JOB USER PASS CFJOB 
NEW 
'BEGIN' 

'END' ; 
*END; 
/ 
ALGOL 
RUN 
SAVE (FILEX) 
STOP 
***Z 

(5) Saving a Compiled Algol Program as a File 

A eomp11ed program can be eave(!. tor ~ubsequent running, by 
use of the DiPINE command thus 

***A JOB USER PASS COMP 
ALGOL FILEX 
DEFINE FILEY 
STOP 
***Z 

In this example a program in a file FILEX is compiled and the 
binary code is saved in a file FILEY. The program can 
subsequently be run by giving FILEY as the parameter of the 
RUN command. For example 

***A JOB USER PASS RUN1 
RUN FILEY 
STOP 

If the progr~m needs data it could appear after the RUN 
command. If it needs input/output streams other than zero they 
would be defined before the RUN command. A similar mechanism 
allows a private library of procedures to be compiled and 
filed. They can subsequently be used as commands or by 
programs and in effect are Gn extension of the system library. 

(6) An Example Interactive Session 

In the example given below the computer output is underlined 
to distinguish it from the user's input. On the actual system 
the distinction would be made by colour on devices which 
provide that facility. 
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The first command used after the log-in line is NEW, which is 
used to input to the current file an Algol program, for 
computing prime numbers. This is followed by the ALGOL command 
which compiles the program but finds two errors. These are 
corrected by editing the current file. The first edit 
statement copies to line 8 and 'windows' the line. The second 
means 

after 'T' 
insert 'E' 
and window 

Positions may also be selected by context but it is more 
convenient to use line numbers when a compiler gives them with 
the error reports. At the second attempt the program compiles 
correctly and it is entered by the RUN command. Since the 
program contains a call for the INI procedure which reads an· 
integer, it prompts for data. When it is given the integer 10 
it computes all prime numbers less than 10, and returns to 
command mode as a result of executing the final END. Th6 
program is entered again and given 100 as its data. This 
produces a run time error after the 22nd prime because they 
are stored in an array declared 0:20. At this point the 
current file is saved and listed, and the user logs out . 

••• M JOB MUSS SSUM DMDEMO 
DMPEMQ 12.41.S9. 04.11.77. 

··NEW 
L'BEGIN"INTEGER'A,B,C,D,N; 
L'INTEGERARRAY' PRIMES[O:20]; 
L C:=O; 
L N: = INI; 
L 'FOR' A := 3'STEP' 1 'UNTIL' N'DO' 
L 'BEGIN' 
L D:=SQRT(A+1); 
L 'FOR'B:=2 'STP' l'UNTIL'D 'DO' 
L 'IF' A 'I' B * B = A 'THEN' 'GOTO' L1 
L OUTI(A,3); 
L PRIMES[C] := A; 
L NEWLINES(l); 
L C: =Q+l; 
LLl : 'END'; 
L CAPTION ('('NO%OF%PRIMES%=%')'); 
L OUTI(C,5) 
L'END'; 
L*END; 
LI 
·*ALGOL 
MUS ALGOL 21/10/77 
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????1. 8 8 DELIMITER UNRECOGNISED 
****1. 8 2 UNRECOGNISED 

407 BYTES INPUT 
2ND PASS 
****1. 13 19 0 UNDECLARED 
COMPILED SIZE IN BYTES 288 
**ED 
->c8w 
1. 8)-1- 'FOR'B:=2 'STP' J'UNTIL'D 'DO' 
->A'T'I'E'w 
1. 8) 'FOR'B:=2 'STE-I-p' 1'UNTIL'D 'DO' 
->C13W 
1. 13)-1- C:=Q+li 
->D'Q'I'C' 
->E 

<CFILE> 12.51.49. 04.11.77. OK 
**ALGOL 
MU5 ALGOL 21/10/77 

408 BYTES INPUT 
2ND PASS :COMPILED SIZE IN BYTES 326 

**RUN 
.=L10 

.3. 
5. 
~ 

NO OF PRIMES = 3 
**RUN 
.=L100 

.3. 
5. 
~ 

11. 
.13. 
11. 
li 
II 
.23. 
.3l. 
.3.1 
II 
II 
II 
53. 
.5.9. 
.2.1 
ll. 
1.1 
13. 
Tl. 
.8.3.. 
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DESCRIPTOR FAULT 
IN PROC/BLOCK OUTER BLOCK AT 1. 11 
VARIABLES? •• 
•• SAV DMPRIMES 
•• LF DMPRIMES & 
DMPRlMES 12.53.13. 04.11.77. 
1. 1 'BEGIN"INTEGER'A.B.C.D.N: 
1. 2 'INTEGERARRAY' PRlMESrO:20]: 
1. 3 C:=O: 
1. 4 N := INI; 
1. 5 'FOR' A := 3'STEP' 1'UNTIL' N'DO' 
1. 6 'BEGIN' 
1. 7 D:=SQRT(A+1); 
1. 8 'FOR'B:=2 'STEP' 1'UNTIL'D 'DO' 
1. 9 'IF' A 'I' B • B = A 'THEN' 'GOTO' L1 
1. 10 OUTI(A.3): 
1. 11 PRlMESrCl := A; 
1. 12 NEWLINES(1): 
1. 13 C:=C+l; 
1. 1 4 L 1 : ' END' : 
1. 15 CAPTION ('('NO%OF%PRlMES%=%')'); 
1. 16 OUTI(C.5) 
1. 17 'END'; 
1. 18 .END; 
..L..ll ··STOP 
STOP REASON 0 COST 12 TIME 12.54.38. 04.11.77. 
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1 1 Performance 

The MU5 project was concerned with the design of a total 
system (hardware and software) for a range of machines. Only 
two members of this range have been built, the MU5 processor 
described in this book, which is a prototype of the main 
computing element in a 'top of the range' multicomputer 
system, and a 'bottom of the range' mu5. This evaluation is 
concerned with the larger system, although the full potential 
of the total system is not demonstrable because of the 
relatively small stores on MU5, and some discussion is 
included of the performance of the MU5 software on the ICL 
2900. This is relevant because of the close similarity of the 
two systems. It is evident from the figures below that the MU5 
evaluated here has not achieved its target speeds. Without 
wishing this to sound like an apology, because as a research 
project the outcome is very satisfactory, it should be 
remembered that the figures presented are for a first 
prototype. The performance of a second implementation could be 
much nearer the target. 

11.1 BASIC HARDWARE SPEEDS 

These have been introduced throughout this book but the 
summary below will set the context for what follows. 
Comparative figures are included for Atlas and the CDC 7600 
because it is against these machines that we have chosen to 
evaluate the MU5 design. A throughput of 20 times Atlas was 
the stated target, but it was also hoped to match or better 
the performance of the CDC 7600 on everything except Fortran 
batch. 

Atlas 
MU5 
CDC 7600 

Time Between Successive 
Main Stor~ Fixed-pt Floating-pt 
Access Time Adds Adds 

1750 ns 1520 ns 2610 ns 
600 ns 50 ns 250 ns 
220 ns 27.5 ns 27.5 ns 

Table 11.1 Basic Performance Figures 
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.7 MIP 
20 MIP 
40 MIP 



Table 11.1 gives some comparative raw speeds and simple 
arithmetic indicates that MU5 is 3 to 30 times faster than 
Atlas and 2 to 9 times slower than the CDC 7600. Although 
access to the MU5 main store is relatively slow, its cycle 
time and data rate are more comparable with the CDC 7600 
store, which is why parity of performance might be expected 
except where floating-point arithmetic dominates. The overall 
logical design aim has been to devise and engineer a powerful 
order code which exploits the technology efficiently. 

11.2 THE POWER OF THE MU5 ORDER CODE 

The results presented here are taken largely from reference 
[40] where the difficulties and hazards in producing such 
figures are more fully discussed. Intuitively it might be felt 
that power could be accessed by measuring, for typical tasks 

(1) the size of the object code 
(2) the number of instruction fetches from main store 
(3) the number of operand fetches from main store 

However, (2) and (3) are very dependent upon the buffering 
strategies involved, so a simple count of instructions obeyed 
is used instead. The difficulty with this is that the 
instructions might be very complicated, hence apparently 
powerful, but slow. Since none of the machines considered are 
microprogrammed, this effect is not pronounced, but actual 
elapsed times are also given as a safeguard. 

Table 11.2 compares MU5 against Atlas using the results 
from two Algol programs, the first representing the GAMM m'ix 
[41] and the second a Quicker sort algorithm [42]. 

Static Code Number of Elapsed Average 
Size (bits) Instructions Run Time Instruction 

Executed (s) Time (ns) 
GAMM: 

Atlas 8 784 302 080 000 027.44 3 400 
MU5 1 344 114 645 000 30.35 265 

Atlas:MU5 6.5: 1 2.6: 1 33.9:1 12.8:1 

QSORT: 
Atlas 26 880 163 400 000 504.40 3 090 

MU5 6 272 67 769 000 24.35 359 

Atlas:MU5 4.3: 1 2.4: 1 20.7:1 8.6: 1 

Table 11.2 Comparative Performance Figures for MU5 and Atlas 
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In these two cases it can be seen that the MU5 performance 
relative to Atlas is towards the extreme of the raw machine 
speeds. In addition it should be noted that the MU5 
implementation is carrying out full array bound checking 
whereas the Atlas one is not. The first two columns, which 
approximate to the power difference of the two order codes, 
show the MU5 order code to be significantly better than that 
of Atlas. 

Tables 11.3 and 11.4 compare MU5 against the CDC 7600, this 
time using the Curnow/Wichmann benchmark [43]. The compilers 
used were the May 1976 versions for MU5 (no optimisation and 
full array bound checking), and Algol 4.1 (level 5F compiler, 
5D run time system) and FTN4.5 (level 420 compiler, 406A run 
time system) with full optimisation (level 5 and level 2 
respectively) and no array bound checking, for the CDC 7600. 
It may be seen from the tables that the MU5 order code appears 
to be over four times as powerful for Algol, while being 
slightly less powerful for Fortran. The ratios of elapsed 
runtime when compared with the ratio of raw machine speed are 
in line with these figures. It is not surprising that the main 
, features' of the MU5 instruction set, namely, dynamically 
assigned 'locals', bound checking on arrays and a recursive 
procedure structure, are of little advantage to Fortran 
programs. These figures have been confirmed for several other 
benchmark programs. 

The figures above indicate that the aim of designing a 
powerful order coqe has to some extent been met. However, as 
discussed below, performance is also dependent upon the 
effectiveness of factors in the hardware, particularly 

the pipeline design 
the operand buffers 
the instruction buffers. 

11.3 PIPELINE PERFORMANCE 

The computer engineer's dream program is one in which the 
programmer refrains from using orders which write to store 
values which are about to be read, or which transfer control 
to some unexpected sequence of instructions, especially when 
this transfer is dependent on the state of some recently 
computed variable. Much of the effort in the design of the MU5 
hardware went into overcoming the effects of orders such as 
these, and certain assumptions about their frequency of 
occurrence were made during the early design stages of the 
project. Accurate information about these frequencies was 
difficult to obtain since no existing computer had a similar 
order code. The estimated figures led to the expected overall 
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Module Module Module Module Module Module Module Module Whole 
2 3 4 6 7 8 9 11 Program 

CDC 7600: 
Millions of Instr. Obeyed 1. 61 23.0 16 0 17.9 21.0 249.0 182.0 19. 1 529.0 
Elapsed Run Time (s) 0.25 2.32 1.85 1. 93 2.13 22.9 16.3 1.85 50.1 

Average Order Time (ns) 155 101 115 108 102 92 89 96 95 

MU5: 
Millions of Instr. Obeyed 0.68 6.98 7.08 9.25 14.9 35. 1 20.9 15.7 110.0 
Elapsed Run Time (s) 0.13 1. 17 1. 91 1.80 6.81 12.9 6.68 7.08 38.5 

Average Order Time (ns) 187 167 269 194 458 366 319 450 348 

N Table 11.3 Algol Synthetic Modules IN 
f-" 

Module Module Module Module Module Module Module Module Whole 
2 3 4 6 7 8 9 11 Program 

CDC 7600: 
Millions of Instr. Obeyed 0.46 4.34 6.78 4.62 24.0 29.7 14.2 15.2 99. 1 
Elapsed Run Time (s) 0.06 0.40 0.49 0.27 2.18 3.76 1.82 1.45 10.7 

Average Order Time (ns) 132 92 73 58 91 127 128 95 108 

MU5: 
Millions of Instr. Obeyed 0.50 3.81 7.42 8.41 14.9 45.9 16.0 15.8 113.0 
Elapsed Run Time (s) 0.09 0.98 1. 86 1. 58 6.86 14. 1 9.60 7.13 42.2 

Average Order Time (ns) 185 256 251 188 461 307 599 451 374 



performance of table 11.5, which is reproduced from reference 
[12]. In this table long orders are those requiring more than 
16 bits for their specification (which might be orders 
involving long names or literals of more than 6 bits), store 
orders are orders of the form 'B => name', and organisational 
orders are the base manipulation orders such as 'NB ='. Column 
2 gives the time required in excess of the basic 40 ns beat 
time for the execution of each type of order. Column 3 shows 
the expected percentage occurrences for thes'e orders, and 
column 4 their net additional contribution to the execution 
time of an average order. It can be seen that an overall 
average execution time of about 120 ns was expected. 

Type 
of 

Order 

Long 

Store 

Organisational 

Control transfer 
(predicted) 

Control transfer 
(unpredicted) 

Name Store NEQ 

Total net time added 

Average execution time\ 

Estimated 
Excess 

Time (ns) 

40 

80 

360 

120 

940 

800 

Estimated 
Occurrence 

(% ) 

10 

15 

6 

4 

2 

Net Time 
Added 

(ns) 

4 

12 

3.6 

7.2 

37.6 

16 

Table 11.5 Expected Overall Performance Table 

As part of the MU5 evaluation exercise, measurements of the 
actual frequencies have been made for a number of programs 
(including the Oxford [44], London CDC [45] and 
Curnow/Wichmann [43] benchmarks), using a hardware System 
Performance Monitor (SPM). Hardware monitoring generally 
involves counting the occurrences of a particular type of 
event and recording the total obtained each time some other 
event, such as a clock pulse, occurs. In practice, however, 
many l"esul ts are best recorded in the form of a histogram, 
showing for example, the relative number of occasions on which 
a given event occurs 'n' times between occurrences of some 
other event. Thus, as well as sixteen 32-bit counters, the SPM 
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incorporates a 512-word 16-bit store, and various modes of 
operation enable histograms of MU5 internal signals to be 
recorded. The SPM also includes a visual display unit, on 
which the contents of the store may be displayed [46], and 
histograms produced by the SPM may also be recorded in 
permanent form· by means of an off-line graph plotter. Figure 
11.1 is an example of such a histogram, showing the 
distribution of the numbers of instructions obeyed between 
successi ve control transfers during the execution of one of 
the London CDC benchmark programs. 

PROPMTION (l" occtRR£N:ES 

2t -e 

2t -3 

2t -4 

2t -S 

2t -0 

1 • III 1.1.11 I ....... 1 .. 1 .......... ·1. .1..1. ........ 1 .. 1 ........ 1 ..... 1 ...... 

B 10 48 
rtJeER (l" lHSTlUTItre BETIIEEN Stm:S8IVE _ coon l1RtIFERS 

Figure 11.1 Example of an SPM Histogram 

8B 

The SPM can be controlled by software in MU5 through its 
connection to the Exchange. In addition, sign~ls coming into 
the SPM first go through validation logic, and by using a 
Machine Status register digit to validate the inputs, 
monitoring of a specific process or part of a process can be 
carried out. The MU5 Library contains procedures for reserving 
and initialising the SPM, starting and stopping monitoring (by 
means of the Machine Status digit), dealing with 'store full' 
interrupts from the SPM, reading out the store and controlling 
the display. 
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Measurements of the frequencies of occurrence of the order 
types shown in table 11.5 were made by using the contents of 
the appropriate parts of the PROP final function register to 
address the SPM store, and using the Control Register strobe 
to increment the corresponding SPM store location [47]. In 
addition, oscilloscope measurements of the execution times of 
various instructions have allowed both hardware and software 
corrections to be made to the projected performance figures. 
These are shown in table 11.6. Thus, whereas a 40 ns PROP beat 
time had been predicted, the achieved figure is 50 ns. The 
smaller figure was arrived at largely on the basis of results 
obtained from the simulator, which assumed a delay of 5 ns for 
each logic gate, but which could not take into account cable 
and connector delays. As a result, the additional time 
requir"ed for long orders also becomes 50 ns, and the time 
required for organisational orders becomes 450 ns. 

The time required to supply PROP with a new sequence of 
instructions after an unpredicted control transfer has also 
increased, not only as a result of the longer PROP beat time, 
but also because the amount of time required for instructions 
to pass through the IBU Data Flow section had not originally 
been appreciated. Furthermore, if a jump occurs to one of the 
last 16-bit words within the 128-bit word fetched from store, 
a further gap will subsequently occur in the instructions 
supplied to PROP before the next 128-bit word arrives in the 
IBU. As a result of these factors, the average excess delay 
incurred in executing an unpredicted control transfer is 1350 
ns rather than the 940 ns anticipated. However, the time 
required to execute a predicted control transfer is 
independent of these effects, and in practice the time of 150 
ns (100 + 50) is .slightly better than the anticipated figure 
of 160 ns (120 + 40). 

A significant increase has also occurred in the time 
required to process a Name Store non-equivalence, largely 
because the original figures were based on the assumption of a 
single Name Store in PROP. The splitting of the Name Store 
into two parts requires that a search be made in the OBS Name 
Store whenever a PROP Name Store non-equivalence occurs, and 
the time required for this check is dependent on the number of 
instructions in the SEOP pipeline. The measured time of 1180 
ns is therefore an average measured over a large number of 
executed instructions. The overall effectiveness of the Name 
Store is considered in more detail in section 11.4. 

Software corrections to the original performance table have 
been made for both execution and compilation. The original 
estimates referred only to execution, and in reality there are 
distinct performance differences between compilation and 
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Execution Compilation 

Type Estimated Actual Estimated 
of Excess Excess Occurrence Actual Net Time (ns) Actual Net Time (ns) 
Order Time (ns) Time (ns) (% ) Occurrence Added After Occurrence Added After 

(%) Correction (%) Correction 

Long 40 50 10 56 27.9 45.7 22.8 

Store 80 100 15 6.2 6.2 9.1 9.1 

Organisational 360 450 5.1 23.0 8.4 37.8 

N 
8.7 8.7 8.0 8.0 VI Control transfer 120 100 6 

V1 
(predicted) 

Control transfer 940 1350 4 4.5 60.7 10.5 141.8 
(unpredicted) 

Name Store NEQ 800 1180 2 3.5 41.3 11.9 140.4 

Total net time added .1.61.....a .3.5.9.....9. 

Average instruction time .lli..Ji ~ 

Table 11.6 Hardware and Software Corrected Performance Table 



execution. In both phases the most noticeable differences 
between actual and predicted results are the increased numbers 
of long orders and organisational orders. Some of the increase 
in the number of long orders arises be"cause the corrected 
figure is the number of extra beats required for the execution 
of orders with 16, 32 and 64-bit operands, and not just the 
frequency of occurrence of such orders. The frequency of 
occurrence of 32-bit and 64-bit literals was underestimated ~ 
however, as indeed was the frequency of control transfers 
using 16-bit literal operands. Although a 6-bit literal could 
in principle be used in many of these control transfers, the 
detection of these requires considerable compiler 
optimisation. The effects of control transfers themselves are 
considered in section 11.5. 

Organisational orders have increased mainly as a result of 
changes in programming style, and in the style of compiled 
code, involving greater use of procedures. Entry to and exit 
from each procedure involves not only a control transfer but 
also some manipulation of the base registers. With the 
advantage of hindsight it would seem that the communication 
between the 'programmers' and 'engineers' went somewhat astray 
on this issue. Had the deleterious effects of these orders 
been properly appreciated earlier, the lock-out techniques 
used for other purposes in the PROP pipeline could have been 
extended to allow only selective inhibiting of the overlap for 
this type of order. Thus while a Name Base manipulation order 
was outstanding, for example, orders which did not require the 
use of the Name Base could have been allowed to proceed. For 
this system to have worked properly, however, extra hardware 
in the form of an additional adder, separate from the adder 
used to add name and base, would have been required to carry 
out the base manipulation. Alternatively, more complex 
procedure entry orders could have been incorporated into the 
instruction set, so that while the pipeline was stopped for 
one order, it could have executed the actions of two or more 
of the existing orders. 

Table 11.6 by no means tells the complete story, since it 
does not, for example, include any reference to the effects of 
Compare orders or the performance of the Secondary Operand 
Unit. It does, however, serve to illustrate some of the 
problems involved, not only in designing for high performance 
in the first place, but also in accounting, afterwards, for 
all the extra nanoseconds. 

The scalar product loop provides a good example of how the 
pipeline functions in practice. It can be coded in several 
ways but the best hand coded sequence is the following 
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B = 0 
ACC = 0 

L1: ACC *= VEC1[B] 
ACC * VEC2[B] 
B CINC LIMIT 
ACC + STACK 
IF 1=, -> L1 

Figure 11.2 shows a schematic timing diagram for two 
typical cycles of the loop. It is assumed that at least one 
cycle has already been obeyed, so that the operand LIMIT and 
the two descriptors VEC1 and VEC2 are all in the Name Store, 
and the IBU Jump Trace correctly predicts the control 
transfer. All instructions pass through the five stages of 
PROP: decode (D), addition of name and base (+), Name Store 
association (A), Name Store read (R) and operand alignment 
(S). The B orders, including Modifier Requests, use the 
Central Highway (H), while the ACC orders pass through Dr, the 
OBS Input stages (OA), the OBS Queue (Q), the OBS Output stage 
(00) and Dop before reaching the ACC Input Buffer (AB). The 
'ACC *=' order is shown passing through in its two phases, the 
first a store order writing the ACC Register content to the 
top-of-stack location held in the OBS Name Store, and the 
second loading the ACC Register with an element of VEC1. When 
the 'ACC +' order reaches the OBS Output stage, it is held up 
waiting for the updating action for the store order to be 
completed in OBS (0=», since it requires the new value. This 
waiting time is largely overlapped with the execution of the 
'ACC *, order, however. Thus the most important feature of 
this diagram is that the A-unit is busy for most of the time, 
and is not held up significantly either by the store order or 
by the execution in the Primary Instruction Pipeline of the 
statements controlling the loop. In practice a single cycle of 
the loop executes in slightly less than 1 1..1s, with the ACC 
Multiply occupying approximately half of this time. 

11.4 NAME AND VECTOR STORE PERFORMANCE 

Measurements of the efficiency of the Name Store have been 
carried out, using the SPM, for a set of 95 programs 
containing both Fortran and Algol jobs ranging in complexity 
from simple student jobs to large scientific programs. For 
most programs it was found that 80% (± 5%) of operand accesses 
were for named variables, that no more than 120 names were 
used in anyone program, and that in all programs 95% of name 
accesses were to fewer than 35% of the names used. These 
figures confirm the earlier Atlas results and suggest that 
high Name Store hit-rates should be obtained. In fact, it was 
found that over 96% of name accesses found their operand in 
one or other Name Store. Table 11.7 shows the average 
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ACC *= IDI+IAIRISIDr lOA I Q 100 IDopIABI=> 100 IDopIO=>1 

I+IAIRIS IHIBI 
IDr lOA Q 100 IDopIABI= 

ACC * IDI+IAIR Is IHIBI 
IDr lOA Q 100 IDoplABI * 

B CINC IDI+IA IR ISIHIB I 

ACC + IDI+ IA IRIS IDr lOA I Q 100 IDoplAB I + I 

-> ID 1+ lAIR ISIHICOI 

ACC *= ID I+IA IRIS IDr lOA I Q 100 IDoplAB 1=> 100 IDopIO=>1 

1+ lAIR IS IHIBI 
IDr lOA I Q 100 IDop lAB 1= I 

ACC * ID I+IA IR IS IHIBI 
IDr lOA I Q 100 IDoplAB I * 

B CINC IDI+ IA IR IS IHIB I 

ACC + ID 1+ IA IR ISIDr lOA Q 100 IDoplABI + I 

-> ID 1+ IA IRISIHICOI 

Figure 11.2 Schematic Timing Diagram of the Scalar Product Loop 



hit-rates obtained, together with results t:or the degree of 
interaction between the two Name Stores. The latter presents 
something of a problem, since it can be seen from this table 
that despite the fact that 96.1% of name accesses found their 
operands in one or other Name Store, only 86% of" these 
accesses found their operand in the correct Name Store. Of the 
remainder, 3.9% required an access via SAC to the Local Store 
(2.9% of PROP accesses + 1.0% of OBS accesses), while 6.1% of 
accesses (3.3% of PROP accesses + 2.8% of OBS accesses) 
required the operand to be read from the wrong Name Store, and 
3.6% of accesses (1.8% + 1.8%) required their operands to be 
deleted from one Name Store and transferred to the other. 

kll Name Accesses 

In either Name Store 
In correct Name Store 

PROP Name accesses 

NEQs 
SAC. access 
OBS.read 
OBS.delete 

OBS Name accesses 

NEQs 
SAC. access 
PROF. read 
PROP.delete 

96.1% 
86.0% 

8.0% 
2.9% 
3.3% 
1.8% 

5.6% 
1.0% 
2.8% 
1. 8% 

Table 11.7 Name Store Hit-rates and Interactions 

The performance of the Processor as a whole is affected by 
this comparatively high and largely unforeseen amount of 
interaction between the two Name Stores. The main reason for 
its occurrence is the way in which procedure calls are 
implemented. Parameters for procedures are normally passed on 
by stacking into the PROP Name Store, but in many cases may 
subsequently be used as OBS names. Conversely, it is possible 
for a particular word used as an OBS name in one procedure to 
be used in a subsequent procedure as a PROP name. 

Some changes to the hardware have been made in the light of 
these facts. In the original design the advantage to be gained 
from avoiding the copying of a 64-bit word back from OBS to 
PROP in a case where all 64 bits were about to be overwritten 
(by stacking, for example) was not thought to be worth the 
extra complexity in the control circuits. This complexity has 
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now been introduced, and the time required to service a PROP 
Name Store non-equivalence in these cases reduced from over 1 
~s to less than 300 ns. In terms of future machine designs it 
is clear that some different techniques must be adopted, 
either to shorten the pipeline, without loss of potential 
performance, or to overcome the 'ACC write back' problem, 
which led to the use of a split Name Store in the fil'st place. 

Because of the different purpose served by the Vector 
Store, its hit-rate was not expected to be as high as that of 
the Name Store. As we observed in Chapter 2, small groups of 
named variables are generally used repeatedly, while large 
groups of data structure elements are generally selected 
sequentially. However, because 128-bit words are fetched from 
the Main Store at a Vector Store non-equivalence, then 
programs using large numbers of sequentially accessed 64-bit 
elements could be expected to achieve a 50% hit-rate. Thus 
simulation studies carried out for a small number of programs 
during the design phase of the project indicated hit-rates in 
the range 58%-69%. When integer arrays (using 32-bit elements) 
or character strings (8-bit elements) are involved, then 
clear ly higher hi t-ra tes would be achieved. In fact, 
measurements made with the SPM using the much larger number of 
available benchmark programs showed considerably higher 
hit-rates, the highest being 97% and 85% being typical. 

11.5 EFFECTS OF CONTROL TRANSFERS 

The largest single contribution to the overall average 
instruction time in table 11.6 for both execution and 
compilation is from unpredicted· control transfers (those not 
immediately followed down the pipeline by the correct sequence 
of instructions). Al though their numbers have not increased 
significantly, for program execution, above the estimated 
figure, the incr~ased time taken to obey one of these orders 
has had a marked effect. By comparison, the increased numbers 
of predicted control transfers contribute very little extra to 
the overall average instruction time. Furthermore, the fact 
that the increase in the total number of control transfers for 
program execution is accounted for almost entirely by 
predicted control transfers is indicative of a very high 
prediction rate in the IBU Jump Trace. This is confirmed by 
the figures shown in table 11.8, where the results for Algol 
and Fortran execution and compilation are l;i.sted separately. 
The first column gives the percentage of control transfers 
which use a literal operand and are therefore candidates for 
prediction by the Jump Trace. Column 2 shows the percentages 
of these predictable transfers which are actually predicted, 
and hence in column 3 the percentages of all control transfers 
followed by the correct sequence of instructions are shown. 
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For 'comparison, column 4 shows the percentages of control 
transfers which would be followed by correct sequences in the 
absence of the Jump Trace. The efficacy of the Jump Trace is 
shown quite dramatically· by these figures. Furthermore, 
wi thout the Jump Trace, the average instruction time would 
increase by 90 ns for Algol execution. For compilation the 
effects of the Jump Trace are less marked, but this is to be 
expected, since compilation is a data-dependent task, with 
many alternative processing sequences being possible. This 
involves the use of many multi-way jumps rather than simple 
loops, thus leading to the observed Jump Trace prediction 
rate. 

EXECUTION 

Algol 

Fortran 

COMPILATION 

Algol 

Fortran 

% % 

% Transfers Followed 
By Correct Sequences 

Predictable Predictables With Without 
Transfers Predicted Jump Trace Jump Trace 

87.8 

87.1 

85.5 

89.4 

70.3 

54.3 

19. 1 

24.5 

66 

65 

41 

46 

Table 11.8 Jump Trace Performance 

17 

22 

27 

28 

Overall performance is also affected by the relative 
numbers of conditional and unconditional control tran~fers, 

since an unconditional transfer can be executed immediately 
its operand reaches the Control Register, whereas a 
conditional transfer may have to await the result of a 
previous Compare order before execution. The percentages of 
successful condi tional , unsuccessful conditional and 
unconditional transfers are shown in table 11.9. The extra 
delay involved because of a preceding Compare order is very 
dependent on program context and difficult to measure 
accurately, and is not included in the figures shown in table 
11.6. Clearly, however, the delay will be significantly 
different according to whether a B Compare or an X or ACC 
Compare order is involved. During program execution B Compare 
orders account, on average, for 4.55% of all orders, and can 
involve ~n extra delay of up to 150 ns. X and ACC Compare 
orders account on average for fewer orders (2.66%), but may 
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involve an extra delay of as much as 1 ~s. This situation is 
one in which the pipeline approach does not help to increase 
instruction throughput, and it indicates a need, in a pipeline 
system, for the Control Point to be moved further along the 
pipeline towards the A-unit. For this to be successful, 
however, it becomes essential to supply the pipeline with the 
correct sequence of instructions after control transfers as 
frequently as possible. This necessarily involves the 
prediction of the outcome of a control transfer as early qS 
possible in order to overcome store access time delays, and 
the Jump Trace is one· technique which has been shown to 
achieve this requirement successfully. 

EXECUTION 

Algol 

Fortran 

COMPILATION 

Algol 

Fortran 

Successful 
Conditional 

6.0 

4.5 

5.5 

6.2 

Unsuccessful 
Conditional 

2.4 

2.8 

5. 1 

5.0 

Unconditional 

5.6 

5.2 

8.4 

6.9 

Total 

14.0 

12.5 

19.0 

18. 1 

Table 11.9 Control Transfers as Percentages of All Orders 

11.6 SOFTWARE PERFORMANCE 

Some measure of the runtime performance of compilers is 
implici t in the above figures because they measure machine 
performance on high-level language programs. Other aspects of 
performance not included in the above are 

compiling speeds 
compiler/operating system sizes 
interactive performance. 

In order to distinguish the software influence on compiling 
speeds from the hardware contribution, they are given in table 
11.10 as instructions obeyed (per byte of source processed and 
per instruction compiled). The Atlas figures, which are given 
for comparison, are taken from reference [48]. However, they 
require some interpretation. The Atlas figure of 169 
instructions/byte of source is artificially low because it 
contains underlined delimiters achieved by use of a backspace 
character. The MU5 figures may be converted to times by using 
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the additional information that the average instruction rate 
of MU5 while compiling is 660 ns/instruction. This figure is 
considerably worse than the overall average mainly because 
compilers are 'data driven' rather than 'control driven'. That 
is to say, the conditional control transfers are usually 
dependent upon the value of data being fetched from store 
rather than the value of an incrementing or decrementing 
control variable. In addition, the compilers tend to use many 
short procedures and to have very short sequences of orders 
between control transfers. A further factor, not included in 
the above average, which affects the actual time for 
compilation is the time lost due to CPR loading. On MU5 this 
can be as high as 50% because of the software management of 
CPRs. However, a production MU5 would have hardware CPR 
loading thereby eliminating this effect. 

Algol 

Fortran 

Inst/Byte of Source 

MU5 

227 

116 

Atlas 

169 

355 

Inst/Compiled Instruction 

MU5 Atlas 

720 1100 

1070 2275 

¥- Table 11.10 Compiling Speeds 

Some compiler sizes have already been quoted in chapter 8. 
These are included again in table 11.11, which is a breakdown 
of the total software required to support interactive use of 
Algol and Fortran. It has been assumed throughout the design 
that performance, and particularly interactive performance, 
would be critically dependent upon the software size. The size 
of compiled code is one of the measures of the power of the 
order code discussed in section 11.2. Compiler sizes have an 
important bearing on the minimum size of main store on which 
the software system can be run, and for a given store size, 
the maximum number of active terminals that can be supported. 
However, it is really the size of the active part plus working 
space (or working set) of the compiler that matters, rather 
than its static code size. 

Experiments with the MU5 software running on an ICL 2960 
indicate that a 128 Kbyte store backed up by EDS is suf~icient 
to sustain batch or light interactive use. This is supported 
by evidence in [49] that on MU5 the paging loss while 
compiling Fortran programs is less than 10% if the compiler is 
allowed 80 1-Kbyte pages. If peripheral activity is low, the 
rest of the system only requires a further 16 Kbytes. For 
Algol the corresponding figure is 8 Kbytes less, which might 
be partly due to the two-pass organisation of the compiler. 
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Bootstrap 
Resident Kernel 
Paged kernel 
Library 
Library Name Lists 
Algol Compiler 
Algol Run Time Package 
Fortran Compiler 
Fortran Run Time Package 
TML 

Total 

Total Size 

2.5 Kb 
9 Kb 
9 Kb 

32 Kb 
9 Kb 

34 Kb 
3 Kb 

37 Kb 
12 Kb 
12 Kb 

159.5 Kb 

Table 11.11 The Size of MUSS 

For reasons already stated, the interactive performance of 
the MU5 software has been measured on ICL 2900 computers 
rather than MU5. It should be mentioned, however, that even 
with its limited hardware, MU5 provides an interactive 
computing facility to about 100 postgraduate students and 
staff through 25 terminals. For the evaluation of the MU5 
software (MUSS) on 2900, ICL very generously made time 
available on machines used for the development of their own 
software, albeit at antisocial hours and on a variety of 
machine types and sites. 

11.6.1 MUSS on ICL 2900 

It has already been stated that the MUSS is modular, which 
gives rise to a range of configurations of the software to 
suit the size and purpose of the hardware system. The 
configuration used in the evaluation on 2900 was one thought 
to be appropriate to a general purpose timesharing system 
with 

2960 Processor 
2 Mbyte main store 
2 EDS-200 Drives 
normal I/O devices. 

However, some of the more complicated scheduling and page 
turning modules were omitted to simplify the transfer of the 
system from MU5. Also, for the same reasons, a rather 
extravagent layout of main store was used, in which the system 
was allocated 156 Kbytes of store, even though a large 
fraction of this was unused. In fact, the results quoted below 
are for a 0.5 Mbyte system because ICL had a~ interest in the 
performance on this size of .sys tem. However, the same results 
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would have been obtained from 0.375 Mbytes if the store 
allocation had been tidier. 

From the point of view of maintainability, it is of 
interest to note in passing that three separate binary 
versions of the system are kept on disc. Each can be 
re-compiled when running on either of the others. Sections can 
be changed and re-compiled separately without the need to 
compile a whole system as follows 

Basic Library taking 1 min 12 s 
Operating System taking 4 min 47 s 
High Level Language Library taking 2 min 09 s 
MUPL Compiler taking 1 min 48 s 
Fortran Compiler taking 1 min 50 s 
Algol Compiler taking 1 min 36 s 

The load time for the system from any of the three versions is 
20 s. All these times are for a 0.5 Mbyte 2960. 

Since no communications processor was available on the 
machines used for the evaluation, interactive running had to 
be simulated by having a high priority process generating and 
absorbing the interactive message traffic. Obviously the 
existence of this process on the main frame system degrades 
its performance and hence the figures given later are on the 
pessimistic side. The mechanism for simulating interactive 
running is formalised into a library procedure 'INT. JOB. JOB' 
whi.ch has three parameters 

P1 the name of the supervisor to be used to 
initiate the interactive jobs 

P2 the destination file for the journal information 
P3 a 'substitution' symbol 

The call of INT. JOB. JOB is followed by a list of data 
statements terminated by an '@', specifying the terminal 
activity to be simulated in the form 

filename no. of terminals no. of repeats 

Each file (or 'script') is taken to be a list of commands, 
possibly interspersed with 'think' delays. If the symbol 
specified by P3 appears in a command, the terminal number is 
substi tuted. For example if '%' were the symbol in q\lestion, 
then a command 'DEFINEINPUT 3 FD1:%' would become 

DEFINEINPUT 
DEFINEINPUT 
etc. 

3 
3 

FD1 : 000 
FD1:001 
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Thus each simulated use of a particular script can have its 
own unique filenames. When the end of the script is reached it 
is repeated the requested number of times. The end result is 
that it is possible to simulate the effect of X terminals 
editing and running programs, Y terminals interactively 
running a big program and so on. 

Tne performance measurements presented are based on the set 
of mainly Fortran programs summarised below. Most of these 
programs come from a benchmark used by ICL to assess their own 
software. F11 and F12, and two Algol programs A1 and A2, were 
added to show the effect of very large numbers of very small 
programs, such as might arise in a teaching environment. F11 
and A1 were felt to reflect early beginner usage (they 
tabulate prime numbers) and F12 and A2, which compute 
solutions to the 'queens' problem, reflect the usage after a 
few weeks training. 

F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
F10 
F11 
F12 
F13 
A1 
A2 

Source Size 
(lines) (bytes) 

991 
440 
717 
704 
468 
449 
138 
392 
671 
111 

13 
75 

407 
14 
17 

28245 
12035 
19697 
18715 
12468 
15437 
2925 

10477 
16043 
3154 
259 

2448 
11274 

341 
3092 

Comp Size 
(bytes) 

19150 
7910 
10808 
11064 
6058 

12778 
2186 
8218 
8880 
2446 

222 
644 

6096 
340 

1074 

Mill Time (s) 
Comp Run Total 

14.81 
6.29 

10.22 
10.62 
6.55 

10.35 
1.44 
6.16 
8.78 
1. 57 
0.07 
0.53 
5.64 
0.06 
0.66 

14.42 
6.82 

41.03 
2.09 

13.64 
2.10 

212.21 
159.91 
107.74 
451.94 

0.06 
1. 31 
6.29 
0.07 
1. 18 

29.93 
13. 11 
51.25 
12 .• 71 
20.19 
12.45 

213.65 
166.07 
116.52 
453.51 

0.13 
1.84 

11.93 
0.13 
1.84 

Table 11.12 Job Statistics 

Selections from the above group of programs have been used 
to generate both the batch and interactive components of the 
benchmark. First, in order to access batch performance, three 
batches of jobs were assembled and run. Their composition and 
the results obtained are given in table 11.13. Clearly, the 
first two batches are dominated by the longer jobs and show 
very good mill utilisation. Batch 3 involves multiple copies 
of the shorter jobs but the mill utilisation is still nearly 
90%. This 'User Mill Utilisation' is the percentage of real 
time that the CPU spends executing user code. In the residual 
time the CPU is either executing Operating System code or 
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waiting for disc transfers. Although the system has a 
multiprogramming capability, the level of multiprogramming can 
be set by the operator, and for the above batch tests it was 
set at 'one user program + system processes' only. 

F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
F10 
F11 
F12 
F13 
Elapsed Time 
User Mill Time 
User Mill Util 

Batch 

1 
1 
1 
1 
1 
1 
1 
1 
1 

674 
636 

94.4% 

Batch 2 

1 
1159 
1101 
95.0% 

Table 11.13 Batch Job Mixes 

Batch 3 

4 
10 

10 
10 
10 

1010 
869 

86.0% 

As a first measure of interactive performance the 
INT.JOB.JOB facility was used to measure the rate at which 
various types of job could be repeatedly run before the system 
saturated. In table 11.14 the results obtained are compared 
with the batch rates. They indicate that running the jobs 
interactively has only marginal effect on throughput, provided 
all the jobs fit into main store. If this is not the case, and 
if all the jobs are running at the same interactive priority, 
then each timeslice allotted to a job requires its working set 
to page back. To a first approximation CPU utilisation falls 
to 

timeslice / (timeslice + page-in time) x 100% 

It is at this point that the more sophisticated paging and 
scheduling modules of the MUSS would have been beneficial. 
Clearly the above results follow a pattern, and jobs with 
large mill times were not run with multiple users. 

Next the peak rate at whioh the system could support file 
editing activities was established. These results are 
summarised in table 11.15. Clearly, this rate is a function of 
the size of the file and the size of the edit, and to a lesser 
extent, the number of active terminals. All are going faster 
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than users would type. For example, with 25 users doing 100 
line edits, to the source of F1, each user would have to type 
28 commands/minute to keep up with the system. 

Batch Batch On-line Rate 
Time Rate User 10 Users 20 Users 

F1 0:34 1. 76 1. 76 --.-- --.--
F2 0: 16 3.75 3.75 1. 38 0.53 
F3 0:54 1. 11 1 • 11 --.-- --.--
F4 0: 15 4.00 4.00 --.-- --.--
F5 0:22 2.73 2.73 1. 70 0.51 
F6 0: 14 4.29 4.29 --.-- --.--
F7 3:43 0.27 0.27 --.-- --.--
F8 2:53 0.35 0.35 --.-- --.--
F9 2:03 0.49 0.49 0.28 --.--
F10 7:51 0.13 0.13 --.-- --.--
F11 0:01 70.00 70.00 62.78 51.69 
F12 0:03 18.95 18.95 --.-- --.-... 
F13 0: 14 4.29 4.29 --.-- --.--
A1 0:01 70.00 70.00 --.-- --.--
A2 0:03 18.95 18.95 --.-- --.--

Table 11. 14 Saturation Level (Jobs/min) 

File F12 File F1 

Lines Changed 10 10 100 

1 User 120 62.8 14.2 13. 1 7. 1 
10 Users 120 62.8 14.2 13.0 7.0 
25 Users 100 62.8 14.2 13.0 7.0 

Table 11. 15 Repetition Rate (Edits/min) 

The main interactive assessment was based on the following 
'typical' scripts. 

Script A - This represents beginner usage. The script 
types a new file (in fact F11) containing 
errors and then continues as follows 

Edit to correct one error but makes a fur~her error. 
Edit again leaving one compile and one run time error. 
Compile the program to receive an error report. 
Edit to correct the error but makes another. 
Compile again to receive an error report. 
Edit to correct all but the run time error. 
Compile now OK, therefore program is run but the 
answer is wrong. 
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Edit to correct this last error. 
Compile - OK. 
Run - OK. 
Final file is saved. 

This script is filled out with think times totalling 15 min. 

Script B - This is a typical program development activity. 

Edit an existing file (F12) making five alterations. 
Edit again making one further alteration. 
Compile. 
Edit making two alterations. 
Compile and run. 
List last 11 lines of files. 
Edit making one alteration. 
Compile and run. 

This script is filled out with think times totalling 10 min. 

Table 11.16 shows the basic characteristics of these 
interactive scripts, where the think times and mill times are 
in Units of one second. 

Think Mill 
Time Interactions Edits Comps Runs Time 

A 900 47 5 4 2 1. 70 
B 600 24 4 3 2 6.55 

Table 11. 16 Script Characteristics 

It is not easy to quantify interactive performance. We 
decided to compute the average time a user ·had to wait after 
typing a command before being invited to type the next 
command. This 'response time' is given in table 11.17 as the 
system is progressively loaded with users of type A and B. 
Maximum response times occurred when the interactions required 
significant mill time. These maxima were never more than a 
small multiple of the required mill times, but obviously could 
be large if the demands of the users became synchronised. 

It was also of interest to explore the potential of the 
system for running a background of batch jobs with the 40 
B-type users. This interactive load requires 25% of the mill 
time for execution of the user code, and places a heavy load 
on the system functions. Nevertheless when batch B3 was run 
simultaneously with it, a further 45% of mill time was 
utili~ed at user level in the batch jobs. 
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A 
B 

1 User 

0.11 s 
0.38 s 

20 Users 

0.16 s 
0.53 s 

40 Users 

0.28 s 
0.71 s 

Table 11.17 Average Response Times 

11.7 BEYOND MU5 

In a research sense the authors feel that the MU5 Project has 
been very successful. We hope that this book conveys some of 
the experience to the reader. The design group responsible for 
MU5 has now turned its attention to the design of a successor. 
Some of the better ideas of MU5 will be carried forward, but 
the evaluation phase, together with current technological 
developments, have stimulated many new ideas. 
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Appendix 1 
Summary of the Order Code 

This appendix summarises 
code. Some functions in 
overleaf, which should be 
general characteristics. 

the 
MU5 

overall 
differ 

taken only 

pattern of the order 
from the general form 
as a statement of the 

J 

COMPUTATIONAL AND STORE-TO-STORE ORDERS 

~ STS S X IU IDC AFL 

DO = 
D IMMY 

MY =',2 
D = DUMMY =(64 

'CK '= '= D*= '= '= 
=> -> -> 

MY 

D IMM' U MY 
~ ~ ~ D ~ 

V V V D V 
<-\RITH <-ARITH <-~OG UMMY <-CIRC 

D1MM' 
Q Q ODCOMF 

COMP COMP COMP :OMP COMP 

CINe =CONV DUMM' IPACI =CONV, 
SUS2 0 0 'UMM~ DUMM~ 0 

k' = 0 or - LITERAL n is 6-bit signed integer. 
- IR n defines internal register. 
- V32 Operand is accessed directly at 
- V64 (NB) + unsigned OJ n is scaled for V32. 
- S[B] Operand is accessed via a 
- SEE] descriptor at (NB) + n, using 
- S[O] B or 0 as an index. 

k r = 1 or k 7 - K Extended Operand. 

ORGAN IS A TIONAL ORDERS 

r-r; 
XIT 

UMP RETURN 
CO >C 

CS 

X 

NS = SF 
2 = 0 f. 0 

= 0 f. 0 
4 n > 0 

4 Sn 
8n & X- Sn 
Bn- x- Sn ~ 

X- Sn V 

DllMMY 
DUMM' 
0> 

SP 
X 
SF = NA 
NS 
>. 0 
OVERFLOW 
> 
oveRFLOW 

Sn- X 

Sn 'I X 
Sn-

Sn- V 

DUMMY 
DUMM' 
XC, 

~T'CK INI 
SET LINK 
XNS => 
~F =) 
NS => 
< 0 

An 
"< 0 

Sn 
x 

Sn V X 
Sn- V X 

-> IF, 
-> IF, 

set Bn IF,. 
set En IF,. 

-The operand speclfles the way in which En is set as follows, 
where T denotes the result of the test (= 0 for NO, = 1 for YES) 
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EXTENDED OPERANDS K 

13 13 I 
IK In' I \ 

n' = 0 16-bit signed 
n' = 1 32-bit signed 
n' = 2 64-bit 

K = 0/1 LITERAL n' = 3 64-bit 
(qualified by n') 

n' = 4 16-bit unsigned 
n' = 5 32-bit unsigned 
n' = 6 64-bit 
n' = 7 64-bit 

K = 2 V32 As for k above n' = 0 SF + 16-bit Name 
K = 3 V64 (qualified by n') n' = 1 o + 16-bit Name 
K = 4 S[B] n' = 2 NB + 16-bit Name 
K = 5 S[B] n' = 3 XNB + 16-bit Name 
K = 6 S[O] n' = 4 UNSTACK 

n' = 5 D[] - use descriptor 
in DR 

K = 7 V-store (access is privileged) 

INTERNAL REGISTER OPERANDS 

The n bits define the internal register to be used. 

<-16-><-16-><-16-><-16-> 
Q MS NB CO 1321 B 
1 XNB 33 BOD 
2 ~N 1 NB 34 Z 
3 SN 1 SF 35 
4 BN 36 BOD B 

5 37 
6 38 

11 39 

16 D 48 AEX 
11 XD 49 
18 I DT 50 
19 1 XDT 51 
20 1 DOD 52 
2] 53 
22 54 

123 55 
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DESCRIPTOR FORMATS 

Type 0 - General Vector 

1 T 1 SIZE 1 IUSIBCI BOUND ORIGIN (IN BYTES) 
1 2 1 3 11 1 1 11 1 

I I I I 
I I I -- Bound Check Inhibit 
I I I 
I I -- Scale/do not scale according to SIZE 
I I 
I -- Read only 
I 

Size - 1, 4, 8, 16, 32 or 64 bits 

Type 1 - General String 

T SIZE BOUND/LENGTH ORIGIN (IN BYTES) 
2 3 3 24 32 

-- Spare 

Size - 8 bits only 

Type 2 - Address Vector - Format identical with Type 0 

Type 3 - Miscellaneous Sub-types 

T SUBTYPE BOUND/LENGTH ORIGIN 
2 6 24 32 

I I 
I Use depends on sub-type 
I 
I 0 Real Address (Executive Mode Only) 
I 1 Read/Store Direct 
I 2 Read & Mark 
I 3 Indirect 
I 4-63 Procedure Calls 
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Appendix 2 
Summary of the Operating System 
Commands 

This appendix summarises the facilities of the MUSS Basic 
System. 

JOB CONTROL 

Job Format 

***A JOB USER PASS TITLE T<time.limit> P<priority> 

commands 

.***Z 

T and P parameters are optional. For interactive jobs, ***M 
. replaces ***A. 

Command format 

**NAME (param 1, param 2, •.. ) 

** is optional and brackets and commas can be replaced by 
spaces. A parameter may b~ a string, decimal integer, or 
hexadecimal constant preceded by %'. 

NEW NEW(File, Terminator) 
OLD OLD (File) 
SAV SAVE(File) 
DEL DELET~(File) 
LD LIST.DIR() 
LE LIST.FILE(File,Destination,Start,Finish) 
ALG ALGOL(File) 
FOR FORTRAN (File) 
RUN RUN (File) 
DEF DEFINE(File, Mode) 
LIB LIB(File) 
STP STOP (Reason) 
RJ RUN.JOB(File, Supervisor, Header) 
KIL KILL (Proc) 
PS PPC.SEQ(Mode) 
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INPUT/OUTPUT FACILITIES 

AIS ASSIGN.INPUT.STREAM(File) Str 
AOS ASSIGN.OUTPUT.STREAM(File)Str 
BO BREAK. OUTPUT (Str) 
CAP CAPTION (String) 
CDE CHANGE.DEST(Str,Dest) 
CI CURRENT.INPUT()Str 
CO CURRENT.OUTPUT()Str 
DI DEFINE.INPUT(Str, File, Mode) 
DO DEFINE. OUTPUT (Str, File, Mode, Lines, Sections) 
EL ECHO.LINE() 
IB IN. BACKSPACE (No) 
IC IN.CH() Char 
ICL IN.C.LIT() Char Literal 
ICS IN.C.STR(String Dest) 
IH IN.HEX() Hex literal 
II IN.I() Int 
110 INIT.IO() 
IL IN.LINE() Page/Line 
1M IN. MODE () Mode 
INA IN.NAME() Char literal 
IS IN. SOURCE (Source) 
1ST IN.STR(String Dest) 
NL NEWLINES(No) 
NC NEXT.CH() Char 
DC OUT.CH (Char) 
ODA OUT.DATE() 
OFN OUT.FN(File) 
OHD OUT.HDR(Header) 
OHX OUT.HEX(Hex) 
01 OUT.I(No, Field Width) 
OL OUT. LINE (Page/Line) 
OM OUT.MODE(Str) Mode 
ON OUT. NAME (Name) 
OP OUT.PROG(Seg, First Byte, Last Byte) 
OR OUT.REGS() 
OSS OUT.S.STATS(Type) 
OS OUT.STACK(Start Addr, Finish Addr) 
OTI OUT.TIME() 
PR PROMPT (String) 
RI RELEASE. INPUT (Str) 
RO RELEASE. OUTPUT (Str) 
SH· SELECT.HEADER() 
SI SELECT.INPUT(Str) 
SO SELECT. OUTPUT (Str) 
STE SELECT.TEXT() 
SPS SPACES (No) 
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EDITING FACILITIES 

ED ED(Input, 
S<pos) 
C<pos) 
I<str) 
B<str) 
A<str) 
D<str) 
W 
R 
M<file) 
E 
Q 

Output) 
SKIP 
COPY 
INSERT 
BEFORE 
AFTER 
DELETE 
WRITE 
RESET 
MERGE 
EXIT 
QUIT 

DOCUMENTATION FACILITIES 

Skip to start of line 
Copy to start of line 
Insert string at current position 
Copy up to start of string 
Copy up to end of string 
Delete next occurrence of string 
Print current Line 
Reset position 
Select new input file 
Exit from editor 
Abandon edit 

FL F~IP(File,Level,Mode,Label,Jump,Cjump) 
DR DRAW(File , Level ,Height ,Width) 
PIC PIC(Input,Output,Jobtext,Width) 
PL PLOT (Input ,Output) 
TX TEXT(Input,Output,Devtype) 

VIRTUAL STORE CONTROL 

CSE CREATE.SEGMENT(Seg,Size,Page Size) Seg,Size 
CSI CHANGE.SIZE(Seg,Size) 
INT INTERCHANGE (Seg,Seg) 
CA CHANGE.ACCESS(Seg,Access) 
RSE RELEASE.SEGMENT(Seg) 
PI PAGE.IN(Seg,Page,Mode) 

FILE CONTROL 

FIL FILE(File,Seg,Access) 
OFI OPEN.FILE(File,Seg,Access) Seg 
DEL DELETE (File) 
CAT CATALOGUE() No of Entries, Seg 
ODI OPEN.DIR(User,Pass) 
RF RENAME. FILE (File ,File) 
Rl>R READ. DIR o User , Password 

INTER-PROCESS COMMUNICATION 

SCS SET.CH.STATUS(Ch,Status,PID) 
WAI WAIT(Ch, Time) 
LUP LOOK.UP.PROCESS(Name)SPN,PID,Ch 
SM SEND.MESSAGE(Message,Dest,Ch,Seg,Access) 
RM READ.MESSAGE(Message,Source,Ch,Seg)Seg,Access,UID 
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PROCESS CONTROL 

CP CREATE.PROCESS(Proc,User,Pass,Seg Limit,CPU Limit, 
Seg O,Priority,Term Ch)SPN,PID 

SPR SUSPEND.PROCESS(SPN,PID) 
FP FREE.PROCESS(SPN,PID) 
TP TERMINATE.PROCESS(SPN,PID,Reason) 
KIL KILL(Proc) 
RST READ.STATUS(SPN,PID) Status 
RP READ.PARAMETER(Param) Value 
FI FORCE.INT(SPN,PID,Reason) 
STI SET. TIMER (Time) 
RES RESCHEDULE(SPN,PID,Priority) 

ERROR HANDLING 

STR SET.TRAP(Trap,Addr) 
ET ENTER. TRAP(Trap, Reason) 
SIT SET.INT.TRAP(Trap,Reason) 
SR SET.RESTART(Addr) 
GR GO.RESTART() 
TR TRAP(Trap,Reason) 
OUF OUT.F(No, Message, Page/Line) 
OUM OUT.M(No,Message, Page/Line) 
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Adaptability 209 
Addition 141, 149 
Address encoding 19 
Address generation 15 
Array operations 22 
Assemblylanguage 180 
Associative storage 40 
Asynchronous timing 50 
Atlas 2, 228 
A-unit 146 
Automatic flowcharting 170 

Basic Language Machine 6 
Block-carry addition 142 
Block Transfer Unit 139 
Boolean orders 14 
Bound checking 92 
Buffer Line Selection Process 

117 
B-unit 160 
Burroughs 6 
Byte processing 164 

Carry-save addition 154 
CDC 7600 228 
Central Highway 80 
Channels 206 
Circuit technology 36 
Command format 218 
Common segments 191 
Communication 204 
Compiler Compiler 4, 174 
Compiler Target Language 

(CTL) 176 
Conditional-sum addition 143 
Control transfers 78, 240 
CPR Non-equivalence 126, 193 
Current Page Registers (CPRs) 

126 

INDEX 
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Descriptor 16 
Descriptor Addressing Unit 

86 
Descriptor format 90 
Descriptor Operand Processing 

Unit 87 
Division 156 
Documentation 167 
Documents 215 
Dope vectors 23 
Double access orders 75, 105 
D-unit 85 

ECL logic family 38 
Editor 222 
Exchange 34, 132 
Exchange Control System 136 
Exchange Priority System 138 
Executive Mode 32 
Executive Programming 

Language (XPL) 180 
Executive status 192 

Files 220 
File syste~ 207 
Fixed-head Disc store 55 
Flocoder 170 
Function 13 

Hardware organisation 26 
Hardware performance 228 
High-level language programs 

5 

IBU Data Flow 62 
IBU Store Request System 63 
ICL 2900 Series 4, 244 
Input/Output 215 
Instruction Buffer Unit 58 
Instruction Counter 131 
Instruction format 7 
Interactive operation 218 
Interconnections 42 
Interrupts 30, 79, 97, 129 

Job control commands 218 
Jobs 215 
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Job Supervisor 216 
Jump Trace 65 
Jump Trace performance 241 

Kernel 190 

Library 214 
Local Store 52 
Local Store Interface 121 
Lock-outs 77 
Logic simulator 46 
Lower bound 21 

Machine independence 209 
Manchester University Design 

Language (MUDL) 186 
Manchester University 

Programming Language (MUPL) 
184 

Mass Store 55 
Mes'sages 205 
MU5 Autocode 181 
Multi-computer 2 
Multics '7 
Multi-length instructions 72 
Multiplication 152 

Name segment 17 
Name Store 109 
Name Store performance 237 
Name Store Non-equivalence 
Normalisation 150 
NRZI recording code 55 
Number representation 148 

OBS Input Process 101 
OBS Output Process 103 
OBS Store 115 
One-level store 33 
On-line input/output 215 
Operand Buffer System 98 
Operands 16 
Operating Console 131 
Operating System 189 
Order code 7 
Organisational orders 78 

Page size 128, 194 

264 



Page status 196 
Page tables 195 
Page transfer 196 
Paging 193 
Parsing 174 

230 
52 

44 

Peak shift 55 
Performance 228 
Peripherals 35 
Pipeline design 68 
Pipeline performance 
Plated-wire storage 
Platter allocation 
Platter production 
Primary Operand Unit 
Priority 200, 217 
Private segments 191 
Privilege 192 
Procedure stack 17 
Processes 212 
Processor layout 43 
Processor scheduling 
Program Fault V-line 
Protection 192 

45 

Queue 98 

66 

199 
79 

Register-register orders 75 

Scheduling 199 
Secondary operands 20 
Secondary Operand Unit 84 
Segmented store 7, 17 
Shared segments 191 
Skew 55 
Software performance 242 
Software tools 167 
Stack mechanism 73 
Store Access Control Unit 

123 
Store hierachy 32 
Store orders 76, 106 
Store-to-store orders 161 
Streams 216 
String accesses 93 
String operations 24 
Structure access orders 96 
Sub-page 199 
Subscript calculation 22 
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Subtraction 149! 
Super page 198 
Supervisor 213 
Syntab 174 
System Error V-line 79 
System Performance Monitor 

232 
System programming languages 

179 

Table Look Up order 199 
Target Machine Language (TML) 

185 
Timeslice 
Translators 

Upper bound 

201 
176 

21 

Vector accesses 89 
Vector operations 24 
Vector Store 98 
Vector Store performance 237 
Virtual addressing 6 
Virtual machine 189 
Virtual store 190 
V-store 130 

\ 

\ 
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