
TheMU5
Computer
System
Derrick Morris
and
Roland N. Ibbett

The MUS Computer System

Macmillan Computer Science Series

Consulting Editor
Professor F. H. Sumner, University of Manchester

G. M. Birtwistle, Discrete Event Modelling on Simula

J. K. Buckle, The ICL 2900 Series

Derek Coleman, A Structured Programming Approach to Data*

Andrew J. T. Colin, Programming and Problem-solving in Algol 68*

S. M. Deen, Fundamentals of Data Base Systems*

David Hopkin and Barbara Moss, Automata *

A. Learner and A. J. Powell, An Introduction to Algol 68 through Problems*

A. M. lister ,.Fundamentals of Operating Systems*

Brian Meek, Fortran, PLjI and the Algols

Derrick Morris and Roland N. Ibbett, The MUS Computer System

I. R. Wilson and A. M. Addyman,A Practical Introduction to Pascal

*the titles marked with an asterisk were prepared during the Consulting Editorship of
Professor J. S. Rohl, University of Western Australia.

The MU5
Computer
System

Derrick Morris
Roland N. Ibbett

Department of Computer SCience,
University of Manchester

M

© Derrick Morris and Roland N. Ib bett 1979

All rights reserved. No part of this publication may be reproduced or transmitted,
in any form or by any means, without permission.

First published 1979 by
THE MACMILLAN PRESS LTD
London and Basingstoke
Associated companies in Delhi Dublin
Hong Kong Johannesburg Lagos Melbourne
New York Singapore and Tokyo

Printed in Great Britain by Bell and Bain Ltd.,
Glasgow

British Library Cataloguing in Publication Data

Morris, Derrick
The MU5 computer system.-(Macmillan
computer science series).
1. MU5 (Computer system)
I. Title II. Ibbett, Roland N
001.6'4044 QA76.5

ISBN 0-333-25749-9
ISBN 0-333-25750-2 Pbk

This book is sold subject to the standard conditions of the Net Book Agreement.

The paperback edition of this book is sold subject to the condition that it shall
not, by way of trade or otherwise, be lent, resold, hired out, or otherwise
circulated without the publisher's prior consent in any form of binding or cover
other than that in which it is published and without a similar condition including
this condition being imposed on the subsequent purchaser.

Contents

Introduction

2 The Architecture of the MU5 Processor

3 Technological Implementation

4 The Primary Instruction Pipeline

5 The Secondary Instruction Pipeline

6 Store Organisation

7 The Execution Units

8 The Software tools

9 The MU5 Operating System Structure

10 A User's View of MU5

11 Performance

Appendix Summ~ry of the Order Code

Appendix 2 Summary of the Operating System Commands

1

5

36

57

84

108

141

167

189

212

228

251

254

This book is dedicated to all those
who contributed to the MU 5 Project

1 Introduction

MU5 is the fifth computer system to be designed and built at
the Uni versi ty of Manchester. The development of the systems
leading up to MU5 is described by Lavington [1]. This book is
concerned with the design, implementation and performance of
MU5. It covers both hardware and software as these have been
designed as an integrated system by a closely knit group of
'Engineers' and 'Programmers'. No attempt is made to assign
individual credit.

A precise starting date for the project is difficult to
pinpoint. Many of the ideas it embodies grew out of the
previous Atlas Project. The records show that talks with ICT
(later to become ICL) aimed at obtaining their assistance and
suppor~ began in 1966. An application for a research grant was
submitted to the Science Research Council in mid-1961, and a
sum of £630 446 spread over 5 years became available in
January 1968. In 1968 an outline proposal for the system was
presented at the IFIP 68 conference [2]. The feasibility of
constructing a big computer system for the amount of the grant
relied upon the availability of production facilities, at
works cost price, at the nearby ICT West Gorton Works. Even
so, the finance was a limiting factor, and it was accepted
that the hardware produced would only be a small version of
the potentially large system that was to be designed.

The level of staffing may be of some interest. In 1968 a
group of 20 people was invol ved in the design, made up as
follows

11 Department of Computer Science st.aff
5 Seconded ICT staff
4 SRC Supported staff

The peak level of staffing was in 1911 when the numbers,
including research students, rose to 60. This fell during the
commissioning period to 40. In the evaluation stage, from
1913, only 25 people were involved.

Motivation for the project was twofold. First there was the
desire to continue the tradition of designing and building

1

advanced systems, pioneering ideas which could be exploited by
the computer industry. In addition there was a requirement for
a system to support the research school of the Department of
Computer Science. Significant expansion of this research
school was planned beginning with the first year of the
Computer Science graduates in 1968. Experience had shown that
research into hardware/system software could not be carried
out on a computing service machine. It is excluded by both the
nature of the work and by the excessive computing requirements
of the simulation studies, and the automation of hardware and
software design which dominate the research.

The design objectives are best covered by the following
quotations from the grant application to the Science Research
Council dated May 1967. It was felt that a computer should be
provided 'off the shelf' to initiate the project.

'The computer required is an ICT 1905E specially fitted
with a 750 ns store .•• The 1905E will be transformed into
a multi (initially 2)" computer system by the addition of a
completely new high-performance computer with a target
throughput of 20 times that of Atlas It will be
constructed by ICT (their agreement has been obtained) and
will be charged at works cost price ... The 1905E, with
the proposed modifications in view, will provide a vehicle
which permits an immediate start on software developments
aimed at the full system programs of the multi-computer
system. The system programs will be written in a modular
way to facilitate changes and extensions when these are
required as the hardware develops.'

Thus the emphasis was on a multi-computer system containing
at least one new high-performance machine having a target
throughput 20 times that of Atlas.

'This factor will be achieved as follows

(1) Integrated circuits and interconnection techniques
will give a basic computing speed of seven times
Atlas.

(2) A 250 ns core store will be used, this is eight
times the speed of the Atlas store.

(3) The design will include

Fast operand registers
Register to register arithmetic
Multiple arithmetic units

2

Items (1) to (3) will give a factor of' about
ten, indeed the time for the inner loop of a scalar
product is expected to be 1 ~s as compared with 12
~s on Atlas.

(4) An instruction set will be provided which will
permit the generation of more efficient object code
by the compilers. Particular attention will be
given to the techniques for computing the addresses
of array elements. Array bound checking will be
provided as a hardware feature.

(5) The efficiency of the Atlas supervisor is
approximately 60%. The provision of special
hardware and the information obtained from a
detailed study of the Atlas system over the past
two years will permit this efficiency to be
significantly increased.

Items (4) and (5) will give at least a further
factor of two.'

Clearly, performance was to be measured in terms of system
throughput rather than raw machine speed. Significant factors
were to be sought from optimising the hardware to meet the
software requirements and an available production technology
was to be used. Indeed the chosen technology was that to be
used in the construction of ICT 1906As. However, it was
anticipated that associative storage would play a significant
role in the system design [3] and that suitable integrated
circuit elements would be developed for this purpose.

On the hardware side this book is mainly concerned with the
design and implementation of the MU5 processor. However, the
design was intended for a range of machines and the actual
processor built is one example, which is towards the top of
the range, with a scientific bias. The range was intended to
go from machines of about PDP-11 cost to a mUlti-computer
system incorporating several MU5s with differing biases at the
top of the range. Thus the MU5 built has an 'Exchange' to
which reference is made in several places. This is the
hardware unit which connects the various computers of the
total system. The software description takes into account both
the range and the mUlti-computer aspects.

Al though the design team had set themselves the task of
designing a range of machines which could be marketed, it had
no formal commitment to the computer industry. The ICT
involvement was through the secondment of individual members
of ICT to the University Team. Nevertheless, it could hardly

3

be fortuitous that the design of the ICL 2900 is so similar to
MU5 that in 1969 the possibility of MU5 being marketed as an
early member of the 2900 range was seriously considered. After
a three-month 'convergence' exercise in early 1970, when the
designs were drawn even closer together, the idea was
abandoned because of ICL' s fear that the cost of maintaining
compatibility would outweigh any advantage of early
availability. During this period some changes were made to the
detailed design of MU5 in the name of compromise, not all of
which have been beneficial. Although there has been no attempt
to maintain compatibility since that time the MU5 operating
system and compilers can be transferred to 2900 with ease. The
converse is not true.

Software plans for the project were geared as much to the
MU5~multi-computer system and the range concept as to the MU5
processor.

'The initial operating system will be for a single
computer system but it will be extended to accommodate
additional computers whose structures and order codes are
different from those of the 1905E. It will be modular and
easily changed in order to accommodate future hardware and
software developments. The detailed design of the
operating system has not been completed. However, it will
have the following features

(1) Some form of file storage and on-line access

(2) Job queueing and scheduling for base load jobs

(3) Priority routes through the system for urgent jobs

(4) The basic supervisor will be kept to a minimum and
most of the operating system facilities will run as
non-privileged programs.'

Compilers were to be produced using ideas developed from
the Atlas Compiler Compiler. The emphasis was to be on
efficiency, compactness and machine independence.

These initial objectives remained as the project developed
and the reader will judge the extent to which they have been
achieved.

4

2 The Architecture of the
MUS Processor

The design of the MU5 processor was approached through its
order code, this being the natural interface between software
requirements and hardware organisation. Full interplay between
the two aspects was considered vital throughout the design.
Efficient processing of high-level language programs was the
prime target. In 'number crunching' applications, this meant a
fast execution rate for the high-level language programs.
However, the system envisaged would be interactive, and to
combat the system overheads this entails, it was considered
important to produce small compilers and compiled programs.
Thus, an order code was sought which satisfied the following
conditions

(1) Generation of efficient code by compilers must be easy

(2) Programs must be compact

(3) The instruction set must allow a pipeline organi·sation
of the CPU leading to a fast execution rate·

(4) Information on the nature of operands (scalar or array
element, for example) should be available to allow
optimal buffering of operands.

In this chapter the order code of MU5 is examined from the
point of view of its use and implementation. However, a large
'part of the order code of such a highly structured system is
concerned with address generation, and before discussing this
it is appropriate to establish the policy relating to address
validation, the mechanism which protects one user from
another.

2.1 INTERPRETATION OF ADDRESSES

The most far reaching decision in the design of an order code
is whether the addresses it generates are real or virtual. If
real addresses are generated they will be used directly to
access the store. Therefore the address must have been
previously validated, as it was being computed, say. The
-alternative offered by the IBM system, of tagging store blocks

5

to indicate ownership, was not considered flexible enough for
a multi-access system in which the core allocation would be
constantly changing. In effect, the real address based systems
considered require that all address words contain an origin
and a limit, and hence relate to bounded contiguous sections
of store. Also the CPU must know which words in the store are
address words. It then checks that each operand address is
calculated from an address word, and that it falls within the
specified limits. Since all address words are known to the
system, out-of-use information can be moved out of main store
until next required, provided the address words involved are
appropriately marked and updated. A classic example of this
type of machine is the Basic Language Machine [4], although it
has never progressed beyond the prototype stage. Also the
Burroughs machines since the 5000 series have had a similar
type of controlled address formation, and currently the
'capability machines' promote a similar idea. Alternatively,
if the order code generates virtual addresses, then special
hardware is needed between the CPU and the store to validate
the address and translate it into a real address. Sometimes
the address will relate to information not in the main store,
and the hardware will detect this and initiate its transfer,
usually with software assistance. This special hardware may be
a single datum and limit as for example in ICL's 1900, or
multiple datum and limit as for example in the PDP-11, or a
paging system as in Atlas.

The real address based systems have several attractions.
Perhaps foremost from the performance point of view is the
fact that the address generated by the CPU can be presented
directly to the store, thus avoiding the time delay inherent
in paging systems. Also the units of information delimited by
address words, which would be the units the system might
automatically move from one level of store to another, would
be complete logical entities (procedures or arrays, for
example). It can be argued that this is more efficient than
moving fixed-size pages which represent arbitrary fragments of
a program and its workspace [5]. The other side of this
argument is that the problems of allocating and retrieving
store in variable sized areas lead to some store not being
utilised, for example because the empty areas may be too
small. This has to be offset against the paging problem in
which, even when all pages are in use, some will be partially
occupied by unwanted information. It is by no means clear
where the balance lies.

Two additional considerations led to the choice of virtual
addressing for MU5. First it was felt that the most
significant task of the operating system was store management,
the dominant part of which is concerned with the automatic

6

movement of information between levels of store. Such movement
requires that the real addresses of the information moved be
changed. If these real addresses are allowed to scatter
through each program's private store, this task becomes
complex. For example, the address words that require changing
because of movement of information between levels of store are
themselves subject to moving. Also, the same address might
appear in several places. It was felt to be a cleaner solution
to hold all information relating to the way a program maps
into real store in a separate data structure outside the
program and entirely under operating system control.

The second consideration was that a program should not be
constrained in the way it might build a data structure within
its own workspace by the mechanism for address validation.
Close examination of, for example, the system proposed by
Iliffe [4] will reveal the awkward constraint that arrays must
be homogeneous.

Once the decision to base the system on virtual addressing
had been taken, it was not difficult to reject the single
da tum and limit approach. Al though such a sys tem lead s to an
extremely simple organisation within the operating system, the
entire program must be placed in a contiguous area of store
each time the CPU is assigned to it. In contrast, one of the
main attractions of Atlas had been the large virtual address
space available to every user job, which could be used
sparsely without significant penalty. For example, the
compilers and operating system used the top half of the
virtual store, user code was compiled into t~e bottom quarter,
and the next quarter was used for the stack work space. Other
smaller entities such as input and output buffers were fitted
into the gaps in between. From this informal partitioning of
the store on Atlas grew the idea of formalising the division
into a segmented virtual store, which is also exploited in the
Multics system [6].

In MU5 the final decision was to use a large virtual
address, and to subdivide it into a segment number and a
displacement within the segment. It was anticipated that large
systems would be paged, but . that small ones might employ
multiple datum and limit registers (one per segment).

2.2 THE ORDER CODE

2.2.1 Choice of Instruction Format

The first step in choosing an instruction format is to decide
how many operand addresses an instruction will have. Obviously
this is influenced by the size of an operand address. If the

7

instruction contains only register addresses, so that main
store is addressed indirectly through registers, several
addresses can be accommodated. If full store addresses are to
be used, then one is usually the limit, although some
machines, for example the PDP-11 , have variable sized
instructions and allow up to two full store addresses to occur
in the long instructions.

It was decided from the start of the MU5 design that in
o.rder to comply with condition (1) above, there would be an
address form corresponding to each form of operand permitted
by high-level languages. Furthermore it was felt that to have
more than one such operand per instruction would conflict with
conditions (2) and (3). Only one facet of high-level language
programs caused concern on account of this decision. This was
the known high rate of usage of simple instructions such as

I := I + 1

Clearly, three instructions would be required to implement
this in a one address code. However, the high execution rate
expected of these simple orders and the possibility of them
overlapping with adjacent orders was thought to compensate.
For other reasons the possibility of using addressable fast
registers for frequently used operands or addresses was
rejected in favour of hardware optimisation using associative
memory. First there was the desire to simplify the software by
eliminating the need for optimising compilers. Equally
important though was the desire to have fast procedure entry
and exit, unfettered by the need to dump and restore
registers. Thus through general design considerations the
choice of format was restricted to the zero address (stacking
machine) type or some form of one address code.

From a compiler point of view the stacking machine is
attractive. The simple algorithm for translating from Algol to
Reverse Polish (and hence to stacking machine code) which
forms the basis of the 'Burroughs Compilogram' is a convincing
demonstration of this. Its simplicity stems from the fact that
operands carry directly over to Reverse Polish without any
relati ve change of position and a simple push down stack is
all that is required to sort the operators into correct
sequence. Consider for example

(A + B) • «C + D) / (E + F»

which in Reverse Polish becomes

AB + CD + EF + / •

8

There were two arguments which steered the MU5 design away
from the stacking machine form. The first is related to
efficiency of hand-coding, which is something of a paradox
since MU5 is a high-level language machine. However,
observations on Atlas indicated that while high-level language
programs were running, the CPU typically spent half its time
executing in a small set of library procedures concerned with
1/0 handling, mathematical functions, etc. This basic library
would be hand-coded. Thus from the performance point of view,
this small amount of hand-coded software was just as important
as all the compiler generated code. Unfortunately most of the
hand-coded sequences worked out worse in stacking machine code
than in single address code. This was because the main
calculation, the address calculations and the control
counting, tended to interfere with each other on the stack.
The problems are illustrated by the following example of a
simple move sequence, although either machine could have a
single function for this purpose.

Single Address Code Stacking Machine Code

LOAD MODIFIER
X: ACC = SOURCE[MODIFIER]
ACC => DEST[MODIFIER]

STACK MODIFIER
X: DUPLICATE
DUPLICATE

INC AND TEST MODIFIER STACK SOURCE[TOP OF STACK]
swap IF NOT END BRANCH X
STORE DEST[TOP OF STACK]
STACK 1
SUBTRACT
IF NOT END BRANCH X

The point being made is that a single stack is under
pressure when it has to support all the (unctions involved in
counting, address calculation and main calculation. In any
given context, detailed changes to the specification of ~.

instructions would ease the problem, but only at the expense
of it recurring in a different context. A machine with several
stacks would have worked better, for example

a control stack
an index stack
an address stack
the main stack

This sort of arrangement would also fit the pipeline
requirement better since the stacks could be distributed along
the pipeline.

fhe second argument against the stacking machine would
apply equally to a multi-stack organisation. Consider the

9

example

A := B + C

For the two types of instruction format under consideration it
would be coded as follows

ACC = B
ACC + C

ACC => A

STACK B
STACK C
ADD
STORE A

If the operands normally come from main store the execution
times of each of the above sequences would be about the same,
since they will be controlled by the access times for A, Band
C. However, if an operand buffering scheme is utilised, giving
a high hit-rate (say> 90%) for operands such as A, Band C,
the access time to the stack becomes important. On MU5 the
stack and the operand buffers would be the same speed, and the
above example would have caused six stack accesses in addition
to the three operand accesses. Some, but not all, of the
acc~sses could have been overlapped.

o#A

The instruction format eventually chosen for MU5
represented a merger of single address and stacking machine
concepts. All the arithmetic and logical functions take one
operand from an accumulator and the other operand is specified
in the instruction address. Thus a sequence such as

ACC = B
ACC + C
ACC => A

typifies the style of simple calculations. However, there is a
stack, and a variant of the load order (*=) causes the
accumulator to be stacked before being re-Ioaded. Also a
special address form exists (STACK) which unstacks the last
stacked quantity. Thus, the above example could be written in
MU5 code in a form approximating to Reverse Polish, as
follows

ACC = B
ACC *= C
ACC + STACK
ACC => A

A more realistic use of the stack is in conjunction with
parenthesised subexpressions. For example, the expression

(A + B) * «C + D) / (E + F»

10

would compile into

ACC = A
ACC + B
ACC *= C
ACe + D
ACC *= E
ACC + F
ACC I: STACK
ACC * STACK

It is interesting to observe that if the operand to the left
of an operator is stacked, it _ subsequently appears as the
right hand side of a machine function. Therefore, for the
non-commutative operations '-' and 'I', the reverse operations
denoted '-:' and '/:' have to be provided. In the notation
used throughout this book

ACC I OPERAND means
ACC I: OPERAND means

etc.

ACC = ACC / OPERAND
ACC = OPERAND I ACC

Only one stack is provided in MU5, but there are five
'accumulators' or 'computational registers'. Each may stack
its contents, and hence the effect is the same as having five
stacks, provided the order of unstacking corresponds to the
way the stacked quantities are interleaved. This condition is
usually met. If it were not, the conventional stacking machine
would not be acceptable. The significant difference in MU5 is
that the top words of each of the five stacks are
simultaneously available in the computation~l registers. Each
of the registers serves a dedicated function and they are
distributed along the pipeline in close proximity to the
arithmetic unit associated with that function. These
arithmetic units are

The B-unit - used for index arithmetic and control qounting

The D-unit - used for address modification and bound checking

The A-unit - the main arithmetic unit providing fixed-point,
floating-point and decimal facilities

The registers are

B
DR
XDR
X
A(ACC)

- a 32-bit modifier register
- a 64-bit register for vector 'descriptors'
- similar to DR and used by the string move orders
- a 32-bit fixed-point register in the A-unit
- a 64-bit register in the A-unit.

11

The existence of two registers X and A in the main
arithmetic unit is largely historical, although there is some
advantage in being able to perform control calculations in X
without disturbing a partial result in A. Originally the
system had two registers in the B-unit. These were notionally
thought of as a modifier (BM) and an integer accumulator (BA)
to be used for control calculations. However, the order code
was symmetrical allowing both to be used as modifiers, and
this could be usefully exploited in some of the hand-coded
library procedures. During the 'convergence' exercise with
ICL, the BA register was forfeited and replaced by the X
register in the A-unit. However, the success of the pipeline
approach described later is dependent upon the control and
address calculations proceeding independently of the queue of
orders waiting for the A-unit. Thus as well as being used as a
modifier, B may also be used for simple integer calculations
such as

I := I - J + 2

The X register is only used when the operands of the
calcula tion require B to be used as a modifier, or when the
operation is not provided by the B-unit (divide, for example).

The instruction format provided for operating on these
registers is

CR
3

F
4

ADDRESS
9

One combination of the CR (computation register) bits
distinguishes a second format for the 'Organisational
Instructions' concerned wi th control branching and
manipulation of 'addressing' registers. The remal.nl.ng seven
combinations qualify the function (F) as follows

1 fixed-point operations on B
2 fixed-point operations on X
3 floating-point operations on A
4 decimal operation on A
5 unsigned fixed-point operations on A

(used for -multi-length working)
6 manipulation of DR and XDR
7 string processing functions (mainly for Cobol)

Even with these seven groups of functions, the existence of
only four function (F) bits is restrictive, but the operators
necessary for high-level language translation can be
accommodated. It is the orders more commonly associated with
hand-coding, such as shift operators, that have to be
curtailed. This was not felt to be a serious omission because

12

such orders are used mainly for the selection of packed
operands which in MU5 is carried out automatically by the
D-unit. Groups 6 and 7 are discussed later.

There is close similarity in the functions provided in
groups 1-5, the following being typical

= load (32-bit operand)
=' load (64-bit operand)
*= stack and load
=> store
+ add

subtract
* multiply
/ divide
-= logical non-equivalence (exclusive or)
V logical or (inclusive or)
<- shift
& logical and
-: reverse subtract
COMP compare
CINC compare and increment
/: reverse divide

In the case of organisational instructions it was felt that
more functions were needed, so the address field was shortened
to give the format

CR = 0
3

F'
6

ADDRESS
7

These F' functions are summarised in Appendix 1. It can be
seen that they fall into four main groups, namely

Control transfers including procedure entry and exit
addressing register manipulation
conditional control transfers
boolean

Some of the procedure entry functions (XCO, XC1, ••. , XC6)
provide entry to seven groups of Operating System procedures.
Their action is to stack the operand, which defines the
Operating System procedure required; then after setting the
executive mode bit (section 2.3.1) they force control to fixed
addresses in the Operating System. This controlled entry to
Operating System is vital in maintaining the security of the
system. ,Another form of entry to the Operating System occurs
as a result of an 'interrupt' (section 2.3.1).

The addressing register manipulating functions are

13

self-explanatory. They are used mainly at procedure entry and
exit time to achieve the effeats described in section 2.2.2.

Conditional control transfers usually only branch a short
distance. Therefore to help keep instruction sizes down their
operands are interpreted as relative addresses to be added
into the Control Register. As a further minor convenience to
the software writers, provision is made for the complementary
form of each standard condition to be specified (both ,>, and
'~' are provided, for example). The shortage of functions
precludes the possibility of the tests applying to the
registers. Instead, they apply to condition bits which are set
by the compare (COMP) and compare and increment (CINC)
functions.

There are two kinds of boolean function included in the
order code to facilitate the implementation of boolean
statements in Algol-like languages. Both allow the standard
logical operations to be applied to the Boolean Register BN
and a boolean operand. In one set the least significant bit of
the instruction operand is taken as the boolean operand, while
in the other the operand part of the instruction is used to
extend the function, and it defines the operation. The
function itself specifies a conditional test to be applied to
the condition bits. The result of this test is taken as the
boolean operand.

The use of these boolean functions is demonstrated by the
translation of the Algol conditional statement

IF (a = b OR x > y) AND t THEN 'ST1' ELSE 'ST2';

where a and b are type INTEGER, x and yare type REAL and t is
type BOOLEAN. With only straightforward local optimisation it
is

B = a
B COMP b
BN = IF=
ACC = x
ACC COMP Y
BN V IF >
BN & t
BN -= 1
IF BN, -> L1
'ST1'
-> L2
L 1:
'ST2'
L2:

14

Unfortunately it was realised too late that the function
'IF-BN' should have been provided, hence BN sometimes has to
be inverted before the test as in the above example. It could
be eliminated if the compilers were clever enough to compile
code to compute the 'not' of the condition.

Until the mechanics of address generation have been
described, the example below may not be completely understood.
It is given at this point to emphasise the close
correspondence between the high-level language form of
arithmetic assignments and the machine code. Each line except
the JUMP order would be a 16-bit instruction if the example
was taken from an average Algol program.

W := Z[I - 1] * F + C(P,Q) / Y[J * 3 + K];

becomes

B = I
B - 1
ACC = Z[B]
ACC * F
STACK ACC
STACK LINK L1
STACK P
STACK Q
JUMP C

L1: B = J
B * 3
B + K
ACC / Y[B]
ACC + STACK
ACC => W

The total size is 32 bytes and this includes automatic
bound checks on Z and Y. The reader is invited to compare this
with the size of the corresponding sequence on other machines.

2.2.2 Address Generation

The aims of having an address form for each kind of high-level
language operand, and having compact instructions conflict. It
was therefore decided to allow different sizes of address and
to choose an encoding which represented the most common
operand forms in the shortest addresses. It was also decided
to have dedicated addressing registers whose functions relate
to the layout of the data space of high-level languages,
rather than general purpose modifiers. This helps to satisfy
condi tions (3) and (4) as well as keeping the address size
down.

15

An examination of the operands in high-level languages
indicates that provision should be made for

SCALARS
ELEMENTS FROM ARRAYS OR OTHER STRUCTURE~
STRINGS
LITERALS
FUNCTIONS (PROCEDURE CALLS)

Also the procedure organisation of languages allows operands
to be

LOCAL (to the current procedure)
NON-LOCAL (or COMMON)
GLOBAL
STACKED

Clearly the scalar variables have names and provision is
made in the order code to accommodate these names together
with an indication of whether they are local or non-local,
etc. This identification of names becomes very important when
considering the hardware design of the processor. Studies of
programs run on Atlas indicated that over a large range of
programs, 80% of all operand accesses were to the named
operands, and that only a small number of these named operands
was in frequent use at anyone time. Thus a system which kept
these operands in fast registers would be able to achieve high
performance, but for the reasons already discussed, the use of
addressable fast registers was rejected. The alternative
solution adopted in MU5 involves the use of an associatively
addressed 'Name Store' which forms part of a 'one-level store'
with the main store of the processor, and in which the
allocation of named operands to registers is performed solely
by the hardware.

It has already been mentioned that the design of MU5
incorporates a special functional unit (the D-~nit) for
providing access to arrays, strings and other structures. The
route into these structures is via 'descriptors' which are
themsel ves accessed like scalars. Thus the operand accesses
for the named operands consist of a 'primary' access for an
operand which could be a SCALAR or an ARRAY DESCRIPTOR, and in
the latter case the operand is passed to the D-unit for it to
make a 'secondary' access. This detachment of secondary
address from the instruction fulfils two purposes. Not only is
it the means whereby instructions are kept short, but it also
facilitates the implementation of dynamic allocation of space
to arrays and the handling of array parameters in procedures.
For convenience at compile time, prov1s1on is made for
Ii terals of up to 64 bits to be coded explicitly into the

16

instruction. Also, to provide the generality required for the
Algol-like languages, a mechanism for procedure calling is
integrated into the stack concept.

Before considering the address generation in detail it is
necessary to describe the intended store layout and the
function of the dedicated addressing registers. These are

NB a pointer to the scalars and descriptors of the
current procedure

XNB a pointer used to access any non-local or common
scalars and descriptors

SF a pointer to the stack
o this is a pseudo-register always giving zero

for access to global scalars and descriptors

The overall storage organisation provides each program with
a segmented virtual store. One segment (or more in the case of
languages which allow parallelism) is used for the named
operands and the stack (the scalars and descriptors), while
the rest are used for code and the secondary operands
(elements of arrays and other structures). The segment holding
the named operands is called the Name Segment or Procedure
Stack. Its layout is given below.

! DISPLAY ! GLOBALS ! 1st PROe ! CURRENT PROC
T T
NB SF

There is a 'level of stack' in the Name Segment associated
with each activated procedure, which is released when the
procedure ends. Each level starts with a 'Link' to be used to
exit from the procedure. The parameters and the local named
variables of the procedure follow. Thus on entry to a new
procedure, the Link (containing the return control address and
NB) is stacked, next the parameters are stacked, and finally
the procedure is entered. Inside the procedure NB is set to
the address of the Link, and SF is advanced over the space
required by the local names. SF may be further incremented, as
operands .are stacked, by means of the *= function and
decremented, as they are unstacked, by means of the special
operand STACK. In the case of languages which allow non-local
access to the names of other procedures, an entry is also made
in the Display.

The Display has one entry for each textual level in the
program. Each time a procedure is called the NB value for the
procedure is recorded in the entry corresponding to its
textual level. Any non-local references to the variables of
the procedure from nested subblocks are implemented by loading

17

XNB from the Display and then accessing relative to XNB. In
recursive situations it is necessary to stack the old Display
value on procedure entry, so that it may be re-set on exit.
This mechanism is obviously geared to the dynamic storage
allocation of Algol-like languages. If the allocation scheme
is static, as in Fortran, the Display does not exist and XNB
is used to address 'common' variables. The global variables at
the beginning of the stack segment are conceptually 'own'
yariables. They are perm"anently allocated, and hence can
remember information between different calls of a procedure.
Exit from a procedure requires that the Display be re-set if
it was stacked on entry, then SF is re-set to NB, and NB and
control are re-set by unstacking the Link.

Thus the standard procedure call is a minimum of two
instructions

STACK LINK
JUMP
L 1 :

L1
procedure name

If the procedure has parameters, additional instructions are
needed between these two to stack each parameter. Inside a
procedure which has no nested procedures making non-local
access to its names there will be three more instructions
concerned with the 'red tape' of procedure calling.

NB = SF - space accepted by LINK and PARAMETERS
SF = SF + space required for local names

EXIT

The more general case involves manipulation of the Display as
already described.

For reasons which will become clear after the buffering
strategies are described, the Name Segment is not used for
arrays. Therefore the software must run its own 'secondary
stack' for dynamically declared arrays.

A point of detail to which reference is made later is that
NB and SF are 16-bit registers. They always address into the
Name Segment whose number is specified by a separate register
(SN) usually zero and rarely changed. XNB is a 32-bit register
containing segment and position within segment. Thus XNB based
names can be in any segment. Full 32-bi t addresses are also
used in the Display, hence the Cactus Stack of Algol 68 can be
implemented.

18

2.2.3 Address Encoding

The machine is designed to recognise that high-level language
operands are referenced by name (or are constants). Hence the
instruction addresses corr-espond to names (or literal
constants).

In the 16-bit instruction format the encoding chosen is

CR(3) F(4) N(6)

or in the case of organisational functions

CR=O F' (6) k' (1) N(6)

The N field corresponds to the operand name; thus the first
declared name has N = 0 the second N = 1, etc. Of the eight
combinations
name, one is
the rest are

k = 0
k = 1
k = 2

k = 3

k = 4

k = 5
k = 6

of k, which notionally specifies the kind of
reserved to distinguish an extended address, and

use N as a 6-bit signed literal
use N as a register name (B, DR, etc.)
use N as the name of a 32-bit local scalar
i.e. operand is 32-bit store line (NB+N)

use N as the name of a 64-bit local scalar
i.e. operand is 64-bit store line (NB+2N)

use N as above but pass operand to the D-unit
for a modified secondary access (name[B])

spare
as k = 4 but secondary access is unmodified
i.e. name[O]

Obviously only two of the above forms can be associated with
k' and these are

k' = 0
k.' = 1

use N as a signed literal
extended address

There are three other requirements not met by the above
which have to be provided by the extended address of longer
instructions. First, there are the names relative to the other
addressing registers, XNB, 0, SF (the non-locals, the globals
and the stacked operands, respectively). Second, there are the
local variables in procedures where more names are declared
than can be encoded in the 6-bi tN. Third, there are the
literals bigger than six bits. Thus both the k field and the N
field have to be extended, and the general form of extended
instruction has the 32-bit format

19

CR(3)
N'(16)

F(4) K(6)

From the detailed encoding of K (giv:en in Appendix 1) it
can be seen that in some cases the N' is omitted and the
instruction again reduces to 16 bits. Also, in the case of
Ii terals, more 16-bi t pieces may be added up to a maximum
instruction size of 80 bits.

2.2.4 Secondary Operands

In order to access data structure elements, descriptors are
passed to the D-uni t, together with an indication of whether
or not modification is required. The unmodified descriptor is
retained in the DR register and can be used again. If
modification is specified the modifier is taken from B.

Two main types of descriptor are provided. They are

String Descriptors

Vector Descriptors

Ts
8

Tv
8

LENGTH
24

BOUND
24

ORIGIN
32

ORIGIN
32

String descriptors describe strings of bytes. If the string
is short enough it can be accessed as a normal operand. Short
strings are always right justified and filled out to the
register size with zeros. A more usual use of the string
descriptor is in conjunction with the string processing
functions.

In the vector descriptors the type bits (Tv) control the
modification, and give the size of element in the array. This
may be 1, 2, 4, 8, 16, 32, 64 or 128 bits, but the present MU5
hardware does not implement the sizes 2 and 128. As with
strings, short operands are right justified and zero filled.
Normally the modifier is checked against the bound (and that
it is 2. 0), and an interrupt is caused if the check fails.
Before addition of the modifier and or1g1n occurs, the
modifier is scaled. This means that the displacement caused by
modification is in units of element size. Special bits within
the type allow both the bound check and the scaling to be
inhibited.

The introduction of arithmetic type into descriptors was
considered, but its extension to the named operands, which
could not be dynamically typed except at the individual word
level, seemed less attractive. Since the benefits were not
tangible in a machine intended for high-speed execution of the

20

standard programming languages, the idea
few occasions where the operand type is
time, a software escape is provided
descriptor type which forces a procedure
used. The main use of this mechanism
implementation of Algol 'thunks'.

was dropped. For the
not known at compile

through a special
call whenever it is
though, is in the

It has been a constant source of regret that only one bound
could be fi t ted in to the final descriptor format. Until the
'convergence' exercise the design was based on the following
descriptor format containing two bounds

LOWER
BOUND

16

UPPER
BOUND

16

TYPE/ORIGIN

32

This had the additional advantage that programs which
forfeited the bound checking could use 32-bit descriptors. The
main argument in favour of the alternative format was based on
the need for·a very large virtual address. In the original MU5
descriptor the address size changed with element size, being
24 bits for 32-bit elements, 25 bits for 16-bit elements and
so on. Experience with the MU5 system to date indicates that
the above address, giving 256 segments each of 1/4 Mbyte size,
would have been more than adequate. Of course the 16-bit
bounds were marginally restrictive and the hardware bound
check had to be forfeited in some very large programs. To
compensate for the loss of double bound checking, facilities
are provided for the XDR register to point to a 'dope vector'
while the address of an element in a multi-dimensional array
is buil t up in DR. This dope vector contains triples, which
are the two bounds and the multiplier (or stride), for each
dimension. Each subscript is computed.. in B and a special
function is then used which checks against both bounds and
computes the displacement before adding it into DR.

Aqother deficiency of the present format is that string
descriptors apply only to byte strings. In an earlier design
strings could be of any size of element from single bits up to
words. This, combined with the ability to manipulate complete
strings (provided they were not too big) in the registers, was
a powerful means of handling the 'structures' of more modern
languages such as Algol 68. Perhaps too much emphasis was
placed on Cobol and Fortran, and the growing importance of the
Algol 68 type of data structures in, for example, system
programming languages not fully appreciated. Even so, the
descriptor system, which is common to both MU5 and ICL 2900,
offers more facilities in support of Algol 68 than most
machines.

21

2.2.5 Array Operations

The instructions and operand forms available for vector
operations in a conventional language are now examined in more
detail. Data structures, and fields wi thin such structures,
are described using vector descriptors of the form

Tv BOUND ORIGIN

The type bits (Tv) include the size of each element of the
vector, which may be between 1 and 64 bits. The Bound Field
contains the number of elements in the vector, while the
Origin Field comprises the address of the start of the vector.
The instructions required to access element i of a vector z
are

B = i

ACC = z[B]

Load the B (modifier) register
with the subscript i

accumulator = the Bth element of z

Th.e instruction ACC = z[B] first loads the descriptor z
into the DR register. Then B is scaled according to element
size, added to the origin of DR and the required element is
accessed. Simultaneously, a check is made that B is in the
range 0 ~ B < Bound, and an interrupt occurs if this check
fails. This coding, and that in subsequent examples, assumes
that the lower bound of the array is zero. If this is not the
case, an additional instruction is needed to subtract the
lower bound from B. On conventional machines, even omitting
the bound check, several orders are used to access a dynamic
array element. This is the principal reason why many compilers
attempt to optimise subscript calculations.

A simple example of the use of vector accessing orders is
the scalar product loop

which becomes

FOR i .- 1 STEP 1 UNTIL n DO
sum := sum + x[i] * y[i];

B = 1
LOOP: B => i

ACC = x[B]
ACC * y[B]
ACC + sum
ACC => sum
B CINC n
IF /=, ->LOOP

22

This assumes that the compiler optimises out three unnecessary
B : i orders but that it does not optimise to the extent of
moving the B :> order to outside the loop. Hence the loop
comprises seven 16-bit instructions. The performance of this
loop is discussed in Chapter 11.

The group 6 functions mentioned above are concerned with
manipulating descriptors and the registers of the D-unit. Some
of these functions, namely DR:, SUB1, SUB2 appear in the
examples below. A full list is contained in Appendix 1.

A descriptor z may describe a vector of descriptors so that
the sequence

B : i
DR : z[B]
B : j
ACC : DR[B]

could be used to access an element z[i,j] of a two dimensional
array. Use of a multiplication technique with the subscript
arithmetic taking place in B has the advantage that the
subscript calculation is independent of operations queued for
the main accumulator. It does, however, require a fast
multiply function in the B-unit. In this case z[i,j] becomes

B : i
B * n
B + j
ACC : z[B]

In this case only the final access, not individual subscripts,
is bound checked.

A further, more elaborate, hardware facility is provided to
deal with the full generality of array accessing in Algol.
This is convenient for arrays with dynamic upper and lower
bounds, or cross-sections of arrays. It uses a dope vector
containing three 32-bit elements for each dimension, namely, a
lower bound which is subtracted from the subscript, an upper
bound against which the subscript value is checked, and a
stride by which the subscript is multiplied. The hardware
instructions SUB 1 and SUB2 use this dope vector for such
subscript calculations. Thus z[i, j] with full bound checking
becomes

B : i
SUB1 z1
B : j
SUB2

process first subscript using dope vector z1

process next subscript

23

B = DO
ACC = z[B]

move composite subscript to B
access element

The SUB 1 order causes the XDR register to be loaded with
the descriptor of the dope vector and, after bound checking B,
it sets the origin of the DR register (DO) to the product of
(B - lower bound) and the stride of the first triple. Each
subsequent application of the SUB2 order steps DO on to the
next triple, and after bound checking the value in B, it adds
the product (B - lower bound) * (stride) into DO.

2.2.6 String and Vector Operations

Special purpose orders are provided for the string processing
functions which occur in Cobol and PL/1. These fall into two
classes string-to-string and byte-to-string. The
string-to-string orders operate on two fields, or strings,
each described by a descriptor. The descriptor of the
destination string is held in the DR register while that for
the source string is held in a second descriptor register,
XDR. As the operation of the instruction proceeds, the
descriptors in DR and XDR move along the strings. No visible
register is used by the strings themselves. The operand of the
order is an 8-bit mask, that determines which bits within each
byte are to be operated on, together with an 8-bit filler and
in some cases four 'function' digits used as described below.
Provision is made in the hardware for these orders to be
interrupted (section 7.4.3). Examples of the orders are

SMVB Move one byte from the source to the destination
string, or use the filler byte if the source is
exhausted.

SMVF Move the whole source string to the destination
string followed by filler bytes if the source is
shorter than the destination.

SCMP Compare the source and destination strings byte by
byte ending when inequality is found, or the
destination string is exhausted.

SLGC Logically combine the source and destination strings
into the destination. The form of combination
(logical OR, for example) is selected' by the
'function' bits in the operand.

Consider the use of .these orders in the implementation of
the MOVE verb in Cobol. Suppose that two fields C and Dare
specified

24

02
02

C
D

PIC
PIC

In MU5 descriptors would be created at compile time for C and
D, each describing a 7 -byte field starting at the required
byte address. The Cobol sentence

MOVE C TO D

would then become in MU5 instructions

XDR = C
DR = D
SMVF

If D is specified as

02

set source descriptor for C
set destination descriptor for D
move the field described by XDR to that
described by DR

D PIC X(9)

then the final two bytes of D must be spaces. The filler
option of SMVF allows this to be carried out automatically.
The sequence becomes

XDR = C
DR = D
SMVF 'space'

If the source field is too long, then the SMVF order
terminates when the destination field is full, and an optional
interrupt enables this condition to be monitored if required.

Extension of the above technique to vector operations of a
mathematical form was considered. For example a vector add of
the form

would become

F:= F + E

DR = F
XDR = E
VECTOR ADD

However, in the standard high-level languages for which MU5
was intended, operations of this type would be programmed out
into loops. Thus the idea was dropped in favour of a pipeline
approach which would lead to execution rates for such loops
approaching the peak rate at which the store could deliver the
vector operands.

2S

2.3 ORGANISATION OF THE HARDWARE

The design of the hardware of the MU5 Processor initially
centred around the Name Store and the descriptor mechanism.
Simulation studies of the Name Store indicated that a hit-rate
of around 99% could be obtained with 32 words of store. The
special associative circuits designed for this store were
expected to be capable of operation in 70 (later to become 40)
ns, but an additional 70 ns was necessary to read the value
from the conventional field. However, a fixed-point arithmetic
unit could be constructed to perform simple functions such as
addi tion and subtraction in under 50 ns, using the MECL 2.5
technology from which MU5 was to be built, and clearly the two
activities in the Name Store would have to be overlapped if
the store speed was I to approach the arithmetic speed.
Furthermore, the additibn, of name to base register, required
a comparable amount of time, and so the design was based on an
instruction pipeline (with 5 stages) eventually called the
Primary Operand Unit (or PROP). PROP would receive
instructions at its input and supply at its output functions
and primary operands ready for execution or further
interpretation by the descriptor system.

The descriptor system was seen to require two logically
distinct pieces of hardware, one to form addresses (the
Descriptor Addressing Unit) and one to select the operand from
wi thin the corresponding store word (the Descriptor Operand
Processing Unit). These two parts, known individually as Dr
and Dop, formed the D-unit. The A-unit (containing principally
the floating-point execution hardware) clearly had to be
placed after Dop in the overall design of the Processor, since
it would be processing the array elements accessed by the
D-unit. In contrast the B-unit was better placed in parallel
with the Descriptor Addressing Unit, since it was to supply
modifier values, and would, therefore, operate mostly on named
quantities rather than array elements. Thus the final
configura tion of the Processor became that shown in figure
2.1. PROP is supplied with instructions by the Instruction
Buffer Unit (IBU), and the virtual to real address translation
takes place within the Store Access Control Unit (SAC), which
coordinates requests to the Local Store. SAC also developed
into a pipeline structure, to keep pace with the demands of
the other units.

26

-- Data Paths .--. B - unit A - unit

--- Address Paths

I

I nstructi on
.... Primary Operand Unit

Buffer I Name Store Unit
~

I

I I r-l-f- Secondary
I I -------------:- -----,
I Operand Unit

I I
I I Descriptor

....
Operand

Descriptor I

I I Operand I

I I
Addressing Buffer

Processing ~
Unit System I I I -. Unit I

I I '-t I I t -------~-~--- ---------~
I , ~
L_ ... Store Access Control Unit

Local

I Current Page Registers I Store
I--r-- ~

I ,
To/From Exchange

Figure 2.1 The MU5 Processor

A number of consequences flowed from the adoption of this
configuration, ·particularly in relation to the positioning of
the Control Point (the position an instruction must reach
before the Control Register, or Program Counter, is
incremented). On the one hand the Control Point should be as
far along the pipeline as possible so that any interrupts
caused by an instruction can occur before the Control Register
is altered, while on the other hand it should be as early in
the pipeline as possible, since fewer instructions must then
be discarded (and hence replaced) if the wrong sequence of
instructions is proceeding behind a control transfer
instruction. The need to preserve the state of the Processor
at an interrupt is also important, so the fact that
instructions alter registers at different points along the
pipeline has to be considered carefully. In MU5 it was decided
that the Control Point should be placed at the end of PROP,
which itself executes all the organisational orders, and from
which point orders proceeding to the B-unit can be guaranteed
to complete. Furthermore, each instruction reaching the end of
PROP will have obtained its primary operand or given a page
fault interrupt due to its unavailability. Having made the
Control Point decision, there remained two problems

27

B

(1) how to supply instructions to PROP at a high enough
rate, especially after control transfers,

(2) how to deal with page faults arising from secondary
accesses.

The problem of fetching instructions in normal sequence
appeared comparatively straightforward. The design speed of
PROP increased, as experience was gained with the associative
circui ts, to a nominal maximum rate of one operation, or
'beat', in 40 ns. Each beat could require 16 instruction bits
from the IBU, giving a maximum data rate of 400M Bps. The main
store, a 250 ns cycle-time plated-wire system, was to be
constructed of 128-bi t wide stacks, and would therefore be
able to supply, without interleaving, 500M Bps. Interleaving
would improve this rate, so that even allowing for operand
accesses (and the Name Store would intercept most of these),
there would be no problem in supplying instructions at the
required rate. Problems would arise for control transfers,
however. These were expected to occur on average once every
ten orders, and would create long gaps in the instruction
stream because, despite the high data rate, the store access
time was comparatively long. A number of alternative solutions
were considered, and simulation studies were made of the
different possibilities. The solution chosen is based on a
'Jump Trace' mechanism (section 4.1), which attempts to
predict the result of an impending control transfer
instruction. Consideration of measurements taken from Atlas,
and simulation studies of this system, showed that it was
possible to predict correctly the sequence of instructions
following control transfers in about 65% of cases, and that
only eight lines of Jump Trace store would be necessary to
obtain this efficiency.

The problem of page fault interrupts caused by secondary
operand accesses is also tied in with the access time/data
rate problem. Considering this latter problem first, the time
gap between the generation of a secondary operand address, and
the receipt of the corresponding store word, was expected to
be over 600 ns. Since floating-point addition and subtraction
would take only around 100 ns, this figure was unacceptably
high. However, the difference between the access patterns for
named variables and data structure elements precluded the use
of a system corresponding directly to the Name Store for
secondary operands. In effect, a small group of named
variables is generally used repeatedly, while a large group of
data structure elements is generally selected sequentially.
Therefore the' technique adopted was a 'Function Queue'. As
each address is generated by Dr, the corresponding function,
together with control information, is entered into the Queue.

28

A function leaves the Queue when the word containing its
operand is received from store. Since the store accessing
system is itself a form of pipeline, the effective access time
is reduced by a factor corresponding to the number of
posi tions in the Queue. In a synchronous system, no extra
operand buffering would be required, but because the MU5
Processor operates asynchronously, it is essential that as
many buffers as Queue positions be available to receive the
returning store words. Thus an Operand Buffering System (OBS)
became an essential part of the Processor design. This system,
together with the D-uni t, forms the Secondary Operand Unit
(SEOP). Simulation studies of this system showed that by
fetching 128-bit store words containing the required operand,
and retaining these words in associatively addressed buffers,
many operands are thereby automatically pre-fetched, and the
corresponding store requests avoided.

A significant fraction of the access time for secondary
operands is taken up with generating a virtual address and
obtaining either a real address or a page fault interrupt. In
the case where such an interrupt arises, however, the Control
Register will have been incremented on beyond the address of
the corresponding instruction. Therefore in order to be able
to re-execute the instruction after the interrupt has been
serviced, the Queue is designed to contain all functions for
which store requests are outstanding. The Page Registers can
then be manipulated by the Operating System using orders which
do not involve the Queue, or, if a process change is required,
the whole of the Queue and its associated buffer registers can
be preserved (for subsequent restoration) in the store,
thereby unblocking the Queue and allowing other processes to
be run.

The inclusion of a Queue in the design generates additional
problems because of the different types of operand to be sent
to the A-unit. ACC orders using named variables are ready for
execution at the end of PROP, but since orders must be obeyed
in correct program sequence, they cannot be allowed to
overtake ACC orders awaiting secondary operands. Various
solutions to this problem are possible, but the one adopted in
MU5 is to send all ACC orders through SEOP, by providing a
bypass to the descriptor mechanism for named variables. A
second problem is the long separation of the A-unit from the
Name Store in PROP. Thus if a name held in the PROP Name Store
were to be used to accumulate a total calculated by ACe orders
in a small program loop, the order reading the total from the
Name Store would have to be held up until the value calculated
by the previous pass through the loop had been returned. The
solution adopted to overcome this problem is the provision of
some buffering for named variables used by ACC orders close to

29

the A-unit, the logical place for which is within the Operand
Buffer System. Thus OBS actually contains 8 lines x 128 bits
of Vector Store, 24 lines x 64 bits of Name Store together
with 8 lines x 64 bits for literals supplied by PROP. The
hardware automatically ensures that names used with ACC
functions are normally kept in OBS, and names used with
non-ACC functions in PROP, and also deals with any necessary
interactions.

2.3.1 Interrupts

In the previous section we were mainly concerned with the
normal execution of instructions, but the design .must also
provide for exception cQnditions which give rise to
interrupts. Already mentioned is the page fault, or
non-equi valence, interrupt which is discussed more fully in
section 9.3. There are other interrupts, and they can· be
broadly classified into

program based interrupts
external event based interrupts
system error interrupts

Examples of the first kind are

the CPR non-equivalence interrupt
illegal store access interrupts
descriptor faults (e.g. bound check fail)
arithmetic overflow

of the second kind

transfer complete interrupts
timer interrupt

and of the third kind

parity error
power failure warning

From the point of view of hardware organisation, the first
group are the most difficult to deal with, because ideally
they require the pipeline to stop precisely on or before the
instruction causing the interrupt. In the case of arithmetic
faul ts in the A-unit, for example, a precise interrupt can
only be obtained if there is no overlapping of instructions
between the A-unit and the Control Point, a situation quite at
variance with the hardware design. Imprecision of arithmetic
interrupts can generally be tolerated, however, and in cases
where precise interrupts are essential, the overlapping of

30

orders in the pipeline can be inhibited by program. In fact,
by using a register-register order which stores the content of
the ACC into an imaginary 'Z' register in the B-uni t, no
further orders can leave PROP until the A-unit has completed
all outstanding orders (section 4.2.4). Normally this order is
not used, but the compilers allow the user to choose to have
it inserted in cases where the source of error is difficult to
trace. One option is to have 'ACC => Z' compiled after the
last machine instruction in the translation of each source
statement. This enables the error condition to be related to a
particular source instruction. Another extreme option would be
after every machine instruction.

Some descriptor faults (illegal type/size combinations, for
example) occur precisely in MU5, but the bound checking occurs
too late in the cycle of events in the D-unit to allow a
precise interrupt. The reasons for this are discussed in
Chapter 5. This imprecision restricts the usefulness of the
bound checking facility, and a different organisation of the
hardware would be used in a redesigned machine. As it stand s
the program knows of the interrupt, but cannot in general
rectify the condition and continue, because a few orders
overrun might have occurred. In the case of CPR
non-equivalence, the interrupt must at least be made to appear
precise, since the order causing it cannot complete until the
interrupt is serviced. Hence the special arrangements
involving the Function Queue in OBS, described above.

With the second and third groups it is enough to inject the
interrupt into the pipeline and allow preceding orders to
complete.

From the software point of view, interrupts are best
classified according to the action they require. Thus in MU5
there are eight types of interrupt, divided into two groups of
four, the System Interrupts and the Process Interrupts. These
interrupts are

System
Interrupts

Process
Interrupts

System Error
CPR Non-equivalence
Exchange Transfer Complete
Peripheral Window and Timer

Instruction Count Zero
Illegal Order
Program Fault
Software Interrupt

Some protection and privileged facilities are needed by the
procedures which service these interrupts. These are obtained

31

by the setting of bits in the Machine Status register, such as
the ' Level 0' and ' Level l' digits. The Level 1 digit is
normally set during the running of a Process Interrupt
procedure, and, as well as allowing access to the privileged
V-store operands, it inhibits any other Process Interrupts.
System Interrupts can still occur, how:ever, since these are
only inhibited by the setting of the Level 0 digit. The
Machine Status register also contains an Executive Mode digit
which allows fully interruptable but privileged code to run,
digits which inhibit the types of Process Interrupt a program
may wish to deal with itself, the Test bits used by control
transfers, and other miscellaneous digits.

Associated with each type of interrupt are two words of
protected core resident information, known as the Old Link and
New Link. When an interrupt occurs, the existing instructions
in the PROP pipeline are abandoned, and the contents of the
Control Register, Name Base and Machine Status registers are
preserved in the Old Link. These registers are then
overwritten, by a control transfer instruction, with the
information held in the New Link. Thus it is the setting of
bits in the Machine Status part of a New Link that determines
the interrupt inhibit status of the procedure which services
an interrupt. At the end of the interrupt procedure, the
information preserved in the Old Link is normally used to
restore the Processor to its original state.

2.4 THE STORE HIERARCHY

The decisions concerning the stores for MU5 were taken in
1968. This was before large capacity high speed semiconductor
stores had become feasible, and the most promising development
among the analogue store technologies was plated-wire. Plessey
had a plated-wire store under development with an expected
cycle time of 250 ns. Unfortunately the price of £16 750 per
2K stack of 128-bit words was restrictive.

MU5 was being designed as a machine to run very large
programs, and support the order of hundreds of interactive
terminals. Although the terminal activities would be very
variable, their store requirements were not be expected to be
less than thousands of words. Thus a total store requirement
of several million words was anticipated. Clearly it could not
be by plated-wire store only. In fact, for this size of store,
even medium speed (2.5 J.ls) core store available from Philips
at £41 500 per 128K stack of 32-bit words was too expensive. A
store hierarchy with some plated-wire store to obtain
performance, and drum or fixed-head disc to obtain capacity
was the only solution.

32

Ideally the store at the fast end of the hierarchy should
be large enough to accommodate the active parts of several
interacti ve jobs, and a background job. If an Atlas type of
'one-level' store with demand paging is to be used, the
transfer time for pages must be matched to the machine speed.
Consider an MU5 with a 10 MIPS instruction rate and a modest
sized main store backed up by a drum with a 20 ms revolution
time. Even with very high packing density on the drum, page
transfers would cost on average 10 ms. This time would be
equivalent to 100 000 instruction times. If a page size of 1K
bytes was used, then for 75% CPU utilisation to be achieved, a
program must obey 300 instructions for every byte of each new
page brought in to store before requiring further new pages.
Clearly, this intensity of CPU usage would not apply to the
pages that might be considered to be the active part of a
program such as those containing

(1) the frequently used facilities and working space of a
compiler

(2) an array to which a simple cyclic algorithm applies

unless, of course, they could simul taneously fit into store.
Therefore, the conclusion was that if the plated-wire store is
not big enough to accommodate the active parts of several
jobs, an intermediate store, very much faster than the drum
(for demand paging) , is needed between the two.

This line of thought has resulted in MU5 having a
'one-level' store which maps on to a hierarchy of three levels
as shown in figure 2.2. The CPU operates on the Local Store
and pages are brought on demand from either Drum or Mass
Stores. They are rejected first to Mass and later to Drum. In
practice this means that bulk of the paging traffic is between
Mass and Local and residual traffic to Drum is at a bearable
level. The actual !mplementation uses fixed-head disc but it
is convenient to refer to it as a Drum to avoid confusion with
the other discs in the system which are used for file storage.

The 'one-level' store of MU5 contains all the working space
and files needed by the current terminal users and the active
background jobs. Most of the files are stored on further large
capacity discs, or archive discs or tapes. Thus the full
storage hierarchy has at least two more levels than are shown
in figure 2.2.

33

Drum (10 Mbytes)

Mass (1 Mbyte)

Local
----... ---~ (128 Kbytes) ~---""-----'

Figure 2.2 The Store Hierarchy

2.5 THE EXCHANGE

The data routes needed to implement the store hierarchy and
the mUlti-computer connections are extensive. To increase the
flexibility and allow scope for future development it was
decided to generalise these connections into a highway system
known as the 'Exchange' into which all the storage devices and
computers of the MU5 complex are connected. This Exchange has
been buil t as an integral part of the MU5 Project using
basically the same technology as that used for the MU5
Processor. Logically it is a multiple-width OR gate operated
as a packet switching system at the star point of the
interconnections. This configuration involves only a very
short common path for transfers between the various units and
was chosen in preference to a distributed highway or 'bus'
system in order to accommodate the high data rate associated
with paging transfers. Thus transfers can occur at a rate of
one every 100 ns, and each can involve a 64-bit data word
together with address and control bits.

As an example of the use of the exchange consider the
paging transfers between the Mass and Local stores which are
organised by a Block Transfer Unit (BTU) attached to the
Exchange. When MU5 requires a block of data to be transferred
from the Mass Store to the Local Store, it writes into the
BTU, via the exchange, the starting addresses for the transfer
in each store, together with the block size and start command.
The Processor is then free to continue computation, while the

34

BTU generates the necessary requests, via the Exchange, to the
Mass and Local Stores to carry out the transfers. Reading from
a store involves two Exchange transfers, one in which the
address is sent to the store, and one in which data is
returned. In between these two transfers, however, the
Exchange is free to carry out transfers between other units in
the system.

The addressing sch.eme used for the Exchange allows up to
16 units to be accommodated, although technological
considerations have limited the actual number of units to a
maximum of 12. The units actually connected are shown in
figure 2.3 The mu5 machine has not been previously mentioned.
It is a machine designed as the bottom end of the range. In
the MU5 complex its role is to provide a graphics work
station.

The overall system organisation shown below is discussed
again in Chapter 9. First the technology used and the detail
design of the MU5 processor are described.

w
t9
Z
«
::c
u
X
w

Mass Store

Disc Control Unit

Block Transfer Unit

Performance Monitor

Engineers' Console

ICL 1905E

mu5

PDP-11/10

...... ---Fixed-head Disc

I-----VDU

Printers

........... --Readers

Exchangeable Discs

On-line Consoles

........... ~-Large Disc

Other Computers

Figure 2.3 The MU5 Multi-computer System

35

3 Technological Implementation

The implementation of any computer system design in hardware
requires the use of a number of different technologies. These
may be roughly divided into the areas of circui t technology,
including the techniques used for interconnection, and sto~age
technology. Some overlapping of these areas is inevitable,
however, since the fastest levels of storage are normally
compatible with the circuit technology. The circuit technology
used in MU5 is basically that developed by ICL for their 1906A
computers, but in o~der to accommodate the diffe~ent

architecture of MU5, a number of additions and extensions have
been made. Furthermore, because there was to be no prototype
for MU5, and the ICL automated interconnection technique was
to be used, it was very important to verify the logical design
by simulation. A logic simulator was therefore developed as an
additional design aid. The storage technologies used in the
MU5 complex cover a wide range of speeds and capacities. At
the fastest level integrated circuit stores are used, backed
up by p~ogressi vely slower but larger devices. These include
plated-wire stores, bulk core stores and fixed-head disc
stores.

3.1 CIRCUIT TECHNOLOGY

The ICL 1906A circuit technology used in the MU5 P~ocessor is
based on Emitter Coupled Logic (ECL) integrated logic
circui ts, mounted, with appropriate discrete resisto~s, on
p~inted circuit boards to form 'modules'. A number of factors,
pa~ticularly the use of associatively addressed fast stores in
the MU5 Processor, has required the extension of the range of
1906A modules, and some of these involved new circuits
developed du~ing the project. Modules are inte~connected by
insertion into connectors mounted on multi-layer platters,
each with a capacity of up to 200 modules (figure 3.1). The
platters themselves are housed in bays, each capable of
holding 33 platters in five groups, and two such bays make up
the MU5 Processor (figure 3.2).

Interconnections between platters within a group are made
by means of pressure connectors along adjacent edges, while
connections between groups of platters and between bays are

36

made through co-axial cables. The co-axial cables are
terminated on printed circuit boards which are themselves
connected to the platter by pressure connectors along the
outer edges of each group. The Exchange is also constructed
from this technology, but the ~~rge number of signals involved
in data transfers between units cannot be accommodated by the
available edge connectors. The platters forming the Exchange
OR gate are therefore unique in having co-axial cables
connected directly on to their surface.

Figure 3.1 MU5 Modules

Figure 3.2 MU5 Logic Bays

37

3.1.1 The ECL Logic Family

The circuit of the basic ECL 2.5 gate is shown in figure
3.3 (a). A logic swing of less than 1 V is used, the logic 0
level being -0.8 V and the logic 1 level -1.76 V. The circuit
operates by switching current in the reference transistor,
which has its base held at -1.3 V by the voltage reference
source contained within each integrated circuit. Thus, if one
or more of the inputs A, B, C is held at the 0 level, the
corresponding input transistor is turned ON, and the reference
transistor is turned OFF~ This in turn results in a 0 level at
the output F. If all the inputs are held at logic 1, the
reference transistor conducts and a logic 1 level appears at
output F. The function obtained from the circuit is therefore

F = A.B

with the complementary phase also being available.

F

c -1.3V

(a) The Basic Gate

(b) A 2-level Gate -5.2 V

Figure 3.3 ECL Circuits

More complex functions are obtained by joining the
collectors of the reference transistors of two or more basic
gate circuits together and inserting an additional transistor
as a diode across the common load resistor to limit the
voltage drop. Thus the function performed by the circuit shown
in figure 3.3(b) is

F = A.B v C.D

A range of integrated circuits is available containing various

38

combinations of these gates packaged together as shown in
figures 3.4(a)-(d).

(a) 3- input AND (b) 5- input AND (e) 3--3 AN D-O R (d) 4-3-3-3 AND -OR

Figure 3.4 Basic Logic Elements used in MU5

Another, more complex integrated circuit contains two
flip-flops of the type shown in figure 3.5. If the CLOCK and
GATE signals are both held at logic 1, then the SET/HE-SET
inputs are locked out and the output follows the DATA input.
When CLOCK and GATE become 0, the output remains static,
independent of DATA, but can be changed by application of SET
or HE-SET. The propagation delay through the flip-flop for a
CLOCK/GATE change is similar to that for a logic gate (around
2 ns), but a longer delay (of around 4 ns) is incurred by a
SET/RE-SET change. RESET

OUT

DATA

OUT

SET

Figure 3.5 Logical Representation of a Flip-Flop

These integrated circuits are mounted on modules to give a
range of gate and flip-flop types, and some modules contain

39

passive delay elements and hybrid networks to effect active
delays and pulse forming circuits. Figure 3.6 summarises the
numbers of each type of module (and other devices) used in-the
MU5 Processor. The pipeline structure of the Processor'" is
reflected in the relatively large number of dual flip-flop
modules, mainly used as storage registers in the various
stages of the pipeline. Between pipeline stages gating of data
and decoding, etc. is mainly performed by multiple-input
AND/OR gates of the type shown in row 2. The most complex
devices used are in the 16-bi t random access memory, the
associative circuits and their associated level translators. A
fuller description is given in [7].

1000 2000 3000 4000 5000
I I I I I

Flip-Flop I
4-3-3-3 AN D--O R J

3- input AND I
3-3 AND-OR I
Power AND I
15- input AND

I Delay Line

I Hybrid Network Kbh A"oc;,,;v, S'o"

16-bit RAM

Level Trans lator Transistors I

Figure 3.6 Numbers of Devices in MU5

3.1.2 Associative Storage

In a conventionally accessed store, each of N physical
locations within the store is specified by an address, and
every address corresponds to an actual location. In
applications such as the MU5 Name Store, however, only a
subset of the range covered by operand addresses is actually
required in high-speed storage at any time and these addresses
are sparsely distributed throughout the total range. To avoid
extravagant use of high-speed storage, an associatively
accessed store may be used in this situation. Such a store is
made up of two fields, an associatively accessed field and a
conventionally accessed field. The associative field contains,
in random order, M currently required operand addresses, while
the conventional field contains the corresponding values.
Although the associative field may be loaded and examined by

40

conventional techniques (figure 3.7), it is used during a
store access in a different manner. In this case the required
operand address is presented to the associative field as an
'interrogate address'. If a word in the associa ti ve field is
exactly equivalent to the interrogate address, one of the
addressing lines to the conventional field is activated,
allowing access to the desired operand either for 'read out'
or 'write in'. If no word gives equivalence, an NEQ
(non-equivalence) signal is generated to inform the store
control mechanism that attention is required, normally to load
a new line. Multiple equivalence is usually regarded as an
error condition. Thus the associative field is accessed by
examination of its contents rather than by specification of a
location, and is also known as a Content Addressable Memory.

Load
Address ----,.-

(lo9~M /
bitsl : -----

/ /

(l) I

u M
0
u Lines (l)

0 I

~~ /

I nterrogate/
Write Control

t

Associative
Field

M Words x 1092 N bits

~- -log2 N bits-- 4
Interrogate
Address

ReadIWrite Data
~

:
Conventional

M Field
Lines

I
I M Words x D bits

Figure 3.7 An Associatively Addressed Store

In order to carry out an associative search of the store,
each of the memory elements in the associative field must
perform not only the storage function, but also the logical
equivalence operation between the interrogate digit value and
the stored digit value. The principles involved are
illustrated by the model in figure 3.8. The storage function
is represented by two-way switches, and words 0, 1 and 2 are
shown containing 011,101,111 respectively. The Word Lines
are all held at some fixed voltage Vx, and each bit .in the
interrogate word controls the voltage levels of the pair of
Digit Lines associated with its digit position. A logic 1
causes Da to be raised from the quiescent level Vq to the
higher level V1, where

Vq < Vx < V1

while a logic 0 causes Db to be raised instead. Thus current
flows from a raised Digit Line into all words where the switch
is selecting the raised Digit Line. For the interrogate

41

pattern 101 shown in figure 3.8, word 0 has two such units of
current flowing from the two non-equivalent digits. Word 1,
which is identical to the interrogate word, has no current
flowing, and word 2 has one unit of current flowing.
Equivalence is therefore recognised by the absence of current
in a Word Line.

Word 2

Word 1

--~----~-----+--~--~~--~~~----~----4---
-

Word 0

DaO DbO Da1 Db1 Da2 Db2

r- ----1---- - ---0---- ----1------,
L. _____________ I~~r~g~e~~~ _____________ 1

Figure 3.8 Model of an Associative Memory Matrix

The associative memory matrix used in the MU5 associative
stores is described in detail in [8]. Each matrix consists of
eight elements arranged as four words of two bits within one
integrated circuit, and four such circuits are mounted on one
modul~ to form an 8-word by 4-bit array. The speed of
operation within each element of the matrix is such that
association or reading requires typically 5 ns, whereas
wri ting requires 30. ns. In order to form a complete
associati ve store, however, additional modules are required
such as Word and Digit Drivers, Equivalence Receivers,
Non-equi valence Detectors, etc., all of which involve level
translators, and the total associate or read time depends on
the delays introduced. by these circuits and on the size of
store. Additional modules are also needed to form the
conventional field of the store. The latter is made up of 16 x
1-bit memory circuits mounted eight to a module to form a
32-word by 4-bi t random access store, and additional Decode
Driver and Write Driver modules are also required.

3.1.3 Interconnections

The majority of the integrated circuits used in MU5 are

42

mounted on 1.6 in. x 2.1 in. plug-in pri,nted circuit modules
wi th 20 pins as shown in figure 3. 1. Up to 200 of these
modules can be interconnected by means of a single 12-layer
printed circuit platter. The packing density of circuits on
these modules is relatively poor, however, and commonly used
complex logical entities such as adders and the associative
stores have been designed on 40-pin macro boards measuring 1.6
in. x 4.4 in. and 3.0 in. x 4.4 in. (these are also shown in
figure 3.1). The platters measure approximately 13 in. x 16
in. and are mounted in eleven columns of three within a logic
bay. Eight columns are mounted on movable double doors to
allow access for commissioning and maintenance, while the
remaining three columns are mounted in a fixed central plane
(figure 3.9). Figure 3.10 identifies the platters in the two
Processor Bays with the functional units to which they are
allocated (cf. figure 2.1). The Local Store is contained in
Bay 3 and the Exchange in Bay 4.

3-platter Column

BAY 1

r------- ---I
1 c:::::::J ~ 0 1

1 44 41 I i 51 54 0:
1 r:=:==J r====J 0 1 L ____________ I

31 34 37
c===J c===J c===J

,-------------,
: r===1 r====J i
10 14 11 I
1 21 24 1
I 0 r====J r===1 1 L _____________ -.J

Hinges

BAY2 BAY3

,-------- --- --,
I c::=::::J c:::::::J 0 1

1 44 41 I
1 I
I 51 54 I
I c=-==J c===J 0 1 L ____________ J

31 34 37
r====J c===J r===1

r-------------,
1 0 ~ c::::::J 1

1 14 11 I Module
: 0 21 24 tr---+I ----1- Side
I 0 ,----, ~ 1
L _________ -' - __ .J

Wiring
Side

Figure 3.9 Plan View of Processor Layout

This arrangement of the circuits gives relatively short
lengths for interconnections whose source and destination are
situated on the same platter, but interconnections crossing
platter boundaries must travel an average of 12 in., and those
passing from a fixed plane to a door, or from one side of a
door to the other , travel an average of 8 ft along co-axial
cables. A histogram of the distribution of interconnection
lengths in the MU5 system, measured from the output pin of the
source circuit to the input pin of the destination circuit is
shown in figure 3. 11. Since a maximum of three integrated
circuits can be mounted on a 20-pin module, or seven circuits

43

on a 40-pin module, relatively few interconnections are
between circuits on the same module, and a typical connection
involves a distance of about 1 in. to reach the platter, 4 in.
on the platter and a further 1 in. from the platter to the
destination on a second module. This gives a typical signal
propagation delay of about 1 ns. Approximately 80% of all
interconnections in MU5 are actually between integrated
circuits on the same platter, 13% travel between adjacent
platters, 5% go through cables to other platters in the same
bay and 2% travel distances of up to 50 ft from bay to bay. In
this last case the propagation delay is of the order of 80 ns.

11 14 Bay 1 41 44
ACC ACC B-unit OBS
12 15 42 45

ACC ACC B-unit B-unit
13 16 31 34 37 43 46

ACC· ACC OBS Dop Dop B-unit B-unit
32 35 38

ACC Dop Dop

21 24 33 36 39 51 54
ACC ACC ACC Central Highway OBS OBS

22 25 52 55
ACC ACC OBS OBS

23 26 53 56
ACC ACC OBS aBS

11 14 Bay 2 41 44
PROP IBU SAC SAC

12 15 42 45
PROP NAME SAC SAC
13 STORE 31 34 37 43 46

PROP 16 PROP Dr Dr SAC SAC
32 35 38

PROP Dr Dr
21 24 33 36 39 51 54

PROP PROP PROP Dr Dr CPRs IBU

22 25 52 55
PROP IBU CPRs IBU

23 26 53 56
PROP PROP CPRs IBU

Figure 3.10 Platter Allocation

The edge time of the EeL circuits is typically 2 ns, and to
minimise the possibility of reflections due to the relatively
long delays introduced by the interconnection distances, a
matched transmission line approach is used. Thus each gate can
drive two series matched 75 ohm lines from each output, and
each line is capable of driving up to two input loads at the
recei ving end. Associated with each out put is a group of

44

resistors, the output load resistor (excluded from the
integrated circui t itself to reduce power dissipation within
the package) and two series matching resistors. These are
fabricated on a single ceramic chip in thick film technology
and over 45 000 such chips are used in the MU5 system. The
rise time at a gate input is degraded as a result of the
capacitance which each input load represents and the series
resistance of the line matching resistor, and an effective
extra delay of 0.6 ns per input load is introduced. The rise
time also increases as the distance between the two driven
inputs increases. This has led to the adoption of a '3 Inch
Rule' in the laying out of modules on platters, whereby module
input pins connected to a common line are placed so as to be
no more than 3 in. apart. An average gate thus introduces a
delay of 2 ns due to propagation through the ECL circuit
itself, 1 ns transmission time along the 6 in. interconnection
pa th and a further 1 ns delay due to input loading, giving a
typical delay per gate in the system of approximately 4 ns. By
comparison, the circuit delay in CDC 7600 logic is about 2.5
ns, but the packaging is such that for large numbers of
adjacent gates the additional transmission delay is very much
less than 1 ns.

o 2 4 6 8 10 12 14 16 18 20 22 24 26 28
I nterconnection Length (I nches)

Figure 3.11 Interconnection Lengths

3.1.4 Platter Production

The multi-layer platters into which the modules are connected
are made up of four logic layers, two outer layers containing

45

the pads for the edge connectors, and various power layers. Of
the logic layers, two 'X' layers contain horizontal tracks and
two 'Y' layers contain vertical tracks. Logic signal
interconnections are made between module pins by the selection
of a path composed of a sequence of X and Y segments joined by
means of plated-through holes. The selection of these paths is
made by a computer program which forms part of a Design
Automatidn system developed by ICL. This system requires as
input a specification of the types and placement of logic
elements and their logical interconnection. From this
specification the Design AutC¥l1ation system produces not only
logic drawings, module placement charts, 3 Inch Rule violation
lists, etc. , but also data for a numerically controlled
plotter, which produces photographic plates for the
manufacture of the X and Y layers. Clearly it is essential
that the original logic specification should be as accurate as
possible, not only because the production process is itself
time consuming and expensive, but also because errors detected
afterwards involve breaking the existing connections and
adding 'hand-wires' on the platter surface. This problem of
itself is not too serious, in that all connections to module
pins are actually made via links on the surface of the
platter. In any case some hand-wires are inevitable due to
track breaks in manufacture and the finite tracking capability
available wi thin the logic layers. More serious, however, is
the case where a change to the logic requires that additional
modules be inserted, and finding a convenient free module
position which will satisfy path length constraints may be
difficul t. A solution to these problems was sought through
simulation of the logic before production was started, and a
suite of simulation programs was developed for this purpose
from earlier exploratory work carried out on Atlas [9].

The effectiveness of this system can be gauged from the
results obtained with the B-unit. This unit contains
approximately 2200 gates and flip-flops and during simulation
46 logical errors were detected. These faults would have
involved over 500 wiring changes on the platters during
commissioning, whereas in fact only one further fault was
actually found during the commissioning phase.

3.1.5 The MU5 Logic Simulator

Simulation of the MU5 logic was carried out on each functional
unit by means of a simulator program run on the 1905E
computer. The simulator accepts the same description of the
logic network as the ICL Design Automation system and
exercises it by applying sequences of input patterns. Three
basic types of information are required by the simulator; a
list of the logic gates in the network and their

46

interconnections, details of the input pattern to be applied
to the network, and a precise description of the operation of
each type of logic gate used. Networks may be synchronous or
asynchronous. A synchronous network is one which is controlled
by external clock signals and contains no internal timing
circui ts, so that the input patterns normally consist of an
initial setting of the data signals followed by a series of
clock pulses. In this case the simulator is simply required to
propagate the signals through the logic levels, using
truth-table models to represent the operation of the different
types of logic gate, and to produce output in the form of a
timing diagram showing the state of signals at the end of each
clock phase. Fault monitoring may also be provided to
indicate, for example, that the number of levels of gating in
a clock phase is too large.

The MU5 logic simulator is considerably more complex than
this, however, since it is designed to deal with asynchronous
networks. Thus the language used for the specification of
input patterns allows the sequencing of input data signals to
be controlled by internal timing circuits as well as by
external clock pulses. Furthermore, the models of the logic
gates used by the simulator are more complex and reflect their
true operation by taking into account such details as pulse
widths and propagation delays. Output from the simulator takes
the form of timing diagrams, fault monitoring which identifies
timing errors such as short pulses, and detailed listings
showing changes of state of network signals as they occur.

The central feature of the simulator itself is a
time-ordered event list. Entries in this list indicate that,
as a result of a change of state at the inputs to a gate, a
new output state for that gate has been predicted. When an
entry is removed from the top of the list,. the predicted
signal change can 'occur'. The simulator then examines the
gates to which this signal is an input, thereby generating
further predicted events which, are entered into the event
list. Al though this technique is particularly well sui ted to
the efficient simulation of asynchronous networks, it may also
be used equally well for testing synchronous logic.

The internal data structures used to represent a logic
network reflect the direct logical connection between a gate
output and other gate inputs to which it is connected. Figure
3.12(a) shows a simple network and figure 3.12(b) the
essential features of the internal representation of a part of
that network. If, at simulated time t, either of the inputs to
G1 changes, an 'AND-GATE' routine will predict a new state of
the output signal A. This prediction will then be entered into
the time ordered event list with an associated time of (t +

47

propagation delay). When the current simulation time reaches
(t + propagation delay), this prediction appears at the top of
the list and a test is made to see if it actually involves a
change of state of A. If no state change occurs, the
prediction is ignored. If a state change does occur, the
appropriate inputs to gates G2 and G3 are changed and further
predictions are made for signals Band C. Current simulated
time is always set to the time associ'ated with the entry at
the top of the time-ordered event list. Thus if no signal
changes are predicted for a long period, computer time is not
wasted on the evaluation of signal states in the quiescent
network.

The simulator uses individual routines to model the
operation of AND gates, OR gates, AND-OR gates, flip-flops,
pulse generators, etc. For each logic element, the
corresponding routine assumes a suitable nominal propagation
delay. The gates in figure 3.4, for example, are assumed to
have a delay of 5 ns. The operation of more complex function
macros is represented by appropriate combinations of the basic
gates. This representation is then substituted in the network
whenever a macro is encountered in the network description.

G2

~---~
G3

(a) A Simple AND-gate Network

Gate Output Input Fan-out Details
Type Name States Fan-out , ,
AND A 2 I

Input 1

I
Input 0

I to G2 to G3

(b) Internal Representation of Logic Networks

Figure 3.12 Representation of Logic Networks

The network description, used initially by the simulator
and subsequently by the ICL Design Automation system, is
encoded from original logic diagrams and entered into a logic
source file via a simple editing system. Information is
supplied about the grid reference of each gate on the logic
drawing, the gate type, its physical placement within a logic
bay, the names of its input waveforms and its unique output
waveform name. This description is first checked, in order to
ensure that the encoding is syntactically correct, by a
'compiler' which uses the specified waveform names to produce
logic files. This compiler also substitutes the appropriate

48

combinations of basic gates for the complex function macros.
After the logic files have been created or updated, the
simulator extracts information about the gates and their
interconnections and forms its own internal representation of
the network. Simulation can then be initiated and controlled
by a program of 'Driving Instructions' supplied by the user of
the simulator.

Records kept during the simulation phase of the project
show that during the period mid-1970 to mid-1971, 600 hours of
1905E Processor time (with the CPU operating at 5 us per
order) were used for the simulation of 84 platters. The
amounts used for individual groups of platters varied
considerably according to the nature of both the logic and its
designers. Thus, some groups required less than 200 minutes of
processor time per platter, several required around 600
minutes, and one group of six platters required over 1000
minutes per platter. One fact which became obvious was that,
although the simulator was found by most users to be of great
benefit, it did not turn poor designers into good ones. Some
of the platters which soaked up large amounts of simulation
time soaked up even more during commissioning.

3.1.6 Exchange Connections

As noted earlier, the Exchange involves more signals than can
normally be accommodated by the platter edge ~onnectors. Thus
each pressure connector at the edge of a platter has 40
contacts, of which 20 are normally signal contacts and 20 are
normally earths, g1v1ng a signal to earth ratio of 1:1.
Varying this ratio to allow a greater number of signals
reduces the noise immunity of the system, and 24 signals to 16
earths is the highest ratio which can be tolerated. Thus
although 360 signals can normally be connected at the edges of
an isolated platter, this number can, if necessary, be
increased to 432, and an additional 80 or 96 connections can
also be made via four vertical entry connectors mounted in
pairs close to the ends of the platter. In the case of the
Exchange, the logic necessary to implement ,the multiple-width
OR gate which connects together the Units in the MU5 complex
is contained on three adjacent platters. These platters are
mounted in the centre column of the fixed centre plane in the
Exchange Bay and have a maximum of 1104 external connections
available. The OR gate is actually 120 bits wide, of which 113
are used and 7 are available for expansion or repair, thus
requiring a total of 2880 input and output connections for
twel ve Units. Clearly this number of connections cannot be
made by the normal technique, and a different method is
employed whereby the co-axial cables which would normally be
connected via printed circuit boards and pressure connectors

49

are soldered directly on to the platter surface (figure 3.13).
At their other ends the co-axial cables are terminated in
mul ti-pin connectors mounted on panels in the outer column
positions of the centre plane of the Exchange Bay. Connections
to the Uni ts are then made via separate cable bundles and
connectors which mate with the fixed connectors on the panels.

Figure 3.13 The Exchange OR Gate

3.1.7 Asynchronous Timing

The timing of operations within a central processor can either
be synchronous or asynchronous, and both systems have their
advantages and disadvantages. In the MU5 Processor it was
decided that an asynchronous system would be used for
interactions between functional units. Thus a 'handshake'
sys tem is used such that func tions and data are passed from
one unit to another when the sending unit has the data
available and when the receiving unit is not busy. It was felt
that this type of operation, in which data transfers take
place asynchronously, would allow the system to operate at a

50

greater speed than a completely synchronous system where
transfers only take place at fixed times. This is particularly
important when the units concerned are not heavi+y used. Where
a number of communicating pipeline stages are heavily used,
however, the time penalty incurred by the handshake becomes a
dominant factor, and a synchronous system may be preferred.
Thus the CDC 7600 central processor, for example, is
completely syncnronous, and some units of the MU5 Processor
are internally synchronous. Asynchronous systems can also give
rise to additional problems, particularly when a unit can
accept requests from a number of sources.

This problem, which occurs in a number of places in the MU5
system, is illustrated by the paths through the Store Access
Control (SAC) to the Local Store (section 6.4.2). Here three
different functional units may request a store cycle at any
time, and in the event of a clash, SAC must decide which
request to accept. Each incoming request pulse is staticised
on a flip-flop, and the outputs of these three flip-flops
drive a combinational priority logic circuit. The outputs from
this circuit, only one of which can be a 1, form the inputs to
a set of decision flip-flops. These flip-flops are strobed
when SAC is free to accept a request ..a.rul sufficient time has
elapsed for the priority circuit to have settled after receipt
of the first request.

Because a second request may occur a short time after the
first request, however, it is possible for the inputs to the
decision flip-flops to change state just before the end of the
strobe, leaving the outputs somewhere between a 0 and a 1
level. Under these conditions the time taken for the flip-flop
outputs to reach proper logic levels may be long compared with
the normal propagation delay, and it is possible for
subsequent circuits to operate inconsistently.

Clearly sufficient time must be allowed for the decision
flip-flops to settle to a constant level, or failure of the
control circuits may occur. The settling time of the circuit
used here is a function of its gain-bandwidth product, and the
displacement of the output from the mid-level at the time the
strobe is removed. In the case of an output starting from the
exact mid-level, it is possible for an infinitely long
settling time to be required, but the probability of such an
occurrence is extremely low. It can be shown [10] that an ECL
flip-flop with a propagation delay of 2.2 ns requires over 30
ns settling time for the failure rate to be reduced to 1 per
month. Since the number of decision flip-flops required in a
system is relatively small in most cases, however,
considerable advantage can be gained by using a special
circuit with a higher gain-bandwidth product than the standard

51

device. Thus a flip-flop with 1.8 ns propagation delay
requires around 20 ns settling time for the same reliability,
and moving to an even faster device, such as a tunnel diode,
reduces this time further. An ECL compatible flip-flop using
tunnel diodes has therefore been developed for use in critical
decision circuits in MU5. The measured delay through the
flip-flop is still quite long (approximately 1 ns) because of
the level conversion circuits, but the actual decision time is
of the order of 100 ps. This gives an MTBF of 136 years for a
settling time of 3 ns or a total delay through the flip-flop
of 10 ns.

3.2 STORAGE TECHNOLOGY

As in any large computer system, a number of different storage
technologies are used in MU5 in order to provide an economic
balance between speed and capacity. Thus at the fastest level
in the hierarchy (figure 3. 14) associa ti vely addressed
integrated circuit stores are used, while the main storage
unit associated with the MU5 Processor, the Local Store, uses
plated-wire technology. At the next level in the hierachy is
the Mass Store, a 2.5 l.lS cycle-time core store, and beyond
that is the Fixed-head Disc Store, which incorporates a Disc
Transfer System capable of organising data transfers through
the Exchange between anyone of up to four discs and the Mass
or Local Stores. These are high-speed discs offering a limited
capacity of about 10 Mbytes. Bulk file storage is therefore
provided on other computers in the complex.

Transfers of information between the integrated circuit
stores and the Local Store are controlled entirely by hardware
under normal running conditions, while transfers between the
Local Store and the rest of the hierachy are controlled by
software (section 9.3).

3.2.1 The Local Store

The MU5 Local Store consists of four plated-wire memory stacks
each containing 4096 12-bit words (64 data bits + 8 parity
bits), and having a 260 ns cycle time. Plated-wire stores are
essentially 2-D systems and each of the stacks of the MU5
Local Store is internally organised on a 2048 144-bi t word
basis as shown in figure 3.15. No parity checking is performed
within the store and so no distinction is made between data
and parity bits. The stacks are individually controlled by
timing circuitry in the Local Store Interface logic (section
6.3) which connects the stacks with SAC and the Exchange, so
that under normal running conditions the stacks are
interleaved and successive accesses to separate stacks may be
overlapped to give a higher overall access rate. In the event

S2

of a hardware failure in one or more stacks, a Fail-soft
capability allows the store to be re-configured, so· that the
best use can be made of the remaining stacks. Thus, for a read
request to a given stack, the appropriate twelve address bits,
as selected by the Fail-soft logic in the Local Store
Interface, are copied into the Address Buffer, and the eleven
least significant digits select a line in the stack for
reading. The data from all 144 digit wires is copied into the
Data Buffer and the least significant address digit then
selects the even or odd half. The requested half is copied
into the Output Buffer 130 ns aftEir the Address Buffer was
strobed. The reading process is destructive, as in a core
store, so the outputs of the Data Buffer are fed back to the
digit drivers and a write operation is performed in order to
restore the contents of the line. The complete read/write
cycle is completed after 260 ns.

I
I
I
I
I I w I~ ____________________________ ~

1(.9 ,---------,
I Z I : Block I
I <t 1-1 --------..oil Transfer I
I I I I Unit I
lUI L ________ J
I X I
I w ,pooo-----------------------------""""i
I I
I I
I I
I I
I I

File Storage

Fixed-head Disc
Store

Mass Store
(Core)

Local Store
(Plated-wire)

I I
I I r----- --------------------~
:: : r---- ----1 :
I I I I Store I I ntegrated I
Ij ;----"""iI~1 Access C· ·t St I
I I I I Control Unit I Ircul ores I
L_..J L _________ J I

I Processor L ___________________________ J

Figure 3.14 Storage Technologies in the MU5 Sysytem

The store is constructed in a 144-bit wide arrangement
mainly in order to reduce the number of word drivers required

53

for a given amount of storage (these circuits drive very much
more current than the digit drivers, and are therefore much
more expensive), but advantage can be taken of this fact when
serv~c~ng 128-bit word requests from units within the
Processor. By setting the appropriate control digit when a
request for an even-addressed 64-bit word is made, the
corresponding odd-addressed 64-bit word (which is of necessity
available in the Data Buffer) is automatically copied into the
Output Buffer 50 ns after the even-addressed 64-bit word, and
the two halves of the 128-bit word can be returned to the
requesting unit in rapid succession.

Digit Drivers

... • Cll enl :::: Even Words Odd Words "EI ::s I Address co °1
en 1 3: 1 '" I ~I In ~

-72 bits----l-- -72 bits--"C ~I "C « t
Read Amplifiers

...
Data ~

::s
co

In
....
::s
0-
.::

--_.... write:
Control 0-- Read

In etc.

Data

Out

Figure 3.15 Internal Organisation of a Local Store Stack

A write request begins with a normal read phase, but before
the contents of the data buffer are written back into store,
the appropriate half is overwritten with new information.
Although there is no reason in principle why 128-bit word
wri te requests should not be organised on a similar basis,
there seemed no justification for incorporating such a
facility at the time when the specification of the stores was

54

agreed with the manufacturer. In the light of experience
gained during the subsequent design of the Processor,
particularly with regard to the implementation of the
store-to-store orders (section 7.4), there might have been
some justification for its inclusion.

3.2.2 The Mass Store

The Mass Store interface logic allows up to four individual
stores to be connected, but as a result of cost
considerations, only two are connected. These stores are
fairly straightforward 2.5-D core stores, each containing 128K
words of 36 bits (32 data bits + 4 parity bits). The interface
logic interleaves addresses to allow access to 64 data bits in
one cycle, and also contains fail-soft logic which re-orders
the addresses and allows the system to operate at reduced
efficiency in the event of a hardware malfunction in one of
the stores.

3.2.3 The Fixed-head Disc Store

The Fixed-head Disc Store developed for use as part of the MU5
complex is designed to accommodate four 'head per track' disc
units linked to the Exchange via a Disc Transfer System. The
first two disc units each contain eight 12 in. diameter
rec'ording surfaces with 64 t.racks per surface. Data bytes are
recorded in parallel on eight tr~cks in blocks of 1024, and
each 20.5 ms revolution gives access to 37 blocks. The total
capaci ty is thus 2.4 Mbytes per unit. The recording code is
Modified Non-Return to Zero (NRZI) recorded at a constant bit
frequency of 2.2 MHz. The maximum packing density is 1520 bits
per inch ~n the inner track and the data rate is 1 byte every
450 ns [11]. The 'programmers' would have been happy to accept
a system engineered to a less exacting standard, and to
sacrifice some capacity for the convenience of having 32
blocks per revolution. The task of computing addresses of
empty blocks, for example, is greatly simplified if the total
number of blocks is a power of 2. (The positions of empty
blocks are recorded in a bit list and the positions of bits in
this list are used in the computation.) The 'engineers' were
concerned to push the limits of performance, however, and to
maximise the storage capacity.

The limit on information packing density in any hig~

performance recording system is usually imposed by the timing
variations which occur between writing and read-back, and
these are of two distinct types, 'skew' and 'peak shift'. Skew
is a long term phase variation on read-back between parallel
tracks which were initially recorded using the timing from a
common 'write clock'. The major contributions to skew in a

ss

flying head system are the positioning accuracy of the
retractable heads, variations in head inductance, differing
cable lengths associated with individual heads, delays in the
selection and read-back circuits, and gyro-precession of the
rotating surface. On the disc used in the MU5 system, a figure
of 250 ns was specified by the manufa9turer for the maximum
skew between heads using a common write and read amplifier.

Peak shift arises from the super-position of read-back
pulses at high packing densi ties and the amount of shift is
dependent upon the pattern. Thus, unless adaptive writing
techniques are used, this shift must be considered as purely
random. On the MU5 discs, the worst-case peak shift is 3% of
one bit period (equivalent to approximately 14 ns) at 1500
flux reversals per inch, rising to 25% at 3000 flux reversals
per inch. Further random timing variations occur due to noise
in the read-back channel. These are usually circuit dependent
and are of the order of 20 ns in the MU5 system.

Thus skew is the dominant effect and in most. systems leads
to the adoption of self-clocking codes such as Phase
Modulation, Frequency Modulation and Delay Modulation. The
conventional NRZI detection system cannot deal with skew of
this magnitude, but, by use of a 'Self-Phasing' technique, the
effect of skew can be reduced to acceptable levels. In this
situation the NRZI recording code yields a higher bit-packing
density than any of the three self-clocking codes and was
therefore adopted for use in the MU5 system. (More recent
commercial disc systems employ different techniques, using
block codes, which allow even higher densities to be
achieved.)

The Self-Phasing system operates by measuring the skew on
each data track at the start of every data block and holding
its value constant throughout the reading of the block. Since
the block is only a small proportion of a revolution, the
gyro-precession effects can be neglected. The measurement is
per formed on a preamble pattern of 5 successi ve bits (00100)
recorded in NRZI format on each track immediately prior to the
normal data. This isolated 1 does not undergo any peak shift
and can therefore be used for accurate skew measurement.

The measurement is carried out by digital techniques and
permits a total skew of two bit periods, equivalent to gOO ns
at 1500 bits per inch. The value of skew is held as a 3-bit
binary number, thus dividing the two-bit period into eight
separate skew values and allowing the skew to be measured to
within 112 ns. When this is used to re-align the parallel data
streams, a margin of 337.5 ns remains to accommodate peak
shift and other dynamic timing variations.

56

4 The Primary Instruction Pipelin

In Chapter 2 we saw how the MU5 Processor developed into two
pipeline systems, the Primary and Secondary Instruction
Pipelines. In this chapter we shall follow the flow of
instructions through the units which constitute the Primary
Instruction Pipeline (figure 4.1). The Primary Instruction
Pipeline operates at a maximum rate of one instruction per 50
ns. This performance is achieved by dividing each unit into a
number of stages, each of which can complete its part of the
instruction processing within the 50 ns period and then accept
the next instruction [12J. The design is presented in some
detail to illustrate how conceptual elegance sometimes has to
be compromised in order to achieve practical solutions.

r--- --- ----- - --- - - ------- ----l
I Primary Instruction P.ipeline I
I C entral ,
I
I
I
I
L_

Addres
to Stor

-
ses
e

Instruction Primary Highway
Buffer ~ Operand
Unit Unit -
--- ---------- ----

Instructions
from Store

,-- ----
I
I Secondary
I Operand I
I Unit

I
B-unit I

I
I
I

~-------'

~ A-unit

-,
I ,
I
I
I
I

IL Secondary Instruction Pipeline J'

Figure 4.1 The Primary and Secondary Instruction Pipelines

Instructions enter the pipeline as 128-bit words supplied
from store by the Store Access Control Unit, and the
Instruction Buffer Unit arranges to send 16-bit instruction
'parcels' to the Primary Operand Unit (PROP) in the correct
program sequence. PROP accesses the primary operand in each
case so that instructions which enter PROP in the form of
'function/operand-specification' leave it five stages later in
the form of 'function/operand'. B-orders and Organisational

57

orders requ~r~ng only a primary operand are then ready for
execution and can be sent via the Central Highway either to
the B-uni t or back to PROP. Orders requi ring a secondary
operand access, and all ACC orders, are sent to the Secondary
Operand Unit. Operands are also returned across the Central
Highway from the B-unit to PROP in the case of store orders,
and via a private highway from the B-unit to the Descriptor
Addressing Unit when the contents of the B-Register are
required as the modifier in a data structure access.

4.1 THE INSTRUCTION BUFFER UNIT

In any computer system there is clearly a need to supply
instructions to the processing section at a rate matching its
execution rate. For sequential instructions in MU5 the
required rate can be achieved quite easily since the maximum
execution rate requires one 16-bit instruction every 50 ns and
the Store Access Control Unit can supply successive 128-bit
words from the Local Store at intervals of 65 ns. However,
because the access time is much longer than this, a system is
required which can send out instruction requests well in
advance of their being required by PROP ,and which can also
buffer the corresponding replies. The Instruction Buffer Unit
provides these facilities. It contains three buffer registers,
each capable of holding 128 bits, which together with their
control logic, constitute the Data Flow (figure 4.2). The Data
Flow control logic unpacks instructions from the first buffer
and assembles them in cyclic order in the second and third
buffers ready for PROP to take them as required. The necessary
store requests are made by the Store Request System, which
issues store addresses formed by a counter at a rate matched
to that at which instructions are taken from the Data Flow.

Addresses to SAC

r----- ------,
Store
Request
System

Control
: Transfer

I

Address
Counter

L _________ --I

Control Address

128-bit Words from SAC

r--------------- --------1
I IP I

I

Unpack
Record

Control
Logic

I
I
I
I
I
I
I
I
I
I
I

Data Fixed ~
~~w ______ .J'1!t!:!:!c!iO..!ls_ _ _ ________ J

Instruction Parcels to PROP

Figure 4.2 The IBU Store Request and Data Flow Systems

58

This system operates satisfactorily until a control
transfer occurs as a result of either an unconditional control
transfer instruction, or
instruction for which the

a conditional control transfer
condition is met. Then all the

pre-fetched instructions must be abandoned, and the correct
new instruction cannot be sent to PROP until the store has
been accessed, using the new control address, and the
instruction has passed through the Data Flow. Thus a large gap
occurs in the instruction stream, and the 50 ns rate is not
maintained. The net effect of this on the performance of the
Processor clearly depends on the frequency with which control
transfer instructions occur J and the extent of this problem is
well illustrated by performance measurements taken from the
Atlas computer.

The average execution time of Atlas computational orders
was 2 11s, but observations of the number of orders actually
obeyed over long periods of time indicated an average order
time of 3 11S. At the time it was thought that the discrepancy
might be due to store clashes between instruction and operand
accesses. However, statistics collected over a large sample of
programs showed that 20% of all orders obeyed were control
transfers, a much larger figure than had been expected, and
high enough to explain the reduced instruction rate. Control
transfers required 7 11S for their execution, giving an average
instruction time of

2 * 80/100 + 7 * 20/100 = 3 us

The expected times for execution of control transfer
instructions and the fastest computational instructions in MU5
were 950 ns and 50 ns respectively. Thus, even if the
frequency of control transfers could be reduced to one order
in ten, the comparable average execution time would be

50 * 90/100 + 950 * 10/100 = 140 ns

This represents a reduction by a factor of almost three from
the peak rate.

A system similar to that used in the CDC 7600 computer
[13J, in which recently used instructions and their addresses
are preserved in a high-speed loop-catching buffer, might be
expected to improve this situation. However, this system is
only satisfactory if the number of instructions being obeyed
within the loop is less than the buffer size. For MU5 a system
was sought which would operate satisfactorily without
constraints on loop size. The first system considered had
buffer registers containing the first few instructions at the
destination or 'jump-to' addresses of recently obeyed control

59
c

transfers. Access ·to these instructions would be via an
associative search on their addresses (figure 4.3). The
pre-fetching mechanism would proceed normally until a control
transfer occurred, and the destination address would then be
presented to the associative store. If a match was found, the
instructions in the corresponding buffer register would be
read out and sent to the Primary Operand Unit. If no match was
found, one of the set of associative and buffer registers
would be updated when the instructions had" been obtained from
store.

Associative
Address
Field

Jump-to
Instructions

Address

PROP
Pipeline

Figure 4.3 An Associatively'Addressed Instruction Buffer

Simulation studies of this technique [14] showed that only
eight lines of store would be needed to trap 80% of jump
instructions and that increasing the number of lines to
sixteen would only produce an extra 1% improvement. The
problem in implementing this scheme was the width of the
buffer store. In order to allow the pre-fetching mechanism to
catch up after a control transfer, each line of the buffer
would need to hold up to 950 ns worth of instructions. At 50
ns per 16-bit instruction the number of bits needed in each
line amounts to over 300.

In order to retain the advantage obtained by using an
associatively addressed store, without incurring the cost of
buffering large amounts of data, an alternative system is used
in practice. This system uses an eight-line associatively
addressed 'Jump Trace' store (figure 4.4) to predict the
outcome of an impending control transfer [15]. Whenever a new
instruction address is generated by the IBU it is presented to

60

the associative 'jump-from' address store before being sent to
SAC. If an equivalence is found, this address is replaced by
the corresponding 'jump-to' address, so that pre-fetching of
the new sequence takes place instead. When the control
transfer instruction which gave equivalence in the trace is
sent to PROP, it is accompanied by a bit indicating that the
instructions following it are 'out of sequence'. This bit ill
used in PROP to determine the action after execution of the
control transfer. If the following instructions have been
correctly predicted, execution of instructions continues
uninterrupted. If the instructions are not out of sequence,
but should have been, a request is made to SAC for the
instructions at the 'jump-to' address, and at the same time a
line in the Jump Trace is loaded with the 'jump-from' and
, jump-to' addresses. Thus when the ' jump-from' address
re-occurs wi thin the IBU, the instructions at the 'jump-to'
address are automatically pre-fetched.

L...-._C_h-:-~C_k_--Jt :
Jump-from
Addresses

+2 ~ Counter I
-1 ---'----..-----'I~

Address to SAC

Unpack
Record

Control
Transfer

Figure 4.4 The Store Request and Jump Trace Systems

Simulation studies of this system indicated that about 75%
of control transfers could be trapped using an eight-line
store, and that, as before, increasing the number of lines in
the store did not significantly improve the performance. The
apparent drop in performance as compared with the system of
figure 4.3 occurs because the prediction mechanism sometimes
predicts a transfer which does not occur. No attempt is made
to correct the Jump Trace when a predicted branch does not
occur, however, since the drop in performance is more than
offset by the fact that the prediction mechanism allows useful
overlapping of instructions to continue in PROP when the
prediction is correct (section 4.2.7).

61

4.1.1 Data Flow within the IBU

The Data Flow section of the IBU is concerned with rece1v1ng
the store words returned by the Store Access Control Unit and
supplying a stream of 16-bit instruction parcels to PROP.
Instructions are normally accessed in groups of 128 bits
(equi valent to one full line of the Local Store) but for
technological reasons all data highways in the system are
limited to 64 bits. A 128-bit word is therefore returned to
the IBU as two successive 64-bit words which are copied into
the appropriate section of the input register IP (figure 4.2).

Instruction parcels are transferred from IP to the
additional Storage Register AS, via the 16-bi t Intermediate
Buffer lB. (IB is incorporated to overcome skew timing
problems associated with the sending of parallel data through
several logic levels and then over long distances wi thin the
Processor, and is not logically necessary). The filling
mechanism associated with AS attempts to keep it full of valid
instructions, while the filling mechanism associated with the
next register, the Close Pack Register (CP) attempts to keep
CP full by emptying AS. CP is itself emptied by the actions of
PROP, which takes inst'ructions from it at a maximum rate of
one per 50 ns. Monitor registers associated with AS and CP
keep track of the valid instructions as they pass through the
buffers, recording a bit for each instruction position to
indicate whether it is currently valid. A further register,
the Advance Control Register (AC), is useq. to indicate which
is the next instruction parcel to be taken by PROP, and this
register is incremented by 1 every time an instruction parcel
is actually taken.

The 128-bit word in IP may contain a number of instruction
parcels which are not required in the sequence of instructions
being obeyed. This can occur following the execution of a
control transfer instruction, for example, which may jump to
any position within the 128-bit word. The three least
significant digits of the requested address and the number of
instruction parcels required from the 128-bit word are
therefore contained in one of four registers in an Unpack
Record. This Unpack Record is filled at one end by the Store
Request System as requests are sent to SAC (figure 4.4), and
emptied at the other end by the Data Flow control logic as
data returns from SAC. The Unpack Record also contains a
Sequence bit, a Same Word bit and a Control Overflow bit.

The Sequence bit is set to a 1 if the last instruction to
be unpacked from the word is to be followed by an instruction
which is out of sequence as a result of the actions of the
Jump trace. This bit is used by PROP when. obeying control

62

transfer instructions (section 4.2.7).

The Same Word bit indicates that loop catching is in
operation. Al though no additional buffers are incorporated
into the IBU to allow for conventional loop-catching, the
existing buffers can be used for this purpose in cases where
the jump-from and jump-to addresses are in the same 128-bit
word. When a jump-to address is read out of the Jump Trace,
the presence of the Same Word bit indicates to the Store
Request System that the required word is already available and
that no further request need be made.

The Control Overflow bit indicates th~~ the request is for
an instruction beyond the end of the segm~nt addressed by the
Control Register, a fault condition which can arise as a
result of pre-fetching. This bit is used by PROP to cause an
interrupt if an attempt is made to execute the instruction
(sec tion 4.2.8).

4.1.2 The Store Request System

The Store Request System (figure 4.4) initiates requests for
128-bit words from SAC at the required intervals. Two
different types of request may occur according to
circumstances, ordinary requests and priority requests.
Priority requests are made whenever PROP signals a
discontinuity in the instruction stream, that is, that the
instructions following the one currently being executed must
be replaced by a different sequence. Following such an event,
the instruction address received from PROP is loaded into both
the Advanced Control Register, AC, and the Store Request
Register, SR, and a priority request made to SAC. AC is then
incremented at 40 ns intervals (it operates at a faster rate
than PROP) and whenever a carry across the 128-bit word
address boundary occurs, the new address is copied into SR and
an ordinary request is made to SAC. In addition, each new
address generated in AC is checked against the contents of the
associative jump-from field of the Jump Trace. If an
equi valence occurs the corresponding jump-to address is read
out and used instead. The Store Request System then continues
to make ordinary requests starting from this new address.

Ordinary requests normally continue to be made until an
instruction sequence discontinuity arises. This happens
whenever

(1) An Interrupt occurs

(2) An Escape Descriptor access is made (section 5.1.3)

63

(3) The IBU sends an incorrect sequence of instructions

In cases (1) and (2) the output of CP is inhibited and a pair
of hard-wired instructions is sent to PROP instead (figure
4.2). When an Interrupt occurs, the current orders in the PROP
pipeline are abandoned, and a special instruction is sent
through the SEOP to SAC to ensure that all previous orders
have completed their CPR equivalence checks (section 6.4.2).
Once this action is complete, an eight-bit Interrupt Entry
register is strobed, and the instructions

SET LINK
EXIT

System V-store Address
System V-store Address

are sent to PROP. The System V-store addresses refer to the
core resident links (section 2.3.1), and in order to select
the correct links, contain an encoding of the contents of the
Interrupt Entry register. The encoding is such that if more
than one interrupt is present, the address corresponds to the
one with highest priority.

Escape Descriptors are detected by SEOP, which sends a
special reply to PROP instead of its normal handshake signal.
PROP abandons all current orders and signals the IBU, which
sends the orders

STACK LINK
JUMP

Literal
D[a]

= a)

In either case the second instruction of the pair is a control
transfer which causes a priority request for the newly
addressed instructions and re-enables the output of CPo Case
(3) occurs whenever an unpredicted control transfer
instruction causes a jump or when a predicted control transfer
does not cause a jump.

The operation of the Store Request System can also be
temporarily halted as a result of interlocks incorporated into
the IBU to ensure that no loss of information occurs as a
result of asynchronous operation. These interlocks simply
cause time delays before the next ordinary request can be
sent. For example, the rate of issuing of requests from the
IBU to SAC is normally geared to the maximum rate at which
PROP can process instructions. When PROP executes an
instruction which requires a long interval of time for its
completion, however, a hold-up occurs and this hold-up
propagates back through PROP to the IBU data-flow buffers.
Since the IBU is obliged to accept data from SAC as soon as it
becomes available, sufficient space must be maintained in
these buffers to receive it. In order to meet this condition

64

and to be able to maintain the maximum throughput rate, IBU
ordinary requests may be held up in SAC after the address
translation stage (section 6.4.2), until the IBU can guarantee
to accept the requested instructions.

4.1.3 The Jump Trace

Although the Jump Trace is in principle a fairly
straightforward system, a number of factors complicated its
implementation. For example, although most control transfers
use a literal (and therefore invariant) operand, some do not,
and in these cases the jump-to address will vary on some
subsequent executions of the instruction. No attempt has been
made in !V1U5 to take advantage of cases where this variation
occurs infrequently, however, since it was felt that the extra
hardware complication needed to check the correctness of the
predicted jump-to address would not be cost-effective.
Instead, the problem of variable j~~p-to addresses is avoided
by only loading the Jump Trace for those control transfers
which use a literal operand .

.A. further problem arises from the variable instruction
length. The Control Register always addresses the first parcel
of a multi-length instruction, but clearly jump-from addresses
must always correspond to the last. This address must
therefore be computed specially, since it is not otherwise
requLred. Consider, however, the action of a conditional
control transfer. The value in the Control Register after its
execution will either be the address of the first parcel of
the next instruction in sequence (the jump-from address + 1),
or some qui te different address (the jump-to address). The
first alternative can be generated immediately, since it
requires no operand, whereas the second must await the arrival
of the operand and the resul t of the condition. The Control
Adder associated with the Control Register in PROP can
therefore perform two cycles with no loss of performance, and
when an unpredicted control transfer using a literal operand
occurs, both values are sent to the IBU. The first is loaded
.into register AC (figure 4.4) and then decremented by the
address counter before being used to load a line in the
jump-from field. The second is loaded into AC and thence into
the jump-to field and also into SR to be sent to SAC as a
priority request. The line used in the Jump Trace is selected
by a Fill Pointer according to a cyclic replacement algorithm
and as each line is overwritten a 'use' digit associated with
it is set. These use digits are normally only re-set, and the
Trace thereby cleared at a process change, when the Process
Number Register in PROP is altered.

The technological problems which arise in the

65

implementation of the Jump Trace are mainly concerned with
timing. All instruction addresses are presented to the
jump-from field as they are generated by the Advance Control
Register CAC), and the association proceeds in parallel with
the operation of the counter. This allows the 40 ns address
generation rate to be sustained. However, if an equivalence is
found, the next address is not that generated by the counter
but that read out of the jump-to field. This action requires
an additional 40 ns. To sustain an average 40 ns rate,
advantage is taken of the fact that the addresses generated in
AC are sequential, and association is performed simultaneously
on two addresses differing only in their least significant
digit. Thus the associative field is actually 30 bits wide
wi th the 31 st bit of the full virtual instruction address
being held in a separate non-associative flip-flop. This bit
is then used to determine whether or not an equivalence is
genuine. When a genuine equi valence does occur, the
corresponding jump-to address is read out and copied into AC
and into SR.

4.2 THE PRIMARY OPERAND UNIT

The provision of separate Primary and Secondary Operand Uni ts
in the MU5 Processor arose from the distinction made in the
order code between different types of operand, particularly
between named or literal operands and data structure elements.
The basic idea was that the Primary Operand Unit (PROP) would
be concerned with accessing the operand specified directly by
the instruction and routing the instruction, together with its
primary operand, to the appropriate following unit for
execution or further processing. PROP would therefore contain
the Name Store, and if the primary operand was a named
variable or literal for example, the instruction would be
ready for execution at the end of PROP. An instruction
invol ving a descriptor would be sent to the Secondary Operand
Uni t (SEOP). As described in section 2.3, however, a Name
Store was also incorporated into SEOP, and some instructions
can therefore leave PROP without their primary operand.

Figure 4.5 shows the basic hardware in PROP and the variouS
stages of operation involved in processing a typical
instruction. Instructions are received from the IBU into
registers DF (function) and DN (name). The first action is the
decoding of the instruction to select the appropriate base
(NB, XNB or SF) and the name part of the instruction. For
access to a 32-bit variable, the name is shifted down one
place relative to the base and the least significant digit is
used later to select the appropriate half of the 64-bit word
obtained from the Name Store.

66

X
N
B

Initial
Decode

Add Name
to Base

Associate
Address

Read
Value

~~---------------1

: Virtual Value I
I Address Field I

--.... -1 Adder 1--..... --1 Field

N S
B F

I
I
I
I Name Store I L _____________ -'

Assemble
Operand

Shift

+

Figure 4.5 The Basic Components of the Primary Operand Unit

In the second stage the name and base are added together to
form the address of a 64-bit word. This address is
concatenated with the 4-bit Process Number (PN) and presented
to the Associative Field of the Name Store. If the address is
found, access is made to the 64- bi t word in the Name Store
Value Field. If the required address is not in the associative
store a request is made to the Store Access Control Unit, and
the value returned from store, together with its address, is
written into an empty line in the 32-line Name Store (section
6.1.2). This number of lines was chosen both on the results of
software simulation (section 2.3) and on technological
considerations. Thus, for example, the modules needed to make
up a 32-word associa ti ve store and a 32-word flip- flop store
could each be fitted on to one platter.

The next stage of processing is the assembly of the
operand. A 32-bit integer, for example, may be taken from
either half of the 64-bit store word, but must always appear
at the least significant end of the data highway when
presented to a succeeding unit. Registers FN and HI form the
input to the Central Highway of the Processor and register HO
is connected to one of its outputs to receive operands
resulting from store orders.

67

4.2.1 Design of the PROP Pipeline

The pipelining of the five stages in PROP is achieved by
staticising the information obtained at the end of each stage
in a buffer register (figure 4.6). An important aspect of the
design of a pipeline is the timing of the strobes to the
buffer registers, because some outputs from a stage (the
function bits, for example) will derive directly from its
inputs. With master/slave flip-flops the various registers can
be strobed simultaneously, but these devices are inherently
slower than the D-type flip-flops used in MU5 (section 3.1.1).
'A different technique is therefore used in which the result
obtained at the end of anyone stage is only copied into its
buffer register when the resul t . of the following stage has
itself been staticised. The strobes used to copy information
into the buffer registers are therefore staggered, as shown in
figure, 4.7.

.-- r-- r-- r-- r- r-

.. D ... Decode I- F~ Decode ~ F~ Decode f-F~ Decode j+FI+ Decode j+F I--
F 0 1 1 2 2 3 3 4 4 5

L..- L.- -- ~ ~ f-

-- S S SI--
BU 3 4 5

...... r- r- f- ~ L.-

~D fL f:'"L .~L .--
N t Shift

1 2 3 Shift

~
L...- ~ '-- L.-

V &
N

l
F

M l' -
N~ ~

~ .:..:. Virtual L.-

Namel Address ~L Value
Control C - I~ Field B_ Base r-- Field R
Adder 0 r---

S Adder
N

X ...- .-- I- '--- '-- -
N V H~
B N S 10..- S U 0

B F 6 I .- .. .- L.- L.- L.-

Figure 4.6 The Complete Primary Operand Unit

The shaded portions of figure 4.7 show the progress of one
instruction through the PROP pipeline. It is first copied into
DF and DN (function and name respectively) and the Decode 0
logic carries out the decoding of the instruction necessary to
control the first stage. The decoding logic of figure 4.5 is
spread out in the pipelined version into separate decoders for

68

each stage. In many cases, however, the necessary decoding
cannot be carried out in sufficient time to control the action
of a given stage. In these cases it is carried out i'n the
previous stage, and the various control signals appear as
additional function digits, along with the original function,
as inputs to the stage requiring them.

Stage 0 ---- Decode--

Stage 1 --Add ---

Stage 2 - Associate --

j Ur---.... ~AJ ~--

Stage 3 ---Read----....

10 ns
~ -- -Assemble --

40 ns Stage 5 __

U~-U U""'-----'U

Control

J
....--...

LJ u u u
Time-

_Increment __
Control
~--~

Figure 4.7 The Basic PROP Timing Diagram

The next pipeline strobe is timed to arrive no earlier than
when the outputs of the first stage have settled and are ready
to be strobed into the registers F1 (function), NM (name) and
BS (base). The addition of name and base now takes place and
after the appropriate time has elapsed, the result is copied
into IN, the Interrogate Register. The output of IN is
concatenated with PN, the Process Number, to form the input to
the associative field of the Name Store. The result of the
association is then copied into the PROP Line Register (PLR),
the out put of which accesses the line in the Value Field
containing the required operand. The Value Field output is
copied into the Value Field register (VF), and thence, after
assembly, into the Highway Input register (HI).

Once an instruction has reached HI, PROP must wait until it
has been accepted by another unit before taking any further
action. Instructions therefore proceed through PROP in series

69

of 'beats', the rate at which these beats occur being
determined by the maximum operating .rate of PROP and the
acceptance rates of the succeeding units. The generation of a
beat is initiated by the setting of a 'data gone' flip-flop
(figure 4.8), which when any other necessary conditions at the
end of the PROP pipeline have been satisfied, allows a 20 ns
pulse to propagate through the pipeline delay chain. The
pulses from the chain drive 10 ns pulse-forming modules at
each stage, and the delays in the chain are adjusted to
produce a 10 ns stagger between stages. The progress of one
pulse through the pipeline is shown heavily drawn in figure
4.7.

Strobe 2

a.
::I
-0
"0
:c
N
Ql
Cl

~
CJ)

Strobe 3

a.
::J

-0
"0
:c
M
Ql
Cl

~
CJ)

Strobe 4 Strobe 5

WAIT Register

Figure 4.8 The Pipeline Delay Chain

en
LOg-
Ql '
Cl~
co 0
ci5:c

Some problems arise as a result of the physical dimensions
of the Processor and the layout of the platters within it
[16]. Thus it is not feasible to locate all registers
pertaining to one stage in close proximity either to each
other or to the timing control logic. As a result, all the
registers of one stage cannot be strobed simultaneously, since
, far' strobes would have to be sent out in advance of 'near'
strobes by up to 20 ns. Alternatively, all 'far' registers
could be str6bed late (the strobes and data must all travel
the same distance) but some control signals must travel back
from the far registers to the near registers, and the double
delay would slow the pipeline down. The problem has been
overcome in practice by deriving far strobes from the earliest
level of fan-out in each section of the delay chain, and by

70

designing for only three levels of logic in paths whi~h

involve data travelling from near to far registers. Thus the
50 ns within each stage is typically made up as follows

Input Buffer Settling Time
Operation Within Stage
Inter-platter Cable Delays
Output Buffer Strobe

TOTAL

5 ns
30 ns
5 ns

l.Q. ns

50 ns

So far we have assumed that each stage of the pipeline
contains one 16-bit order. However, circumstances arise which
prevent full utilisation of each stage. For example, the order
code allows for multi-length orders (section 4.2.2) and some
orders involve mul tiple accesses (sec tions 4.2.3 and 4.2.4).
These can normally be dealt with by ~ purely logical control
mechanism which does not affect the main pipeline timing, but
may involve the creation of gaps (unused stages) in the
pipeline. These gaps, or 'dummy orders', are distinguished by
means of an a'dditional function digit, which, when set,
inhibits the actions of each stage, including the Control
Register updating. Other conditions can also arise which
require hold-ups wi thin the pipeline and hence also produce
gaps. They occur when some necessary information is not
immediately available, and can arise from most stages of the
pipeline. Apart from hold-ups which arise from the fifth
stage, they cannot be detected in time for the next beat .of
the pipeline to be inhibited and therefore operate
independently of the beat generating logic, by simply
preventing subsequent beats from propagating back beyond the
stage from which they arise (figure 4.8), and by causing dummy
orders to be propagated forwards.

Hold-ups ariSing from the fifth stage are normally ones
involving a complex action within PROP or an interaction with
another unit, both of which require the pipeline to be
stopped. The need for one of these hold-ups is indicated by
the setting of one or more bits in a 'WAIT' Register as the
instruction is copied in to F5 (figure 4.8). On completion of
the highway transfer the 'data-gone' flip-flop is set as
usual, but the next beat is prevented from being released by
the presence of the digit in the WAIT Register. Instead, a
hardware rout ine is entered appropriate to the most
significant digit in the WAIT Register. When the routine is
completed the corresponding WAIT digit is re-set and either
the beat is released or another hardware routine is entered
appropriate to the next most significant digit in the WAIT
Register.

71

4.2.2 Multi-length Instructions

Mul ti-Iength instructions are those using a 16-bi t name or a
16, 32, or 64-bit literal operand. The actions required to
implement these orders, and also the stack mechanism, are
controlled by three digits in each of registers DF and F1 and
the decoding logic between them. Thus following a DF strobe,
the inputs to these three control digits in F1 take up states
determined both by the function and the states of the control
digits in DF. When the next beat pulse reaches F1, the F1
control digits take up their new: states and are then copied
back into the corresponding DF digits by the same beat pulse
10 ns later, so that the digits in DF and F1 act as a
master / slave comb ina tion. For example, when a long name is
used, the next beat copies a dummy order into F1 and the
16-bit name into DN, the DF strobe being inhibited. On the
following beat the order enters F1 with the execute digit set
to 1 and the 16-bit name in NM (figure 4.6).

16-bit literal operands are dealt with in the same way as
16-bit names, except that the content of DN is copied into L1
instead of NM, and thence into L2, L3 and VU as the order
proceeds down the pipeline. 32-bit and 64-bit literal operands
start off in the same way as 16-bit literals but require three
and five phases respectively. Following the decoding of the
literal, the next beat copies a dummy order into F1, and the
first 16 bits of the literal into DN. The valid order i tsel f
proceeds to F1 on the subsequent beat and is then followed by
dummy orders until the whole literal has been copied into the
pipeline using registers DN, L1, L2 and L3.

For any size of literal the complete value is copied into
VU from some or all of DN, L1, L2 and L3, as appropriate, when
the order itself enters F4. For a 16-bit literal, sign
extension, if specified, takes place to 32 bits between L3 and
VU (a 6-bit literal is extended to 16 bits between DN and L1)
and sign extension to 64 bits, again if specified, takes place
between VU and HI. Figure 4.9 shows the pattern of the phases
for a 32-bit literal superimposed on the pipeline timing
diagram.

This technique for dealing with long literals was adopted
because it avoided the need for the IBU-PROP interface to be
extended beyond 16 data bits, and also the need to provide a
64-bit data buffer at each pipeline stage. The obvious penalty
for this saving in hardware is the number of extra pipeline
beats necessary whenever a long literal is used. However, for
a parallel system to operate satisfactorily, a higher IBU data
rate would also be necessary to ensure the availability of all
Jarcels of a multi-length instruction.

72

Stage 0

Stage 1

Stage

Long Order
Detected

1st 16 bits 2nd 16 bits New Order
InDN InDN inDF

t Control Digits

Conlrol Digits I Copied Back to OF

Copied into Fl , Dummy Order

Valid Order
1st 16 bits in L1

Dummy Order
2nd 16 bits in L1

lst 16 bits In L2 2nd 16 bits in L2

lst 16 bits in L3

Stage 3 ~--~~~~g~~~W'J?,WJ},~.lD~~~lw...J.---L

Stage 4

Stage 5

Literal Assembled in VU
and Sign Extended

Order Ready for
Execution

Control I ncremented ~

Figure 4.9 Pipeline Patterns for a 32-bit Literal

This requirement also applies in the serial system used in
MU5. Various circumstances can arise where PROP requires an
instruction from the IBU before it has been obtained from
store and made available through the IBU Data Flow,
particularly following unpredicted control transfers. In these
cases a 'data valid' signal accompanying the function copied
into DF is set to zero. PROP therefore treats this instruction
as a dummy order and a gap occurs in the stream of orders in
the pipeline.

In the case of mul ti-length instructions, it may not be
possible to proceed even when the information copied into DF
is valid, since sufficient additional instruction parcels may
not be available to complete the instruction. Additional 'data
available' signals are therefore copied into DF, along with
the 'data valid' signal, to indicate whether there are two,
three, four, or five instruction parcels immediately
available. If the required number of parcels is not available
for the order involved, a dummy order is propagated forwards
and the strobe to the IBU is inhibited. In addition, however,
the strobe to the DF function digits is inhibited so that
successive pipeline beat pulses only copy in the 'data
available' digits until sufficient parcels are available for
the order to proceed normally.

4.2.3 The Stack Mechanism

The stack is used for storing and retrieving partial results
and for procedure links and parameters. For example, during
the evaluation of expressions such as

a = b*c + d*e

73

partial results are stacked by the use of the '*=' (stack and
load) function. They are later unstacked by use of the operand
form STACK (section 2.2. 1). Stacked operands are therefore
contained in the MU5 Processor storage system in exactly the
same way as names, their addresses being generated relative to
the Stack Front register (SF), which points to the most
recently stacked operand wi tl:lin the Name Segment. Thus SF is
advanced by both the '*=' function and functions concerned
with procedure entry (STACK and STACK LINK), and all these
functions require two operand accesses to be made. Hence they
are divided into two phases.

For the STACK functions an access is first made for the
specified operand followed by an access to the stack, while
for the '*=' order the first access is to the stack, in order
to store the content of the specified register, and the second
is for the operand. For the stack writes the name/base adder
is used to create the address SF+2 and at the same time SF is
updated to this new value. The two phases of these ord'ers are
distinguished by extra digits carried through the pipeline
with the function. These digits override the normal operand
accessing mechanisms when access to the stack is required and
also prevent the incrementing of the Control Register when the
first phase passes the Control Point.

For the unstacking operation the access to the stack must
use the current value of SF as the address, and SF must then
be decremented. Two passes through the name/base adder are
therefore required, one to present the address SF and one to
create address SF-2. Thus this type of order is also split
into two phases, one of which is essentially a dummy order
serving simply to decrement SF.

The implementation of this stack mechanism wi thin a
pipeline gives rise to additional problems in relation to
control transfer orders. An order implicitly changing SF does
so while there are still several orders ahead of it, but not
past the Control Point, and therefore not yet completed. Any
one of these orders could be a control transfer order
requiring that the partially processed orders behind it in the
pipeline be abandoned. Should this si tua tion occur, the SF
Register may contain an incorrect value. The correct SF value
could be maintained by preventing overlap in such situations,
but this would seriously deteriorate the pipeline performance.
The alternative solution adopted is to allow the SF register
to change as and when required and to carry along the pipeline
with the order the new value of SF created by it (registers
S3, S4 and S5 in figure 4.6). When the Control Register is
updated for the order, the value in S5 is copied into s6.
Therefore when a control transfer occurs, the value in S6 is

74

correct and is used to restore SF.

4.2.4 Register-Register Orders

Since all the central registers in MU5 serve dedicated
purposes, the need for register-register transfers occurs far
less frequently than in machines such as the PDP-11 and
System/360. Indeed, transfers between these dedicated
registers are not really compatible wi th a pipeline
organisation. However, it is sometimes convenient to use
orders such as

x + B
B => DO

where B (the Modifier Register) and DO (the Origin Field of
the Descriptor register) are specified as Internal Registers
(section 2.2.3). A general scheme for organlslng these
transfers was therefore implemented. It involves splitting the
order in to two phases, one to obtain the operand from the
source register, and one to carry out the required operation
on the destination register. Since the Control Register can
only be incremented once the second phase is complete, it is
convenient to split the order before the Control Point, and to
use the hold-up and WAIT mechanisms to control the necessary
actions. In retrospect it is doubtful whether the engineering
complications required to implement these orders are justified
by the advantage gained in the software, and a different
solution to the overall problem would be sought in a
re-designed system.

The first action in the pipeline for a register-register
order is the setting of a hold-up digit in the Stage 3
function register, F3 (figure 4.6) ... When the next beat pulse
occurs a control digit is set in F4, the output of which is
fed back to F3 in order to act as a counter and to release the
hold-up. Thus when the first phase of the order reaches Stage
5, the second phase enters Stage 4 and a new order enters
Stage 3. The first phase of the order sets a WAIT condition
(section 4.2. 1) and no further action takes place in PROP
until the appropriate operand is returned via the Central
Highway to register HO. This operand is then copied into
register VU to line up with the second phase of the order in
F4. A beat is then generated, without the Control Register
being incremented, to put the second phase of the order into
Stage 5 where it behaves qS a simple order.

Slightly different actions are required in each of the two
phases for the two examples given above. In the first case,
the first phase of the order is sent to the B-unit accompanied

75

by a control digit which indicates that the '+' function
should be ignored and the value in the B-Register simply
routed on to the Central Highway. The second phase of the
order proceeds normally to the A-unit with the operand being
trea ted as a literal in SEOP. In the second case, the first
phase of the order proceeds to the B-unit, where it is treated
as a normal store order. The second phase is sent to the
D-unit, again accompanied by a control digit which indicates
that the '=>' function should be ignored and the operand
simply loaded into the least significant half of the
Descriptor Register.

4.2.5 Store Orders

An order of the type 'B => name' does not reach the B-unit
until some time after the access has been made to the Name
Store, so that the operand is not immediately available. Thus,
in the absence of any additional technique, a hold-up
equivalent to at least four pipeline stages would be needed to
awai t the return of the operand from the B-uni t. In the case
of store orders involving registers within PROP (NB =>, etc.)
or SEOP (DR =>, etc.) this delay is less important since these
orders occur infrequently and 'ACC => name' orders are dealt
with separately by the Secondary Pipeline (section 5.2.6). For
the 'B => name' order, however, special action is taken in
order to avoid the hold-up.

When a 'B => name' order enters Stage 4 of the PROP
pipeline, the content of the PROP Line Register (PLR in figure
4.6) is preserved, for later use, in an additional register
BW y and the order proceeds normally through the pipeline
wi thout impeding t,hose following, except as described below.
When the function is executed by the B-unit, the Central
Highway copies the resul t into register HO, and sets a WAIT
condition (section 4.2.1), which stops the pipeline before the
next beat is generated. The information held in register BW is
then used to select the appropriate line in the Value Field of
the Name Store and the content of register HO is written into
it. The ~dditional information needed to select one half of
the line for over-writing is held in the F2 Function Register,
together with a 'B => outstanding' digit which indicates that
the BW Register is in use. When the action of writing into the
store has been completed, the 'B => outstanding' digit is
re-set and the pipeline is re-started.

While the 'B· => out stand ing' digit is set, two pipeline
hold-ups can occur, one at Stage 2 and one at Stage 4. The
hold-up at Stage 2 occurs if a second 'B => name' instruction
enters that stage. This hold-up prevents subsequent beats from
prop~gating back beyond the input registers to Stage 3 (F3

76

etc.) and causes dummy orders to be copied into Stage 3. The
hold-up at Stage 4 occurs if any instruction tries to access
the same line in the Name Store as that indicated by BW. This
hold-up prevents subsequent beats from propagating back beyond
the input registers to Stage 5 (F5, etc.) and causes dUrrL.llY
orders to be copied into Stage 5. Both these hold-ups are
automatically released when the 'B => outstanding' digit is
re-set, or if the contents of the pipeline are discarded by
the action of a control transfer before the 'B =>, orde"r has
left the end of PROP. If a control transfer occurs after a 'B
=>, order has left the end of PROP, then the store updating
action must still be carried out since the Control Register
will have been incremented for this order.

4.2.6 Lock-outs

Two types of si tuation occur in which an order reaching the
end of the PROP pipeline cannot be allowed to proceed until an
action arising from a previously issued instruction has been
completed. In such cases the earlier order will have set a
lock-out digit as it left PROP, and the order which must be
held up is copied into F5, but is not issued, until the
lock-out digit has been re-set.

The first type of situation occurs when a B-function
requires a secondary operand access. The order is sent from
PROP to Dr and thence via OBS and Dop to the B-unit. Once an
order has been accepted by Dr, PROP would normally be free to
send orders using primary operands direct to the B-unit, but
these would arrive ahead of the order proceeding through the
SEOP. The B lock-out digit prevents this.

The second type of situation occurs when a comparison order
is sent to the B-unit or A-unit (CaMP or CINC, for example) or
to the D-unit (SCMP). The final action of any of these orders
is the setting of the Test Digits in the Machine Status
Register in PROP, according to the result of the comparison
(zero, negative or overflow). Subsequent orders which copy the
Machine Status Register into store (STACK LINK, for example),
mus t therefore be held up un til the resul t is received. In
addition, further comparison orders must also be held up. This
is not a normal programming si tua tion, but a faulty program
could issue two comparison orders in succession before a
conditional control transfer, and the control transfer
following the second comparison order would proceed on the
result of the first, leaving all subsequent pairs of
comparison and conditional control transfer orders out of
step. Thus any comparison order leaving PROP sets a lock-out
digit and any order copying the Machine Status Register into
store or any further comparison order is held up until the

77

lock-out is re-set by the return of the comparison result.
Control transfer orders are not held up by this mechanism.
Instead, these orders are held up after the operand has been
returned to register HO (but before execution), so that the
Central Highway transfer time can be overlapped with the
execution of the previous comparison order.

4.2.7 Organisational Orders

The Organisational orders, which are all carried out by PROP,
set a WAIT digit (section 4.2.1) as they enter Stage 5 of the
pipeline, thereby holding up the next pipeline beat until the
operand has been returned to register HO and the order
executed. Some of these orders (conditional control transfers
and conditional Boolean setting orders) must also wait for the
return of any outstanding comparison order result to be
returned to PROP before they can be executed, while orders
al tering the base registers, Name Segment Number or Machine
Status Register cannot operate under the normal overlapped
condition of the pipeline. An order altering the content of
the Name Base, for instance, must be completed before a
succeeding order can be allowed into register DF, since it may
use the content of NB to form an address. In these cases the
decoding logic in Stage 0 of PROP sets a 'no-overlap' digit
which prevents further orders from being copied into DF until
the order has been executed.

The manipulation of the base registers is carried out using
the same adder as that used for address calculations (figure
4.6). If the order is of the type 'NB +', then the base forms
one input to the adder, via the same route as that used for
address calculations, and the operand forms the other input,
in place of the name. The adder output is routed back to the
inputs of all the base registers and when the addition is
complete the appropriate one is updated. If the order is of
the type 'NB =', then the actions are exactly as for the 'NB
+' type except that no base register is selected as input to
the adder, so that the operand is effectively added to zero
before being copied into the base register. Clearly the
operand could be copied directly into the appropriate register
in this case, at the expense of fifteen AND/OR selection
gates, together with fan-out gates to drive the selection
inputs. The saving in time thus made would only be about 10%
of the total order time, however, which was not felt to be
sufficient to justify the extra hardware involved.

The control transfer orders are carried out in a similar
way using the Control Adder. Thus for relative transfers the
operand is added to the current value of the Control Register
before the latter is updated, while for absolute transfers the

78

operand is added to zero. Absolute transfers al so update the
Segment Field of the Control Register by copying the operand
directly to the appropriate bits.

All the conditional control transfers run with normal
overlap since, although their actual result is not known until
they are executed, the IBU can attempt to predict their result
(section 4.1), and if it is correct the pipeline will contain
valid functions behind the control transfer when it is
executed. The unconditional jumps, on the other hand, only run
with overlap if the IBU has predicted that they will jump, and
the Sequence bit (section 4. 1 .1) is set to 1. If subsequent
instructions were allowed into the PROP pipeline behind an
unpredicted unconditional jump, then these would have to be
discarded when the control transfer was executed and the IBU
would also have made additional, unnecessary pre-fetches.

4.2.8 PROP and IBU Interrupts

Four program-generated interrupts and one hardware-generated
interrupt can arise from the different stages wi thin PROP.
Action is taken to deal with both internal and external
interrupts at Stage 5, so for each internal interrupt a digit
is carried thr04gh the pipeline from the stage at which it is
generated. Should the contents of the pipeline be discarded as
a result of a control transfer, these unprocessed interrupts
are also discarded. The program-generated interrupts are
'Illegal Func tion' (' B => Literal', for example), 'Name Adder
Overflow' (which can arise either as a result of an address
calculation or the execution of an Organisational order such
as 'NB +'), 'Control Adder Overflow' (an overflow into tne
Segment Field of the Control Register during the execution of
a relative control transfer), and 'Illegal V-store Access'
(which occurs in user mode if an order specifies a V-store
location as its operand). The hardware-generated interrupt
occurs if more than one line in the Associa ti ve Field of the
Name Store indicates equivalence (section 6.1.1). In each case
PROP does not execute the instruction, but sets the
appropriate digit in the Program Fault or System Error V-lines
(section 6.5. 1), and when the order reaches Stage 5, all
orders in the pipeline are discarded and the Interrupt entry
orders are requested from the IBU (section 4.1.2).

Three types of IBU interrupt can arise, one from a hardware
malfunction (multiple equivalence in the Jump Trace) and two
from the use of the pre-fetching mechanism. Thus, the address
counter associated with the Advanced Control Register (section
4.1.2) may produce a carry-out from its most significant
digit, indicating an overflow into the Segment Field (Control
Segment Overflow), or, alternatively, an address generated by

79

the incrementing of the Advanced Control Register may cross a
page boundary and cause a Non-equivalence in the Current Page
Register (CPRNEQ) when the request is sent to SAC. For an IBU
priority request or a PROP request, the latter condition would
immedia tely produce an interrupt, but for an IBU ordinary
request the occurrence of the CPRNEQ is signalled to the IBU
separately.

After either Control Segment Overflow or CPRNEQ has
occurred, the IBU continues to send instructions to PROP, but
the ones corresponding to the illegal or unobtainable
addresses have an interrupt digit set with them. In many cases
a control transfer will have been obeyed before the first
marked order reaches Stage 4 of PROP, and the interrupt will
have been discarded, but should' the interrupt be genuine, the
action taken in PROP depends upon which interrupt is involved.
Thus the Control Segment Overflow interrupt is treated in
exactly the same way as a Control Adder Overflow in PROP,
whereas the CPRNEQ interrupt causes a dummy control transfer
to the current Control Register address, and hence forces an
IBU priority request to the failing address. This then causes
an immediate interrupt when CPRNEQ is detected by SAC.

Multi-length instructions cause an additional problem in
the case of CPRNEQ. The forced priority request is to the
address of the first 16 bits of the instruction, which may be
the last 16-bit word of a page. In this situation the failing
address is accessed by an ordinary request subsequent to the
forced priority request and does not cause an interrupt when
CPRNEQ is obtained. This condition was not catered for in the
original design', and when it first occurred (after many months
of Processor operation) the Processor simply went into a
closed loop, continuously causing control transfers to the
partially obtainable instruction. The problem was overcome by
incorporating an additional flip-flop in PROP. This flip-flop
is set whenever a dummy control transfer occurs for an IBU
CPRNEQ and re-set when an interrupt is detected. While it is
set, all IBU requests are treated as priority requests by SAC,
so that they can all cause a CPRNEQ interrupt to be generated.

4.3 THE CENTRAL HIGHWAY

The Central Highway [17] provides the non-dedicated function
and data paths within the MU5 Processor needed to connect the
operand accessing units with the func tion execution units.
These paths are shown heavily drawn in figure 4.10. The paths
from PROP to Dr, from the B-unit to Dr, from Dop to the A-unit
and between the units of the SEOP are dedicated routes and do
not form part of the Central Highway system. Thus the Central
Highway is principally concerned with loading functions and

80

operands into the B-unit and returning store order values from
the B-uni t or A-uni t to PROP or Dop. The data path consists
basically of two sets of 64-bit wide gates (G1 and G2 in
figure 4.10) which provide all the necessary interconnection
routes. In the quiescent state the PROP input is held open and
all others are closed. Any other input is opened only as a
resul t of requests from the other units and a set of fixed
priorities is invoked in the event of a clash. Thus PROP has
priori ty over Dop at the input to G 1 and the descending order
of priority at G2 is G1, the B-unit and the A-unit.

B-unit ~

I

~ I
PROP Dr r- OBS ,..... Dop r-- A-unit

t !
Figure 4.10 The Central Highway

4.3.1 PROP Requests

Whenever an order enters Stage 5 of the PROP pipeline, the
'data gone" flip-flop is re-set, and decoded information from
Stage 4 is copied into a special register which determines the
destination of the order. Orders destined for the B-unit or
PROP travel via the Central Highway, while Dr is connected by
a separate dedicated highway. A dummy order reaching Stage 5
has no destination and simply causes the generation of a beat
50 ns after the one which brought it into Stage 5.

The B-uni t completes most functions wi thin 45 ns, and can
therefore accept a stream of such functions from PROP at a 50
ns rate. Because some functions take considerably longer,
however, (multiply, f.or example) a handshake mechanism must be
implemented between PROP and the B-unit. Figure 4.11 shows the
minimum hardware needed to implement a handshake system
between two units and a schematic timing diagram of its
opera tion. Assuming a delay of 5 ns per circui t and a cable
delay of 1.8 ns per foot, however, the maximum distance
between units for -a 50 ns operating rate is approximately 8
feet.

HI

- -- L'I
r

.. ' , ,
I

H "

Ready _~=::t.;=;::7------------C--r1 -;;:== __ ~
to I Receiving

H~:;JrJ I
Ir)

Hf:(;f:iv~:

S~d L~~ _________ _

A ~----------------------~

---1.8 L ns----
B ------L-J~----------------------------_-

10 ns
c ----------~-------- -------------

D

_____ ~====1.8 L ns •
--------~

l'tgure 4. 11 A Basic Handshake System

The cable lengths between PROP and the B-uni t are almost
double this figure, however, and so an alternative solution
has been adopted, in which the Central Highway breaks the
handshake mechanism into two handshake loops by making use of
the input buffer of the B-uni t. Thus for a PROP to B-uni t
transfer, a pulse is sent to the Central Highway, which checks
that the B-unit can accept the function and operand. If these
condi tions are satisfied a pulse is sent to the B-uni t to
strobe the input buffer and to set the input buffer busy. At
the same time a pulse is sent to PROP, which can then initiate
a further transfer. As soon as the B-uni t has received the
function it determines whether it is a short or long order. If
it is a short order it sends a buffer free signal to the
Central Highway immediately, to complete the second loop of
the handshake. If it is a long order then the buffer free
signal is not sent until the order has been transferred into
the arithmetic unit proper and been completed. Thus the buffer
free signal indicates that the B-unit can accept the function
currently being sent to it plus a further function after 45
ns. Since PROP can only send orders out 50 ns apart, any order
it sends to the B-unit is guaranteed to be accepted.

In the case of a PROP to PROP transfer, the Central Highway
simply checks that PROP is ready to receive the operand and if
or when it is, the Central Highway sends a control pulse to
PROP which causes the operand to be strobed into its input
buffer (HO) and also returns a signal which indicates that the
transfer is complete. Al though PROP ac tually ini tia ted the
request, HO may nevertheless be busy as a result of the
execution of a 'B => name' order. Since PROP continues with
the processing of subsequent orders once a store order has
been sent to the B-unit (section 4.2.5), the transfer of the
operand back to PROP is initiated by the B-unit (section

R?

4.3.3) and can occur at any time relative to the subsequent
sequence of events in PROP.

4.3.2 Dop Requests

Dop makes requests to the Central Highway in order to send
operands to the B-unit or PROP. Thus when a B-function
requires a secondary operand, the instruction is first sent
from PROP to Dr. After the necessary actions in Dr, OBS and
Dop have taken place (Chapter 5), Dop sends a request pulse to
the Central Highway. Provided that there is no PROP initiated
transfer in progress, the Central Highway sets up the data
path from SEOP into G1 ~nd checks that the B-unit input buffer
is free. When both conditions are satisfied a control pulse is
sent to the B-unit to strobe its input buffer and a transfer
complete signal is sent to Dop. At the same time a pulse is
sent to PROP to re-set the B lock-out digit (section 4.2.6).

A Dop to PROP request occurs when an Organisational order
requires a secondary operand, or when a Name Store
non-equi valence in PROP requires a store word to be returned
from the OBS Name Store (section 6.1.2). It proceeds as for a
transfer to the B-uni t, except that no lock-out is involved,
and as in the case of PROP to PROP request, HO may be busy as
a result of an outstanding 'B => name' order. The Dop to PROP
route is also used when the contents of one of the registers
in Dr is to be written to store or is required for a
register-register transfer (section 4.2.4). This is because
there is no direct route from Dr on to the Central Highway.
Such a route would have considerably reduced the execution
time of these orders, but was impracticable because of pin
limi tat ion problems.

4.3.3 B-unit and A-unit Requests

The B-unit and A-unit make requests to the Central Highway as
a result of executing a store function or a register-register
order (section 4.2.4). A control signal accompanying the
function indicates whether the operand is to be returned to
PROP or Dop. This control signal is preserved with the
function and sent to the Central Highway along with the
request for a transfer. Upon receipt of a request, the Central
Highway checks that no higher priority transfer is in
progress, opens the appropriate data path, and if or when the
receiving unit is free, sends a control pulse to both the
receiving and sending units to complete the transfer.

83

5 The Secondary Instruction
Pipeline

fhe Secondary Instruction Pipeline (figure 5.1) is mainly
<.;oncerned with accessing and processing the data structure
elements specified as secondary operands by means of
descriptors. It consists of three major sections, the D-uni t
[18], the Operand Buffer System [19] and the A-unit. The
D-unit is itself made up of two units, the Descriptor
Addressing Unit (Dr) and the Descriptor Operand Processing
Unit (Dop). Although these two units are actually separated in
the Processor, by the Operand Buffer System (OBS), their
actions are complementary and they will be considered together
in this chapter. The D-unit and the Operand Buffer System can
be considered as a Secondary Operand Unit (SEOP),
corresponding with the Primary Operand Unit in the Primary
Instruction Pipeline.

Modifier
Input

r---~---------------------------I
I I
I I

I

Descriptor
I

Descriptor Operand I
Addressing Buffer ~ Operand J

Unit System Processing I
Unit I

I

I
I
I
I
I
I
I
I
I

~ ---t -----_S~n~a~..?~e~~~O:t ---- - - -----J
I

Descriptor
Input

A-unit

Figure 5.1 The Secondary Instruction Pipeline

Instructions enter the Secondary Instruction Pipeline from
PROP. For an instruction specifying an array element as its
operand, the descriptor supplied by PROP is loaded into the DR
Register within Dr, and Dr proceeds to generate the required
addres,s using the content of the B-Register as a modifier.

84

- This address is then sent to OBS, which, like the Name Store
in PROP, is invisible to the programmer and its only function
is to improve the instruction execution rate. OBS makes the
necessary store request and sends the required 64-bit word to
Dop, which contains masking and shifting circui try to select
the array 'Z!lement from the appropriate position in the word.
Dop is controlled by a combination of a control field
genera ted by Dr (at the same time as the address) and the
original function code, which accompanies the instruction as
it passes through the pipeline. Instructions leaving Dop are
normally sent direct to the A-unit, and exceptionally returned
to PROP or the B-unit via the Central Highway, or to Dr via an
additional, dedicated route. In the case of the store-to-store
functions, the operand processing takes place entirely within
the D-unit. The operation of these functions and of the A-unit
are dealt with in Chapter 7.

5. 1 THE D-UNIT

The basic tasks of the D-unit are comparatively simple. They
involve the formation of the address of an array element, by
the addition of the modifier to the origin address contained
within the descriptor, and the subsequent selection of that
element from within the corresponding store word. These tasks
are complicated, however, by a number of factors, such as the
existence of different descriptor types and different operand
sizes, the possibility of an operand straddling across two
store words, and the need for bound checking. In addition, the
two 64-bi t descriptor registers, DR and XDR, can be
manipulated in whole o~ in part by various functions. Also the
origin and length fields of one or both of these registers
must be incremented and decremented, respectively, during each
cycle of the execution of the store-to-store orders (section
7.4). For both this task and the bound checking operation, it
would clearly be desirable to use a subtractor, separate from
the adder used either to increment the origin or to add the
modifier and orlgln, since the appropriate additions and
subtractions could then proceed in parallel. However, the
alternative solution of employing one adder to carry out these
tasks sequentially appeared in the early stages of design to
require less hardware, and was somewhat regrettably chosen.
This not only decreases the execution rate for array element
accesses, but also leads to some restrictions on the
programming use of the bound checking facility, since a bound
check failure is only detected after the corresponding access
has moved irretrievably along the pipeline. The hardware
structure of the existing Dr unit is thus as shown in figure
5.2.

85

Operand from PROP
Name Address
from PROP

To OBS To OBS 00

Figure 5.2 The Descriptor Addressing Unit

The two descriptor registers each consist of a top and
bottom half (DRT and DRB, XDRT and XDRB). DR is the main
descriptor register, used for array accesses and the
destination address in store-to-store orders. DRB contains the
origin and DRT the type and 'number of elements' field. XDR is
similarly divided and is used to hold the source address
required by some of the store-to-store orders. DR and XDR are
normally loaded from PROP, but may in some circumstances be
loaded from Dop.

The 32-bit modifier is held in register MO, which is loaded
from the B-unit during an array access or from PROP during the
execution of functions such as MOD, SMOD, etc., which
manipulate DR or XDR. The true output of MO is connected to
one side of the 32-bi t adder via a shift network, and the
complementary output directly to the other side. The modifier
normally refers to the position of an element within an array,
regardless of its size, and must therefore be shifted relative
to the origin, which always refers to a byte address. The
complementary output is used in the bound checking operation,
where the subtraction of the modifier from the bound (equal to
the number of elements in the array) is performed by adding
the complement of the modifier to the bound and forcing a
carry into the least significant digit position of the adder.
Following the formation of the address, the output of the
adder is passed on to OBS, via the OBS Address buffer (OA).

86

This address may also be used internally for the updating
action of the store-to-store orders and for array accesses
which involve elements straddling store-word boundaries
(sec tion 5. 1 .2) .

Register DN is a 64-bit temporary buffer used for holding
primary operands (names, literals or internal register values)
associa ted with those ACC functions which do not require a
secondary operand access. These functions pass through the
Secondary Instruction Pipeline en route to the A-unit in order
that the correct program sequence be preserved (section 2.3),
but must not disturb the contents of the descriptor registers
in Dr. The contents of the descriptor registers themselves
al so pass through the primary operand route to 'OBS (via the
OBS Operand Buffer, 00) when required for orders such as 'DR
=> '. A route through Dr is also required for addresses of
names used with ACC functions and held in the OBS Name Store.
This is provided via register NA, which is loaded from PROP
and can be gated as an input to the Dr address adder. Register
DOD is concerned with D-unit interrupts (section 5.1.5).

Orders leaving Dr are forwarded to OBS, which obtains the
operand (section 5,.2) and sends it to Dop. Control information
generated by Dr during the address formation is buffe'red with
the function in OBS, and is supplied to Dop with the store
word. Using this information, Dop selects the required array
elem.ent from wi thin the store word, and in the case of a load
order, routes it to the least significant end of its output
highway, ready to be sent to the appropriate execution unit.
In the case of a store order, Dop updates the appropriate part
of the store word and returns the updated version to OBS.

Dop consists of two sec tions (figure 5.3), one with a
64-bit data path used for operands associated with
computational orders, and one with an 8-bit data path used for
operands associated with the store-to-store orders (section
7.4). The main input register (FR) has masking facilities
which permit the selection of left or right hand masks to any
bit position over the full 64-bit width, while the shift
mechanism allows any circular shift from 0 to 63 bits in
single bit increments. This is achieved by three levels of
logic, the first allowing shifts of 0, 16, 32 or 48 bits, the
second shifts of 0, 4, 8, or 12 bits and the third shifts of
0, 1, 2 or 3 bits. The output of the shifter is copied into
the main output register (GR) if the order is destined for the
A-:uni t or the Dr unit, or gated directly on to the Central
Highway if the order is destined for PROP or the B-uni t. The
route from GR back into FR is used during the execution of
store orders.

87

To CBS

To Highway

From From
CBS Highway

3-Level Shifter

To A-unit
and Dr

Store-to-Store
Processing

Figure 5.3 The Descriptor Operand Processing Unit

Figure 5.4 illustrates the actions taken for a load order.
requiring a 1G-bit operand. The store word containing the
operand is loaded into FR (a), and the shi fter routes the
required 16-bit operand to the least significant end of the
input to GR At the same time, the most significant 48 bits of
the input to GR are set to zero by inhibiting the appropriate
section of the data path in the third leve.l of the shifter
(b). GR is strobed when sufficient time has elapsed for the
shifter outputs to settle, following the receipt of a store
word in FR, and when the previous order in GR has been
accepted by another unit.

-------Store Word from CBS -----~

I
(a) FR

(b) GR

To Execution Unit

Figure 5.4 Dop Actions for a Load Order

88

The actions for a store order are more complex. The order
first passes through Dop as if it were a load order, en route
to the appropriate execution unit, and is only processed by
Dop when the execution unit indicates that the required
operand is available. The operand is received from the Central
Highway (figure 5.3) and is copied into the least significant
end of register FR (figure 5.5 (a)). It is· then shifted to its
eventual alignment in the store word, copied into GR (b) and
copied back from GR into FR (c). The store word of which it is
to form part is then sent again from OBS and selectively
copied into FR around the operand, using the masking facility
(d). The updated version of the store word is then returned
from FR back to OBS.

Operand from Execution Unit

l
(a) FR

(b) GR

(c) FR

-------Store Word from OSS ------

l
rMask-j

(d)

Updated Store Word to OSS

Figure 5.5 Dop Actions for a Store Order

5.1.1 Vector Accesses

The actions taken within Dr for secondary operands depend upon
the instruction type and the descriptor type. The instruction
can specify two pairs of al ternative actions giving rise to
four variations. Thus the access mayor may not .involve
modification ([B] or [0] respecti~ely)~ and the descriptor may
be loaded with the instruction or may be the one currently

89

held in the DR Register (S[] or D[] respectively) .. The actions
corresponding to the different descriptor types (figure 5.6)
fall into three main categories, vector accesses corresponding
to Types a or 2, string accesses corresponding to Type 1
(section 5. 1 .2) and special actions corresponding to Type 3
(sec tion 5. 1 . 3) •

o
Type 0/2

Type 1

Type 3

8

Size Spare

Sub-type

Bound

Be
us
Spare

Length

Bound

31 32

Origin Byte Address

(a)

Origin Byte Address

(b)

Origin Byte Address

(e)

Figure 5.6 Descriptor Formats

63

For a Type a or 2 access the basic action is the addition
of the shifted Modifier (or zero in the case of an unmodified
access) to the Origin, followed, in the case of a modified
access, by the subtraction of the Modifier from the Bound. The
amount of shift is controlled by the Size bits held in
register DR, or may be inhibited if the Unscaled digit (US in
figure 5.6(a» is set. If an 8-bit operand size is specified,
for example (size bits = 011), or if the unscaled digi tis
set, the Modifier is added directly to the Origin; if a 64-bit
operand size is specified (size bits = 110) and the Unscaled
digi t is not set, the Modifier is shifted up 3 bit positions
relative to the Origin; if a 1-bit operand size is specified
(size bits = 000) the Modifier is shifted down 3 positions. In
the latter case the 3 least significant digits do not pass
through the adder, but are copied into the output buffer as
'Dop bits'.

The Dop bits are carried through OBS together wi th the
function digits and control the operation of Dop. Figure 5.7
shows the Dop bits used to control the shifting and masking in
Dop. The first nine of these define the positions of the most
significant and least significant ends of the operand. Thus
the Most Significant Byte Address digits (MSBA) refer to the
arithmetically most significant (left hand) end of the
operand, and are simply the least significant three digits
from the adder. Since the descriptor origin is a byte address,
and since OBS is only concerned with pr6viding 64-bit words to

90

Dop, only the most significant 29 digits from the adder are
required as a store address. The Most Significant Bit Address
digits indicate the position of the most significant bit of
the operand within the most significant byte and only take on
non-zero values for vector accesses to 4-bit or 1-bit
elements. For these sizes the Modifier is shifted down by 1 or
3 bit positions respectively, and the bits shifted below the
adder constitute the Most Significant Bit Address digits. Thus
for a 4-bit access, bit 31 of the Modifier defines which half
of the byte is to be selected, and for a 1-bit access bits 29,
30 and 31 of the Modifier define the single bit to be used.

°2 } Most Significant Byte Address

4
3

5

}
Most Significant Bit Address

8

6
7

}
Least Significant Byte Address

Figure 5.7 Table of Dop Bits

The Least Significant Byte Address digits (LSBA) refer to
the arithmetically least significant (right hand) end of the
operand. For operands of less than 16 bits only one byte is
ever necessary, and the LSBA digits are identical to the MSBA
digits. For 16-bit and 32-bit operands, which must lie on
16-bit or 32-bit word boundaries respectively, it can be seen
from figure 5.8 that in the 16-bit case, the least significant
of the LSBA digits must always be 1, while the other two must
equal the corresponding MSBA digits, and that in the 32-bit
case, the two least significant LSBA digits must always be 1,
and the most significant LSBA digit must equal the
corresponding MSBA digit. For 64-bit operands, which are
aligned on 64-bit word boundaries, the LSBA digits are all set
to 1.

Once the address and Dop bits have been formed by Dr, they
are copied into the output buffer registers, and a request is
sent to OBS, thus allowing Dr to proceed with the bound check.
Normally, asynchronous communication between two units would

91
D

require that the output buffer be set busy at this point, and
not freed until OBS acknowledged acceptance of the request. In
order to overcome the 30 ns communication delay caused by the
physical separation of Dr and OBS, however, OBS guarantees
al ways to accept a first request wi thin 80 ns of its being
sent. Thus Dr records the fact that it has sent one request to
OBS and declares the output buffer free immediately. The
output buffers can then be overwritten if necessary, and a
second request sent (provided it is not less than 80 ns after
the first) before OBS acknowledges receipt of the first
~equest. The first request must be acknowledged, however,
before the buffers can be overwritten for a thi~d request.

---------64-bit Store Word --------
16-bit

Operand

Least Significant Byte Address

Most Significant Byte Address

----32-bi.t Operand-

10 a 010 a 11 01010 1 1~ 01 10 111 011111
Most Signifkaot By" Add"" - J

Least Significant Byte Address

Figure 5.8 Type O· Operand Byte Addresses

The' bound check . involves determining whether or not the
Modifier lies in the range

o ~ modifier < bound

The check against the implicit lower bound of zero simply
involves checking the sign of the Modifier, while the check
against the explicit upper bound involv@s a full subtraction.
Thus the Bound is routed toone side of the Dr adder, the
inverse of the' Modifier to' the other side, and carry forced
into the least significant digit. When the subtraction is
complete, the adder output is tested for a zero or negative
result, and provided that neither of these conditions, nor a
negative modifier value is detected, Dr is ready for next
instruction. If any of these fault conditions is detected,
however, the Bound Check Fail digit is set in the DOD Register
(section 5.1.5). Unless the corresponding inhibit is set in
DOD, an interrupt is signalled to PROP, which takes
appropriate action (section 4.1.2). The whole action of
checking the Modifier can itself be inhibited if the Bound
Check Inhibit digit (BC in figure 5.6(a)) is set. In this

92

case, and in the case of an unmodified access, Dr is ready for
the next instruction as soon as the address and Dop bits have
been copied into the output buffer.

5.1.2 String Accesses

The Type 1 string descriptor (figure 5.6(b» differs from the
Type 0 vector descriptor in that only 8-bit (1-byte) elements
may be specified, and a length (equal to the number of bytes)
is specified instead of a bound. This type of descriptor is
used principally in conjunction with store-to-store functions,
but may also be used with computational functions to handle
items of variable length within a data structure (section
2.2.4). In the case of store-to-store orders the strings are
handled one byte at a time, and can therefore be of any length
up to the maximum allowed by the 24-bit length field of the
descriptor. In the case of computational orders, 64 bits (8
bytes) at most can be handled, and if the string length is
greater than 8 bytes, only the first eight are actually
supplied. A further distinction between Type 1 and Type 0
descript~rs is that in the Type 1 case, operands are only
obliged to start on byte address boundaries, so that a 32-bit
(4-byte) operand for exa.mple, does not have to start on a
32-bit word boundary and ffiQy even straddle a store-word
boundary. In this case two st9re words must be accessed and
Dop selects and combines the appropriate parts of each.

The actions taken in Dr for a Type 1 are initially similar
to those for a Type 0 access, involving the addition of the
Origin and Modifier to form, in this case, the address of the
most significant byte of the operand. The formation of the
address of the least significant byte requires a second
addition in which the Length (or 8 if the Length is greater
than 8) is added to the address of the most significant byte.
Until this addition has been performed, by routing the adder
output back to one input and the Length to the other (figure
5.3), no request can be sent to OBS. This is because both OBS
and Dop require a control digit, the Extra Store Word (ESW)
digi t, to be sent with the request if the operand crosses a
store-word boundary. If a store-word boundary is not crossed,
the processing of the order in Dr is finished as soon as this
request has been sent to OBS. If a store-word boundary is
crossed, a second OBS request is made.

The value obtained after the second addition actually
addresses the first byte beyond the required operand (figure
5.9), and the check for store-word boundary crossing must take
this into account. The LSBA digits (figure 5.7) must also be
set up correctly.

93

---------lst 64-bit Store Word -------~

---5-Byte---

1000100110 010 111001101111011 1\

Origin + Modifier = m.s. Byte Address =oJ
---------2nd 64-bit Store Word -------

----Operand---

Origin + Modifier + Length

Figure 5.9 Type 1 Operand Byte Addresses

....... I-------lst Store Word from OBS -----l.~

(a)
FR

....... I-------2nd Store Word from OBS ----~.~

-Mask--

(b)
FR

(e)
GR

l
To Execution Unit

Figure 5.10 Dop Actions for an ESW Load Order

The actions taken in Dop for an ESW load order involving an
operand such as that illustrated by figure 5.9 are shown in
figure 5.10. The first store word is loaded into FR from OBS
(a), as in the single word case (figure 5.4), but before being
shifted into GR, the second store word is selectively copied

94

over it with the appropriate operand bytes being protected by
the masking facility (b). FR is then shifted into GR, with
zeros in the byte positions arithmetically more significant
than the most significant byte of the operand (c). Since the
shifter operates circularly, shifting the least significant
bytes of the operand to the least significant end of GR aligns
all the bytes correctly. As in the case of a single word
access, the actions for an ESW store order are correspondingly
more complex.

5.1.3 Special Descriptor Accesses

The Type 3 descriptor format (figure 5.6 (c)) is basically of
the vector type, but bits 2-7 are used to specify the
following sub-types, each of which involves some special
action

Real Address
Read/Store Direct
Read & Mark
Indirect
Escape

The actions in Dr for Real Address, Read/Store Direct and Read
& Mark descriptor accesses are similar to those for Type 0
accesses, except that a fixed operand size of 64 bits is
assumed. Real Address and Read/,Store Direct accesses cause
spec ial ac tion in OBS and SAC, however (sec tions 5.2. 7 and
6.4), and Read & Mark accesses cause special actions in OBS
and in the Local and Mass Stores (section 6.6.2).

The Indirect Descriptor causes t~e 64-bit operand addressed
by its Origin to be accessed from store and then loaded into
DR and treated as a new descriptor. This new descriptor can
itself be Indirect, in which case the whole action is
repeated. Since this action can occur any number of times, the
system must be capable of being interrupted and re-started at
any point in the event of a CPR non-equivalence (CPRNEQ). At
such a re-start the original order is re-issued from PROP, but
the eXisting descriptor in DR must be used; rather than the
original one, so that an S[] order must be treated as a D[]
order. This is achieved through a special bit contained in the
link preserved at the time of the interrupt, and automatically
re-set after the order has been re-issued to Dr.

All descriptor accesses are initiated in the first instance
by the setti.ng of a 'START' flip-flop and either an 'S[]' or a
f D[] t flip-flop, and during the course of the corresponding
actions in Dr, these flip-flops are all re-set. For an access
using an Indirect Descriptor, Dr sends a request for the

95

64-bit operand to OBS with the function digits modified to
appear as 'D =', and then itself sets the 'START' and 'S[]'
flip-flops again. No .immediate action occurs, however, since
an 'Operand Outstanding' flip-flop is also set. When the order
reaches Dop, the operand is returned to Dr, and the 'Operand
Outstanding' flip-flop is re-se~. This allows the forced S[]
request to be started. If the new descriptor is also Indirect,
the cycle is repeated, but when a String or Vector Descriptor
is encountered, the forced request is treated normally, with
modification if appropriate, and sent to OBS accompanied by
the origi.nal func tion digits.

When an attempt is made to access an operand by means of an
Escape Descriptor, Dr initially carries out its normal Type 0
actions, but instead of sending a request to OBS, it sends a
special control signal to PROP, sets an ' Escape' flip-flop
internally, and terminates the order. PROP abandons the order
and signals the IBU to send the two fixed instructions
(section 4. 1 .2)

STACK LINK
JUMP

literal 0
D[O]

which in effect force a procedure call to the address given by
the first element in the vector addressed by DR. The software
is free to store 'parameters' in subsequent elements. Either
of the forced instructions could cause a CPRNEQ interrupt, and
the detail of the mechanism has to guard against the errors
this could produce.

The Escape Descriptor is used principally in Algol programs
to evaluate 'thunks' (section 2.2.4). The associated
instructions evaluate the required operand, set up a Type 0
descriptor in DR which addresses it, and exit to the link,
thus causing a return to the calling instruction. This time,
however, it is executed as a D[] request rather than an S[]
request, due to the presence in the link of the same bit as
that used for an interrupted Indirect descrip~or access. The
same effect can also be achieved as a result of using the MOD
order (section 5.1.4), rather than by an S[] request, in which
case the Escape Descriptor mechanism is invoked during the
first execution of the order instead of the actions required
by MOD. When the order is re-executed, DR contains a Type 0
descriptor and the MOD order is executed normally.

5.1.4 Structure Access Orders

In order to allow flexibility in accessing data structures, a
number of orders are provided for direct manipulation of the
Origin, Bound and Type fields of the DR and XDR registers.

96

Typical of these are the MOD order, in which the operand is
used to increment the origin and decrement the Bound in DR,
and the XMOD order, which operates in the same way on XDR. In
either case, a bound check is carried out as for a descriptor
access and an interrupt is generated if the check fails.

More complex than the MOD type of order are the SUB 1 and
SUB2 orders. These are concerned with accessing structures
defined by 'dope' vectors (section 2.2.5), and each involves
the accessing and manipulation of the dope vector 'triples'.
From a performance point of view, these orders are little
short of disastrous, since little or no overlapping can occur
in the pipeline during their execution. In the sequence common
to both SUB1 and SUB2

B - XD[O]
B * XD[1]
DB = XD[2]
MOD B
XMOD 3

the individual orders are created by Dr, which performs
several cycles of operation in order to generate the necessary
function and operand requests to OBS. An immediate problem
which arises is that anyone of the three vector accesses
could cause a CPRNEQ to occur, and once the order has been
partially executed it cannot be re-started from the beginning.
This and other problems associated with these orders have been
solved in MU5, but with little elegance, and the details are
best left to the reader's imagination.

5.1.5 D-unit Interrupts

Four different types of interrupt can arise within Dr and Dop
as a result of descriptor accesses or the execution of
structure access and store-to-store orders. They are

Bound Check Fail
Non-Zero Truncation
Short Source String
Illegal Access

Should anyone of these errors occur, a corresponding digit is
set in the DOD register (figure 5.2). In the Illegal Access
case, the setting of the digit in DOD always causes a 'D
Interrupt' signal to be sent to PROP, while in the other three
cases this signal can be inhibited by the presence in DOD of a
corresponding 'Interrupt Inhibit' digit.

97

The Bound Check Fail has already been discussed (sections
5. 1 . 1 and '5. L 4). A Non-Zero Truncation (NZT) error arises if
an array element being returned to store exceeds its specified
length~ Dop detects this situation and sets the NZT digit in
DOD. A Short Source String (SSS) error cah arise during the
execution of the SLGC store-to-store order (section 7.4), in
which the bytes of a source string and a destination string
are logically combined and returned to the destination string.
If the source string runs out before the destination string
has been filled, the SSS digit is set in DOD and the order is
termina.ted.

Illegal Access interrupts can be generated in a number of
ways. A descriptor access using a Type 0 descriptor can
specify a 128-bit element, for example, but the hardware can
only d-eal with elements up to -64 bits in length, and an
interrupt would be signalled in this case. The store-to-store
orders', which are concerned with manipulating strings of
bytes, are obliged to use Type 1 string descriptors, and
specifying any other type therefore generates an interrupt.
Among the Type 3 descriptors, the Real Address and Read/Store
Direct types are reserved for use by the Operating System and
an interrupt occurs if an attempt is made to use either of
these types in a user program.

5.2 THE OPERAND BUFFER SYSTEM

The Operand Buffer System (OBS) is invisible to user programs
and exists simply to match the average accessing rate of array
elements to the average rate of execution of instructions in
the A-unit. Since array processing usually involves large
arrays, OBS does not attempt to buffer large amounts of data
in the hope that it will be used repeatedly. Instead it
streams requests from its input stage out to SAC and queues
the functions as they await the return of their operands from
store. At the output stage of OBS these functions are
re-connected with the stream of store words returning from
SAC. In order to implement this scheme, however, sufficient
operand buffers must be provided to accept data from all
outstanding store requests. Because the buffer si~e of 128
bits is larger than the average operand size, and because of
the sequential nature of many array calculations, these
buffers may frequently contain the operands corresponding to
new requests from Dr. Thus by performing an associative search
on these buffers at the input stage of OBS, many store
requests can be avoided. The eight buffers incorporated into
OBS for this purpose constitute a Vector Store. In addition,
for the reasons outlined in section 2.3, OBS contains a Name
Store, and since literal operands must sometimes be sent
through the Secondary Instruction Pipeline to the A-unit, a

98

Literal Store is also needed (figure 5.11).

A request sent to OBS from Dr normally consists of a
function, accompanied by control information, and either a
valid address without an operand (a vector or name address,
for example), or a valid operand such as a literal, which has
no address. In the latter case, the operand is simply written
into the Li teral Store, while in the former case the address
is looked up in the Vector Address or Name Address Store, and
the appropriate action taken according to whether or not a
match is found.

Dr

r-- --.-----
I OperanL
I Buffer

------------------- -1
r-- I

I System (OBS)
Queue Bypass I

I
I
I
I
I

I

Functions

]
I

Vector
Address
Store
Name
Address
Store

ACC Function Queue r----L.-...,
____________ Vector

Literal Operands

Dperands

Name
Operands

Literal
Operands

l

____________________ ..J

Operand Address to SAC Data from SAC

Dop

Figure 5.11 Overall Diagram of the Operand Buffer System

The function queue is only used for ACC instructions. Thus
if an instruction sent from Dr is destined for the A-unit, it
is written into the Queue, and when it reaches the output of
the Queue, the Operand Store provides the appropriate operand
store word to be sent to Dop with the function. If the
function is destined for the B-unit, PROP or Dr, the Queue is
bypassed by copying the function into the Queue' Bypass Line,
which allows it to overtake ACC functions in the Queue. This
is done for two reasons; firstly the B-unit, PROP and Dr are
si tua ted at earlier positions in the Processor pipeline and
are mainly concerned with supplying operand addresses to OBS
in order to keep the A-unit (which is executing the 'useful'
part of the program) busy, and al though they use secondary
operands relatively infrequently, there would be no point in
queuing these functions behind ACC functions. Secondly, in the
case of an ACC order in the Queue causing a CPRNEQ, this order
will lodge at the head of the Queue and will be joined by

99

subsequent ACC orders released by PROP before action is taken
on the CPRNEQ interrupt. The CPRNEQ procedure itself requires
access to secondary operands for use with B functions, and
must therefore be able to bypass the Queue when the latter is
blocked.

The normal operation of the Operand Buffer System can be
considered in terms of a number of functional control
processes as shown in figure 5.12. The Input Process receives
requests from Dr and decodes the function. It presents the
operand address to the Virtual Address Store and makes a new
entry when no match is found. The function, together with the
appropriate Operand Store line number, encoded as a 'Tag', is
then written into the Queue or Bypass Line. The Output Process
reads a function from the Queue or Bypass Line and passes it
on to Dop when its operand is available from the Operand
Store. Data transfers into the Operand Store from SAC, Dop or
Dr are also made under the control of the Output Process. The
Store Request Process provides the interface with SAC, and
organises transfers to and from SAC on behal f of other OBS
processes (section 6.2.3). The Buffer Line Selec tion Process
(section 6.2.2) selects the next line to be freed when a new
entry into the Virtual Address Store is made by the Input
Process. If the line to be freed has been altered since it was
read from Local Store, then its contents are read out and the
Local Store is updated before the line is overwritten. In the
detail which follows it will be seen that much complexity
arises out of the possibility of any store access causing a
CPRNEQ interrupt. The Organisational Facilities of OBS
(section 6.2.4) are concerned mainly with the actions taken
following the occurrence of such a CPRNEQ interrupt and are
controlled by means of V-lines.

Dr

Input
Process

Output
Process

Dop,

Figure 5.12 OBS Control Processes

100

SAC

5.2.1 The OBS Input Process

The Input Process controls the actions of the first two stages
of OBS, which are mainly concerned with finding or creating an
entry in the buffer stores for the operand associated with
each order (section 6.2. 1) . The position of the entry is
encoded as a Tag which is then carried through OBS, and if
necessary SAC, with the order. In the output stage of OBS this
Tag is used to obtain the operand from the buffer stores, and
in the case of an order requiring an operand from SAC, the Tag
is also returned with the corresponding store word, enabling
the correct entry to be made into the Operand Store.

In the case of a Ii teral operand, a new Tag is always
generated, and as well as being sent to the Queue or Bypass
Line, it is also used to make an immediate request to the
Output Process for the literal to be written into one of the
Literal Buffers. A better organisation of the system would
have been to have the Literal Buffers as part of the Queue, in
order to avoid the time penalty involved in writing into the
buffer store, but cost and platter space considerations
prevented this.

For orders destined for the Bypass Line, the Control
Register in PROP is not incremented until and unless CPR
equivalence is obtained. lhese orders are abandoned by OBS in
the event of a CPRNEQ, and are therefore prevented, by a
'Function Hold', from proceeding beyond the input stages until
the check for CPR equivalence has been successfully completed.
Certain Queue functions are also held up and may be abandoned
in this way. An ACC COMP order, for example, returns a result
from the A-unit to the Test Digits in the Machine Status
register in PROP, and since the latter is preserved by the
interrupt entry instructions, but cannot be written to store
while a COMP result is outstanding (section 4.2.6) such an
order must not be allowed to lodge in the Queue as a result of
a CPRNEQ.

5.2.2 The Queue Read/Write Process

To avoid long delays in OBS in cases where functions pass
through a largely empty Queue, the Queue is implemented as a
six-line random access store addressed by two counters, the
Queue Read Counter and the Queue Write Counter (figure 5.13).
Information is entered into the 'tail' of the Queue at the
location addressed by the Queue Write Counter, and is read out
again when that location has become the 'head' of the Queue,
as a result of being addressed by the Queue Read Counter. Thus
if the Queue is empty when a new request is received, both
counters address the same location and the time for the

101

function to pass through OBS is around 200 ns. If the Queue
had been organised as a straightforward pipel:i.ne, this time
would have been around 800 ns. The operation of the Queue
Counters is organised by the Queue Read/Write Process, which
accepts read requests from the Output Process and write
requests from the Input Process (figure 5.12).

Queue
Read
.counter SRM RM

WM

Address
Buffers

Normal
RS

WS

Input to Output from
Queue Queue

Figure 5.13 The Queue Function Addressing System

Queue
Empty

Queue
Full

A write operation is requested by the Input Process when a
function is ready to be -transferr'ed into the Queue. Provided
that the Queue is not full, and that a read request (which has
higher priority) is not outstanding, the write sequence is
started as soon as the Queue Read/Write Process has finished
its previous cycle of operation. The address of the tail of
the Queue is held in the Write Counter Slave register (WS in
figure 5. 13), which is therefore selected for decoding. The
new function, Tag, and Dop, bits are then written into the
line addressed by WS 1 and at the end of the cycle WS is
updated from the Write Counter Master WM. WM is incremented at
the start of a write cycle to allow a check for the 'Queue
Full' condition to be carried out in parallel with the write
opera tion . The Queue becomes full if WM addresses the same
location as the Second Read Counter Master (SRM) which
normally indicates the position of the function which was last
read from the queue, and which may be read again following a
CPRNEQ (section 5.2.5). When Queue Full occurs, further write
cycles are inhibited until a read cycle causes SRM to be
incremented, and the Queue Full condition to disappear.

Read cycles of the queue are initiated by the Output

102

Process, which specifies whether or not the read count should
advance for a particular cycle. This enables a read/re-cycle
to take place when the operand required by a function read
from the queue is found to be unavailable. If the operand is
available, a counter advance is required, and the position of
the next line to be read is specified by the Queue Read
Counter Slave RS. In this case RS is normally copied into both
read counter masters RM and SRM.. If the operand is
unavailable, no advance is required, and since the next line
to be read is already specified by RM, no copying takes
place.

During a read cycle, the contents of RM are selected to
address the Queue. RM is also compared with the Write Counter
Master WM, and if a match is found, the 'Queue Empty'
condition occurs. Queue Empty indicates that the line
currently being read has not yet been filled by the write
sequence, and hence its contents are non-valid. When
appropriate, RS is incremented at the end of the cycle to
indicate the line to be read by the next cycle.

5.2.3 The OBS Output Process

The Output Process controls the interface which passes orders
from OBS to Dop, and organises all accesses to the Operand
Store. The issuing of an order from OBS to Dop involves
extracting a function from the Queue or Bypass Line and
passing it on to Dop with the appropriate store word read from
the Operand Store. The Operand Store may be accessed from
various sources (section 6.2), so that Operand Store lines may
be filled, altered, used to update the Local Store, etc.

Provided that the Queue is not empty, the Output Process
normally requests another read cycle of the Queue Read/Write
Process as soon as action on the preceding function has been
completed. When a Queue Read/Write Process response indicates
that the Queue has been read, the Output Process action
starts. The Queue Tag is selected and is used to address the
Operand Store for a read cycle, and to access the
corresponding digit in the 'Full Register' (section 6.2). The
Full Register contains one digit for each line in the Operand
Store indicating whether or not its contents are valid.
Following a non-equivalence in the Virtual Address Store, for
example, it indicates whether or not the store word has been
returned by SAC. If the Full digit is 0 for the selected line,
a second request is made to the Queue Read/Write Process, but
the- Queue Read Counter is not advanced, so that the same
function is read from the Queue as before. The Output Process
cycles again, and the sequence is repeated until the required
store word is found to be available. The store word is then

103

read out and sent to Dop together with the function and Dop
bits. The next cycle of the Queue Read/Write Process will then
advance the Queue Read Counter, so that the next function in
sequence is extracted from the Queue.

In the case of a Bypass function, a request for action is
made to the Output Process as soon as a function is
transferred into the Bypass Line. The action taken by _ the
Output Process in this case is similar to that for a function
from the Queue so that if the Output Process finds that the
store word required by the Bypass -function is available, it
reads it out and sends it to Dop, together with the function
and Dop bits, whereas if the store word is not available, it
re-cycles until the store word becomes available, and then
sends the function, Dop bits and store word to Dop.

5.2.4 Queue Management after a CPRNEQ

When a store request made to SAC from any unit in the MU5
Processor causes a CPRNEQ, subsequent requests from all units
are abandoned by SAC. Thus OBS requests subsequent to one
causing CPRNEQ are not answered, and the first such function
to reach the head of the Queue effectively blocks the Queue to
all subsequent Queue functions. Meanwhile, however, SAC
informs Dr and PROP of the CPRNEQ and these units take
alternative action. Functions trapped in the Queue cannot be
re-executed from PROP, since the Control Register is
incremented for them as soon as they are accepted by Dr.
Furthermore, it is essential that in this situation it should
still be possible to execute Bypass functions, so Dr and the
input stages of OBS should not contain Queue functions after
the Queue has been blocked. For this reason action is taken on
every request from Dr to OBS to regulate the number of entries
in the Queue.

Thus whenever action is initiated in Dr for a Queue
function" the contents of a 'Queue Gauge' are raised up by one
position, or by two in the case of a String Descriptor access
crossing a store-word boundary. The Queue Gauge is lowered by
one whenever a CPRNEQ reply is received from SAC in response
to either a Queue function access or a 'CHECK ONLY' request. A
CHECK ONLY request is one made specially for this purpose by
OBS to SAC when the operand for a Queue function is already in
the OBS buffers. Once such a request has passed the CPR
equivalence checking stage in SAC and a reply has been sent to
OBS, it is abandoned. Thus, since any new order entering Dr
can cause one or two Queue entries to be made, an output is
taken from the Queue Gauge indicating whether or not the OBS
Queue contains room for two or more new entries. If, at the
~nd of the current order in Dr, there is room for two more new

104

entries, the order terminates normally and a new order can be
accepted. If there is not room for two more new entries, one
of three si tua tions may occur. If the next order does not
require a Queue entry, the current order terminates normally
and action for the next order is begun. If the next order
requires a Queue entry, termination of the current order is
held up until sufficient entries have been deleted from the
Queue Gauge, or else a CPRNEQ reply is received. In the latter
case the next order , which ~as not yet been accepted by Dr,
and for which the Control Register has therefore not been
incremented, is abandoned, and the interrupt entry sequence
(section 4.1.2) is entered instead.

The address causing CPRNEQ is available as a V-line in SAC
(section 6.4.3) and is examined by the CPRNEQ interrupt
procedure which establishes the location of the required block
using only primary operands or bypass functions. If this block
is currently contained in the Local Store, then it is only
necessary to set up a CPR. If the required block is currently
contained in some other level of the storage hierachy,
however, then a block transfer is required between storage
levels before a CPR can be loaded (section 9.3).

If a CPR can be loaded, the interrupted process can be
re-entered immediately. The OBS store requests which were
abandoned when the CPRNEQ occurred are then remade under the
control of a 'Re-start' sequence (one of a set of
organisational commands controlled by the V-store mechanism
(section 6.5)), after which the execution of the process can
continue. If a block transfer is required as a result of the
CPRNEQ, then a significant delay is involved, and a change to
another process is necessary if efficient use is to be made of
the Processor. In order to effect this change, the Queue must
be cleared, and the functions of the interrupted process
preserved, so that when the Processor is ready to resume the
in terrupted process, the Queue can be restored to its former
state, ready for the Re-start sequence. Two further
organisational commands, the 'Dump' and 'Undump' Sequence are
used by the Operating System to preserve and restore the Queue
for this purpose. The Dump may take place to any address
specified by the software, and a number of dumped queues may
thus be in store at any time.

5.2.5 Double Access Orders

Double access orders originating in the Secondary Instruction
Pipeline (cf. double access orders originating in the Primary
Instruction Pipeline (section 4.2.4)) are of two types, those
involving one operand which, due to the addressing flexibility
available through the Type 1 descriptor mechanism, is partly

105

contained in one 64-bit store word and partly in an adjacent
store word (section 5. 1 .2) and those involving two operands
which constitute the source byte and destination byte
respectively of a store-to-store order pair (section 7.4). In
either case, Dop can only process these double accesses. as an
entity, and special action is required in the case of CPRNEQ.

If the access is for an ACC order, then the Input Process
enters the two phases of the order into the Queue normally. If
a CPRNEQ occurs for the first access, then this will cause
both accesses to lodge in the Queue, and the normal techniques
used for Queue management after a CPRNEQ can be applied. If a
CPRNEQ occurs for the second access, however, then the first
order will have been issued to Dop, but must be abandoned, and
must be re-issued when the Queue is re-started. These actions
require the use of the two Read Counter Masters, RM and SRM,
(figure 5.13), one of which records the position in the Queue
of the first phase of the order, while the other addresses the
second. RM and SRM normally advance synchronously when
functions are read from the Queue, but when the first phase of
a double access order is read, its address is frozen in SRM,
until the second phase has been read using RM, which continues
to increment normally. If the two phases are issued to Dop
wi thout interruption, RM and SRM are resynchronised when the
next function after the double access pair is read and RS is
copied into RM and SRM. In the situation where the second
phase causes a CPRNEQ, the Output Process receives a 'Run
Down' signal from SAC, after the first phase has been sent to
Dop, indicating that no further operands will be returned
(section 6.4.3), and it therefore sends a control signal to
Dop which causes the first phase of the order to be abandoned.
The Output Process also makes a last read request to the Queue
Read/Write Process, accompanied by a control digit which
causes SRM to be copied into RM. The counters are thus
resynchronised and address the first phase of the double
access order again. The first phase is then ready to be
re-issued to Dop when the process is re-started, or is
available to the Dump Sequence for preservation and subsequent
restoration and re-issue by the Undump and Re-start Sequences.

5.2.6 Store Orders

As in the case of orders which write to a primary operand
(sec tion 4.2.5), special action is taken to deal with store
orders in the Secondary Instruction Pipeline. In this case,
however, the commonly occurring store orders are 'ACC => name'
and 'ACC => vector', rather than 'B => name'. Thus, just as a
'B => name' order does not reach the B-uni t until some time
after the required access has been made to the PROP Name
Store, an 'ACC =>, order does not reach the A-unit until "some

106

time after the required access has been made to the OBS'
Operand Store. A similar arrangement to that in the Primary
Instruction Pipeline is used to avoid the consequential
hold-up.

When an 'ACC =>, order is sent from OBS to Dop, the Dop
bits and the Tag are preserved in an AW register and the Full
digit of the corresponding line in the Operand Store is set to
O. When the operand becomes available from the ACC it is
copied into the Dop input buffer and a request is made to the
OBS Output Process. The Tag held in AW is used to re-access
the Operand Store and the required 64-bit store word is sent
to Dop, together with the Dop bits .held in AW. Dop performs
the appropriate merging of the store word from OBS and the
operand from the ACC (section 5. 1) and then signals to OBS
that it requires to write the altered store word back to the
Operand Store. This action is performed by the Output Process,
again using the Tag in AW to address the Operand Store. The
Full bit of the line, which was cleared when the store order
was originally sent to Dop, is now set to a 1. As long as the
Full bit is zero, any subsequent order trying to access the
line is held up at the output stage of OBS, just as if the
store word had not been returned from SAC following a
non-equivalence in the Virtual Address Store.

5.2.7 Special Descriptor Actions

Special action is necessary in OBS for Real Address,
Read/Store Direct and Read & Mark descriptor accesses, since
it is a requirement of these accesses that no entry should be
left in the OBS store. The In~ut Process proceeds normally for
these accesses, and enters the address into the empty line in
the Name part of the Virtual Address StQre. The free name line
is used because each of these Descriptors refers specifically
to a 64-bit quantity, and' the use of the line is to be
transi tory. The appropriate request to SAC is then made but
the order is held up in the input stages. In addition', the
action of the Buffer Line Selection Process, which normally
creates a new empty line at this point, is suspended. Provided
that CPR equivalence is obtained from SAC, the order is
released by the Input Process, enters the Queue or Bypass line
as appropriate, and is then passed on to Dop as soon as the
required operand is received from SAC. When the normal OBS
action for this order is complete, including., if necessary,
the receipt of the response to a write order, the Buffer Line
Selection Process is allowed to continue its line freeing
sequence with the constraint that for the next name access it
must re-allocate the line used for ~he special descriptor
access.

107

6 Store Organisation

During the running of a process in the MU5 Processor, the
information referred to by the virtual addresses it generates
may exist in anyone of the several real stores which make up
the MU5 storage hierarchy (figure 6. 1). Thus most operand
requests are satisfied by the high-speed integrated circuit
stores contained within the Processor, but some require access
to a higher level of storage. Interactions between the
Processor and the Local Store are organised entirely by
hardware, but interactions between other levels in the
hierarchy involve a combination of both hardware and software
techniques. The software aspects of the system are discussed
in Chapter 9, while in this chapter we consider the hardware
techniques.

r-, r---------,
I 1~.-__t.~1 Other IL.o.----•• ~l ___ F_i1e_S_t_o_ra_ge __ I I I Computers I I I L _______ -'

I I
: I 1 Fixed-head
[~: ··-------------------~·~~ ___ D_iSC_S_t_or_e ____ ~
I I

I (!l ... 1 •• -------------....... ~ Mass Store
Iw I 1

I Z I r - SiOck - - -, '-_______ ----'
i ~ L.o: •• - :: Transfer I

Ixl; __ ·----------------------~-- Local Store
lu I L __ ~n.!! ____ J .1
Iw I I L--_______

I I
I I r--------------------------,
I 1 I r---- _________________ -,

: i :: Store Access Control Unit :
I 1--' -----+1 ... 0--11 r - - - - - - - - - - - - - -I I
I I I I 1 Current Page Registers I 1
L ..J I L ____ .:: =--:..-: .. - - - - - - =---=--_--= ____ ...J

I
I
1
I
I

PROP
Name Store

I Processor

OBS
Name and
Vector Stores

L _________________________ ~

Figure 6.1 The MU5 Storage Hierarchy

108

Addresses are genera ted wi thin three uni ts of the
Processor, instruction addresses in the IBU, and operand
addresses in PROP and SEOP, both of which contain high-speed
associatively addressed integrated circuit stores. When an
operand access cannot be satisfied by this level of storage,
the hardware automatically sends a 'Main Store' request to the
Store Access Control Unit (SAC). SAC co-ordinates the
interaction between the Processor and its Local Store and
between both of these Units and the Exchange. It also contains
the Current Page Registers (CPRs) which effect the translation
of the virtual addresses sent as 'Main Store' requests by the
Processor into the real addresses required for accessing the
stores. Normally these addresses refer to the Local Store, but
may refer to some other store in the complex (the Mass Store,
for example), by suitable loading of the real address field of
the CPRs. In the event of the CPRs giving non-equivalence, an
interrupt is generated, and the Operating System organises any
necessary transfer of pages (section 9.3) and the loading of a
CPR. The interface between the hardware and software
components of the store organisation system is provided
through the V-store, which is also described in this chapter.
In addition, the Operating System may use Real Address
descriptors (section 5.1.3), for which the CPR address
translation mechanism is bypassed, to address certain areas of
real store directly.

6.1 THE PROP NAME STORE

We saw in Chapter 2 how the original single Name Store
developed into two parts, a 32-line store in PROP (section
4.2) dealing mainly with names used by the B-uni t, PROP and
SEOP, and a 24-line store within the Operand Buffering System
(sec tion 5.2) deal ing mainl y wi th names· used by the A-unit.
The PROP Name Store [20] constitutes two stages of the PROP
pipeline. Its address field (figure 6.2) is 20 bits wide, 4
bi ts for the Process Number (PN), 15 for the address wi thin
the Name Segment and 1 bit to distinguish 4 lines which are
reserved for Level a interrupt procedures (section 2.3.1). The
segment address is not included since it was assumed that the
Name Segment would usually be segment zero. In the rare event
of a process using a Name Segment different from zero, the
Operating System must purge the Name Store on each entry to
and exit from that process. In any case it was not expected in
general that the names in use by a process would still be in
the Name Store after another program had run. The PN bits are
really provided to allow brief and rapid excursions through
Operating System modules which run as separate processes. Each
of the 28 normal lines also has a bit in each of three status
registers. These are the Line Used register (LU), indicating
whether the line contains valid information, the Line Altered

109

register (LA), indicating whether the contents f)f the value
field have been overwritten by the action of a store order,
and the Line Pointer register (LP), indicating the line of the
Name Store to be used when a new name is next entered into it.

8
W

to

V PROP
...... --~ F Stage

P
N

Virtual
Address I

N

Address L
Field U

to SAC from SAC or
Central Highway

NI--...... ______ --1~VI__ -----~
Q Q

Figure 6.2 The PROP Name Store

6.1.1 Normal Operation

to SAC

4

to
PROP
Stage

4

'II

The normal action in the PROP pipeline is for a virtual
address generated in the first two stages to be copied into
the Interrogate Register (IN) and concatenated with the PN
bi ts, at each pipeline beat. If a match is found in the
associative store, and the corresponding Line Used digit is
set to 1, then an equivalence has occurred, and on the next
pipeline beat a digit is set in the PROP Line Register, PLR.
The digit in PLR then selects a register in the Value Field,
and the 64-bit word is read out and copied into the Value
Field Register (VF) by the next beat. At the same time, checks
are made to determine whether

(1) an equivalence occurred

(2) a 'B Write Equivalence' occurred

(3) multiple equivalence occurred

The check for equivalence simply requires an OR operation
on the digits in PLR. If no digit is set, however, this

110

indicates non-equivalence, and the Name Store is updated by
transferring a new word into it and discarding an old one. It
would clearly be inefficient to enter software to organise
this one-word transfer, so the transfer is controlled directly
by hardware. A 'B Write Equivalence' occurs if the line giving
equivalence is the target line of an outstanding 'B => name'
order, and this causes a pipeline hold-up (section 4.2.5)
until the operand value has been returned from the B-unit and
written into the Name Store. A multiple equivalence occurs if
a hardware malfunction in the associative field causes more
than one line to give equivalence. In this case a System Error
interrupt is generated (section 4.2.8).

When a Name Store entry is replaced the hardware must take
into account the effect of store orders. To maintain the speed
advantage of the Name Store, store orders only update the
value of an operand in a Name Store. (This arrangement is
significantly different from the IBM Cache Stores, for
example, where both the buffer and the main store are updated
togethe~). Thus the old word may have to be copied back to the
Local Store before it is overwritten. The decision concerning
which line to replace requires the use of a replacement
algori thm, and the effects of various replacement algorithms
were studied by simulation before the Name Store was built
[21]. These varied from a simple cyclic replacement algorithm,
requiring a mlnlmum of additional hardware for its
implementa tion, to a mul tipl~-use digit algorithm requlrlng,
for a 32-line store, 32 5-digit counters. Very little
difference in performance was found among these different
algorithms, and the simple cyclic one was therefore chosen~

The actions which take place when a non-equivalence is
detected also depend upon whether the order is destined for
the A-unit and whether the requi~ed operand is already in the
OBS Name Store. The OBS Name Store is meant to keep names used
by ACC functions and the PROP Name Store to keep those used by
non-ACC functions. Thus for a non-ACC order the normal
situation is for equivalence to occur in the PROP Name Store,
while for an ACC order the normal situation is for a
non-equi valence to occur in the PROP Name Store and
equivalence to occur in the OBS Name Store. However, the same
name might be accessed by both kinds of orders, and the
hardware must guard against the possibility that a name is in
the 'wrong' Name Store.

'6.~.2 Non-equivalence Actions

A PROP Name Store non-equivalence is detected as the
corresponding order enters Stage 4 of the PROP pipeline. It is
signalled by a 'non-equivalence' digit set in register F4,

111

which creates a hold-up, and causes the normal control signals
decoded for the instruction to be overridden. The address of
the required operand is in register VA at this s,tage, and
register VF contains zero. When the next beat occurs, and the
order is copied into Stage 5, the control signals set up by
the 'non-equivalence' digit cause a WAIT condition to be set
(section 4.2. 1) and a special order is sent via D'" to OBS.
This order carries the non-equivalence address (including the
Name" Segment number) through to OBS and causes OBS to access
its Name Store. If OBS finds equivalence, it returns the
64-bi t store word to PROP via Dop and the Central Highway,
while if it finds non-equivalence, it makes an access to SAC
on behalf of PROP so that the 64-bit store word will be
returned direct to PROP from the Local Store.

The setting of the WAIT condition in PROP causes the
initiation of the next beat to be held up until the
appropriate actions have been completed (figure 6.3). The
first actions are the preparation of a line in the Name Store
to receive the new address and store word and the copying of
the new address, currently held in register VA, into the
Interrogate Register (IN). The Name Store line to be replaced
is indicated by the Line Pointer Register (LP), which contains
one bit corresponding to each line in the Name Store and has,
a t any time, only one digit set to a 1. Thus LP is simply
copied into register PLR (using the set/re-set inputs of the
flip-flops), in order to select the line for replacement. Two
possible conditions are checked, however, and if necessary
deal t with, before the line is ready to be overwritten with
the new address and value. The first is that the selected line
may be the target line of an outstanding 'B => name' order
(section 4.2.5). If it is, LP is moved on to select the next
line. This is done by first copying the content of PLR back
into LP, and then copying LP into PLR. The outputs from PLR
are routed back to the Line Pointer with a 1 digit shift, thus
implementing the simple cyclic replacement algorithm. The
second condition is that the contents of the selected line may
have been al tered by the action of a store order. This is
checked using the appropriate digit in the Line Altered
register. If it has, the virtual address and value are read
out, and a write request is made to SAC. The selected line is
then ready for overwriting.

The next action which occurs depends on whether the store
word is returned from SAC or OBS, or on whether a CPR
non-equivalence occurs, in which case no store word is
returned, but the interrupt sequence is entered instead. If
the store word comes from SAC, then when it arrives the
address and value are written into the Name Store, the content
of PLR is copied back into the Line Pointer in preparation for

112

the next non-equivalence, and the correspondtng btts in LU and
LA are set to 1 and 0 respectively.

Copy LP-PLR, VA-IN

Yes

Copy LA & LP--PLR

Operand from
SAC Available

~--------~--------~

Yes

Send Address + Value to SAC
Re-set LA

Figure 6.3 The Name Store Non-equivalence Routine

Al though the actions needed to update the Name Store are
complete at this point, the contents of the PROP Line Register
and Interrogate Register no longer correspond to the orders in
Stages 2 and 3 of the pipeline, and must be restored. PLR is
restored first by copying the address in register VQ into IN,
and after a delay to allow for association, PLR is re-strobed.
(Preserving a previous copy of PLR for use at this time would
not be satisfactory, since it might be the line newly
overwritten.) The address in register NQ is then copied into
IN, and the actions are complete. Had a longer PROP pipeline
beat time been adopted at the outset of the design, these
complications could well have been avoided.

113

In the case where OBS indicates that the required store
word is in its Name Store, then if all 64 bits are to be
overwritten by a store order, the store word is not actually
returned to PROP. In this case OBS simply deletes its copy and
PROP assumes it to have ?rrived immediately, thereby reducing
the non-equivalence delay time. In cases where the operand is
not deleted from the OBS Name Store, then the only further
action required in PROP is the restoration of PLR and IN
before the routine is complete. (The clearing of a line
earlier in the routine only copies its content back to the
Local Store and sets it 'unaltered', so the Name Store is not
disturbed.) If the operand has been deleted from OBS and
returned to PROP, the actions are as for an operand from SAC.

6.1.3 Actions for ACC Orders

Al though the normal si tua tion for an ACC order using a named
operand is for non-equivalence to occur in the PROP Name Store
and equivalence to occur in the OBS Name Store, equivalence
may be found in the PROP Name Store on some occasions. For
example, a 32-bit variable required for an ACC order might be
contained in the same 64-bit store word as a 32-bit variable
already in use by Borders. Unless the ACC order finding
equivalence is a store order, then the operand is read out as
for a non-ACC order and carried through to OBS as though it
were a literal, so that no access is. made to the OBS Name
Stor&. If the ACC order finding equivalence is a store order,
however, (ACC Write Equivalence) then action is taken to
delete the word from the PROP Name Store.

The actions for an ACC Write Equivalence are initiated in a
similar way to those for a non-equivalence for a non-ACC
order. Thes,e actions are similar tc)' those involved in
preparing a line for a non-equivalence and in restoring the
pipeline at the end. The appropriate address and value are
read out of the Name Store and sent to SAC, and the
appropria te digits in the LU and LA digits are then set to
zero, in order to mark the line empty. When the order reaches
OBS its operand will not, of course, be found in the OBS Name
Store, and the normal OBS non-equivalence actions will be
initiated (section 6.2.1). It will now be clear that the
management of the name stores of MU5 is complex by comparison
with the Cache approach. The complication was thought
acceptable because it gives rise to a high 'hit-rate' and a
high rate of instruction execution between 'misses'.

6.1~4 Organisational Facilities

Ideally the Name Stores should be transparent to the software.
They mostly are, but some par.ts of the paging and program

114

· changing software need to take account of their existence. The
organisational facilities in the PROP Name Store are provided
for this reason. They are controlled by the use of V-lines,
and apply to the 28 user lines. An organisational facility is
acti vated when the appropriate V-line is specified as the
operand of a store order. Thus, writing to one of the V-lines
associated with the PROP Name Store causes all the Line
Altered and Line Used digits to be re-set to' zero, and another
causes the Line Pointer to be re-set to pOint to Name Store
line O. Re-setting the Line Used and Line Altered digits
effectively destroys information contained in the store since
the Local Store is not updated for those operands which have
been altered. The purge facility allows the store to be
emptied without loss of information. The Line Pointer is
re-set to line 0 when a purge is initiated and each line is
then read in turn. As each line is read, it is checked for
being al tered , and if it is, an access is made to SAC to
return its value to the Local Store. The line is then set

~

unused and the pointer is incremented. This facility is
normally used by the CPRNEQ interrupt procedure if the CPR
being overwritten has references to it within the Name Store.
The software can check for this situation by using the search
facility.

A Name Store Search requires two V-lines to be set up, one
containing a mask corresponding to the page/block size
involved, and one the virtual block address. When the address
is set up, association occurs over all non-masked digits, and
one or more lines may give equivalence (the multiple
equivalence interrupt is suppressed in this case). The output
from the equivalence detecting logic is used to set one of the
Test Register digits, so that a subsequent control transfer
order will jump ·to the appropriate sequence of instructions
according to whether or not references to ~ the block address
exist in the Name Store.

6.2 THE OBS STORE

The 'Operand Buffer System buffers three kinds of operand,
vectors, names and literals. The vector and name parts require
both Virtual Address and Value Fields, while the literal part
requires only a Value Field to provide temporary storage for
the literal operands of functions in transit through the OBS
Queue (section 5.2). Thus the Virtual Address Store contains
32 associa ti vely addressed registers (figure 6.4). Of these,
24 are dedicated to name entries, and are 33 bits in length (4
Process Number bits, 14 Segment bits and ~5 bits addressing a
64-bit word), while the remaining eight are dedicated to
vec tor en tr ies , and are 32 bi ts in leng th (4 Process Number
bits, 14 Segment bits and 14 bits addressing a 128-bit word).

115

Address to SAC

Virtual

Address I 1----.
A

W I
LI--___ -IG
P

Literal

Queue/Bypass

Tag
Decode

Buffer Line
Selection

Name Store

Vector
Store

Literal
Store

F L
L A

from
~---------------------------------------''---Dopor

SAC

Figure 6.4 The OBS Store

In addition, each line in the Virtual Address Store has a
corresponding bit in each of two Status Registers, the 'Write
Line Pointer' (WLP) and the 'Ignore Register' (IG). The Write
Line Pointer normally has two bits set, one pointing to the
next free line to be used in the event of a vector
non-equivalence and one pointing to the next line to be used
in the event of a name non-equivalence. The Ignore Register
corresponds to the Line in Use Register in the PROP Name
Store, except that the meaning of the digits is inverted. A
bit set in the Ignore Register causes any equivalence
occurring in the corresponding line in the Virtual Address
Store to be ignored.

The Operand Store contains 24 lines for holding 64-bi t
words, eight lines for holding 64-bit literals and nominally
eight lines for holding 128-bi t words, although these are
actually implemented as 16 lines each holding a 64-bit word.
Corresponding to each line in the vector and name fields is a
digit in each of two further Status Registers, the 'Full'
Register (FL) and the 'Line Altered' Register (LA). The Full
Register indicates whether the contents of a name or vector
line in the Operand Store are available. When the Full bit of
a line accessed by the Output Process (section 5.2.3) is not
set, then either it is waiting to be filled by the return of a
store word requested from SAC, as a result of a

116

non-equivalence in the Virtual Address Store, or to be updated
from Dop by an outstanding store order. The Line Altered
Register is exactly equivalent to the Line Altered Register in
the PROP Name Store. If the Altered bit of a line is set, then
its contents have been altered by the action of a store order.

6.2.1 Normal Operation

In the PROP Name Store the address and value fields constitute
adjacent stages of the pipeline and the action in the event of
non-equivalence is to inhibit the normal operation of the
pipeline until the Name Store has been updated. In OBS the
address and value fields are separated by the Queue, and the
basic aim of the system is to stream requests out to SAC while
queuing up functions awaiting the return of the corresponding
operands. The normal operation of the OBS Store is therefore
different from that of the PROP Name Store. When an address is
copied into IA for association in the Virtual Address Store,
it l.s also written} at the same time, into a free line in each
of the name and vector areas, as selected by bits in the Write
Lj.ne Pointer. The outputs of the associative registers are
combined with the corresponding bits in the Ignore Register
and copied into the OBS Line Register (OLR), so that the
latter will only contain a 1 if equivalence occurred between
the interrogate address and a line already in use. The
position of this bit in OLR is encoded into a Tag (section
5.2.1) and copied into the Queue or Bypass Register according
to the type of function. In the output stage of OBS this Tag
is used to access the Operand Store.

In the case of non-equivalence, no digit will be set in
OLR, but the only action now required to create a new entry in
Virtual Address Store is tpe re-setting of the appropriate
digit in the Ignore register. In this case the Tag is supplied
by the Buffer Line Selection Process (section 6.2.2), which
must then create a new free line so that the normal action of
association/writing can be carried out on the next address.

6.2.2 The Buffer Line Selection Process

The function of the Buffer Line Selection Process is to ensure
the availability of a free line in both the name and vector
parts of the Virtual Address and Operand Stores prior to each
cycle of the Input Process, and to update the Local Store when
necessary. In order to carry out this function, it uses the
Tag system to access and manipulate the information contained
in the Status Registers associated with the buffer stores. In
addition, before freeing a line for re-use, it checks that the
line is not currently referenCed by a function in the Queue or
Bypass Line. This 'Referenced' Status is obtained by comparing

117

the Tag for the line to be cleared with the contents of the
Tag Queue and Bypass Tag Buffer.

A Buffer Line Selection Process cycle is initiated whenever
an Input Process cycle is started, the latter indicating
whether a name, vector or literal cycle is required. The line
freeing sequence uses three counters, one each for names,
vectors and literals, to determine the line to be freed, so
that the replacement algorithm is cyclic in each case. In the
case of a literal cycle the new line will always be needed,
while in the case of a name or" vector cycle the delay incurred
in the event of a non-equivalence is minimised by overlapping
the two activities. In the case of equivalence, no new line is
needed and the Buffer Line Selection Process cycle is
abandoned. If non-equivalence occurs, the Input Process
re-sets the Ignore bit of the name or vector line
corresponding to the bit in WLP, and the corresponding Tag is
written into the Queue or Bypass Line and sent to SAC with the
store request. The new line to be freed is then selected by
incrementing the appropriate counter. Provided that the 'Full'
and 'Referenced' signals indicate that the line is not waiting
to be filled from SAC or Dop, and that it is not currently in
use by a function in OBS, then it can be freed. Otherwise the
selected counter is re-incremented until an available line is
located. The position of this line is then set in WLP, and the
corresponding Ignore bit set. If the selec ted line is not
Al tered, then the line may be freed .. immedia tely by clearing
the Full bit, whereas if it is Altered, its contents must
first be sent back to store via SAC.

6.2.3 The Store Request Process

The Store Request Process organises data transfers between OBS
and SAC, making requests to SAC on behalf of the Input Process
(section 5.2.1), the Buffer Line Selection Process (section
6.2.2) and the Organisational Facilities (sections 5.2.7 and
6.2.4). The Input Process makes a request for a transfer from
Local Store whenever a name or vector operand is required, but
no action is taken by the Store Request Process until the
resul t of the association of the input address is known. If
non-equivalence is obtained, a store request is made to SAC
accompanied by the Tag generated by the Buffer Line Selection
Process. The Tag is carried through SAC and returned to OBS
with the required store word, and is then used by the Output
Process to select the appropriate line in the Operand Store
when writing in the store word. The data returning from SAC
may be a 64-bi t word or 128-bi tWOI'd, but as in the case of
the SAC IBU interface (section 4.1.1), the data highway is 64
bi ts wide, and a 128-bi t word is returned as two successive
64-bit words. If equivalence is obtained; a request is still

118

made to SAC, but a control digit accompanying the request
indicates to SAC that the request is a 'CHECK ONLY' request
and no store access is required (section 5.2.1).

6.2.4 Buffer Store Organisational Facilities

The Buffer Store organisation facilities in OBS are similar to
the organisational facilities in the PROP Name Store (section
6. 1 .4) and are similarly controlled by the use of V-lines.
Thus writing to one of the OBS V-lines causes the Ignore, Full
and Altered bits to be cleared, sffectively destroying all the
information contained in the stores, while writing to another
V-line can initiate Clear or Purge actions. The Clear facility
involves scanning through the Vector and Name lines of the
store, and updating the Local Store whenever a line is found
to have been altered. The Altered bit is then cleared, but the
line remains otherwise unaffected. The Purge facility is
similar to Clear, but in addition, the Ignore bit of each li~e
is set so that the store is left in an empty state. The Searen
facility is used in the same way as the PROP Name Store Search
to check that a CPR which is about to be overwri tten is not
required by an entry in the Buffer Store. The resul t is
combined with the result from the PROP Name Store Search so
that the Test Digit indicates whether or not references to the
block address exist in either store.

6.2.5 Interactions between the PROP and OBS Stores

The interactions which occur between the PROP and .OBS Stores
as a result of name accesses have already been described.
Additional interactions occur, however, if a descriptor access
is made into the Name Segment (Name Segment Equivalence). The
checking of name addresses in the PROP Name Store normally
occurs for all functions as part of the PROP pipeline actions.
A name address arising from a descriptor access is generated
at a later stage in toe pipeline than the PROP Name Store,
however, although earlier than the OBS Name Store. Thus in the
case of Name Segment Equivalence (NSE) occurring, the aBS Name
Store can be checked normally, whereas special action must be
taken to check the PROP Name Store. This is one of the most
difficult problems arising in MU5 from the use of the naming
concept and a pipeline structure in its design. The ad hoc
solution adopted is far from ideal and arises partly from pin
limitation problems around platter boundaries.

The occurrence of a Name Segment Equivalence is detected by
Dr, which does not send its normal accept signal to PROP, but
instead signals that an address check with the PROP Name Store
may be required. The order is passed on to aBS in the normal
way, together with an NSE control digit (figure 6.5). This

119

digit causes a hold-up in OBS and also causes OBS to treat the
access as a name rather than a vector. The association of the
address takes place in OBS, and if non-equivalence is found,
an access must be made to the Local Store. Before this can
occur, however, the PROP Name Store must be checked. OBS
therefore makes a special request to SAC, since no direct
route exists to PROP, with a control digit set to indicate
that the request should be sent to the PROP Name Store. If the
PROP Name Store contains the address, the word is returned to
SAC, its Use digit is set to zero and a proceed signal is sent
to OBS. If the PROP Name Store does not contain the address,
the proceed signal is sent immediately.

NSE Request Enters OBS

Yes

Send Virtual Address via SAC to PROP

No Send 'OBS =' to PROP

Yes

Release NSE Hold-up

Figure 6.5 Name Segment Equivalence Actions

When OBS receives the proceed signal it clears the Ignore
bit of the free line in the name field of the Virtual Address
store, makes the normal request to SAC for the required store
word, and clears the NSE hold-up. At the same time, if the

120

operand was found in the PROP Name Store, PROP abandons the
orders in its pipeline and re-executes them all by forcing a
control transfer to the order following that which found Name
Segment Equivalence. This is essential since the descriptor
access could be writing to the operand concerned, and this
operand could also be required by the order in Stage 4 of the
PROP pipeline at the time when the Name Segment Equivalence
occurred. In this case an out-of-date value would have been
obtained from the PROP Name Store. If OBS equivalence occurs,
then no check in PROP is required. This case is signalled to
PROP and the NSE hold-up is cleared immediately.

6.3 THE LOCAL STORE INTERFACE

Operand accesses which cannot be satisfied by the stores in
PROP and OBS, and all instruction accesses, cause requests to
SAC. In most cases these requests are directed to the Local
Store, the individual stacks of which are linked to SAC (and
to the Exchange) through the Local Store Interface (figure
6.6). The operation of this logic is largely controlled by
SAC, but is best explained before the operation of SAC itself.
The stacks themselves are individually controlled by timing
circuitry in the Interface, so that under normal running
conditions the stacks are interleaved and requests to separate
stacks are overlapped to give a higher overall access rate.

ill

·1
Stack 0

I
SAC

Stack 1

Local
Store
Interface

Stack 2

Exchange

Stack 3

Figure 6.6 Overall Diagram of the Local Store

A request is initiated when SAC sends an address to the
Address Buffer AB .(figure 6. 7) and in the case of a wri te

121

request from the Processor, data to Buffer DB. Data
correspond ing to write requests from the Exchange is al so
copied into DB, but only when the address corresponding to the
request has passed through SAC, in order to be fitted into the
stream of Processor requests, and sent back to AB (section
6.4.2). Data read out of a stack is copied into register DS or
DE to be sent to SAC or the Exchange according to the source
of the request.

+
SAC Stack 0
Address Fail-
--.- soft

Logic
To
SAC

Stack 1 SAC:::J
Exchange
Address

EXChange~ Data Stack 2

V D
B

SAC Data &

Stack 3

t
Figure 6.7 The Local Store Interface

SAC contains four busy flip-flops to indicate the busy
status of the stacks. Each time a reguest is sent to the
Interface, the appropriate flip-flop is set to busy and while
the flip-flop is set, any subsequent request to the
corresponding stack ~ is held up. Subsequent requests for
different stacks can proceed, however, since SAC contains four
parallel output buffers. During the stack read/write cycle, a
pulse is generated and returned to SAC to re-set the
corresponding busy flip-flop. This pulse is timed to arrive in
SAC so that the next request can reach the stack just after
the completion of its cycle.

In the fully interleaved condition a stream of requests for
sequential instruction or vector addresses can be processed at
a rate of four 128-bit words per store cycle time (260 ns). In
practice the data rate of the Processor is limited to one
128-bit word per 50 ns (equivalent to 160 Mbps) , so that,
under ideal operating conditions, the store speed is not a
limiting factor. The addressing of words within the stacks is
organised, in this case, as in figure 6.8(a). If a stack

122

failure occurs, however, then a Fail-soft capability allows
the store to be re-configured, so that the best use can be
made of the remaining stacks, and self-test functions can be
performed on a malfunctioning stack, either manually or under
Processor control. The Fail-soft logic, which re-orders the
address bits according to the contents of the Fail-soft
V -line, can also change the stack number to which a given
address corresponds, and part of this logic is therefore
situated within SAC. By setting an appropriate Fail-soft Mode,
the addressing can be re-organised to be sequential through
the remaining stacks, so that if stack 1 fails for example,
setting Fail-soft Mode 5 allows addresses 0-12K to be used
starting at stack 2 (figure 6.8(b». If two stacks are out of
commission together, then the remaining two can again be
interleaved, as in figure 6.8(c). Ten different Fail-soft
modes are available al together, so that if anyone or two
stacks are out of commission, the remaining stacks can be
addressed sequentially from address O.

(a) Normal Mode

0-12k
(b) with Stack 1

Off

0-8k
(c) with Stacks

2 and 3 off

Stack 0

0 1

I I
I I
I I

16376 1-6377

8192 8193

I I
I I
I I

12286 12287

0 1

I I
I I
I I

8188 8189

Stack 1

2 3

I I
I I
I I

16378 16379

bId, I I
I I

2 3

I I
I I
I I

8190 8191

Stack 2 Stack 3

4 5 6 7

I I I I
I I I I
I I I I

16380 16381 16382 16383

0 1 4096 4097

I I I I
I I I I
I I I I

4094 4095 8190 8191

~I~I I I I I
I I I I

Figure 6.8 Local Store Address Organisation

6.4 THE STORE ACCESS CONTROL UNIT

The Store Access Control Unit (SAC) forms the interface
between the MU5 Processor and all but the fastest level of
storage in the MU5 Storage Hierarchy (figure 6.1). It accepts
virtual address requests from the Instruction Buffer Unit and
the Primary and Secondary Operand Units, translates them into
real addresses using the 32 CPRs [22J and passes the requests
on to the approp~iate real store, either directly in the case

123

of the Local Store or via the Exchange in the case of the Mass
or Disc Stores. For a read request, data returned from the
store is routed back to the requesting unit via SAC. In
addition, SAC controls most of the V-store within the MU5
Processor and also detects the occurrence of CPR
non-equivalenceR, access permission violations and parity
failures.

The various actions required to implement these facilities
are carried out by an asynchronous pipeline mechanism which
attempts to minimise the service time for a single request
while at the same time providing the maximum possible
repetition rate [23]. The main registers and interconnecting
highways wi thin this pipeline are shown in figure 6.9. When
SAC receives a request from PROP, OBS or IBU, it waits, if
necessary, un til it is in a position to accept the request,
copies the address and relevant tag and control information
into the Stage A address register SA, and sends an 'accept
signal to the requesting unit. In the event of more than one
request being present at the input, it makes a priority
decision as to which to accept. Thus IBU Priority requests
have high priority for acceptance, above PROP or OBS requests,
whereas IBU Ordinary requests, although they are the most
frequent, have low priority since otherwise they could, if a
tight predicted loop were entered, saturate SAC with requests
and hold up OBS requests from earlier instructions.

The block address in SA is presented to the associative
Virtual Address Field of the CPRs (figure 6.11) which operates
in the same way as the PROP and OBS Stores, and the signal
from the line giving equivalence is copied into the SAC Line
Register (SLR). SLR selects the corresponding line in the Real
Address Field and the content of this line is copied into
register RA. Meanwhile the line address bits, together with
tag and control information, are copied from SA through SB to
the Stage C address register SC, and a check is made for the
occurrence of equivalence or multiple equivalence, as in the
case of the Name Stores (section 6.1.1). If equivalence
occurs, the concatenation logic takes the appropriate page and
line digits (according to the page size) from RA and SC
respectively and forms the real address. In the case of a Real
Address descriptor access (section 5.1.3), the output from RA
is ignored, and the whole of the address taken from SC, thus
bypassing the CPR mechanism. In all cases the real address is
routed to the Local Store or the Exchange via DA (in the case
of an IBU request) or via DB or DC (in the case of an OBS or
PROP request). If non-equivalence or multiple equivalence
occur, an interrupt is generated, the failing address is
preserved in NA, and the access is abandoned (section 6.4.2).

124

IBU

OBS

PROP

Data
Out

to CPRs from CPRs Exchange to Local Store Address

Exchange
Address

Local
Store
Address

Local
~ __ !""IL ____________________ Store

D Dab

______________________ 1- Exchange
Data

OBS Data to L I;] ~ Exchange
~-D-a-ta-I-n-----------------~· ~ ~~cal
PROP Store

Figure 6.9 The SAC Pipeline

For requests to the Local Store, the address is copied into
AL and the tag and control information into register Q1. The
four Q registers form a queue for the tag and control
information as it waits to be connected with the corresponding
data being returned from the Local Store. Since SAC controls
the Local Store (section 6.3) and only sends requests out to
free stacks, the replies are always guaranteed to come back in
the same order as the outgoing requests. Thus information
copied into Q1 is automatically moved into the furthest
available empty register in the que.ue and data returning from
the Local Store is copied into the Local Store data register
LD, together with the information in Q4, thereby emptying that
register. Requests to Exchange are sent through AE, with their
tag information in QE. Once set, QE remains busy until a
response is received from Exchange, since Exchange requests
occur infrequently compared with Local Store requests and .are
not overlapped. Data returning from the Exchange is accepted
when there is a sui table gap in the flow of data from the
Local Store, and all replies to read requests are sent back to
the appropriate unit together with a 'data available' pulse.

125

When a write request is accepted by SAC, the accompanying
data is copied into register WA. For reasons of hardware
economy, and because, under normal operating conditions, write
requests only occur very infrequently (when an 'altered' line
in the Name or Vector Stores is selected for replacement),
data buffers are only provided at the input and output stages.
Thus registers WA and WB act as a small independent pipeline,
with the data in WA being copied into WE when the latter is
free.

6.4.1 The Current Page Registers

MU5 is nominally defined as a 32-bit computer, with each
32-bit word in the virtual store having an address of the form
shown in figure- 6.10(a). The 4-bit Process Number allows up to
sixteen currently active processes to co-exist, each with a
14-bit Segment Number allowing up to 16K segments of 64K
32-bit words. The actual size of quantity addressed at
different pOints in the Processor varies between 1 bit and 128
bits, however, and the number of bits in the corresponding
virtual address varies accordingly. Thus the mlnlmum
instruction size is 16 bits and the Control Register addresses
16-bit words, while the Instruction Buffer Unit normally
accesses 128-bi t words from store and sends addresses with
correspondingly fewer bits to SAC. Similarly, names may be
32-bit or 64·bit quantities, but the Name Store always holds
6!~ bits per line and is addressed using 15 digits wi thin the
Name Segment. The line number of the line in the Name Store
giving equivalence with the virtual address presented to it
forms, in a sense, a real address. This address is never
communicated to software, or to other parts of the hardware,
however, nor can such an address originate from outside the
Name Store. In the case of a non-equivalence, the virtual
address is sent to SAC, where the CPRs produce a corresponding
Main Store real address to be sent, normally, to the Local
Store, to access the required operand. In the event of a
non-equivalence in the CPRs, software action is required
either to move a block of data into the Local Store ~nd to set
up a CPR to address it (using V-store operations) or simply to
set up a CPR to point to a block of data already contained in
the Local Store. In the former case the block of data must be
moved into the Local Store via the Exchange, from the Mass or
Fixed-head Disc Store using real addresses appropriate to each
store. Thus real addresses referring to the Local, Mass and
Fixed-head disc Stores must be communicated both between
software and hardware and between Units connected to the
Exchange. The real address format used in the CPRs is
therefore defined by the Exchange addressing format (figure
6.10(b», which can refer to anyone of sixteen Units.

126

(a) Virtual Address Process Segment Block/Line

(b) Real Address ~ Ivi Address

(c) CPR Virtual Field P S X

(d) CPR Real Field ~ Ivi Address

~igure 6.10 Real and Virtual Address Formats

Within each Unit the address is three bytes long, with the
most significant bit indicating whether the remaining 32 refer
to real store or V-store. Thus 8 million 32-bit words of real
store can be directly addressed within anyone Unit. The
posi tioning of the real address digits in relation to the
virtual address digits 1s arranged so that there is a
one-to-one correspondence between the line number in a virtual
block and the line number in the corresponding real page, and
also so that for real address accesses the four most
significant segment address bits form the Unit number. The
corresponding address formats used in the CPRs are shown in
figure 6. 10 (c) and (d) and figure 6. 11 shows the CPR overall
diagram.

Line I

t Decoder Virtual Address Field Real Address Field

Process S Unit Size C1J

(4) X I L (4) (4) :§
(12x2) G R

("oj

Address Access M
Segment j (16) (20) Perm

(4)

CN

V - Write Data Virtual Address In Real Address Out

F!gure 6.11 The Current Page Registers

127

The associa ti ve, virtual address field is made up of two
major parts, the Process Number and Segment Number (PS) field
and the X field. The PS field is constructed in the same way
as the associative stores in PROP and OBS, while the X field
requires two flip-flops per bit in order to implement the
dynamically variable page size facility. This requires pages
of different sizes to co-exist in the CPRs, and it is
therefore necessary to store in the CPR associa ti ve field
information about the position of the block/line boundary for
each CPR in use. Bits in the X field which are less
significant than this position are masked so as to give
equivalence regardless of the interrogate information.

The real address field contains 4 bits for the Exchange
Uni t number, 20 bits for the page address wi thin a Uni t , 4
size bits and 4 access permission bits. A 20-bit page address
corresponds to the minimum page size of 16 words, and for
larger pages up to twelve of the least significant bits of the
field may be unused. In addition each CPR has a bit in each of
four Status Registers. These are the Altered Register (AL),
the CPR Used Register (CU), the CPR Found Register (CF), and
the Ignore Register (IG), all of which form part of the
V-store.

The Altered Register corresponds to the Line Altered
Registers in the PROP and OBS Name Stores, and is used in an
analogous manner by the Operating System to determine whether
or not to copy a block of information out of Local Store
before it is overwritten. A digit in the Altered Register is
set for a given CPR whenever a write access is made to the
corresponding page. Digits in the CPR Used register, on the
other hand, are set when any aecess is made to the
corresponding page, and this register is used by the Operating
System to help determine which CPR to overwrite following a
CPRNEQ. Digits in the CPR Found Register are set whenever the
corresponding CPR gives equivalence during a 'Search'
operation (similar to the PROP and OBS Name Store search
operations). This register is used by the Operating System,
when releasing a Process or Segment, to determine which digits
to set in the CPR Ignore Register. This register corresponds
exactly to the Ignore Register in the OBS Virtual Address
Store (section 6.2.1). The CPR Number Register (eN) is used to
address the CPR for overwriting following the occurrence of a
CPRNEQ, so that it is used by software in a manner analogous
to the hardware use of the Line Pointer in the PROP Name
Store. Overwriting a CPR automatically brings it into use
since this action re-sets the corresponding Ignore digit.

It can be seen that there are many points of similarity
between the Current Page Registers and the associative stores

128

in PROP and OBS. This similarity could have been extended
further, by the use of hardware CPR loading, but this facility
was consciously rejected at the design stage to allow full
flexibility for software investigation of different
organisations. The major responsibility for the management of
the CPRs is therefore placed on software in MU5, with hardware
providing sufficient facilities for .this to be possible,
through the V-store mechanism, and to ensure a clean
transition from User Process to System Process.

6.4.2 SAC Interrupts

SAC interrupts fall into two classes, those concerned with the
inaccessibility of data (CPRNEQ, CPR Multiple Equivalence,
Access Violation, etc.), and those concerned with erroneous
data (parity faults). SAC is also indirectly involved with the
occurrence of any interrupt, since there may be several
instructions in the Secondary Pipeline at the point when PROP
detects an interrupt, and anyone of them could cause a SAC
interrupt to be generated. If PROP were to act on a non-SAC
interrupt immediately, and obey the two fixed instructions
causing entry to the appropriate interrupt procedure, a CPRNEQ
for an outstanding request in the Secondary Pipeline could be
erroneously treated as a System Error (section 6.5.1). PROP
guards against this possibility by sending the dummy
'interrupt order' through the Processor (section 4.1.2) before
obeying the fixed instructions.

The occurrence of a CPRNEQ causes an interrupt signal to be
sent to PROP for all virtual address requests except IBU
ordinary requests, for which CPRNEQ is dealt with separately
by the IBU (section 4.2.8). A request generating a CPRNEQ also
causes SAC to enter a 'Run-down' mode of operation and
inhibi ts strobe pulses to register NA (figure 6.9). During
normal operation of SAC, NA is strobed at the same time as se,
so that following a CPRNEQ it contains the failing address,
and may be examrned as a V-line by the CPRNEQ interrupt
procedure. After entering its Run-down mode, SAC discards all
normal requests until the request from· PROP corresponding to
the first of the two fixed instructions causing entry to the
CPRNEQ interrupt procedure, which restores SAC to normal
operation. During Run-down, all requests ahead of the failing
address are processed normally, and the Run-down condition is
then signalled to OBS, so that the Queue can also be set into
a Run-down state (section 5.2.5).

CPR Mul tiple Equivalence is basically similar to multiple
equivalence in any of the other associative stores in the
Processor. It occurs when two or more associative lines give
equivalence at once, but whereas this condition can only arise

129

in the IBU, PROP and OBS stores as a result of a hardware
failure, it can also arise in the CPRs as a result of a
software failure. An Access Violation occurs whenever the
access type bits associated with a request do not correspond
wi th the Access Permission bits read out from the CPRs with
the real address. SAC records the occurrence of any Access
Violation in an Access Violation V-line, the outputs from
which cause an appropriate interrupt.

Parity checks are carried out by SAC on all data returning
from the Local Store and the Exchange to ensure that it has
correct parity (odd parity in each byte) and in the event of a
parity failure being detected, returns zeros to the requesting
unit and sets the appropriate digit in a SAC Parity V-line in
order to cause an interrupt. Additional checks are made on the
address and control information associated with requests
coming from Exchange, and in the event of a parity failure in
either of these fields, the appropriate digit is set in the
SAC System Error V-line and the Exchange Request Parity
V-line.

6.5 THE MU5 V-STORE

Al though the MU5 V -store does not form part of the main
storage hierarchy, it plays an essential part in the
management of the hierachy and in the general running of the
Processor. The V-store is nominally divided into 128 blocks
each containing 256 lines, although in practice only eight
'blocks are used, and wi thin each block only a few lines
actually exist. The lines are nominally 64 bits long but apart
from thos~ in System V-store, contain at most 32 useful bits.

The System V-store is used by the hard-wired Inter:t:'upt
Entry instructions (section 4. 1 .2) to access the necessary
links. These are contained in segment 8192, the first of the
common segments in the virtual store, and the mapping of the
System V-store addresses into this area is achieved by simple
address digit manipulation in PROP. PROP V-line requests
(section 6.5.1) are dealt with internally by PROP itself, but
all others are dealt with by SAC, since it already has data
path connections with most of the units containing V-lines,
and actually contains much of the V-store itself.

The SAC V-store consists of two parts, one concerned with
providing the facilities needed by the Operating System to
manage the CP Rs (sec tion 6.4. 1) and one conc erned wi th the
interrupts generated within SAC itself (section 6.4.2). Within
the CPRs, the Real and Virtual Address fields of the CPR
addressed by the CPR Number Register can be accessed as
V-lines, as can the four Status Registers (the Ignore,

130

Altered, CPR Used and CPR Found Registers) and the NA Register
in SAC, which contains the address giving non-equivalence.

6.5.1 The PROP V-store

The Primary Operand Unit contains V-lines concerned not only
wi th the control of the organisational facilities wi thin its
own Name Store (section 6.1.4) but also with the general
running of the Processor, particularly the interrupt system.
The System Error V-line, for example, contains fliP-flops
which record individual system errors which arise in different
parts of the Processor. Among these are the occurrence of
multiple equivalence in any of the associative ~tores, and the
occurrence of a CPRNEQ during some interrupt procedures. The
Program Fault V-line, on the other hand, records the
occurrence of errors within a process, examples being
arithmetic faults and bound check failures.

PROP also contains an Instruction Counter, a 16-bit
parall~l master/slave counter which is normally decremented by
1 whenever the Control Register is incremented, or whenever a
store-to-store order cycle is completed in the D-unit. When it
reaches zero an interrupt is generated. This counter is used
by the software for scheduling purposes, and in order to
ensure reproducibility of user statistics, despite variable
system activity, counting can be inhibited for System
Processes by the setting of a digit in the Machine Status
Register.

6.5.2 The Operating Console V-store

The Operating Console of the MU5 Processor includes various
control and mode switches, which can be accessed as read-only
V-lines and provides for communication with, and direct
control of tne Processor. In addition, it contains a
program-readable digital clock, which also provides regular
interrupts and a programmable loudspeaker. This facility is
useful for test and diagnostic purposes, but has also led,
inevi tably, to the writing of music-playing programs. These
programs, which play four-part harmony, also provide a visual
display by assuming a piano keyboard layout for a set of
display lamps.

The mode switches indicate the availability of Local and
Mass Store stacks (for use with the Fail-soft facilities
(section 6.3.1» and also whether each of the clock interrupts
is allowed or inhibited, etc. "The control switches allow the
Processor to run at full (' Auto') speed, in which case PROP
beats occur normally, or to run at a selected clock rate, in
which case each PROP beat is held up until the next clock

131

pulse occurs. The source of instructions can also be altered,
so that instead of being taken from the IBU, PROP can obey
functions set on console handkeys, or read in directly from a
Teletype.

The three most frequently used Operating Console co"ntrols
are the 'Re-set', 'Interrupt' and 'Go' switches. The 'Go'
switch injects a single pulse into PROP to cause one pipeline
beat, which, in 'Auto' mode, is sufficient to set the
Processor running. The 'Interrupt' switch sets the Engineers
Interrupt digit in the System Error V-line, while the 'Re-set'
switch re-sets all essential timing and control flip-flops in
the Processor to their 'initial' state. Thus from being
stopped, the Processor is normally re-started by operation of
the 'Re-set' 'Interrupt' and 'Go' switches in sequence. For
commissioning purposes these three switches can be set to
inject their pulses in the correct sequence at a selected
clock rate. Since the Processor is asynchronous, very many of
the faults which occurred during commissioning simply caused
it to stop, thus preventing continuous observation by
oscilloscope. By using the continuous 'Re-set', , Interrupt' ,
'Go' system, a continuous trace could once more be obtained.
Certain faults only occurred several seconds or even minutes
after a Processor re-start, however, and in order to obtain an
observable oscilloscope trace of signals near to the fault
point, it was necessary to re-start the Processor with the
central registers, CPRs, stores, etc., set up to a state close
to the fault point. Thus, during the running of a
fault-producing proces~, the contents of the central
registers, CPRs and stores can be 'photographed' at a selected
CPRNEQ prior to the fault, and preserved on disc. At a
subsequent re-start the information on the disc can be used to
restore the 'photographed' state of the Processor before the
fault-producing process is itself re-started.

6.6 THE MU5 EXCHANGE

We saw in Chapter 2 how the idea of the MU5 Exchange [24]
arose out of the need to provide a simple, fast and flexible
means of allowing a number of computer and storage devices to
communicate with each other. The present MU5 Exchange has a
theoretical maximum capacity of 16 Units, but technological
considerations have limited the number of Units to a practical
maximum of ten. These Units each provide a set of parallel
inputs to a multiple width OR gate and each is connected, via
its own buffer register, to the output of this OR gate (figure
6.12). The Exchange operates by time sharing the OR gate
between the Units. Thus the transfer of a block of words from
the Fixed-head Disc Unit to the MU5 Local Store, for example,
involves a succession of 64-bit word transfers from the Disc,

132

as 'Sending' Unit, to the Local Store as 'Receiving' Unit,
with the OR gate connecting these Units for the duration of
each word transfer rather than for the whole duration of the
block transfer. Other transfers can therefore be accommodated
during this period, so that the 1905E computer, for example,
can make read requests to the Mass Store. Two transfers are
required for a read request, one in which, in this case, the
1905E as Sending Unit sends the address and appropriate
control information through the Exchange to the Mass Store as
Recei ving Unit, and subsequently one from the Mass Store as
Sending Unit to the 1905E as Receiving Unit in order to return
the data read out from the specified location in the \'i,:4.33

Store.

Fixed-head
Disc Store

PDP - 11/10

M U5 Processor

Local Store

1905E Processor
and Store

Mass Store

Figure 6.12 The MU5 Exchange System

The requests from different Sending Units arrive at the
Exchange completely asynchronously, and much of the control
logic wi thin the Exchange is therefore concerned with
scheduling transfers through the actual OR gate on a priority
basis. A substantial proportion of these transfers are paging
transfers between the Local and Mass Stores. Since these are

133

both passive Units, the transfers are activated by the Block
Transfer Unit (section 6.6.4), itself connected. as a Unit to
the Exchange and physically housed wi thin the same logic bay.
The Exchange is also concerned with checking the parity of
information passing through it, and, being connected to each
Unit, it acts as a focal point for parity errors .arising
within any Unit in the complex.

6.6.1 The Exchange OR Gate

The design of the Exchange OR gate is affected by two
important criteria

(1) the number of digits which need to be transferred
between Units in order to effect a transfer

(2) the time required to complete a transfer.

These criteria are to some extent related in any given
technology, since on the one hand an increased width involves
the control of a larger number of gates at any instant, and
hence involves additional delays in the control fan-out logic,
while on the other hand a data path narrower than the full
width of the connected devices involves additional propagation
delays through the fan-in and fan-out logic needed to connect
the several parts of the device data path to the OR gate data
path.

In practice the width of the data path was chosen to be 8
bytes (64 data bits plus one parity bit per byte). This figure
corresponds to the wid th of the data paths wi thin the MU5
Processor, and also exceeds the minimum width necessary for
some of the Units to be able to communicate at all. Thus the
Fixed-head Disc has an effective data rate of 0.5 11s/byte,
while the storage modules constituting the Mass Store have a
cycle time of 2.5 11S, and both these devices and the data path
between them must therefore be capable of dealing with at
least 5 bytes (40 bits) per transfer for communication to be
possible.

The width of the address field is determined by the size of
the largest directly addressable store which might reasonably
be expected to be connected to the Exchange, with the
additional constraint that it is convenient to make this field
an integral number of bytes. Allowing one digit to select
V-store or normal addresses within a Unit, a 3-byte address
(24 addre,ss digits plus 3 parity digits) allows up to 8M words
to be addressed. This compares with 256K words available in
the Mass Store, the largest directly addressable store
currently connected to the Exchange.

134

The control field contains some information which is copied
directly through the OR gate from the Sending Unit to the
Receiving Unit (the tag bits, for example), some information
which is copied through the OR gate and is also used by the
Exchange Control System (section 6.2.2) and some information
(the Unit number) which is transmogri.fied by the Control
System before being sent to the Receiving Unit. In all, 14
control digits pass between Units via the Exchange, making the
total width of the OR gate 113 bits, and some additional
control signals pass between the Exchange Control System and
each of the Units.

The timing of transfers through the Exchange is dependent
on the nature of the communication between a Sending Unit and
the Exchange and between the Exchange and a Receiving Unit. A
Sending Unit initiates a transfer by sending a Strobe Outwards
signal (SO) to the Exchange (figure 6'. 13), timed to arrive as
soon as the data, address and control information in the
Sending Unit output buffer has become valid at the Exchange
(allowing for cable length, etc.). This output buffer is
necessary since, at the time SO is sent, either the Receiving
Unit may not be free, or a higher priority transfer may be in
progress, and the Sending Unit therefore has no means of
knowing when the transfer will actually occur.

RAI

Unit
etc.

Tag
etc.

A
d
d

D

Sending Unit

iii
'x
'1'
8

From
Other
Units

....- - --OR Gate- - --....
x 113

Tag
etc.

To
Other
Buffers

A
d
d

D

etc.

Figure 6.13 Exchange Control and Data Paths

The timing control logic of the Exchange itself is governed
by a free running oscillator, so that the Exchange operates
synchronously, at a rate of one transfer per 100 ns. Each
transfer requires two 100 ns periods or 'slots' for its

135

complet.ion, one for the actual transfer through the Exchange
OR gate, and a previous one in which the Exchange control
logic determines which of the incoming requests to service.
Within the Exchange these two activities are overlapped for
successi ve transfers. When a request has been selected for
servicing in one time slot, the information from the Sending
Uni t is gated into the OR gate in the next time slot by the
appropriate decoded output from the Select Unit Register (SU
in figure 6. 13). The output signals from the OR gate then
propagate to the input buffers of all the Units but only the
buffer corresponding to the Receiving Unit of the current
transfer is strobed, at the end of the slot. A Strobe Inwards
pulse (SI) is then sent to the appropriate Receiving Unit,
thereby completing the transfer as far as tpe Exchange is
concerned. The Receiving Unit, on receipt of SI, deals with
the data in its buffer at its own convenience and then returns
a signal to the Exchange indicating that its buffer is free to
be overwritten by a further Exchange transfer.

The input buffers for all the Units are contained on the
same platters as the OR gate itself, in order to minimise the
transfer times. Although the data could in principle be
allowed to propagate over the long cables connecting the
Exchange to the Units as wide. pulses, with a narrow control
pulse accompanying them, variations in cable delays and the
deterioration in edge times of signals propagated over these
long distances would in practice lead to the need for a much
longer Exchange slot time in order to ensure reliable
operation.

6~6.2 The Exchange Control System

The Exchange Control System, in conjunction with the Exchange
Priority System (sec~i0n 6.6.3), provides the gating and
strobing signals necessary t6 organise transfers through the
OR gate. Transfers can be initiated by any Uni~ sending its SO
signal to the Exchange, accompanied by the necessary data,
address and control information. Two of the control digits RO
(Read Oufwards) and WO (Write Outwards) are encoded to
indicate the type of transfer, as follows

RO WO TYPE OF TRANSFER

0 0 Data Available
1 0 Read Request
0 1 Write Request
1 1 Read & Mark Request

Read requests and write requests normally originate from
Processor Units and are sent to Store Units. The processor

136

send s the Unit number and real address wi thin the Uni t in
either case, and the data in case of a write request. In the
case of a read request, the Receiving Unit accesses the
required data and subsequently initiates a data available
transfer back to the original Sending Unit. Read & mark
requests (section 5.1.3), involve a reading and writing
action, and are therefore accompanied by both address and
data, as for a write request. The data is used to mark the
addressed location, after the data already contained in it has
been read out and sent back to the original Sending Unit by
means of a data available transfer.

Before taking any action on an incoming request, the
Exchange must know that the Receiving Unit is free to accept
an incoming request. The Exchange therefore keeps a record of
the state of each Receiving Unit by means of two flip-flops
per Unit, the Buffer Free and Store Free flip-flops (BF and SF
in figure 6. 13). The Buffer Free flip-flop is re-set to the
busy state whenever a transfer is made to a Unit, and no
further transfers can be "made to that Unit until the Unit
itself has sent a signal to set the Buffer Free flip-flop,
after it has assimilated the information in the buffer. The
Store Free flip-flop is essentially identical to the Buffer
Free flip-flop in many Units, but serves a distinct purpose in
Processor Units which can both initiate read requests (and
hence receive data available replies) and themselves be
accessed by read or write requests from other Units. Thus if a
Uni t' s Buffer Free and Store Free flip-flops are both in the
free state, then it can accept .any type of transfer, whereas
if the Buffer Free flip-flop is in the free state but the
Store Free flip-flop is in the busy state, then it can only
accept a data available transfer. ::t:f the MU5 Processor is
interrupted by another Unit writing to its Peripheral Window
V-line for example, it can prevent further similar interrupts
occurr~ng during the servicing of this interrupt by
maintaining the Store Free flip-flop in the busy state, while
at the same time remaining free to accept data available
replies corresponding to its own read and write requests.

The first action at the start of each slot time is the
strobing of the incoming SO signals into register RQ. When
sufficient time has elapsed for the RQ register flip-flop
outputs to settle, those requests for which the states of RO
and WO, and the BF and SF of the Receiving Unit, are such that
the transfer is possible become candidates for' selection by
the Exchange Priority System (section 6.6.3).' The latter
encodes the Unit number of the selected Sending Unit, and
selects the appropriate Receiving Unit number for copying into
registers SU and RU at the start of the next time slot. The
value in SU, which when decoded, selects the appropriate

137

inputs to the OR gate, is sent to the Receiving Unit as the
Unit number in the control information field. For a write
request or data available transfer this information is
irrelevant to the Receiving Unit, but for a read or read &
mark request the incoming Unit number value is preserved in
the Receiving Unit and is then returned to the Exchange as the
Unit number with the subsequent data available transfer. The
value in RU, which selects the appropriate buffer and BF and
SF flip-flops for updating and the Unit to which SI is to be
sent, is discarded at the end of the transfer.

If all Units connected to the Exchange could only accept
one read request before returning a data available reply, then
the Unit number sent with the read request could equally well
be preserved within the Exchange. By sending it to each Unit,
however, those Units within an internal pipeline or parallel
accessing structure can accept sequences of read requests from
different Units and guarantee to return each data available
reply to the appropriate requesting Unit. A further
possibility is that one Unit may send out several requests
before receiving data available replies, and must be able to
distinguish between these replies when they arrive. This is
achieved by means of the tag bits, which are used in a similar
fashion to the tags used by OBS to distinguish between replies
it receives from SAC. The Block Trans,fer Unit (section 6.6.4)
for example, has four separate channels capab}e of controlling
nata transfers between Units, and data available replies
corresponding to requests from one channel are distinguished
from those for another channel by means of the tag bits sent
with each'read request. A Receiving Unit passes the tag bits
through its system, along with the Unit number, and returns
both tag and Unit number to the Exchange as part of the
corresponding data available reply.

6.6.3 The Exchange Priority System

The Exchange Priority System determines which request is to be
serviced next by the OR gate when more than one request is
present in the RQ register. Each Unit attached to the Exchange
is assigned a priority inversely proportional to its Unit
number, so that Unit 0 has highest priority. The priority of a
request which has become a candidate for selection by the
Priority System is determined by the priority o~ the Sending
Unit or Receiving Unit associated with it, according to the
type of request. For all except data available requests, the
Sending Unit priority always applies, while for data available
Requests, the Sending Unit priority applies only if the
ReceiVing Unit is not a crisis time device. If the Receiving
Unit is a crisis time device, then the Receiving Unit priority
applies.

138

Units are classified into four priority categories,
Peripheral Processing Units (PPUs), Central Processing Units
(CPUs), Stores (Mass and Local), and the Block Transfer Unit.
PPUs have highest priority since they are generally concerned
with organising transfers which involve crisis time devices.
The Ftxed-head Disc, for example, with a 4 ~s crisis time, is
classified as a PPU, and is connected as Unit O. CPUs normally
maintain an intense traffic to and from their own local
stores, via dedicated highways, and only make occasional
requests to stores via the Exchange. Apart from PPU transfers,
most of the store transfers are paging transfers between the
Mass and Local Stores organised by the Block Transfer Uni t •
Since this Unit can control up to four block transfers
simultaneously, it can easily saturate the Mass Store, and
although CPUs have a crisis time extending to infinity, it
would be unreasonable to hold up their requests for the
duration of a block transfer. Thus CPUs have the second
highest priority and the Block Transfer Unit has the lowest.
The changeover from Sending Unit to Receiving Unit priority
for data available requests from the stores, which have third
highest priority, ensures that crisis-time Units are serviced
promptly both in the outwards and inwards direction.

6.6.4 The Block Transfer Unit

The Block Transfer Unit (BTU) is closely associated with the
Exchange in that its sole function is the transfer of blocks
of information through the Exchange from one store to another,
and it is physically housed within the Exchange logic bay.
Transfers are carried out on a word by word basis, with the
BTU making alternate read and write requests to the Source
Unit and Destination Unit respectively. The BTU actually
contains four channels, each capable of organising a transfer,
and data available replies for the different channels are
distinguished by means of the Exchange tag bits (section
6.6.2). Each channel is made up of a number of registers and a
counter as shown in figure 6.14.

The registers form part of the V-store and in order to
initiate a transfer, the initiating processor writes into
registers Sand D the page address and Unit number of the
source page, and the page address and Unit number of the
destination page. Register L is set up to contain the number
N-1, where N is the number of word to be transferred. This
facility corresponds directly to the variable page size
facility in the Current Page Registers (section 6.4.1) and so
problems of concatenating the overlapping digits of Land S or
D do not occur since an N-word transfer. must always start on
an N-word page boundary within each store.

139

Page Address

Page Address

Data from

End of Transfer

.......... _.,... ___ ~ Address
to

""'-_-.... - ---...... Exchange

Exchange ---""I E

Data to
...... -----------------~ Exchange

Figure 6.14 A Block Tran~fer Unit Channel

L

Each word transfer involves three Exchange requests, a read
request to the Source tInit, a data available request to the
BTU which buffers the data word, and finally a write request
to the Destination Unit. Alternative schemes involving only
two Exchange requests were considered as part of the BTU

'design exercise, but these suffered from obvious
disadvantages, such as the fact that while the data could be
sent directly from the Source Unit to the Destination Unit,
provision has to be made for the transfer of the Destination
Unit address from the BTU.

Once the write request has been accepted by the Exchange,
the value in register L is decremented in preparation for the
next read request. Thus transfers proceed from the highest to
the lowest address wi thin a block, thereby simplifying the
detection of the end of the transfer, since the transfer is
complete when register L contains zero, regardless of its
initial content. The end of transfer is communicated to a
processor by means of a message sent by the BTU to the
'communication window' specified in register E. Register E is
loaded by the initiating processor at the start of the
transfer and allows the initiating processor to deal with the
end of transfer signal itself or to delegate the task to a
separate processor. Furthermore, it allows the end of transfer
to appear as an MU5 interrupt, by specifying the communication
window as being the MU5 Peripheral Window. Al terna ti vely the
communication window can be a location in the Local or Mass
Store which is polled by the interested processon.

140

7 The Execution Units

Computational functions are executed in three.units of the MU5
Processor, the A-unit, the B-unit and the D-unit. The A-unit
is the main computational unit, capable of carrying out
fixed-point (signed and unsigned) and floating-point
operations, while the B-unit carries out fixed-point signed
arithmetic, and is used mainly for calculating modifier values
to be used during data structure accesses. Orders concerned
with byte processing, the store-to-store orders, are carried
out by the D-unit, with bytes being accessed by the descriptor
mechanism in Dr and manipulated by the byte-processing logic
in Dop. Addition is an important operation in all these units,
and it is therefore convenient to present the general
technique used for carryin~ out addition in MU5 before
considering the design of the individual units.

7 • 1 ADDITION

Many techniques for performing fast addition have been
proposed, but in practice most of them cannot be implemented
successfully when circuit limitations such as fan-out, fan-in,
etc., are taken into consideration. The method used in MU5 can
be considered as ~eriving from two techniques, the Block-carry
Adder and the Conditional Sum Adder [25], as well as relying
on the particular properties of the flip-flop in the ECL logic
family [26]. The basic problem with fast adders is that a
carry generated at the least significant end of the adder may,
in the worst case, be propagated through to the most
significant end.

Thus in any parallel adder a carry may be genera ted or
propagated at the kth bit position according to the state of
its inputs X(k) and Y(k). A carry is generated according to a
signal G(k) given by

G(k) = X(k).Y(k)

and a carry is propagated from the less significant position
(k + 1) through to the next most significant position (k - 1)
according to a signal P(k) given by

141

P(k) = X(k) v Y(k)

The carry from bit position k is therefore given by

C(k) = G(k) v P(k).C(k + 1)

By expanding, the carry at any bit position may be written as

C(k) = G(k) v P(k).G(k + 1)
v P(k).P(k + 1).G(k + 2)

v
v

v peN - 2).P(N - 1).Cin

where operands are N bits long.

For large values of N, however, such an expression cannot
be implemented in a single AND-OR combination due to both
fan-out and fan-in limitations of the circuits. P(k) appears k
times in the expression and the OR gate must have a fan-in of
k + 1. In the Block-carry Adder the N bits of the adder are
divided into B block of r bits, and in each block two extra
signals are produced. For block q these signals are

G(r,qr) - a carry appears from bit qr which may have been
generated there or propagated through from any
of the previous r - 1 bits.

P(r,qr) - a carry into bit (q + 1)r -
these r bits.

Hence

G(r,qr) = G(qr) v P(qr).G(qr + 1)

is propagated past

v P(qr) .•• P«q + 1)r - 2).G«q + 1)r - 1)

P(r,qr) = P(qr).P(qr + 1) ... P«q + 1)r - 1)

and so

C(qr) = G(r,qr) v P(r,qr).G«q + 1)r)

v
v

v P(rtqr) ..• P(r,(B - 1)r).Cin

Figure 7.1 illustrates such a system. The signals C' are

142

combined with the G(k) and P(k) signals to form carries into
individual bits.

X(r-1) Y(r-1) X((B-1)r) Y((B-1)r)

G(O) P(O) G((B--1)r) P((B-1)r)

G(r,O), P(r,O)
Cr'

G(r,(B-1)r)

C'(B-1)r P(r,(B-1)r)

C'a .-_.1..-____ ---J._---lL---___ -L-_--L.... _____ ..I-----, c
in

Figure 7.1 Block-carry Addition

When large numbers of bits are involved, the logic
expressions are still too complex for direct implementation,
and the system is developed further by grouping the B blocks
into S super-blocks. Thus B = N/r and S = Bit, where t is the
number of blocks in a super-block. This process may be
repeated as ,often as necessary, with each division adding , ro
logic stages to the carry path. Using the MU5 ECL > •• logic
family, the fan-out and fan-in capabilities fix rand t at 4,
giving, for an 8-bit adder

G(4,0) = G(O) v P(0)G(1) v P(0)P(1)G(2) v P(0)P(1)P(2)G(3)

G(4,4) = G(4) v P(4)G(5) v P(4)P(5)G(6) v P(4)P(5)P(6)G(7)

P(4,0) = P(0)P(1)P(2)P(3)

P(4,4) = P(4)P(5)P(6)P(7)

C(1,4) = G(4,4) v P(4,4)Cin

C(1,0) = G(4,0) v P(4,0)G(4,4) v P(4,0)P(4,4)Cin

C(2) = G(2) v P(2)G(3) v P(2)P(3)G(4,4) v P(2)P(3)P(4,4)Cin

The second technique which is of interest is Conditional
Sum Addition. In this method two sums are formed, one assuming
the carry will be zero and one assuming it will be 1. The
correct one is then selected by the carry signal. As with the
Block-carry Adder, b1 ts can be grouped together, as in the
example shown in figure 7.2. Considering the first level of
logic for bit 5, if the carry in is 0, then S5 = 1 and C5 = 0,

143

while if the carry in is 1, then S5 = 0 and C5 = 1. In the
second level of logic, pairs of bits are considered. Taking
bi ts 6 and 7, 37 will be the same as in the first level. If
the carry in is 0, then C7 = 0 (from the first level) and
hence 36 = 0 and C6 = 1. If the carry in is 1, then C7 = 1 and
hence s6 = c6 = 1. The value of C7 need not be copied.
Considering bits 2 and 3, C3 is always 1, regardless of the
input carry, and hence the second row of values from bit 2 are
selected in both cases. This procedure may be continued as
necessary.

1 1

0 1

CO SO C1

0 1 1

1 0 1

1 0

1 0

1 0

1 0

1 0

1 0

0 1 1 0 1

0 1 0 1 1

S1 C2 S2 C3 S3 C4 S4 C5 S5 C6 S6

0 0 0 1 0 0 1 0 1 1 0

1 0 1 1 1 1 0 1 0 1 1

0 0 1 0 0 1 1 1 0

1 0 1 1 1 0 0 1 1

0 1 0 1 0 0 0

0 1 1 1 0 0 1

0 1 1 0 0 0

0 1 1 0 0 1

Figure 7.2 Conditional Sum Addition

1

0

C7

0

1

S7

1

0

1

0

1

0

1

0

x
y

C=O

C=1

c=o

C=1

c=o

C=1

c=o

C=1

This method of addition has the advantage that the maximun
fan-in is 2, but the disadvantage that the maximum fan-out is
N/2. If a conditional sum addition is performed on each group
of 4 bits, however, fan-out is no longer a limitation. It is
now only necessary "to form carries at 4-bit intervals, and
signals such as C1, C2 and C3 are not required. The carries
CO, C4, etc., can be formed by a suitable block-carry network,
and used by the conditional sum system to select the correct
values of sum.

A further advantage can be gained from the properties of
the ECL flip-flop. One of the characteristics of adders is
tha t both phases of the carry signal are normally required.
-This requirement is eliminated by connecting the flip-flop as
shown in figure 7.3, which is a logic diagram of the 2-bit sum
module used in MU5. The signals 3(k)IC = 0 and 3(k)IC = 1 are
formed from the true and inverse phases of the inputs X(k) and
Y(k) and gated with an input strobe. These signals, applied to
the set and re-set inputs of the flip-flop, cause the -latter
to take up the value of the sum corresponding to a carry in
(Cin) of O. If Cin is actually found to be °a 1, the state of
the flip-flop must be changed. Thus E(k) is connected to the

144

Data input of the flip-flop and Cin to the Gate input (cf.
figure 3.5). The Clock input is the OR of S(k) I C = 0 and
S(k) I C = 1, one of which will always occur. The Clock input
therefore always starts and ends one gate delay after the
set/re-set pulses, and since the D-type inputs override the
set/re-set inputs (contrast TTL flip-flops), the correct
result is always obtained. This type of adder has been termed
a Sequential State Adder.

Strobe

Strobe

X
k

Y
k
------+--+-~

Cin ----+---If-------i-------.

Strobe

X
k

_
1

Yk - 1

X
k

_
1

Yk - 1

X
k

_
1

Y k - 1

X
k

_
1

Yk - 1
Strobe ------+---+-............

Figure 7.3 The MU5 Sum Macro Module

A modification of this system is used for the second, more
significant digit (S(k - 1), since Cin is simply the carry in
to the first digit. S(k - 1)lc = 0 and S(k - 1)lc = , are
formed from the inputs corresponding to bit positions k and k
- 1 in order to allow for the case where a 'carry is generated
at bit position k. The result is now only incorrect, and must
be changed to E(k - 1), if Cin propagates through the first
bit~ (E(k) = 1). Thus Cin is still connected to the Gate input
of the second flip-flop, but the strobe to the Clock input is
gated with E(k).

145

The packaging of the adder in 2-bit macro modules requires
c,arries to be generated at intervals of two bits, even though
the basic block size is four bits. The carry logic is
partially contained in a carry macro module which produces the
generate and propagate signals over groups of four bits in two
levels of logic and partially made up from standard modules.
For a 16-bi t adder one extra level of logic is needed in the
carry path, giving an overall addition time corresponding to
four gate delays, while for larger adders two extra levels are
needed, giving an overall addition time of five gate delays.

7.2 THE A-UNIT

The A-unit is the main arithmetic unit of MU5, situated at the
end of the Secondary Instruction Pipeline (chapter 5), and
capable of performing fixed-point and floating-point
arithmetic, logic and shifting. Figure 7.4 shows an idealised
schematic diagram of this unit. The X-Register is used for
32-bit signed fixed-point numbers, while the 64-bit
Accumulator Register (ACC) is used for all other types of
operand '. AEX, also 64 bits long, is used mainly in
floating-point operations as an extension of ACC at its least
significant end. AOD contains 13 special digits such as the
32/64 bit floating-point mode coritrol digit, interrupt
conditions and interrupt inhibits.

Input

I I nput Buffer I

, , , 1 ,
Shift Multiply Add/ Logic

Subtract

I '--- J I J
T , , , ,

ACC AEX Y I ADD I
I l I

T

+
Output

Figure 7.4 Idealised A-unit Schematic

146

Functions are executed by four main arithmetic/logic
sections, each of which can receive operands from, and send
operands to, any of the four registers. Loading of the
registers (as a result of an '=' function) is achieved via the
logic section, in order to reduce the number of internal
highways. The add/subtract section performs all 64-bit
additions and subtractions, forms 3 • D (where D is the
multiplicand) for multiplication and carries out the final
addition required for multiplication (section 7.2.3). It also
contains the pre-arithmetic and normalising shift network
required for floating-point operations, and the highway
between this section and the registers is therefore notionally
128 bits wide. The shift section contains a unidirectional
(left) shifter. Right shifts are achieved through the use of
'twist' gating connections at the input and output stages of
the shifter which allow the order of bits in the operand to be
reversed. The multiply section carries out multiplication of
two signed 2's complement numbers up to 53 bits long (the
mantissa size) and produces a signed 2's complement number up
to 106 bits long. Thus it is capable of dealing with both
32-bit fixed-point humbers and with the mantissae of
floating-point numbers. In the latter case the corresponding
exponent arithmetic is carried out in the add/subtract
section. The A-unit is actually required to carry out a
variety of different orders, all of which are implemented by
adaptations of these four sections. In particular, division
(section 7.2.4) is performed by an iterative process involving
multiplication, addition and shifts.

In practice, constraints introduced by the physical
configuration of the hardware led to the logical configuration
shown in figure 7.5. The principal differences between this
scheme and the idealised scheme are that transfers between the
registers and the shift section all take place via the
add/subtract section, and the least significant half of a
double-length result is fed to the appropriate part of AEX via
a separate dedicated highway. This allows the main path from
the execution sections to the registers to be only 64 bits
wide. In addition, the extra input buffer incorporated into
the A-unit is shown in figure 7.5. Input Buffer 2 holds the
operand and function corresponding to the order currently
being executed in the A-unit, which cannot normally be
overwritten until the order has been completed. Individual
orders require varying amounts o~ time for their completion,
however, some more and some less than the typical average time
required by the Secondary Operand Uni t to supply success,i ve
functions and operands. Timing interlocks between the units
prevent orders being sent to the A-unit before it can accept
them, and without further buffering no advantage could be
gained from the faster orders. For example, if Inpu~ Buffer 2

147

held a slow order and the next order was fast, then in the
absence of Input Buffer 1, the A-unit would be held up, once
it had completed both these orders, until the Secondary
Operand Unit had had time to supply a third order. By
incorporating Input Buffer 1, the overlap between the A-unit
and the Secondary Operand Unit is ·improved and the third order
can have been made available earlier. Clearly the general
effect of Input Buffer 1 is to smooth out variations in the
acceptance rate of orders into the A-unit and, depending on
the actual sequences of orders, more buffers could improve the
situation further. A law of diminishing returns operates,
however, and one extra buffer was considered sufficient for
the present design.

Input

l
I liP Buffer 1 I

I 1

f l
I liP Buffer 2 I

• •
Shift Multiply Addl Logic

Subtract

I 1.. I J
I

• • • f ,
ACC ! AEX r- I X I I AOD I
I J I

Output

Figure 7.5 Practical A-unit Schematic

7.2.1 Number Representation

The number formats used in MU5 are shown in figure 7.6. Apart
from the floating-point format they are fairly conventional.
Even the floating-point format has no exceptional virtues
relative to any other systems in use, except possibly the use
of a hexadecimal radix, and was chosen by ICL during the
'convergence' exercise (chapter 1) because it met certain

148

customer requirements. In the absence of such virtues, it
might have been better to adopt a number system compatible
with that used by IBM, a course subsequently adopted by ICL
for the 2900 Series.

32 63
(a) Fixed-point Signed I

t Value

Sign

o 3132 63
(b) Fixed-point Unsigned 1

Zeros Value

(e) Decimal 1
Magnitude t

Sign

o 1011 63
(d) 64-bit Floating Point 1 __ --11 ______________ -----1 I

Exponent t
Sign

Mantissa

32 4243 63
(e) 32-bit Floating Point I I

Exponentt Mantissa

Figure 7.6 Number Formats
Sign

Tbe virtue of the hexadecimal radix lies in the speed
advantage which can be obtained during the execution of
floating-point addition and subtraction (section 7.2.2). It is
a fact that in many calculations most of the operands are of
similar magnitude and with increasing radix value the number
of occasions on which pre-alignment shifting is required for
addition and subtraction decreases. This advantage must,
however, be off-set against the reduction in accuracy caused
by retaining fewer mantissa digits during normalisation and
rounding.

7.2.2 Addition and Subtraction

The add/subtract section of the A-unit carries out addition
and subtraction of both fixed-point and floating-point numbers
and therefore contains not only an adder/subtractor, but also
a shifter and exponent arithmetic unit. For floating-point
addition or subtraction the exponents must be equalised and
the mantissae correspondingly aligned before the addition or
subtraction can be carried out. Thus the exponents are
compared, and the mantissa of the smaller number is shifted
right (towards the least significant end), until the exponents
are equal. However, as a consequence of using a hexadecimal
radix, the probability of such a shift being necessary is only

149

around 50% [27], and advantage is taken of this fact in MU5 by
starting the addition or subtraction immediately, on the
assumption that no shift will be necessary. Corrective action
is then taken later if necessary. Similarly, normalisation at
the end of addition or subtraction is unnecessary in over 80%
of cases. With a hexadecimal base, normalisation involves
shifting the mantissa until it is in the range

-1/8 L m L -1
or

1 > m L 1/16

Thus the normalising shifter is initially set to zero shift,
and the result of the operation made ready to be copied into
the appropriate register on the assumption that normalisation
is not required. Again, corrective action is taken later if it
found to be necessary.

x-input v-input

Adder

MR

s

Exponent
Arithmetic

R
EY

Figure 7.7 The Add/Subtract Section

Figure 7.7 shows the overall diagram of the add/subtract
section of the A-unit. For floating-point addition the
mantissae corresponding to the incoming operand and the ACC
Register are routed to the x and y inputs of the adder
respectively through the t no shift t gates (NO-Sh) and the
addition is started. At the same time, the 11-bit exponents
are compared in the exponent arithmetic unit and the

150

difference set in the Exponent Result register ER. EY is set
with the larger exponent value which is also the exponent of
the floating-point result. The exponent arithmetic unit is
actually 12 bits long, since an overflow condition may cause
the 11th bit to indicate a shift of the wrong mantissa. The
12th bit is also used for checking floating-point overflow or
underflow.

If ER is non-zero, then the first addition must be
abandoned and a second addition initiated. If the difference
is positive, then the S-Sh gates are opened and the incoming
operand (S) is shifted by the number of hexadecimal digits
indicated by ER. If the difference is negative then the A-Sh
gates are opened, and the ACC Register content is shifted by
one more hexadecimal digit than the number indicated by the
inverse of ER. (Negating a 2's complement number involves
inverting and adding 1; in this case the extra 1 is
incorporated into the shift at the entry to the ASB gates by
wiring the A inputs four bits shifted relative to the S
inputs.)

The shifter itself is 105 bits wide so that bits shifted
below the significance of the adder can be retained for
double-length results. These bits are held in the Accumulator
Extension Buffer (AEB) at the end of the addition, while the
result of the addition proper is held in the Mantissa Result
register (MR). The shifter is re-set to zero shift after the
addition, in preparation for normalisation. Normalisation
requires a left shift (towards the most significant end) and
since, for reasons of economy in modules and platter
in terconnec tions , the same (unidirec tional) shi fter is used,
the order of the digits is reversed. Thus MR is connected to
the input to the least significant half of the shifter, and
AEB to the most significant input, both either directly or via
a 4-digit shift which allows for the super-normal case. The
output from the shifter forms the input to the ACC Register
and AEX, with the digits in an appropriately inverted order,
and if no normalisation is required, the result can be copied
in immediately. Where normalisation is required, an extra
delay is incurred while the data paths through the shifter
settle to the new conditions. Rounding occurs if the content
of AEB is non-zero, the least significant digit of the ACC
Register being forced to 1 in this case.

The fastest time for floating-point addition, when no
pre-arithmetic or normalisation is involved, is 170 ns.
Normalisation involves an additional delay of approximately 70
ns, and pre-arithmetic shifting an additional delay of
approximately 125 ns, so that the longest floating-point
addition requires 365 ns. The expected average time s_ however,

151

is around 250 ns, when account is taken of the relative
frequency of occurrence of the various cases [27]. These times
are, in fact, considerably longer than those which could be
achieved with the existing logical design. The extra time is
mainly incurred because of layout difficulties and pin
limitations which require extra cable delays and highway gates
within the system.

Fixed-point subtraction is performed by inverting the
subtrahend and adding an extra 1 (via the carry-in entry) to
the least significant digit. In floating-point subtraction a
difficul ty arises in cases where the subtrahend mantissa is
shifted before subtraction, since the position at which the
extra 1 must be added is variable .. This difficulty could be
overcome by extending the subtrahend to double length at its
least significant end and always adding the 1 to the least
significant digit of the double-length value. This would
require a complete double-length adder however, and an
al terna ti ve approach has therefore been used. In the cases
where the subtrahend is shifted (the incoming operand (S) in
Subtract, or the ACC . Register content in Reverse Subtract),
this number is first complemented by a separate pass through
the adder and then added to the minuend to form the result.
The time taken for subtraction is obviously increased in this
case, the actual amount being approximately 100 ns. This only
leads to an average expected floating-point subtraction time
25 ns longer than the average floating-point addition time,
however, when account is taken of the relative frequencies of
occurrence of the different possibilities [27].

Fixed-point addition and subtraction both take
approximately the same time as the fastest floating-point
addition. This is because the same data paths through the
adder and shifter are used, although only 32 bits are actually
of significance. In the case of fixed-point signed arithmetic
orders, an overflow can occur. This situation is detected by
examining digits from the adder of higher significance, and
its occurrence is recorded as a digit in the AOD Register.
Unless the corresponding Interrupt Inhibit digit is set in
AOD, an interrupt is signalled to PROP, which takes
appropriate actions (section 4.1.2). In the unsigned case,
overflow is not meaningful, and since unsigned arithmetic is
performed on numbers in the 64-bit ACC Register, a 33-bit
result may be returned.

7.2.3 Multiplication

In most computers multiplication is implemented as repetitive
addition, and a number of techniques are available for
enhancing its speed [28]. In MU5 the number of additions is

152

reduced by decoding three multiplier digits at a time, and the
time for a single addition is reduced by use of the carry-save
addition technique.

Multiplier
Decoding Digit Pair

0 0 (+) 0
0 1 + D
1 0 + 2D
1 1 + 3D

(a)

Multiplier m.s. Digit of Decoding Digit Pair Previous Pair

0 0 a (+) a
a 1 a +' D
1 a a - 2D
1 1 a - D
a a 1 + D
a 1 1 + 2D
1 a 1 - D
a a 1 (-) a

(b)

Multiplier m.s. Digit of
Digit Triple Previous Triple Decoding

a a a a (+) a
a 0 1 a + D
0 1 a a + 2D
a 1 1 0 + 3D
1 0 a a - 4D
1 a 1 0 - 3D
1 1 0 0 - 2D
1 1 1 0 ... D
a a a 1 + D
a 0 1 1 + 2D
0 1 0 1 + 3D
0 1 1 1 + 4D
1 0 0 1 - 3D
1 0 1 1 - 2D
1 1 0 1 - D
1 1 1 1 (-) 0

(c)

Figure 7.8 Multiplier Digit Decoding

Figure 7.8(a) shows the decoding of multiplier digits taken
two at a time. In order to carry out the multiplication, twice
the multiplicand (2D) and three times the multiplicand (3D)
are required. Furthermore, in order to produce the correct
result in a 2's complement system, provision must be made for
a subtraction to be performed in the last cycle when the
multiplier is negative. By allowing subtraction in any cycle,

153

however, a further advantage can be gained, as shown in figure
7.8(b). In this case only 2D has to be formed, and the case of
a negative multiplier is taken care of automatically. This
particular scheme also has the advantage that the most
significant digit of the pair indicates whether addition or
subtraction is required. The method can be extended to more
mul tiplier digi ts , but as the number increases, more
pre-additions are required. Thus 3-bi t decoding requires one
addition to produce 3D, 4-bit decoding requires additions to
produce 3D, 5D and 7D, and as more time is saved by reducing
the number of product additions, more time is lost in forming
multiples of the multiplicand. In MU5 three digits are decoded
in each cycle, as shown in figure 7.8(c).

The carry-save addition technique relies on the fact that
for repetitive additions it is unnecessar~ to propagate the
carry. Instead, the result is in the form C?f a 'pseudo-sum'
and t pseudo-carry' which can be added to the next product to
form a new pseudo-sum and pseudo-carry, as shown in figure
7.9. This arrangement requires the use of master/slave
flip-flops for the pseudo-sum and pseudo-carry registers. Thus
using the ECL D-type flip-flops (section 3.1.1) a second pair
of registers is required. The minimum strobe width used with
these flip-flops is 10 ns, although the propagation delay is
only 5 ns, and since the carry-save addition can also be
carried out in 5 ns, a second carry-save adder (CSA*) can be
in"serted between the two registers (figure 7.10) such that a
single carry-save addition can be performed every 10 ns.
Figure 7.11 shows the ECL logic required to implement the
carry-save adder; xk and yk are the inputs to digit position
k, one of which' is a previous pseudo-sum result, and ck is the
pseudo-carry in to position k.

Selected Multiplicand Triple

D

3-bit Shift 2-bit Shift

Carry-save Adder

Figure 7.9 Simple Carry-save Adder Arrangement

154

At the start of a multiply order, the appropriate register
content is fed to multiplicand register DO and to the
add/subtract section to form 3D. The latter is copied into
register TD, and the incoming operand associated with the
order (S) is copied into the multiplier register RR. The
decoding and selection logic forms a double pipeline feeding
the carry-save adders; since the two carry-save adders operate
in anti-phase, the inputs to the D and D* registers must be
correspondingly staggered. Thus signals decoded from the three
least significant digits of register RR select 0, 2D, 3D or 4D
to be fed to register D1, and the content of RR is then fed to
HR* where similar signals decoded from the next three digits
select the appropriate multiple of D to be fed to register
01*. The content of RR* is then fed back toRR, with a 6-digit
shift which causes the appropriate digits of the multiplier to
be used in the next cycle. D, 2D and 4~ are obtained simply by
connecting digits k, (k + 1) and (k + 2) of DO to the inputs
corresponding to digit k of D1. In the second selection stage
the true and inverse of D1/D1* are selected and copied into
02/D2* using the appropriate information copied from RR/RH*
into RS/RS*.

s

Figure 7.10 The Multiplier Section

155
F

Carry-save additions proceed until all the digits in the
mul tiplier register have been used. During this time carry
propagate additions of the digits shifted down below the
significance of the adders are carried out in a special 3-bit
adder, so that at the end only a single-length propagate
addition is required to form the result. This is carried out
in the main adder in the add/ subtrac t sec tion , to which the
final pseudo-sum and pseudo-carry are sent.

Figure 7.11 ECL Carry-save Adder Logic

This multiplication technique has been shown to be
particularly cost-effective with the logic used in MU5 [28],
and it appears to remain so for more recent developments in
LSI circuits, though it might be better to use only two
mul tiplier bits at a time. As far as is known, this type of
multiplier was first used in the English Electric KDF9
computer, built around 1960, while the IBM System/360 Model 91
[29] used a variation of the scheme, in which more carry-save
adders were used, and hence more multiplier digits handled in
each (rather longer) cycle.

7.2.4 Division

Division is carried out in MU5 by means of a successive
approximation technique which avoids the use of repeated
subtractions. A similar technique was used in the IBM
System/360 Model 91 computer [29] and it has also been used
subsequently in the CraY-1 computer [30]. The latter provides
better accuracy than MU5, mainly because MU5 retains fewer
digits during the course of the operation. The successive
approximations are obtained by an algorithm which is derived

156

by letting X = 1 /D , where D is the divisor, and considering
the func tion

f(X) = D - 1/X = 0

If Xn is the nth successive approximation to X and h is a
small deviation from Xn, then

f(Xn + h) - f(Xn) + hf'(Xn)

where f' = df/dX. Now since f(X) = 0

f(Xn) + hf'(Xn) - 0
i.e.

h = - f(Xn)/f'(Xn) = (D - 1/Xn)/(1/XnT2)

Let
X(n + 1) = Xn + h

then
X(n + 1) = Xn - DXn12 + Xn

= Xn (2 - DXn)

Suppose that initially XO = RO - 1/D from a table, then

X1 = RO (2 - D * RO)

If we now wri te
R1 = 2 - D * RO

then
X1 = RO * R1

and
X2 = X1 (2 - D * X1)

= RO * R1(2 - D * RO * R1)

If we again write
R2 = 2 - D * RO * R1

and proceed, then
X2 = 1/D = RO * R1 * R2

Now D * RO can be written as D1, D * RO * R1 can be written as
D2, etc., and hence

D(i + 1) = D * RO * R1 * ... Ri -> 1

Furthermore
Ri = 2 - Di

and if Di is fractional, then Ri is simply the 2's complement

157

of Di. (For the mantissae of floating-point operands this
condition is true b~ definition, and fixed-point operands can
be treated with a scale factor). Thus, once RO has been
determined, forming the reciprocal of the divisor involves
only the multiplication and complementing of partial results,
and if at each stage the dividend N is multiplied by Ri, the
quotient Q = N/D is obtained as the end result. In practice
the 2' s complement operation is replaced by a l' s complement
operation, which is faster but slightly less accurate.

The number of successive approximations which must be made
depends on the required accuracy. Suppose

RO = 1/D + e

where e is an error, then

D1 = D * RO = + De

R1 = 2 - D1 = - De

D2 = D1 * R1 = (1 + De)(1 - De)

= - (DE)f2

R2 = 2 - D2 = 1 + (DE)12

D3 = D2 * R2

= 1 - (DE)f4

Since D ~ 1, then if e < 21-7

(DE)f 2 < 21 -1 4

(DE)f4 < 21-28

(DE)18 < 2i-56

and so on.

which corresponds to more bits than there are in the ACC
Register. Hence D4 gives the correct answer provided that RO
is sufficiently accurate. The number of different values of RO
needed to obtain the required accuracy depends on the range of
values of D. It can be seen from figure 7.12 that if 1;> is
small then 1/D varies rapidly with changes in D and many
values ofRO are needed. This suggests that I D I should be
normalised, and in fact bit normalisation of IDI reduces the
required number of values of RO to four. The range of D is
then divided into four, and a pair of numbers generated from
the second and third most significant bits. These numbers are

158

A = 4 * DMH/(DMHT2 + DH * D(H - 1»
and

B = 2/(DMHT2 + DH(H - 1»

where DMH is the middle of the interval and DH and' D(H-l) are
the ends of the interval. RO is then given by

IW = A - B * D
For example, if

D = 0.100
then

D(H - 1) = O. 100

DH = O. 101

DMH = O. 1001
and thus

A = 3.5776

B = 3. 1801

Clearly A and B cannot 'be held in the floating-point ACC
Register since their values are greater than 1, and values of
RO/4 are used in practice. Furthermore, since 1/D = 2 is a
possible value, Di must also be calculated as Di/4.

1
5

4 --

I
I
I
I

2 --+--
I I
: I

~ ---r--i--
I I I __ L ___

1
___ + __

I I:
I I I
I I I
I I I
I I I
I I I

Figure 7.12 Graph of D Versus liD

The only
implementation

additional hardware
of this algorithm in

159

required
the MU5

o

for the
A-unit is

appropria te timing control Idgic, a means of determining RO,
and an extra register for storing partial results. This
register is connected to the output of the shift section
(figure 7.5) and forms an input to the add/subtract section
and to the roul tiply section. With careful layout of all the
logic involved, a division time of 3 llS could be achieved,
al though in practice the time required is 4 llS. The Cray-1
computer uses a bigger look-up table (and hence requires fewer
iterations) and also has a faster multiplier than MU5. This
leads to a quoted time for division of 360 ns.

7.3 THE B-UNIT

The B-uni t is a fairly straightforward arithmetic and logic
unit which carries out fixed-point arithmetic, logic and shift
operations involving an incoming operand and the contents of
the 32-bi t B-register. Its main use is in handling modifiers
used in data structure accesses. Thus when a modified
descriptor request is sent from PROP to Dr, a modifier request
is sent, in parallel, to the B-unit. No function is executed
as a result of this request, but as soon as any previous
orders have been completed, the B-unj.t signals to Dr that the
value on the dedicated modifier highway is valid. Dr always
wai ts for this signal before commencing modification, since
any previous value may have been invalidated by the execution
of one or more B functions. The time taken to complete most of
these functions is 45 ns, the main exceptions being Multiply
and Shift, which take a variable time according to the values
of the operands involved.

Multiplication is carried out by simple accumulation of
subproducts, using pairs of multiplier digits in successive
cycles, and once all significant multiplier digits have been
considered, the order is terminated. Clearly the time for
multiplication can be reduced if the operand with fewer
significant digits is chosen as the multiplier. A test is
therefore carried out at the start of each Multiply order in
the B-unit to determine which operand to use as multiplier and
which as multiplicand. Thus the time required for
multiplication is 100 ns for starting up plus 45 ns for each
cycle. The result of multiplying two 32-bit numbers together
is normally a 64-bit number. However, one of the principal
reasons for implementing the Multiply' function in the B-uni t
was for the manipulation of dope veetors (the lack of a
fixed-point multiply order on Atlas had been felt to be a
significant omission in this respect), and a 32-bit integer
result would normally be expected. Therefore, the less
significant half of the result from multiplication is copied
into the B-register, and a result with higher order digits
causes an interrupt.

160

7.4 THE STORE-TO-STORE ORDERS

The store-to-store orders (section 2.2.6) are executed
entirely within the D-unit and involve the use of the
descriptor registers in Dr and the byte-processing logic in
Dop [31]. These orders fall into two main classes, byte-string
and string-string. The byte-string orders involve only one
string, defined by a descriptor held in DR, while the
string-string orders involve both a source string defined by
XDR and a destination string defined by DR. Since the A-unit
is inactive during the execution of these orders, the need for
the extra descriptor register (XDR) could have been avoided by
using ACC instead. This possibility was rejected in MU5
however, since the widely separated positions of XDR and ACC
in the pipeline would have created significant timing problems
in the hardware.

7.4.1 Operation of the Store-to-Store Orders

The store-·to-store orders are controlled by logic in the Dr
unit·, which, by incrementing the or1.gl.n field(s) of the
descriptor(s) at each access, generates the appropriate series
of addresses, and by decrementing the length field(s), until
zero is reached, determines the point at which to terminate
the order. The descriptors themselves are loaded into DR and
XDR by preceding orders, while the filler/mask, which is the
operand associated with the actual store-to-store order, is
automatically transferred to Dop by a preliminary access
during the execution of the store-to-store order itself. A
'Dop bit' accompanying this access indicates its special
nature and causes the operand to be loaded into the
filler/mask register within the store-to-store processing
logic in Dop (figure 5.3).

During the execution of these orders, the main data path is
used to extract bytes from the source and destination store
words, and to return them to the destination store words as
appropriate. Thus, for the SMVB and SMVF orders, for example,
Dop performs 'load' operations to extract bytes from the
source string, and for the SMVB, SMVF, BMVB and BMVE orders,
performs 'store' operations to return bytes to the
destination~ For the logic orders, SLGC and BLGC, bytes are
also extracted from the destination string before being
logically manipulated and returned to the destination string.
For the SCMP, BCMP and BSCN orders, only 'load' operations are
required since the destination string is not updated.

The sequence of operations in a store-to-store order is
best illustrated by reference to the patterns of bytes in the
strings as the order proceeds. Figure 7.13(a) shows the

161

.pattern of bytes in the destination string at the start of a
BMVE order. The origin of the descriptor initially points to
the first byte of the string, and the length is set to the
total number of bytes L. At the end of the first cycle, the
position is as shown in (b). The (masked) filler has been
moved into the first byte, but the origin and length are
unchanged; the only route to the OBS address highway is
through the Dr adder, and since the first address to be sent
must be that contained in the descriptor origin, the updated
value is not available for loading into the descriptor. For
the second and subsequent cycles, the address sent to OBS is
the origin plus 1. The origin is then updated with this new
value, and finally the length field is decremented by 1. The
string patterns are as shown in (c) and (d).

(a) Pattern at Start ··r-I--,I--r-.,.....--r- -= = ~ ~ ~ = = ~ ~ ~ ~ = = --,---,.---,
Origin + Length = L ..

(b)
End of 1st Cycle ~ I rr==~~~~~======~_....L.I----L~

Origi;r- Length = L

(c) End of 2nd Cycle ""'_~~"---'--~_ = =~~-~~~~~ =~~= = -m
Origin~ Length = L-l

•
(d) EndOfLthCYcle_===~~~-=-~-_~~=~~~

~
Length = 1

(e) End of Last Cycle .~-~===-=~ ___ -_~~~= __

Origin.
Length = 0

Figure 7.13 String Patterns in a Byte-string Order

The end of the move sequence is reached when the length
becomes equal to 1. This indicates that the last byte has been
filled, as shown in (d). Since the descriptor must pOint after
the end of the string when the order terminates, however, an
extra cycle is needed (without a store access) to increment
the origin by 1 and. decrement the length by 1. The final
string pattern is shown in (e) apd figure 7.14 shows the event
sequences in the various cycles,

The event sequence for a 4 normal' cycle of a string-string
order is shown in figure 7.15. The source byte address is
generated first and sent to OBS, and then the source origin is
updated. The destination byte is then accessed in the same way
and the destination origin is updated. Finally, the two length
fields are decremented by 1. The order is normally terminated

162

when the destination length reaches zero, or when equality is
found in SCMP. If the source length reaches zero before the
destination length, the action taken depends on the order
involved. ·SLGC is terminated immediately, and an interrupt is
generated, whereas SMVF and SCMP are converted to the
corresponding byte orders. This is illustrated in the complete
event sequences for SMVF (figure 7.16).

1st Cycle ~ Start

2nd - Lth Cycles ~ Start
I Access Destination Byte
, I Update Origin

, I Update Length

, ~ End

Last Cycle ~ Start

I Update Origin
, I Update Length

, ~ End

Figure 7.14 Event Sequence in Byte-string Order Cycles

, Start

I Access Source Byte

f I Update Source Origin

f ~I Access Destination Byte

f I Update Destination Origin

t I Update Source Length

t ~ Update D~~~:tion Length

Figure 7.15 Event Sequence in a String-string Normal Cycle

In the first cycle, the origin fields are sent out directly
as addresses and the two descriptors are left unchanged at the
end of the cycle. 'Normal' cycles are then executed until the
source string runs out. For subsequent cycles only the
destination address is generated, and the function code

163

associated with these accesses is changed to BMVE, so that the
rest of the destination string is filled with the filler byte
held in Dop. The first of the BMVE cycles is also a 'last'
cycle for the source descriptor, in which the origin and
length fields are updated so that the descriptor finally
pOints after the end of the string and has zero length.

1st 2nd SLth (SL+1)th (SL+2)th DLth Last
Cycle Cycle Cycle Cycle Cycle Cycle Cycle

~
I I I I

Transfer Operand I I I I

I I I I

iHH iH
I I

Access Byte l l~ :~
I I

I I I
I

II l ~ ~ ~ ~ ~
I

~ ~ Update Origin I
I I

r---J I i---1
I I I

I

~ l:
I

~ ~: ~ ~ r I ~ ~ Update Length I I
I I

I I I I
I I ! i

Figure 7.16 Complete Event Sequence for a String-string Order

7.4.2 Byte Processing

The additional hardware required in Dop to pr'ocess the bytes
selected by the main data path is shown in figure 7.17.
Register DS contains the store-to-store operand (the filler,
the mask, and the four LC digits which control the logical
operation involved in the orders BLGC and SLGC) , while SSA and
SSB are used to hold copies of the byte(s) currently being
processed. Thus, during the execution of the SLGC order, for
example, the source byte. selected by the main data path is
loaded from GR (figure 5.3) into SSB and the destination byte
into SSA. The appropriate combination of corresponding digits
of SSA and SSB is then selected, according to the setting of
the LC digits and the result is copied back to the destination
byte via FR. The BLGC order operates in a similar fashion,
except that the filler byte is taken from DS instead of a
source byte from GR.

The orders SMVF, SMVB, BMVE and BMVB operate in
correspondingly similar ways, except that they only involve
the copying of source or filler bytes to destination bytes,
and so the destination byte itself never needs to be copied
into SSA. Both registers are used in SCMP, BCMP and BSCN, but
during the execution of these orders the destination string is
not updated, and no copying back to FR takes place. These
orders terminate either when the destination string is
exhausted or when the comparison logic indicates

164

non-equivalence (or, in the case of BSCN, equivalence) between
the source and destination bytes. At termination, signals are
sent to the Test ~its in the Machine Status register in PROP
to indicate the cause of termination, and in the case of
non-equivalence, whether the source byte was greater or
smaller than the destination byte.

To F R (Masking)

From
GR

Logical. Combination

LC~
SSAk
SSBk

LC1
SSAk

...... --...-, SSBk

LC2
SSAk
SSBk

LC3
SSAk
SSBk

Ds..

Figure 7.17 Byte Processing Logic

The mask digits in DS control the input gates to both SSA
and SSB such that a zero is copied into these registers at any
bit position for which the mask is set to 1. This arrangement
affects SSA and SSB for all the orders, but is only relevant
for SCMP, BCMP and BSCN. In the rema1n1ng store-to-store
orders, the value in SSA or SSB for masked digit positions is
irrelevant, since the mask digits in DS are also incorporated
into the masking facility associated with FR. Thus digits in
the destination store word in FR for which the mask is set
remain unaltered when copying from the store-to-store byte
processing logic takes place.

7.4.3 Special Store Management Problems

Since the addresses generated by the store-to-store orders are
virtual addresses, the execution of a store-to-store order
will generally involve the crossing of one or more page

165

boundaries, and hence require access to a page of data not
currently available. A system which attempted to overcome this
problem by ensuring the availability of all the necessary
pages of data before the start of the order would involve
different hardware constraints on the length of strings which
could be handled in different implementations of the
instruction set, and was therefore not considered. The
alternative approach adopted in MU5 is to allow the
store-to-store orders to be interruptable, so that only parts
o·f each string need be resident in the Local Store at anyone
time. Thus it is possible to interrupt execution of a
store-to-store order at a partially completed stage and
re-start it from the same point when a new ·page of data has
been made available.

In a pipelined implementation two different situations
arise. In the case of the comparison orders (BCMP and SCMP,
for example), a new cycle can only be initiated in Dr once Dop
has compared the values of the bytes for the current cycle
(which must therefore have obtained CPR equivalence), since
the descriptor(s) must be left pointing to the byte(s)
concerned. In the case of the move orders, however, Dr
operates independently of Dop, and can continue generating
addresses at will. The corresponding requests are buffered in
the aBS Queue and should a CPRNEQ occur, the requests trapped
in the Queue can be dealt with in the normal way (section
5.2.4). Dr therefore samples the interrupt signal at the start
of each cycle, and when an interrupt occurs it converts the
new cycle to a 'last' cycle in order to terminate the order
normally with the origin(s) pOinting to the byte(s)
immediately following those already in the aBS Queue. Requests
in the aBS Queue are automatically re-issued after a CPRNEQ
has been serviced, and when an interrupted store-to-store
order is re-issued, the first cycle generates the addressees)
of the next byte(s) in sequence. Clearly for this system to
operate properly, all the registers involved must be preserved
and restored if the interrupt causes a process change.
Unfortunately this fact was overlooked in MU5 in the case of
register DS, and in practice each cycle of all the
store-to-store orders must wait for CPR equivalence on the
addresses it generates before the next cycle can begin.

166

8 The Software Tools

From the start of the MU5 project it was clear that the
productivity of the software gr~up would be a critical factor,
and a lot of emphasis was placed on the provision of software
tools. The project aim of designing the hardware to fit the
software requirements meant that the software design had to
run ahead of the hardware design. Also, since the evaluation
of the completed system was to be based on its high-level
language job processing ability, 'good' software would be
required soon after the hardware commissioning was complete.
It was felt very strongly that the only way to achieve good
software was by expending effort in producing prototypes of
each component, and that only by running them on other
machines, or possibly on partially commissioned hardware,
would the timescale be met. In fact during the 10 years from
1968 to 1977 the MU5 software group (of about 20 people)
produced 10 operating systems and 15 compilers in addition to
the software tools programs. Furthermore, it was recognised
that to be useful as a basis for the design of their
successors, these prototypes had to have a readily
understandable external representation. It could not be
assumed that there would be continuity in the staff to carry
forward the experience.

8.1 INTRODUCTION

The software tools used on the MU5 project were intended to
assist all phases of software production, namely

Design and Specification
Implementation
Development
Maintenance
Documentation.

Al though documen ta tion , in the sense of final system
documentation, appears at the end of the list, the MU5
software tools are mainly concerned with documentation. In the
design phase the need is for documentation which records
decisions and focuses the design effort. Owing to the
iterative nature of design this documentation is subject to

167

frequent change and its production needs to be automated. It
is all too easy to lapse into the state where the
documentation is obsolete, and the design only really exists
in the minds of the designers. It is fairly obvious, that the
documentation must also be clear, concise, and easy to read.
In the academic world of Computing Science a solution to all
these problems has been sought through the disciplined use of
better high-level languages (Pascal, for example)" and other
approaches have been followed in commercial systems. The MU5
approach has been to develop a methodology to apply at a level
above the programming languages, which provides a way of
describing the programs before they are written. Wherever
possible a graphical representation is used, although a word
processing facility also exists to assist the production of
wri t ten descriptions. In fact, it has been used to assemble
and print the copy for this book.

8.2 DATA DRAW

In the early stages of the design of system software, given
that its functional characteristics are understood, the first
ideas that solidify relate to the content, layout and
disposition of the data structures to be used by the software.
The design of the main algorithms takes place around these
data structures. This is particularly true of those parts of
the Operating System that are main store resident, but even in
virtual store, tables which are too large, or have a structure
unsympathetic to the access pattern, can degrade performance.
In both cases there will be interaction between the
informatiorl content of the data structures and the choice of
algorithms. Thus, a system called Data Draw was provided to
produce a graphical representation of the data structures.

The structures represented are one dimensional. They
contain entries subdivided into logical fields as in figure
8.1, but sometimes more implementation detail is added,
because even at this early stage, implementation detail has to
be considered in some parts of the system where it is felt
that space and time will be critical.

The data draw input language is not particularly remarkable
and it offers much more flexibility than the software
designers have required. An example is given in figure 8.2
which is the encoding for the right hand part of figure 8.1.

The current design language (section 8.6.5) allows
sufficient information to be given in the declarations for a
pictorial representation of the data structures to be produced
automatically, and is more convenient to use.

168

CORE UTILISATION TABLEcCUT)

I
PACE NO

1
11 I I I

A~JJ
PT

IN USE

BI

TITLE CHT
SCALE 1
HEIGHT 32

CORE MFlPPIN: TABLEcOO>

~NO

LOCKlN j
6SA I PTPTR

EMPTY LINK

Figure 8.1 Store Control Tables

SECTION1[12]LEFT -"PAGE NO">,ABOVE "CORE MAPPING TABLE(CMT)"
1 ["BSA" , 16]
2["PTPTR" , 16]
END

Figure 8.2 Encoding of Figure 8.1

As the ideas for the main algorithms in the system are
formulated, they also need to be recorded. The emphasis here
is on recording the ideas as they dev~lop. At this stage they
are in outline rather than detail form, and they relate to the
logic of the situation rather than the detail of the
implementation. This description of the system is for people,
not computers. Later, the individual functions of tne
software, the context in which they· apply and their
interrelationships, clarify, and the programming detail
emerges. In order to record this gradually evolving (' top
down') design an automatic flowcharting system called Flocoder
was produced.

169

8.3 FLOCODER

Flocoder is a system for designing, documenting and generating
programs using flowcharts. A file of flowchart descriptions is
created, from which the charts may be drawn on any sui table
output device (lineprinter, plotter or VDU, for example). The
chart descriptions may of course be edited, and the charts
re-drawn as necessary.

To enable Flocoder to generate or display the required
program, the user provides a 'translation' for each box. If
the action required in a box is Simple, it will translate into
a sequence of statements in a programming language; if it is
complex, the translation may reference other flowcharts. In
this way a hierarchy of flowcharts is created to represent the
program. In fact, several translations can be given for each
box. The first would normally be an English statement
describing the logical function of the box and would be for
display purposes only. The programming language translations,
for each of the required languages, would be added later.

In effect the Flocoder system comprises a language for
describing flowcharts and two procedures for processing this
language. One of these 'DRAW' will draw the flowcharts. The
other 'FLIP' will ~orm a linear ~rogram by correctly ordering
the boxes and adding labels and 'goto's as necessary, although
this latter representation is only seen by compilers.

The syntax of the Flocoder input language is simple and
straightforward. Each statement in a chart description begins
with the symbol '@' as the first character of a line, followed
by a keyword, and continues until the start of the next
statement. The keywords can be abbreviated to single letters
since they are recognised by the first letter only; after
that, all characters up to the next space or decimal digit are
ignored. A complete chart description consists of

A TITLE statement
One or more COLUMN statements
Zero or more ROW statements
Zero or more FLOW statements
Zero or more PARAMETER statements
One or more BOX statements
An END statement.

In the descriptions of th~se statement types which follow, the
examples relate to the flowchart shown in figure 8.3.

170

ClEAR DRlI1 an IN TRfNlFERS
IN PROt:RESS VORl> &. RESET INTERRlPT

f'fU .. TY

Figure 8.3 Flowchart Produced by Flocoder

8.3.1 The TITLE Statement

Example
@TITLE MUSS3(1,1)

The TITLE statement indicates the start of a new chart, and
gives a title, which serves two functions. First, it appears
on the flowchart whenever it is drawn, and thus serves to

171

identify the drawing. Second, it is used in cross-references
within the code. A chart title may consist of any sequence of
characters, terminated by a newline symbol. By convention,
however, they are usually chosen so as to provide an index
into the software. Thus the title in the example above is for
the first chart of section 3 of the MUSS.

Anything appearing in a title after a left hand bracket is
ignored by the cross-referencing mechanism, so that further
information for the human reader may be placed in brackets
after the title proper. (In the above example, as in all of
the MUSS software, this facility is used to give a version
number and generation number for the chart.) Apart from this,
the title used in a cross-reference should be identical to
that given in the TITLE statement.

8.3.2 The COL Statement

Example
@COL 1S-2R-4T-5R-6R-7T-8R-9R-10R-11R-12F

The column statements provide, for each box: a numeric
identifier in the range 1-63, the type (shape) of the box, and
the position of the box on the flowchart. A chart may contain
up to eight columns. The first column statement describes the
leftmost column, and the last one the rightmost column. If
there is more than one box in a column, the first one
specified is the highest in the column and the last one the
lowest, etc. The box types, which follow the box numbers,
consist of single letters with the following meanings

Letter

A
C
F
N
R
S
T

Meaning

Annotation box (no outline)
Circle box (used for external flows)
Finish box (lozenge outline)
Null box (a pOint)
Rectangle box
Start box (no outline)
Test box

8.3.3 The ROW Statement

Example
@ROW 5-20

Each row statement gives a list of boxes to be horizontally
aligned. The ordering of the box numbers in the row statements
has no significance. Normally the boxes within a column are
placed a minimum distance apart, and may be imagined as being

172

connected to the box above (if any), or to the top of the
diagram (in the case of the first box of a column) by
invisible elasticL This means that boxes tend to be as high in
their columns as possible. The effect of the ROW statement is
to force horizontal alignment by 'stretching the elastic'.

8.3.4 The FLOW Statement

Example
@FLOW 1-2-4TRANS OK-5-6-7N-B-9-10-11-12

These statements specify the logical interconnections of the
boxes. Text which is to appear at the point where a flowline
leaves a box may also be specified in the flow statements. Any
string of characters excluding newline and terminated by a
hyphen is allowed. Except for test boxes, which may have two,
there should be not more than one flowline leaving each box.
Of course, the finish box will have no flow out.

8.3.5 The BOX Statement

Examples:
@BOX4.0
TRANSFER FAILED OR OVERDUE?
@BOX4.1
IF TRAN.COMP OF V.DRUM.CONTROL 1= 1

! TRAN.FAIL OF V.DRUM.CONTROL = 1

These statements specify the text contained wi thin each box,
which may consist of any number of lines ~ up to the start of
the next statement. Several 'translation levels' may be
defined for each box, corresponding to translations in several
different languages. The example above gives translations in
English at level 0 and the system design language (MUDL) at
level 1. When the charts are drawn any translation level can
be selected for display in the boxes. Figure 8.3 was produced
by specifying level 0 (English) and figure 8.6 by specifying
level 1 (MUDL) . Similarly, the procedure FLIP can be
instructed to generate code from any translation level.

In addition, it is possible to specify alternative
translations for a box at a particular level. This facilitates
the production of several versions of a program (in the same
language) which differ in only a few boxes. It is a useful
feature when the program is to be compiled for several
machines. Alternatives are defined by appending an
'alternative number'. Thus

@BOX 3.2.4

173

specifies alternative 4 of level 2, box 3. The procedure FLIP
may be instructed to select a particular alternative wherever
it is defined, and the default (zero) elsewhere .•

Flowchart cross-references may be inserted in the code by
giving the name of the chart to be included, preceded by the
character £ at the start of a line, thus

£MUSS3.1
£MUSS3.2
£MUSS3.3
£MUSS3.4

appear in the translation for BOX1 of MUSS3. As a result, the
code for these subcharts will be inserted at the head of MUSS3
whenever code is generated for it.

A chart reference may also, where appropriate, include
parameters consisting of character strings, enclosed in
brackets, and separated by commas; thus

£TITLE(ABC,DEF)

Inside the chart definition warning characters can be used to
reference the parameters. Each time code is generated for such
a chart the actual parameter will be substituted.

8.3.6 The END Statement

Example
@END

This statement terminates the description of a flowchart.

8.4 SYNTAB

In sections 8.2 and 8.3 facilities have been described which
are for general use. This section is concerned with a more
specialised tool. It is a syntax processing package, which
automatically generates the parser for a programming language,
from a 'BNF-like' description of its syntax. It represents an
approach to compiler writing which has developed out of the
Compiler Compiler for Atlas [32] and the SPG system for the
ICL 1900 [33]. Both of these earlier systems consisted
essentially of two parts. First they included a BNF type of
language, by means of which the syntax of the statements in a
programming language were described, and second a system
programming language, in which the procedures to generate code
were written. The main difference between the two systems was
that the Compiler Compiler was purely a compiler writing

174

system, while SPG was a more general system programming
language incorpo.rating facilities for table-driven syntax
analysis, which made it convenient for compiler writing. In
both cases the compiler writing facilities could be used to
extend the basic language of the system. Although this feature
has some attraction, it also has disadvantages.

When a programming team are given a self-extensible
language, some of the less desirable traits of human nature
begin to show through. For example, the most prolific
producers of new statements do not always make the wisest
choice about what is needed. Nor are they over conscientious
about documentation. Thus the size of the system can mushroom,
and its operation and use moves into the folklore of the
project. In a fairly short time the group as a whole can
become separated from the reality of the hardware by a large
'fuzzy' layer of software, and the efficiency suffers.

Properly controlled, the facility to add new statements to
the system programming language can be very valuable, and its
control is only a management problem. Nevertheless, the
management of the MU5 project felt that it had enough
problems, and the decision was taken that the MU5 system
programming language would not be self-extensible. This
removed the need for the syntax defining facilities to be
closely integrated into the language. It was therefore decided
to have a system in which the parsing phase of the compilers
was generated by a pre-processor, and the rest of the compiler
was writ ten in the standard sys tem programm ing lang uag e. The
sys tem is called Syntab. It accepts input in the form of
'BNF-like' formulae and produces a table-driven parser as
output. This parser is in the system programming language and
it will be seen, in the description given below, that psuedo
syntactic elements can be placed anywhere in the syntax, in
order to interrupt the parsing process and pass control to
user-provided code. This code may then take over the parsing
function, or generate code for those statements already
parsed.

The main statements of the Syntab system are the SYNE
definitions, which define the ~tactic ~lements of the
language, for which a parser is required. They use a similar
notation to BNF, except for the ordering, which is arranged to
suit the left-to-right parsing algorithm. When a syntactic
element has several alternative forms, and if one is a stem of
another, it must come second. If one is a special case of
another, however, it must come first. Also, the first element
in an alternative must not recurse. For example, a character
string would be defined as

175

SYNE(CH.STR):=(CHARACTER)(CH.STR)!(CHARACTER)

not as

SYNE(CH.STR):=(CHARACTER)!(CHARACTER)(CH.STR)

nor as

SYNE(CH.STR): =(CH.STR)(CHARACTER) !(CHARACTER)

Parenthesis can be used in a SYNE definition, usually after
a common stem, to delimit a group of alternatives which have
no formal name. For example the above· could be written

SYNE(CH.STR):=(CHARACTER)[(CH.STR)!(NIL)J

where NIL is built in to the system and has its usual meaning.

Names denoting ~ded ~tactic ~lements (COSYNES) can also
appear in SYNE definitions. They must subsequently be used as
labels on sequences of code written by the user to take over
control of the parsing process. There are several uses for
COSYNES, but the main one is to connect the interpretive
parser into the user-written code generation procedures. This
is often done in two stages. Some COSYNES scattered liberally
through the syntax will generate an analysis record, and
others placed at the ends of statements will transform this
analysis record into code. A number of COSYNES is built into
the system to assist this process. Also, there is a further
software package to assist in code generation known as the
Compiler Target Language.

8.5 THE COMPILER TARGET LANGUAGE

At an early stage in the design of the MU5 software it was
decided, as an aid to compiler writing, to introduce a
.Q,ompiler ,Iarget .L.anguage (CTL), into which the -high-level
languages would be translated [34]. For each high-level
language a translator would be provided to convert from the
language to CTL, while a single compiler would convert from
CTL to machine code. The objective was to simplify the
individual translators by forcing the CTL to as high a level
as possible. For example, the CTL allows for declarations with
the characteristics of those found in high-level languages, so
that the name and property list management problems are passed
to the CTL compiler. This scheme also enables the mode of
compilation, for example, 'output semi-compiled form' or 'load
for immediate execution', to be determined within the CTL
rather than within each translator.

176

Subsequently, and as a result of the convergence exercise
with ICL, a further role for the CTL emerged. The MU5
translators could be used on a wider range of machines,
provided a CTL compiler could be written for each machine.
This machine independence could extend to machines with
structural differences, provided the data and address formats
were compatible. This idea is summarised in figure 8.4. It is
similar to the UNCOL idea [35] except that, whereas UNCOL
attempted to span the significant differences between existing
machines, the CTL has been designed to suit machines
originating from MU5, or at least having a register structure
on to which the MU5 dedic'ated registers could be mapped. There
is, however, a more significant difference; the communication
between the translators and the CTL compiler is two-way. Some
of the CTL procedures return information to the translators.
£o'or example, there is a procedure for interrogating property
lists. It is this two-way communication that makes it possible
for the whole property and name list organisation to be
handled by the CTL compiler.

The CTL does not have to be encoded in character form by
the translators, then decoded by the CTL compiler. Instead,
there is a CTL procedure corresponding to each type of
statement, so that the CTL compiler is really a body of
procedures rather than a written language. The main input
parameter of each procedure is a vector, whose elements define
the nature of the statement. In the case of an arithmetic
assignment these elements comprise a sequence of operator
operand pairs.

Algol

Fortran

PL/1

Virtual Machine
Order Code

CTL

Compiler

I
I
I
I

Real Machine
Order. Codes

Figure 8.4 The Compiler Target Language

177

Only a small increase in compile time results from using
the CTL procedures to generate code, because they form part of
a natural progression from source to object code. However, a
loss of run time efficiency could arise from the translators
losing the ability to control completely the code which is
generated. This problem does not arise with MU5 because of the
high-level nature of the order code. For example, the
addressable reg~sters serve dedicated functions which
correspond to identifiable features of the high-level
languages. Also, the machine dynamically optimises the use of
the fast operand store (section 2.2.2). For the other machines
in the complex satisfactory optimisation can only be achieved
at the price of complicating the CTL compiler.

In the overall software structure the CTL can be thought of
as the instruction set of the MU5 virtual machine (section
9.1). Hence compatibility in the notional MU5 range of
machines is at the CTL rather than the order code level. There
is an associated written form of CTL, MU5 Autocode, which was
used as the standard system programming language. The detailed
facilities of the CTL are best described through this written
form (section 8.6.2), and the example below assumes this
description.

8.5.1 An Example of the Parametric Form of CTL

As an example of the way that CTL is used, suppose that an
Algol translator wishes to translate

x, := y + 10

where x and yare declared integer.

The corresponding Autocode statement (section 8.6.2.1)
would be

I32, y + 10 => x

The translator must do two things to process this statement.

(1) Assemble a parametric form of the statement into a
vector.

(2) Call the CTL.COMPUTATION procedure with the vector as
parameter.

This CTL procedure then generates the corresponding MU5 binary
instructions, semi-compiled or other forms.

Suppose that the translator is assembling the parametric

178

form into a vector CODE, then the elements of code are used as
follows

CODE [0] Computation is in 132 mode and next operand
is a name.

[1] Name y.
[2] Operator +, next operand is a constant.
[3] Constant 10.
[4] Operator =>, next operand is a name.
[5] Name x.
[6] Terminating mark.

This vector, in effect, contains an operator operand
sequence. Each word containing an operator also describes the
type of the operand following. The operator is held in the top
16 bits and the operand type in the bottom 16. Thus, in the
preceding example, since '=>' is operator 9, and a name is an
operand type '16', CODE[4] = 00090010 in hexadecimal.

A name is replaced at the lexical analysis stage by an
internal identifier, an integer, which is handed back to the
translator by the CTL • ADD . NAME procedure. Such integers are
placed in CODE[1] and CODE[5]. This form of operand assumes
the use of the standard form of name and property lists
mentioned previously. CODE[O], which is specially coded to
indicate the mode of the sequence, can be regarded as
describing a load operation. The complete hexadecimal
representation of the previous example is

CODE [0]
[1]
[2]
[3]
[4]
[5]
[6]

%80150010
Integer corresponding to y (internal identifier)
%00012001
%OOOOOOOA
%00090010
Internal identifier corresponding to x
%00320000

8.6 SYSTEM PROGRAMMING LANGUAGES

The software tools described above ease the task of providing
software and improve its design and documentation. However,
none can be said to be as essential as the programming
languages and their compilers. Four programming languages have
been used during the MU5 project, including the Autocode
mentioned in section 8.5, and to complete this account of the
programming tools, a brief summary of the role and
characteristics of each is given. They range from an assembly
language to a very high-level language.

179

8.6. 1 XPL

This is the eXecutive .f.rogramming .L,anguage or basic assembly
language. The question ' why use an assembly language on a
machine designed specifically for high-level languages?' might
well be asked. The short answer is perhaps 'lack of courage
and confidence', but there is some pragmatic justification for
this in an environment involving complicated prototype
hardware. On the first day a system of this kind is ready for
a test program, some functions will not have been
commissioned, and all will be suspect. There are added
problems, if these initial test programs are written in a
high-level language. The compiling problem is easily solved in
the case of MU5, because the compiler can be run on another
machine in the complex, but the kind of control required over
the code generated is the main problem. Also, and this is
perhaps the strongest justification, the behaviour of these
early test programs is never as intended. Many hours of
combined hardware and software effort go into diagnosing
'funny' symptoms, and behaviour which defies logical analysis.
During this time it seems inconceivable that the fault could
be in any area under examination. Only full confidence that it
cannot be due to external causes, such as a compiler, can
maintain the concentration required to locate the fault.

These problems would, of course, be less severe with a
simple machine, but a pipeline architecture with many operand
buffers can be very pattern sensitive. This feature also means
that some faults remain undetected until the system is running
jobs. For this reason it was decided to extend the use of XPL,
to the full Operating System and XPL compiler up to the point,
in fact, where the system can recreate itself on MU5.

This is not as bad as it might seem. The existence of the
Flocoder system makes the use of assembly language more
palatable than is usually the case, and the MU5 instruction
set lends itself to a very readable format. For example

B = 0
L1:X COMP LIST[B]
IF =, -> FOUND
8 CINC 10
IF 1=, ->L1
NOT.FOUND

is the assembly language encoding of a loop to find an element
equal to the value in the X register in the one-dimensional
array LIST.

180

8.6.2 MU5 Autocode

Two principal decisions have determined the overall
characteristics of the Autocode (and CTL). The first of these
was that they should be structurally the same language. It is
thus possible for the CTL compiler to generate the Autocode
equi valent of a program in any source language. A number of
minor advantages stem from this, ranging from the debugging of
compilers, to the hand optimisation of important programs. In
the light of past experience it was also considered
advantageous for the compilers to be written in the same
language that they generate. The second decision was that the
Autocode (and CTL) should be a high-level representation of
the MU5 machine code. For example, the declarations relate to
physical data items in the machine, rather than logical data
types. Also, the variables are typeless, as are operands in
the machine, permitting arbitrary manipulation using any kind
of arithmetic. Consequently, in MU5 Autocode, information
about data structures is embedded in the code, rather than
just in the declarations as it is in PL/1 or Algol 68.

PROC SORT(A,N)
PROC SPEC SUB.OF.MAX(S,I32,I32)I32
V32,P,SUB
V64,DUMP

PROC SUB. OF • MAX (A, P, N)
V32,SUB,I
P => SUB
CYCLE I = P+1,1,N
IF[R64,A[I]>A[SUB]]THEN
I => SUB
CONTINUE
REPEAT
RESULT = SUB
END

CYCLE P = 1,1,N-1
SUB.OF.MAX(A,P,N) => SUB
R64,A[SUB] => DUMP
R64,A[P] => A[SUB]
R64,DUMP => A[P]
REPEAT
RETURN
END

Figure 8.5 An Example of an MU5 Autocode Procedure

Practical considerations reinforced this decision. Firstly,
because the hardware and software of MU5 were to be
commissioned together, it was considered preferable for the
language to reflect the hardware. Secondly, the dependence of

181

the rest of the software on the CTL and the Autocode
necessitated a short time scale for their development.

The overall form of the language can be seen from figure
8.5. This is a procedure for sorting an array into descending
order using linear selection. In the following sections the
form of declarations, the operations available, and the
overall control structure are described.

8.6.2.1 The Autocode Computation Statements

Each arithmetic computation requires an implicit or explicit
specification of the type and size of arithmetic required. The
Autocode provides many arithmetic modes, but 32-bit integer is
considered to be the fundamental mode. It was expected that
only those modes justified by the style of use of any
particular member of the MU5 range would be provided in
hardware, the rest being provided by software. The arithmetic
modes are signed and unsigned integer, real, and decimal, of
size 32, 64 or 128 bits, and a Boolean mode. In the MU5
actually built 32-bit signed and unsigned integer, 32 and
64-bit real, and Boolean modes are provided in hardware,
together with some functions to aid the software
implementation of the other modes. The mode is normally
specified at the start of each statement, unless it is 32-bit
integer mode (in. which case it may be omitted), and this is
followed mainly by operator operand pairs. Each of these pairs
generally corresponds to a machine instruction, hence the code
compiled is closely controlled.

The operator precedence, in contrast to most high-level
languages, is strictly left to right. There are several
reasons for this. First, the operations in system programs are
of a logical rather than an arithmetic nature, and they use
operators for which precedence rules are not well established.
Second, it is easier to ensure that efficient code is being
compiled when the evaluation is left to right than when
implicit stacking of partial results is taking place. Third,
since different languages have different precedence rules, an
equal precedence convention is the most convenient for use in
the CTL. Precedence can be forced by the use of bracketed
sub-expressions, which explicitly demand the stacking of a
partial result on the opening bracket, and the application of
a reverse operation on the closing bracket. This is shown in
the following example

Algol E := (A + B)/(C + D)

CTL R64,A + B/(C + D) => E

182

In MU5 this statement would translate into

ACC = A
ACC + B
ACC *= C
ACC + D
ACC /: STACK
ACC => E

8.6.2.2 Operands and Declaratives

The names which are used to represent operands must be
declared before use. Thus single pass compilation is possible.
The user has control over the store layout and implicit
declarations are not permitted. The scope of the declaratives
is organised on a block structure basis. The basic items which
may be declared are scalars, vectors and strings. The
declaratives specify the operand size in the case of vector
elements and 32 or 64 bits in the case of scalars. Vector
element operands consist of the vector name and a subscript
expression of arbitrary complexity. An example of the use of
vector elements is

R64,X[I * N] + Y[J - 2] => Z

This statement translates into

B = I
B * N
ACC = X[B]
B = J
B-2
ACC + Y[B]
ACC => Z

The Autocode also provides for more complicated data
structures such as operands accessed through several levels of
descriptors and multi-dimensional arrays. These cases are
always explicitly described rather than being implicit. Hence,
for example, if X is a vector of vector descriptors, X[I][J]
causes element J of the Ith vector to be accessed.

The allocation of store for these data structures may be
dynamic or static. In the latter case, store allocation is
controlled by declared areas. An example of a static vector
declaration is

VEC/$AREA[64,100]A

This declares a vector with 100 64-bit elements numbered 0-99

183

in the store area AREA. A descriptor of the vector is placed
in the local namespace of the current procedure and may be
referred to as A.

8.6.2.3 Autocode Control Statements

The order of execution of statements in a program is
determined by various control statements. In MU5 Autocode
these are intended to encompass the corresponding features of
standard high-level languages. A Boolean facility similar to
that of Algol 60 is also provided, since this is catered for
at the hardware level in MU5. The general form of the
conditional statement, and the conditional expression, is also
similar to that of Algol 60. A relatively restricted looping
facility is provided. Because there are significant structural
differences in the 'do loops' of the various high-level
languages, it is expected that compilers will, in general,
generate the equivalent conditional statements. The simple
facility provided deals only with the frequently occurring
cases for which speCial hardware, such as test and count
instructions, can be used.

A principal design consideration for MU5 has been to
provide the means for efficient implementation of recursive
procedures (section 2.2.2) at the hardware level, and the
Autocode includes this facility in a form which reflects that
of the standard high-level languages. Autocode procedures may
have static or dynamic namespaces and parameters which are
expressions, corresponding to call-by-value parameters, or
descriptors. Descriptor parameters enable reference,
substitution, procedure and label parameters to be simply
programmed. Procedures which yield a result may be called, as
functions, in the course of evaluating an expression.

In figure 8.5 it can be seen that a procedure is preceded
by a specification. This specification gives the mode of each
parameter and of any result yielded by the procedure, while
the procedure heading gives only the formal parameter names.
Further, the specifications must be given before the first
call. Thus, the compilation of procedure calls is simplified
because the parameters' modes are known.

8.6.3 MUPL

After the MU5 software had been commissioned, and at a time
when performance studies were being conducted, it was decided
to transfer it to the ICL 2900. The machines were still
similar enough for theCTL, and hence the MU5 Autocode and the
other compilers to transfer easily, but detailed differences
meant that the software coded in XPL would need to be recoded.

184

i

The more' drastic step of recoding all the software in a new
,Manchester Jl.ni versi ty .f..rogramming .L..anguage (MUPL) was taken
instead, because it complemented the eval ua tion exercise on
MU5.

Part of this evaluation exercise was concerned with the
size and performance of the software. In the case of the
compilers it was of interest to establish the cost of forcing
all compilations through the CTL. One danger with this
approach was that the high-level language translators would be
as large and complex as conventional compilers, and the CTL
compi ler would be an equally complex addition. In .fact, to
take Algol as an example, its translator was 30 Kbytes, CTL
was 56 Kbytes and the compiling rate was 8 000 lines/min.

Al though this was not a disaster, it was felt that a few
small changes would make a big difference. For example, the
CTL interface was at the high-level statement level, but with
its own (Autocode) precedence rules. This meant that ~he
translators had to transform the high-level statements into
CTL statements, and the CTL compiler had to then decode these
statements. With hindsight it had become clear that a lower
level interface having an approximate one-to-one
correspondence with MU5 instructions would be better.

For the price of rewriting the compilers to target on to a
new ~arget Hachine .L..anguage (TML), and implementing the
simpler TML instead of the CTL, these ideas could be put to
the test. This approach, when applied to the Algol compiler
mentioned above, showed a distinct improvement. Its size
increased to 34 Kbytes, but the TML is only a further 12
Kbytes. The compiling rate became 10 500 lines/min. Fortran
shows an even better improvement, with the size of the
translator also reducing.

The change from Autocode to MUPL was a relatively small
step. Although some work had been done on the .omuch higher
level language described below, it was not felt to be the
right time to commit the software to this high-level language.
So MUPL is really a cleaned up Autocode. The changes stem
mainly from the fact that it was not required to be a
representation of the CTL (or TML). Also, it was designed to
include a low level machine dependent dialect (approximating
to XPL) for each of the machines to which it applies. This
facili ty is used only where complete control over the code
generated is necessary, such as in test programs and some
parts of the Operating System.

185

8.6.4 MUDL

As was stated above, for pragmatic reasons, a complete
operating system was created for MU5 in assembly language.
Furthermore, the use of Flocoder meant that it was as well
structured as any high-level language implementation would be.
Thus it provides the ideal vehicle for the evaluation of the
efficiency of any high-level language into which it is
translated.

It is in this environment that the .Manchester jlniversi ty
Qesign kanguage (MUDL) has evolved. Unlike the earlier
languages, user convenience and power of expression have not
been compromised for efficiency, but the efficiency has been
constantly measured, and until a compiler is produced which
approaches the efficiency of the handcoding, the language has
only the status of being the design specification language. It
was realised at an early stage that such a language was needed
because the English style flowcharts were not rigorous enough.
They can express very clearly the logical significance of
actions and tests, but still leave too much scope for bad
interpretation by the coders. So the general rule is that the
designers get their ideas sorted out using English, and then
firm up the specification using MUDL. As a 'temporary'
expedient, translations into more efficient languages are then
added.

An example of MUDL is ~iven in figure 8.6. A full
description would be inappropriate but some of its main
features may be of interest.

In common with the more modern system programming
languages, MUDL is a typed language, and the user can define
his own composite types. The computational expressions are
arbi trary operator operand sequences and operators are given
equal precedence wi th a left to right rule determining the
order of eval ua tion , as in the Autocode and MUPL. Thi s has
proved convenient in practice. Results or partial results can
be assigned to store at any pOint. In fact almost any operator
may be followed by'>' meaning, first the operator is applied
(reversed if not commutative) to the current result and the
following operand, then the new result is assigned to the
following operand as well as carrying forward to the next
stage of the computation. Some examples of this will be seen
in figure 8.6.

The control structures of MUDL are simple and
straightforward because most of the control is expressed
through the flow diagrams. However, the usual facilities of
'If-Then-Else', 'For Loops' and 'While Loops' are provided.

186

These are intended for use in boxes where the action, although
logically simple (find an entry in a list, for example)
requires some conditional or repeated action.

SJ1USS3.1 lIMAKE DTQ ENTRY
SMUSS3.2 I'OBTAIN DRUM BLOCK
1MUSS3.3 llRELEASE DRUM BLOCK

SMUSS3.4 nSTART DRUM
PROC DTC

INT DRUM.ADDR. CORE ADDR
ADI>RPROC TC.PROC

~--------4~--------~
If TRAfMllPIP OF V.DRUM.CONTROL 1= 1

I TRAN.FAIL OF" V.DRlJiII.CONTROL = 1

~8llK

D.AI>DR OF DTQ[CURR.DTQ.ENTRY] => DRUM.ADDR
C.AI>DR OF DTQ[CURR.DTQ.ENTRY] => IllRE.ADDR
TC.LINK OF OTQ[CURR.DTQ.ENTRYl => TC.PRQC

F"RlJLTY

~------------~~------------~
CURR.OTQ.ENTRY + 1 '" DTQ.LENI;TH => ClIRR.DTQ.ENTRY

Figure 8.6 Drum Control Written in MUDL

187
G

It is the operand forms of MUDL which are its greatest
novel ty. As well as having the usual indexing facility for
selecting elements in an array, elements can be selected by
'selection condition'. For example

VOL OF Z[TEMP)1000]

refers to the VOL field of the first element in the array Z
when TEMP field is greater than 1000. There are a number of
more complicated variants of this facility which make ita
powerful language for handling the lists which occur in an
operating system. One is the facility to precede an operand
involving a selection condition by the word ALL. The meaning
is that the computation in which it appears is repeated for
all elements which satisfy the condition. Thus

ALL VOL OF Z[TEMP)1000]+)TOT

will add the VOL of every element of Z for which TEMP is
greater than 1000 into TOT.

188

9 The MUS Operating System
Structure

The MU5 software comprises the Operating System, compilers for
the standard languages and runtime packages to support the
compiled code. It is the job of the Operating System to
provide the environment in which the rest of the software and
user programs will run, and to provide an interface between
users and the machine. In this chapter we are concerned with
the internal organisation of the Operating System. The user
interface is the subject of Chapter 10.

9.1 INTRODUCTION

There are two contrasting approaches open to the operating
system designer in deciding its internal structure, although a
spectrum of compromises is possible between the two extremes.
First, the design could centre around the idea of the system
allocating actual machine resources such as blocks of store
input/output devices, etc., directly to the user programs. In
this case the environment provided by the operating system is
a partition of the real machine. It has ~ll the basic
facilities of the hardware and its po§sihle failings and
complexity. Of course, the high-level language user would, to
a large extent, be screened from this by the compiler and its
runtime package, but not so the software writers. Hardware
assistance would be required to restrict the access to the
store and peripherals according to the chosen allocation. The
second approach is to design an operating system which creates
a virtual machine for each other piece of software, and each
user program, with idealised facilities. In this case a
combination of hardware and operating system software is
needed to map these virtual machines on to the real hardware.
Thus the choice of approach impacts the hardware design,
particularly in the area of store addressing, and is an early
decision that must be taken in the design of the total system.
It is obvious that the resulting software structures will be
qui te different. For example, resource allocation can be a
dominant problem in the first approach and almost non-existent
in the second.

In MU5 the second approach has been followed, and there are
both pragmatic and philosophical arguments to support this

189

decision. Firstly Atlas, MU5's immediate predecessor, had
pioneered the virtual machine concept with significant
success. The relative ease with which the software was
produced by a mere handful of people (less than ten in fact)
owed much to the simplification resulting from 'the 'one-level
store' of the virtual machine [36] and the isolation of most
of the software effort from the detail of the hardware. Also,
the throughput achieved by the modest configuration at the
University of Manchester [37] is testimony to the cost
effectiveness of the technique. In a more philosophical vein,
the virtual machine concept separates out a kernel of the
operating system and places it behind a well defined
interface, being the specification of the virtual machine. To
a large extent, programmers on each side of this interface see
only this interfac'e and their own software. This focuses and
concentrates effort which can all too easily be dissipated if
the horizons are too wide. The domain of a programmer should
not be beyond his comprehension ,which the total operating
system might be. Furthermore, additional structuring and
parti tioning .al"e possible wi thin the virtual machine as a
result of its relative sophistication.

It could be argued that interfaces are restricting, but
this is their virtue. They must, however, be well chosen,
which is where the art of large system design lies. It is
important that the partitions created are logical both from
the pOint of view of the total system and of the individual
parti tions, and that the interfaces form natural boundaries.
It can also be argued that there is a loss of flexibility, but
any design which maintains maximum flexibility has not
progressed very far. The ultimate end of this attitude is a
ponderous monolith as exemplified by the efforts of the
computer industry. In the end these are usually partitioned
arbitrarily by committee in order to apply the 'Chinese Army'
approach to the implementation. Imagine a car or aeroplane
produced in such a manner.

9.2 THE VIRTUAL STORE

An important part of any machine is its store, or in the case
of a virtual machine, its virtual store. The virtual store of
MU5 was introduced in Chapter 2 when the treatment of
addresses by hardware was under discussion. It is a
two-dimensional store having 16K segments eacn of 256 Kbytes.
The format of the 32-bit address ¥ords is

14 18
SEGNO POS IN SEGMENT

Obviously the Operating System must maintain tables which give

190

the position of each segment (or its page table) in t.he real
store. If there is a separate segment table for each virtual
machine, and the addresses they contain are unique, then the
segments of each virtual machine will be protected from all
other virtual machines and they are said to be private.
Clearly, it is also possible for the same entries to appear in
several tables in which case these several virtual segments
map on to the same actual store locations, and the result is a
shared segment. Another form of sharing can be achieved by
using the same table to map from virtual to real address for
all virtual machines. In this case their virtual stores
totally overlap and the segments are said to be cOmmon.

In the MU5 system the upper half of the address space,
segments 8192 through 16383, is mapped through the same
segment table, and is therefore common to all virtual
machines. The reason for this is that many segments, such as
those containing the Operating System and Compilers, need to
be shared by most of the virtual machines in the system.
Although this could be achieved by replicating the entries
through all the segment tables, it would be less efficient
than using common segments. It is not only space in the tables
which is at issue, there are logical complications associated
with having several virtual addresses mapping on to one real
area of store which influence the overheads involved in
managing the stor.e. Also, program changing can be marginally
faster when some of the store mapping registers stay the same
for all programs.

For the lower half of each virtual store, there is a
separate table mapping the segments, which will normally be
private, but two facilities exist which allow virtual machines
to share their segments. First, a segment can be sent as a
message from one virtual machine to another, in which case the
segment table entry is transferred to the receiving machine,
rather than a copy of the segment. Second, files equate to
segments, and if 'several virtual machines choose to access the
same file simul taneously they share the same copy. More will
be said about this in sections 9.6 and·9.7.

It is desirable in a segmented store to be able to
associate some access control with each segment. If segments
are shared or common it is essential to have this protection.
Five access control bits are used in the MU5 system. A
separate group of these bits is associated with each private
or common segment and a shared segment has a different group
for each virtual machine sharing it. In fact they are kept in
segment tables as shown in figure 9.1. The first three access
control bits indicate the type of access which is to be
permitted, as follows

191

operand read access
operand write access
instruction (obey) access

A fourth bit, which only has relevance in the software,
controls the permission to alter any Q[these first three bits
and itself. A private segment normally would have the al tel"
permission bit set, which means that the other bIts can be set
to suit the use being made of the segment. For example, a
compiler would probably compile code into a segment with
read/write/alter permission set, and at the end of compilation
change the access to read/obey only. The fifth bit, the
executive mode bit, gives the segment executive status, which
means only privileged Operating System procedures may access
it. Thus, from the point of view of protection, the MU5
Operating System is a two-state system. The multi-level
protection that would derive from having several executive
mode bits was deemed unnecessary because the Operating System
is distributed among several virtual machines instead of
across different protection levels as it is in MULTICS.

Segment
Number

Permission
:

Segment I
Bits I Pointer

I
I
I
I

~ I
I

I ~ I ~ I ~ It: ..-- (
:
I
I
I
I
I
I
I
I
I

- Read
'--- Write

Obey
Alter
Executive

Figure 9.1 Segment Table Structure

Segment

When a virtual machine is first created for a user job, it
contains only one private segment, segment zero (the name
segment), and the common segments. Segment zero will have
read/write access only and the common segments will either
have obey/read access or executive status. There are several
ways in which further private or shared segments may be added.
For example, they can be created by use of the appropriate

192

command or received as messages. A typical job would have, in
addition to segment zero

a segment of code
a segment of arrays
a segment for input/output control
a segment for each open file.

The common segments contain a set of library procedures
which are regarded as an extension to the instruction set of
the virtual machine. Some will have privilege, and provide the
interface into the Operating System. All are available to
programs, written in any language, and to the statements of
the job control language. The mechanism controlling entry to
the Operating System is described in section 2.3.1.

In effect there are two forms of entry to the Operating
System. One is a voluntary entry due to a program executing a
call for an Operating System procedure. The second is an
involuntary entry resulting from the hardware noticing an
~nterrupt event, such as access to an undefined segment. These
'interrupt procedures' are also in the common virtual store.

9.3 THE IMPLEMENTATION OF THE VIRTUAL STORE

In MU5 the virtual stores are paged, and the hardware this
involves has already been described (section' 6.4). This
section is concerned with the software organisation of the
paging system, but a reminder of the operation of the current
page registers (CPRs) is an appropriate starting point.

There are 32 CPRs each containing a virtual address, a real
address, the access control (or permission bits) and a use
bi t • Each store access requires the CPR hardware to find the
page part of the virtual address in the associative field of a
CPR, check the access type against the permission bits, and
use the real address from the CPRs with the line bits from the
virtual address to access the store. This action is shown in
figure 9.2. Two exception conditions can arise which require
software intervention, hence they cause interrupts. First,
there is the fault condition due to the access type being
invalid, write access to a read only segment, for example.
Second, there is the more usual CPR non-equivalence interrupt
caused by the absence of the required address from the CPRs.
The software action on a fault interrupt is to cause the
corresponding virtual machine interrupt. In the case of CPR
non-equivalence there is the possibility that the required
page is already in main store, in which case the action will
be to load a CPR and re-start the program at the instruction
which caused the interrupt.

193

Access Violation

Non-equivalence

t

Access Virtual Address Real Address

Type

II III Real Page

Virtual Page

Figure 9.2 The CPR Action

Use

- --:
Line

; ... - -
...J

In most systems this CPR loading would be done by hardware.
The reason this is tlOt so on MUS is that MUS is a research
vehicle and the paging system was felt to be an area needir1g
research. For the same reason, the CPRs allow the page size to
be varied (in powers of 2 from 64 bytes to 256 Kbytes). In
fact each CPR contains its own page size indicator, so that
different page sizes might be applied to different segments,
or even wi thin the same segment, but this has never been
exploited.

Three types of paging system have been implemented on MU5,
and they are described separately below. If it were to be
built as a productioir machine,. one of these systems would be
chosen and put into hardware'. The cost of CPR loading on MU5
can average as much as 10%, but this was considered an
acceptable price for the facility to conduct continuous paging
experiments on a live system.

In the ICL 2900, which for reasons already stated is very
similar to MUS, the paging system corresponds to the fixed
page size one described in section 9.3.1. It is unlikely that
this scheme would be chosen for MU5, because al though the
paging studies are not yet complete, there is evidence of a
significant reduction in store occupancy and paging traffic in
the variable page schemes.

194

9.3.1 Paging With Fixed Sized Pages

The emphasis in this version of the paging system was on
simplicity. It is convenient to consider first how it works on
a machine with only one level of main store. A fixed page size
of 1 Kbyte was chosen because this· resul ted in a maximum of
256 pages per segment, hence the page table for a segment,
which requires a 32-bit address for each page, itself fits
into a page. This is significant, because the size of the
backing store, which determines the total page table size,
requires that the page tables are themselves paged. There is
an obvious simplification if the page table for each segment
can be treated as a page.

Segment
Tables

8
D
D

SST

SSN

Page Table Page

D

Figure 9.3 The Page Table Structure

Figure 9.3 gives the overall structure of the tables used
to locate a page. Each virtual machine has its own segment
table which, for each segment, indicates whether or not it
exists, and gives the access control bits and system segment
number (SSN). This segment table (together with the register
dump and accounting information for the process) also fits
into a page, which can be moved out of store when the virtual
machine is inactive. As a result of segment sharing, several
segment tables might have entries giving the same SSN. It is
mainly this sharing of segments which makes it useful to
introduce the System Segment Table (SST) as an extra level of
indirection between a segment table entry and the page table

195

for the segment. Otherwise, the same page table address could
be in several segment tables, and this would create problems
when the paging system moved the page table. All the
information the system needs to know about a segment is kept
in the SST, including a count of the number of segment table
entries its SSN appears in, so that the system knows when the
segment can be deleted.

The main component in an SST entry is the current page
table address. The entries in this page table give the current
positions of the pages. When a new segment is created it will
not have any pages, they are allocated as they are accessedJ
Thus the page table entries have a page status component, and
the following states are recognised

in main store
on drum
in transfer
nO,t allocated
not allowed.

When a page is in transfer, i twill either be because a
non-equivalence interrupt for the page has occurred in one of
the virtual machines on the execute list (section 9.4), or
because the page is out of use and is being rejected from
store. In this latter situation the address part of the page
table entry indicates which virtual machine is halted waiting
for the transfer. As a result of segment sharing, it can
happen that other virtual machines cause non-equivalence
interrupts for a page in transfer To accomodate this
situation, in which two (or more) virtual machines become
halted for the same page transfer, the individual bits of the
page table entry are used to indicate which execute list
process~s are halted. When the transfer completes, these
processes are freed, and the new address of the page is placed
in the page table.

Thus the tables above allow the sdftware to find the
posi tion and sta tus of a page, for which a non-equivalence
interrupt has occurred, and if it is in main store, load a
CPR. If the page is not in main store, a transfer is initiated
to bring it there, and the virtual machine causing the
interrupt is halted until it arrives. It is then re-started to
cause the interrupt again when ,usually, the CPR will be
loaded. It can happen that not only the required page but also
the page table is out of main store. In this case a transfer
is started to bring the page table into store, after which the
virtual machine is allowed to re-start, and the second
non-equivalence interrupt will cause the page to be brought in
to store. Some careful thought will establish that only one

196

step at a time can be taken towards servicing a
non-equivalence interrupt. The virtual machine is then made
free to re-start and possibly cause the same non-equivalence
interrupt again, because the combined effects of segment
sharing and program changing can alter the context. For
example, in the extreme case, in the time between a virtual
machine causing a non-equivalence interrupt for a drum page
and being re-started, all its pages (including the last one
paged in) might be removed from main store due to the actions
of other higher priority virtual machines. Alternatively, in
the case of shared segments, some unexpected pages might have
been paged in.

The other major component of the paging system is activated
when the main store becomes full and some pages and/ or page
tables have to be moved out (rejected). To assist this
function the system needs some further tables (Core Use
Tables), giving information about the individual pages in
store. First, a page has to be selected for removal, and use
information provided by the CPR loading algorithm is
desirable. When a page is selected, three other pieces of
information are needed to answer the questions

where is its page table entry?
where did it come from?
has it altered?

A number of different algorithms has been explored on the
MU5 system for selecting pages for rejection. The simplest
system is based on a single use digit and a cyclic scan of the
store. This approximates to finding the least recently used
page, and it has been effective in normal running. It is less
satisfactory when a single very large job fills the store, but
the more usual situation is to have the active parts of
several interactive jobs in store, some of which will have
finished their timeslice (section 9.4).

In fact, MU5 has two levels of main store, the Local Store
and the Mass Store (section 2.4), and the actual page flow was
shown in figure 2.2. Pages are brought into the Local Store on
demand, and when space is required they are rejected to the
Mass Store. When space is required in the Mass Store they ar9
rejected to the Drum (implemented as Fixed-head Disc in MU5).
To make this extra organisation possible, the state 'in main
store', in the page tables, is replaced by two sta tes 'in
Local' and 'in Mass'. Also there have to be 'Core Use Tables'
for both levels of main store. A further point of detal.l is
that there are some Operating SysteJD tables which need to be
main store resident. These are kept in either Mass or Local
according to their size and frequency of use. The hardware

197

allows the same sort of access to be made to either store, but
direct access to the Mass Store is slow and is only used by
the Operating System, for infrequently used information.

9.3.2 Paging with Super-pages

A degree of variation in page sizes can be added to the above
scheme by allowing 'super-pages'. These are power-of-2
multiples of the basic page size on which the system operates.
They can be implemented without introducing a different table
structure, but a page size indication has to appear in each
segment entry in the SST. Using this size information, each
non-equi valence addres~ can be properly partitioned into its
page and line parts, and the appropriate sized (single,
double, quadruple, etc.) page brought into store. Also, when a
CPR is loaded for a page already in store, its size is given
to the hardware. The core use tables must also contain page
size informat~on, and double sized pages will take two
entries, quadruple ones four entries, and so on.

This scheme has been implemented on MU5 using a basic page
size of 1 Kbyte with superpages of 2 and 4 Kbytes. It shows a
significant improvement in CPU utilisation when superpages are
used for segments which have a large active part collected
into consecutive addresses. For example, the inner loop of the
compilers can be organised this way.

AC Use SSN Page No. Page Size Real Address

Entries found
by Associative Search

Figure 9.4 Page Tables for Sub-pages

198

9.3.3 Paging with Sub-pages

If very small page sizes 'are to be allowed, a different
approach is needed. The gain with small pages is better
utilisa tion of space for sparsely used segments, and this is
particularly relevant in the small high-speed stores. On the
Drum Store and even the Mass Store, the total number of pages
to be managed can become a problem, hence small pages are less
attractive. Also, if the access to the store is dominated by
the latency time, the balance is in favour of large pages,
because this acts as a kind of look ahead for sequentially
accessed information. Hence a third variant of the paging
system has been implemented which uses moderate, fixed-sized
pages (4 Kbytes) on the Drum, and allows smaller (binary
fractions) to be used in the Mass and Local. As in the
previous system, the sizes used within a segment do not
change, but each segment has its own page size for Mass and
Local. The Local page size may be equal to or less than the
Mass page size, which may be equal to or less than the Drum
page size.

A table structure similar to that of section 9.3.1 is still
used to locate pages on the Drum, but a completely new
structure is needed to locate the sub-pages in the Mass and
Local. For each of these stores there is an additional page
table, structured as shown in figure 9.4. A special Table Look
Up instruction (TALU) has been provided to search these
tables. In principle its operation is similar to the
store-to-store orders (section 7.4), but special additional
logic in the D-unit is used in its implementation in order to
allow comparisons between a 32-bit operand and sequential
table entries to occur once every 40 ns. The action of the CPR
non-equivalence routine for this system is summarised in
figure 9.5. Some points of extreme detail, such as the paging
of the page tables, and the 'no space in store' condition,
have been omitted. The abreviations LPT and MPT refer to the
extra page tables required for the pages currently in the
Local and Mass stores.

9.4 PROCESSOR SCHEDULING

After store control, the next most important task of the
kernel of the Operating System is the allocation of the
processor (or possibly processors) to the virtual machines. It
should be pointed out that there might be another level of
scheduling applied above this one by the job initiation
modules introduced in section 9.5. They can choose to apply
their own high-level scheduling rules before requesting
virtual machines to run the jobs.

199

Figure 9.5 CPRNEQ Procedure for Sub-pages

Here, the problem is simply one of choosing the virtual
machine(s) to which the processor(s) are to be applied, but
account must be taken of their relative priorities and of the
fact that some contain interactive jobs, while others do not.
It is the priority number assigned to a virtual machine by its

200

user that determines both. The accounting system bases its
charges on this priority number, which discourages users from
making unreasonable choices. There are 16 priority numbers,
but 0 through 7 are reserved for the system. Of the remainder
8 through 11 give the virtual machine interactive status and
12 through 15 give background status. Within each group the
highest priority is given to the lowest numbers.

There are two parts to this scheduling system, and they
interface through an 'execute list' which specifies 16 virtual
machines, ordered according to priority. One part of the
scheduling system, termed the 'low level scheduler', is
concerned with allocating the processor(s) to these 16
machines, so as to maximise processor utilisation. The other
'medium level scheduler', is concerned with choosing the 16
entries on the execute list, to match theers relative
priorities and interactive requirements of the virtual
machines competing for the processor.

Whenever a processor is available, the basic afm of the low
level scheduler is to allocate it to the highest priority
virtual machine on the execute list which is free to run.
Those not free to run will be hal ted, for a page transfer or
other reason of short duration. Howeve~, the low level
scheduler must guard against creating an increase in total
paging traffic as a result of running more virtual machines
than the main store will accommodate. It will sometimes be
better to allow a processor to idle until a page transfer
completes, than to run another program whose demands on space
cause pages which will soon be required to be removed from
main store. A full discussion of this problem cannot be
included here. Briefly, the low level scheduler and the paging
system between them attempt to estimate continuously the core
requirement of each virtual machine. The sum of thes.e
estimates determines how many of the virtual machines on the
execute list are considered as candidates for the processors
before they are allowed to idle waiting for page transfers to
complete.

If a virtual machine on the execute list is awaiting input,
or file retrieval, both of, which really mean waiting for a
message, it is removed from the execute list. Another reason
for removal, which applies in the interactive case, is the
expiry of its 'time slice'. When entries are removed, others
move up thus improving their chances of being allocated a
processor. The composition of the execute list is determined
by the medium level scheduler. It aims to cycle through all
the interactive virtual machines, giving each one that is not
waiting for a message a short burst (or ttimeslice t) of active
processor time. During this cycle it maintains the highest

201

priority background job that is free to run at the low
priority end of the execute list. At the end of the cycle, if
the proportion of processor time requested by the Computer
Operator for background work has not been obtained, the next
cycle is delayed until the background job 'catches up'. In
fact, the cycle is further complicated by the need to take
account of interactive priority. Only those virtual machines
wi th priority number 8 are considered every cycle. The rest
are considered every two, four or eight cycles respectively.

9.5 THE OPERATING SYSTEM USE OF VIRTUAL MACHINES

We have already seen that each user program is run in its own
virtual machine, and that the Operating System occupies the
upper half of each virtual machine. In addition, some parts of
the Operating System have their own virtual machines. This
structure can best be clarified by considering how it would
apply to a hypothetical machine with an arbitrarily large
number of processors connected into a common store. Imagine
that each user job in this hypothetical system is given its
own ·processor. Each of these processors would have access to a
common area of the store and would also have some store
dedicated to the job it is running. It would be natural for a
program requiring an Operating System facility to execute the
appropriate procedure using its own processor. In addition,
there is need to run other Operating System activities in
parallel. For example, the input for new jobs has to be read
in, and previously buffered output has to be driven out
through the output devices as they become available.
Therefore, in this hypothetical system, it is convenient to
assign a processor to each input/output device. Other
Operating System activities which are still not provided for
are the global organisational tasks; for example, job queueing
and ini tia tion, file archiving, etc. Further processors are
allocated to each of these.

This hypothetical system is modelled in the MU5 Operating
System by applying a virtual machine to each of the above
ac ti vi ties assigned to a processor. To summarise its
structure, there is a small kernel of Operating System
software which implements an arbitrary set of virtual machines
which are analogous to a corresponding set of processors. The
store containing the Operating System code and its tables
appears inside every virtual machine (the common segments).
Also, in each virtual machine, there is the store private to
the job it is executing (the private segments). Anyone of the
virtual machines can enter Operating System mode in order to
execute an Operating System function, on behalf of the
activity running in that machine. In addition, some virtual
machines contain no user job and they execute the Operating

202

System tasks which are not directly related to any single user
job. These tasks are concerned with driving input/output
peripherals and providing system wide services. The overall
mapping of the MU5 Operating System into virtual machines is
depicted in figure 9.6.

System
Accountant

File Archive
Manager

Mailbox

Printer
Control

EDS
Control

Dedicated Transaction
System

User Jobs User Transactions
Figure 9.6 The Virtual Machines in the MU5 Operating System

This system structure applies to all members of the MU5
range. Modest configurations would probably have only one
actual processor, which would be shared by all the virtual
machines. Larger systems might have several processors, but
not enough to assign one to each virtual machine. The largest
systems might comprise several different computers, each with
its own store and operating system kernel, and the rest of the
virtual machines of the operating system would be distributed
across these in an optimum manner. For example, the virtual
machine running the file store archiving process would be in
the machine that is connected to archiving devices. The actual
MU5 complex at the University of Manchester (figure 2.3) is an
example of a distributed system of this kind. One consequence
of this distribution is that the virtual machines of the MU5
Operating System cannot rely upon shared segments as a means
of communication. Instead, communication facilities between
the virtual machines are provided by the message system
described in the next section.

The operation of this structure when typical jobs flow
through the system is illustrated in figure 9.7. Initial input

203

is passed from the device controllers to the JOB INITIATION
module. If the jobs are batch jobs, all their inputs are
collected by this module, and then, when the scheduling rules
allow, a new vir tual mac hine is created to run the job, and
the inputs are passed on. A request to start an interactive
job will receive immediate attention and subsequent input will
bypass the JOB INITIATION module and go straight to the
virtual machine assigned to the job. Output generated by 1ihe
user jobs flows out through the output control modules where
it may again be subject to queueing and scheduling unless it
is to an on-line terminal.

I nput Devices

/
.1

Output Devices

Figure 9.7 Job Flow

9.6 COMMUNICATION BETWEEN VIRTUAL MACHINES

Device
Control

Device
Control

Communication between the virtual machines is necessary for
several reasons. Clearly input/output has to flow through the
system from one virtual machine to another • Also , Operating
System procedures called in a user virtual machine might need
to request the services of an Operating System module running
in another virtual machine. For example, if access is

204

requested to a file which has been transferred on to archive
media, the 'OPENFILE' procedure will require the services of
the file archive manager, in order to retrieve the file.
Finally, virtual machines sometimes have to synchronise,
either because they are collaborating on the same job and need
to keep in step or because they are in competition for a
common resource.

At the time of designing the MU5 Operating System, two
techniques for synchronising virtual machines (or the
processes they contain) were widely known and there were
various ways in which each could be adapted as a communication
system. These wer'e the semaphore system formalised by Dijkstra
[38], and the event system used by a number of designers but
perhaps most elegently by Bernstein, Kerr and Detlefsen [39].
Since the MU5 team at that time included Detlefsen, there was
a natural tendency to move towards an event based system. The
semaphore concept was only considered appropriate as a
technique for synchronising access to the system tables within
the kernel. For the general communication requirement it
seemed too contrived. The activities in an operating system
are not really analogous to rail way trains moving about a
network. They are more analogous to people in a large
organisation each carrying out their own task, sometimes
passing results and queries to other people and sometimes
using shared facilities. Events seemed a more natural basis
for the design. It is events such as

new job arrives
tape deck becomes available
card reader started by operator

that trigger many operating system activities. However, the
system design never quite crystallised around the event
concept, mainly because it did not lead to ~ satisfactory
system for input/output propagation. To return to the analogy
of people in an organisation, they are driven by in-trays and
out-trays of messages and other more urgent(?) messages
arriving by telephone. Eventually, the idea evolved of
providing a message system wi thin the Operating System, into
which all the virtual machines are connected, even if they are
in different computers.

In effect, this system allows any virtual machine to send a
message to any other virtual machine, but the facility is
provided for a virtual machine to exert some control over the
messages it is to receive. This control derives fr:om the
decision that two procedures must be executed in order to
achieve the transfer of a message from one virtual machine to
another, and the notion of channels (see below). The sending

205

machine calls the 'SEND.MESSAGE' procedure which makes the
message available to the receiving machine. It is only taken
into the receiving machine when it calls the 'READ.MESSAGE'
procedure. It would obviously be undesirable to hold up the
sending machine until the receiving machine was ready, hence a
queue of messages· is allowed to form for each machine. Some of
these may be more urgent than others. For example, if there
was a virtual machine in the system with responsibility for
queuing and initiating background jobs, it might wish operator
messages such as

'HOW MANY JOBS ARE QUEUED?'

to have priority over messages requesting the initiation of
new jobs. To avoid the need for the software in a virtual
machine to examine all waiting messages in. order to find the
most urgent, they are streamed on to 'channels'. A virtual
machine has several (in fact 8) input channels, each with its
own queue of messages. The SEND.MESSAGE procedure has a
parameter giving the channel number in the destination
machine, and the READ.MESSAGE procedure also has a channel
number parameter to specify the channel from which the message
is to be read. On each channel the messages are queued in
arrival time order.

It is now evident that if channels are to be associated
with particular sorts of message, some control over the
messages that can be sent to a channel is necessary. The
mechanism is that the channels have status bits which are set
by a SET.CHANNEL.STATUS procedure and inspected by the
SEND.MESSAGE procedure; Obviously, it is not possible for the
status to refer to the logical nature of the messages to be
accepted on each channel. Instead it is used to specify which
other virtual machines may send messages to the channel. The
detail of this mechanism has been subject to much change as
the Operating System has evolved. What has been sought is a
simple but sufficient system. One obvious solution would be to
attach to each channel a list of the authorised senders, but
this is not done because of the relative high cost of handling
these variable sized lists. In this kind of system the cost of
sending messages is a critical overhead. The present system
uses only one word to indicate the status of a channel. This
provides the following states

closed - meaning no messages will be accepted
open - meaning all messages will be accepted
dedicated - meaning only messages from a specified

VM will be accepted
open to exec - meaning only messages from VMs running

in executive mode will be accepted

206

The status contains one other bit, which determines the
action to be taken when a new message is linked to a channel.
It gives the choice between the message simply being queued,
until the program running in the virtual machine chooses to
read it, and the message causing an interrupt wi thin the
virtual machine. This, then, is the mechanism for passing
messages, but what constitutes a message?

Some messages will consist of large and variable sized
units of information, for example, a file, or a copy of a deck
of cards, or a listing to be printed. Therefore, the
SENDMESSAGE command allows a segment of the sending machine's
virtual store to contain the message. The combined effect of a
sender issuing a SENDMESSAGE command, and the recipient
issuing a READMESSAGE command, is to transfer the segment from
one virtual store to the other. This is achieved by copying
pointers from one segment table to the other and does not
involve copying the information. Unless, of course, the
sending and rece~v~ng virtual machines are in different
computers, in which case a copy is required. Usually the
sender would release his access to the segment, but it could
be retained in which case the segment would become shared,
provided only one computer was involved. In some cases the
information to be conveyed in a message is quite small, and it
would be wasteful to create and pass a segment. Thus, each
message incorporates a short header, in addition to the
segment, which is in fact optional. When a message is sent,
the header is copied into the system message queue and when it
is read the header is copied into the receiving machine's
virtual store. The message headers are used, without segments,
to propagate on-line input/output through the system, and,
with segments, to specify the action required on the segment.
This might for example be 'print it on two ply paper' or 'file
it' •

9.7 THE FILE SYSTEM

Since the segment of virtual store is the unit of information
tha t can be passed as a message, and shared between virtual
machines, it is natural to equate files with segments. A
command is therefore provided which allows a program to file
one of the segments in its virtual machine. The converse
command is also provided, by means of which an existing file
can be introduced as a segment into a virtual machine. Files
may be segments of text, code, or data. Of course, this means
that files are subject to the same size limit as segments, but
the user will not normally directly access these files
himself. A library of input/output procedures exists to map
arbi trarily large text files on to several of these basic
files.

207

The implementation of the above mentioned file commands
requires a directory structure which restricts each user to
his own set of files and relates each file name to the
position of file. This directory structure is the data base on
which the file commands operate. Some file systems maintain
the bulk of their data base in the file store itself (as
additional files). This has an obvious elegance and fits well
the hierarchical nature of the directories. For example, a
file can be a directory to files which themselves are
directories and so on. The first implementations of the MU5
file system worked this way but it led to heavy paging
traffic, even for simple file store operations, and
particularly for changes such as defining a new file, which
necessitate directory changes. The alternative is to keep the
file system data base separate from the file store. This is
the way the later implementations have been organised.

In any file system, account must be taken of the physical
characteristics of the devices available for file storage. The
MU5 system has foul' notional types of store, namely: Core,
Drum, Disc and Tape. These might in practice be provided by
various physical devices as follows

Core - might be core, plated-wire or LSI store
Drum - might be drum or fixed-head disc
Disc - might be large moving head disc or EDS
Tape - might be magnetic tape or EDS.

The Core and Drum stores are integrated into a 'one-level'
store by means of the paging system. There will be a one-level
store for each machine in the co'mplex containing the segments
of its virtual machines and any recently active files. The
Disc is the first level of file backup and out of use files
are moved there from the one-level stores as space is
required. Similarly, when the Disc becomes full, the longest
out of use files are archived to Tape. This integrated file
system, in which all computers share the same overall file
system, even though they have there own one-level stores, is
the basis of the design of the MU5 system. It requires that
the file system data base is kept on the Disc, that facilities
exist to synchronise changes to this data base from different
computers, and that newly created or altered files in a
one-level store can be forced back to the disc if they are
required by another computer.

At the time of writing, the MU5 system has not had suitable
hardware to serve as the Disc, therefore each computer in the
complex runs its own separate file system. A temporary
mechanism is provided which allows a job in one computer to
access the files in another. This is achieved by having a file

20R

manager process from which files can be obtained in reply to
requests sent via the message system. The file commands
automatically generate these messages and service the replies
once they have been told which file system is to be accessed.

The actual file system, which runs on MU5, models the full
design. It has three components. These are the procedures
implementing the user commands which are part of the kernel,
and two processes which act as off-load manager and archive
manager r'unning in their own virtual machines. The kernel
commands allow the user to create and access files in the
one-level store, but they communicate with the off-load and
archive ~anagers when the requested files have been previously
off-loaded or archived. . I .

9.8 MACHINE INDEPENDENCE AND ADAPTABILITY

The MU5 Operating System has to run in all the computers of
the complex, hence it is desirable to make it machine
independent. It must also support and survive research, and
must therefore be adaptable. Thus its design must anticipate
change and it must be applicable to

different hardware configurations/architectures
different types of workload
different user requirements and expectations.

This is not merely a question of simple tuning measures, which
could be parameterised. Fundamental changes may be required to
the algorithms used in ~~veral parts of the system.

The adaptability of an operating system is affected by
several factors, but the most important is that the system be
designed in a modular fashion. Of course, ..all systems are
modular! It is the nature of the modules and the ways in which
they interact that determine the degree of adaptability that
results. For adaptability, it is essential that modules be
isolat.ed from one another, in the sense that no module assumes
in its own implementation anything about the implementations
of other modules. This has nothing to do with compiling
modules separately, or separating them by means of a
protection mechanism. It is essentially concerned with
distributing the data structure of the operating system so
that each module is responsible for some part of the data
structure, and 'hides' it from the rest of the system.

The overall structure of the MU5 Operating System may be
viewed as a hierarchy of four levels, each of which is further
subdi vided into modules. The four main levels in the system
are

209

The resident system processes.
The library procedures providing basic 1/0

and JCL facilities.
The basic interface procedures of the

virtual machine (command level).
The core-resident code (interrupt level).

Considering first the question of machine independence, there
is no significant problem with the system processes, since
they run in the virtual machines created by the rest of the
system. Thus they need not be discussed further in this
connection.

The basic library procedures also run in the virtual
machines in normal user mode, and again there is no
significant problem. Some procedures, however, access a global
data structure whose form may vary according to the size and
structure of the virtual store provided in the virtual
machines. Therefore, the library procedures are grouped into
modules which reflect this possibility.

Command level contains the implementation of the procedures
which allow a process to manipulate its virtual machine
environment. These conveniently fall into functional classes
such as

store control commands
process control commands
communication commands.

Hence these classes are the major modules of command level.
The command level and interrupt level procedures together form
the system kernel which creates and supports the virtual
machines in which the previous two levels of the system and
the user jobs run.

At interrupt level the modules were initially chosen to
correspond to those sections that would run autonomously. Thus
there are modules for each class of peripheral, and for the
functions of store management and processor manag~ment. In the
context of machine independence, these same modules correspond
with the components that might require change in moving to a
different machine. In fact, such changes are mainly restricted
to interrupt level since the modules here interface directly
with the real machine. However, the effects of hardware
differences can filter through to command level modules, for
example: to enable a process to manage a non-paged, rather
than a paged virtual store.

The requirement for several. different versions of a module

210

to exist, and be maintained simultaneously, has led to the
production of a much cleaner specification of the modules and
their interfaces, so that any version of a module can be used
with the rest of the system provided its hardware requirements
are met. Given this structure, it has proved useful to
introduce alternative versions of modules for reasons other
than hardware differences, for example, to provide varying
degrees of sophistication in areas such as scheduling.

The end. result is that the total Operating System exists,
in source form, as a matrix of files,' in which each row
contains all versions of one module of the Operating System. A
particular system is built by selecting one module from each
relevant row. The selection criteria are that first, one
element is chosen from each row which offers a facility
required in the given system, and second, the chosen element
must have the required degree of sophistication and compatible
hardware requirements.

As mentioned earlier, this interchangeability of modules is
only realisable because of the distribution of the entire
Operating System data structure among its modules. Each module
has its own set of lists and tables, which are not accessed
directly by any other module. Obviously the modules are not
logically independent, and an event might occur in one module
which requires an alteration to the data structure of another.
This is provided for by 'interface procedures'. Each module
may have associated with it a set of interface procedures
which can be called by other modules to perform specific
interfacing functions. For example, the scheduling module has
interface procedures to activate and de-activate a specified
process. These are called at the appropriate logical points by
other modules. For example, de-activate is called by the
communication commands whenever a process waits for input
which is not available, and activate is called when it becomes
available. The exact implementation of activate and
de-activate is thus hidden within the scheduling module. Since
we are not concerned with protection among modules of the
system kernel, any potentially embarrassing overheads
resulting from using interface procedures are avoided by the
use of macro expansions rather than formal procedure calls
wherever this is appropriate.

211

10 A User's View of MUS

The user sees a computing machine through its software. In the
case of MU5 this is the Manchester ~niversity ~oftware ~stem
(MUSS). This system is machine independent and it runs on
several machines in addition to MU5. In fact, we have already
seen that the MU5 complex contains at ieast one of each of the
following machines

MU5
ICL 1905E
PDP-11
MEMBRAIN 7700

and the MUSS integrates them into a single system as far as
the user is concerned. It can also run as a stand alone system
in each of these machines and some others such as ICL 2900.
The description given here applies to the MUSS in general
rather than just to the particular MU5 version.

10.1 PROCESSES

From the user point of view the software in the machine can be
regarded as consisting of a number of concurrent activities,
or processes, fQr example

control of the lineprinter
management of the system accounts
execution of a user job.

In principl~ each of these processes can be thought of as
executing wi thin its own dedicated computer, but having some
means of communicating wi th the other processes. However, it
is a characteristic of many operating system activities, and
user jobs, that they require the use of a processor for only
relati vely small amounts of time. The rest of the time is
spent waiting for something to happen. For example, waiting
far the lineprinter to finish printing the current line, for a
user process to supply more output for printing, or for an
on-line user to type his next line of input. Consequently, it
is possible for all of the processes to share the use of a
single processor, and the kernel of the operating system

212

allocates the processor to processes as required in order to
provide a 'virtual machine' for each. process. This structure
was described in chapter 9.

An important feature of a virtual machine is that the
process it contains appears to have an entire machine to
itself, with complete freedom to organise itself within this
machine. Thus processes need not be wri t ten in the knowledge
that they will be sharing the computer with other processes.
However, each process has a unique name, by means of which
other processes may communicate with it, if the need arises.
This is most likely in the case of system processes, and their
names are chosen to relate to their function. For example the
process controlling the lineprinter is called LPT and the
process for starting new jobs is called JOB. For a user
process, the name is assigned by the user. In addition to its
name, a process also has an 'internal address' which enables
the system to locate its virtual machine in order, for
example, 'to deliver messages. The internal address consists of
two integers, the System Process Number (SPN) and the Process
Identifier (PID). The PID is a unique identifier for the
process, whereas the SPN is the number of the virtual machine
it uses, which may be reallocated when the process terminates.
A system command is provided to convert between names and
internal addresses, and the user interface procedures normally
accept names and obtain the internal address for themselves.
In the MUSS, communication between processes is achieved using
the message system (section 9.6) which allows any process to
send a message to any other process by specifying its internal
address. A single message may conve¥ any amount of
information, up to 256 Kbytes, although in many instances it
would be only one line of text. This message system also forms
the only means of communication between a virtual machine and
the outside world. Peripheral devices are controlled by system
processes called device controllers, which communicate with
other processes via the message system. Thus, information to
be printed on a lineprinter must be sent as a message to LPT,
the device controller in charge of the lineprinters.

10.2 SUPERVISORS

User jobs are introduced into the system by processes called
supervisors. A supervisor is a process which services requests
(in the form of messages) from users to start jobs. Its main
function is to create and start new processes to execute these
user jobs, but it can also exert some control over the
execution of any process which it has created by use of the
appropriate operating system procedures. There is a basic
supervisor permanently resident in the system called JOB. In
fact, in the MU5 complex there is a version of this supervisor

213

in each machine, each with its own unique name (JOB5E, for
example is its name in the ICL 1905E). Thus a user can start a
job in any machine in the complex from any terminal by
addressing his input to the appropriate supervisor. In
addition, any other process may act as a supervisor to provide
alternatives to the basic system facilities. It was
anticipated originally that this facility would be used to
provide several alternative supervisors, each with its own job
control language, specialised towards the needs of different
user groups. In practice this has not been necessary because
the basic system has proved to have sufficient flexibility for
all users. The role of the basic supervisor is simply to
create a virtual machine to run a process. This process then
interprets its own job control commands. In fact, the job
control commands take the form of calls on library procedures
which are to be made wi thin the virtual machine running the
process. Differing user needs are met by the variety of
procedures available. Some procedures might in practice be
interpreters of other job control languages. However, even
thi~ facility has not been exploited because job control
procedures, like other library procedures, can be called from
programs written in the high-level languages and complicated
job control sequences involving conditional and repeated
actions can be written in the standard high-level languages
[39].

10.3 THE LIBRARY

Pre-loaded into every virtual machine created by the MUSS is a
set of fully compiled library procedures. These provide the
process with access to all of the facilities of the system,
and include

mathematical functions
basic input/output procedures
compilers
editors
job control procedures
JCL interpreters
operating system interface procedures

('SEND.MESSAGE', for example).

The average user would not normally have contact with the
operating system interface procedures. They are used by the
supervisors, the basic input/output procedures which interface
the users read and print commands into the message system, and
the job control procedures. The job control procedures are
mainly concerned with defining the environment in which
programs are to run. This usually means defining the
'documents' which form the inputs and outputs of a program.

214

10.4 INPUT/OUTPUT DOCUMENTS

Most user jobs begin as a 'document' submitted to one of the
input devices attached to the system. A document, for example,
may be a deck of cards, a reel of paper tape, or on-line input
at a terminal. The document is read by the device controller,
responsible for the input device to which it is presented, and
converted to a message in a standard internal format. It may
be routed by the user to any process in the system.

To facilitate the entry and routeing of documents, the
input device controllers recognise a rudimentary control
language. Any line of input beginning with the sequence '*1*'
is interpreted as a command to the device controller. The
commands are distinguished by the following character which
should be a letter (usually an 'A', 'M' or 'Z'). The commands
***A and ***M mark the start of a new document. In the first
case, the entire document up to the terminator ***Z is
buffered and then sent to the receiving process as a single
(long) message. This form of input is appropriate for use with
bulk input devices such as card readers. The command *I*M
causes the subsequen~ input to be sent, one line at a time (as
a short message), to the destination process, and is thus more
suitable for use with interactive terminals. The input/output
library facilities used by most programs mask the difference
between these two forms of input and a program ca~usually be
run with either buffered or on-line input/output without it
knowing the difference.

The detail format of device controller commands is

***<LETTER) PROCESS. NAME USER.NAME PASSWORD

where PROCESS. NAME, USER. NAME and PASSWORD follow standard
system conventions for names and specify the name of the
destination process, and the name and password of the user,
respectively. Further information may be placed on the same
line, but it is not interpreted by the device controller. This
command line is sent to the destination process either as part
of the long message, or as the first of a sequence of short
messages. Thus the destination process may make use of any
further information it contains.

The most common destination for an input document is a
supervisor such as the JOB supervisor which is described in
the following section. However, a number of other possible
destinations are useful, in particular

(1) An output device controller, in order to obtain a copy
of the input document.

215

(2) Any user process, in order to 'connect' a terminal
into an already running user process. As a consequence
of this user processes may act as supervisors.

Inside a virtu'al machine its input/output documents are
organised into streams. A process may have up to 8 input
streams and 8 output streams which it can switch between at
will. The basic input/output commands operate on the currently
selected stream, and the 'SELECT. INPUT' 'SELECT. OUTPUT'
commands allow a new current stream to be selected. When a
stream ceases to be the current stream, the position of the
last character processed is noted. If it is later re-selected
as the current stream the input/output processing will be
resumed from the point where it was left. The job control
commands allow the user to associate input streams with files
or (incoming) message channels, and output streams with files
or outgoing messages. Depending on the 'mode' that the user
assigns to an input stream, reading past the last character of
the last message will either put the process into a waiting
state or cause a fault interrupt. The 'mode' assigned to an
output stream determines whether it is to be sent a line at a
time or buffered. It also indicates whether the output is to
be sent to, a file, a named process, or as a reply to an input
stream. In this latter case the destination will be variable.

-·It. will be to the process which sent the current message on
the' assoe-i·ate!L.i.nput stream. Further to this general policy of
simplifying the input/output for the program in a virtual
machine, a single internal code (ISO) and text format is used
for all documents, regardless of source. User programs are
normally designed to operate on streams, to which any type of
document is assigned, at command level, before the program is
entered. The main text processing procedures of the library
such as editors, compilers, etc., do not require streams to be
pre-defined. They have 'name' type parameters which specify
ei ther the names of files or device controllers or streams
which are to be used as the input/output. Within these
procedures new streams will be assigned as appropriat~.

10.5 THE JOB SUPERVISOR

This is the only supervisor built into the basic system, and
it provides simple facilities for the initiation of user jobs
in both background and interactive mode .. It interprets each
message that it receives as a request to start a new user job.
Messages are normally documents entered via the device
controllers, but they may also be generated internally. In
particular, there is a RUN. JOB command by means of which
existing jobs may generate new job requests.

The form of job request allowed by the JOB supervisor is

216

***<A or M> JOB USER. NAME PASSWORD JOB. TITLE <options>

where USER. NAME and PASSWORD are names, checked by the device
controller, and JOB. TITLE is the name to be assigned to the
process that will be created to run the job. The <options> are
optional parameters specifying, for example, the amount of CPU
time required for the job (T<integer» and the priority level
at which it is to run (P<integer». In general low numbers
mean high priority, but priorities 12-15 are scheduled as
background jobs and priorities 8-11 as interactive jobs
subject to timeslicing (section 9.4). Priorities 0-7 are
reserved for the system processes. If any of the optional
parameters are omitted, defaults are assumed which suit the
needs of typical users.

A '***A' job heading is normally used to initiate a
background job, so if the priority is not stated, P14 is
assumed. Priority 15 is 'cheaper' (section 9.4) but the
turnaround time would be longer. All the input following the
initial line up to '***Z' is passed to the created job as its
input stream zero. It should contain further job control
commands and possibly input data for the job. The alternative,
'* •• M', is used to initiate an interactive job, and is the
'LOG-IN' command for the system. Here the default .priority is
11. After JOB has processed the ***M line and created a
process to run the user job, control of the interactive
terminal is handed to the created process, and subsequent
input is directed straight to this process, again as its input
stream zero. Output stream zero of the process is defined to
be a reply stream, hence it is automatically routed back to
the terminal.

The basic JOB supervisor exists in two variants. The
simplest one performs no 'high-level' scheduling at all. It is
intended for the smaller machines running MUSS. All jobs
submitted to it ·are made available for running immediately. If
at any time the system resources are insufficient to satisfy a
request to start a new job, then it is abandoned with a
message to the user or operator. The more sophisticated
version of the supervisor, capable of queueing jobs which
cannot be run immediately, schedules according to information
given by additional <options>. In either case, jobs made
available for running by a supervisor are subject to the
'medium level' and 'low level' scheduling builtin to the
basic system. As described in chapter 9 the medium level
scheduler 'timeslices' the interactive jobs and allocates a
proportion of the CPU specified by the operator to the highest
priority background job free to run. If interactive jobs with
different priority numbers are competing for the CPU, ones
with lower priority numbers will receive more timeslices.

217

10.6 JOB CONTROL COMMANDS

After the initial ***A or M line, which causes a process to be
created to run a job, commands should follow which direct the
execution of the job. It was mentioned above that the system
allows for the co-existence of many different job control
languages, but here only th.e facilities available under the
basic system are described. They are available without
distinction to both background and interactive jobs.

Every user process begins execution in the same 'START'
procedure, which first creates an output stream zero, directed
at the default output device associated with the input device
from which the job was submitted. For background jobs this
would normally be a lineprinter (and the mode would be
buffered), and for on-line jobs the user's terminal (and line
by line mode). Next it reads and processes the commands on
input stream zero. Each command is interpreted as a call to a
library procedure, and successive commands are executed in
sequence, unless one of the commands signals an error, in
which case special action is taken. For background jobs, this
usually involves monitoring the error and terminating the job.
For an interactive job, after the error has been monitored,
the faulty command is abandoned and a further command from the
user is awaited.

A user at an interactive console may interrupt his· job by
pressing the 'BREAK' key on the console and the effect is to
abandon the current command, and await a further command from
the user.

Whenever the system is waiting for input from an on-line
terminal, an invitation to type is printed. If a job control
command is required, this prompt will be '**'. At other times
the usual prompt is '->', but the procedure processing the
input has the option of pre-setting its own prompt message.
For example, when input text for insertion into a file is
expected in the NEW command, and in certain editing commands,
the character that will terminate the input text is used as a
prompt symbol.

10.6.1 Command Format

A command consists of the name of a procedure to be called,
followed by its parameters, if any. Parameters are normally
enclosed in brackets and separated by commas, but spaces are
also acceptable as separators, and newline as the command
terminator. Parameters may be omitted by typing consecutive
commas, and trailing parameters may be omitted completely. In
both cases, the omitted parameters are filled out as zero,

218

which is treated a sensible default by most procedures.
Examples of commands are

**EDIT(FILEA,FILEB)
**ALGOL(FILEC)
LIST.FILE FILED LPT*

Throughout command interpretation, non-significant spaces
and blank lines are ignored. Commands may also, optionally, be
preceded by '**'. This is mainly used in order to embed job
control commands in program text for execution at compile
time. The '**, serves as a warning to the compiler that it is
a job control command, rather than further text for
compilation that follows.

For the convenience of on-line users, most of the
procedures in the Basic System Library have unique
abbreviations of two or three letters, which may be used in
place of the full procedure name. These abbreviations are
listed with the summary of commands in Appendix 2.

10.6.2 Parameters

Procedures in the basic library are restricted to having only
a few different parameter and result types. The main ones from
the pOint of view of job control are

I a single length integer

II a 64-bit unsigned integer, which in job control
contexts represents short packed character strings,
such as file names, user names, etc.

S a descriptor addressing a vector or a character
string.

Private Library procedures may also be used in job control
contexts provided they restrict themselves to the above
parameter types.

The basic command interpreter accepts three textual forms
of parameter, namely

H

A decimal integer (10, for example)

A hexadecimal constant, preceded by '%' (such as %10F)

A character string, which must not contain the separator
symbols ',' 'I' ')', space or newline or begin with

219

the symbol %. Non-representable characters may be inserted
by writing their hexadecimal equivalent enclosed by
exclamation marks.

The decimal integer form is the normal representation for
parameters of type I. If it is placed in one of the other two
contexts, it is interpreted as a character string of decimal
digi ts , except for the decimal integer 0, which is always
treated as the zero default. The hexadecimal form is intended
as an escape mechanism and as such is a valid substitution for
any parameter type. It is for this reason that strings
beginning with % may not, be represented. Character strings are
permitted in both II and S parameter contexts. For parameters
of type II, the characters are packed right-justified into a
word of appropriate size; if too many characters are supplied,
the required number are taken from the right hand end. The
string 0 is treated specially, and is replaced by the value
zero. For an S-type parameter the string is stored, and a
descriptor to the string is created as the parameter.

10.6.3 Files

Many of the commonly used system commands (such as those for
compilation and editing) operate upon files. A file is a
segment of information, stored within the computer system, and
identified by a filename. It may be text, compiled code or
other binary information. Obviously, the commands which
operate on files have filenames as parameters.

Mainly as a convenience to the on-line user, the sy'stem
allows the filename parameter to be omitted in some
circumstances. When this is done, a file known as the 'current
file' is used automatically. The current file is a temporary
file, which exists only for the lifetime of the process, and
wi th a unique filename which cannot be confused with any of
the user's filenames (in fact it is '0'). The ability to omit
filename parameters and have the current file automatically
assumed is useful in the common case where several successive
commands operate on the same file.

At the start of a job, the current file does not exist.
Certain commands allow the user to create and alter the
contents of the current file. Some of these are defined in
Section 10.6.4 below. Once a current file has been defined,
omission of an input filename parameter automatically results
in the current file being used instead.

10.6.4 Commands

Since job control commands are in fact simply library

220

procedures, it would be inappropriate to deal with them all in
detail in this book. To convey the flavour of the system the
commands most commonly used for manipulating files are
described, and then some typical job control sequences are
given in the next section. A complete list of library commands
is given in Appendix 1. They should, in the main, be
intelligible to readers familiar with interactive
systems.

The following commands allow the user to manipulate files
and set up the current file. In the headings the parameter
types are shown as I, II, S. If the description needs to refer
to particular parameters, P1 will denote the first P2 the
second and so on.

(1) NEW(II,II)

This oommand is used to create a new file from the input
immediately following it. Its paramete~s are

Pl - The Name of the permanent file to be created. If
P1 is left unspecified (=0), the data input will
become the current file.

P2 - A single character terminator. The input
following is terminated by this character
appearing at the start of a line. If the
terminator is unspecified, 'I' is used.

(2) OLD (II)

This command designates a copy of an existing file (name
P1) to be the current file.

(3) SAVE(II)

This command preserves the current file as a permanent
file (with name P1). The file also continues to be the
current file.

(4) DELETE (II)

This command is used to erase a permanent file (with
name P1) from the filestore.

(5) LIST.FILE(II,II,I,I)

This command lists the file specified by P1 on the
device specified by P2. If the last two parameters are
zero the whole file is listed, but they can be used to

221

specify a first and last line.

(6) EDIT(II,II)

This command invokes the editor to modify a text file.
This editor has the usual insertion and deletion
facili ties, and positions may be specified by page and
line number or by context. A more detailed specification
of the editing facilities would not be appropriate here,
but some examples appear later.

P1 - The name of the input file to be edited. If this
is left unspecified (=0) the current file is
used.

P2 - The name of the permanent file on which the
output file is to be saved. If this is left
unspecified, the output becomes the new current
file.

10.7 EXAMPLES OF JOB CONTROL SEQUENCES

(1) A 'Null' Job

This is an example of a background job which does nothing
useful, but it illustrates the small amount of red tape
required by all jobs. The meaningful commands would be placed
before the STOP command.

***A JOB USER PASS NULLJOB
STOP
***Z

(2) A 'Null' Algol Job

This job illustrates the structure required to compile and run
an Algol program. The actual program would be placed between
the 'BEGIN' and 'END' statements. The *END statement is needed
at the end of all programs submitted to the MUSS compilers in
order to end the compilation and switch back to command mode.
A temporary return to command mode, for example to select a
new input stream, can be made by embedding commands preceded
by ,**' in the program text. If a program requires input data
it should be placed between the RUN and STOP commands. A user
program may return to command level by executing the final
end.

/

222

***A JOB USER PASS NALG
ALGOL
'BEGIN'

'END' ;
*END;
RUN
STOP
***z

(3) An Algol Job Using a File

This job illustrates two actions which would normally be used
only by on-line users. The first is the creation of a file
(FILEX) which is followed by a calIon the Algol compiler to
compile the file, after which is a RUN command to run the
program.

***A JOB USER PASS FJOB
NEW(FILEX)
'BEGIN'

'END' ;
*END;
/
ALGOL (FILEX)
RUN
STOP
***z

(4) An Algol Job Using the Current File

The facility illustrated here would again be used by on-line
rather than background jobs, but it suffices to illustrate the
mechanism. It is similar to the previous example, except that
the file name has been omitted in the case of both the NEW and
ALGOL commands, hence the current file is used. This ceases to
exist when a job ends, unless it is saved as a permanent file
by the SAVE command also illustrated here. It should be noted
that if any command fails, those following will not be
executed. Thus if the program is faulty the file will not be
saved.

223

***A JOB USER PASS CFJOB
NEW
'BEGIN'

'END' ;
*END;
/
ALGOL
RUN
SAVE (FILEX)
STOP
***Z

(5) Saving a Compiled Algol Program as a File

A eomp11ed program can be eave(!. tor ~ubsequent running, by
use of the DiPINE command thus

***A JOB USER PASS COMP
ALGOL FILEX
DEFINE FILEY
STOP
***Z

In this example a program in a file FILEX is compiled and the
binary code is saved in a file FILEY. The program can
subsequently be run by giving FILEY as the parameter of the
RUN command. For example

***A JOB USER PASS RUN1
RUN FILEY
STOP

If the progr~m needs data it could appear after the RUN
command. If it needs input/output streams other than zero they
would be defined before the RUN command. A similar mechanism
allows a private library of procedures to be compiled and
filed. They can subsequently be used as commands or by
programs and in effect are Gn extension of the system library.

(6) An Example Interactive Session

In the example given below the computer output is underlined
to distinguish it from the user's input. On the actual system
the distinction would be made by colour on devices which
provide that facility.

224

The first command used after the log-in line is NEW, which is
used to input to the current file an Algol program, for
computing prime numbers. This is followed by the ALGOL command
which compiles the program but finds two errors. These are
corrected by editing the current file. The first edit
statement copies to line 8 and 'windows' the line. The second
means

after 'T'
insert 'E'
and window

Positions may also be selected by context but it is more
convenient to use line numbers when a compiler gives them with
the error reports. At the second attempt the program compiles
correctly and it is entered by the RUN command. Since the
program contains a call for the INI procedure which reads an·
integer, it prompts for data. When it is given the integer 10
it computes all prime numbers less than 10, and returns to
command mode as a result of executing the final END. Th6
program is entered again and given 100 as its data. This
produces a run time error after the 22nd prime because they
are stored in an array declared 0:20. At this point the
current file is saved and listed, and the user logs out .

••• M JOB MUSS SSUM DMDEMO
DMPEMQ 12.41.S9. 04.11.77.

··NEW
L'BEGIN"INTEGER'A,B,C,D,N;
L'INTEGERARRAY' PRIMES[O:20];
L C:=O;
L N: = INI;
L 'FOR' A := 3'STEP' 1 'UNTIL' N'DO'
L 'BEGIN'
L D:=SQRT(A+1);
L 'FOR'B:=2 'STP' l'UNTIL'D 'DO'
L 'IF' A 'I' B * B = A 'THEN' 'GOTO' L1
L OUTI(A,3);
L PRIMES[C] := A;
L NEWLINES(l);
L C: =Q+l;
LLl : 'END';
L CAPTION ('('NO%OF%PRIMES%=%')');
L OUTI(C,5)
L'END';
L*END;
LI
·*ALGOL
MUS ALGOL 21/10/77

225

????1. 8 8 DELIMITER UNRECOGNISED
****1. 8 2 UNRECOGNISED

407 BYTES INPUT
2ND PASS
****1. 13 19 0 UNDECLARED
COMPILED SIZE IN BYTES 288
**ED
->c8w
1. 8)-1- 'FOR'B:=2 'STP' J'UNTIL'D 'DO'
->A'T'I'E'w
1. 8) 'FOR'B:=2 'STE-I-p' 1'UNTIL'D 'DO'
->C13W
1. 13)-1- C:=Q+li
->D'Q'I'C'
->E

<CFILE> 12.51.49. 04.11.77. OK
**ALGOL
MU5 ALGOL 21/10/77

408 BYTES INPUT
2ND PASS :COMPILED SIZE IN BYTES 326

**RUN
.=L10

.3.
5.
~

NO OF PRIMES = 3
**RUN
.=L100

.3.
5.
~

11.
.13.
11.
li
II
.23.
.3l.
.3.1
II
II
II
53.
.5.9.
.2.1
ll.
1.1
13.
Tl.
.8.3..

226

DESCRIPTOR FAULT
IN PROC/BLOCK OUTER BLOCK AT 1. 11
VARIABLES? ••
•• SAV DMPRIMES
•• LF DMPRIMES &
DMPRlMES 12.53.13. 04.11.77.
1. 1 'BEGIN"INTEGER'A.B.C.D.N:
1. 2 'INTEGERARRAY' PRlMESrO:20]:
1. 3 C:=O:
1. 4 N := INI;
1. 5 'FOR' A := 3'STEP' 1'UNTIL' N'DO'
1. 6 'BEGIN'
1. 7 D:=SQRT(A+1);
1. 8 'FOR'B:=2 'STEP' 1'UNTIL'D 'DO'
1. 9 'IF' A 'I' B • B = A 'THEN' 'GOTO' L1
1. 10 OUTI(A.3):
1. 11 PRlMESrCl := A;
1. 12 NEWLINES(1):
1. 13 C:=C+l;
1. 1 4 L 1 : ' END' :
1. 15 CAPTION ('('NO%OF%PRlMES%=%')');
1. 16 OUTI(C.5)
1. 17 'END';
1. 18 .END;
..L..ll ··STOP
STOP REASON 0 COST 12 TIME 12.54.38. 04.11.77.

227

1 1 Performance

The MU5 project was concerned with the design of a total
system (hardware and software) for a range of machines. Only
two members of this range have been built, the MU5 processor
described in this book, which is a prototype of the main
computing element in a 'top of the range' multicomputer
system, and a 'bottom of the range' mu5. This evaluation is
concerned with the larger system, although the full potential
of the total system is not demonstrable because of the
relatively small stores on MU5, and some discussion is
included of the performance of the MU5 software on the ICL
2900. This is relevant because of the close similarity of the
two systems. It is evident from the figures below that the MU5
evaluated here has not achieved its target speeds. Without
wishing this to sound like an apology, because as a research
project the outcome is very satisfactory, it should be
remembered that the figures presented are for a first
prototype. The performance of a second implementation could be
much nearer the target.

11.1 BASIC HARDWARE SPEEDS

These have been introduced throughout this book but the
summary below will set the context for what follows.
Comparative figures are included for Atlas and the CDC 7600
because it is against these machines that we have chosen to
evaluate the MU5 design. A throughput of 20 times Atlas was
the stated target, but it was also hoped to match or better
the performance of the CDC 7600 on everything except Fortran
batch.

Atlas
MU5
CDC 7600

Time Between Successive
Main Stor~ Fixed-pt Floating-pt
Access Time Adds Adds

1750 ns 1520 ns 2610 ns
600 ns 50 ns 250 ns
220 ns 27.5 ns 27.5 ns

Table 11.1 Basic Performance Figures

228

Peak Inst
Rate

.7 MIP
20 MIP
40 MIP

Table 11.1 gives some comparative raw speeds and simple
arithmetic indicates that MU5 is 3 to 30 times faster than
Atlas and 2 to 9 times slower than the CDC 7600. Although
access to the MU5 main store is relatively slow, its cycle
time and data rate are more comparable with the CDC 7600
store, which is why parity of performance might be expected
except where floating-point arithmetic dominates. The overall
logical design aim has been to devise and engineer a powerful
order code which exploits the technology efficiently.

11.2 THE POWER OF THE MU5 ORDER CODE

The results presented here are taken largely from reference
[40] where the difficulties and hazards in producing such
figures are more fully discussed. Intuitively it might be felt
that power could be accessed by measuring, for typical tasks

(1) the size of the object code
(2) the number of instruction fetches from main store
(3) the number of operand fetches from main store

However, (2) and (3) are very dependent upon the buffering
strategies involved, so a simple count of instructions obeyed
is used instead. The difficulty with this is that the
instructions might be very complicated, hence apparently
powerful, but slow. Since none of the machines considered are
microprogrammed, this effect is not pronounced, but actual
elapsed times are also given as a safeguard.

Table 11.2 compares MU5 against Atlas using the results
from two Algol programs, the first representing the GAMM m'ix
[41] and the second a Quicker sort algorithm [42].

Static Code Number of Elapsed Average
Size (bits) Instructions Run Time Instruction

Executed (s) Time (ns)
GAMM:

Atlas 8 784 302 080 000 027.44 3 400
MU5 1 344 114 645 000 30.35 265

Atlas:MU5 6.5: 1 2.6: 1 33.9:1 12.8:1

QSORT:
Atlas 26 880 163 400 000 504.40 3 090

MU5 6 272 67 769 000 24.35 359

Atlas:MU5 4.3: 1 2.4: 1 20.7:1 8.6: 1

Table 11.2 Comparative Performance Figures for MU5 and Atlas

229 .

In these two cases it can be seen that the MU5 performance
relative to Atlas is towards the extreme of the raw machine
speeds. In addition it should be noted that the MU5
implementation is carrying out full array bound checking
whereas the Atlas one is not. The first two columns, which
approximate to the power difference of the two order codes,
show the MU5 order code to be significantly better than that
of Atlas.

Tables 11.3 and 11.4 compare MU5 against the CDC 7600, this
time using the Curnow/Wichmann benchmark [43]. The compilers
used were the May 1976 versions for MU5 (no optimisation and
full array bound checking), and Algol 4.1 (level 5F compiler,
5D run time system) and FTN4.5 (level 420 compiler, 406A run
time system) with full optimisation (level 5 and level 2
respectively) and no array bound checking, for the CDC 7600.
It may be seen from the tables that the MU5 order code appears
to be over four times as powerful for Algol, while being
slightly less powerful for Fortran. The ratios of elapsed
runtime when compared with the ratio of raw machine speed are
in line with these figures. It is not surprising that the main
, features' of the MU5 instruction set, namely, dynamically
assigned 'locals', bound checking on arrays and a recursive
procedure structure, are of little advantage to Fortran
programs. These figures have been confirmed for several other
benchmark programs.

The figures above indicate that the aim of designing a
powerful order coqe has to some extent been met. However, as
discussed below, performance is also dependent upon the
effectiveness of factors in the hardware, particularly

the pipeline design
the operand buffers
the instruction buffers.

11.3 PIPELINE PERFORMANCE

The computer engineer's dream program is one in which the
programmer refrains from using orders which write to store
values which are about to be read, or which transfer control
to some unexpected sequence of instructions, especially when
this transfer is dependent on the state of some recently
computed variable. Much of the effort in the design of the MU5
hardware went into overcoming the effects of orders such as
these, and certain assumptions about their frequency of
occurrence were made during the early design stages of the
project. Accurate information about these frequencies was
difficult to obtain since no existing computer had a similar
order code. The estimated figures led to the expected overall

230

Module Module Module Module Module Module Module Module Whole
2 3 4 6 7 8 9 11 Program

CDC 7600:
Millions of Instr. Obeyed 1. 61 23.0 16 0 17.9 21.0 249.0 182.0 19. 1 529.0
Elapsed Run Time (s) 0.25 2.32 1.85 1. 93 2.13 22.9 16.3 1.85 50.1

Average Order Time (ns) 155 101 115 108 102 92 89 96 95

MU5:
Millions of Instr. Obeyed 0.68 6.98 7.08 9.25 14.9 35. 1 20.9 15.7 110.0
Elapsed Run Time (s) 0.13 1. 17 1. 91 1.80 6.81 12.9 6.68 7.08 38.5

Average Order Time (ns) 187 167 269 194 458 366 319 450 348

N Table 11.3 Algol Synthetic Modules IN
f-"

Module Module Module Module Module Module Module Module Whole
2 3 4 6 7 8 9 11 Program

CDC 7600:
Millions of Instr. Obeyed 0.46 4.34 6.78 4.62 24.0 29.7 14.2 15.2 99. 1
Elapsed Run Time (s) 0.06 0.40 0.49 0.27 2.18 3.76 1.82 1.45 10.7

Average Order Time (ns) 132 92 73 58 91 127 128 95 108

MU5:
Millions of Instr. Obeyed 0.50 3.81 7.42 8.41 14.9 45.9 16.0 15.8 113.0
Elapsed Run Time (s) 0.09 0.98 1. 86 1. 58 6.86 14. 1 9.60 7.13 42.2

Average Order Time (ns) 185 256 251 188 461 307 599 451 374

performance of table 11.5, which is reproduced from reference
[12]. In this table long orders are those requiring more than
16 bits for their specification (which might be orders
involving long names or literals of more than 6 bits), store
orders are orders of the form 'B => name', and organisational
orders are the base manipulation orders such as 'NB ='. Column
2 gives the time required in excess of the basic 40 ns beat
time for the execution of each type of order. Column 3 shows
the expected percentage occurrences for thes'e orders, and
column 4 their net additional contribution to the execution
time of an average order. It can be seen that an overall
average execution time of about 120 ns was expected.

Type
of

Order

Long

Store

Organisational

Control transfer
(predicted)

Control transfer
(unpredicted)

Name Store NEQ

Total net time added

Average execution time\

Estimated
Excess

Time (ns)

40

80

360

120

940

800

Estimated
Occurrence

(%)

10

15

6

4

2

Net Time
Added

(ns)

4

12

3.6

7.2

37.6

16

Table 11.5 Expected Overall Performance Table

As part of the MU5 evaluation exercise, measurements of the
actual frequencies have been made for a number of programs
(including the Oxford [44], London CDC [45] and
Curnow/Wichmann [43] benchmarks), using a hardware System
Performance Monitor (SPM). Hardware monitoring generally
involves counting the occurrences of a particular type of
event and recording the total obtained each time some other
event, such as a clock pulse, occurs. In practice, however,
many l"esul ts are best recorded in the form of a histogram,
showing for example, the relative number of occasions on which
a given event occurs 'n' times between occurrences of some
other event. Thus, as well as sixteen 32-bit counters, the SPM

232

incorporates a 512-word 16-bit store, and various modes of
operation enable histograms of MU5 internal signals to be
recorded. The SPM also includes a visual display unit, on
which the contents of the store may be displayed [46], and
histograms produced by the SPM may also be recorded in
permanent form· by means of an off-line graph plotter. Figure
11.1 is an example of such a histogram, showing the
distribution of the numbers of instructions obeyed between
successi ve control transfers during the execution of one of
the London CDC benchmark programs.

PROPMTION (l" occtRR£N:ES

2t -e

2t -3

2t -4

2t -S

2t -0

1 • III 1.1.11 I 1 .. 1 ·1. .1..1. 1 .. 1 1 1

B 10 48
rtJeER (l" lHSTlUTItre BETIIEEN Stm:S8IVE _ coon l1RtIFERS

Figure 11.1 Example of an SPM Histogram

8B

The SPM can be controlled by software in MU5 through its
connection to the Exchange. In addition, sign~ls coming into
the SPM first go through validation logic, and by using a
Machine Status register digit to validate the inputs,
monitoring of a specific process or part of a process can be
carried out. The MU5 Library contains procedures for reserving
and initialising the SPM, starting and stopping monitoring (by
means of the Machine Status digit), dealing with 'store full'
interrupts from the SPM, reading out the store and controlling
the display.

233

Measurements of the frequencies of occurrence of the order
types shown in table 11.5 were made by using the contents of
the appropriate parts of the PROP final function register to
address the SPM store, and using the Control Register strobe
to increment the corresponding SPM store location [47]. In
addition, oscilloscope measurements of the execution times of
various instructions have allowed both hardware and software
corrections to be made to the projected performance figures.
These are shown in table 11.6. Thus, whereas a 40 ns PROP beat
time had been predicted, the achieved figure is 50 ns. The
smaller figure was arrived at largely on the basis of results
obtained from the simulator, which assumed a delay of 5 ns for
each logic gate, but which could not take into account cable
and connector delays. As a result, the additional time
requir"ed for long orders also becomes 50 ns, and the time
required for organisational orders becomes 450 ns.

The time required to supply PROP with a new sequence of
instructions after an unpredicted control transfer has also
increased, not only as a result of the longer PROP beat time,
but also because the amount of time required for instructions
to pass through the IBU Data Flow section had not originally
been appreciated. Furthermore, if a jump occurs to one of the
last 16-bit words within the 128-bit word fetched from store,
a further gap will subsequently occur in the instructions
supplied to PROP before the next 128-bit word arrives in the
IBU. As a result of these factors, the average excess delay
incurred in executing an unpredicted control transfer is 1350
ns rather than the 940 ns anticipated. However, the time
required to execute a predicted control transfer is
independent of these effects, and in practice the time of 150
ns (100 + 50) is .slightly better than the anticipated figure
of 160 ns (120 + 40).

A significant increase has also occurred in the time
required to process a Name Store non-equivalence, largely
because the original figures were based on the assumption of a
single Name Store in PROP. The splitting of the Name Store
into two parts requires that a search be made in the OBS Name
Store whenever a PROP Name Store non-equivalence occurs, and
the time required for this check is dependent on the number of
instructions in the SEOP pipeline. The measured time of 1180
ns is therefore an average measured over a large number of
executed instructions. The overall effectiveness of the Name
Store is considered in more detail in section 11.4.

Software corrections to the original performance table have
been made for both execution and compilation. The original
estimates referred only to execution, and in reality there are
distinct performance differences between compilation and

234

Execution Compilation

Type Estimated Actual Estimated
of Excess Excess Occurrence Actual Net Time (ns) Actual Net Time (ns)
Order Time (ns) Time (ns) (%) Occurrence Added After Occurrence Added After

(%) Correction (%) Correction

Long 40 50 10 56 27.9 45.7 22.8

Store 80 100 15 6.2 6.2 9.1 9.1

Organisational 360 450 5.1 23.0 8.4 37.8

N
8.7 8.7 8.0 8.0 VI Control transfer 120 100 6

V1
(predicted)

Control transfer 940 1350 4 4.5 60.7 10.5 141.8
(unpredicted)

Name Store NEQ 800 1180 2 3.5 41.3 11.9 140.4

Total net time added .1.61.....a .3.5.9.....9.

Average instruction time .lli..Ji ~

Table 11.6 Hardware and Software Corrected Performance Table

execution. In both phases the most noticeable differences
between actual and predicted results are the increased numbers
of long orders and organisational orders. Some of the increase
in the number of long orders arises be"cause the corrected
figure is the number of extra beats required for the execution
of orders with 16, 32 and 64-bit operands, and not just the
frequency of occurrence of such orders. The frequency of
occurrence of 32-bit and 64-bit literals was underestimated ~
however, as indeed was the frequency of control transfers
using 16-bit literal operands. Although a 6-bit literal could
in principle be used in many of these control transfers, the
detection of these requires considerable compiler
optimisation. The effects of control transfers themselves are
considered in section 11.5.

Organisational orders have increased mainly as a result of
changes in programming style, and in the style of compiled
code, involving greater use of procedures. Entry to and exit
from each procedure involves not only a control transfer but
also some manipulation of the base registers. With the
advantage of hindsight it would seem that the communication
between the 'programmers' and 'engineers' went somewhat astray
on this issue. Had the deleterious effects of these orders
been properly appreciated earlier, the lock-out techniques
used for other purposes in the PROP pipeline could have been
extended to allow only selective inhibiting of the overlap for
this type of order. Thus while a Name Base manipulation order
was outstanding, for example, orders which did not require the
use of the Name Base could have been allowed to proceed. For
this system to have worked properly, however, extra hardware
in the form of an additional adder, separate from the adder
used to add name and base, would have been required to carry
out the base manipulation. Alternatively, more complex
procedure entry orders could have been incorporated into the
instruction set, so that while the pipeline was stopped for
one order, it could have executed the actions of two or more
of the existing orders.

Table 11.6 by no means tells the complete story, since it
does not, for example, include any reference to the effects of
Compare orders or the performance of the Secondary Operand
Unit. It does, however, serve to illustrate some of the
problems involved, not only in designing for high performance
in the first place, but also in accounting, afterwards, for
all the extra nanoseconds.

The scalar product loop provides a good example of how the
pipeline functions in practice. It can be coded in several
ways but the best hand coded sequence is the following

236

B = 0
ACC = 0

L1: ACC *= VEC1[B]
ACC * VEC2[B]
B CINC LIMIT
ACC + STACK
IF 1=, -> L1

Figure 11.2 shows a schematic timing diagram for two
typical cycles of the loop. It is assumed that at least one
cycle has already been obeyed, so that the operand LIMIT and
the two descriptors VEC1 and VEC2 are all in the Name Store,
and the IBU Jump Trace correctly predicts the control
transfer. All instructions pass through the five stages of
PROP: decode (D), addition of name and base (+), Name Store
association (A), Name Store read (R) and operand alignment
(S). The B orders, including Modifier Requests, use the
Central Highway (H), while the ACC orders pass through Dr, the
OBS Input stages (OA), the OBS Queue (Q), the OBS Output stage
(00) and Dop before reaching the ACC Input Buffer (AB). The
'ACC *=' order is shown passing through in its two phases, the
first a store order writing the ACC Register content to the
top-of-stack location held in the OBS Name Store, and the
second loading the ACC Register with an element of VEC1. When
the 'ACC +' order reaches the OBS Output stage, it is held up
waiting for the updating action for the store order to be
completed in OBS (0=», since it requires the new value. This
waiting time is largely overlapped with the execution of the
'ACC *, order, however. Thus the most important feature of
this diagram is that the A-unit is busy for most of the time,
and is not held up significantly either by the store order or
by the execution in the Primary Instruction Pipeline of the
statements controlling the loop. In practice a single cycle of
the loop executes in slightly less than 1 1..1s, with the ACC
Multiply occupying approximately half of this time.

11.4 NAME AND VECTOR STORE PERFORMANCE

Measurements of the efficiency of the Name Store have been
carried out, using the SPM, for a set of 95 programs
containing both Fortran and Algol jobs ranging in complexity
from simple student jobs to large scientific programs. For
most programs it was found that 80% (± 5%) of operand accesses
were for named variables, that no more than 120 names were
used in anyone program, and that in all programs 95% of name
accesses were to fewer than 35% of the names used. These
figures confirm the earlier Atlas results and suggest that
high Name Store hit-rates should be obtained. In fact, it was
found that over 96% of name accesses found their operand in
one or other Name Store. Table 11.7 shows the average

237

ACC *= IDI+IAIRISIDr lOA I Q 100 IDopIABI=> 100 IDopIO=>1

I+IAIRIS IHIBI
IDr lOA Q 100 IDopIABI=

ACC * IDI+IAIR Is IHIBI
IDr lOA Q 100 IDoplABI *

B CINC IDI+IA IR ISIHIB I

ACC + IDI+ IA IRIS IDr lOA I Q 100 IDoplAB I + I

-> ID 1+ lAIR ISIHICOI

ACC *= ID I+IA IRIS IDr lOA I Q 100 IDoplAB 1=> 100 IDopIO=>1

1+ lAIR IS IHIBI
IDr lOA I Q 100 IDop lAB 1= I

ACC * ID I+IA IR IS IHIBI
IDr lOA I Q 100 IDoplAB I *

B CINC IDI+ IA IR IS IHIB I

ACC + ID 1+ IA IR ISIDr lOA Q 100 IDoplABI + I

-> ID 1+ IA IRISIHICOI

Figure 11.2 Schematic Timing Diagram of the Scalar Product Loop

hit-rates obtained, together with results t:or the degree of
interaction between the two Name Stores. The latter presents
something of a problem, since it can be seen from this table
that despite the fact that 96.1% of name accesses found their
operands in one or other Name Store, only 86% of" these
accesses found their operand in the correct Name Store. Of the
remainder, 3.9% required an access via SAC to the Local Store
(2.9% of PROP accesses + 1.0% of OBS accesses), while 6.1% of
accesses (3.3% of PROP accesses + 2.8% of OBS accesses)
required the operand to be read from the wrong Name Store, and
3.6% of accesses (1.8% + 1.8%) required their operands to be
deleted from one Name Store and transferred to the other.

kll Name Accesses

In either Name Store
In correct Name Store

PROP Name accesses

NEQs
SAC. access
OBS.read
OBS.delete

OBS Name accesses

NEQs
SAC. access
PROF. read
PROP.delete

96.1%
86.0%

8.0%
2.9%
3.3%
1.8%

5.6%
1.0%
2.8%
1. 8%

Table 11.7 Name Store Hit-rates and Interactions

The performance of the Processor as a whole is affected by
this comparatively high and largely unforeseen amount of
interaction between the two Name Stores. The main reason for
its occurrence is the way in which procedure calls are
implemented. Parameters for procedures are normally passed on
by stacking into the PROP Name Store, but in many cases may
subsequently be used as OBS names. Conversely, it is possible
for a particular word used as an OBS name in one procedure to
be used in a subsequent procedure as a PROP name.

Some changes to the hardware have been made in the light of
these facts. In the original design the advantage to be gained
from avoiding the copying of a 64-bit word back from OBS to
PROP in a case where all 64 bits were about to be overwritten
(by stacking, for example) was not thought to be worth the
extra complexity in the control circuits. This complexity has

239

now been introduced, and the time required to service a PROP
Name Store non-equivalence in these cases reduced from over 1
~s to less than 300 ns. In terms of future machine designs it
is clear that some different techniques must be adopted,
either to shorten the pipeline, without loss of potential
performance, or to overcome the 'ACC write back' problem,
which led to the use of a split Name Store in the fil'st place.

Because of the different purpose served by the Vector
Store, its hit-rate was not expected to be as high as that of
the Name Store. As we observed in Chapter 2, small groups of
named variables are generally used repeatedly, while large
groups of data structure elements are generally selected
sequentially. However, because 128-bit words are fetched from
the Main Store at a Vector Store non-equivalence, then
programs using large numbers of sequentially accessed 64-bit
elements could be expected to achieve a 50% hit-rate. Thus
simulation studies carried out for a small number of programs
during the design phase of the project indicated hit-rates in
the range 58%-69%. When integer arrays (using 32-bit elements)
or character strings (8-bit elements) are involved, then
clear ly higher hi t-ra tes would be achieved. In fact,
measurements made with the SPM using the much larger number of
available benchmark programs showed considerably higher
hit-rates, the highest being 97% and 85% being typical.

11.5 EFFECTS OF CONTROL TRANSFERS

The largest single contribution to the overall average
instruction time in table 11.6 for both execution and
compilation is from unpredicted· control transfers (those not
immediately followed down the pipeline by the correct sequence
of instructions). Al though their numbers have not increased
significantly, for program execution, above the estimated
figure, the incr~ased time taken to obey one of these orders
has had a marked effect. By comparison, the increased numbers
of predicted control transfers contribute very little extra to
the overall average instruction time. Furthermore, the fact
that the increase in the total number of control transfers for
program execution is accounted for almost entirely by
predicted control transfers is indicative of a very high
prediction rate in the IBU Jump Trace. This is confirmed by
the figures shown in table 11.8, where the results for Algol
and Fortran execution and compilation are l;i.sted separately.
The first column gives the percentage of control transfers
which use a literal operand and are therefore candidates for
prediction by the Jump Trace. Column 2 shows the percentages
of these predictable transfers which are actually predicted,
and hence in column 3 the percentages of all control transfers
followed by the correct sequence of instructions are shown.

240

For 'comparison, column 4 shows the percentages of control
transfers which would be followed by correct sequences in the
absence of the Jump Trace. The efficacy of the Jump Trace is
shown quite dramatically· by these figures. Furthermore,
wi thout the Jump Trace, the average instruction time would
increase by 90 ns for Algol execution. For compilation the
effects of the Jump Trace are less marked, but this is to be
expected, since compilation is a data-dependent task, with
many alternative processing sequences being possible. This
involves the use of many multi-way jumps rather than simple
loops, thus leading to the observed Jump Trace prediction
rate.

EXECUTION

Algol

Fortran

COMPILATION

Algol

Fortran

% %

% Transfers Followed
By Correct Sequences

Predictable Predictables With Without
Transfers Predicted Jump Trace Jump Trace

87.8

87.1

85.5

89.4

70.3

54.3

19. 1

24.5

66

65

41

46

Table 11.8 Jump Trace Performance

17

22

27

28

Overall performance is also affected by the relative
numbers of conditional and unconditional control tran~fers,

since an unconditional transfer can be executed immediately
its operand reaches the Control Register, whereas a
conditional transfer may have to await the result of a
previous Compare order before execution. The percentages of
successful condi tional , unsuccessful conditional and
unconditional transfers are shown in table 11.9. The extra
delay involved because of a preceding Compare order is very
dependent on program context and difficult to measure
accurately, and is not included in the figures shown in table
11.6. Clearly, however, the delay will be significantly
different according to whether a B Compare or an X or ACC
Compare order is involved. During program execution B Compare
orders account, on average, for 4.55% of all orders, and can
involve ~n extra delay of up to 150 ns. X and ACC Compare
orders account on average for fewer orders (2.66%), but may

241

involve an extra delay of as much as 1 ~s. This situation is
one in which the pipeline approach does not help to increase
instruction throughput, and it indicates a need, in a pipeline
system, for the Control Point to be moved further along the
pipeline towards the A-unit. For this to be successful,
however, it becomes essential to supply the pipeline with the
correct sequence of instructions after control transfers as
frequently as possible. This necessarily involves the
prediction of the outcome of a control transfer as early qS
possible in order to overcome store access time delays, and
the Jump Trace is one· technique which has been shown to
achieve this requirement successfully.

EXECUTION

Algol

Fortran

COMPILATION

Algol

Fortran

Successful
Conditional

6.0

4.5

5.5

6.2

Unsuccessful
Conditional

2.4

2.8

5. 1

5.0

Unconditional

5.6

5.2

8.4

6.9

Total

14.0

12.5

19.0

18. 1

Table 11.9 Control Transfers as Percentages of All Orders

11.6 SOFTWARE PERFORMANCE

Some measure of the runtime performance of compilers is
implici t in the above figures because they measure machine
performance on high-level language programs. Other aspects of
performance not included in the above are

compiling speeds
compiler/operating system sizes
interactive performance.

In order to distinguish the software influence on compiling
speeds from the hardware contribution, they are given in table
11.10 as instructions obeyed (per byte of source processed and
per instruction compiled). The Atlas figures, which are given
for comparison, are taken from reference [48]. However, they
require some interpretation. The Atlas figure of 169
instructions/byte of source is artificially low because it
contains underlined delimiters achieved by use of a backspace
character. The MU5 figures may be converted to times by using

242

the additional information that the average instruction rate
of MU5 while compiling is 660 ns/instruction. This figure is
considerably worse than the overall average mainly because
compilers are 'data driven' rather than 'control driven'. That
is to say, the conditional control transfers are usually
dependent upon the value of data being fetched from store
rather than the value of an incrementing or decrementing
control variable. In addition, the compilers tend to use many
short procedures and to have very short sequences of orders
between control transfers. A further factor, not included in
the above average, which affects the actual time for
compilation is the time lost due to CPR loading. On MU5 this
can be as high as 50% because of the software management of
CPRs. However, a production MU5 would have hardware CPR
loading thereby eliminating this effect.

Algol

Fortran

Inst/Byte of Source

MU5

227

116

Atlas

169

355

Inst/Compiled Instruction

MU5 Atlas

720 1100

1070 2275

¥- Table 11.10 Compiling Speeds

Some compiler sizes have already been quoted in chapter 8.
These are included again in table 11.11, which is a breakdown
of the total software required to support interactive use of
Algol and Fortran. It has been assumed throughout the design
that performance, and particularly interactive performance,
would be critically dependent upon the software size. The size
of compiled code is one of the measures of the power of the
order code discussed in section 11.2. Compiler sizes have an
important bearing on the minimum size of main store on which
the software system can be run, and for a given store size,
the maximum number of active terminals that can be supported.
However, it is really the size of the active part plus working
space (or working set) of the compiler that matters, rather
than its static code size.

Experiments with the MU5 software running on an ICL 2960
indicate that a 128 Kbyte store backed up by EDS is suf~icient
to sustain batch or light interactive use. This is supported
by evidence in [49] that on MU5 the paging loss while
compiling Fortran programs is less than 10% if the compiler is
allowed 80 1-Kbyte pages. If peripheral activity is low, the
rest of the system only requires a further 16 Kbytes. For
Algol the corresponding figure is 8 Kbytes less, which might
be partly due to the two-pass organisation of the compiler.

243

Bootstrap
Resident Kernel
Paged kernel
Library
Library Name Lists
Algol Compiler
Algol Run Time Package
Fortran Compiler
Fortran Run Time Package
TML

Total

Total Size

2.5 Kb
9 Kb
9 Kb

32 Kb
9 Kb

34 Kb
3 Kb

37 Kb
12 Kb
12 Kb

159.5 Kb

Table 11.11 The Size of MUSS

For reasons already stated, the interactive performance of
the MU5 software has been measured on ICL 2900 computers
rather than MU5. It should be mentioned, however, that even
with its limited hardware, MU5 provides an interactive
computing facility to about 100 postgraduate students and
staff through 25 terminals. For the evaluation of the MU5
software (MUSS) on 2900, ICL very generously made time
available on machines used for the development of their own
software, albeit at antisocial hours and on a variety of
machine types and sites.

11.6.1 MUSS on ICL 2900

It has already been stated that the MUSS is modular, which
gives rise to a range of configurations of the software to
suit the size and purpose of the hardware system. The
configuration used in the evaluation on 2900 was one thought
to be appropriate to a general purpose timesharing system
with

2960 Processor
2 Mbyte main store
2 EDS-200 Drives
normal I/O devices.

However, some of the more complicated scheduling and page
turning modules were omitted to simplify the transfer of the
system from MU5. Also, for the same reasons, a rather
extravagent layout of main store was used, in which the system
was allocated 156 Kbytes of store, even though a large
fraction of this was unused. In fact, the results quoted below
are for a 0.5 Mbyte system because ICL had a~ interest in the
performance on this size of .sys tem. However, the same results

244

would have been obtained from 0.375 Mbytes if the store
allocation had been tidier.

From the point of view of maintainability, it is of
interest to note in passing that three separate binary
versions of the system are kept on disc. Each can be
re-compiled when running on either of the others. Sections can
be changed and re-compiled separately without the need to
compile a whole system as follows

Basic Library taking 1 min 12 s
Operating System taking 4 min 47 s
High Level Language Library taking 2 min 09 s
MUPL Compiler taking 1 min 48 s
Fortran Compiler taking 1 min 50 s
Algol Compiler taking 1 min 36 s

The load time for the system from any of the three versions is
20 s. All these times are for a 0.5 Mbyte 2960.

Since no communications processor was available on the
machines used for the evaluation, interactive running had to
be simulated by having a high priority process generating and
absorbing the interactive message traffic. Obviously the
existence of this process on the main frame system degrades
its performance and hence the figures given later are on the
pessimistic side. The mechanism for simulating interactive
running is formalised into a library procedure 'INT. JOB. JOB'
whi.ch has three parameters

P1 the name of the supervisor to be used to
initiate the interactive jobs

P2 the destination file for the journal information
P3 a 'substitution' symbol

The call of INT. JOB. JOB is followed by a list of data
statements terminated by an '@', specifying the terminal
activity to be simulated in the form

filename no. of terminals no. of repeats

Each file (or 'script') is taken to be a list of commands,
possibly interspersed with 'think' delays. If the symbol
specified by P3 appears in a command, the terminal number is
substi tuted. For example if '%' were the symbol in q\lestion,
then a command 'DEFINEINPUT 3 FD1:%' would become

DEFINEINPUT
DEFINEINPUT
etc.

3
3

FD1 : 000
FD1:001

245

for terminal 0
for terminal 1

Thus each simulated use of a particular script can have its
own unique filenames. When the end of the script is reached it
is repeated the requested number of times. The end result is
that it is possible to simulate the effect of X terminals
editing and running programs, Y terminals interactively
running a big program and so on.

Tne performance measurements presented are based on the set
of mainly Fortran programs summarised below. Most of these
programs come from a benchmark used by ICL to assess their own
software. F11 and F12, and two Algol programs A1 and A2, were
added to show the effect of very large numbers of very small
programs, such as might arise in a teaching environment. F11
and A1 were felt to reflect early beginner usage (they
tabulate prime numbers) and F12 and A2, which compute
solutions to the 'queens' problem, reflect the usage after a
few weeks training.

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
A1
A2

Source Size
(lines) (bytes)

991
440
717
704
468
449
138
392
671
111

13
75

407
14
17

28245
12035
19697
18715
12468
15437
2925

10477
16043
3154
259

2448
11274

341
3092

Comp Size
(bytes)

19150
7910
10808
11064
6058

12778
2186
8218
8880
2446

222
644

6096
340

1074

Mill Time (s)
Comp Run Total

14.81
6.29

10.22
10.62
6.55

10.35
1.44
6.16
8.78
1. 57
0.07
0.53
5.64
0.06
0.66

14.42
6.82

41.03
2.09

13.64
2.10

212.21
159.91
107.74
451.94

0.06
1. 31
6.29
0.07
1. 18

29.93
13. 11
51.25
12 .• 71
20.19
12.45

213.65
166.07
116.52
453.51

0.13
1.84

11.93
0.13
1.84

Table 11.12 Job Statistics

Selections from the above group of programs have been used
to generate both the batch and interactive components of the
benchmark. First, in order to access batch performance, three
batches of jobs were assembled and run. Their composition and
the results obtained are given in table 11.13. Clearly, the
first two batches are dominated by the longer jobs and show
very good mill utilisation. Batch 3 involves multiple copies
of the shorter jobs but the mill utilisation is still nearly
90%. This 'User Mill Utilisation' is the percentage of real
time that the CPU spends executing user code. In the residual
time the CPU is either executing Operating System code or

246

waiting for disc transfers. Although the system has a
multiprogramming capability, the level of multiprogramming can
be set by the operator, and for the above batch tests it was
set at 'one user program + system processes' only.

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
Elapsed Time
User Mill Time
User Mill Util

Batch

1
1
1
1
1
1
1
1
1

674
636

94.4%

Batch 2

1
1159
1101
95.0%

Table 11.13 Batch Job Mixes

Batch 3

4
10

10
10
10

1010
869

86.0%

As a first measure of interactive performance the
INT.JOB.JOB facility was used to measure the rate at which
various types of job could be repeatedly run before the system
saturated. In table 11.14 the results obtained are compared
with the batch rates. They indicate that running the jobs
interactively has only marginal effect on throughput, provided
all the jobs fit into main store. If this is not the case, and
if all the jobs are running at the same interactive priority,
then each timeslice allotted to a job requires its working set
to page back. To a first approximation CPU utilisation falls
to

timeslice / (timeslice + page-in time) x 100%

It is at this point that the more sophisticated paging and
scheduling modules of the MUSS would have been beneficial.
Clearly the above results follow a pattern, and jobs with
large mill times were not run with multiple users.

Next the peak rate at whioh the system could support file
editing activities was established. These results are
summarised in table 11.15. Clearly, this rate is a function of
the size of the file and the size of the edit, and to a lesser
extent, the number of active terminals. All are going faster

247

than users would type. For example, with 25 users doing 100
line edits, to the source of F1, each user would have to type
28 commands/minute to keep up with the system.

Batch Batch On-line Rate
Time Rate User 10 Users 20 Users

F1 0:34 1. 76 1. 76 --.-- --.--
F2 0: 16 3.75 3.75 1. 38 0.53
F3 0:54 1. 11 1 • 11 --.-- --.--
F4 0: 15 4.00 4.00 --.-- --.--
F5 0:22 2.73 2.73 1. 70 0.51
F6 0: 14 4.29 4.29 --.-- --.--
F7 3:43 0.27 0.27 --.-- --.--
F8 2:53 0.35 0.35 --.-- --.--
F9 2:03 0.49 0.49 0.28 --.--
F10 7:51 0.13 0.13 --.-- --.--
F11 0:01 70.00 70.00 62.78 51.69
F12 0:03 18.95 18.95 --.-- --.-...
F13 0: 14 4.29 4.29 --.-- --.--
A1 0:01 70.00 70.00 --.-- --.--
A2 0:03 18.95 18.95 --.-- --.--

Table 11. 14 Saturation Level (Jobs/min)

File F12 File F1

Lines Changed 10 10 100

1 User 120 62.8 14.2 13. 1 7. 1
10 Users 120 62.8 14.2 13.0 7.0
25 Users 100 62.8 14.2 13.0 7.0

Table 11. 15 Repetition Rate (Edits/min)

The main interactive assessment was based on the following
'typical' scripts.

Script A - This represents beginner usage. The script
types a new file (in fact F11) containing
errors and then continues as follows

Edit to correct one error but makes a fur~her error.
Edit again leaving one compile and one run time error.
Compile the program to receive an error report.
Edit to correct the error but makes another.
Compile again to receive an error report.
Edit to correct all but the run time error.
Compile now OK, therefore program is run but the
answer is wrong.

248

first
three

Edit to correct this last error.
Compile - OK.
Run - OK.
Final file is saved.

This script is filled out with think times totalling 15 min.

Script B - This is a typical program development activity.

Edit an existing file (F12) making five alterations.
Edit again making one further alteration.
Compile.
Edit making two alterations.
Compile and run.
List last 11 lines of files.
Edit making one alteration.
Compile and run.

This script is filled out with think times totalling 10 min.

Table 11.16 shows the basic characteristics of these
interactive scripts, where the think times and mill times are
in Units of one second.

Think Mill
Time Interactions Edits Comps Runs Time

A 900 47 5 4 2 1. 70
B 600 24 4 3 2 6.55

Table 11. 16 Script Characteristics

It is not easy to quantify interactive performance. We
decided to compute the average time a user ·had to wait after
typing a command before being invited to type the next
command. This 'response time' is given in table 11.17 as the
system is progressively loaded with users of type A and B.
Maximum response times occurred when the interactions required
significant mill time. These maxima were never more than a
small multiple of the required mill times, but obviously could
be large if the demands of the users became synchronised.

It was also of interest to explore the potential of the
system for running a background of batch jobs with the 40
B-type users. This interactive load requires 25% of the mill
time for execution of the user code, and places a heavy load
on the system functions. Nevertheless when batch B3 was run
simultaneously with it, a further 45% of mill time was
utili~ed at user level in the batch jobs.

249

A
B

1 User

0.11 s
0.38 s

20 Users

0.16 s
0.53 s

40 Users

0.28 s
0.71 s

Table 11.17 Average Response Times

11.7 BEYOND MU5

In a research sense the authors feel that the MU5 Project has
been very successful. We hope that this book conveys some of
the experience to the reader. The design group responsible for
MU5 has now turned its attention to the design of a successor.
Some of the better ideas of MU5 will be carried forward, but
the evaluation phase, together with current technological
developments, have stimulated many new ideas.

250

Appendix 1
Summary of the Order Code

This appendix summarises
code. Some functions in
overleaf, which should be
general characteristics.

the
MU5

overall
differ

taken only

pattern of the order
from the general form
as a statement of the

J

COMPUTATIONAL AND STORE-TO-STORE ORDERS

~ STS S X IU IDC AFL

DO =
D IMMY

MY =',2
D = DUMMY =(64

'CK '= '= D*= '= '=
=> -> ->

MY

D IMM' U MY
~ ~ ~ D ~

V V V D V
<-\RITH <-ARITH <-~OG UMMY <-CIRC

D1MM'
Q Q ODCOMF

COMP COMP COMP :OMP COMP

CINe =CONV DUMM' IPACI =CONV,
SUS2 0 0 'UMM~ DUMM~ 0

k' = 0 or - LITERAL n is 6-bit signed integer.
- IR n defines internal register.
- V32 Operand is accessed directly at
- V64 (NB) + unsigned OJ n is scaled for V32.
- S[B] Operand is accessed via a
- SEE] descriptor at (NB) + n, using
- S[O] B or 0 as an index.

k r = 1 or k 7 - K Extended Operand.

ORGAN IS A TIONAL ORDERS

r-r;
XIT

UMP RETURN
CO >C

CS

X

NS = SF
2 = 0 f. 0

= 0 f. 0
4 n > 0

4 Sn
8n & X- Sn
Bn- x- Sn ~

X- Sn V

DllMMY
DUMM'
0>

SP
X
SF = NA
NS
>. 0
OVERFLOW
>
oveRFLOW

Sn- X

Sn 'I X
Sn-

Sn- V

DUMMY
DUMM'
XC,

~T'CK INI
SET LINK
XNS =>
~F =)
NS =>
< 0

An
"< 0

Sn
x

Sn V X
Sn- V X

-> IF,
-> IF,

set Bn IF,.
set En IF,.

-The operand speclfles the way in which En is set as follows,
where T denotes the result of the test (= 0 for NO, = 1 for YES)

251

EXTENDED OPERANDS K

13 13 I
IK In' I \

n' = 0 16-bit signed
n' = 1 32-bit signed
n' = 2 64-bit

K = 0/1 LITERAL n' = 3 64-bit
(qualified by n')

n' = 4 16-bit unsigned
n' = 5 32-bit unsigned
n' = 6 64-bit
n' = 7 64-bit

K = 2 V32 As for k above n' = 0 SF + 16-bit Name
K = 3 V64 (qualified by n') n' = 1 o + 16-bit Name
K = 4 S[B] n' = 2 NB + 16-bit Name
K = 5 S[B] n' = 3 XNB + 16-bit Name
K = 6 S[O] n' = 4 UNSTACK

n' = 5 D[] - use descriptor
in DR

K = 7 V-store (access is privileged)

INTERNAL REGISTER OPERANDS

The n bits define the internal register to be used.

<-16-><-16-><-16-><-16->
Q MS NB CO 1321 B
1 XNB 33 BOD
2 ~N 1 NB 34 Z
3 SN 1 SF 35
4 BN 36 BOD B

5 37
6 38

11 39

16 D 48 AEX
11 XD 49
18 I DT 50
19 1 XDT 51
20 1 DOD 52
2] 53
22 54

123 55

252

DESCRIPTOR FORMATS

Type 0 - General Vector

1 T 1 SIZE 1 IUSIBCI BOUND ORIGIN (IN BYTES)
1 2 1 3 11 1 1 11 1

I I I I
I I I -- Bound Check Inhibit
I I I
I I -- Scale/do not scale according to SIZE
I I
I -- Read only
I

Size - 1, 4, 8, 16, 32 or 64 bits

Type 1 - General String

T SIZE BOUND/LENGTH ORIGIN (IN BYTES)
2 3 3 24 32

-- Spare

Size - 8 bits only

Type 2 - Address Vector - Format identical with Type 0

Type 3 - Miscellaneous Sub-types

T SUBTYPE BOUND/LENGTH ORIGIN
2 6 24 32

I I
I Use depends on sub-type
I
I 0 Real Address (Executive Mode Only)
I 1 Read/Store Direct
I 2 Read & Mark
I 3 Indirect
I 4-63 Procedure Calls

253

Appendix 2
Summary of the Operating System
Commands

This appendix summarises the facilities of the MUSS Basic
System.

JOB CONTROL

Job Format

***A JOB USER PASS TITLE T<time.limit> P<priority>

commands

.***Z

T and P parameters are optional. For interactive jobs, ***M
. replaces ***A.

Command format

**NAME (param 1, param 2, •..)

** is optional and brackets and commas can be replaced by
spaces. A parameter may b~ a string, decimal integer, or
hexadecimal constant preceded by %'.

NEW NEW(File, Terminator)
OLD OLD (File)
SAV SAVE(File)
DEL DELET~(File)
LD LIST.DIR()
LE LIST.FILE(File,Destination,Start,Finish)
ALG ALGOL(File)
FOR FORTRAN (File)
RUN RUN (File)
DEF DEFINE(File, Mode)
LIB LIB(File)
STP STOP (Reason)
RJ RUN.JOB(File, Supervisor, Header)
KIL KILL (Proc)
PS PPC.SEQ(Mode)

254

INPUT/OUTPUT FACILITIES

AIS ASSIGN.INPUT.STREAM(File) Str
AOS ASSIGN.OUTPUT.STREAM(File)Str
BO BREAK. OUTPUT (Str)
CAP CAPTION (String)
CDE CHANGE.DEST(Str,Dest)
CI CURRENT.INPUT()Str
CO CURRENT.OUTPUT()Str
DI DEFINE.INPUT(Str, File, Mode)
DO DEFINE. OUTPUT (Str, File, Mode, Lines, Sections)
EL ECHO.LINE()
IB IN. BACKSPACE (No)
IC IN.CH() Char
ICL IN.C.LIT() Char Literal
ICS IN.C.STR(String Dest)
IH IN.HEX() Hex literal
II IN.I() Int
110 INIT.IO()
IL IN.LINE() Page/Line
1M IN. MODE () Mode
INA IN.NAME() Char literal
IS IN. SOURCE (Source)
1ST IN.STR(String Dest)
NL NEWLINES(No)
NC NEXT.CH() Char
DC OUT.CH (Char)
ODA OUT.DATE()
OFN OUT.FN(File)
OHD OUT.HDR(Header)
OHX OUT.HEX(Hex)
01 OUT.I(No, Field Width)
OL OUT. LINE (Page/Line)
OM OUT.MODE(Str) Mode
ON OUT. NAME (Name)
OP OUT.PROG(Seg, First Byte, Last Byte)
OR OUT.REGS()
OSS OUT.S.STATS(Type)
OS OUT.STACK(Start Addr, Finish Addr)
OTI OUT.TIME()
PR PROMPT (String)
RI RELEASE. INPUT (Str)
RO RELEASE. OUTPUT (Str)
SH· SELECT.HEADER()
SI SELECT.INPUT(Str)
SO SELECT. OUTPUT (Str)
STE SELECT.TEXT()
SPS SPACES (No)

255

EDITING FACILITIES

ED ED(Input,
S<pos)
C<pos)
I<str)
B<str)
A<str)
D<str)
W
R
M<file)
E
Q

Output)
SKIP
COPY
INSERT
BEFORE
AFTER
DELETE
WRITE
RESET
MERGE
EXIT
QUIT

DOCUMENTATION FACILITIES

Skip to start of line
Copy to start of line
Insert string at current position
Copy up to start of string
Copy up to end of string
Delete next occurrence of string
Print current Line
Reset position
Select new input file
Exit from editor
Abandon edit

FL F~IP(File,Level,Mode,Label,Jump,Cjump)
DR DRAW(File , Level ,Height ,Width)
PIC PIC(Input,Output,Jobtext,Width)
PL PLOT (Input ,Output)
TX TEXT(Input,Output,Devtype)

VIRTUAL STORE CONTROL

CSE CREATE.SEGMENT(Seg,Size,Page Size) Seg,Size
CSI CHANGE.SIZE(Seg,Size)
INT INTERCHANGE (Seg,Seg)
CA CHANGE.ACCESS(Seg,Access)
RSE RELEASE.SEGMENT(Seg)
PI PAGE.IN(Seg,Page,Mode)

FILE CONTROL

FIL FILE(File,Seg,Access)
OFI OPEN.FILE(File,Seg,Access) Seg
DEL DELETE (File)
CAT CATALOGUE() No of Entries, Seg
ODI OPEN.DIR(User,Pass)
RF RENAME. FILE (File ,File)
Rl>R READ. DIR o User , Password

INTER-PROCESS COMMUNICATION

SCS SET.CH.STATUS(Ch,Status,PID)
WAI WAIT(Ch, Time)
LUP LOOK.UP.PROCESS(Name)SPN,PID,Ch
SM SEND.MESSAGE(Message,Dest,Ch,Seg,Access)
RM READ.MESSAGE(Message,Source,Ch,Seg)Seg,Access,UID

256

PROCESS CONTROL

CP CREATE.PROCESS(Proc,User,Pass,Seg Limit,CPU Limit,
Seg O,Priority,Term Ch)SPN,PID

SPR SUSPEND.PROCESS(SPN,PID)
FP FREE.PROCESS(SPN,PID)
TP TERMINATE.PROCESS(SPN,PID,Reason)
KIL KILL(Proc)
RST READ.STATUS(SPN,PID) Status
RP READ.PARAMETER(Param) Value
FI FORCE.INT(SPN,PID,Reason)
STI SET. TIMER (Time)
RES RESCHEDULE(SPN,PID,Priority)

ERROR HANDLING

STR SET.TRAP(Trap,Addr)
ET ENTER. TRAP(Trap, Reason)
SIT SET.INT.TRAP(Trap,Reason)
SR SET.RESTART(Addr)
GR GO.RESTART()
TR TRAP(Trap,Reason)
OUF OUT.F(No, Message, Page/Line)
OUM OUT.M(No,Message, Page/Line)

257

REFERENCES

1. S. H. Lavington, History Qf. Manchester Computers, (NCC,
1975).

2. T. Kilburn, D. Morris, J. S. Rohl and F. H. Sumner, 'A
System Design Proposal', in Information Processing ~
(North Holland, Amsterdam, 1969).

3. D. Aspinall,
'Associative
Information
1969) .

D. J. Kinniment and D. B. G. Edwards,
Memories in Large Computer Systems', in

Processing 68 (North Holland, Amsterdam,

4. J. K. Iliffe, ~ Machine Principles, (MacDonald,
London, 1968).

5. P. J. Denning, 'Virtual Memory', Computing Surveys, 2, No.
3, Sept. 1970.

6. E. I. Organick, ~ Multics System, (MIT Press, Cambridge,
Mass., 1972).

7. D. J. Kinniment and D. B. G. Edwards, 'Circuit Technology
in a Large Computer System', IERE Conference Proceedings
No. 25, (London, 1972).

8. D. Aspinall, D. J. Kinniment and D. B. G. Edwards, 'An
Integrated Associative Memory Matrix', in Information
Processing 68 (North Holland, Amsterdam, 1969).

9. H. J. Kahn and J. W. R. May, 'The use of Logic Simulation
in the design of a Large Computer System', IERE Conference
Proceedings No. 25 (London, 1972).

10. D. J. Kinniment and J. V. Woods, 'Synchronisation and
Arbitration Circuits in Digital Systems', ~. lEE, 123
(1976) 961-966.

11. D. B. G. Edwards, A. E. Whitehouse, L. E. M. Warburton and
I. Watson, 'The MU5 Disc System' , ~ Conference
Proceedings No. 121 (London, 1974).

258

12. R. N. Ibbett, 'The MU5 Instruction Pipeline', Computer
Journal, 15, 1972; also in .Wi Computer. Papers ..l.91.1
(Auerbach, Philadelphia, 1973).

13.· 'Control Data 7600 / Cyber 70 Model 76 Computer Systems -
Hardware Reference Manual' (Control Data Corp., Minnesota,
1975) •

14. L. A. Taylor, 'Instruction Accessing in High Speed
Computers', M.Sc. Thesis, University of Manchester, 1969.

15. F. H. Sumner, 'MU5 - An Assessment of the Design', in
Information Processing ~ (North Holland, Amsterdam,
1974) •

16. R. N. Ibbett, E. C. Phillips and D. B. G. Edwards,
'Control of the MU5 Instruction Pipeline', lEa[Conference
Proceedings No. 25, (London, 1972).

17. G. R. Burke, 'The Design of a Central Processor Highway
System', M.Sc. Thesis, University of Manchester, 1969.

18. J. Standeven, S. H. B. Lanyado and D. B. G. Edwarqs, 'The
MU5 Secondary Operand Unit', ~ Conference Proceedings
No. 25 (London, 1972).

19. J. V. Woods and F. H. Sumner, 'Operand Accessing in a
Pipelined Computer System', ~ Conference Proceedings No.
121 (London, 1974).

20. R. N. Ibbet t and M. A. Husband, 'The MU5 Name Store',
Computer Journal, 20 (1977) 227-231.

21. W. J. Khaja, 'The Implementation of the Name Store and
Associated Replacement Algorithms in the MU5 Computer',
Ph.D. Thesis, University of Manchester, 1971.

22. A.· E. Knowles, 'The Implementation of Virtual Storage in
the MU5 Multiprocessor Computer Complex', Ph.D. Thesis,
University of Manchester, 1975.

23. B. J. Parsons, 'The Design of the Store Access Control
System for the MU5 Computer', M.Sc. Thesis, University of
Manchester, 1971.

24. S. H. Lavington, G. Thomas and D. B. G. Edwards, 'The MU5
Multicomputer Communication System', .I..t.a.na.. nG, C-26
(1977) 19-28.

25. J. B. Gosling, 'Review of High-speed Addition Techniques',

259

~. ~, 118 (1971) 29-35.

26. D. J. Kinniment and G. B. Steven, 'A Sequential State
Binary Adder', ~. lEE, 117 (1971) 1211-1218.

27. D. W. Sweeney, 'An Analysis of Floating-point Addition',
IBM Systems Journal, 4 (1965) 31-42.

28. J. B. Gosling, 'Design of Large High-speed Multiplier
Units', ~. lEE, 118 (1971) 499-506.

29. S. F. Anderson, J. G. Earle, R. E. Goldschmidt and D. M.
Powers, 'The IBM System/360 Model 91 Floating-point
Execution Unit', IBM Journal Q(R~ Q, 11 (1971) 34-53.

30. 'Cray-1 Computer System Reference Manual (Cray Research
Inc., Minneapolis, 1976).

31. P. C. Capon, R. N. Ibbett and C. R. C. B. Parker, 'The
Implementation of Record Processing in MU5' , lEE
Conference Proceedings No. 121 (London, 1974).

32. R. A. Brooker, I. R. MacCallum, D. Morris and J. S. Rohl,
'The Compiler Compiler', Annual Reyiew in Automatic
Programming 3 (Pergamon, Oxford, 1963).

33. D. Morris, I. R. Wilson and P. C. Capon, 'A System Program
Generator', Computer Journal, 13 (1970) 248-254.

34. P. C. Capon, D. Morris, J. S. Rohl, and I. R. Wilson, 'The
MU5 Compiler Target Language and ~utocode', Computer
Journal, 15 (1972) 109-112.

35. J. Strong, J. Wegstein, A. Tritter, J. Olsztyn, O. Mock
and T. Steel, 'The Problem of Programming Communications
wi th Changing Machines'. Communications Q(~ ACM, 1
(1958) 8.12-8.18.

36. T~ Kilburn, D. J. Howarth, R. B. Payne and F. H. Sumner,
'The Manchester University Atlas Operating System - Part
1', Computer Journal, 4 (1961) 3-10.

37. D. Morris, F. H. Sumner and M. T. Wyld, 'An Appraisal of
the Atlas Supervisor', ~. ACM (1967).

38. E. W. Dijkstra, 'Cooperating Sequential Processes', in
Programming Languages (Academic Press, New York, 1968).

39. A. J. Bernstein,. G. D. Detlefson and R. H. Kerr, 'Process
Control and Communications in a General Purpose Operating

260

· System', A&..J1. S~~:nposium Operating Systems Principles
(Princeton University Press, 1969).

40. S. H. Lavington and A. E. Knowles, 'Assessing the Power of
an Order Code', in Information Processing 12 (North
Holland, Amsterdam, 1977).

41. J.' Heinhold and F. L. Bauer (eds), 'Fachbegriffe der
Programmier ungstechnik, Ausgearbei tet vom Fachausschutz
Programmieren der Gesellschaft fur Angewandte Mathematik
und Mechanik' (G.A.M.M.), (Munich, 1972).

42. R. S. Scowen, 'Qickersort, Algorithm 271', COmmunications
Q(~ AQM, 8 (1965) 669-670.

43. H. J. Curnow and B. A. Wichmann, 'A Synthetic Benchmark',
Computer Journal, 19 (1976) 43-49.

44. C. H. Cheetham, 'Oxford University Benchmark Test' (Oxford
University Report, Dec. 1969).

45. P. H. Hughes, 'University Computer Benchmark Report:
Atlas/6600/1108' (University of London Atlas Computing
Service Report, Aug. 1967).

46. M. A. Husband, R. N. Ibbett and R. Phillips, 'The MU5
Computer Monitoring System', ~. European Computing
Conference Qn Computer Performance Eyaluation (London,
1976) •

47. N. A. Yannacopoulos, R. N. Ibbett and R. W. Holgate,
'Performance Measurements of the MU5 Primary Instruction
Pipeline', in Information Processing 12 (North Holland,
Amsterdam, 1977).

48. R. A. Brooker, D. Morris and J. S. Rohl, 'Experience with
the Compiler Compiler', Computer Journal, 9 (1967)
345-349.

49. R. Phillips, 'A Portable Fortran Sys tem for MUSS', M. Sc.
Thesis, University of Manchester, 1978.

261

Adaptability 209
Addition 141, 149
Address encoding 19
Address generation 15
Array operations 22
Assemblylanguage 180
Associative storage 40
Asynchronous timing 50
Atlas 2, 228
A-unit 146
Automatic flowcharting 170

Basic Language Machine 6
Block-carry addition 142
Block Transfer Unit 139
Boolean orders 14
Bound checking 92
Buffer Line Selection Process

117
B-unit 160
Burroughs 6
Byte processing 164

Carry-save addition 154
CDC 7600 228
Central Highway 80
Channels 206
Circuit technology 36
Command format 218
Common segments 191
Communication 204
Compiler Compiler 4, 174
Compiler Target Language

(CTL) 176
Conditional-sum addition 143
Control transfers 78, 240
CPR Non-equivalence 126, 193
Current Page Registers (CPRs)

126

INDEX

262

Descriptor 16
Descriptor Addressing Unit

86
Descriptor format 90
Descriptor Operand Processing

Unit 87
Division 156
Documentation 167
Documents 215
Dope vectors 23
Double access orders 75, 105
D-unit 85

ECL logic family 38
Editor 222
Exchange 34, 132
Exchange Control System 136
Exchange Priority System 138
Executive Mode 32
Executive Programming

Language (XPL) 180
Executive status 192

Files 220
File syste~ 207
Fixed-head Disc store 55
Flocoder 170
Function 13

Hardware organisation 26
Hardware performance 228
High-level language programs

5

IBU Data Flow 62
IBU Store Request System 63
ICL 2900 Series 4, 244
Input/Output 215
Instruction Buffer Unit 58
Instruction Counter 131
Instruction format 7
Interactive operation 218
Interconnections 42
Interrupts 30, 79, 97, 129

Job control commands 218
Jobs 215

263

Job Supervisor 216
Jump Trace 65
Jump Trace performance 241

Kernel 190

Library 214
Local Store 52
Local Store Interface 121
Lock-outs 77
Logic simulator 46
Lower bound 21

Machine independence 209
Manchester University Design

Language (MUDL) 186
Manchester University

Programming Language (MUPL)
184

Mass Store 55
Mes'sages 205
MU5 Autocode 181
Multi-computer 2
Multics '7
Multi-length instructions 72
Multiplication 152

Name segment 17
Name Store 109
Name Store performance 237
Name Store Non-equivalence
Normalisation 150
NRZI recording code 55
Number representation 148

OBS Input Process 101
OBS Output Process 103
OBS Store 115
One-level store 33
On-line input/output 215
Operand Buffer System 98
Operands 16
Operating Console 131
Operating System 189
Order code 7
Organisational orders 78

Page size 128, 194

264

Page status 196
Page tables 195
Page transfer 196
Paging 193
Parsing 174

230
52

44

Peak shift 55
Performance 228
Peripherals 35
Pipeline design 68
Pipeline performance
Plated-wire storage
Platter allocation
Platter production
Primary Operand Unit
Priority 200, 217
Private segments 191
Privilege 192
Procedure stack 17
Processes 212
Processor layout 43
Processor scheduling
Program Fault V-line
Protection 192

45

Queue 98

66

199
79

Register-register orders 75

Scheduling 199
Secondary operands 20
Secondary Operand Unit 84
Segmented store 7, 17
Shared segments 191
Skew 55
Software performance 242
Software tools 167
Stack mechanism 73
Store Access Control Unit

123
Store hierachy 32
Store orders 76, 106
Store-to-store orders 161
Streams 216
String accesses 93
String operations 24
Structure access orders 96
Sub-page 199
Subscript calculation 22

265

Subtraction 149!
Super page 198
Supervisor 213
Syntab 174
System Error V-line 79
System Performance Monitor

232
System programming languages

179

Table Look Up order 199
Target Machine Language (TML)

185
Timeslice
Translators

Upper bound

201
176

21

Vector accesses 89
Vector operations 24
Vector Store 98
Vector Store performance 237
Virtual addressing 6
Virtual machine 189
Virtual store 190
V-store 130

\

\

266

t.l'tBRt-.t.
(~ualified bY n')

n -
n'
n'
n'

n'

'J32
'J6l.\
SU~l
StB1
St01

t-.s for \<. above
l~ualified bY n')

:: 1 'J _store

IN~£~N~L ~£G1S~£~ OP£~~NDS
~ne n bi~5 define ~ne in

