A GUIDE TO ASSEMBLY

LANGUAGE PROGRAMMING

FOR THE UNIVAC 1108
by

R. J. Ciecka
and

G. R. Ryan

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

COMPUTER NOTE CN-2 | 'SEPTEMBER 1971

A GUIDE TO ASSEMBLY
LANGUAGE PROGRAMMING
FOR THE UNIVAC 1108

by
R. J. Ciecka
and

G. R. Ryan

OFFICE OF USER SERVICES
COMPUTER SCIENCE CENTER
UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND 20742

INTRODUCTION

1

This manual, originally prepared by R. J. Ciecka and G. R. Ryan
and presented through the Department of Electrical Engineering of the
University of Maryland on March 1, 1971, is herewith issued by the
Computer Science Center of the University of Maryland under the reference
number CN-2. The departmental jdentification assigned by Electrical
Engineering is I10010D, which replaces that department's manual I0010C.

References used in the preparation of this guide include:
UP-4053; UP-4040; UP-4042; and the University of Maryland User Reference
70-01. : :

The following is the original introduction to the manual:

This manual provides a concise and relatively complete guide to
the UNIVAC 1108 Assembler. It is designed.primarily for the student who
is having his first contact with 1108 assembly language, but will also
serve as a handy reference for the more advanced programmer. Information
from as many sources as could be found had been combined and condensed so
that for the first time (to our knowledge) the user can find information
on assembly language subroutine linkage, input/output, and diagnostic
processors presented in a clear manner. Those users who find that they
need still more detailed information should consult the UNIVAC and U of M
references listed at the beginning of this manual.

It is a pleasure to acknowledge the many and varied contributions
of the University of Maryland's Computer Science Center Systems Staff.
In particular we would 1ike to thank Ray Cook of the Systems Staff and
- Professor Marshall D. Abrams of the Department of Electrical Engineering.

~ We hope.this manual meets the needs of those who use it. Good Tuck.

1.

w
.

h

5'

Page
Calling the Assembler == === e o e e e dmcmm oo a e e 1
Basic Assembler Language - = - = = = g 1
2.1 Computer Instruction - Word Format - - - - - - - - f e i emmmaeoa 1
2.2 Assembler Format === === =« . e m et e mmem et am—.—————m - - 2
2.3 Description of Fields = === - e e e e e o mmm ;e e c e e e e oo 3
2.3,1 LabelField - - =ccecccmcccn cme et e e e e e e mm e o m o 3
72.3.1.1 Labels - - =cccccamccc e m e e et e e e e m e mam = 3
2.3.1.2 Location Counter Declaration = = = = = = = « = e 0 o o o o = - - 3
2.3.1.3 Location Counter Reference - - == - c c c o o e e e cc o0 4
2.3.2 Operand Field - = - mccmcmmccccm e e e e e m e e e e 4
2.3.2.1 Function Code Designator, f - = =« e o e e e cmou oo 4
2.3.2.2 Operand Qualifier or Minor Function Code Designator, j -- 5
2.3.2.3 The Register Designator Field, @ = == = = o = = o 0 o o o o oo = 5
2.3.2.3a A-Register Designator, A(a) = === o e ueucoonoa- [P 5
2.3.2.3b X-Register Designator, X(a) == == -e-oommmmmoanaon- 6
2.3.2.3c R-Register Designator, R(a) == == - =cccocoaacano - 6
2.3.2.4 Definitions of Registers in Assembler Programs ------- 6
2.3.2.5 Index Register Designator, X == === cccc oo omonnana- 6
2.3.2.5a Index Register Incrementation Designator, h - = - - - - - -~ 7
2.3.2.6 Operand Address or Operand Designator, U ~ === == - - - - 7

2.3.2.6a Indirect Addressing Designator, i - - - - - [
2.4 Continuation -~ cccaceccccmacocmecennoemnanaomnmone o= 8
2.5 Termination = = = ===« . feeecmeccec e . 8
2.6 Ejection of Paper = -===-=-- e e eeememescemeemm——————- 8
2.7 Data Word Generation = = == == e - c o cmac oo caccceamaaaan=-- 8
2.7.]1 EXpressions == -e= - e e e oo cecmeomcrcoemeaenem.———= 9
2.7.1.1 Elementary Items -=---=====2cacicmaeaaaeaano-m-= 9
2.7.1.2 Octal Values === =mcmeccmcmmce e mce e e = 9
2.7.1.3 Decimal Values ==~~~ eeccceccccanceaccecnca=== 0
2.7.1.4 Alphabetic Iterms === -=-=cascccacoccmcamacacnemnan 9
2.7.1.5 Floating Point and Double Precision == =====m=cca-ox 10
Subroutine Linkage -~ === === --« R A cememm e - 10
3.1 Calling SeqUence =--==m == o e e ccmmamemcmomo e mam = === 10
3.1.1 Abnormal RetUIn ~= - = -~ e - eemccmommoemoee meem - - m = 11
3.1.2 Function Value Return = ==========ccecocaao- ------ 11
3,1.3 NormalReturn - --- - - ccc e cmcmaacaan- e e me e 11
3.2 Use of Registers by Subroutine == === = e e e cecanaon. R
3.3 The Walk-Back-Packet - = - == «== B I I 12
Termination of EXecution == = = - s s e e c e cc s mm e c e m e e e e m - 12
Assembler Directives == == - s e e e s c e s e e s m e e e m e e - - - 12
5.1 The Reserve Directive, RES = « = = = m e emmemmeea e m. - 12
5.2 The END Directive, END == c o ca et c s mmccmmccmmmm e mm - - 13
5.3 The Equate Directive, EQU =- v = cc e s s mcm e e cmc e mmm o — = 13
5.4 LIST and UNLIST Directives - = -~ =~ = - e e e m e m e - m.—————— - 13

TABLE OF CONTENTS

5.
6.

10.

5 The FORM Directive, FORM == = == e mm=mmocommmomannnoo oo

Input/Output - - e e e meeeieeseacmmmemmm e mmeaeo ol
6.1 The Format Sepcification « - = = = = = - - I IR
6.2 Assembler Output = = = - c @ @ c c mm o m m e e e e e e e oo o

6.2.1 Line Printer Output = - = = - - - - mmmmm e e m e e
6.2.2 Output To Other Devices - = - = = = = = = c e s m e mm oo oo o m oo
6.3 Assembler InNput = = = = =« o o e c e m oo o me e m o T,
6.3.1 ReaderInput === «= oo owumeoans e e e e e e dmmm e mmm oo
6.3.2 Input With END Clause --- == = -« == = o 0 o o oo oo oo oo o
6.4 Performing the Input/Outpute - - = = = = = = == o o = oo o oo oo oo

Simple Assembly Procedures = -« - - - e e e e e e e - -
7.1 The Functioning of Procedures - - == = = = = - = = o o o o o0 o o o0 o
7.2 Creating a Procedure = - - = = = = = = - o o m e e oo e o m e e oo -
7.3 Declaring a Procedure = = = = = = = o o o o o c & mm o e o e o
7.4 Using a Procedure - = = = = = = = o 0 o o s e ;e e e e e e e e e o e o -

The Assembler Code Listing - - - = - - = - o o o o oo o oo oo oo 2o oo

Diagnostic ProCcessors == === = o = e 0 o e o e e mmm e - - - - - A
9.1 Obtaining a Snapshot Dump Via X$DUMP - - = = = o o - oo 0 oo - o
9.2 Obtaining a Snapshot Dump Via SNAP§ = - - - - c = c = oo oo oo - &
9.3 Obtaining a Post Mortem Dump - - - - == = = - = = = == == = = = = - -
9.4 Obtaining Dumps Via PDUMP = - - = o me o e e e e e e e e e e e o o

Glossary and Conventions = = = = c = @ = o o c 6 o e m m e e e o .-

‘Appendix A -Code/Symbol Relationships - - === == = - o oo oo oo oo

Appendix B-Instruction Repertoire = - =« = = == = = = ¢ o o0 o0 oo oo o

Table B-1 ==« ccceeaa-a bemmmeem e e e e - -
Table B-2 =~ = - e caaa-- g U
Table B-3 -~ == -c-=- I

Appendix C-Assembler Error Flags and Messages - - - == == = = = = = -

Appendix D-Assembly Listing Decoding Reference - - == - == -~ - - - -

Appendix E-Sample Program == === c e e e cm e e mcccmememmme oo

B N T A e l'gﬁ'_"l"ﬂ![‘v.«‘_?_‘\r'f"rz 4
B [T PR SR DO T e

R

1. Calling the Assembler

Under EXEC 8 the format of the assembly control card is:
@ASM, <options> <field 1>, <field 2>_, <field 3>
The available options are coded as follows:

Produce symbolic listing (no octal).

Produce double-spaced listing. ,

Request 10K additional core for symbol and procedure sample table.
Suppress all listing.

Produce octal listing only (no symbolic).

Produce octal and symbolic listing (Normal listing option).

Request 5K additional core for symbol and procedure sample table.
Update and produce new cycle of source element.

Insert new element to program file from control system.

List corrections.

f~agHnOoZZzUa

<field 1> is the input source file and element.
<field 2> is the relocatable file and element.
<field 3> is the updated source file and element.

If the I option is on (as when inserting from cards), specification <field 1>
names the program file to contain the source code. If assembling from tape,
<field 1> is the file name of that tape, <field 2> is the relocatable program
element name, and <field 3> specifies the name of the program file to con-
tain the source code. If file names are not specified, the temporary run file
is utilized. If assembling from tape and the tape is positioned incorrectly
(to an element other than the one specified) an error is produced.

2, Basic Assembler Language

2.1 Computer Instruction-Word Format

Every machine instruction for the 1108 adheres to the following format:

-2- :

{ j a x h |1 u
35 30(29 26 125 2221 18{17)16 415 00
Where:
f specifies the function code.
j specifies the partial word designator or minor function code, if any.
a specifies the control register or inpuat/output channel, if any,
x specifies the index register, if any.
h specifies index modification and if set calls for address modification,
i specifies indirect addressing.
u specifies the address field.

2.2 Assembler Format

In writing instructions using the 1108 Assembler languxge, the prograrnmer
is primarily concerned with three {ields: a label field, an operation field,
and an operand field. It is possible to relate the symbolic coding to its
associated flowchart, if desired, by appending comments to cach instruction
line or program segment.

All of the fields and subfields following the label field in the 1108 Assembler
are in free form providing the greatest convcnience possible for the pro-
grammer. Consequently, the programmer is not hampered by the necessity
. to consider fixed form boundaries in the design of his symbolic coding. It
is highly recommended that within the confines of a given program, the pro-
grammer keep a fixed set of column conventions for the sake of legibility.

The basic line of coding is divided into 3 or fewer fields, called label, opera-
tion, and operand fields. A field is terminated by one or more spaces and
may be divided into subfields. A subfield is an expression which is terminated
by a comma followed by zero or more spaces. The last subfield in the field,
of course, is terminated by the space (at least one) that tcrminates the field.

The format of a symbolic instruction differs from the computer instruction
word for convenience of programming as follows. Conunas separate subfields.

LABEL OoP OPLRAND
FIELD FIELD IFIELD
F A, UX,J

F,J AU, X

In addition to instructions of the type discussed above, therc are several which

do not uce the A field. The operands of such instructions comprise the U, X,
and J subfields.

LABEL OoP OPERAND

F U,X,J
¥F,J U, X

2.3 Description of Fields
2.3.1 Label Field

The label field, where used, must start in column one and terminate . with a
" blank. It may contain a.declaration of a specific location counter or a label
or both, as explained below.

2.3.1.1 Labels

A label is a means of identifying a value or a line of symbolic coding. It con-
sists of an alphabetic character which may be followed by as many as eleven
alphanumeric characters (A throu:h Z and 0 through 9). When a label is used,
it must begin in column one and terminates with a blank. -

In addition to the alphanumeric characters, the $ may be used in a label
beginning with the second character. However, the use of the $ is limited
because references to the Executive System are made via system!' s labels
which utilize the $ in various character positions (see '"1108 Executive System,
Programmer's Reference Manual', UP-4144),

An external label is a label the value of which is known outside the program.
Such labels are suffixed with an asterisk (e. g. GOT*), The asterisk does not
count as a character of the label. Any label which is assigned a single pre-
cision value including locations of double precision constants may be made
external. They are assigned the relative address of the first word of the

"~ value generated.

2.3.1.2 Location Countcer Declaration

There are 32 location counters in the 1108 Assembler, any one of which may
be used or referenced in any sequence. These counters provide information
required by the collcctor to regroup lines of coding in any specified manner.
This regrouping capability enables isolation of constants or instructions, or
components of each which in turn gives great flexibility to segmentation. A
specific location counter is declared by writing $(e) as the first entry in the
label field, ¢ being the location counter numhber (0 through 31). Any change
to an unnamed location counter affects the counter currently in control. A

-4.

specified location counter remains in use until a new location counter is
declarcd. If no location counter is explicitly specified, the program is con-
trolled by location counter zero. Anv time a location counter is specified,

all subsequent coding falls under its control. To include a label on the same
line as a change ~-of-location-counter item, one must place a comma between
the closing paren and the label, with no imbedded blanks (e.g., $(2), LABEL).

Each new location counter cntry begins the coding relative to zero. Coding
resumed under a counter that has bcen used previously continues at the last

address specified for that counter.

2.3.1.3 Location Counter Reference

Reflexive addressing may be achieved by referencing fhe current location
counter, or a specific location counter, within a symbolic line. The symbol
for a current location counter refeence is &, When the assembler encounters
_ $ it inserts the value of the controiling location counter. A reference to a
specific location counter is madc by $(e), where e denotes the specified loca-
tion counter. In this case the assembler substitutes the value of location
counter e for the symbolic reference. When $+b is coded care should be
taken so that the source-coded interval b does not extend over a procedure
call. This is particularly a problem if the procedure called may generate a
variable number of lines of codec.

It is standard programming practice to assemble the instructions under odd
location counters and the data under even location counters.

2.3.2 Operand Field

The operand field starts with the {irst non-blank character following the label
ficld. . The components of the operand {ield arc.called subfields and represent
the information necessary to comnlete the type of line determined by the opera-
tion field. Subfields are separated by commas. A comma may be followed by
one or more blanks,

- Most operands may contain fewer than the maximum number of subfields implied
by the operation field. If a subfield other than the normal first or last is to be

. omitted, two continguous commas should be used to denote that subfield (e.g.,
»»). If the last subfield or subfields are to be omitted, no comma may appear
immediately following the last coded subfinld. A period space coded just after
this subfield stops scanning and =pee‘ls up assembly time (e.g., .B).

¢.3.2.1 Function Code Dcsignator, f

The machine language function code, or f designator, contained in the leftmost
six bit positions, specifies the particular operation that is to bhe performed. In
instructions where > 708, the j designator becomes part of the function code.

.
<5.

2.3.2.2 Operand Qualifier or Minor Function Code Designator, j

When £f<70g, the j designator determines whether an entire operand, or only

a part of it is to be transferred to or from the arithimetic section. As previously
mentioned, in instructions where £>70, j serves as a minoy function code rather
than as an operand qualifier. When =70, the j-designator combines with f to
form the function code, and may not be coded. '

As an operand qualifier in the case of partial word transiers to the arithmetic
section, j specifics which half-word, third-word, or sixth-word is to be
utilized. The transfer is always to the low order positions of the arithmetic
section. In transfers from the arithietic section, j specifies into which
half-word, third-word or sixth-word the low order positions of the word in
the arithmetic section will be transferred.

In half-word transfers to the arithrnetic section, j can specify whether sign
extension is to take place. If it is specified by coding j as 3 or 4, the most

~ significant bit of the half-word fills positions 35 thru 18 of the control register.

If sign extension is not specified, i.e., j is coded as 1 or 2, positions 35

through 18 are zero filled.

Sign extension always occurs for third-words and never occurs for sixth-words.
No sign extension occurs for transfers from the control registers.

The mnemonic letter codes used in assembly language corresponding to. the .
numerical j designators are given below.

When j equals 16 or 17, the u-field of the instruction becomes the effectivé
operand rather than the address of the operand. When j is coded as 17, sign

extension is effective,

J-designators are totally ignored when "U' is a control register, except for
016 & 017, which behave normally.

2.3.2.3 The Register Designator Field, a

The entry in the A subfield represents the absclute control store address uf
~an arithmetic, index, or R register as required by the instruction.

s =

2.3.2.3a A-Register Designator, A(a)

The a-designator normally specifies a control register location., For arith-
metic operations and some other operations which do not specifically reference
other registers, the a-designator specifies one of the 16 A-Registers.

2.3.2.3b X-Register Designator, X(a)

The a-designator is also used to reference any one of 15 index registers in
control memory. An X-Register is implied by the function code in certain
instructions. Control register 000000 cannot be normally referenced by an
a-designator.

2.3.2.3c R-Register Designator, R(a)

The a-designator is used to reference any one of 16 R-registers. An
R-register is implied by the function code in certain instructions.

Note: Any time a repcat count instruction is executed (such as BT, and all
search instructions) the repeat count must be in R1. Univac documentation
does not mention this!

2.3.2.4 Definition of Registers In Assembler Programs

A procedure in the library is available which wren called by

AXRS$

will define symbols for the useable user registe® set as follows:

Ai, i=0,1,...,15 are defined for accumulators.
Xi, i=1,2,...,11 are defined for index registers.
Ri, i=1,2,...,15 are defined for R-registers.

The accumulators AO through A3 may also be used as index registers,
corresponding to X12,X13, X14, X15 respectively. Also the j subfield of an
instruction is defined by the AXR$ procedure as follows:

H1 and HZ2 refers to I Hi [H2 I

XH1 and XH2) refers to L HI i H2 |, sign extension
T1, T2, T3 ° refers to | Tl | T2 | T3 |

Q1,02,03,0Q4 refersto | QI | Q2 | Q3 | Q4 |

(Note: quarter-word references may only be used in special circumstances)

S1, S2,S3, S4, S5, S6 refersto | Sl [s2 | s3 [s4] s5 | s6|

U v - refers to immediate operand

XU refers to immediate operand, sign extension

w refers to whole word operand

2.3.2.5 Index Registef Designator, x

The format of the indexing information stored at the control register address
specified by the x-designator is shown below. Bits 17-00 (X,) contain the
address modificr which is added to the u address; bits 35- 1]}’{(,{ contain an

e

increment which may, if desired, be used to change the value of XM. This
increment may be positive or ncgative.

35 XI 18 17 XM 00

2.3.2.5a Index Register Incrementation Designator, h

When the h-designator is coded as 1, the value of XM in index register X is
increased by the value of Xj. This incrementation takes place during the
instruction; after the addition of u and the index register, in forming the
effective address. When h is 0, no incrementation takes place.

The entry in the X subfield represents the specific index register to be used.
Index register incrementation is indicated in asseinbly language by means of

an asterisk preceding the X subfield (e. g. “Xj. The 1108 is a cne' s comple-
ment machine and does pre-indexing. This rncans it increments first and then
performs the rest of the instruction.

2.3.2.6 Operaﬁd Address or Operand De sienato}, u

For all instructions the u {icld specifies an operand for the particular
instruction involved. For every instruction cycle the "effective u'' must
fi~st be calculated. If no address modification, then the coded u field is the

" effective u. If address modification is specified (by an entry in the X field)
then the right half of the specified index register is added to the coded '"u' and
the result becomes the effective u. For the case of indirection, see the
section below.

2.3.2.6a Indirect Addressing Designator, i

The i-designator specifies either direct or indirect addressing of the operand.
If i is coded as 0, direct addressing is specified, and u is the effective add-
ress of the operand. If i is coded as 1, indirect addressing is specified. Bits
21-00 of the u-addressed operand replace bits 21 -00 in-the current instruction.
Since the 22 bits include the x, h, i, and u-designators, all indexing, index
register incrementation, and indirect addressing operations can be cascaded
until the i-des/ignator in one of the temporarily formed instructions is 0. If
j<16, normal partial-word operations on the contents of the address specified
by u are performed at the end of cascading. If j=16 or 17, cascading is
halted when either the i-designator or the x-designator, or both, become

zero; the value in u 17-00 becomes the actual operand. Thus, for j=16 or 17,
indirect addressing is not only ccnditioned by the i-designator, but is also con-
ditioned upon the x-designator being a non-zero value.

The entry in the U subfield represents the operand base address. Indircct
addressing is indicated by means of an asterisk preceding the U subfield
(e.g. *U). ‘ :

W

2.4 Continuation

If a semicolon (;) is encountered outside of an alphabetic itern, the current linc
is continued with the first non-blank character on the following line. Any char-
acters on the line after the ; are not considered pertinent to the program
assembly, and are transferred to the output listing =2: comments. A semicolon
should not be used within a comment unless it is des.red to continue that com-
ment on the next line. If a line is broken within a subfield, the semicolon must
immediat:ly follow the last character of the previous line, with no intervening
blanks.

2.5 Termination

A period followed by a blank (.) terminates a lire of coding except when it
occurs inside an alphabetic item. Any additional subfields implied by the oper-
ation field are taken to be zero. The space fol'cwing the period avoids con-
fusion with the notation for floating point num'ers which use the period without
a space. A continuation or termination mark rnay occcur anywhere on a line
except as noted above. Following the iniormation portion of a line, any char-
acters may be entered as comments except the apostrophe ('),

2.6 Ejection of Paper .

A slash (/) appearing in column one advances paper in the printer to the top of
the next page. This same line may also contain a line of coding with the label
field starting in column two. If it is desired to use the remainder of the line as
a comment, a period must follow the slash. :

2.7 Data Word Generation

A + or - in the operation field, followed by one to six subfields géherates a
constant word. The + or - sign may be separated from the subfields by any
number of blanks. If the + sign is omitted, a positive value is assumed.
Subfields are separated by commas, which may be foliowed by one or more
blanks.

If the operand field contains one subfield, the value of the subfield is right-
justified in a signed 36-bit word unless the value is double precision in which
case it is right-justified in two 36-bit words. If the operand field contains

two subfields, a data word containing two 18-bit subfields is created; the value
of each subfield is right-justified in its respective field. Similarly three sub-
fields generate three 12-bit fields and six subfields generate six 6-bit fields.
Each subfield in the operand field may be signed independently (i.e., comple-
mented if the subfield is preceded by a -).

If the operand field contains one subfield immediately followed by a D or a
value greater than 36 bits in length, the 1108 assembler generates a seventy-
two bit value contained in two consecutive thirty-six bit computer words. The
seventy-two bit value is signed and right-justified.

2.7.1 _l",:._siEressions_

An expression is an elementary item or a sesries of elersentary items connected
by operators. Blanks are not permitted within an expr-ssion. The combination
of single and double precision values generaily cesu’ « in a double precision
value.

2.7.1.1 Tlementarv Items

An elementary item is the smallest element of assermibler code that can stand

alone; an elementary item does not contain an ope: ctor

2.7.1.2 Octal Vahues

An octal value may be an elemeuntary itemm. Su soitern is a group of octal
integers preceded hy a zero., The assembley creaies a hinary cquivalent of

Hothe sigu is omitted, the

the item' s value right-justified in a signed fi=to,
value is assumed to be positive.

For example,

+017 PRODUCES OCTAL WORD 000000000017
-074 PRODUCES OCTAL WO LD 777737777703
-021 PRODUCES CCTAL WORD 777777777756

A double precision octal value is produced by writing a constant larger than
36 bits or by placing a letter D immediately after the last cctal digit.

2.7.1.3 Decimal Values

A decimal value may appear as an elementary item witlin an expression, A

decimal item is a group of decimal integers not preceded by a zero., Such a
decimal value, is represented by a right-justified and signed binary equivalent
within the object field. If the sign is omitted, the value is assumed to be
positive.

For example,

+ 12 PRODUCES OCTAL WOKRID 0ub000000014
+2048 PRODUCES OCTAL WORID 6000000064000
-04162 PRODUCES OCTAL WORD 777777767675

A double precision decimal value is produced by wyiting a value larger than

36 bits or by placing the letter D immediately following the last decimal digit.

2.7.1.4 Alphabetic Jtems

Alphabetic characters may be represented in 6-bit Fieldata code as an elemen-
tary item. The characters must be enclosed in apustrophes. It is not per-
missable to code an apostrophe within an alphabetic item. An alphabetic item

-10-

appears left-justified within its field. If there are less than six characters,
the alphabetic item is followed by Fieldata blanks (05 for each blank).

If an alphabetic item is preceded by a plus or minus sign, it may contain a
maximum of 12 characters. A positive signed value zv_cars right-justified
within its field with the remaining field filled in with zeros. A minus sign
preceding the value produces the complement of the value and appears left-
justified in the field. If the number of characters is less than seven, only

one computer word is used. An alphabetic item used as a literal is assumed
to be preceded by a plus sign. A D immediately following the right apostrophe
forces double precision. ‘

'HEAD!' PRODUCES OCTAL LEFT-JUSTIFIED 151206110505
+ "HEAD' PRODUCES OCTAL RIGHT-JUSTIFIED 000015120611
- 'HEAD7890' PRODUCES 151206116770 716005050505
+ 'HEAD7890' PRODUCES 0000000C¢1512 061167707160
+'HEAD'D PRODUCES 000000000000 000015120611

2.7.1.5 Floating Point and Double Precision

A floating-point decimal or octal value may be ripresented as an elementary
item by including a decimal point within the desired value. The decimal point
must be preceded and followed by at least one digit. The letter D must imme-
diately follow the last digit with no intervening spaces. If the sign is omitted,
the value is assumed to be positive.

+16384.0 PRODUCES FLOATING-POINT WORD 217400000000

+16384.0D PRODUCES 201740000000 000000000000
19.0D PRODUCES 200546000000 000000000000

3. Subroutine Linkage

The following information pertains to the F@RTRAN defined standard subroutine
linkage. By following the FGRTRAN conventions, an assembly language pro-
gram may. link to, and be linked to, a program unit written in another language.
Tt should be noted that X11 must be used for all subroutine and function linkages
with system defined subroutines and functions. Thus, it may be necessary to -
save the contents of X11.

3.1. Calling Sequence

A subroutine, SUB, with i arguments would be called from FORTRAN by the
statement

CALL SUB(<ARGI1>,<ARG2>,...,<ARGi>)
or, if SUB was a function-type subprogram, by
<variable> = SUB(<ARGI1>, <ARG2>,...,<ARGi>)

The corresponding assembly language code, expressed in Bacus Normal Form,
is :

S §

LMJ X11,SUB
+ <ARGI>
+ <ARG2>

+ <ARGi>
+ <line identification>, <walk-back packet>

The names used in the call have the meanings described below.

<ARGi> 1is the symbolic label assigned to the ith argument

<line identification> 1is the number assigned to the subroutine
call for identification purposes. The as sémbly language
programmer may use any (small) integer,

<walk-back-packet> is the symbolic label assigned to a two word
sequence, described below, which EXEC 8 uses in case
of an error.

The assembly language program must contain a <walk-back-word>, as the

last word in the subroutine linkage is called. Upon return from the subroutine,
execution will begin with the word immediately after the walk-back word. Note
that for a subroutine with i arguments there are i+1 words after the LMJ.

If the subroutine called wanted to load <ARGZ> iito A0 the form of the
assembly code would be

LA A0, *1, X11

3.1.1 Abnormal Return

If an argument is to be specified as an abnormal return (in F¢RTRAN, $<state -
ment label>) then the corresponding word in the assembly language subroutine
linkage would be '

J <label>
where <label> is the symbolic label to which control is to pass if an abnormal

return is made.

3.1.2 Function Value Return . .

"If the subprogram is function-type the calling program expects to find a result |
in A0, (If the subprogram is double precision, the result is in A0 and Al.) The
subprogram must leave the calculated result in A0 before returning. It is the
job of the calling program to retrieve the result left in AO.

3.1.3 Normal Return

If an argument is to be specified as a normal return, then the corresponding
word in the assembly language subroutine linkage would be

I i+2,Xl11

where 1 is the number of arguments.

12

3.2 Usc of Reygisters by Subroutines

A subprogram may use accumulators A0 through A5 and R-registers R1 through
R3 without saving them. All other registers used in the subprogram must be
saved upon entry and be restored before return.

3.3 The Walk-Back-Packet

The walk-back-packet is a two word pair of locations which are referenced by
every subroutine call. These words contain information and are not executable.
The first word is the Fieldata name of the program unit. The second word is
zero if the program unit is a main program. If the program unit is a subpro-
gram, the second word should contain the contents of X11 upon entry to the
subprogram. '

For example, in a subroutine RTNE the following assembly language sequence
might be used

WBCK$ 'RTNE'
: + 0 .
RTNE* SX X11, WBCK$+1

4, Termination of Execution

It is bad form to terminate execution by "running off the end of the program. "
Two ways to return control to EXEC 8 are:

ER EXIT$ - If no errors, a normal exit occurs.

ER ERR$ - The A, X, and R registers will always
be dumped upon exit.

In case you are wondering, ER stands for '""Executive Request. "

5. Assembler Directives

The symbolic assembler directives within the 1108 Assembler control or direct
the assembly processor just as operation codes control or direct the central
computer processor. These directives are representea by mnemonics which
are written in the operation field of a symbolic line of code. The general for-
‘mat for directives is, '

<label> DIRECTIVE <value>
though all directives do not necessarily include all three fields. Of the fifteen

directives available, only a few are discussed here.

5.1 The Reserve Directive, RES

The RES directive increments or decrements the control counter. The oper-
and field of the directive contains a signed <value> that specifies the desired
increment if positive, or decrement if negative. This value may be rcpre-
sented by any expression. The format is:

clahals RES <cvaluies

~13-

Symbols appearing in the expression <value> must be defined prior to the RES
line in which they appear.

The RES directive may be used to create a work area for data, which is not
cleared to zeroes. If a label is placed on the coding line which contains a RES
directive, the label is equated to the present value of the control counter which
is, in effect, the address of the first reserved word.

5.2 The END Directive, END

The processing of an END directive indicates to the 1108 Assembler that it has
reached the end of a logical sequence of coding. The format is:

END <starting Label>
An END line must not include a label.
The interpretation of the operand of an END directive depends on its associated
directive. When an END directive terminates a main program assembly, the

operand field specifies the starting address in the object code produced at
execution time. ’ : :

5.3 The Equate Directive, EQU

The EQU directive equates a label appearing in its label field to the value of the
expression in the operand field. It is possible to generate a double precision
equatle statement by having the operand contain one numeric subfield immediately
‘oliowed by the letter D. The EQU must include all three fields.

LABEL EQU VALUE

A value so defined may be referenced in any succeeding line by the use of the
label equated to it. If a label is to be assigned a value by the programmer, it
must appear in an EQU line before it is used or referenced in subsequent lines
of symbolic coding. Otherwise the label is considered undefined.

If a particular expression is used frequently throughout a program or procedure,
it is highly expeditious to use the EQU directive to substitute a simple label for

the entire expression.

5.4 LIST and UNLIST Directives

The LIST and UNLIST directives allow the programmer to control the listing

of the assembler. The LIST directive allows the programmer to override the
effect of; no options on the ASM control card, the N option on the ASM control
card, or a previous UNLIST directive that suppressed the listing. Likewise the
UNLIST directive allows the programmer to override the effect of the S option
on the ASM control card or a previous LIST directive. It should be noted that:

1. LIST and UNLIST directives . may be used in the program
as often as desired, but must be removed in order to
obtain a complete program listing.

2. The UNLIST directive image is not printed.

3. No label or operand is used.

-14-
The format is:
LisY
UNLIST

5.5 The FORM Directive, FORM

The FORM directive is used to set up a special word forrat which may include
fields of variable length. The forinat is:

LABEL FORM «(]:'71 pE «;17‘2”>, ooy m L, <Fni;>

i
The operands <F > specify the namber of bits desired in each field. The

, 1 .) - . .
sum of the n values of]si st equal 36 or 72 depending on whether a single
or a double precision form word is desired.

By writing the label of the FORM directive, the forim defined in that line of
coding may be referenced from another part of the program. The label of

the FORM line is written in the spevation field a0 is followed by a series of
expressions in the operand tield, The expressisns in the operand field specify
" the value to be inserted .in sach ficld ui the generated word or words, When
referencing the FORM directive an E flag will be setl if either =n Fi' s

are not supplied or if the nurnber assigned to a particular Fi is larger than
the number of bits specified in the FORM statement,

6. Input/Output

nput/output is most easily accurmplished vie the FYRTRAN formatied input/output
package. The following discussion will asswne that you are familiav with input/
output from FYRTRAN or MAD. “

6.1 The Format Specification

Unlike FORTRAN, where there exists a special statement to create @ format
specification, assembly language creates a format specification by enclosing
it in primes. The format includes the opening and closing parenthesis. The
format is referenced by the symbolic name located in the label field on the line
of code. The form is ‘

<labels> "(<iormat specification>)’
For example:

e FRM'T "{THUSAMPLF, K104, 319)"'

6.2 Assembler Output

6.2.1 Line Printer Output

When output is to occur on the printer, the following three words are used to
call the appropriate cutput subroutine

LMJ X11,NPRT$
+ 1, < format label>
+ <walk-back words

e
b33

The executive request PRINTS nwy o
example of the coding for PRINTY wsiuyg -

s sove

IMAGE ' HO HULM:
LA AU, (B 5, 1, Thda Gl o ey

from

to E # owords

St where

ER PRINTS o TR

This will cause the pricter o cwip 9 lioes cod gl 2000 100 S0 o s

If you want to be fricky you oun 1o e v eand de the following:

IMAGE T HO UM
LA AG, {0501, Thasise)
ER PRINT$

This will do the sawe thing oy the

6.2.2 Output To Uther Device.

When output is to go to a legal wott odier than the L ter the cuseumnbly

language code sequence is:

LAY KL, NWDUS
+ i, {<units)
+ , U, <tormet laoel

o + s walk-back we

6.3 Asserubler Input

6.3.1 Reader Input

O e s ek, Tl Eiiiig'ﬁi‘el‘l‘a 20lE

For input from'the card reada., fsletype

LMJ L NEDO$
+ i, wiormat labels
N\ + <walk-back words

=

An alternate way of reading is by the ewecutive vequest Bua 0§, The
assembly language code would i

LA AQ, (<trans
ER READ$
<starting address |

r labels | < steriing a

where: <transfer> label is where tu go whew e end o
< starting address label> is the base address ui the storage avea
<value> is the size of the storage aves

At the completion of the execulive request HZ o AU will contain the unurnber
of words read.

- -16-:

6.3.2 Input With END Clause

Corresponding to the F@PRTRAN input '
READ (<unit>, <format label>, END=<transfer label>)...

the assembly language code sequence is

ILMJ X11,NRDU$

+ 2, (<unit>)

+ 0, <format label>
+ <walk-back word>
+ 2, <transfer label>

6.4 Performing the Input/Output

Once the format has been transmittad, the variable location for each variable
is transmitted by the pair

LLA,U -AQ0, <variable reference>
SLJ NIG1$

When all the variables have transmitted, the following line executes the output

SLJ NIg2$

7. Simple Assembly Procedures

7.1 The Functioning of Procedures

There are times while programming in assembly language when it becomes
necessary to repeat blocks of code which are virtually identical except for
several common subfields of the instruction, e.g.:

I) TLE,U A0,'9'+1 II) TLE,U Al,'9'+1
TG,U A0, 'O0! TG, U Al,'0!'
J N@TNUM J ALPHA?2

In both cases, the net effect is to test a given register to see if it has a field-
data number in it, and if not, transfer to some location. Now, if the program
. required many recpetitions of this code in many different places, then just the
task of writing it would be burdensome, and moreover, if others were to look
at such a program, then its sheer bulk might very well be detrimental to their
understanding the program flow. Thus it would be very helpful indeed if there
were some way we could specify the skeleton of a block of code (a template,
so to speak), and then reference that code by a short statement.

-17-

7.2 Creating a Procedure

The 1108 Assembler has the capability of being givén a block of skeleton state -
ments which may be rcferenced, and thereby be inserted into the object code,
by a single statement. This is ¢ficcted by the use of the assembler directive
PR@C (short for Procedure, the Univac equivalent of what the rest of the world
calls a macro). We [irst give au example of a simple PRPC, and then the form
and use of PRPCs in general.

If, using the above example, we placed at the beginning of the program the
following skeleton:

P PRPC
TLE,U DP(1,1),'9'+1
TG, U P(1,1),'0"
J P(1,2)
END

then the single statement
‘P A0, NgTNUM

would generate a block of code equivalent to 1) above, and
P Al, ALPHAZ

would produce block II).

The general form of a reference to a PRPC skeleton is:

~ <PR®C-NAME> <ARGLIST>
where
<ARGLIST> has the form
<fieldl> <field2> e <fieldk>

and where the ith ficld has the form
_<subfieldl>, <subfield2>, ..., <subfieldM>
where
<PRPC-NAME>

.is a name associated with a given skeleton and the fields and subfields are
"arguments' with which the assembler will fill out the skeleton. Itis im-
portant to note that ficlds arc separated by blanks and subfields of a given
field by commas.

In the above example, the PRGPC name is P, and there is only one field which
has two subfields. Another example would be:
JUMP A5 LAO0100, [.A0200, LLA0300, LA0400 ERR350

In this case, JUMP will be a name for a PRPC skeleton, and there are three
fields, the first of which has onlyv one subficld, the second four, and the third
one.

-18-

7.3 Declaring a Procedure

Now that the syntax of a skeleton has been established, it would be beneficial
to know how to tell the assembler that something is indeed a PRPC skeleton.
This is done by evoking the asscembler directive PROC, The form of declaring
a PRPC skeleton is

<PR@C-NAME:> % PROC

where <PR@PC-NAME> is the name to be attached to the skelcton and starts
in column one. As soon as the assembler encounters a PRPC card, all cards
thereafter are considered part of the skeleton until the PRPC' s associated
END card is encountered. This END card is included in addition to the pro-
gram END card and is needed for every PROC to signify the end of a logical
block skeleton.)

7.4 Using a Procedure

All we need now is the mechanism for picking up the arguments to be inserted
into the skeleton. This is done by using what Univac calls paraforms (which
is indeed quite surprising, as that is the correct term). A paraform has
(forgive me) the form)

<PR@PC -NAME> (i, j)

where i and j are integers greater than zero. This paraform references
the jth subfield of the 1’Ch field on the line which referenced the PR@C.
Using our first PRPBC example:

P PRAC
TLE,U P(1,1),'9'+1
TG, U P(1,1),' 0"

J P(1,2)
END
and the call
) P A0, NGTNUM

we have that: the paraform P(l1, 1) references the first subfield of the first
field of the call, i.e., A0, and the paraform P(l,2) is equated to the value
of the second subfield of the first (and only!) field of the call, namely,
N@TNUM. In our seccond sample call, the various arguments would be refer-
enced by:

A5 = JUMP(1, 1)
LA0100 = JUMP(2,1)
1.LA0200 = JUMP(2,2)
LAO0300 = JUMP(2, 3)
1.A0400 = JUMP(2, 4)

ERR350 = JUMP(3, 1)

-19-

8. The Assembler Code Listing

Accompanying the symbolic listing of your assembly language program is an
octal listing of the code generated by the assembler in instruction format. The
reason for this special format is that it is easier to see what has been outputed
if cach field is separated instead of compressed into the twelve octal bits as in
a dump. This format comes out exactly as it appears in an instruction word -
i.e., f,j,a,x,h,i,u.

For example:
Assuming LOC is program relative 043, we have

27 00 13 00 O O 000043 LX Xl1, LOC
where

27 is the function code for LX (as can be found in Appendix B).
13 is the register to be loaded (X11 - Remember, it is octal).
and 43 1is LOC.

Remarks:

1) As the A field of an instruction word is only four bits, those
instructions requiring A and R registers cannot have the actual
address loaded in so their designations are used instead - e.g.,
3 for A3 instead of 017. What actually happens is that the
assembler subtracts from the actual address 014 for A registers
and 0100 for the R! s. o

Thus
10 00 05 00 O 000043 LA A5,LOC
since A5 is at location 021 which would not fit in four bits.

2) The h,i field digit will assume only one of the values 0,1, 2, 3
as it represents a two bit field.

So,
0 = > neither h nor i bits set
"1 => only i bitis set
2 = > only h bitis set
3=>both h and i bits are set
e. g' 9

01 00 03 02
01 00 03 02
01 00 03 02
01 00 03 02

000043 SA A3,LOC, X2
000043 SA A3,*LOC, X2
000043 SA A3,LOC, *X2
000043 SA A3, *LOC, *X2

w N~ O

3) In the case where immediate addressing is specified, i.e., the
J-designator=016 or 017, the h,i field digit is no longer given,

-20-

but the six u-field digits represent the entire right half of the
word instead of the usual right most 16 bits, thus:

10 16 01 00 777776 LA,U Al,-1

instead of

10 16 01 00 3 177776 LA,U Al, -1

as older versions of the assembler produced.

For further discussion of this topic seec subsection 2.3.2.1

to 2.3.2.6a.

9. Diagnostic Processors

There are on the 1108 two prime vehicles for obtaining dumps of one' s pro-
gram area, the post-mortem-dump (PMD), and the dynamic (snapshot) dump.
By far, the most commonly used of the two is the PMD, but the PMD allows
one to see one' s program area only after execution, and if, as is often the
case, the dump is being used for diagnostic purposes, the state of the PMD
will only show the program areca after the damage has been done and will often
not reflect at all the initial course of the probléem. Because of this, one may
make use of the dynamic dump capabilities. Dynamic dumps allow the
assembly language programmer to, at will, selectively dump registers, pro-
grams, and/or data areas during execution.

9.1 Obtaining a Snapshot Dump Via X$DUMP

The code for generating the snapshots is inserted into the object code by refer-
encing the system procedure X$DUMP in the source program. The format of
the procedure reference is: ‘

X$DUMP <ADDR>,<LENGTH>,'<FORMAT>"','<REG.LIST>'

where:
<ADDR> is the first address of the area to be dumped.
<LENGTH> is the number of words to be dumped. '
<FORMAT> specifies the format of the dump (registers however
are always dumped in octal).
<REG. LIST> is any combinations of the letters A, X, or R,
specifying A registers, X registers, and R registers
respectively.
e.g., .

X$DUMP GARK,10,'S', 'XR'
will dump 10 (decimal) words in instruction format starting “at GARK and will

be preceeded by an octal dump of all X and R registers.

Only the first two subfields need be coded, in which case, no register will be
given and the snapshot will be given in octal (the default format option).

-21-

These are seven system defined formats available for use:

'S! - (4S30) - instruction format

rge - (8D14) - octal)

TA! - (16A6) - alphanumeric

vIt - (8114) - integer)

' - (8F14.8) - fixed decimal

'E! - (8E14. 8) - floating decimal

'D! - (4D28.18) - double floating decimal

Hints for using snapshot dumps:

1)

2)

3)

Care should be taken when using instructions such as J $+5, JGD A8, $-15
around X$ DUMP procedure calls, as the assembler generates four words
of object for each X$ DUMP reference.

Usually, the most helpful (and most often, the only helpful) use of snapshots
is to dump sets of registers at selected points in the program,’ in which
case one would use a reference such as:

X$DUMP BURF,1,'@', ' At

The first two subfields are necessary, since no dump would be taken if

‘the count were zero or not coded. One also usually codes a 1 for rcgister

dumps as seeing the program itsclf is seldom helpful.

Care should be exercised if using the 'F' format option in that if a word
is out of range for this format, the field is printed as all *' s, just as in

Fortran.

Since the size of the dynamic portion of DIAG$ (the file into which all
dumps are written) is fixed at 1,000 sectors, only approximately 2, 500
total words may be dumped per exccution.

9.2 Obtaining a Snapshot Dump Via SNAPS$

To call SNAP$ the following instructions are necessary:

S AQ, PKT ADDR+2 i
L,U A0, PKT ADDR
" ER SNAP$

Where PKT is a three word packet as follows:

WORD 35 32 17 0
0 snapshot identifier (6 characters field data)

1 XAR WORD-LENGTH START-ADDR

2 former AO contents

_22-

The XAR field contains an octal number wh1ch specifies which sets of control
registers to dump:

0 none 4 only X

1 only R 5 X and R

2 only A 6 X and A

3 R and A 7 all'registers

As an example, suppose somewhere in your program you had:

P . FORM 3,15,18
LABEL . '"FARBLE'

P 7,0,0

+ 0

Then the instructions

S A0, LABEL+2
L,U A0, LABEL

ER SNAP$

would dump all the registers only.

The following systcm proc call generates, in sequence, the necessary three
instructions, a J $+4 instruction, and the necessary three word packet,
which is everythmg needed to accomplish a SNAP$ request:

L$SNAP ! snapshot-identifier' » XAR, word-length, start-addr

Therefore, the following single line replaces the 3 lines used in the above
example!

L$SNAP 'FARBLE',7,0,0

9.3 Obtaining a Post Mortem Dump

Only the most important aspects of the @PMD processor will be shown here.
For further information consult U of M User Reference 70-01 or the Univac PRM.

The format of the @PMD statement is: .
@PMD, options

The options are:

E - dump only if run termates in error.

C - dump only"words that were changed during execution.
I dump just the I bank portion of the program.

D - dump just the D bank portion of the program.

NOTE: If both the I and D options are used, the effect is the same as if
neither was used (i.e., @PMD produces the same results asO@PMD, 1D).

-23-

9.4 Obtaining Dumps Via PDUMP

PDUMP is a Fortran subroutine that has been converted from the 7094 to the
1108. To call PDUMP from an assembly language program follow the sub-
routine linkage instructions given in section 3 of this manual.

A call to the PDUMP subprogram by the statement
CALL PDUMPA.,B,F ,...,A,B,F.,...,A ,B ,F)
1" 11 i1 n n n
causes the indicated limits of core storage to be dumped and execution to be
continued. An explanation of the arguments used with PDUMP are as follows:

1. A and B are variable data namecs that indicate the limits of core
storage to be dumped; either A or B may represent upper or lower
limits. .

2. Fi is an integer indicating the dump format desired:

F=0 dump in octal

1 dump as real
2 dump as integer
3 dump in octal with mnemonics

w

If no arguments are given, all of core y‘orage is dumped in octal.
4. If the last argument Fn is omitted, it is assumed to be equal to
0 and the dump will be octal. ’ ' '

10.

1.

24.

Glossary and Conventions

INSTRUCTION
FIELDS:

a-FIELD
DESIGNATOR
REFERENCES:

AXR
CONTROL
REGISTER
SETS:

'X-REGISTER

SUBSCRIPT
ADDRESSES:

REGISTERS:

f -
j -

a -

1}

P
"

field contains function code designator (f)

field contains operand qualifier or minor
functicn code (j)) ‘

field contains AXR-register designator, channel
designator, or console keys designator (a)

field contains index register designator (x)

field contains index register modification
designator (h)

field contains indirect addressing designator (i)
field contains address or operand designator (u)

value of ""a' designates console key

= value of "a' designates channel number
= value of "a' designates an A-register within

set of A-registers :

value of ""a' designates an X-register within
set of X-registers

value of "a' designates an R-register within
set of R-registers ‘ '

A-registers = Accumulators
X-registers = Index Registers
R-registers = Special Purpose Registers

Subscript M = lower half of X-register (Modifier)

Subscript I

U=
S
SI =
SD =
P
CR
AR

1]

upper half of X-register (Increment)

Program effective address (Relative Address)
Main Storage address (Absolute Address)
Main Storage address in I-Storage Area

Main Storage address in D-Storage Area

Program Address Register
Control Registers
Address Registers

7. SPECIAL SYMBOLS:
(

—
—~
~

@I@Gﬂ

)

1

-25-

contents of specified register or storage address,
subscripts indicate bit positions becing considered,
a prime (') superscript indicates the ones

complement.

Absolute value or magnitude.

direction of data flow or '"goes to"
logical AND function
logical OR function

logical EXCLUSIVE OR

UNIVAC 1108 Processor Word Formats Numbers above segments indicate the
number of bits in the segment.

6 4 4 4 1 1 16
fljlalx|hl] i u
18 18
Xi. XM
1 35
S
1 35
Aor U S
36
A+1or U+l
1 1
A or U S| S 34
36
A+l or U+l
1 35
A S
35 1
A+1 S

Instruction Word

Index-Register Word

Single-Precision
Fixed-Point Word

Double-Precision
Fixed-Point Word

Fixed-Point Integer
Multiply Result

Fixed-Point Fractional
Multiply Result (Right-
circular shift A+1 by
one to align least-
significant operand)

or

A+l

26~

35
S
35 18 17 0
S S 0
carry carry
35 24 23 12 11 0’
S S S
[} C C
8 27
S C M
1 8 27
S Cy M,
1 8 27
L My
1 11 24
S C M,
36
M

Fixed-Point Multiply

- Single-Integer Result

Add-Halves Word
Format

Add-Thirds Word
Format

Single-Precision
Floating-Point
Operand

Single-Precision
Floating-Point Result;

C, =Cy-27.

Word 2 contains un-
normalized least
significant result.

Double-Precision
Floating-Point
Operand or Result

—27-

APPENDIX A. CODE/SYMBOL RELATIONSHIPS

The following table shows the relationships between the octal computer

codes, the 80 column card codes, and the characters or symbols repre-
sented by these codes. - :

COMPUTER | cARD CODE |CHARACTER COMPUTER | copp CODE |CHARACTER
CODE (OCTAL) CODE (OCTAL) '
00 7-8 8 40 12.4-8)
01 12.5.8 [Qo 1" -
02 (11.5.8] 42 12 +
03 12.7-8 ¥ .43 ' 12.6.8 <
04 11.7-8 A 44 _ 3.8 =
05 (Blank) (Space) ‘ 45 . 6.8 >
06 | 121 _ A 46 2.8 &
07 12.2 B 47 11.3.8 $
10 12-3 c 50 11.4.8 .
1 \ 124] s1 0.4.8 (. .
12 12.5 E 52 b 0.5.8 - %
13 , 12.6 F 53 5.8 :
14 12.7 G 54 12.0 ?
15 12.8 H 55 1.]
16 1229 -) 56 - | 0.3.8 , (comma)
17 N J 57 . 0.6-8 \
20 T2 K 60 0 0
21 11.3 L 61 1 1
22 114 " 62 2 2
23 11.5 TN 63 3 3
24 11.6) 64 1 - 4 4
25 1.7 P 65 s 5
26 11.8 Q 66 6 6
27 11.9 R 67 7 7
30 0.2 $ 70 8 8
3 0.3, T n 1 9 9
32 0.4) 72. 8 | * (opostrophe)
33 0.5 v 73 1168 ;
34 0-6 w 74 0.1 /
35 0.7 3 L 18 ' ~ 12.3.8 .
36 ' 0-8 Y v 76 : 0.7-8 ()]
37 0-9 z 77 ¢ . 0-2.8 * (or stop)

APPENDIX B. INSTRUCTION REPERTOIRE

Tabte B-1 lists the 1106/1108 instruction repertoire in function code order. Table B-2 cross-references the mnemonic and
function code.

Function 1108 1106
Code (Octal) . . L Exccution Execution
Mnemonic Instruction Description ® Time Time
f) in jsecs. in jsecs,
00 - - Ilegal Code Causes illegal instruction interrupt - -
to address 2'”@
01 015 |s, SA Store A (AU .75 1.5
02 0-15 | SN, SNA Store Negative A ~(A)U 75 1.5
03 0-15 |SM, SMA Store Magnitude A HAY-U 75 1.5
04 0-15 | S, SR Store R (R)~U .75 1.5
05 0-15 |SZ Store Zero ZEROSU .75 1.5
06 0-15 |S, SX Store X (XaPU .75 1.5
07 - - Illegal Code Causes illegal instruction interrupt - -
) to address 241,
{
10 0-17 {L, LA Load A (U}>A 75 1.5
11 0-17 | LN, LNA Load Negative A ~(U)yA .75 1.5
12 0-17 | LM, LMA Load Magnitude A [(W)~A .75 1.5
13 017 |LNMA Load Negative BIONEYY . .75 1.5
Magnitude A
vl 1a 017 | A AA Add To A (AN (U}»A 75 1.5
15 0-17 | AN, ANA Add Negative To A (A)=(U)»A .75 1.5
16 0-17 | AM, AMA | Add Magnitude To A (AR (U)-A .75 1.5
17 0-17 | ANM, ANMA| Add Negative Magnitude (A)=|(U)|=A .75 1.5
to A
20 0-17 | AU Add Upper (AH(UPA+] 75 1.5
21 0-17 | ANU Add Negative Upper (A)=(U)PA+1 .75 1.5
22 0-15 | BT Block Transfer (Xy+ubX 4+u; repeat K times 2.25+1.5K 3.5+ 3.0K
always always
23 0-17 L, LR Load R (UPR, .75 1.5
24 0-17 A, AX Add To X (XaH(UPX, .75 1.5
25 0-17 | AN, ANX Add Negative To X (Xa)-(U)-Xa .75 1.5
26 0-17 {LXMm Load X Modifier (UrXx, X, unchanged 875 1.666
17-0 33-18
27 0-17 L, LX Load X (U)—‘Xa .75 1.5
30 0-17 |Mmi | Multiply Integer (AN (U)-A,A+1 2.375 3.666
31 0-17 ™SI Multiply Single Integer (AW(U»A 2.375 3.666
32 0-17 |MF Multiply Fractional (A)(U)yA,A+] 2.375 3.666
33 - - Illegal Code Causes illegal instruction interrupt - -
to address 241a
34 0-17 |{DI Divide Integer (A,A+1)+(UrA; REMAINDER-A+1 10.125 13.950
35 0-17 |DSF Divide Single Fractional (A)*(UrA+1 10.125 13.950

Table B-1.

Instruction Repertoire (Part 1 of 8)

-29-

Function 1108 1106
Cole (Dztal) , . - Execution Exccution
Mnemonic Instruction Descnptlon@ Time Time
£ i ‘ in psecs.® | in ysecs.®
36 0-17 | DF Divide Fractional (A,A+1)-(U)~A; REMAINDER-A:] 10.125 13.950
37 - - I1legal Code Causcs iltcgal instruction interrupt - -
to address 241c
40 0-17 |OR Logical OR (A) @3 (U)-A+] .75 1.5
a1 017 [xOR Logical Exclusive OR (A) FT53 (UrArl .75 1.5
42 0-17 |AND Logical AND (A) EXTY (U) A+ 75 1.5
83 017 [mLu Masked Load Upper [w) ‘:l'“ (rR2)) @ (A mm 75 1.5
) (R2) 1-A:1
44 0-17 | TEP Test Even Parity Skip N1 if (U) EXI9 (A) have even 2.00 skip 3.00 skip
parity 1.25 NI 2.166 NI
45 0-17 | TOP Test 0dd Parity Skip NI if (U) EXI (A) have odd 2.00 skip 3.00 skip
parity 1.25 NI 2.166 NI
46 0-17. LXI Load X Increment (U)—»Xa N Xa unchanged 1.00 1.833
35-18 17-0
47 0-17 | TLEM Test Less Than or Skip N1 if (U)<(X,) ; 1.75 skip 3.333 skip
Equal To Modifier 17-0 1.00 NI 1.833 NI
TNGM Test Not Greater always (X;) +(Xy) X
Than Modifier 17-0 35-18 17-0
50 0-17 | T2 Test Zero Skip N1 if (U)=10 1.625 skip 3.166 skip
875 Nt 1.666 NI
51 017 |TNZ Test Nonzero Skip NI if (U)#40 - 1.625 skip 3.166 skip
.875 Nt 1.666 NI
52 0-17 | TE Test Equal Skip NI if (Uk(A) 1.625 skip 3.166 skip
.875 NI 1.666 Ni
53 0-17 | TNE Test Not Equal Skip NI if (UY/(A) 1.625 skip 3.166 skip
.875 NI 1.666 NI
54 0-17 | TLE Test Less Than or Equal Skip NI it (U)Z(A) 1.625 skip 3.166 skip
TNG Test Not Greater .875 NI 1.66 NI
55 0-17 | TG Test Greater skip N1 if (U)> (A) 1.625 skip 3.166 skip
.875 NI 1.66 NI
56 0-17 | TW Test Within Range Skip NI if (AY(U)S(A+]) 1.75 Skip 3.33 skip
1.00 NI 1.66 NI
57 0-17 | TNW Test Not Within Range Skip NI if (UJ17(A) or (U)>(A+]) 1.75 skip 3.33 skip
1.00 NI 1.66 NI
60 0-17 | TP Test Positive Skip N1 1f (U), =0 1.50 skip 3.0 skip
75 NI 1.5 NI
61 0-17 | TN Test Negative Skip NI if (U), =1 1.50 skip 3.0 skip
. .75 NI 1.5 NI
62 0-17 | SE Search Equal Skip NI if (U)-(A), else repeat .. 2.25+ 75K 3.5+ 1.5K
always always
63 0-17 |SNE Scarch Not Equal Skip NI if (U)#(A), else repeat 2.25+ 75K 3.5+ 1.5K
always always
54 0-17 |SLE Search Less Than or Equal | Skip NI if (U)<(A), else repeat 2.25 + 75K 3.5+ 1.5K
SNG Search Not Greater always always
65 0-17 |SG Search Greater Skip NI if (U)>(A), else repeat 2.25 + 75K 3.5+ 1.5K
always always

Table B-1.

Instruction Repertoire (Part 2 of 8)

-30-

1106

[B1 or BD] Uy, Jump to U+1

Function 1108
Code (Octel) . . L5 Execution Execution
Mnemonic Instruction Descnpnono Time Time
f j in secs. O] inpsecs.®
66 0-17 | SW Search Within Range Skip N1 if (A)Z(UI<(AI1), else repeat | 2.25 + 76K 3.5+ 1.5K
always always
67 0-17 | SNW Search Not Within Range Skip NI if (UZ(AY or (UD(A+]), 2.25+ .75K 3.5+ 1.5K
else repeat always always
70 @ JGD Jump Greater and Jump to U f (Control Regisler)ja>0; 1.50 jump 3.0 jump
Decrement g0 to N1 if (Control Register), < 0;| .75 NI 1.5 NI
always (Control Regnster)ja—l-
Control Register;
ja
71 00 MSE Mask Search Equal Skip Nt it (U) EXTY (R2)=(A) NI | 2.25+ .75K 3.5+ 1.5K
(R2), else repeat always always
71 01 MSNE Mask Search Not Equal Skip N1 if {U) IT2W (R2#(A) (XM 2.25+ 75K 3.5+ 1.5K
(R2), else repeat always always
71 02 MSLE task Search Less Than Skip N1 if (U) B (R2)<(A) B5 | 2.25+ .75K 3.5+ 1.5K
cr Equal (R2). else repeat - always always
MSNG task Search Not Greater
71 03 MSG Mask Search Greater Skip N1 if () ERD (R2)>(A) IYI® | 2.25+ .75K 3.5+ 1.5K
(R2), else repeat always always
71 04 mMsw ‘| Masked Search Within Skip N1 if (A) EXTR (R2)<(U) EXB) | 2.25+ .75K 3.5+ 1.5K
| Range (R2)<(Ar]) EXN (R2), else repeat| always always
71 05 MSNW Masked Search Not Skip N1 if (U) EZ3) (R22I(A) X | 2.25+ .75K 3.5+ 1.5K
Within Range (R2)or (U) IXA (R2. A1) X9 | always always
(R2), else repeat .
71 06 MASL Masked Alphanumeric Skip N1 if (U) IS (R2)2(A) AW 2.25+ .75K 3.5+ 1.5K
Scarch Less Than or (R2), else repeat always always
Equal
71 07 MASG Masked Alphanumeric Skip N1 if (U) EXId (R2>(A) I | 2.25+ .75K 3.5+ 1.5K
Search Greater (R2), else repeat always always
71 10 DA Double Precision Fixed- (A, A+1H (U, U+ 1A A+] 1.625 3.167
Point Add
At 11 DAN Double Precision Fired- (A A+ D~(U,U+1)1+A A+ 1.625 3.167
Point Add Negative
71 12 DS Double Store A (A A+1)-U.U+1 1.50 3.0
71 13 DL Doubie Load A (U, U+1)>A A+1 1.50 3.0
71 14 DLN Double Load Negative A -(U,U+1)y:A Al 1.50 3.0
71 15 DLM Double Load Magnitude A (U UL PALAR] R 1.50 3.0
71 16 Diz Double Precision Jump to U if (A,Ao 1y=:0; go to NI if 1.625 jump 3.167 jump
N Jump Zero (A,A+1)£:0 875 NI 1.667 NI
71 17 DTE Double Precision Test Skip NI if (U, U+1)=(A A+1) 2.375 skip 4,667 skip
Equal 1.625 NI 3.167 NI
72 00 - Iltegal Code Causes illegal instruction interrupt - -
to address 2418
e 01 SL) Store Location and Jump (P)-BASE ACDRESS MODIFIER 2.125 always 3.83

Table B-1.

Instruction Repertoire (Part 3 of 8)

-

-31-

(A)357(A)y,s NUMBER OF SHIFTS
»A+]

Function 1108 1106
Code (Ciutal) . . . Execution Execution
. Mnemonic Instruction Descnphon@ Time Time

f J in ,/secs.@ in /LSECS.@

72 02 JPS Jump Positive and Shift Jump to U if (A),.=0: go to NI if 1.50 jump 3.0 jump
(M), =1, always shift (A left .75 NI 1.8 NI
circularly one bit position. always alweys

72 03 INS Jump Negative and Shift Jump to U if (A, .~1; go to NI 1f 1.50 jump 3.0 jump
(A), =0: always shift (A) left .75 Nt 1.5 NI
circularty one bit position ‘always alvays

72 04 AH Add Halves (A)as-‘a*('J)ns.|n“‘A35~\a;(A)w.o" .75 always 1.5 always

WUh7.0A 1500

72 05 ANH Add Negative Halves L P T 1 A .75 always 1.5 always
n(U)I7-'J’A|7-O‘

72 06 AT Add Thirds (AY o UYL AL LAY, .75 alwvays 1.5 always
U az.127A23.2: (Al gyt (Ulyyo
Al

72 07 ANT Add Ncgative Thirds (A)yg.o4—(U) ¢ “-»Aasv“;(A)Z;_m— .75 always 1.5 always

' (W ,a.,27A 502 (A o= (W)
—.Al 1-0

72 10 EX Execute Execute the instruction at U .75 always 1:5 always

72 11 ER Execute Return Causes cxecutive return interrupt 1.375 always 2.33 always
to address 242

72 12 - Iegal Code Causes iltegal instruction interrupt - -

@ to address 241,
72 13 PALJ Prevent All {/0 interrupts | Prevent all 1/0 interrupts and jump .75 always 1.5 always
: and Jump tou
72 14 SCN Store Channel Number 1t a=0: CHANNEL NUMBER U, -75 1.5
If a=1: CHANNEL NUMBER~U, ; and
CPU NUMBERUg_,

72 15 LPS@ LLoad Processor State (U)>Processor State Register .75 1.5

Register
72 16 LSL@ Load Storage Limits (U SLR .75 1.5

Register

72 17 - Ittegal Code Causes illegal instruction interrupt - -
to address 241,

73 00 SsC Single Shift Circular Shitt (A) right circularly U places .75 always 1.5 always

73 01 DSC Double Shift Circular Shift (A,At1) right circularly U places .875 always 1.5 always

73 02 SSL Single Shift Logical Shift (A) right U places; zerofill .75 always 1.5 always

73 03 “DSL Double Shift Logical shift (A, A1) right U places; zerofill .875 always 1.5 always

73 04 SSA Single Shift Algebraic shift (A) rightU places; signfill .75 always 1.5 always

73 05 DSA Doubte Shift Algebraic Shift (A A+1) right |y places; signfill 7| .875 always 1.666

always

73 26 LSC Load Shift and Cnunt (UY>A, shift (A) left circularly until 1.125 2.0

Table B-1.

Instruction Repertoire (Part 4 of 8)

=32~

1106

continuation, jump to U

Function 1108
Cede (Octal) . . C G Execution | Execcution
Mnemonic Instruction Des;nptlon ® Time Time
f] inpsecs. (0| inpsecs. ©
73 07 DLsC Double Load Shift (U.U+ 1A A+ L shift (A A+]) left 2.125 3.830
and Count circularly untif (A AL L) (A AL, 0
NUMBER QF SHIFTS-A:i2
73 10 LSSC Left Single Shift Circular Shift (A) left circularly U places .75 always 1.5 always
73 11 LDSC Left Double Shift Circular | Shift (A,A+1) left citcularly U places .875 always 1.666
alviays
73 12 LSSL Left Singte Shift Logical shift (A) left U places; zerofill .75 always 1.5 always
73 13 LDSL Left Double Shift Logical Sshift (A, A+1) left U places; zerofill .875 always 1.666
always
73 14 [|@ Initiate [nterprocessor Initiate interprocessor interrupt .75 always -
(a=0 or 1) Interrupt (1108 System
only)
ALRN@ Alarm Turn on atarm .75 always 1.5 always
(a-104) .
EDC@ Enable Day Clock Enable day clock .75 always 1.5 always
(a:11,)
)
DDC- Disable Day Clock Disabte day clock .75 always 1.5-always
(a=12,)
73 15 S!L@ Select Interrupt Locations | (a**MSR .75 always 1.5 always
73 16 LCR Load Channel Select (U),.,°CSR .875 1.666
(a=0) Register
LLA@ Load Last Address (U),.o°LAR .875 1.666
(a-1) Register
73 17 TS Test and Set If (U)o 1. interrupt to address 244, | Alternate 3.166
if (U);5-0. go to NI; always 01, bank: 1.625
Uss. 300 (U),q.ounchanged interrupt
875 NI
Same bank: 1.666
2.0 interrupt
2.0 NI
74 00 Jz Jump Zero Jump to U if (A)=%0; go to NI it 1.50 jump 3.0 jump
(A)/+0 .75 NI 1.5 NI
always always
74 01 IJNZ Jump Nonzero Jump to U if (A)£:0; go to NI if 1.50 jump 3.0 jump
(A)=+0 .75 NI 1.5 NI
always always
74 02 JP Jump Positive Jump to U if (A),4=0; g0 to NI if 1.50 jump 3.0 jump
(A) =1 75 NI 15 NI
. . always always
74 03 JN Jump Negative Jump to U if (A)"i—-l; go to NI if 1.50 jump 3.0 jump
(A), =0 .75 NI 1.5 NI
- always always
74 04 JK Jump Keys Jump to U if a=0 or if a=1it select .75 always 1.5 always
Jump jump indicator; go to NI if neither
s true
74 05 HKJ Half Keys and Jump Stop if a=0 or if|a QI it select .75 always 1.5 always
HJ Half Jump stop indicators|/0; on restart or

Toble B-1.

Instruction Repertoire (Part 5 of 8)

-33.-
Function 1108 1106
' . . . xecution ecuti
Code (Octal) Mnemonic Instruction Description® E cun Ex cution
. Time Time _
f j inpsecs. & | in psecs. ®
74 6 NOP,‘ No Operation Proceed to next instruction .75 always 1.5 always
74 07 AAI> Allcw Ali 1’0 Interrupts Allow all 170 interiupts and jump .75 always 1.5 always
tou
74 10 INB Jump No Low Bit Jump to U if (A)~0: go to NI if 1.50 jump 3.0 jump
(A)g=1 75 NI 1.5 NI
* always always
74 11 JB Jump Lovw Bit Jump to U if (A) =1: go to NI if 1.50 jump 3.0 jump
(A).: 0 .75 NI 1.5 N!
always always
74 12 JMGI Jump Nodifier Greater and | Jump to U f (Xy) -0: go to NI if 1.50 jump 3.166 jump
Increment 179 75 NI 1.5 NI
(Xz) 20 always (X)) + always always
$7-0 17-0 -
(X,) ~Xg
3518 17-0 .
74 13 LMy Load Modifier and jump (P)~BASE ADDRESS MODIFIER 875 always 1.666
[B1or BD| X, i Jumptou always
17-0
74 14 Jo Jump Qverflow Jump to U 1f D1 of PSR=1; go to NI 1.50 jump 3.0 jump
if D1-0 .75 NI 1.5 NI
always always
74 15 INO Jump No Overfiow Jump to Uif D1 of PSR-0; g0 to NI 1.50 jump 3.0 jump
if D11 .75 NI 1.5 NI
always always
74 16 ic Jump Carry Jump to U if DO of PSR=1; go to NI | 1.50 jump 3.0 jump
if D0=0 .75 NI 1.5 NI
always always
74 17 JNC Jump No Carry Jump to U if DO of PSR-0; go to NI 1.50 jump 3.0 jump
if DO=1 .75 NI 1.5 NI
@ always always
75 00 LiC Load input Channel For channel fa BX3 CSR]:(U)IACR; .75 1.5
set input active; clear input monitor
75 01 LICM@ Load Input Channel For channel [a @ CSR]:(U)~IACR; .75 1.5
and Monitor set input active; set input monitor
75 02 JIC@ Jump On Input Channel Jump to U if input active is set for .75 always 1.5 always
Busy channel [a GE CSR]; go to N1 if
input active is clear
75 03 DIC@ Disconnect Input Channel For channc! [a [E3 CSR]: clear .75 always 1.5 always
input active; clear input-monitor
75 04 |_ocGD Load Qutput Channel For channel [a BFIA CSRl:(U»OACR; | .75 1.5 always
. set output active; clear output *
monitor; clear external monitor
(I1S1 only)
75 05 LocMm Load Qutput Channel For channel [a EIA CSRI:(UOACR; | .75 1.5
and Monitor set output active; set output
monitor; clear external function
(1SI only)
75 06 Joc@ Jump On Qutput Jump to U if output active is set for .75 always 1.5 always

Channel Busy

channel [a GEZ.CSRI; go to NI if
output active is clear

Table B-1.

Instruction Repertoire (Part 6 of 8)

34

Function 1108 1106
d ctal . . xecuti ti
Code (C Mnemonic Instruction Descripﬁon@ E c.u ron ExeFu fen
Time Time
f i in usecs. @ | in ysecs. ®
75 07 DOC@ Dizconnect Qutput For channe! [a m CSRI: clear .75 always 1.5 always
Channel output active; clear output moartor;
clear external function
75 10 LFC@ Load Function in For channel {2 (I3 .CSR|: (U)» 75 1.5
Channel OACR. setoutput active (ISt only),
external functicn, and force external
function: clear output monitor (IS}
@ only)
75 11 LFCM Load Function in For channel [a (33 CSR]: (U} 75 1.5
Channel and Monitor OACR: set output active (15| only),
external function, force external -
function, and output monitor (IS!
only)
75 12 JFC® Jump On Function Jump to U if force external function .75 always 1.5 always
in Channel is set for channel |2 BI3 CSR);
go to NI if force external function
is clear
75 13 - Iltegal Code If guard mode is set, causes guard .75 always _1.5 always
mode interrunt to address 243g. If
guard mode is not set, same as NOP
75 14 AACI Altow All Channel Allow all external interrupts .75 always 1.5 always
External Interrupts .
75 15 PACl@ Prevent All Channel Prevent all external -interrupts .75 always 1.5 always
External Interrupts
75 16 - tHlegal Code If guard mode is set, causes guard
mode intorrupt to address 243,. If .75 always 1.5 always
75 17 - fliegal Code guard mode 1S not set, same as
NOP
76 00 FA Floating Add (A} (UXA, RESIDUE~A+1 1.875 3.0
76 01 FAN Floating Add Negative (A)=(U) »A; RESIDUE~A+1 1.875 3.0
76 02 FM Floating Multiply (A)»(U)>A A+ 2.625 4.0
76 03 FD Floating Divide (A){Uy>A; REMAINDER-»A+1 8.25@® 11.5
76 04 LUF Load and Unpack (U 54.55A, . 2zeTofill; (U)yq.0 .75 always 1.5 always
Floating A+l4. ., signtill
76 05 LCF Load and Convert To (U)yeA+ T, [NORMALIZED (U)l?ﬁ_o 1.125 2.0
Floating SAHL e o0 111U S0, (A), o
NORMALIZING COUNT-A+1,, .,
if Uy, =1, ones complement of
[(A),.s*NORMALIZING COUNT]-
Atlygzg
76 06 MCDU Magnitude of Characteristic| [{(A) . =[(U) , ,,1>A+1, i - .75 always 1.5 always
Difference To Upper ZEROS»A+l g
76 G7 Ccbu Characteristic Difference S(AY 35,37-:(U){35.2,-'A+18_°; SIGN .75 always 1.5 always
To Upper BITS~A+1,4. 4
76 10 DFA Double Precision (ALA+HTH(U U+ 1A A+ 2.625 4.5
Floating Add
Table B-1. Instruction Repertoire (Part 7 of 8)

-35-

Function 1108 1106
Code (Octal) Mnemonic Instruction Descripﬁon@ Exe‘cuhon ExeFu?non
Time Time
t] in psecs. © | in psecs. ®
76 11 DFAN Double Precision (A, A+1)=(U, Ur1)»A, At 2.625 4.5
Floating Add Negative
76 12 DFM Double Precision (AA+1)-(U, U+ 1) A A+ 4.25 6.667
Floating Multiply
76 13 |oFD Double Precision (AAFD(U,UH1)A, A+ L 17.25® 24.0®
Floating Divide
76 14 DFU Double Load and !(U)§34_24-4Am.0, zerofill; (U),, 1.50 3.0
Unpack Floating A+l, o signfill; (U+1)A+2
76 15 DFP Double Load and (U),gArl, . [NORMALIZED
Convert To Floating (U U+ g o A4 L, o and A+2;
if (U),5=0,(A), .t NORMALIZING
COUNT At 1, . if (U);51,
ones complement of [(A)‘O_O:
NORMALIZING COUNTI A+l,, .,
76 16 FEL Floating Expand 11(U) 3670, (U),5.,,+1600,5A . 1.00 1.833
and Load if (U)gsz“]’ (U)35-27~16009"A35~24;
: (U)y6.a7Asq.00 (U)go?At 54 50
(U)35°Atl,z .,
76 17 FCL Floating Compress I (U) =0, (U)yg.,,—1600,~A ., 1.625 3.167
and Load if (U) 51, (U),q.,,+1600,>
Asszr (Udaa g?Rge.g (Uil g 5,
~Azo
77 0-17 - {legal Code Causes illegal instnjction interrupt - -

to addiess 241,

Table B-1. Instruction Repertoire (Part 8 of 8)

-36-

NOTES:

@ The execution times given are for alternate bank memory access; for same bank memory access, execution time is
.75 microseconds greater. Exceptions to this either show the execution times fer both types of memory access or
inciude the word “‘always’ to indicate that the execution time is the same regardless of the type of memory access.
For function codes 01 through 06 and 22, add .375 microseconds to the execution times for 6-bit and 12-bit writes.
The execution time for a Block Transfer or any of the search instructions depends on the number of repetitions (K)
requited: that is, the number of words in the block being transferred or the number of words searched before a find
1S made.

NI stands for Next Instruction.

The a and j fields together serve to specify any of the 128 control registers.

If 28 rather than 27 subtractions are performed, add .25 microseconds to the execution time.

If 61 rather than 60 subtractions are performed. add .25 microseconds to the execution time.

@ © 0 0

Execution times givén are calculated using a main storage cycle time of 1.5 microseconds and a CPU clock cycle
time of 166 nanoseconds.

For all comparison instructions, the first number represents the ékip or jump condition, the second number is for éno
skip or no jump condition.

For function codes 01 through 67. add .333 microseconds to execution times for 6-bit, 9-bit, and 12-bit writes.
Execution time for the Block Transfer and the search instructions depends on the number of repetitions of the instruc-
tion required. The variance is 3.0K microsecond: for Block Transfer and 1.5K microseconds for searches where K
equals the number of repetitions; that 1s, K equa's the number of words in the block being transferred or the number
of words searched before a match is found.

@ If 28 instead of 27 subtractions are performed, add .333-microseconds.

@ If 61 instead of 60 subtractions are performed. add .333 microseconds. .

@) Instructions so marked are illegal in guard mode.

-37-

1106/1108

1106/1108

110671108 110671108
Mnemonic|FPELOn) Inemonie | (T3nE00R) |IMenomic | FETETSR) liMenomic | (F8TESOR |
f J t] i N
A 14 o017 || OF 36 017 || FEL 76 16 || LcF 76 05
A 24 o017 || -oFa |78 10 || Fm 76 02 || LCR 73 16
AA 14 o1 DEAN |76 1 || HY 74 05 a=0
AACI |75 14 || oFo |76 13 || HkJ 74 05 || tosc | 73 11
AAIS |74 07 || vEm 76 12 || 73 14 || LosL 73 13
AR |72 04 {| oFp |76 15 a0 orl L.CF 75 10
ALREv.@ 73 14 DFU 76 14 J 74 04 LFCM 75 11
a-1G DI 3¢ o017 || JB 74 11 Lic 75 00
AM 16 0-17 || bpIcC 75 03 || Jc 74 16 || Licwm 75 01
AMA |16 017 || Dz 71 16 || JFC 75 12 || LLA 73 16
AN 15 o017 || oL 71 13 || Jop 70 t . a=1
AN 25 0-17 || DLM 71 15 || sic 75 02 || m 12 0-17
ANA |15 017 || DLN 71 14 || Ik 74 04 || Lma 12 0-17
AND |42 017 || obLsc |73 07 || Jma 74 12 || Lms 74 13.
ANH |72 05 || poc 75 o7 || Jn 74 03 || LN 11 0-17
ANM |17 017 || DS 71 12 || JNB 74 10 || LNA 11 017
ANMA |17 0-17 || Dsa 73 05 || nc 74 17 || unwa | 130 017
ANT |72 07 || bsc 73 o1 || Jno 74 15 || roc 75 04
ANU |21 017 || DSF 35 0-17 || NS 72«03 || Locm | 75 05
ANX |25 o017 || osu 75 03 || Jnz 74 o1 || urs 72 15
AT 72 06 || pTE |71 17 || Jo 74 14 || LR 23 - 0-17
AU 20 o017 || Ebc 73 14 || Joc 75 06 || Lsc 73 06
AX 28 017 a=llg P 74 02 || LsL 72 16
BT 22 015 || ER 72 11 || s 72 02 || Lssc 73 10
cou |76 07 || Ex 72 10 || iz 74 00. || LssL 73 12
DA 71 10 || Fa 76 00 || L 10 017 || LuF 76 04
DAN |71 11 || FAN 76 o || L 23 017 || Lx 27 017
ppc |73 14 || FoLt |76 17 || L 27 017 || Lxi 6 017
a1 FD 76 03 || LA 10 017 || Lxm 26 0-17
MASG |71 07 || s 01 o017 || ssA 73 04 || Top a5 0-17
mMasL |71 06 | s 04 017 || ssc 73 oo || TP 60 017
Mcou |76 06 || s 06 0-17 || ssL 73 02 || Ts 73 17
MF 32 017 || sA or o0-15 || sw- 6 017 || Tw 56 0-17
M 30 017 || scwn 72 14 || sx 06 015 || Tz 50 0-17
MLu {43 o017 || sE 62 0-17 || sz 05 015 || xoRr a1 017
MSE |71 00 || se 65 o017 || TE 52 017 || - 00
MsG |71 03 | siL 73 15 || Tep 017 - 07
NS 31 017 || SLE 64 015 || TG 55 0-17 - 33
MSLE |71 02 || sLJ 72 o1 || TLe 54 017 - 37
MSNE |71 01 || sm 03 015 || TLEM |47 017 - 72 00
MSNG |71 02 || swa 03 o015 || TN 61 0-17 - 72 12
MSNW |71 05 || s 02 o015 || TNE 53 0-17 - 72 17
Msw |71 04 || sna 02 o015 || TNG s4 017 - 75 13
NOP |74 06 || SNE 63 017 || TNGM |47 0-17 - 75 16
OR 0 017 || SNG 64 0-17 || T~Nw 57 017 - 75 17 -
PACI |75 15 || snw 67 o017 || TNz |51 o017 - 77
PAIS |72 13 || sr 04 0-17

t The j and a fields together serve to specify any
of the 128 control registers.

Table B-2. Mnemonic. Function Code

Cross-Reference

-38-

Table B-3

j - Determined Partial-Word Operations

S = Sign extension, where the sign is the leftmost bit of partial

word defined by j.

. PSR BITS FROM (U)=BIT BITS FROWM ARITHMETIC
J | BIT 17 MNEMONICS POSITIONS IN ARITHMETIC SECTION -
SECTION BIT POSITION OF U
00 - W or None 3B-0 =+ 35-0 35-0 = 35-0
01 - H2 17-0 + 17-0 17-0 > 17-0
02 - H1 35-18 > 17-0 17-0 » 35-18
03 - XH2 17-0 + S 17-0 17-0 + 17-0
04 0 XH1 35-18 + S 17-0 17-0 ~» 35-18
1 Q2 26-18 8-0 8-0 -~ 26-18
05 0 73 11-0 > S 11-0 11-0 > 11-0
1 Q4 8-0 = 8-0 8-0 ~ 8-0
06 0 T2 23-12 > S 11-0 11-0 5 23-12
1 Q3 179 - 8-0 8-0 - 17-9
07 0 T1 ©35-24 > S 11-0 11-0 » 35-24
] Q1 35-27 > 8-0 8-0 - 35-27
10 - S6 5.0 » 5-0 5-0 4 5-0
11 - S5 11-6 + 5-0 '5-0" 5 11-6
12 - S4 17-12 > 5-0 5-C -+ 17-12
13 - $3 23-18 + °5-0 5-0 - 23-18
14 - 52 29-24 > 5-0 5-0 - 29-24
15 - s1 35-30 -+ 5-0 5-0 - 35-30
16 - u 18 bits* » 17-0 NO TRANSFER
17 - XU 18 bits* > S 17-0 NO TRANSFER
* If x = 0: [h,i,u] is transferred (Exception: all 1-bits yield + 0)

If x#0: u+ (XX)

17-0

is transferred

C.1.

C.1.1.

C.1.2.

C.1.3.

APPENDIX C. ASSEMBLER ERROR
FLAGS AND
MESSAGES

ERROR FLAGS

R-Relocation

An R flag indicates that a relocatable item (usually a label) has been so used in an
expression as to cause loss of its relocation properties.

E-Expression

Expression error flags may be produced in a variety of ways, such as the inclusion
of a decimal digit in an octal number (for example, 080), and binary or decxmal
exponentiation with a real exponent (for example, 3.14%/1.2).

T-Truncation

The T flag 'indicates that a value is too large for its destined field. Consider the
following example:

F FORM 18,18
A EQU +(F 0.-3))
G . FORM 324

c o4 @

The form referenee in line (1) is legitimate, but (2) would produce a T flag, since
the value of A in this case is 000000777774, (a value with 18 significant bits), and
the second field of form “‘G’’ is defined as four bits in length.

The T flag will also appear on a line containing a location counter reference greater
than 31 (37, or 5.bits).

L-Level

This flag indicates that some capacity of the assembler, such as a table count, has
been exceeded, or the END directive is missing or incorrect. The limits
listed below are generous; but if one is exceeded, simplification of

coding is required.
(a) Nested procedure or function references may not be more than 62 deep.

(b) Parentheses nests,; including nested literals, may not be more than 8 deep; this
includes parentheses used for grouping pf terms.

(c) Nested DO’s may not be more than 8 deep.

-40 -

C.1.5. D-Duplicate

Labels, disregarding possible subscripts, must be unique in a given
assembly or subassembly. Redefinition of a label produces a D flag

on each line in which the label appears, unless the label is subscripted.
The obvious mistake '

A EQU 1

A EQU 2

is easily discovered. Much more insidious is the redefinition in
assembly pass 2 of a label previously assigned a different value in pass
1. This usually results from an illegal manipulation of a location
counter. ’

C.1.6. I-Instruction

If the first subfield in the operation field of a symbolic line contains
neither the name of a directive, nor an available procedure, nor a
FORM reference, nor a mnemonic, an I flag is produced. A pro-
cedure is considered available only if i’E is in the procedure library
(that is, the system relocatable library or a user' s file), or if it has
previously been encountered in the source program. With the current
level of the assembler (0011A), whenever an I flag is produced by the
assembler, the corresponding bad line of code is generated as a N@P
instead of 0' s as in previous versions. ' ’

C.1.7. U-Undefined

If an operand symbol is not defined in the source program, each line

containing the symbol is marked - with a U flag - as containing an

undefined symbol. In some cases, this may denote a reference to a

value externally defined in some other independently processed code.

But thereis the chance that a U flag.might simply denote an error by
* the programmer.

C.2. ERROR MESSAGES
1108 ASM Internal Error Abort

The assembler has lost control of what it is doing. This may result
from nearly any cause including an anomaly in the assembler or exec-
utive system, or an undetected data transmission error. Index regi-
ster X11 contains the location at which the error was detected. The
assembly is terminated in error.

Abort Cannot Read PROC from Drum

An I/O error resulted when the assembler attempted to read a procedure
from a drum or FASTRAND file. The assembly is terminated in error.

-41-

Assembler Image

An end of file was detected oﬁ the source file. An END card with the

above comment is supplied. Processing term1nates normally, but the
element is marked as being in error.

ASM Abort no Scratch File AD XXXXX = .
The assembler is unable to dynamically assign a scratch file. The A0 value indicated
is the status word returned by the executive system. For meaning of the status word,

see UNIVAC 1108 Multi-Processor System Executive Programmers Reference
Manual, UP-4144 (current version). The assembly is terminated in error.

Bad Procedure Read

An 1/0 error was detected in attempting to read a procedure sample from mass
storage. Processing continues by searching next mass storage procedure file.

Item Table Overflow

Insufficient space exists for the assembler to define a symbol or literal. The
assembly is terminated in error.

Line Number Sequence Errors

The symbolic corrections inserted as input to this assembly are out of sequence.
The assembly continues. Source lines following the out-of-sequence correction card
will be inserted at the point at which the error is detected.

PARTBL Not Initialized

The preprocessor routine is unable to initialize the assembler parameter table.
Probable causes are incorrect file assignments, incorrect processor control card, or
I/0 error. The assembly is terminated in error. The preprocessor also prints a mes-
sage indicating the nature of the erior. A

Procedure Sample Storage Overflow

Insufficient space exists for the assembler to process a line of procedure definitions.
The assembly is terminated in error.

ROR Internal Error Abort -
The relocatable output routine is unable to write a record of relocatable binary out-

put probably because of an I/O error or improper file assignment. The assembly is
terminated in error.

TBLWRS Internal Error Abort

The relocatable output routine is unable to write the preamble to the relocatable
output file (probably because of an I/0 error). The assembly is terminated in error.

QUICK REFERENCE FOR DECODING ASSEMBLY LISTINGS

27 00 13 00" 0 » 000043 LX XN,

f J a X h i u K
function code and j A,X,or R - ~-hi | -meaning ‘| action address of LOC
designator from a |register x| X register - : Y :

Appendix B Table B-2 number 9 0 | neither bit set noo1n91rectiog o
and B-3 page 37-38 5 . 5o L r incrementation .
1 1 11x 1 |1 bitset indirect addressing
2 2 2 | X2 2 | hbit set index incrementation
3l 5 3 | h &1 bits set | do both 3
5 5 51X5 m S
6 6 6 | X6 = '
7 7 7 |X7 >
10 8 10| X8 o
11 9 111 X9
12 10 12] X10
13 11 131 X11
14 12 ¢ 14{A0=X12
15 13 15|A1=X13
16 14 16 |A2=X14
17 15 17|A3=X15

A T
-43-.

APPENDIX E

AL I SL AR | N 1
P ASTEY e kYl Rig GTaNT LLGORTTHM LA;A;GUAG; PROCESSOR, VERSIay 4442
co DN Coum LD AT A9312800 0l THUrSDAY, SEpTERBER 2y 1971

PR 215138 INTESER A yi,C

a2 Q1228 AR

‘nﬁ NS R R 332

D dpdee 3 CALL SUa(a,8,C,s599)

nE ' Jluse PHINT 199 .

o Jlidne 12 FORaaTl? $STAyDARD RETURy C 3 *912)

0D/ dinsa A=l . :

AR 3112, 69 1a 3

1y JLits 99 PRINT 2.0

1y Gr12: 29 FORAAT(Y aBnoRMAL KETURN C 3 '412)

il SEB EnD .

ASSEMBLY CODE PRODUCED BY RALPH FOR THE SUBROUTINE CALL

o ¥
. . | ,
Giodt ' . 3 CaL SUB(A1BsCeS99]
» C e
74 13 13 <0 0 275300 #00003 LMY x11,5us
(SRANS NS TSR s RS K| . A
SRSt IRPRe o RREY DUTIRS .4 + R
et - ' ; |
SIUREES X IVRG BURELER
;: 1 fﬁdJu SEEEI S LpROI BN J a0299
3 ui)“ b -G * puC1UtnBCRS

*» ® o *

FAgt,Is suB
ASMIID 09/02~09:12~(0Q) ‘
te o THIS SUBROUTINE Wi ADD A & B 1F A<=5 AND wILL MULTIPLY A B8Y 2 [F A>5
20 + THE pROC <P> DETERLINES WHAT ACTIQn IS To BE TAKEN BY THE SUBRgUTINE
l. i : . : o« RETURN OF CONTRUL Tn THE CALLING PROUGRAM 1S MADE NORMALLY JF A<aS
ue ’ » AND ABNORMALLY (T0 4 STATEMENT LABEL IN THE MaIN PROGRAM) IF A>S
Se AXRS] ¢« SET Up THE REGISTERS
b Pe PROC ¢+ DEFINE TwE PROC
Te) . R 1Y) Pliel)s® ¢ [S 5 GREATES THRAN P(lsl) ?
G J Plie2) ¢« 5 IS LESs THAN Ay MyLTIpPLY A BY 2
9 J Fi2,1) e 5 IS GREATER THAN A, ADD A & B
1Ce ' END s END OF Tre PKog
11 00 000000 10 ©0 00 13 | 000C00 SuBe LA Ap.°0sx11 o LOAD AQ wpTy A
12° QUCOC! 5% 14 00 08 €CIC200s P AN NOTNUM ALPHAs PRCC CALL
000302 74 g4 02 20 O SUGGOY
0ULJ03 74 9% SC GO O Gucwd7?
13 Qo304 3y 16 20 03 6guun2 NOTNUM MS] U AQ.2 s, MULTIPLY A BY 2
{ue 0Uc205% 81 So 29 13 1 duoos? SA Apns®20X) e STORE RESULT INTQ ¢
1%) Qulc26 74 ¢4 U0 13 0 307003 d 3.x1t o AENORMAL RETURN
160 aseos? 10 63 01 13 1 Cuagll ALPHA LA Al,elaXll o LUAD Al wlTx &
170 pusate 1e gu 90 90 0 Guuals ARA . Ag.AL ¢ ADD A AND B
18 ouesctl 01 52 U0 13 1 wuaoc2 SA An.*2,X11 » STOREZ RESULT INTO €
19 Bu3C12 74 94 00 13 0 Gowneus J Sexll o NORMAL RETURN
20) END * END OF THE SUBROVTINE
END ASM, 719 HSEC
BxX9T

MAP 22C~09/G2=09:12
START=007443, PROG SI1ZE(1/p)=3391/2291

Al

EnD MAP 1108 MSEC.

sTaMDARD RETURN ¢ ® 5
ARNLORMAL RETURN € = 22

NORMAL EXITe EXECUT[ON TyME: 2 MILLISECONDS.

SEIN
we

-f'.

