
 GGGGGGGGGG OOOOOOOOOOOO MM MM
 GGGGGGGGGGGG OOOOOOOOOOOO MMM MMM
 GG GG OO OO MMMM MMMM
 GG OO OO MM MM MM MM
 GG OO OO MM MMMM MM
 GG OO OO MM MM MM
 GG GGGGG OO OO MM MM
 GG GGGGG OO OO MM MM
 GG GG OO OO MM MM
 GG GG OO OO MM MM
 GGGGGGGGGGGG OOOOOOOOOOOO MM MM
 GGGGGGGGGG OOOOOOOOOOOO MM MM

 Last revision: 30 June 1989

 GOM Manual 1
 Table of Contents

 TABLE OF CONTENTS

 Introduction

 Chapter I: Mechanics of Running GOM
 Input Format
 Source Program Inclusion
 Running the Compiler
 Running the Object Program Produced
 Debugging Object Programs
 Diagnostics

 Chapter II: Description of the Language
 1. Modes: Constants, Variables, and Expressions
 1.1 Constants
 1.1.1 Integer Constants
 1.1.2 Floating Point Constants
 1.1.3 Character Constants
 1.1.4 Boolean Constants
 1.1.5 Hexadecimal Constants
 1.1.6 Short Integer Constants
 1.1.7 Byte Integer Constants
 1.1.8 Long Integer Constants
 1.1.9 Pointer Constants
 1.1.10 Constant Qualification
 1.2 Variables (integer, floating-point or Boolean)
 1.3 Statement Labels
 1.3.1 Statement Label Constants
 1.3.2 Statement Label Variables
 1.4 Arithmetic Operations
 1.5 Arithmetic Expressions
 1.6 Boolean Operations
 1.7 Boolean Expressions
 1.8 Parentheses Conventions (Precedence of Operators)
 1.9 Mode of Expressions
 1.10 Subscript Expressions
 1.11 Block Notation
 1.12 Statement Label Expressions
 1.13 Character Expressions
 1.14 Pointer Operations and Expressions
 2. Statements (Executable)
 2.1 Assignment Statement
 2.2 Transfer Statement (GOTO Statement) ____
 2.3 Conditional Statements
 2.4 CONTINUE Statement
 2.5 Iteration Statement (LOOP Statement) ____
 2.5.1 Count Controlled Statement (LOOP FOR) ____ ___
 2.5.2 Conditional Iteration Statements
 (LOOP UNTIL and LOOP WHILE) ____ _____ ____ _____
 2.6 Nested Iteration Statement
 2.7 End of Program Statement
 2.8 Input/Output Statements

 GOM Manual 2
 Table of Contents

 2.9 Simplified Input/Output Statements
 2.10 ALLOCATE and RELEASE
 3. Declarations (Non-executable statements)
 3.1 Comments
 3.2 Mode Declaration
 3.2.1 Automatic mode assignment
 3.3 The DIMENSION Declaration
 3.3.1 Including dimension information in other
 declarations
 3.3.2 Automatic dimensioning
 3.4 PROGRAM COMMON Declaration
 3.5 GLOBAL AREA Declaration
 3.6 Presetting Variables
 3.7 Parameterization of Constants
 3.8 Format Variable Declaration
 3.9 Dynamic Record
 3.10 USING Statements
 4. Functions
 4.1 Function Name Constants, Variables, and Expressions
 4.2 Function Call Statements
 4.3 Function Definitions
 4.3.1 Entry to a Function
 4.3.2 Function Return
 4.3.3 External Function Definitions
 4.3.4 Internal Function Definitions
 4.3.5 Variable Length Calling Sequences
 4.3.6 Internal and External Functions
 (Things They Have In Common)

 Appendices
 Appendix A: Allowable Abbreviations
 Appendix B: Operators
 Appendix C: Statements
 Appendix D: Form of Object Programs
 Appendix E: Unimplemented Statements (as of 4/20/81)
 Appendix F: Example Programs

 GOM Manual 3
 Introduction

 GOM == MAD/360

 INTRODUCTION

 This document provides a language description and usage
 information for a language which is essentially the 7090 MAD
 language, modified and extended for the 360/370 architecture.

 This language is currently known as GOM (for Good Old MAD)
 to distinguish it from the ill-fated MAD/1 which was designed as
 an extensible language and which, although it provided many
 ideas which have been borrowed, was incredibly ugly and never
 extended itself into usability.

 Why at this point in time resurrect the language? The main
 impetus was that a language was needed for writing Grungy Little
 Programs and pieces of the operating system. In both cases, the
 programs are often machine-dependent, and require matching
 previously established data structures and interfaces that are
 not "standard", in the sense of being used by most high-level
 languages. Fortran is not usually general enough, and PL1
 suffers from its "environment" and in many cases is not general
 enough either.

 Rather than invent a new language, MAD was chosen as a base
 because it provided a happy medium between the insufficiencies
 of Fortran and the excesses of PL1, and because the semantic
 implications of the various constructs were known. That did
 not, however, prevent judicious tailoring of the language to
 better fit the current programming practices and problems.

 In the remainder of this document, Chapter I contains the
 mechanics of writing programs and running the compiler. Chapter
 II, the language description, is a revision of Chapter II of the
 MAD Manual (1966 edition). Appendix E contains all the sections
 (or parts thereof) that are currently not yet implemented. If
 and when these sections (or portions) become available, they
 will be moved to designated positions in these chapters.

 GOM Manual 4
 Mechanics of Running GOM

 Chapter I

 Mechanics of Running GOM

 Input Format _____ ______

 Input is free form. If the first column of a statement is
 blank, then the statement has no label and the first non-blank
 character begins the statement. If the first column is non-
 blank, there is a label beginning there and continuing to the
 first blank. End of input line is end of statement unless the
 next input line begins with a continuation character ("+") in
 column 1. Multiple statements may be put on one input line by
 separating them with semi-colons (";"). For example, a line
 which has the form

 label stmt;label stmt;■stmt (■ represents a blank)

 is a legal construct in GOM. (Note that the first label must _____
 appear in column 1 of the line.)

 An asterisk ("*") in the first column indicates a comment.
 Lines beginning with the characters "1", "-", or "0" in column 1
 are treated as spacing control. The column 1 character is used
 as carriage control and the remainder of the line (if any) is
 printed so that column 2 lines up with where column 1 normally
 prints for a regular source line. Note that this spacing
 control works only for the source listing when compiling a GOM ______ _______
 program.

 Input lines may be up to 255 characters in length. The
 whole of an input line is taken as input; no sequence id field
 is allowed.

 | Input may be in upper or lower case. Except in character
 | constants (where it is preserved), case is ignored.

 Source Program Inclusion ______ _______ _________

 Normally, the source cards for a GOM program need only be
 given with the SCARDS=sourcepgm parameter on the $RUN command.
 But GOM also allows additional source code inclusion via the
 standard

 $CONTINUE WITH FDname RETURN

 command. In addition to this, GOM has an INCLUDE statement,
 which not only allows for additional source code inclusion, but
 | also provides source listing documentation of what’s happening
 | as well as a source library facility. It is in two forms:

 GOM Manual 5
 Mechanics of Running GOM

 | INCLUDE Member
 | INCLUDE@NOLIST Member

 | In both cases the INCLUDE statement itself is printed in the
 | source data listing. In the second case the data listing coming
 | from the member is suppressed. If an INCLUDE statement is used
 | then unit 0 on the Run command for Gom must be assigned to a
 | library or concatenation of libraries containing the members
 | included. These libraries are in the same format as used for
 | Plus and can be maintained using the same tools (for example,
 | Plus:LibGen). The INCLUDE statement may not be continued, it
 | must be complete on one line. They may be nested to a maximum
 | depth of 10.

 Running the Compiler _______ ___ ________

 The compiler is in the file *GOM, and is run as follows:

 $RUN *GOM SCARDS=input SPRINT=output SPUNCH=obj SERCOM=errors -
 | - 0=library PAR=parameters

 Note that the MTS default continuation character, a minus sign,
 is used to break up the run command on two separate lines.
 Source modules are read from SCARDS and compiled until an end-
 of-file is encountered. A summary line for each module compiled
 is printed on the user’s terminal. If SPUNCH is not assigned,
 the object program is put in the file -LOAD (which is emptied
 first). If SPRINT is not assigned in conversational mode, no
 listings are produced; otherwise, all listings are produced. If
 no listings are produced or if the listings are not printed on
 the user’s terminal, error messages are produced on SERCOM
 (which defaults to the user’s terminal). The PAR filed can be
 used to override things. Acceptable parameters are:

 [NO]FLAGUNDEF - see below (Default is NOFLAGUNDEF)
 [NO]DECK - object output (Default is DECK)
 [NO]LIST - object program listing (Default is NOLIST)
 [NO]MAP - variable storage layout (Default is NOMAP)
 SM - same as SOURCE and MAP
 SML - same as SOURCE and MAP and LIST
 [NO]SOURCE - source program listing (Default is SOURCE)
 [NO]TEST - produce SYM object records (Default is NOTEST)
 | [NEW]TEST - produce SYM object records in MDX format designed
 | for GOM. This is not supported by very old versions
 | of SDS.
 | [NO]VWARN - see below (Default is VWARN)
 [NO]XREF - cross reference listing (Default is XREF)
 XREF=SHORT - see below

 FLAGUNDEF: When this parameter is in effect, it causes all
 variables that have not been declared to be flagged with a
 warning message. If this option is requested, it replaces the
 list of variables that were referred to only once. The list of
 variables used in the program, but to which only one reference
 is made, is printed out for each compilation, right after the
 source statements listing. This list has proven to be an

 GOM Manual 6
 Mechanics of Running GOM

 invaluable debugging aid, since misspelled names almost
 invariably show up on this list. It should therefore be checked
 carefully whenever it appears.

 VWARN: When this parameter is in effect, it prints a
 warning message about variables that are referenced only once.

 XREF=SHORT: This parameter forces a cross reference listing
 for all symbols except those that have only one reference.

 In its current state (unfinished), the compiler
 occasionally has indelicate moments. We would, however, like to
 know of any problems so we can fix them.

 The GOM compiler batch compiles. That is, it reads from
 SCARDS until it encounters an end-of-file and compiles all
 modules found along the way. A summary line, similar to what
 FTN produces, is printed for each module, and the resultant
 return code is the maximum of the return codes encountered while
 compiling.

 Running the Object Programs Produced _______ ___ ______ ________ ________

 The compiler puts out a standard object deck that can be
 simply RUN (or DEBUGged). If the object deck is run under
 DEBUG, then the PAR=TEST parameter must be included on the run
 command since SDS requires that SYM records be present in the
 object deck.

 Debugging Object Programs _________ ______ ________

 Currently the SYM records produced by the PAR=TEST option
 are PL3 records instead of a type specifically for GOM. As a
 result, the following idiosyncracies exist:

 1. Since all arrays start with subscript 0 (except
 multidimensional arrays where the user specifies a different
 lower bound), but SDS has never heard of an array starting
 except with subscript 1, array accesses via SDS will be off
 by 1 on the subscript.

 2. Scalar statement label constants (e.g., "ALPHA" starting
 in first column of a source statement) are handled as normal
 -- they refer to the first instruction of that statement, and
 to set a breakpoint, one tells SDS "BREAK ALPHA". However,
 since "BETA(1)" as a statement label constant has no
 relationship to "BETA(2)" as a label on a different
 statement, the symbol table entry for SDS of BETA refers to
 an array of pointers to the statements involved, and thus to
 set a breapoint at BETA(2), one must tell SDS "BREAK
 $BETA(2)".

 As with Fortran, internal statement numbers may be used to
 refer to a statement, using the same form as with Fortran,
 "IS#n", where "n" is the internal statement number minus any

 GOM Manual 7
 Mechanics of Running GOM

 leading zeros.

 Diagnostics ___________

 During the process of translation, many kinds of errors in
 the formation of statements can be detected. To understand this
 error detection and the subsequent printing of diagnostic
 comments, some knowledge of the structure of the translator is
 helpful. The translation is accomplished in three major steps:

 1. The decomposition of the executable statements into
 operand-operator-operand triples and the digestion of
 declarative statements into internal tables.

 2. The analysis of the declarative information to do the
 storage allocation.

 3. The combination of the information produced by the first
 two steps to translate the triples to object code.

 When an error of severity greater than "warning" is encountered
 in one of these steps, translation proceeds only to the end of
 that step and then ceases. It should be understood, then, that
 not all dectectable errors may be found because some are
 detectable only in a later stage of translation. Also, an error
 in a statement may be such that it causes the translator to
 misinterpret later statements, thus giving error indications
 even though no error exists in the later statements.

 When errors occur, the offending statement (if any) and the
 error message are produced on SERCOM (usually the user’s
 terminal) if SPRINT has been assigned elsewhere-- this is in
 addition to the error message produced on SPRINT. If SPRINT
 defaults to the user’s terminal, then the error message is
 printed on the terminal. The offending statement will also be
 printed if the SOURCE parameter has defaulted off. (If SOURCE
 is on, of course, the offending statement has already printed.)

 GOM Manual 8
 GOM Language Description (Modes)

 Chapter II

 DESCRIPTION OF THE LANGUAGE

 "There is pleasure sure in being mad, which none but madmen
 know."
 Dryden: The Spanish Friar ___ _______ _____

 1. Modes: Constants, Variables, and Expressions _____ _________ _________ ___ ___________

 Operands can be divided into a number of categories called
 modes. From an abstract view, each mode is characterized by the _____
 range of values a variable of that mode may have and what
 operations are permitted. From a physical view, each mode may
 be also characterized by the number of bytes of storage a
 variable of that mode occupies, the internal representation
 used, and the hardware operations used.

 The modes are:

 Mode_Number__Name___________Size_of_Element____Default_Alignment ____ ______ ____ ____ __ _______ _______ _________

 0 FLOATING POINT 4 word
 1 INTEGER 4 word
 2 BOOLEAN 4 word
 3 FUNCTION NAME 4 word
 4 STATEMENT LABEL 4 word
 5 CHARACTER 1 byte
 6 SHORT INTEGER 2 halfword
 7 BYTE INTEGER 1 byte
 8 LONG INTEGER 8 word
 11 POINTER 4 word
 12 DYNAMIC RECORD N/A N/A

 Important Note _________ ____

 Variables are not initialized by GOM. If you use a
 variable before giving it a value, it will have a more or less
 random value.

 Two groups of modes will be discussed in what follows.
 They are:

 (a) Arithmetic modes; those in which arithmetic-type
 operations can be done. These are Floating Point,
 Integer, Short Integer, Byte Integer, Long Integer, and
 Long Floating Point. The term expression or arithmetic __________ __________
 expression will refer to expressions whose operands are __________
 from these modes.

 (b) Integer modes; a subset of arithmetic modes is integer _______
 expressions. This refers to expressions whose operands ___________
 are of Integer, Short Integer, Byte Integer, or Long

 GOM Manual 9
 GOM Language Description (Modes)

 Integer mode.

 NOTE: There are two modes that are not yet implemented. See
 Appendix E, Number 1 for the description of these modes (VARYING
 CHARACTER and LONG FLOATING POINT).

 1.1 Constants _________

 This section describes constants of all modes except
 statement label and function name, which are described in
 Sections 1.3 and 4.1 respectfully.

 1.1.1 Integer Constants _______ _________

 An integer constant is composed of digits, optionally
 preceded by a "+" or "-" sign. The value of the constant must
 fall in the range of -2147483648 to +2147483647.

 While the "+" sign may be omitted, the "-" sign must be
 present if the number is negative (e.g., 2, -2, 0, +0, -0, 100
 are all integers). Note that commas are not allowed in integer
 constants (e.g.; 1,500 is illegal).

 1.1.2 Floating Point Constants ________ _____ _________

 Floating point constants may be written with or without
 exponents. If written without an exponent, the constant must
 contain a decimal point ".", which may appear anywhere in the
 number. Thus, 0., 1.5, -0.05, +100.0, .1 and -4. are all
 floating point constants.

 If the number is written with an exponent, it may be
 written with or without a decimal point, followed by the letter
 "E", followed by the exponent of the power of 10 that multiplies
 the number. (If the decimal point is omitted, it is assumed to
 be immediately to the left of the letter "E".) The exponent m
 consists of one or two digits preceded by a sign (although a "+"
 sign may be omitted), and must satisify the condition -78 < m < _ _
 76. More specifically, the value of the number F must be 0 or
 else satisfy the condition

 .5397605 x 10⁻⁷⁸ ≤ |F| ≤ .7237005 x 10⁷⁶

 Examples of floating point constants with exponent are: .05E-2
 (=.05 x 10⁻²), -.05E2 (= -.05 x 10²), 5E02 (= 5.0 x 10²), 5.E2
 (= 5.0 x 10²).

 Negative floating point constants must be preceded by a "-"
 sign. Positive constants may be preceded by a "+" sign.

 GOM Manual 10
 GOM Language Description (Modes)

 1.1.3 Character Constants _________ _________

 Constants of character mode consist of a string of
 characters preceded and followed by one of the two character
 delimiters: dollar sign ($) and double quote ("). Whichever
 delimiter begins a character constant must be the one that ends
 it. Note that blanks, while ignored elsewhere in the language,
 | count as characters in character constants and that case is
 | significant in them while it is not elsewhere.

 Within any character constant, a pair of consecutive
 delimiters will be treated as a single occurance of that
 character which is to be placed in the resultant constant.
 Thus,

 Both "A$B" and $A$$B$ represent the string A$B
 $A"B$ and "A""B" represent the string A"B

 Note that since the length of an element of character mode
 is 1, a character constant with more than one character in it is
 implicitly a one dimensional array, and as such it can be
 subscripted, just like a dimensional character variable.

 For example: "1234567890"(I)

 In this example, the result will be one character determined by
 the value of I. If I = 4, then the result of "1234567890"(I) _ _
 will be the character 5. _________

 Character constants may be padded with blanks by appending
 "@Ln" to the constant. For example, "GUSER"@L8 will pad the
 string "GUSER" with 3 blanks in order to make the length of the
 entire string equal to 8 characters. (See Section 1.1.10 for
 constant qualification.)

 1.1.4 Boolean Constants _______ _________

 There are two Boolean constants -- "true", which is written
 1B, and "false", which is written 0B.

 1.1.5 Hexadecimal Constants ___________ _________

 These constants are written as a string of hexadecimal
 digits followed by an "@X" qualifier. If not otherwise
 qualified, the quantity is right-justified in 4 bytes and
 assigned integer mode. (See Section 1.1.10 for constant
 qualification.)

 Examples: 123@X 1AB7@X DEF@X

 1.1.6 Short Integer Constants _____ _______ _________

 These are written the same as integer constants, except

 GOM Manual 11
 GOM Language Description (Modes)

 that they must have a qualifier appended to indicate that the
 constant is a 2-byte integer. The following are all short
 integer constants of value "1":

 1@L2 1@IL2 1@SI 1@SR 1@H

 The value of a short integer must lie in the range -32768 to
 +32767.

 1.1.7 Byte Integer Constants ____ _______ _________

 These are written the same as integer constants, except
 that they should not have a sign, and that they must have a
 qualifier appended to indicate that the constant is a 1-byte
 integer. The following are all byte integer constants of value
 "1":

 1@L1 1@IL1 1@BI 1@BR

 The value of a byte integer must lie in the range 0 to 255.

 1.1.8 Long Integer Constants ____ _______ _________

 A long integer constant is the same as an integer constant
 (it follows the same rules as an integer constant) except that
 the constant can fall in the range of -9223372036854775808 to
 +9223372036854775807. Any INTEGER constant which is too big for
 a fullword integer will automatically be converted to a LONG
 INTEGER constant. Constants can also be forced to LONG INTEGER
 mode by appending the modifiers @LR, @LI, or @L8 to the digits.
 Examples of LONG INTEGER constants are:

 1234567898765@LI -201473548714@LR 123456789ABC@XL8

 In the third example, a LONG INTEGER in hex of length eight was
 specified.

 1.1.9 Pointer Constants _______ _________

 A pointer constant is the same as an integer constant,
 except that it has an "@P" qualifier attached to indicate that
 it is of pointer mode. The only commonly-used pointer constant
 is the null pointer, written as 0@P .

 1.1.10 Constant Qualification ________ _____________

 Constants may have their default characteristics overridden
 by appending a qualifier consisting of an at-sign (@) followed
 by one or more characters. There are four categories:

 (a) X says that the constant is expressed in hexadecimal

 GOM Manual 12
 GOM Language Description (Modes)

 (b) Ln where n is a number, says that the resulting constant _
 should (internally) be of length n. Note that this _
 can also modify the mode, since many modes represent a
 specific combination of type and length. Thus an
 integer constant with "@L2" will set the mode to short
 integer, and is equivalent to @SI et al. given below.

 (c) Mn says the resulting constant should have mode number n. _
 (See the list of mode numbers in the table of Section
 1.)

 (d) Mode Specifications. These will also set the length, unless
 it is explicitly given (in form (b) above). The legal
 forms consist of several common forms, including the
 statement-type abbreviation (minus the prime) for the
 mode in question. They are:

 @F @FT FLOATING POINT
 @I @IR INTEGER
 @BN BOOLEAN
 @C @CH @CR CHARACTER
 @SI @SR @H SHORT INTEGER
 @BI @BR BYTE INTEGER
 @LI @LR LONG INTEGER
 @VC @VR VARYING CHARACTER
 @LT LONG FLOATING POINT
 @P POINTER

 Items from these categories may be combined in meaningful __________
 combinations . Examples of meaningful combinations are: ____________

 @XL8 @IL2

 An example of a non-meaningful combination is:

 @BIL8

 (Here, we are trying to express a byte integer of length eight)

 1.2 Variables (integer, floating-point or Boolean) _________

 The name of an integer, floating-point or Boolean variable
 consists of one to 24 letters, underscores (_), or digits, the
 first of which must be a letter. If the variable is defined as
 an n-dimensional array variable (see Section 3.3) then the name
 of an element of the array consists of the variable name, (i.e.,
 | one to twentyfour letters, underscores, or digits, starting with
 a letter), followed by the appropriate subscripts separated by
 commas and enclosed in parentheses. Thus the following are
 "single variables": X51, ALPHA6, LAMBDA, GROSS, while the
 following are elements of arrays: BETA(Cl, C2, 6), X15(Y,Z1),
 J(6), J(Z1 + 5*Z2, 5). (See Section 1.11 for the description of
 subscripts.) Parentheses enclosing subscripts may not be
 omitted.

 GOM Manual 13
 GOM Language Description (Modes)

 1.3 Statement Labels _________ ______

 A statement may be labeled or unlabeled. Labels are used
 to refer to a statement by other statements. A statement label
 | consists of from one to twentyfour letters, underscores, or
 digits, the first of which must be a letter, e.g., IN or BACK.
 A statement label may be an element of a statement label vector,
 in which case the vector name is followed by a constant integer
 subscript enclosed in parentheses, e.g., S(2) or LBL(3). A
 statement label appears in the first column of the statement it
 identifies. If a statement does not have a label, the first
 column must contain a blank. A statement label cannot have any
 embedded blanks; the first blank found after column 1 terminates
 the label, and the body of the statement begins with the first
 nonblank character following.

 1.3.1 Statement Label Constants _________ _____ _________

 A statement label starting in the first column of a
 statement will be called a constant of statement label mode.
 Statement label constants are assigned to the first CSECT.
 Previously (in MAD 7090), these labels were compiled as
 statement label variables that were initialized. _________

 The only change visible to users is in the use of labels
 via SDS. In the past, all labels had SYM record entries that
 pointed to the label adcon, so in order to set a breakpoint, for
 example, one had to say "BRE $ALPHA". Now all scalar labels
 (that is, non-subscripted labels) have SYM record entries that
 actually point to the code for that statement, and thus can be
 used in the normal way (e.g., "BRE ALPHA"). However, a
 statement label constant array-- e.g., labels in a program that
 have the same name, but different subscripted values such as
 NAME(1), NAME(2), ..., NAME(N) --still had a SYM record entry
 pointing to the array of adcons, so you must go indirect via the
 "$". (This may be resolved later, to be more consistent.)

 1.3.2 Statement Label Variables _________ _____ _________

 A statement label which does not appear in the label field
 is a variable of statement label mode, provided it is so ________ __ _________ _____
 declared in a mode declaration (See Section 3.2).

 1.4 Arithmetic Operations __________ __________

 The following arithmetic operations are available for
 operands of arithmetic modes, except where noted otherwise.

 (a) Addition, written "+", e.g., Z5 + D.

 (b) Subtraction, written as "-", e.g., Z5 - D.

 GOM Manual 14
 GOM Language Description (Modes)

 (c) Multiplication, written as "*", e.g., Z5*D. (Note that
 the "*" may not be omitted. It is illegal to write Z5D, ___
 since it would be impossible to distinguish such a
 product from the variable Z5D.)

 The operator .MPYLI. is available to obtain the double-
 word product produced by the hardware integer multiply
 operation. The operands of this operator must be of
 integer, short integer, or byte integer mode; the result
 is of long integer mode.

 Multiplication is not allowed if either or both of the
 operands are long integers, currently.

 (d) Division, written as "/"; e.g., Z5/D. If both Z5 and D
 are integers, the result is again an integer; e.g., the
 "fractional part" of the true quotient is truncated (not
 rounded). For example, if Z5 = 8, and D = 3, then Z5/D
 will have the value 2.

 Long integers may not be divided by long integers; they
 may be divided only by integers, short integers or byte
 integers.

 (e) Remainder, written as ".REM."; e.g., AB8.REM.BA7, and
 meaning the remainder from the integer division of AB8
 from BA7. This is a binary operator whose operands must
 be integer, short integer, or byte integer. It has the
 same precedence as "/". It generates exactly the same
 code as "/", except that the value indicated as a result
 of the operation is what was in the other register. For
 example, if AB8=5 and BA7=3 then AB8.REM.BA7=2. Also
 note that if AB8=16 and BA7=4 then AB8.REM.BA7=0.

 (f) Exponentiation, written as ".P."; e.g., Z5.P.D, and
 meaning Z5 raised to the power D.

 Neither of the operands of the .P. operator can be long
 integers.

 (g) Absolute value, written ".ABS."; e.g., .ABS.Z5, meaning
 |Z5|, the absolute value of Z5.
 The operand of .ABS. may not be a long integer.

 (h) Negation, written as "-"; e.g., -ALOHA, meaning the
 "negative of ALOHA". Thus -X.P.-5 means -(X⁻⁵).
 The operand may not be a long integer.

 Important Note _________ ____

 When certain operations cannot be implemented due to
 operand conditions, the reason lies in the fact that the machine
 is unable to handle these special conditions, and not due to the
 fact that the GOM compiler is unable to handle it. For example,
 the "*" operator for multiplication cannot accept LONG INTEGERs
 as operands.

 GOM Manual 15
 GOM Language Description (Modes)

 The following operations are available only for operands of one ____
 of the integer modes.

 (i) Full word bitwise negation, written .N.i, where "i" is
 an integer expression, and meaning the operation of
 negating each binary digit in the binary representation
 of the value of "i". The result is again an integer.
 Example: Let I = 6 which is represented internally as

 000...000110 (32 bits)

 Then .N.I would yield the value:

 111...111001

 | (j) Full word bitwise logical operations and, or, and ___ __
 | exclusive or written .A., .V., and .EV., respectively, _________ __
 meaning the bitwise and, or, and exclusive or of the ___ __ _________ __
 full binary integer values of the operands. The result
 is again an integer.

 Example: Let I = 17 which is represented internally as

 0000...00010001

 and let J = 9 which is represented internally as

 0000...00001001

 Then I.A.J would yield the value

 0000...00000001

 which is the integer 1,

 I.V.J would yield the value

 0000...00011001

 which is the integer 25,

 and I.EV.J would yield the value

 0000...00011000

 which is the integer 24.

 (k) Full word integer shifts, written .LS. and .RS.,
 respectively; e.g., i.LS.j and i.RS.j, where "i" and "j"
 are integer expressions (see Section 1.10).

 "j" may not be a long integer. i.LS.j means the value
 of "i" shifted left "j" binary places. The shift is a ____
 logical shift, rather than an arithmetic shift, that is,
 "j" must be a positive quantity (or zero).

 GOM Manual 16
 GOM Language Description (Modes)

 Similarly with .RS., digits shifted off either end of
 the computer word are lost. Created blank positions are
 filled with zeros. The result is an integer, unless "i"
 was a long integer, in which case the result is a long
 integer.

 Example: Let I = 30 which is represented internally as

 000...0011110

 and let J = 4.

 Then I.LS.J would yield a value which is represented as

 000...111100000

 and I.RS.J would yield a value which is represented as

 00000000...0001

 (l) Bit operations using the predefined bit operators
 .SETBIT. and .RESETBIT. These operations manipulate bit
 patterns of constants or variables. The constant or
 variable must be of integer mode. The figure below will
 be used to show how .SETBIT. and .RESETBIT. work. Note
 that the Boolean operator .BIT. is described in Section
 1.7.

 ABC
 ┌─────┌─────┌─────┌─────┌─────┌─────┌─────┌─────┐ ─ ─ ─ ─ ─ ─ ─
 BIT VALUE | 1 | 1 | 0 | --> | 1 | 0 | --> | 1 |
 └─────┘─────┘─────┘─────┘─────┘─────┘─────┘─────┘ ─ ─ ─ ─ ─ ─ ─
 bit number 0 1 2 --> 23 24 --> 31

 Here, the 23rd bit number of ABC has a BIT VALUE of 1 ___ ______ ___ _____

 .SETBIT. is a binary operator which sets a bit to 1
 regardless whether its current value is 0 or 1.
 Examples:

 ABC .SETBIT. 24 sets bit #24 to 1
 ABC .SETBIT. 23 keeps bit #23 at 1

 .RESETBIT. is also a binary operator, but unlike
 .SETBIT., it sets a bit to 0 regardless whether its
 current value is 0 or 1. Examples:

 ABC .RESETBIT. 1 sets bit #1 to 0
 ABC .RESETBIT. 2 keeps bit #2 at 0

 1.5 Arithmetic Expressions __________ ___________

 GOM Manual 17
 GOM Language Description (Modes)

 Arithmetic expressions are defined inductively as follows:

 (a) All integer and floating point constants, integer and
 floating point individual variables, subscripted integer
 and floating point array variables, and integer and
 floating point values of functions are arithmetic
 expressions. Note that a function value used in an
 expression must have an argument list, even if the
 function is to be called without any arguments (e.g.,
 "FUNCT.()"). (See Sections 4.2 and 4.5 for more
 information on functions.) The word "integer" here means
 integer, short integer, byte integer and long integer.

 (b) If E and F are any arithmetic expressions, and I and J
 integer expressions, then the following are also
 arithmetic expressions: +E, -E, .ABS.E, E + F, E - F,
 E*F, E/F, E .P. F, (E), .N. I, I .A. J, I .V. J, I
 .EV. J, I .LS. J, and I .RS. J (except for exclusions
 noted earlier).

 1.6 Boolean Operations _______ __________

 The following Boolean (or logical) operations are available
 in the language (where M and P are Boolean expressions):

 (a) .NOT.M has the value 1B if and only if M has the value
 0B.
 (b) (M) has the same value as M.
 (c) M.OR.P has the value 0B if and only if both M and P
 have the value 0B.
 (d) M.AND.P has the value 1B if and only if both M and P
 have the value 1B.
 (e) M.EXOR.P has the value 1B if and only if either M or P
 has the value 1B, but not both.
 (f) M.EQV.P has the value 1B if and only if M and P have
 the same values.

 Thus .NOT., .OR., .AND., .EXOR., and .EQV. correspond to
 the usual logical operations.

 1.7 Boolean Expressions _______ ___________

 Boolean expressions are defined inductively as follows:

 (a) Boolean constants, individual Boolean variables,
 subscripted Boolean array variables and Boolean-valued
 functions are Boolean expressions. (See Sections
 1.1.4 and 3.2)

 (b) If H and F are arithmetic expressions, then the
 following comparatives are Boolean expressions:

 GOM Manual 18
 GOM Language Description (Modes)

 H<F H.L.F H.LT.F meaning h<f
 H<=F H.LE.F H.LE.F meaning h≤f
 H=F H.E.F H.EQ.F meaning h=f
 H¬=F H.NE.F H.NE.F meaning h≠f
 H>F H.G.F H.GT.F meaning h>f
 H>=F H.GE.F H.GE.F meaning h≥f

 (The forms in the first column are the "extended"
 forms, the second column are the old 7090 MAD forms,
 and the third column are the FORTRAN forms. All three
 forms are legal to use in GOM).

 (c) If M and P are Boolean expressions, then the following
 are also Boolean expressions: .NOT.M, (M), M.OR.P,
 M.AND.P, M.EXOR.P., and M.EQV.P.

 (d) A constant or variable operated on by the
 .BIT. operator is a Boolean expression. The
 .BIT. operator examines a specified bit number of a
 constant or variable, and returns 1B (true) if the
 value at the bit number is 1, or it will return 0B
 (false) if the value is 0. An example .BIT. operation
 is

 IF ABC .BIT. 23
 X=Y ;* X=Y if ABC .BIT. 23 returned 1B
 ENDIF

 Note: see Section 2.3 for the description of the IF
 statement.

 Examples of Boolean expressions are:

 (X.G.3 .AND. Y.LE.2) .OR. (GAMMA.L.EPSILON)
 (.ABS.(X1-X2)/X1 .LE. EPSILON) .AND. (F.(X1) .L. EPSILON)
 (P.AND.Q) .EQV. (P .OR. .NOT.P)

 where P and Q are Boolean variables.

 1.8 Parentheses Conventions (Precedence of Operators) ___________ ___________ ___________ __ __________

 Parentheses are used in the same way as in ordinary algebra
 and logic to specify the order of the computation. Also,
 certain conventions are used to allow deletion of parentheses.
 The conventions used here are the same as in ordinary algebra
 and logic, i.e.; parentheses may be omitted, subject to the
 rules (A) and (B) below, but redundant parentheses are allowed.

 Appendix B contains a list of all operators. In it,
 references are made as to where various operators are defined in
 this document.

 (A) The sequence of computation within any expression, unless
 otherwise indicated by parentheses, is shown below. Note that

 GOM Manual 19
 GOM Language Description (Modes)

 higher operations on this list are done before lower operations.
 The PREC=n settings are only for use by Computing Center staff _
 for diagnostic purposes.

 PREC=42 .IND.
 40 function_call subscription : .SIZE.
 39 -> (as return code operator)
 38 .LOC. .DIMVEC.
 37 .AS.
 36 .N. .LS. .RS. .ABS. .NBRARG. .ARG.
 34 .A.
 32 .V. .EV.
 30 .P.
 28 - (unary)
 26 * / .MPYLI. .REM.
 24 + -
 22 .BIT. .L. .LT. < .E. .EQ. =(comparative) .G. .GT. >
 .LE. <= .NE. ¬= .GE. >=
 20 .NOT.
 18 .AND.
 16 .OR. .EXOR.
 12 .EQV.
 10 ... =(in arg for R-Call) ->(out arg for R-Call)
 6 .SETBIT. .RESETBIT. =(substitution)

 Examples:

 (1) .ABS.(B-C) means |B-C|, while .ABS.B-C means |B|-C.
 (2) -B + C means (-B) + (C), while -(B + C) means the
 negation of the sum.
 (3) B.P. - 2 + 3 means B⁻² + 3, while B.P.(-2 + 3) means
 B⁻²⁺³.
 (4) K2/Z - 3 means (K2/Z) - 3, while K2/(Z - 3) implies
 that Z - 3 is the denominator.
 (5) A * B + C means (A * B) + C.
 (6) A.P.3/J means (A³)/J.
 (7) X.L. Y + 3 means (X) .L. (Y + 3).
 (8) P.AND..NOT.P.OR.Q means (P.AND.(.NOT.P)) .OR.Q.
 (9) Z = X + Y/QA means Z = (X + (Y/QA))
 (10) A = -B.P.2 means A = -(B²).

 (B) Within an expression, operations appearing on the same line
 of the list in (A) are to be performed from left to right,
 unless otherwise indicated by parentheses.

 Examples:

 (1) A + B - C + D - E means (((A + B) - C) + D) - E.
 (2) X/Z * Y/R * S means (((X/Z) * Y)/R) * S.

 1.9 Mode of Expressions ____ __ ___________

 The kind of arithmetic performed on a constant, variable or

 GOM Manual 20
 GOM Language Description (Modes)

 function value is determined by its mode. There are many modes;
 they were discussed in Section 1. Section 3.2 describes how the
 modes of variables and functions are specified.

 If an expression consists entirely of one constant, one
 variable, or one functional value, the mode is that of the
 constant, variable, or functional value itself. If the
 expression is a compound expression, i.e., it consists of two or
 more subexpressions joined by logical or arithmetic operations,
 the following rules apply:

 If an expression is a Boolean expression as
 defined in Section 1.8, then its mode is Boolean. An
 arithmetic expression is considered to be in the
 floating point mode if any operand of any arithmetic
 operation in the expression is in the floating point
 mode. If all operands are integer, then the
 expression is considered to be in the integer mode.
 In this determination arguments, though not values, of
 functions are ignored. For other modes, see Sections
 1.12 through 1.14.

 Operands that are short integers and byte
 integers are automatically converted into integers
 before the operation. Integer results that are to be
 stored in short integers have the right half of the
 expression stored (i.e., the hardware operation STH is
 used). Integer results that are to be stored in byte
 integers have the right-most byte stored (i.e., the
 hardware operation STC is used). Users not familiar
 with these hardware operations should read the
 I.B.M. 370 Principles of Operations Manual.

 If one of the operands is a long integer and the
 other is an integer, short integer, or byte integer,
 then the shorter operand is converted to long integer
 before the operation, except for the right operand of
 division, shifts, and the subscript in a subscription
 operation. Long integer results that are to be stored
 in integers have the right-most word stored.

 Thus, if Y, Z, and W are floating point variables, while
 the function GCD. and the variables I and J are in the integer
 mode, then the expressions

 Y + GCD.(I,J)
 Y + Z - I
 I + 1.
 GCD.(I, J)/Z

 are all floating point expressions while the expressions

 I + GCD.(I, J)
 (I + J)/3
 I + 1
 GCD.(I,J)/I

 GOM Manual 21
 GOM Language Description (Modes)

 are all integer expressions.

 If an expression has subexpressions of different modes, a
 conversion may be necessary before some of the operations can be
 performed. Thus, in the expression

 Y + 3

 if Y is in the floating point mode it cannot be added directly
 to the integer 3. The user need not be concerned with this
 since the instructions necessary for the conversion of the
 integer to floating point form before adding are automatically
 inserted by the translator during the translation process.

 In some cases, however, the user must understand the
 sequence in which the conversions will be made. Consider the
 expression

 (Y + 7/3) + (I * J/K)

 where Y is in the floating point mode, and I, J, and K are in
 the integer mode. According to the parenthesizing conventions,
 a computation will proceed in the following order (where the T’s
 are temporary locations):

 T¹ = I x J
 T² = T¹/K
 T³ = 7/3
 T⁴ = Y + T³
 T⁵ = T⁴ + T²

 and T⁵ will be the value of the expression.

 Now, since both I and J are integers, the first
 multiplication will be integer multiplication, and T¹ will be an
 integer. Since the next step involves two integers, it will be
 integer division, and, if K happens to have a larger value than
 T¹ the quotient is 0. Similarly, T³ will have the value 2
 because of the division of two integers. In the computation of
 T⁴, however, we have "mixed modes," since Y is floating point
 and T³ is integer. Here T³ will be automatically converted to
 floating point before adding. Likewise, in the next step, the
 integer T² will be converted to floating point before adding to
 the floating point number T⁴.

 In other words, although the mode of the expression is
 floating point because of the presence of the floating point
 variable Y, some of the computation (until Y is involved) is
 performed in integer arithmetic, and this may occasionally cause
 the final value to be different from the value one might expect
 from a different analysis.

 In the example above, the divisions would be performed in
 the floating point mode if the expressions were written:

 (Y + 7./3) + (I * J)/(K + 0.)

 GOM Manual 22
 GOM Language Description (Modes)

 Of course, many times the expression will be written as
 originally stated just to achieve the "truncation" effect.

 .AS. Operator ____ ________

 The mode of a variable may be overridden for the span of
 one operation by using the .AS. operator. This operator takes a
 variable as the left operand and a mode name as the right
 operand. Note that unlike constant qualification (using the "@"
 notation), which often causes the internal form of the constant
 to be changed, this operator never causes any conversion by
 itself, and in fact, its purpose is to prevent unwanted
 conversions.

 Note that the .AS. operator has no effect on variables
 occurring in a statement that is essentially an interface to
 another module, since modes are determined by other methods in
 those cases. This includes: arguments to subroutines, and both
 formatted and Simple I/O lists.

 Note also that the .AS. operator tells the compiler to
 treat a variable as if it were of another mode, and the compiler
 will therefore generate machine instructions suitable for that
 other mode. It is the user’s responsibility to ensure that this ______
 will work for a given case, especially with regard to alignment
 of the operands when the resultant object program is to run on a
 360.

 Example: INTEGER I
 FLOATING POINT F
 I = F.AS.INTEGER
 I.AS.FLOATING POINT = F

 The last two statements of this example both have the effect of
 picking up the fullword from F and putting it in I without
 conversion.

 Example: INTEGER IARR(1)
 LONG INTEGER L
 IARR.AS.LONG INTEGER = L

 The previous statement, "IARR.AS.LONG INTEGER = L", does the
 same as the following two:

 IARR(0) = L.RS.32
 IARR(1) = L

 1.10 Subscript Expressions _________ ___________

 Any arithmetic expression (except long integers) may be
 used as a subscript expression for an element of a linear or
 two-dimensional array. If the value of the expression is in the

 GOM Manual 23
 GOM Language Description (Modes)

 floating point mode (see Section 1.9), it is truncated to
 integer form before being used as a subscript.

 The expressions for subscript elements of an array whose
 dimension is three or greater must be of integer mode.
 Moreover, for arrays of dimension three or greater, the use of
 subscripts having other than integer mode will not be caught as
 an error by the compiler. Subscript expressions may contain
 variables with subscripts, etc.

 Examples of subscripted variables: J(3), K10(Z + 5 * XY/T),
 MP(A,B + 6 * J, I * 6/TDX), T(I(J)), MA(K(Z + 5) + T(1) + 6).

 1.11 Block Notation _____ ________

 Input/Output lists (see Sections 2.8 and 2.9), VECTOR
 VALUES statements (see Section 3.6), and character substrings
 (see Section 1.13) allow the use of block notation. This has
 the form

 A...B

 which is interpreted as the entire region from A to B,
 inclusive. The most common use is in terms of a single array;
 e.g., A(1)...A(N), and B(I,J)...B(M,N). These would be
 interpreted as the regions: A(1), A(2), A(3), ..., A(N) and
 B(I,J), B(I,J+1), B(I,J+2), ..., B(I+1,J), B(I+1,J+1), ...,
 B(M,N).

 1.12 Statement Label Expressions _________ _____ ___________

 A single constant, variable, or function value of statement
 label mode is an expression of statement label mode. The only
 operations legal for operands of statement label mode, besides
 transferring to the label specified, are substitution and the
 .E. and .NE. comparatives (or their syntactic equivalents).
 There are no automatic conversions from statement label mode to
 any other mode.

 1.13 Character Expressions _________ ___________

 A single constant, variable, or function value of character
 mode is an expression of character mode. The only operations
 legal for operands of character mode are substitution and
 comparatives. There are no automatic conversions from character
 mode to any other mode.

 Since most character strings are longer than one character,
 which would require a loop to process, a subscript range
 notation may be applied to character variables or constants in

 GOM Manual 24
 GOM Language Description (Modes)

 comparatives and in substitution statements. This takes the
 forms:

 1. Name(b...e)
 2. Name(b|l)

 where in form 1, b is the first subscript to be used and e is _ _
 the last. In form 2, b again represents the first subscript and _
 l represents the length of the substring starting at subscript _
 b. In both forms, b, e, and l must be integers. In form 1, _ _ _ _
 either or both of the b and/or e may be omitted; they default to _ _
 the lower and upper bounds of the array or constant. Thus, if
 "NAME" is a character array:

 CHARACTER NAME(3)

 then the following four forms are equivalent and all represent
 the entire array:

 NAME(0...3) NAME(...3) NAME(0...) NAME(...)

 If only name is given with no subscript range at all, then ____
 it is the same as name(0) if name is a variable name. If name ____ ____ ____
 is a character constant, then when name is given with no ____
 subscript range in a comparative or substitution where subscript
 ranges are involved, it is the same as name(...) and refers to ____
 the entire constant as written. Thus, assuming "NAME" is as
 defined in the preceding paragraph, the following are
 equivalent:

 NAME(...) = "ABCD"
 NAME(...) = "ABCD"(...)

 It is important to note how padding and truncation works
 for strings in a GOM program. The only time when this may be a
 problem is when two strings of un-equal length are being
 compared, or when one is assigned the value of the other. When
 two string of unequal length are being compared, first the
 shorter string gets padded with blanks (only for the duration of
 the comparison) so that it has the same length as the "longer"
 string. Now the comparison can be made. String assignments are
 a bit more complicated for strings of un-equal length because
 two situations can arise:

 1. The longer string can be assigned the value of the
 shorter string.
 2. The shorter string can be assigned the value of the
 longer string.

 In the first case, the longer string gets the entire value of
 the shorter string, and then the longer string is padded on the
 right with blanks up to its full length. In the second case,
 the shorter string only gets loaded with characters starting
 from the left most side of the longer string. In other words,
 the rightmost characters that will not fit in the shorter string
 are truncated. Note that these two cases apply only when entire ______

 GOM Manual 25
 GOM Language Description (Modes)

 strings are involved. If substrings are being used, then only
 that portion of the string which has been specified in the
 substring notation will be compared or assigned a value.

 The code produced by the GOM compiler for substring
 notation is made shorter for some "common" cases:

 1. When both subcript ranges can be determined during
 compilation (due to the fact that they are constants
 or omitted entirely).

 2. When the lengths are the same or else the the target
 string is shorter (ie, no padding is required), and
 the number of characters to move is 256 or less.

 1.14 Pointer Operations and Expressions _______ __________ ___ ___________

 A single constant, variable, or function value of pointer
 mode is an expression of pointer mode. Integer expressions may
 be added to or subtracted from pointer expressions; the result
 is still an expression of pointer mode. A pointer may be
 subtracted from another pointer; the result is of integer mode.
 Pointer mode expressions are required as the left operand of the
 ":" operator. Other operations legal for pointer mode operands
 are substitution and the comparatives.

 The location and indirection operators are also used with
 pointer variables. The location operator returns a location as
 a value; the indirection operator returns a value as a location.
 The location operator is the unary operator ".LOC.". Its value
 is of pointer mode and is the location of the operand. The
 indirection operator is the binary operator ".IND.". Its left
 operand must be of pointer mode and specifies the pointer
 through which we are going indirect. The right operand must be
 a mode name specifying the mode of what the pointer expression
 is pointing at.

 For example, consider a hard way to set the value of the integer
 variable Q to 2:

 POINTER P
 P = .LOC.Q
 P.IND.INTEGER = 2

 Note that if the last statement had been "P.IND.FLOATING POINT =
 2", then it would have converted "2" into a floating point value
 before storing it in the integer variable Q. It is up to the
 user to keep track of what he is pointing at when using these
 operators.

 GOM Manual 26
 GOM Language Description (Statements)

 2. Statements (Executable) __________

 See Appendix A for admissible abbreviations.

 2.1 Assignment Statement __________ _________

 This statement has the form illustrated by

 ALPHA = Y + Z + F.(X, Y, Z)

 That is, the left side of the "=" sign consists of the name of a
 variable (either an individual variable or a subscripted array
 variable), and the right side consists of any expression of the
 same mode. The only exceptions to this mode requirement are the
 cases: (1) If the variable on the left is of integer mode
 then the value of a floating point expression on the right will
 be converted to integer mode. (2) If the variable on the left
 is of floating point mode then the value of an integer
 expression on the right will be converted to floating point
 mode. (3) The different integer modes will be converted among
 themselves as described in Section 1.9.

 The assignment statement (sometimes referred to as the
 substitution statement) is to be interpreted as: "(1) Compute ____________ _________
 the value of the expression on the right, (2) convert it, if
 necessary, to the mode of the variable on the left of the "="
 sign, and (3) give the variable on the left the value which
 results from Steps (1) and (2)." (See Section 1.9 for mode of
 expressions.)

 Thus, if Y is a floating point variable, then the statement

 Y = 1

 will cause the integer 1 to be converted to floating point and
 then stored in the location called "Y"; i.e., Y will now have
 the value 1. (as a floating point number). If the statement
 were written

 Y = 1.

 then the floating point number 1. would be stored in the
 location "Y"; i.e., Y would again have the floating point value
 1., but in this case the conversion of the integer is
 unnecessary, thus speeding up the computation.

 When a floating point number is to be converted to an
 integer, it is first expressed as a number with both an integer
 part and a fractional part, and then the fractional part is
 truncated. Thus, the following floating point numbers:

 3E5 .3E0 .34568127E2 -.345681E10

 would convert to the following integers, respectively:

 GOM Manual 27
 GOM Language Description (Statements)

 300000 0 34 -3456810000

 Examples of assignment statements in other modes are:

 (1) Assuming B and C have been declared Boolean

 C = B .AND. D .L. 10.

 (2) Assuming BILL(3) is a statement label constant and
 HARRY is a statement label variable

 HARRY = BILL(3)

 (3) Assuming FUN is a function name variable

 FUN = COS.

 2.2 Transfer Statement (GO TO Statement) ________ _________ ___ __ __________

 This statement has the form:

 GO TO s

 Here s may be any statement label or any expression in _
 statement label mode which labels an executable statement.
 Execution of this statement causes the computation to continue
 from the statement whose label is the value of s. Examples:

 GO TO SUMX

 GO TO SWITCH(K+2)

 Note: if K = 4 then the value of SWITCH(K + 2) is SWITCH(6).
 This is useful when labels defined in the program run from
 SWITCH(0)...SWITCH(6)...SWITCH(10) for example. Thus, one can
 write a program that calls the appropriate driver routine (a
 SWITCH(N) label) based on some variable K.

 NOTE: Medial blanks can be omitted in the GO TO statement
 if desired (e.g. GOTO). Also, there is another verb available
 for a transfer statement which is TRANSFER TO s. It follows the _
 same rules as the GO TO verb. When using the GO TO transfer
 statement verb, make sure to leave at least one blank between
 GO TO and any following text. The reason for this is that any
 identifiers of length six or less must be kept distinguished
 from reserved words that are also of length six or less. It
 should be remembered that GOM, like FORTRAN, is a blankless
 language in that all blanks not in character strings are ignored
 (and in fact, the first thing the translator does is to remove
 them all). In order to accomodate the above options and still
 allow one to use variable names of six or fewer characters
 without difficulty from reserved words, there must now be the
 requirement that at least one blank be put between the above new
 "verbs" and any following text. There will be problems only for

 GOM Manual 28
 GOM Language Description (Statements)

 users who put blanks in their identifiers (e.g.,
 IF AND ONLY IF = 32), which most people are not aware they can
 do.

 2.3 Conditional Statements ___________ __________

 There are two types of conditional statements.

 (a) Simple Conditional

 IF B,Q

 Here B is a Boolean expression and Q any executable
 statement except the following: END OF PROGRAM, another
 conditional, iteration and function entry. If at the time of
 execution of this statement, the expression B has the value 1B,
 i.e., true, the statement Q is executed. If, however, B has the ____
 value 0B, i.e., false, then Q is skipped and computation _____
 continues from the next statement in sequence. The comma in
 this statement, as in other statements containing punctuation,
 must be included. ____

 Examples: IF XM.LE.1, GO TO END
 IF I.GE.N .AND. J.NE.I-1, I = 0

 (b) Compound Conditional

 S¹ IF B¹

 Z¹

 S² ELSE IF B²

 Z²

 .
 .

 Sk ELSE IF Bk

 Zk

 Sl END IF

 NOTE: The above code was indented for easier readability. In
 GOM, it is not necessary to indent, but it is nevertheless a
 good practice. All the programs (or partial programs) in this
 manual are indented.

 Often the last condition Bk expressed is one for which the
 condition is always true. This may be expressed by the
 statement

 GOM Manual 29
 GOM Language Description (Statements)

 ELSE IF 1B

 or alternately the statement

 ELSE

 The "S"s are statement labels which need not be used unless
 desired. "k" may be equal one (if no "ELSE IF ..." statements
 are used). B¹, ..., Bk are Boolean expressions. "Zi" is a
 sequence (possibly empty) of statements. These may include
 conditional statements, of either form. Each B is tested in
 turn, starting with B¹. If B¹ has the value 0B, then B² is
 tested, etc. As soon as some expression, say Bj, has the value
 1B, then the statements Zj are executed. At this point the
 execution of the entire block is considered ended, and
 computation continues from the first statement after the END IF
 statement which, in this illustration, we have chosen to label
 Sl. In other words, no more than one of the alternative
 computations is performed. If none of the B’s has the value 1B,
 none of the computation in the scope of these statements is
 performed.

 Example: The evaluation of the function whose graph is shown in
 Figure 2-1

 Y|1 _____________
 | /| | |
 | / | | |
 | / | | |
 | / | | |
 __________|/____|____________|___________|_____X____ __ _ _ _ _
 0| 1 2 3
 |
 |
 |

 Figure 2-1

 might be done by this partial program:

 IF X<=0. .OR. 1.<=X.AND.X<2 .OR. X>=3.
 Y = 0.
 ELSE IF 0.<=X .AND. X<1.
 Y = X.
 ELSE IF 2.<=X .AND. X<3.
 Y = 1.
 END IF

 This section of program could be rewritten in another way.

 IF 0.<=X .AND. X<1.
 Y = X
 ELSE IF 2.<=X .AND. X<3.
 Y = 1.
 ELSE

 GOM Manual 30
 GOM Language Description (Statements)

 Y = 0.
 END IF

 NOTE: Medial blanks may be omitted if desired (e.g.
 ELSEIF, ENDIF). Also, there are alternate names available for
 conditional statements. WHENEVER can be used in place of IF,
 OTHERWISE can be used in place of ELSE, OR WHENEVER can be used
 in place of ELSE IF, and END OF CONDITIONAL can be used in place
 of END IF. These alternate names follow the same rules as the
 previous described names. Make sure to put at least one blank
 between the short name conditional statements and any following
 text. The reason for this was described in the previous section
 (Section 2.2).

 2.4 CONTINUE Statement ________ _________

 This statement has the simple form:

 CONTINUE

 When labeled, it serves as a junction point in the program,
 but causes no computation to be performed by its presence. It
 is merely a dummy or "do-nothing" statement. Its chief use is
 to indicate the scope of an iteration statement. A statement
 whose body is blank, but which may have a statement label is ___ ____
 treated as a CONTINUE statement.

 2.5 Iteration Statement (LOOP Statement) _________ _________ ____ _________

 The iteration statement takes on two forms in GOM. These
 are defined separately in the following two sub-sections.

 2.5.1 Count Controlled Iteration Statement (LOOP FOR) _____ __________ _________ _________ ____ ___

 Figure 2-2 is a program segment which illustrates the use
 of this statement. A LOOP statement causes the block of
 statements which follows immediately afterwards to be repeatedly
 executed, each time varying the value of some variable, until
 the specified list of values for that variable is exhausted, or
 until some specified condition is satisfied.

 GOM Manual 31
 GOM Language Description (Statements)

 ┌───┐
 | |
 | . |
 | . |
 | . |
 | K = 1 |
 | L = 1 |
 | A = D(1,1) |
 | LOOP FOR I = 1,1,I > 10 |
 | LOOP FOR J = 1,1,J > 10 |
 | IF A >= D(I,J), GO TO ST1 |
 | K = I |
 | L = J |
 | ST1 END LOOP |
 | END LOOP |
 | . |
 | . |
 | . |
 | |
 | Figure 2-2 |
 | |
 | A program segment to determine the |
 | largest element (A) in a 10 row by 10 |
 | column array called D and to record its |
 | location (K,L). The search proceeds left |
 | to right, row by row. If the largest |
 | value appears more than once in the |
 | array, only the location of the first |
 | such element is recorded. |
 └───┘

 The LOOP statement may take the following form:

 LOOP FOR V = E¹, E², B

 END LOOP marks the statement which defines the "scope" of the
 LOOP statement, i.e., the block of statements following and not
 including the LOOP statement, up to the END LOOP statement. END
 LOOP marks the last executable statement in the block to be
 repeated. Following the word FOR is the name of the iteration
 variable (in the illustration V), which may be an individual
 variable or subscripted array variable of any mode, e.g., V may
 be an integer or a floating point variable and E¹ and E² may be
 integer or floating point expressions. In fact V, E¹, and E²
 may be of any modes such that V = E¹ and V = V + E² are defined.
 B is a Boolean expression.

 The execution of the statement proceeds as follows: The
 variable V is set equal to the value of E¹. If the value of B =
 1B, the scope of the LOOP statement is not executed. If the
 value of B = 0B, the scope is executed. V is then incremented
 by the value of E², and B is tested again. In general, as soon
 as B = 1B, the scope is not executed, and the computation
 proceeds from the statement immediately following the END LOOP
 statement. Each time B = 0B, the statements in the scope are
 executed, then V is incremented by E², and B is tested again.

 GOM Manual 32
 GOM Language Description (Statements)

 Thus, when the iteration is finished and B = 1B, V has the value
 used during the last computation of the scope, incremented by
 E². The scope will not have been executed for this value of V.
 (The value of V will be E¹, of course, if B = 1B before the
 scope is executed at all.) If, at any time, the computation
 transfers out of the iteration to another part of the program,
 the value of V will be the current value at the time the
 transfer was made.

 In all cases, every reference to an expression E will
 involve its current value at the time of reference. Moreover,
 the variable V may have its value changed at any time during the
 execution of the scope. Note that the Boolean (B) can be an
 expression not involving the counter variable (V) in any way.
 For example, below is a legal LOOP statement in GOM:

 LOOP FOR ABC=1,1,BD > 5
 SUM = ABC + SUM
 BD = BD + 1
 END LOOP

 This routine will execute properly, but in general a LOOP
 statement should have as its Boolean (B), an expression dealing
 with its counter variable (V). The reason for this is that one
 is more apt to construct an infinite loop by either failing to
 increment the Boolean (B), or misinterpreting the semantics of
 such a statement.

 More LOOP statement examples:

 (1) To evaluate the polynominal

 n n-1
 c x + c x +...+ c x +c
 n n-1 1 0

 using the formula

 (...((c x+c)x + c)x +...+c)x + c
 n n-1 n-2 1 0

 (nested multiplication), we may write the program:

 INTEGER J,N
 Y = 0.
 LOOP FOR J = N, -1, J < 0
 Y = X * Y + C(J)
 END LOOP

 (For the meaning of the statement INTEGER J,N, see Section
 3.2)

 (2) A Newton’s Method solution (x = x - f(x)/f’(x))
 k+1 k k k

 of the equation f(x) = COS x - x = 0 could be written as a

 GOM Manual 33
 GOM Language Description (Statements)

 single statement, using the criterion

 |f(x)| < e and |x -x | = |f(x)/f’(x)| <e
 | k k+1| f k

 to stop the iteration:

 LOOP FOR X=X0,(COS.(X)-X)/(SIN.(X)+1.),
 + .ABS.(COS.(X)-X) .L. EPSILON .AND.
 + .ABS.(COS.(X)-X)/(SIN.(X)+1.)) .L. EPSILON
 END LOOP

 where X0 is the initial guess. Note: the computation in
 this case is actually done by the loop increment.

 (3) If the value of the iteration variable is to be altered
 within the scope of the iteration, one may use a zero
 increment. For example, suppose J is an integer variable,
 and the scope of the iteration is to be performed for those
 values of J which are multiples of 2, but not multiples of
 5, and at the same time are less than the value of the
 integer K. One might write the iteration as follows:

 LOOP FOR J = 2, 0, J.GE.K
 ...
 ...
 J = J + 2
 IF J.E.(J/5)*5, J=J+2
 END LOOP

 (4) A table-look-up procedure using an iteration statement.
 Suppose that a string of alphabetic (or numeric) characters
 (i.e., a "sentence") has been stored in C(1), C(2), ...,
 C(K), where K is the length of the string. Then the first
 occurrence of a comma could be found as follows:

 LOOP FOR I=1,1,C(I)=$,$.OR. I>K
 END LOOP
 IF I > K, GO TO NOCOMA

 NOTE: Medial blanks may be omitted if desired (e.g.
 ENDLOOP). Also, there are other forms available for iteration
 statements. They are: THROUGH s and ITERATE statements. _

 The THROUGH s form defines the "scope" to be inclusive of _
 the s statement label-- the last executable statement in the _
 block to be repeated. Note that when using the THROUGH s form, _
 no "end of THROUGH" statement marker is used since the statement
 label s has already become the last executable line in the _
 repeated block of statements. The THROUGH form follows the same
 rules as the LOOP form does.

 The ITERATE form is much more like the LOOP form because
 all one has to do is replace LOOP with ITERATE, and replace END
 LOOP with END OF ITERATION to obtain the ITERATE form of an
 iteration statement. The ITERATE form follows the same rules as

 GOM Manual 34
 GOM Language Description (Statements)

 the LOOP form does.

 ALSO NOTE: Make sure to leave at least one blank between
 LOOP and any other text so that identifiers can be distinguished
 from the reserved word LOOP.

 LAST NOTE: There is another form of the LOOP FOR statement
 which is not implemented. See Appendix E, Number 2 for details.

 2.5.2 Conditional Iteration Statements (LOOP UNTIL, LOOP WHILE) ___________ _________ __________ ____ _____ ____ _____

 Only the LOOP and ITERATE forms can be used in extended
 iteration type statements. There are two forms (only the LOOP
 verb will be used here):

 (a) LOOP UNTIL b
 ...
 END LOOP

 (b) LOOP WHILE b
 ...
 END LOOP

 where form (a) is the same as

 L2 IF b, GO TO L
 ...
 GO TO L2
 L ...

 And form (b) is the same as

 L2 IF .NOT.b, GO TO L
 ...
 GO TO L2
 L ...

 2.6 Nested Iteration Statement ______ _________ _________

 As indicated in Section 2.5, the "scope" of an iteration
 statement is the block of statements designated for repeated
 execution:

 LOOP FOR V = E¹, E², B
 scope _┌ ...
 └ ...
 END LOOP

 Some of the statements within the scope of an iteration may
 themselves be iteration statements. However, if iteration
 statement b is in the scope of iteration statement a, then b _ _ _
 must be entirely within the scope of a. (The same holds true _
 for an iteration statement c in the scope of b in Figure 2-3.) _ _

 GOM Manual 35
 GOM Language Description (Statements)

 When iteration statements occur in the scope of other iteration
 statements (such as with c inside b which is in turn inside a), _ _ _
 they are said to be "nested." Likewise, compound conditionals
 in the scope of other compound conditionals are nested. The
 "nesting depth" of a statement is the number of iterations and
 compound conditionals in whose scope it appears. Figure 2-3
 shows a valid configuration:

 Nesting
 depth

 LOOP FOR ... (Iter a) _
 ┌──────────────────────────── ...
 | ...
 | LOOP FOR ... (Iter b) 1 _
 | ┌───────────────────── ... 1
 | | LOOP FOR ... (Iter c) 2 _
 | | ┌────────────── ... 2
 | Scope of | Scope of | Scope of c ... 2 _
 | a | b | ... 2 _ _
 | | └────────────── ... 2
 | | END LOOP ... 1
 | └───────────────────── ... 1
 | END LOOP ...
 | ...
 └──────────────────────────── ...
 END LOOP

 Figure 2-3

 In Figure 2-3 iteration a has a nesting depth 0, iteration _
 b has nesting depth 1, and iteration c has nesting depth 2. _ _

 A form of nesting which often leads to confusion, although
 the compiler will accept it, is shown in Figure 2-4. This is
 the case of a partial overlap in the scopes of an iteration and
 of a compound conditional. Such overlap should be avoided.

 LOOP FOR ...
 ┌──────────────────── ...
 Scope of | ...
 Iteration | ...
 | IF ...
 ┌──|──────────────────────── ...
 | | ...
 | | ...
 Scope of | └──────────────────── ...
 Conditional | END LOOP ...
 | ...
 | ...
 | ...
 └─────────────────────────── ...
 END IF

 Figure 2-4

 GOM Manual 36
 GOM Language Description (Statements)

 There are no restrictions on jumping into or out of the
 statements in the scope of an iteration.

 Automatic indication of nesting depth _________ __________ __ _______ _____

 At the left side of the listing of the source program, when
 a GOM program is compiled, between the MTS line number and the
 internal statement number, there appears a "character" on
 occasion. This character indicates the current nesting depth of
 compound conditionals and iterations. If it is zero, it is not
 printed. The number is actually a single character which goes
 from 1 to 9 and then A to Z, representing nesting depths of 1 to
 35. This is especially useful in cases where either an END OF
 CONDITIONAL statement or the statement ending a THROUGH loop is
 omitted.

 2.7 End of Program Statement ___ __ _______ _________

 This executable statement has the form:

 END OF PROGRAM

 This statement must be physically the last statement in the
 program (i.e., the last card of the program being compiled). It
 may also be the last step in the sequence of computation.
 Execution of this statement will transfer control to the
 operating system in which the translated program is embedded.
 An alternate way to terminating a program-- i.e., returning to
 the operating system --is to attempt to execute an input
 statement which has no "RC->v" construct when the data has been
 exhausted. (See Section 2.9 for the return code construct.)

 2.8 Input/Output Statements ____________ __________

 This section discusses input and output statements that use
 a format specification to control conversions and formatting.
 The "Simple I/O" statements are described in Section 2.9. There
 are no statements for unformatted I/O since it is assumed that
 users will call the I/O subroutines (such as SCARDS, READ, etc.)
 directly if they wish to do raw I/O.

 These formatted I/O statements call on IOH360 to do the
 formatting and conversions; consequently, the formats specified
 are IOH formats, not FORTRAN formats. See MTS Volume 5 for a
 description of the IOH format language.

 The statements are:

 PRINT FORMAT f [,RC->v][,list]
 PUNCH FORMAT f [,RC->v][,list]
 READ FORMAT f [,RC->v][,list]
 LOOK AT FORMAT f [,RC->v][,list]

 GOM Manual 37
 GOM Language Description (Statements)

 READ FROM i, f [,RC->v][,list]
 WRITE ON o, f [,RC->v][,list]

 where

 f is a character constant or a character variable, that _
 contains the format.

 v is an integer non-subscripted variable in which the _
 return code will be returned. If at any time during
 processing the I/O list the return code becomes nonzero,
 the remainder of the I/O processing will be skipped. On
 an input statement, if the return code is not requested _____
 via the "RC->v" construct, a nonzero return code (such
 as due to end-of-file) will cause termination of the
 program.

 i is an input specification and consists of one of the _
 following:
 SCARDS
 GUSER
 UNIT u
 FDUB p

 where u is an integer-valued expression giving a unit _
 number and p specifies a FDUB pointer. _

 o is an output specification and consists of one of the _
 following:
 SPRINT
 SPUNCH
 SERCOM
 UNIT u
 FDUB p

 where u and p are as for input specifications (above). _ _

 list is an input/output list of elements separated by commas. ____
 Elements may be:

 (1) Single variable names, or array names with
 subscripts
 (2) Blocks of the form A(i)...A(j) (See Section 1.12)

 In addition to these, when list designates an output ____ ______
 list, the elements can be: ____

 (3) constants
 (4) expressions

 NOTE: There is another option in the list parameter that ____
 allows elements to be "iteration elements." However,
 this form is not implemented yet. It is described in
 Appendix E, Number 3.

 Example of an output list: AB, D, 2.5, MTX(1)...MTX(N), P(14),

 GOM Manual 38
 GOM Language Description (Statements)

 J(I,K). Example of a list which may be used either for input or
 output: A, B, K(3), J(24*I-L), A(K+1)...A(L*2).

 Here are some examples of Input/Output statements:

 PRINT FORMAT: produces its output on logical I/O unit SPRINT

 PUNCH FORMAT: produces its output on logical I/O unit SPUNCH

 READ FORMAT: reads its input from logical I/O unit SCARDS

 LOOK AT FORMAT: also reads from SCARDS, but does so "without
 going past the record". Hence the next time a
 READ FORMAT or LOOK AT FORMAT statement is
 processed, the same input record will again be
 transmitted.

 Warning: If more than one record is specified _______
 (via one or more slashes in the format), each
 instruction to get a new record merely causes
 the same record to be rescanned.

 2.9 Simplified Input/Output Statements __________ ____________ __________

 One type of simple input statement is the READ DATA
 statement which may have the following forms:

 READ DATA
 READ DATA FROM i

 where

 i is an input specification as given in Section 2.8. _

 If a return code specification is given, it must follow the
 input specification, e.g.:

 READ DATA FROM UNIT 4, RC->BFX

 The values to be read and the variables which are to
 receive those values must be on the input records in a sequence
 of fields of the form:

 V¹ = n¹, V² = n², V³ = n³, ..., Vk = nk*

 The V¹, ..., Vk are the variable names and n¹, ..., nk are the
 corresponding values. Reading is continued from record to
 record until the terminating mark (*) is encountered. Fields
 cannot be divided between records, so the last character in a
 record not terminated by asterisk would normally be a comma.
 However, as a convenience, the end of the record is treated as
 an implied comma and hence this final comma may be omitted. The
 variable names may designate single variables or elements of
 linear and two dimensional arrays. The subscripts on the array
 variables must be integer constants. The values may be floating

 GOM Manual 39
 GOM Language Description (Statements)

 point, integer, hex, Boolean, or character with the forms
 described in constants of corresponding mode (see Section 1.1),
 except that the only qualifier that may be used is "@X" for
 hexadecimal numbers.

 For convenience in entering values of array elements it is
 possible to designate only one variable name and have successive
 numbers, written without names, interpreted as the consecutive
 values of the array, i.e.,

 V(j) = n¹, n², n³, ..., nk

 would be the same as

 V(j) = n¹, V(j+1) = n², ..., V(j+k-1) = nk

 For 2-dimensional arrays successive numbers will be entered
 in succeeding columns of the designated row until the row - as
 determined from the current value of the dimension vector - is
 filled, and then the next row will be started. (The dimension
 vector is discussed in Section 3.3)

 Adjacent commas (,,) are skipped. Blanks are ignored
 throughout except between character delimiters.

 As an example illustrating many of the features described
 herein, consider the input data:

 X1=1.2, Y1=-6.8, INDEX=4, A(4) = 3.1, -10.93,
 12.6, MATRIX (2,1) = 25E-2, 1.8E-10, 3.14E-8,
 STRING(1) = " END OF PROBLEM " *

 Character strings may extend over more than one data
 record; column 1 of the next record is considered to immediately
 follow the last column of the previous record. As with
 character constants, the delimiter character may be represented
 within the input string by writing two of them with no space
 between them. However, this pair of delimiters must appear
 together on one record; they cannot be split between two
 records.

 A second type of simple input statement is READ AND PRINT
 DATA, which may be written:

 READ AND PRINT DATA
 READ AND PRINT DATA FROM i
 READ AND PRINT DATA ON o
 READ AND PRINT DATA FROM i, ON o

 where

 i is an input specification as given Section 2.8. _

 o is an output specification as given in Section 2.8. _

 This has the same effect as READ DATA, except that after a

 GOM Manual 40
 GOM Language Description (Statements)

 card is read it is also printed. The exact image of the input
 card is printed. The default input specification is SCARDS and
 the default output specification is SPRINT. If a return code
 specification is given, it must follow all I/O specifications.

 Important Note _________ ____

 There is a way to intercept an EOF (end-of-file) condition
 for Simple I/O (READ DATA and READ AND PRINT DATA) input. If,
 for example, the statement is of the form:

 READ DATA RC->intvar

 where intvar is an integer variable, then when an EOF is sensed ______
 on SCARDS, a return code of 4 is returned and stored in intvar, ______
 and execution proceeds with the next statement. If the READ
 DATA terminated without an EOF occurring, then a return code of
 0 (zero) is returned. If the "RC->var" construct is not
 provided, then an EOF will cause termination of the program.
 READ AND PRINT DATA behaves similarly.

 One type of simple output statement is PRINT COMMENT, which
 may have the forms:

 PRINT COMMENT string
 PRINT COMMENT ON o, string

 where

 string is either a character string constant or the name of ______
 a character variable or array;

 o is an output specification as given in Section 2.8. _

 Two string delimiters are allowed for PRINT COMMENT
 statements. They are the double-quote (") and the dollar-sign
 ($). The delimiter that begins a string must be the one that
 ends it, and must be doubled if it is to appear inside it.
 Notice that the same rules apply for Character Constants
 (described in Section 1.1.3) and PRINT COMMENT statements.
 Examples:

 PRINT COMMENT $Hello there$
 PRINT COMMENT "Hello there again"
 PRINT COMMENT $"$
 PRINT COMMENT "$"
 PRINT COMMENT $"$$"$
 PRINT COMMENT "$""$"
 PRINT COMMENT "Geoff says, ""That’s $10 please."""

 Another type of simple output statement is PRINT RESULTS,
 which may be written:

 PRINT RESULTS list
 PRINT RESULTS ON o, list

 GOM Manual 41
 GOM Language Description (Statements)

 where

 list is the list of variables or blocks to be printed (also ____
 see below)

 o is an output specification as given in Section 2.8. _

 Since the default destination is SPRINT, if o is given as _
 SPRINT, both forms given above do the same thing.

 The list designates a list of variable names, block ____
 designations, or expressions, but not iteration elements. The ___ ___ _________ ________
 printed output is analogous to the input for READ DATA in that
 values of variables are preceded by the appropriate variable
 name and an equal sign; e.g., "X = -12.4". Blocks are labeled
 as such and printed using a block format. Elements of three and
 higher dimensional arrays will be labeled with the equivalent
 linear subscript. If dummy variables (in a function definition
 or expression) or elements in dynamic records are included in
 the list the specific values assigned to such variables or
 expressions during execution will not be labeled but simply
 preceded by three dots (...). An example statement is:

 PRINT RESULTS X1, Y1, Z(1)...Z(N+1), MTX(1,1)...MTX(M,N)

 Two other forms of the PRINT RESULTS statement are:

 PRINT BCD RESULTS list
 PRINT HEX RESULTS list

 These statements have the same effect as "PRINT RESULTS
 list" except that the value for each list element is treated as ____
 character (or hex) information, and printed accordingly.

 2.10 ALLOCATE and RELEASE ________ ___ _______

 Two statements are available to allocate and release space
 dynamically.

 The form of the ALLOCATE statement is one of:

 (a) ALLOCATE drcname
 (b) ALLOCATE drcname->ptrvar
 (c) ALLOCATE (intexp)->ptrvar

 where "drcname" is the name of a dynamic record, "ptrvar" is the
 name of a scalar pointer variable, and "intexp" is an integer
 expression. Form (a) can be used if there is a "using" in
 effect for the dynamic record "drcname" (see the USING POINTER
 statement, Section 3.10). In this case, a call to GETSPACE is
 made for a region whose size is the size of the dynamic record,
 and the location returned is stored in the implicit pointer
 variable. Form (b) can be used anytime, and is the same as (a),
 except that the location is stored in the specified pointer

 GOM Manual 42
 GOM Language Description (Statements)

 variable "ptrvar". Form (c) is used to allocate a region of the
 size (in bytes) specified by the integer expression "intexp".

 To all three forms the expression ",RC->intvar" may be
 appended, in which case GETSPACE is called with a conditional
 call, and the return code is placed in "intvar", which must be a
 scalar integer variable. If this expression is not appended,
 the GETSPACE call is an unconditional one.

 The release statement is of the form:

 RELEASE ptrvar

 and causes a call to FREESPAC to free the space pointed to by
 the pointer variable "ptrvar".

 As an example showing allocating storage and use of the
 .SIZE. operator (described in Section 3.10), consider the
 following:

 DYNAMIC RECORD (PAGE) LINK,REST(4092)
 POINTER LINK ;* link to next page allocated
 CHARACTER REST ;* remainder of page to be subdivided

 DYNAMIC RECORD (TRIPLE) LPTR,LTYP,OP,RPTR,RTYP
 INTEGER LPTR,LTYP,OP,RPTR,RTYP

 POINTER P,ENDP
 ALLOCATE (PAGE)->P ;* P starts at front of region
 ENDP = P + .SIZE.PAGE - 1 ;* ENDP points to end
 P:LINK = 0@P ;* zero link
 P = P + 4 ;* position pointer
 USING POINTER P, FOR TRIPLE
 LPTR = ... ;* make first entry
 ...
 P = P + .SIZE.TRIPLE ;* position for next entry
 IF P+ .SIZE.TRIPLE > ENDP, GO TO ALLOCATE_MORE
 ...

 GOM Manual 43
 GOM Language Description (Declarations)

 3. Declarations (Non-executable statements) ____________

 Declarations are non-executable statements, and, except for
 function declarations, they may occur anywhere in the program.
 Their purpose is to furnish information to the translator
 program or to the reader of the program. Declarations may have
 statement labels, but names in the label field are ignored by
 the translator, and may not be referred to in other statements.
 (See Appendix A for allowable abbreviations.)

 3.1 Comments ________

 A comment "declaration" consists of any string of
 characters acceptable to the computer. This statement is
 completely ignored by the translator and furnishes information
 to the reader of the program. Every statement of the comment
 must have an "*" in column 1. An input line which is entirely
 blank is treated as a comment. A comment line may occur
 anywhere between statements; it may not occur between an input
 line and its continuation lines. A comment is terminated by the
 end of the input line in which it begins. This is unlike other
 statements, which are terminated by either end-of-record or a
 semicolon. Examples:

 * This is a comment
 I = 24 ;* This is also a comment

 3.2 Mode Declaration ____ ___________

 All variables and function values are assumed to have the
 normal mode unless declared otherwise. The normal mode is
 FLOATING POINT by default. Any of the modes may be specified as
 the normal mode by writing the following declaration:

 NORMAL MODE IS m _

 where m is one of the following phrases: INTEGER, BOOLEAN, _
 STATEMENT LABEL, FUNCTION NAME, FLOATING POINT, CHARACTER, SHORT
 INTEGER, BYTE INTEGER, LONG INTEGER, or POINTER. (VARYING
 CHARACTER and LONG FLOATING POINT are also recognized, but no
 use may yet be made for variables of these modes. That is, they
 can be declared, but they cannot be used in any expressions,
 functions, or statements. The reason for this is that they are
 not fully implemented yet. See Appendix E, Number 1 for
 details.) Only one such declaration may appear in a program and
 it is in effect for the whole program, no matter where it occurs
 in the program. If a variable or function value is to have a
 mode different from the normal mode then its mode must be
 declared in a declaration of the form:

 m varlist

 GOM Manual 44
 GOM Language Description (Declarations)

 where m is as defined above, and varlist is a list of variables _ _______
 or function names whose values are to be of mode m. For _
 example,

 BOOLEAN P, Q, DIGIT., TRUE

 This example declares that P, Q, and TRUE are variables of
 Boolean mode, and that the function DIGIT. returns a value of
 Boolean mode.

 3.2.1 Automatic mode assignment _________ ____ __________

 All constants are automatically assigned modes by the
 translator (see Section 1.1). Other automatic assignments of
 modes are:

 (a) A name appearing in the statement label field is
 assigned statement label mode (see Section 1.3).

 (b) A function name constant is assigned function name
 mode (see Section 4.1).

 (c) A vector appearing as the dimension vector of some
 array in a dimension declaration is assigned integer
 mode (see Section 3.3).

 (d) A vector which is preset by a vector values or
 constant declaration is assigned a mode consistent
 with the first assigned value (see Section 3.6).

 3.3 The DIMENSION Declaration ___ _________ ___________

 In order to be sure that that consecutive elements of a
 vector or array are stored in order in the computer, it is
 necessary to declare the ranges of the subscripts to be used in ______ __ ___ __________
 referring to elements of the array. If only one subscript is
 used (i.e., one is referring to the elements of a vector), it is ______
 understood that the lowest value a subscript may have is zero, ____
 so one declares the highest value the subscript may assume at
 any time during the computation. For example:

 DIMENSION V(50)

 In this case, consecutive storage locations will be assigned for
 51 elements, e.g., V(0), V(1), V(2), ..., V(50). Negative __
 subscripts may not be used with vectors. If the name V is used
 without any subscript, it is exactly the same as if V(0) had
 been written.

 For arrays with two or more dimensions (i.e., each
 reference to an element requires two or more subscripts), one
 declares the range of each subscript. Thus, if the array B is
 two-dimensional, and if the first subscript used with B is

 GOM Manual 45
 GOM Language Description (Declarations)

 expected to take on values between -5 and 10 inclusive while the
 second subscript will vary between 1 and 15 inclusive, one would
 write:

 DIMENSION B((-5...10),(1...15))

 If 1 is the lower bound for a subscript, the one, the three
 dots, and the parentheses may be omitted, so that the last
 declaration above would more likely be written:

 DIMENSION B((-5...10),15)

 In this case, storage would be allocated to B(-5,1), B(-5,2),
 ..., B(-5,15), B(-4,1), ..., B(10,15). There are 10 - (-5) + 1
 = 16 rows and 15 columns in this array, so 240 storage locations
 would be assigned to the array B. (16 X 15 = 240; the "first"
 element of the array has linear subscript 0 -- see below.)

 Each array is always considered to have storage assigned to
 it as if it were a vector, regardless of the 2-dimensional (or ______
 higher-dimensional) structure declared for it as described here.
 References to elements of an array may therefore be made by
 using the appropriate number of subscripts, or by using a single
 subscript. The "first" element of any array (single or
 multidimensional) is automatically set to correspond to the
 single subscript 0, so that in the example above, B(-5,1) could
 also be referred to as B if desired. The single subscript is
 often called the "linear subscript", and the relationship
 between the subscripts i and j in B(i,j) and the corresponding
 linear subscript r in B(r) is (for two-dimensional arrays):

 r = n(i - 1) + (j - 1) + b

 where n is the number of columns and b is chosen so that the
 "first" element has linear subscript r = 0. For the example
 above, the first element is B(-5,1). Substituting, we have

 0 = 15(-5 -1) + (1 - 1) + b
 b = 90

 For the array B, then, the relationship is

 r = 15(i - 1) + (j - 1) + 90

 Declarations may occur anywhere in the program in any
 order, and they may be combined into a single statement, so a
 typical declaration might be

 DIMENSION P(20), Q(10,20), R((-5...10),10,20), B((-5...10),15)

 Elements of arrays are assigned storage in the order
 determined by varying the last subscript first, then the next to
 last, etc., as indicated for the array B above. Thus, if one
 writes B(0,12), ..., B(1,3) in an output list, for example, with
 B dimensioned as above, then

 GOM Manual 46
 GOM Language Description (Declarations)

 B(0,12), B(0,13), B(0,14), B(0,15), B(1,1), B(1,2), B(1,3)

 would be printed, because the declared ranges of the subscripts
 would be used. (These are kept for use during execution of the
 program.) In this way it will correctly happen that the
 successor to B(0,15) is B(1,1), rather than B(0,16).

 A dimension function (see later) may be specified by
 putting "F=xxx" as the last item in the declaration list. For
 example:

 DIMENSION ARR(3,4,F=DF.)

 If the user wishes to construct his own dimension vector (mostly
 because he wants to twiddle its contents-- there’s no SETDIM
 yet), then the dimension information in the declaration should
 be two items, the first of which is the total actual size of the
 array and the second is "D=dvarr" where dvarr is the name of the _____
 dimension vector. This must be an unsubscripted name; you may ____
 not put more than one dimension vector into an array. For
 example:

 DIMENSION ARR(12,D=DVEC)

 Array references are as you would expect:

 ARR(I,J)

 Note that arrays are stored row-wise in GOM. For a character
 array, substring notation may be mixed with multi-dimensioning,
 but since a substring represents a contiguous string of
 characters, only the right-most subscript can be a substring.
 For example:

 ARR(2,1...3)

 Currently, if the array has a dimension function, it may NOT use
 substrings.

 In order to allow a GOM external function to use an array
 passed to it by a GOM program, the dimension vector location
 must be passed. Since (unlike the 7090) it is not possible to
 pass two parameters in one parameter, it is up to the user to
 explicitly pass the dimension vector as a parameter. To allow
 access to the dimension vector for the normal (implicit
 dimension vector) case, the .DIMVEC. unary operator is supplied.
 (Users must not use this operator to change the dimension vector
 because it won’t necessarily work-- in the implicit case,
 various optimizations may be made at compile time based on the
 declaration.) An example for passing:

 GOM Manual 47
 GOM Language Description (Declarations)

 ADD.(IARR, .DIMVEC.IARR, JARR, .DIMVEC.JARR)

 *
 INTERNAL FUNCTION ADD.(ARR1, DARR1, ARR2, DARR2)
 INTEGER ARR1(1,D=DARR1), ARR2(1,D=DARR2)
 LOOP FOR I=2,1,I>4
 LOOP FOR J=2,1,J>9
 ARR1(I,J) = ARR1(I,J) + ARR2(I,J)
 END LOOP
 END LOOP
 FUNCTION RETURN
 END OF FUNCTION

 RESTRICTION: READ DATA and PRINT RESULTS currently cannot
 handle multiple subscripts; you must use the equivalent linear
 subscript for READ DATA, and PRINT RESULTS will report values in
 terms of a linear subscript.

 DIMENSION FUNCTIONS: Normally, GOM generates inline instructions
 to convert the multiple subscripts given to the equivalent
 linear subscript according to the standard formulas. If the
 user wishes to have arrays stored according to some other
 scheme, he may have GOM call a function he supplies to do this
 conversion. The function may be an internal or external
 function, and is called with the location of the dimension
 vector as the second argument, and the subscripts given on this
 reference as the third and following arguments. The function
 should return a value which is the linear subscript to be used
 in accessing an array.

 DIMENSION VECTORS: The dimension vector for an array is a one-
 dimensional array that contains the information required to
 convert the multiple subscripts to a linear subscript or the
 converse. The information contained in it is redundant so as to
 allow minimal code to be generated. It consists of 3 + 3*N
 fullwords, where N is the number of dimensions, as follows:

 First word zero or address of dimension function

 Second word number of dimensions (but see below)

 Third word size of the array (maximum linear subscript)

 Fourth word base (the linear subscript that corresponds
 to A(1,1,1,...))

 Fifth and up N-1 words containing the spans (max-min+1) of
 the dimensions, from left to right, excluding
 the first.

 Last 2*N words containing a 1 word lower bound
 followed by a 1 word upper bound, for each
 dimension, left to right.

 For example, instead of

 GOM Manual 48
 GOM Language Description (Declarations)

 DIMENSION ARR(3,4)

 one could say

 DIMENSION ARR(12,D=DVEC)
 VECTOR VALUES DVEC=0,2,12,1,4,1,3,1,4

 If there was a dimension function DF, then instead of

 DIMENSION ARR(3,4,F=DF)

 it could be specified with:

 DIMENSION ARR(12,D=DVEC)
 VECTOR VALUES DVEC=DF.,2,12,1,4,1,3,1,4

 and with the following definition it should do the same (albeit
 slowly) as not having a dimension function at all:

 INTERNAL FUNCTION DF.(ARR,DV,I,J)
 DIMENSION ARR(1), DV(8)
 L = (I-1)*DV(4) + (J-1) + DV(3)
 FUNCTION RETURN L
 END OF FUNCTION

 SECOND WORD: This word is split into 2 parts, the first which
 contains the halfword size of the element (e.g., 4 for
 integers), and the second which holds the halfword number of
 dimensions. Since the code GOM generates does not look at this
 word of the dimension vector at all, this should be user
 transparent. Only those writing their own dimension functions
 need watch out.

 3.3.1 Including dimension information in other declarations _________ _________ ___________ __ _____ ____________

 The word DIMENSION may also be replaced by any of the
 following: PROGRAM COMMON, INTEGER, BOOLEAN, FLOATING POINT,
 FUNCTION NAME, STATEMENT LABEL, CHARACTER, SHORT INTEGER, BYTE
 INTEGER, LONG INTEGER, POINTER, or DYNAMIC RECORD, with the
 effect determined by the specific declaration used. In any of
 these other cases, dimension information is not required for a
 name on the list. If given, as described above, the
 dimensioning is in addition to the declared effect. (For
 PROGRAM COMMON see Section 3.4. For DYNAMIC RECORD see Section
 3.9.)

 Example:
 INTEGER A(10), N, P, Q(30*3)

 3.3.2 Automatic dimensioning _________ ____________

 Dimensioning is automatic in two situations:

 (a) When a constant statement label vector, say L, is used

 GOM Manual 49
 GOM Language Description (Declarations)

 (see Section 1.3) and n is the highest subscript used _
 on L in the statement label field, then n + 1 array
 elements are reserved for L. Of course, L may also
 appear in a dimension declaration, in which case the
 highest subscript is used.

 (b) If part or all of a vector is set by a VECTOR VALUES
 or CONSTANT declaration (see Section 3.6), the vector
 need not appear in a dimension statement unless the
 maximum subscript implied by the initial values is not
 sufficiently high.

 NOTE: There are two sub-sections for Section 3.3 which are not
 currently implemented. They deal with multiple dimensioning and
 modifying the declared range of array subscripts. See Appendix
 E, Numbers 4 and 5 for details.

 ALSO NOTE: Another declaration section dealing with the
 EQUIVALENCE declaration form has yet to be implemented. It too
 is described in Appendix E, Number 6.

 3.4 PROGRAM COMMON Declaration _______ ______ ___________

 This declaration has the form

 PROGRAM COMMON a,b,c, ...

 or

 PROGRAM COMMON (name) a,b,c, ...

 where "a,b,c, ..." is a list of one or more variables or array
 names. The first form assigns the variables to blank common;
 the second form assigns them to named common, where name is the ____
 (eight character maximum) name of the common section.

 Examples:

 PROGRAM COMMON (DATA1) A,B(10),C
 PROGRAM COMMON MATRIX, X, Y1, BC

 In these declarations, the arrays and individual variables
 listed after the words PROGRAM COMMON are non-overlapping in
 storage and are assigned (in the order in which they occur, from
 left to right) to a special section of storage which is separate
 from the usual storage of variables and arrays, and is in fact,
 not in the program at all. Dimension information may be
 included, if desired.

 One use of this statement provides for several sections of
 a program to refer to variables and arrays by the same names,
 while being translated and checked out separately. A program
 divided up this way would have the form of a main program and
 several external function programs, with the main program being

 GOM Manual 50
 GOM Language Description (Declarations)

 used primarily to call on each of the external functions in
 turn. Although variables and arrays to be used jointly by
 several external functions can be communicated as arguments to
 the functions, assigning them to PROGRAM COMMON makes them
 available to all sections which declare them as such.

 The storage reserved for common sections, both named and
 blank, is reserved separately, and is not a part of any program
 (main program or external function program). Every program
 which refers to a variable in program common must have the same
 address assignment for that variable. This is usually done by
 including identical PROGRAM COMMON and DIMENSION declarations in
 all the programs which refer to program common.

 Note that this declaration forces an ordering on the
 assignment of variables that will override the normal boundary
 alignment provided for variable storage. Each common section is
 allocated to begin on a doubleword boundary. Thus,

 PROGRAM COMMON A,B
 BYTE INTEGER A
 INTEGER B

 will force the four-byte integer field B, which would normally
 be allocated to start on a fullword boundary, to start on an odd
 byte boundary (thus, a packed representation of variables is
 used). Here is how these variables appear in storage (Note--
 this storage representation begins on a doubleword boundary):

 |------------FULLWORD-----------|
 ┌───────┌───────┌───────┌───────┌───────┐ ─ ─ ─ ─
 | A | B | B | B | B |
 └───────┘───────┘───────┘───────┘───────┘ ─ ─ ─ ─
 BYTE BYTE BYTE BYTE BYTE
 |----HALFWORD---|----HALFWORD---|

 PROGRAM COMMON declarations are cumulative for each common
 section defined. If another such declaration occurs in a
 program, the arrays and variables listed therein are considered
 appended to the previous list of PROGRAM COMMON arrays and
 variables. The amount of storage actually reserved for each
 common section is determined solely by the maximum amount used
 by all modules that refer to that section.

 3.5 GLOBAL AREA Declaration ______ ____ ___________

 In order to provide a place for the repository of global
 information in a reentrant environment (where PROGRAM COMMON
 cannot be used), another entity, the Global Area, is available
 in GOM. A global area is defined with the GLOBAL AREA
 statement:

 GOM Manual 51
 GOM Language Description (Declarations)

 GLOBAL AREA list

 or

 GLOBAL AREA (areaname) list

 This declaration is syntactically the same as the PROGRAM COMMON
 construct. The areaname is restricted to a name of four or ________
 | fewer characters (eight or fewer if Linkage=CLSMTS is specified,
 | see sub-section 4.3.3); if it is longer, its external form will
 be truncated and a warning message will be given. Each global
 area with a different name is a separate, independent storage
 area. Variables in a global area may not be preinitialized with
 the VECTOR VALUES statement.

 3.6 Presetting Variables __________ _________

 Any scalar, vector, or portion of a vector (or array when
 considered as a vector, i.e., using linear suscripts) may be
 preset by declarations of one of the following two forms:

 VECTOR VALUES A(n) = C⁰, C¹, ..., Cr (vectors) _
 VECTOR VALUES A = C (scalars)

 Here n is an integer constant, and A(n) may be written _ _
 simply as A if n = 0. The entries C⁰, ..., Cr may be any _
 constants (not necessarily all of the same mode). Array A,
 starting with element A(n), is preset with the constants in the _
 list, starting with C⁰. A is automatically set to have the same _
 mode as C⁰; and A is automatically dimensioned large enough for _
 the constants. If there are s constants d⁰, ..., d(s-1) in the _ _
 list, then the elements A(n), A(n + 1), ..., A(n + s - 1) are _ _ _ _
 preset (in order) to the values d⁰, ..., d(s-1). A is _
 automatically set to have the same mode as d⁰; and A is
 automatically given a storage reservation of n + s locations, _ _
 which is the same as writing DIMENSION A(n + s - 1). _ _

 A may appear in a mode declaration as well, provided it is _
 consistent with the mode of C⁰. If A appears in other VECTOR _
 VALUES or DIMENSION declarations the maximum length given or
 implied for A is used for storage assignment. _

 NOTE: There is an alternate form for the VECTOR VALUES statement
 which is not currently implemented. This form is described in
 Appendix E, Number 7.

 3.7 Parameterization of Constants ________________ __ _________

 Just as the VECTOR VALUES statement specifies the
 initialization of variables, the CONSTANT statement allows one
 to supply a name for a constant. The form of the statement is
 the same as for VECTOR VALUES, except for the statement name:

 GOM Manual 52
 GOM Language Description (Declarations)

 CONSTANT A = C
 or CONSTANT A(n) = C⁰, C¹, ..., Cr _

 The resultant name A, since it is just a name for a constant, _
 can be used anywhere a constant may be used. For example,

 CONSTANT TSIZ=57
 DIMENSION TABLE1(TSIZ), TABLE2(TSIZ)

 Important Note _________ ____

 Unlike the VECTOR VALUES declaration, the CONSTANT
 declaration is effective at the point it occurs in the program.
 Thus the order of the statements in the above example is
 required.

 Besides providing a parameterization for constants, the
 CONSTANT statement can be used for tables whose values are
 indeed constant. For example:

 CONSTANT ODDS = 1,3,5,7,9,11,13,15,17

 Such names can be subscripted, just as if they were variables.
 Here is how ODDS looks graphically using the above example:

 CONSTANT ODDS

 ┌─────┌─────┌─────┌─────┌─────┌─────┐ ─ ─ ─ ─ ─
 VALUE | 1 | 3 | 5 | 7 | 9 | --> |
 └─────┘─────┘─────┘─────┘─────┘─────┘ ─ ─ ─ ─ ─
 subscript 0 1 2 3 4 -->

 Note that the mode of a constant (i.e., INTEGER, CHARACTER, ____
 etc.) is determined by the mode of the first constant value. _____

 3.8 Format Variable Declaration ______ ________ ___________

 This declaration has the form

 FORMAT VARIABLE list

 where list is a list of unsubscripted variable names. If this ____
 declaration is embedded within a function definition (see
 Section 4.5), then none of the names in list may be dummy ____
 variables or be used in dynamic records. All names that will be
 used as format variables in formats must be declared to be
 format variables in this way. This declaration does not imply
 anything at all about arithmetic or Boolean mode, or about
 dimension. There may be any number of such declarations,
 anywhere in the program. Format variables may be used in
 formats only with the READ FROM and WRITE ON statements.

 GOM Manual 53
 GOM Language Description (Declarations)

 3.9 Dynamic Record _______ ______

 A dynamic record declaration defines a structure which
 consists of a set of names and their spatial relationship to
 each other. It does not allocate any storage and does not
 provide an instance of this structure. In various other
 languages this would be called a one-level structure, a record,
 or a DSECT.

 This is similar to the PROGRAM COMMON declaration, except
 that the PROGRAM COMMON declaration does cause the allocation
 (external to the program) of exactly one instance of the common
 section being defined. Because of this similarity, the syntax
 of the DYNAMIC RECORD declaration is the same as the PROGRAM
 COMMON declaration, except, of course, that the statement name
 differs. The form is:

 DYNAMIC RECORD (drcname) list-of-elements

 Examples are:

 DYNAMIC RECORD (BLOCK) I,VAL(10),J
 DYNAMIC RECORD (TRIPLE) LPTR,LTYP,OP,RPTR,RTYP

 At any given time, zero or more instances of a given
 dynamic record may exist. Therefore, in order to refer to a
 given variable in a particular instance of a dynamic record, not
 only the variable must be given, but the location of the
 particular instance wanted must also be specified. There are
 two ways to provide this location. It can be done explicitly
 when the variable is mentioned by using the ":" operator (see
 next paragraph), or it may be done implicitly by setting up a
 "using" which tells the compiler where to find the location.
 This is described in the next section. Generally, more
 efficient code is produced when a "using" is in effect,
 particularly when compared with a statement that has more than
 one ":" operator in it.

 The ":" operator is used to refer to variables in dynamic
 records. The left operand must be of pointer mode, and the
 right operand must be a variable (possibly subscripted) which is
 defined in a DYNAMIC RECORD statement. The pointer is assumed
 to contain the location of the first element in the dynamic
 record. Examples are:

 X = P:J
 P:LPTR = AB
 P(I):VAL(J) = 4.3

 The simplest way to produce an instance of a DYNAMIC RECORD
 is to map it onto something already allocated storage in the
 program. For example, given

 DYNAMIC RECORD (BLOCK) I,VAL(10),J
 then if
 DIMENSION AREA(12)

 GOM Manual 54
 GOM Language Description (Declarations)

 POINTER P
 P = .LOC.AREA

 things are set up so that specifying

 P:I

 refers to an I in a BLOCK mapped onto AREA, and hence actually
 refers to the first word in AREA. This is a static usage of a
 dynamic record.

 A more common usage is to use the ALLOCATE statement to
 dynamically obtain storage to use for an instance of a dynamic
 record. This manner of usage and the ALLOCATE statement are
 discussed in Section 2.10.

 The .SIZE. unary operator is available to obtain the length
 (in bytes) of a dynamic record. The operand must be a dynamic
 record name, and the mode of the result is integer.

 3.10 USING Statements _____ __________

 There are two statements available to set up and remove an
 implicit "using" for a dynamic record. These are declarations
 in that they produce no object code, but are merely directives
 to the compiler. However, unlike other declarations, they are
 not global, but take effect when they are encountered by the
 compiler. Thus they behave like the USING and DROP statements
 in assembly language. The forms are:

 USING POINTER ptrvar, FOR drcname
 STOP USING POINTER ptrvar, FOR drcname

 where ptrvar is a scalar pointer variable, and drcname is a ______ _______
 dynamic record name. The USING POINTER statement tells the
 compiler that from that point on, it can assume that the given
 pointer variable has the location of an instance of the
 specified dynamic record. Then if the name of a variable in
 that dynamic record appears in the program unqualified by the
 ":" operator, the compiler will use the pointer variable
 specified by the USING POINTER statement. Thus, given the
 declaration

 DYNAMIC RECORD (BLOCK) I,VAL(10),J

 instead of specifying

 P:J = P:J + 1 (explicate method)

 one could instead say

 USING POINTER P, FOR BLOCK
 J = J + 1 (abstract method)

 GOM Manual 55
 GOM Language Description (Declarations)

 If a pointer variable is explicitly specified by use of the ":"
 operator, the pointer specified is used, and any using in effect
 is ignored.

 A using for a given dynamic record remains in effect until
 either a STOP USING POINTER statement for that dynamic record is
 given, or until a new using for that dynamic record is
 specified. (A little thought will show that while many pointers
 could be pointing at a given dynamic record, the compiler cannot
 use them all to address a given variable, and hence it uses only
 the most recent one specified, for each dynamic record.)

 GOM Manual 56
 GOM Language Description (Functions)

 4. Functions _________

 The name of a function consists of one to 24 letters,
 underscores, or digits, but the name must be followed by a
 period (.) so that the translator can recognize it as a function
 name. The first character of a function name must be a letter.
 A function name given explicitly in this form will be called a
 function name constant. If the function is single-valued, then
 the value of the function (that is, the result of making a call _____
 on the function) is represented by following the function name
 with the proper number of arguments separated by commas and
 enclosed in parentheses. Thus, ADD51., COS., POLY., and
 FUNCT3. are function names, while ADD51.(X,Y3,ADD.),
 POLY.(N,VJ,7) and COS.(X) are function values.

 If the function referred to by the function name constant
 is not defined (as an INTERNAL FUNCTION) in the same source
 module as the reference, then function is assumed externally
 defined. The external name presented to the system loader will
 consist of the first eight characters of the function name, if
 it is greater than eight. Hence, such names must be unique in ____ _____ ____ __ ______ __
 the first eight characters, and it is recommended that they not ___ _____ _____ __________
 exceed eight characters.

 4.1 Function Name Constants, Variables, and Expressions ________ ____ __________ __________ ___ ___________

 (a) The notation for function evaluations, i.e., function
 references, always requires a period after the name
 of the function.

 (b) Function name constants are the names which designate ________ ____ _________
 entry points in actual definitions, e.g., SIN., COS.,
 F. --assuming F. is defined as either an internal or
 external function. Function name constants are never
 subscripted and never appear without a period; they
 may not stand alone on the left side of an assignment
 statement.

 (c) Function name variables, i.e., variables of function ________ ____ _________
 name mode where the mode is either declared or is
 implicit from a VECTOR VALUES declaration, should not
 have a period when used as variables. Use on the
 left side of an assignment statement or as an
 argument of a function are examples. The following
 two restrictions apply to the use of function name
 variables when they are used as function names in
 function evaluations.

 (1) Single function name variables, i.e., variables
 not normally considered to be an element of an
 array, must be written with a zero subscript
 preceding the period. For example, if G is a
 single function name variable, its use in a
 function evaluation would appear G(0).(A,B)

 GOM Manual 57
 GOM Language Description (Functions)

 where A and B are the arguments. As with any
 single variable used only with a zero subscript,
 it does not need to be dimensioned.

 (2) Such function evaluations may not be embedded in
 a larger expression. They may appear by
 themselves or as the right side of an assignment
 statement.

 Thus if G and H are function name variables, then _________

 H(0).(A,B,T)
 or T = G(0).(A,B)

 would be acceptable statements, but not

 T = G(0).(A,B) + C*D

 | The result of such a function call is assumed to be
 | of normal mode. If a statement including such a call
 | in a larger expression is used, then an infinite loop
 | may occur when trying to run the object program. In
 order to protect yourself against this problem, make
 sure to specify a local time limit when running the
 object program.

 (d) A single constant, variable, or function value of
 function name mode is an expression of function name
 mode. The only operations legal for operands of
 function name mode, besides calling the function, are
 substitution, and the .E. and .NE. comparatives (or
 their equivalents). There are no automatic
 conversions from function name mode to any other
 mode.

 4.2 Function Call Statements ________ ____ __________

 Normally, the value of a function will occur as part of an
 expression as in the statement:

 Z = COS.(X)/SIN.(X + 2.)

 Certain functions, however, may stand alone as separate
 statements. For example, a procedure to sort a list could be
 called by:

 (a) EXECUTE LSORT.(ARRAY,MAP,N)

 or alternatively as:

 (b) LSORT.(ARRAY, MAP, N)

 Here ARRAY, MAP, and N are the "arguments" of the function
 (subroutine) LSORT. A function called as in (a) or (b) above

 GOM Manual 58
 GOM Language Description (Functions)

 need not be followed by a list of arguments.

 The return code produced by the subroutine that was called
 may be obtained by means of the "->" operator. The left operand
 of this operator must be the function call, and the right
 operand must be an integer variable. The resulting return code
 from the function call specified by the left operand is stored
 in the variable specified by the right operand. This operator
 may be used on either a stand alone call or when the function is
 evaluated as part of an expression. For example,

 FUNCT1.(A,B)->I
 Y = FUNCT2.(X,Z)->J

 Normally, calls to subroutines are set up as standard S-
 type calls, wherein the addresses of the arguments are provided
 in storage in a list whose location is supplied in register 1
 when the call is performed. On occasion, it may be necessary to
 provide an R-type calling sequence, wherein the parameters are
 provided in one or more registers, and results are returned by
 the subroutine in various registers.

 For an R-type call, arguments that are to be input to the
 subroutine being called are specified as "Rn=value" in the
 argument list, where "n" is the number of the register. "n" may
 | not specify registers 9 through 15. "value" must be of a mode
 that is reasonable in a general register; that is, four bytes in
 size and not floating point, which means the mode must be
 INTEGER, BOOLEAN, STATEMENT LABEL, FUNCTION NAME, or POINTER.
 (Of course, using the .AS. operator or the "@" qualifier,
 anything (or at least 32 bits of it) may be forced there.)
 Results returned by the subroutine in registers other than
 register 0 (which is the normal register used to return a value)
 are indicated by specifying output arguments in the argument
 list following the input arguments. Output arguments are
 specified as "Rn->variable", where "n" is the number of the
 | register. "n" may not specify registers 9 through 14.
 "variable" must be a scalar variable with the same mode
 restrictions as for "value" on input arguments.

 Examples of R-type calls:

 INTEGER SIZE,RC
 POINTER LOCAREA
 GETSPACE.(R0=3,R1=SIZE,R1->LOCAREA)->RC

 POINTER FDUB,GETFD.
 VECTOR VALUES FILENAME = "INFILE "
 FDUB = GETFD.(R1=.LOC.FILENAME)

 GDINFO.(R0="SCAR"@I,R1="DS "@I,R1->LOCAREA)->RC

 The second type of function call that GOM programs can
 issue are SVC based instructions. Since a supervisor call is
 really just another sort of a subroutine call, the statement
 needed to issue one is the same as for producing an R-type

 GOM Manual 59
 GOM Language Description (Functions)

 subroutine call, except for the statement verb. The form is:

 SUPERVISOR CALL n.(arguments)

 where arguments is a typical R-type call list. n must be either _________ _
 an integer constant or an integer CONSTANT. Examples are:

 SUPERVISOR CALL 28.(R0->A,R1->B,R2->C,R3->D)

 CONSTANT DORMNT=4
 SUPERVISOR CALL DORMNT.

 CONSTANT WAYT=35
 SUPERVISOR CALL WAYT.(R0=.LOC.A) ;* Won’t wait

 The allowable "register" names for an R-type call allow CC for __
 handling the condition code. Note that only SUPERVISOR CALL ____
 type function calls may use CC. __

 CONSTANT PROTON=26
 SUPERVISOR CALL PROTON.(CC->SW)

 Also, to enhance multiple contiguous register usage, instead of
 "Rn" you may specify "Rn...Rm", which means that a LM or STM
 instruction will be used with the registers specified. In this
 case, it is up to the user to make sure that the semantics of
 the instruction makes sense. Also, in this case it will be
 necessary to declare Rn and Rm as being INTEGER. Example:

 INTEGER TODOUT(3)
 INTEGER R0,R3
 SUPERVISOR CALL TOD.(R0...R3->TODOUT)

 Note-- Users not familiar with these hardware instructions
 should read the I.B.M. 370 Principles of Operations Manual.

 4.3 Function Definitions ________ ___________

 There are two types of functions: the internal function and
 the external function. Since these are quite similar in many
 ways, that part of the description which is specific to external
 functions will be given in sub-section 4.3.3, that which is
 specific to internal functions in sub-section 4.3.4, and that
 which is common to both types will follow in sub-section 4.3.6.
 The first two sub-sections (4.3.1 and 4.3.2) deal with function
 entry and exit. Sub-section 4.3.5 deals with variable length
 calling sequences for functions.

 4.3.1 Entry to a Function _____ __ _ ________

 Alternate entry points to a function being defined are
 indicated by

 ENTRY TO n.

 GOM Manual 60
 GOM Language Description (Functions)

 where n is the name of the entry. If the argument list is to _
 differ from that specified in the preceding INTERNAL FUNCTION or
 EXTERNAL FUNCTION for which this is an alternate entry, then the
 list desired must be specified:

 ENTRY TO n.(list)

 where list is zero or more dummy arguments, separated by commas. ____

 R-Type Function Entries ______ ________ _______

 It is also possible to define an R-type entry, in a manner
 very similar to an R-type call, as for example:

 EXTERNAL FUNCTION F2.(R0->A,R1->B)

 which says that on entry, the contents of register 0 are to be
 stored in local variable A, and register 1 in local variable B.
 As with R-type calls, the modes of the variable must be such
 that it makes sense to do a ST into, (ST is the hardware
 instruction for store) and the variables should be in the local
 storage module.

 4.3.2 Function Return ________ ______

 The legal forms of this statement are:

 FUNCTION RETURN e
 FUNCTION RETURN e,RC=n
 FUNCTUON RETURN RC=n
 FUNCTION RETURN

 This statement is used in a function definition to indicate
 a return to the calling program. e is an expression whose value _
 is to be the output of this function when the function is
 considered as a single valued function. e need not be specified _
 if no value is to be returned. (e is the value returned in _
 register 0)

 The mode of the expression e must be identical to the mode _ ____
 of the value the function is supposed to return. There are no
 arithmatic conversions done on this expression.

 n is an integer expression whose value is to be the return _
 code from this function call. Return codes are usually
 multiples of 4. If RC=n is not specified, a return code of zero
 is returned. (The return code is returned in general register
 15.)

 GOM Manual 61
 GOM Language Description (Functions)

 4.3.3 External Function Definitions ________ ________ ___________

 The prototype for the EXTERNAL FUNCTION is:

 [RECURSIVE] EXTERNAL FUNCTION {name. } [keywords]
 [REENTRANT] {name.(parlist)}

 where:

 [parlist] specifies a parameter list. See Section
 4.3.6 for the discussion of parameter lists.

 [keywords] can be any one of the following:

 LINKAGE={MTS|CLSMTS}
 STACKSIZE=nP
 PROGRAM SIZE={1|2|3}P

 RECURSIVE Specifies a recursive function.

 REENTRANT Specifies a reentrant function; i.e., a function
 which in no way modifies itself.

 | If neither RECURSIVE nor REENTRANT is specified,
 | there is a code csect and a data csect in each
 | module, and all variables not explicitly placed
 | elsewhere are in the data csect.

 | If REENTRANT is specified, there is one csect, a
 | code-plus-invariants csect, and a storage space
 | which is dynamically allocated and initialized
 | once (on the first call) and retained over
 | subsequent calls. Thus any module declared
 | neither REENTRANT nor RECURSIVE can be made
 | reentrant merely by placing "REENTRANT" on the
 | first statment and it should continue to behave
 | the same way. (This is implemented by having
 | each module call GPSECT to obtain or find its
 | data area, and if freshly allocated, it
 | initializes it. It would have been possible to
 | use pseudoregisters for this so that only the
 | main module would have to call GPSECT or
 | GETSPACE, but there is only one pseudoregister
 | vector and since others use them, use of them in
 | GOM was avoided to prevent conflict.)

 | Functions declared RECURSIVE likewise have one
 | csect, and have storage space which is allocated
 | on every entry and released on every exit. Thus
 | values of variables are NOT preserved from one
 | call to another, unless the variables happen to
 | be in a global area.

 | Restrictions: If REENTRANT or RECURSIVE is used,
 | the formatted I/O statements may not be used,

 GOM Manual 62
 GOM Language Description (Functions)

 | since IOH has is not reentrant. Also, the
 | simple I/O statements, except for PRINT COMMENT,
 | may not be used although the support routines
 | are reentrant, because the symbol table needs to
 | be moved to the data area and initialized if it
 | is to be used. This was not deemed worth the
 | work in view of the expectation no reentrant
 | program would ever use READ DATA or PRINT
 | RESULTS.

 LINKAGE=MTS The standard MTS Coding Convention Linkages are
 | used both for the entry to this function, and
 | calls from it to other external functions.
 | However, nothing is assumed about the contents
 | of register 11 and no stack limit checking is
 | done. If the module is an EXTERNAL FUNCTION or
 | a REENTRANT EXTERNAL FUNCTION, only the
 | registers upon entry and a pointer to the data
 | area are saved on the stack. If the module is a
 | RECURSIVE EXTERNAL FUNCTION, the whole data area
 | is placed on the stack.

 LINKAGE=CLSMTS The standard MTS Coding Convention Linkages are
 used. In addition, GR11 points to a Pseudo-
 Register Vector used for GLOBAL AREA storage.

 This is available only with the RECURSIVE
 | option, since that is only way it can
 | meaningfully be used. Specification is:

 RECURSIVE EXTERNAL FUNCTION F.(ARG) LINKAGE=CLSMTS

 This type of module expects the "MTS" linkage
 | conventions (reg 13 has stack pointer on entry)
 and also expects a CLS transfer vector pointer
 | to be in the second word in the global area
 pointed to by reg 11 on entry. Calls to other
 external routines will, as you might expect,
 | pass on the global area pointer in reg 11 and
 supply an updated stack pointer in reg 13.

 | The variable _CLSTV_ is a predefined pointer
 | variable which is set to point to the CLS
 transfer vector upon entry to the function. It
 is up to the user to make sure it gets used for
 functions to be called via the transfer vector,
 by using a

 | INCLUDE COPY:CLSTV#SG

 Statement following the EXTERNAL FUNCTION
 statement, or providing equivalent definitions.

 | Similarly, _SSDPTR_ is a pointer variable that
 | will point to the short stack descriptor on
 | entry to the function. Functions declared

 GOM Manual 63
 GOM Language Description (Functions)

 | Linkage=CLSMTS will always check the new stack
 | pointer against the stack limit in the short
 | stack descriptor on entry. If the limit has
 | been exceeded, a Plus-style stack overflow error
 | interrupt will occur.

 PROGRAM SIZE=nP (where n is either 1, 2, or 3) Allows the _
 programmer to specify in advance an upper bound
 on the size of the external function. This
 parameter, if specified, allows GOM to generate
 more efficient code.

 STACKSIZE=nP A regular OS S-type entry is made. A stack of
 the specified size is allocated and all external
 calls are assumed to be LINKAGE=MTS functions.

 This is somewhat equivalent to writing an
 assembly language routine whose entry code is
 | generated with an RXENTER macro. The second
 csect (or dynamic storage obtained for psect)
 will be extended as specified. In addition, all
 | external subroutine calls will use the CC
 | calling conventions with GR13 updated to point
 | to the next "stack frame" (as for LINKAGE=MTS)
 and hence either OS or MTS subroutines may be
 called.

 The designation "EXTERNAL" implies that the statements
 which follow are to be translated independently of the main
 program in which they are to be used. Because of this
 independence, this block of statements is to be considered
 entirely as a separate program, and must have its own DIMENSION
 and MODE declaration, etc. Names of variables, functions, and
 labels which denote (or "represent") arguments of the function
 being defined are designated "dummy variables" (or "bound
 variables"). The modes of these dummy variables (if other than
 the normal mode) must be declared in the usual way (see Section
 3.2), and arrays which are dummy variables must be dimensioned,
 so that the translator knows that it is legal to apply
 subscripts. The word "EXTERNAL" also implies that names chosen
 for variables and functions in the current function definition
 program have no relation whatever with identically named
 variables and functions in the main program (or other external
 functions), and that no difficulties will be encountered because
 of the use of similar names.

 4.3.4 Internal Function Definitions ________ ________ ___________

 The prototype of the INTERNAL function is written as

 INTERNAL FUNCTION {name.|name.(parlist)}

 where [parlist] is the same as given in Section 4.3.3.

 GOM Manual 64
 GOM Language Description (Functions)

 The designation "INTERNAL" implies that the definition
 program which follows is to be translated as part of the main
 program. The word "INTERNAL" also implies that any variables or
 functions not listed as dummy variables in the definition of the
 function (but used in its evaluation), are understood to be the
 same as elsewhere in the main program, and the current values of
 these variables and functions will be used. Names of variables,
 functions, and labels which denote arguments of the function
 being defined are designated "dummy variables" (or "bound
 variables"). They must be distinct from those appearing
 elsewhere in the program. The modes of dummy variables (if
 other than normal mode) must be declared in the usual way, and
 arrays which are arguments must be dimensioned, so that the
 translator knows that it is legal to apply subscripts.

 A note on the code produced for internal functions: As
 currently implemented, internal functions are designed to be
 called only from within the compilation in which they are ____
 embedded. In order to make them as efficient as possible, if
 none of the FUNCTION RETURN statements for an internal function
 has a value to be returned, then the function entry saves only
 the function-call register (GR14) and the function return merely
 loads it and branches (and sets a return code). If a value is
 returned for an internal function, then the call may be embedded
 in an expression and thus all registers have to be saved. In
 any case, on an internal function entry it is assumed that
 registers 9, 10, 11, 12, and 13 are properly set up, and hence
 it is not wise to supply these entries as function names to the
 external world. (Use external function entries instead.)

 NOTE: There is another form for an INTERNAL FUNCTION definition
 known as the one-sentence definition. It is not, however,
 currently implemented. See Appendix E, Number 8 for details.

 4.3.5 Variable Length Calling Sequences ________ ______ _______ _________

 All function calls generated by GOM are potentially ___________
 variable length. In the case that there is a known number of
 arguments but some of them may not be present on the call, dummy
 variables for all possible arguments are listed in the dummy
 variable list as usual, but the ones that may be possibly absent
 are placed in another set of parentheses. For example,

 EXTERNAL FUNCTION F.(A,B,(C,D))

 defines function F with parameters A and B that will always be ______
 there, and parameters C and D that may be there. It is the ___
 responsibility of the user to determine if any of the optional ____
 arguments are present (see .NBRARG. below) before actually using
 them.

 In the case that there is a truly indefinite number of
 arguments, the "..." notation at the end of the parameter list
 indicates this. Thus,

 GOM Manual 65
 GOM Language Description (Functions)

 EXTERNAL FUNCTION F.(A,B,...)

 indicates two known arguments followed by zero or more others.
 If present, the "..." must be last in the dummy variable list.
 If a parenthesized list of optional arguments occurs, it must be
 last in the dummy variable list, except for a "..." which may
 follow it.

 In order to find out the number of arguments that a
 function was actually called with, the unary operator
 .NBRARG. is provided. An example use of this operator is:

 N = .NBRARG.F

 The argument is the function name, and the value is the integer
 number of arguments used on the most recent call to the function
 or any of its entries. The successful working of this operator
 depends on the call having been made with the high-order bit set
 in the adcon for the last parameter in the parameter list, or,
 in the case of no parameters, register 1 set to zero. (The
 latter is, of course, irrelevant in the case where there is at
 least one required argument.)

 In order to access arguments that have no name, the binary
 operator .ARG. is provided. An example use of this operator is:

 P = n.ARG.F

 The right operand is the function name, the left operand is the
 integer expression specifying the number of the argument desired
 (starting at 1 for the first argument). The value is a pointer
 to the Nth argument. This pointer is actually the adcon out of
 the parameter list, and the last argument will therefore have
 the high-order bit set, a factor to note if any arithmetic is to
 be done on this pointer.

 4.3.6 Internal and External Functions (Things they have in ________ ___ ________ _________ _______ ____ ____ __
 common) _______

 Each function definition (except one-sentence definitions,
 described in Section 4.3.4) may define any number of functions
 and/or any number of procedures. The first entry is defined
 with the INTERNAL FUNCTION or EXTERNAL FUNCTION statement; the
 second and succeeding ones, if any, are defined with ENTRY TO
 statements. If an entry defined with an ENTRY TO statement has
 no parameter list given on the ENTRY TO statement, as for
 example

 ENTRY TO F2.

 then the parameter list (if any) specified on the INTERNAL
 FUNCTION or EXTERNAL FUNCTION statement is used for that entry.
 If an entry is to have a different parameter list, it should be
 specified in the ENTRY TO statement, as for example

 GOM Manual 66
 GOM Language Description (Functions)

 ENTRY TO F2.(A,B,C)

 It the user’s responsiblilty to make sure that a given
 entry uses only the parameters it receives through the ENTRY TO
 statement; the compiler does no checking. The only restriction
 on names of the dummy variables for the entries is that if the
 same name is used in two (or more) entries, it must occupy the
 same ordinal position in each parameter list in which it
 appears. That is, the following is legal:

 EXTERNAL FUNCTION F1.(X,Y,Z)
 ...
 ENTRY TO F2.(X,Y)
 ...
 END OF FUNCTION

 but the following is not legal:

 EXTERNAL FUNCTION F1.(X,Y,Z)
 ...
 ENTRY TO F2.(Y,X)
 ...
 END OF FUNCTION

 In the use of a function (i.e., the call for it) the
 arguments may be constants, variables, function names, labels,
 or expressions. However, if one of the arguments appears to the
 left of an "=" sign in an assignment statement in the function
 definition it is not meaningful to use a constant or an
 expression for that argument in the call. As mentioned earlier,
 the arguments are not be checked for correspondence in mode and
 number to dummy variables.

 An example function definition program is as follows:

 INTERNAL FUNCTION COS.(X)
 ...
 ...
 ...
 ENTRY TO SIN.
 ...
 ...
 ...
 FUNCTION RETURN ALPHA + J - 3.
 ENTRY TO TAN.
 ...
 ...
 ...
 FUNCTON RETURN BETA/K5 - 4.* D
 END OF FUNCTON

 The first statement (INTERNAL FUNCTION COS.(X)) is a
 function declaration (i.e., declares that the following ________
 statements define a function called COS whose entry point is
 here). To define COS. as an external function, the declaration
 would be EXTERNAL FUNCTION COS.(X). Following the words

 GOM Manual 67
 GOM Language Description (Functions)

 INTERNAL (or EXTERNAL) FUNCTION and the function name is the
 dummy variable list [(X) in this example]. The END OF FUNCTION
 declaration is the last statement in the function definition
 program. (In an EXTERNAL function definition this is also the
 last statement in the program.) An entry must be provided for
 each function being defined, but several functions may share any
 number of FUNCTION RETURN statements. An entry statement merely
 marks a point of entry, and does not affect the sequence of
 computation in any way. The expression after the phrase
 "FUNCTION RETURN" indicates that on this return the value of the
 function is to be the value of that expression. This expression
 must agree in mode with the function whose value it supplies,
 i.e., it must agree with the expected mode of the function value
 being called for in the calling program. This agreement is not
 checked. The function definition whose calls are intended to be
 included in expressions must have an expression following the
 FUNCTION RETURN statement. If the calls for a function are to
 appear in an EXECUTE statement (generally such functions have
 multiple outputs) the FUNCTION RETURN statement may appear
 without an accompanying expression. The FUNCTION RETURN
 statement may also specify a return code to be returned to the
 calling program (see Section 4.3.2); if not specified a return
 code of zero will be returned.

 Return codes should be used to flag to the calling program
 unusual situtations. The practice, used in 7090 MAD, of
 supplying statement labels in calls to functions and then
 branching to those from inside the function definition will not ____ ___
 work, due to the base-displacement nature of the 360/370/470 ____
 machines.

 It is important to note that internal function definitions
 of any kind whatever (including the non-implemented single
 statement definition described in Appendix E) may occur anywhere
 in the program, except within another internal function
 definition. Internal function definitions may occur within
 external function definitions. However, external function
 definitions may not occur within any other programs, not even
 within other external function definitions. Each external
 function definition must be a complete, self-contained program.

 Example of a function definition _______ __ _ ________ __________

 The following is an example of a function whose value is
 1/x if 0 < x ≤ 1 and 1/x² if x > 1. If x ≤ 0, one obtains an
 error return.

 A EXTERNAL FUNCTION INVSF.(X)
 G IF X > 0. .AND. X <= 1.
 C FUNCTION RETURN X .P. -1
 H ELSE IF X > 1.
 D FUNCTION RETURN X .P. -2
 I ELSE
 E FUNCTION RETURN 0, RC = 4
 K END IF
 B END OF FUNCTION

 GOM Manual 68
 GOM Language Description (Functions)

 (Here the statements are all labeled only for reference in what
 follows.)

 The list of dummy variables in the opening declaration
 (statement A in the preceding paragraph) may contain only
 nonsubscripted variable names (either individual or array) or
 function names (without arguments). Within the definition
 program itself (the statements between statement A and statement
 B), a function name will usually occur with arguments, and an
 array variable will usually occur with subscripts.

 A few comments about the last example: This definition
 program defines a single-valued function of X, called INVSF .
 Since no mode declaration is given it is assumed by the
 translator that X is floating point. The value of INVSF.(X) is
 computed by the use of a compound conditional. If 0 < X ≤ 1,
 (statement G) then statement C is executed, causing a return to
 the calling program with the value 1/x. If the condition 0 < X
 ≤ 1 is not true, then the condition X > 1 is tested (statement
 H). If X > 1, statement D is executed. Finally, if neither of
 the conditions 0 < X ≤ 1 or X > 1 is true, then statement I
 finds that X ≤ 0 and statement E (return with return code 4) is
 executed.

 Suppose

 A = B - D
 X = T(I) + INVSF.(Y) * T(I-1)
 Y(I) = Z + R(J) * 2.5

 is part of a program which calls on INVSF, and suppose the
 function return with RC=4 statement is executed during the
 evaluation of INVSF.(Y) (i.e., Y ≤ 0). Then control is returned
 to the system in which the translated program is embedded, with
 a return code that is ignored. However, suppose instead these
 statements:

 A = B - D
 F Z = T(I) + INVSF.(Y)->RCVR * T(I-1)
 IF RCVR=4, GO TO ER
 S Y(I) = Z + R(J) * 2.5
 ...
 ...
 ...
 ER Z = 0
 L Y(I) = 1.

 are part of the calling program and Y ≤ 0. When the function
 returns, the return code is stored in integer variable RCVR.
 The calling program then can test this returned value and act
 appropriately.

 GOM Manual 69
 Appendix A

 Appendix A

 ALLOWABLE ABBREVIATIONS

 "That is not said right," said the
 caterpillar.
 "Not quite right, I’m afraid," said Alice
 timidly; "some of the words have got
 altered."
 Lewis Carroll, Alice in Wonderland _____ __ __________

 Abbreviations may be used for the key words or phrases for
 the most commonly used statements. These abbreviations are
 listed below. The source listing produced by the compiler will
 have the full phrase instead of the abbreviation, for easier
 reading. The form of an abbreviation is always the same; viz,
 the first and last letter of the phrase, with a prime (’)
 between. An example of the use of these abbreviations is:

 W’R X<Y, T’O ALPHA
 W’R X=Y+1
 Z=J
 O’R X=Y+2
 Z=J+2
 O’E
 Z=J+3
 E’L

 The following is the list of abbreviations which are now
 available. Note that not all statements may be abbreviated.
 Although these abbrebiations are "nice" in the sense that they
 speed up the time required to enter a program in on a terminal
 and the full phrase is produced on a source listing, for your
 own benefit (and sanity), it is best not to use them. The use
 of these abbreviations was intended only for very small "grungy"
 programs.

 A’E ALLOCATE
 B’N BOOLEAN
 B’R BYTE INTEGER
 C’E CONTINUE

 C’R CHARACTER
 C’T CONSTANT
 D’D DYNAMIC RECORD
 D’N DIMENSION

 E’L END OF CONDITIONAL
 E’M END OF PROGRAM
 E’N END OF FUNCTION
 E’O ENTRY TO

 GOM Manual 70
 Appendix A

 F’F FOR VALUES OF
 F’T FLOATING POINT
 F’N FUNCTION RETURN
 I’N INTERNAL FUNCTION

 I’R INTEGER
 L’R LONG INTEGER
 L’T LONG FLOATING POINT
 | N’E NORMAL MODE IS FUNCTION NAME

 | N’L NORMAL MODE IS STATEMENT LABEL
 | N’N NORMAL MODE IS BOOLEAN
 N’R NORMAL MODE IS INTEGER
 N’S NORMAL MODE IS

 O’E OTHERWISE
 O’R OR WHENEVER
 P’N PROGRAM COMMON
 P’R POINTER

 P’S PRINT RESULTS
 P’T PRINT FORMAT
 R’A READ AND PRINT DATA
 R’E RELEASE

 R’T READ FORMAT
 S’L STATEMENT LABEL
 S’R SHORT INTEGER
 T’H THROUGH

 T’O TRANSFER TO
 U’R USING POINTER
 | V’R VARYING CHARACTER
 V’S VECTOR VALUES

 W’R WHENEVER

 GOM Manual 71
 Appendix B

 Appendix B

 OPERATORS

 Following table lists all operators with their allowable
 mode contents, arranged first by single character operators,
 then double, triple, and finally the "dotted" operators in
 alphabetical order. Note that the Prec heading is for use only ____
 by the Computing Center staff for diagnostics.

 The modes are abbreviated as follows:

 F FLOATING POINT
 I INTEGER
 BN BOOLEAN
 SL STATEMENT LABEL
 FN FUNCTION NAME
 C CHARACTER
 SI SHORT INTEGER
 BI BYTE INTEGER
 LI LONG INTEGER
 P POINTER
 drc DYNAMIC RECORD name
 arith F, I, SI, or BI
 funct any function call
 rname one of the names "R0" through "R10"
 mname one of the names of the modes

 GOM Manual 72
 Appendix B

 Allowable Modes
 Operator Left Right Manual
 Graphic Name Prec Operand Operand Result Refer. _______ ____ ____ _______ _______ ______ ______

 - negation 28 - arith (I or F)¹ 1.4(h)

 - subtraction 24 arith arith (I or F)¹ 1.4(b)
 LI I,SI,BI LI
 I,SI,BI LI LI
 LI LI LI
 P I,SI,BI P
 P P I

 + addition 24 arith arith (I or F)¹ 1.4(a)
 LI I,SI,BI LI
 I,SI,BI LI LI
 LI LI LI
 P I,SI,BI P
 I,SI,BI P P

 * multiplication 26 arith arith (I or F)¹ 1.4(c)

 / division 26 arith arith (I or F)¹ 1.4(d)
 LI I,SI,BI I

 = substitution 6 arith,LI arith,LI left² 2.1
 C C C
 FN FN FN
 SL SL SL
 P P P

 = equality 22 arith arith BN 1.7(b)
 comparative C C BN
 P P BN
 FN FN BN
 SL SL BN

 = Rcall input 6 rname I,BN,FN 4.2
 SL,P

 < less-than 22 arith arith BN 1.7(b)
 comparative C C BN
 P P BN

 > greater-than 22 arith arith BN 1.7(b)
 comparative C C BN
 P P BN

 , the comma is used as a separator between list elements.

 @ the at-sign is part of a constant. See Section 1.1.10

 : selection 40 P any right³ 3.9

 <= less-than or 22 arith arith BN 1.7(b)
 equal-to C C BN

 GOM Manual 73
 Appendix B

 comparative P P BN

 >= greater-than 22 arith arith BN 1.7(b)
 or equal-to C C BN
 comparative P P BN

 ¬= not-equal 22 arith arith BN 1.7(b)
 comparative C C BN
 P P BN
 FN FN BN
 SL SL BN

 -> return code 39 funct I 4.2

 -> Rcall output 6 rname I,BN,FN 4.2
 SL,P

 ... Block 10 any any 1.9

 ... Substring 10 I,SI,BI I,SI,BI I 1.13

 .A. Bitwise and 34 I,SI,BI I,SI,BI I 1.4(j)
 LI I,SI,BI LI
 I,SI,BI LI LI
 LI LI LI

 .ABS. Absolute value 36 - F,I,SI (I or F)¹ 1.4(g)

 .AND. Logical and 18 BN BN BN 1.6(d)

 .ARG. No-name 36 I,SI,BI any P 4.3.5
 Argument
 Access

 .AS. Mode override 37 any mname specified⁴ 1.9

 .BIT. Test bit 22 I I BN 1.7(d)

 .DIMVEC. 38 - funct I 3.3
 Location of
 the Dimension
 Vector

 .E. Same as "=" (comparative)

 .EQ. Same as "=" (comparative)

 .EQV. Equivalence 12 BN BN BN 1.6(f)

 .EV. Bitwise 34 I,SI,BI I,SI,BI I 1.4(i)
 exclusive or LI I,SI,BI LI
 I,SI,BI LI LI
 LI LI LI

 GOM Manual 74
 Appendix B

 .EXOR. logical 16 BN BN BN 1.6(e)
 exclusive or

 .G. Same as ">"

 .GE. Same as ">="

 .GT. Same as ">"

 .IND. Indirection 42 P mname specified⁴ 1.14

 .L. Same as "<"

 .LE. Same as "<="

 .LOC. Location 38 - any P 1.14

 .LS. Left shift 36 I,SI,BI I,SI,BI I 1.4(k)
 LI I,SI,BI LI

 .LT. Same as "<"

 .MPYLI. same as "*" 26 I,SI,BI I,SI,BI LI 1.4(c)
 but LI result

 .N. Bitwise 36 - I,SI,BI I 1.4(i)
 negation LI LI

 .NBRARG. 36 - funct I 4.3.5
 number of
 arguments in
 a function

 .NE. Same as "¬="

 .NOT. Logical not 20 - BN BN 1.6(a)

 .OR. Logical or 16 BN BN BN 1.6(c)

 .P. Exponentiation 30 arith arith (I or F)¹ 1.4(f)

 .REM. Remainder 26 arith arith I 1.4(e)
 I,SI,BI I,SI,BI I

 .RESETBIT. 6 I I - 1.4(l)
 resetting
 a bit

 .RS. Right shift 36 I,SI,BI I,SI,BI I 1.4(k)
 LI I,SI,BI LI

 .SETBIT. 6 I I - 1.4(l)
 setting
 a bit

 .SIZE. size of 40 - drc I 3.9

 GOM Manual 75
 Appendix B

 .V. Bitwise or 32 I,SI,BI I,SI,BI I 1.4(j)
 LI I,SI,BI LI
 I,SI,BI LI LI
 LI LI LI

 ".(" function call 40 FN any declared⁵ 4.1
 4.2

 "opnd(" subscription 40 any arith left² 1.10

 Notes:

 1. "(I or F)" means that the result is F if either or
 both of the operands is F; otherwise the result is
 I.

 2. "left" means that the resultant mode is the mode of
 the left operand.

 3. "right" means that the mode of the result is the
 mode of the right operand.

 4. "specified" means that the mode of the result is the
 mode whose name is the right operand.

 5. "declared" means that the mode is what the function
 was declared as returning (eg, "INTEGER FUNCT.").

 GOM Manual 76
 Appendix C

 Appendix C

 List of Statements

 Note: The internal statement-type number is for use only by the
 Computing Center staff for diagnostics.

 Internal
 Statement-
 type Abbrev-
 Number iation Statement Comments ______ ______ _________ ________

 41 (iterated statement) unimplemented
 11 (substitution statement)
 56 A’E ALLOCATE
 31 B’N BOOLEAN
 47 B’R BYTE INTEGER
 45 C’R CHARACTER
 58 C’T CONSTANT
 17 C’E CONTINUE
 3 DIAGNOSTIC CONDENSED OFF COMPILER DEBUG
 2 DIAGNOSTIC CONDENSED ON COMPILER DEBUG
 5 DIAGNOSTIC DSCAN OFF COMPILER DEBUG
 4 DIAGNOSTIC DSCAN ON COMPILER DEBUG
 8 DIAGNOSTIC I TABLES COMPILER DEBUG
 9 DIAGNOSTIC II TABLES COMPILER DEBUG
 10 DIAGNOSTIC III TABLES COMPILER DEBUG
 7 DIAGNOSTIC MTRX OFF COMPILER DEBUG
 6 DIAGNOSTIC MTRX ON COMPILER DEBUG
 35 D’N DIMENSION
 53 D’D DYNAMIC RECORD
 15 ELSE
 14 ELSE IF b
 16 END IF
 67 END LOOP
 16 E’L END OF CONDITIONAL
 44 E’N END OF FUNCTION
 67 END OF ITERATION
 1 E’M END OF PROGRAM
 21 E’O ENTRY TO
 36 EQUIVALENCE unimplemented
 19 EXECUTE
 40 EXTERNAL FUNCTION
 34 F’T FLOATING POINT
 61 FORMAT VARIABLE
 33 FUNCTION NAME
 20 F’N FUNCTION RETURN
 65 GLOBAL AREA
 13 IF b
 30 I’R INTEGER
 39 I’N INTERNAL FUNCTION
 66 ITERATE FOR v=e1,e2,b FOR VALUES OF
 not done yet.
 12 GO TO l

 GOM Manual 77
 Appendix C

 50 L’T LONG FLOATING POINT
 48 L’R LONG INTEGER
 52 LOOK AT FORMAT
 66 LOOP FOR v=e1,e2,b FOR VALUES OF
 not done yet.
 29 N’S NORMAL MODE IS
 14 O’R OR WHENEVER b
 15 O’E OTHERWISE
 51 P’R POINTER
 42 PRINT BCD RESULTS
 27 PRINT COMMENT
 22 P’T PRINT FORMAT
 43 PRINT HEX RESULTS
 28 P’S PRINT RESULTS
 37 P’N PROGRAM COMMON
 24 PUNCH FORMAT
 26 R’A READ AND PRINT DATA
 25 READ DATA
 23 R’T READ FORMAT
 59 READ FROM
 64 RECURSIVE EXTERNAL FUNCTION
 63 REENTRANT EXTERNAL FUNCTION
 57 R’E RELEASE
 46 S’R SHORT INTEGER
 32 S’L STATEMENT LABEL
 55 STOP USING POINTER
 62 SUPERVISOR CALL
 18 T’H THROUGH l, FOR v=e1,e2,b FOR VALUES OF
 not done yet.
 12 T’O TRANSFER TO l
 54 U’R USING POINTER
 49 V’R VARYING CHARACTER
 38 V’S VECTOR VALUES
 13 W’R WHENEVER b
 WHENEVER b, s
 60 WRITE ON

 GOM Manual 78
 Appendix D

 Appendix D

 Structure of the Object Program Produced

 The structure of the program is subject to the following
 constraints:

 1. The program should be reentrant.

 2. The compiler is two-pass, with all code generated on
 the second (triples-to-output) pass.

 The first requirement dictated separation of the program into an
 | invarient part and a data part. Provision is made for
 optionally dynamically allocating the data part whne the program
 is entered. The second constraint, coupled with the base-
 displacement nature of a 370 type machine, dictates some of the
 ordering of the output pieces.

 General Structure _______ _________

 Each compilation of a main program (or external function)
 normally generates a module with two control sections. CSECT 1
 (name is MAIN for main program) is called the code csect and
 contains the invariant material; CSECT 2 (name is #MAIN for main
 program) is the data csect. If a REENTRANT or RECURSIVE
 external function is being defined, then this area is allocated
 dynamically instead of produced as the second CSECT. The
 structure is still the same, and so further references to CSECT2
 can be assumed to this case as well.

 In general, everything that can be put into CSECT 1 is put
 there. Only items that will (possibly) change are put in CSECT
 2.

 The following figures display the general structure of a
 | GOM program when it is compiled assuming OS linkage (i.e., no
 | LINKAGE= on the External Function statement).

 GOM Manual 79
 Appendix D

 CSECT 1

 ┌─────────────────────────────┐
 entry | |
 point ──>| Prolog |
 | adcons for ┌───┐ |
 | | R9 | •─┼──┼──┐
 | └───┐ | | | |
 | | R10 | •─┼──┼──┼──┐
 | └───┐ | | | | |
 | | R12 | •─┼──┼──┼──┼─────┐
 | └───┐ | | | | | |
 | | •─┼──┼──┼──┼──┐ |
 | └───┘ | | | | |
 └─────────────────────────────┐ | | | | | |
REG 9 ──>		<─┘		
 | Constants | | | |
 | | | | |
 └─────────────────────────────┐ | | | | |
 | | | | |
 | Symbol table | | | |
 | | | | |
 └─────────────────────────────┐ | | | | |
REG 10 ──>		<────┘	
 | Transfer table | | |
 | | | |
 └─────────────────────────────┘ | |
 | |<───────┘ |
 | Program | |
 | | |
 |
 |
 CSECT 2 |
 |
 ┌─────────────────────────────┐ |
 | REG 12 -->| |<──────────┘
 ┌ | SAVE AREA (72) |
 | └─────────────────────────────┐ | |
 | | FIXFLW (8) |
 | └─────────────────────────────┐ | |
 | | double-word |
 | | Temporary (8) |
 directly | └─────────────────────────────┐ | |
 addressed┐ | 5 words used in | |
 | | IOH/360 calls |
 | └─────────────────────────────┐ | |
 | | 4+n words temp (16+4*n) |
 | └─────────────────────────────┐ | |
 | | scalars and array ptrs |
 └ └─────────────────────────────┐ | |
 | array bodies |
 └─────────────────────────────┘
 | Parameter lists for |
 | calls involving |
 | computed addresses |
 | |

 GOM Manual 80
 Appendix D

 Register_Usage ________ _____

 Gen Reg 0 ┐ used in subr calls
 1 ┘

 2 ┐
 3 |
 4 |
 5 └ free for temporary assignment |
 6 |
 | 7 ┘

 | 8 3rd Base Register if PROGRAM SIZE=3P
 | 9 1st Base Register if PROGRAM SIZE≥1P
 | Also covers constants
 | 10 2nd Base Register if PROGRAM SIZE≥2P. If the
 | PROGRAM SIZE option isn’t used, this covers the
 | transfer table.
 | 11 Global area pointer if LINKAGE=CLSMTS
 | 12 Perm. Assigned. Cover local frame (Csect 2)
 | 13 Same as 12 if OS linkage (i.e., no Linkage=
 | given), pointer to next stack frame otherwise.
 14 Perm. Assigned. Used for transfers and
 subroutine calls.
 15 Used in subroutine calls

 float reg 0 ┐ Assigned as needed. Any in use
 2 └ forced to temporaries |
 4 | on function call.
 6 ┘

 CSECT 1 _____ _

 | PROLOG: If the call is OS linkage, the prolog does the ______
 standard register save into save area, and then
 loads registers from four adcons at the end of
 the prolog, links the save areas, and branches to
 | the first location of the program. If it is a CC
 | call, then the regsiters are saved on the stack
 | and register 12 and 13 are set to point to the
 | current and next stack frame.

 CONSTANTS: The following constants are generated for every _________
 program.

 1. Doubleword fix-float conversion constant
 (4E00000000000000)
 2. Fullword one (00000001)
 3. Halfword four (0004)
 4. Halfword minus two (FFFE)
 5. FW length of Local Frame (Csect 2) if
 REENTRANT or RECURSIVE
 6. FW address of Local Frame Data Initializer
 area if REENTRANT or RECURSIVE
 | 7. If the .N. operator was used, fullword minus

 GOM Manual 81
 Appendix D

 one (FFFFFFFF)
 | 8. Fullword 4096 (00001000)
 | 9. If substring notation was used, a fullword
 with a blank in the high-order byte and
 zeros elsewhere (40000000)

 Constants 2, 3, and 4 are used in I/O lists;
 constant 2 is also used in several logical
 operations.

 These constants are followed by all 8-byte
 constants, then all 4-byte (fullword) constants,
 then all 2-byte constants, and then by all the
 other-length constants.

 SYMBOL TABLE: This is produced only if one of the simple I/O ______ ______
 statements (READ DATA, PRINT RESULTS, ...) was
 used. Current form of the table is:
 First word is full-word count of number of
 entries.
 Second and following words are entries in
 one of the two forms:

 (a)
 <──────── 4 bytes ────────>
 ┌───────────────────────────┐
 | |
 | location |
 | |
 └──────┌──────┌──────┌──────┐ | ─ ─ ─ |
 | | | mode | |
 | mode | 00 | of | spare|
 | | |result| |
 └──────┼──────┘──────┘──────┘ | ─ ─
 |length| |
 | of | name |
 | name | |
 └──────┘ |
 | |
 | |
 | |

 GOM Manual 82
 Appendix D

 (b)
 <──────── 4 bytes ────────>
 ┌───────────────────────────┐
 | |
 | location |
 | |
 └──────┌──────┌──────┌──────┐ | ─ ─ ─ |
 | | | mode | |
 | mode | 01 | of | spare|
 | | |result| |
 └──────┘──────┘──────┘──────┐ | ─ ─ ─ |
 | |
 | dimension vector location |
 | |
 └──────┌────────────────────┘ | ─
 |length| |
 | of | name |
 | name | |
 └──────┘ |
 | |
 | |

 The name is padded with blanks to the next
 fullword boundary, so that each entry is fullword
 aligned. "Dimension vector location" is
 currently the maximum subscript, as only one-
 dimensional arrays are supported. "Mode of
 result" has meaning only for function names. The
 symbol table entries are ordered by increasing
 location, and the location given for an array is
 the location of the actual array, not the
 location of the pointer to the array.

 TRANSFER TABLE: Entries for this are produced for internally ________ ______
 | generated floating addresses. This table
 consists of a number of fullword adcons. There
 is a current restriction is a maximum of one page
 of the (i.e., 1024 max.). This table is placed
 before the program as far as storage layout goes,
 but the contents are not produced (and not
 printed in the print-object) until after the
 program code has been produced. A transfer table
 is not needed if the PROGRAM SIZE option is used.

 PROGRAM: The remainder of the first Csect is the program. ________
 Each instruction or data item produced is printed
 in the print-object output, in the general form:

 location [mnemonic] value[/relocated-by]

 Some examples are:

 000124 BAL 4510C022
 000030 4E000000

 GOM Manual 83
 Appendix D

 000128 0000004C/01

 For out-of-line or out-of-csect code:

 (csect location [mnemonic] value[/relocated-by])

 example:

 (02 000094 0000013C/01)

 CSECT 2 _____ _

 The contents of the data csect are as follows:

 1. The first 72 bytes (18 words) of Csect 2 are
 | a standard 18-word save area or the first 64
 | bytes are the register save area, depending
 | on the linkage type.
 2. A double-word aligned fix-float work area,
 preset to 4E000000 00000000 (only the second
 word is ever changed).
 3. A double-word temporary.
 4. 4 words used internally for scratch storage
 during external function calls.
 5. Five words used to build the second
 parameter list for IOH/360 calls, for the
 case of a block parameter in which one or
 both of the ends of the block is a computed
 address. (E.g., A...A(I))
 6. 4+n words of temporaries. Four words are
 needed to save floating-point registers if
 necessary (around function calls); more may
 be needed if computed values arise in
 parameter lists of subroutine calls.
 7. Scalars and array pointers. Scalars are
 allocated space for their values; arrays are
 allocated a word which is preset to the
 location of the array body. 8-byte scalars
 are allocated first, then 4-byte scalars and
 array pointers, then 2-byte scalars, and
 then remaining scalars.

 The above seven must be directly addressable.
 (That is, within a dispacement of some register.)
 The remaining items are accessed via adcons (such
 as the array pointers mentioned above).

 8. Array bodies. Each array is aligned as
 required.

 9. Parameter lists for subroutine calls with
 more than one argument, where one or more of
 the arguments have a computed address.

 GOM Manual 84
 Appendix D

 Note: Wherever possible, I/O parameter lists and
 subroutine parameter lists are generated in Csect
 1 in-line with the code. This cuts down on the
 addressability problems and helps limit the
 amount of of initializing that will be required
 if Cesct 2 is dynamically allocated. (It also
 makes it easier to read the object listing.)

 GOM Manual 85
 Appendix E

 Appendix E

 Unimplemented Statements

 This appendix describes all of the unimplemented GOM
 statements as of 4/20/81. Most likely, a statement will be
 implemented differently than described here. If you have any ___________
 questions, please call either Don Boettner or Jim Sterken at the
 Computing Center (313-764-2121).

 1) MODES

 The following two modes follow the same principles as those
 described in Section 1. See Section 1 for details about modes.

 Mode_Number__Name___________Size_of_Element____Default_Alignment ____ ______ ____ ____ __ _______ _______ _________

 9 VARYING CHARACTER 1 byte
 10 LONG FLOATING POINT 8 double word

 2) LOOP STATEMENT

 This alternate form of a LOOP FOR statement looks like:

 LOOP FOR VALUES OF V = E¹, E², ..., Em

 END LOOP will mark the last executable statement in the
 block to be repeated. The block of statements following (and
 not including) the LOOP statement, up to the END LOOP statement
 will be called the "scope" of the LOOP statement. Following the
 word OF appears the name of the iteration variable (in the
 illustration: V), which may be either an individual variable or
 subscripted array variable of any mode. To the right of the "="
 sign may appear any number, i.e., a list, of expressions E¹,
 ..., Em. The modes of the E’s bear the same relationship to the
 mode of V as they would in the statement V = Ej (see Section
 2.1). Thus, if V is an integer or a floating point variable,
 then each of the Ej must be an integer or floating point
 expression. Similarly, if V is Boolean, then each of the Ej
 must be a Boolean expression.

 The execution of this statement causes the statements
 within its "scope" to be executed, first with V = E¹, then again
 with V = E², and so on, until the list of expressions is
 exhausted. Computation then proceeds with the statement
 immediately following statement END LOOP. At this time the
 iteration variable will have the value of the expression Em
 unless its value was changed during the final iteration. Should
 a transfer be made to another part of the program at any time
 during the iteration, V will have its current value. An example
 of this type of statement is:

 GOM Manual 86
 Appendix E

 LOOP FOR VALUES OF BETA = 3, 4, X5, Y(6+I)+3
 J = 5 * BETA + 6
 J1 = J .P..5 - 1
 X(BETA) = J1 * COS.(2.*THETA)
 END LOOP

 3) INPUT/OUTPUT STATEMENTS
 (list parameter option) ____

 Another option for the list parameter of input/output ____
 statements (described in Section 2.8) follows below. This
 option follows the same rules as the others in Section 2.8.
 Recall that the statements are:

 PRINT FORMAT f [,RC->v][,list]
 PUNCH FORMAT f [,RC->v][,list]
 READ FORMAT f [,RC->v][,list]
 LOOK AT FORMAT f [,RC->v][,list]

 READ FROM i, f [,RC->v][,list]
 WRITE ON o, f [,RC->v][,list]

 We will not redescribe all the parameters above. The list ____
 parameter has another form for an input/output list of elements
 which follows below. Elements in a list parameter may be ____
 iteration elements of the form:

 (v=e1, e2, b, list)

 where v is the name of a variable, e1 and e2 are arithmetic _ __ __
 expressions, b is a Boolean expression, and list is a non-empty _ ____
 input list of the type being presently defined. The
 interpretation of such an element is exactly analogous to the
 execution of an interation statment in that the values
 designated on the list are transmitted (as input or output) ____
 until b has the value 1B, with v being initialized to e1 and _ _ __
 being incremented by e2 after each transmission of the list. __ ____
 These iterations may be nested (just as iteration statements).

 4) MODIFYING THE DECLARED RANGE OF ARRAY SUBSCRIPTS
 (Use of the SETDIM operation)

 It may be that the declared range for a subscript should be
 modified during execution of the program to reflect the storage
 requirements of different sets of data. In other words, the
 need can arise to keep the dimension current.

 For example, a program may be written which deals with an
 M x N array called D, and the largest values which M and N may
 have are are 30 and 20, respectively. Suppose we employ the
 declaration

 DIMENSION D(30*20)

 GOM Manual 87
 Appendix E

 For a particular set of data, it might happen that M = 6 and
 N = 4. Unless this were reflected in the "dimension
 information", the output list element D(1,1), ..., D(M,N) would
 cause the values of D(1,1), ..., D(1,20), D(2,1), ..., D(2,20),
 ..., D(5,1), ..., D(5,20), D(6,1), ..., D(6,4) to be printed,
 and many of these values would be meaningless. A library
 subroutine (i.e., external function) is available called SETDIM,
 which will update dimension information when executed. The
 arguments to SETDIM are the name of the array, followed by the
 new ranges of all the subscripts, in order. In the example used
 here, one would write (after the values of M and N have been
 read as data):

 SETDIM.(D,M,N)

 The arguments giving the ranges of the subscripts may be any
 integer valued expressions. The block notation must be used if
 the lower limit is not 1, so that one might write

 SETDIM.(D,3...N,M)

 Expressions of integer mode may be written as part of a block
 designation. If a subscript is to range from N to 2*N, one
 would write:

 SETDIM.(D,N...2*N,M)

 5) DUPLICATE (OR MULTIPLE) DIMENSIONING

 Several variables with the same dimension information may
 be grouped in a declaration. Any form of the dimension
 declaration may be used (see Appendix B). Variables so grouped
 will actually refer to the same dimension vector, and any change
 to the dimension information, such as a call for SETDIM, will be
 a change for all arrays in the group.

 Examples:

 (1) INTEGER (A,B,C)(10),(D,E,F,G)(10*15)
 (2) DIMENSION (U,S,P)(25)

 6) EQUIVALENCE DECLARATION

 One of the major uses of equivalence in the past was to
 treat a variable of one mode as if it were another mode (by
 equivalencing names of different modes to the same storage
 locations). This effect can still be obtained in GOM via the
 .AS. operator which is implemented. The .AS. operator makes it
 clearer what is actually intended. This operator is described
 in Section 1.9.

 The EQUIVALENCE declaration has the form

 EQUIVALENCE (a¹,a²,...,am), (b¹,b²,...,bn),...

 GOM Manual 88
 Appendix E

 where the a’s and b’s are individual variables or variables _ _
 shown with constant linear subscripts.

 Example:

 EQUIVALENCE (A,B), (MATRIX, XARRAY), (C, D(3))

 which implies that the variables A and B are to represent the
 same storage location throughout the program, that MATRIX and
 XARRAY are to represent the same storage location through the
 program, etc. (Two variables which represent the same location
 always have the same value at any given time.) Thus, any number
 of equivalences may be established by one EQUIVALENCE
 declaration, and any number of such declarations may occur (at
 any place) in a program.

 Variables whose names appear within the same set of
 parentheses need not have the same mode. The mode must be
 established by the appropriate MODE declaration for each of the
 variables. Within an EQUIVALENCE declaration do not establish
 mode. Occurrences

 A nonsubscripted array variable name in an EQUIVALENCE
 declaration represents that element of the array (considered as
 a one-dimensional vector) whose subscript is zero. Reference in
 an EQUIVALENCE declaration to an array element of any number of
 dimensions may be made by linear-subscript only (i.e., as an
 element of a vector). Note that occurrence of any elements from
 any two arrays in the same parentheses implies equating the
 entire arrays accordingly.

 7) VECTOR VALUES statement (alternate form)

 The alternate form of a VECTOR VALUES statement takes the form:

 VECTOR VALUES A(m) ... A(n) = k _ _

 Here m and n are integer constants, with m ≤ n, and k is _ _ _ _
 any constant (not a sequence of constants). This statement is
 treated exactly the same as the implemented VECTOR VALUES form
 described in Section 3.6 except that A(m), A(m + 1), ..., A(n - _ _ _
 1), A(n) all are preset with the value k. The storage _
 reservation for A is equivalent to DIMENSION A(n) in this case, _
 and A is set to the mode of k.

 These declarations are useful for presetting tables,
 dimension vectors, format descriptions, etc. The presetting is
 done at the time of translation. The constants are loaded (as
 part of the translated program) into A. These declarations
 produce no computation at execution time. However, the values
 of A may be modified later by other statements in the program
 during execution.

 Note that VECTOR VALUES defines initialized variables. If
 the values of the items being initialized will never be changed,

 GOM Manual 89
 Appendix E

 it is better to use the CONSTANT declaration (described in
 Section 3.7) which defines named constants. As an example,
 consider

 VECTOR VALUES PI = 3.14159265
 and CONSTANT PI = 3.14159265

 In the first case, a variable PI is defined which starts out
 (before execution begins) with a value of 3.14159265. In the
 second case, PI is defined as a name for the constant
 3.14159265.

 Variables which have been assigned to PROGRAM COMMON
 storage (see Section 3.4) may not be preset by a VECTOR VALUES
 statement.

 8) INTERNAL FUNCTION DEFINITION (One-Sentence Definition)

 Note: This one sentence form can and must be implemented as a
 three-statement regular INTERNAL FUNCTION as described in
 Sections 4.3.4 and 4.3.6.

 This form of the internal function definition (not
 available as an external function definition because the latter
 must be a complete, independent program) has the form:

 INTERNAL FUNCTION Name.(List) = E

 where Name is the name of the function being defined and E is an ____ _
 expression (arithmetic or Boolean) involving the variables in
 the List of dummy variables. ____

 As a three-statement regular INTERNAL FUNCTION, this one-
 sentence definition looks like:

 INTERNAL FUNCTION NAME.(LIST)
 FUNCTION RETURN
 END OF FUNCTION

 Example of the one-sentence form:

 INTERNAL FUNCTION SUMSQ.(X, Y, Z) = X*X + Y*Y + Z*Z - T*T

 As indicated above, X, Y, and Z, as they occur on the right
 side of the equals sign, are dummy variables, and "(X, Y, Z)" is
 the dummy variable list. The current value of T, however, will
 be obtained and used each time the value of the function is
 needed. An example of the use of the function so defined would
 be:

 A = 1. - SUMSQ.(U, V + 3, W) .P. .5

 In the one-sentence internal function definition, at least
 one dummy variable must be indicated, even if the function does
 not use arguments. The reason for this is that a function such

 GOM Manual 90
 Appendix E

 as "FUN." represents a FUNCTION NAME, not a FUNCTION CALL, but
 on the other hand, a function such as "FUN.(X)" (where X is the
 dummy variable) does represent a FUNCTION CALL. In GOM, the
 statement "X = FUN." is in FUNCTION NAME mode, but in a
 statement such as "X = FUN.(X)", the mode is determined by the
 value of the statement. For example:

 INTERNAL FUNCTION F. = 2*Y + 1

 is not a legal definition, but ___

 INTERNAL FUNCTION F.(X) = 2*Y + 1

 is a legal definition.

 Only nonsubscripted names of variables (either individual
 or array) or names of functions (without arguments) may appear
 in the dummy variable list. In the use of the function in an
 expression, the arguments may be any expressions that agree in
 mode with the corresponding dummy variable in the declaration.

 The modes of dummy variables and "actual" arguments must
 correspond. Thus, in the example definition

 INTERNAL FUNCTION POLY.(N, X, FN.) = FN.(J*X).P.N - X/XBAR

 which might be used in the statement

 BETA ZQ = POLY.(M + 1, Y, SIN.) + POLY.(M - 1, Z, COS.)

 it is understood that if N is in the integer mode, then so is M,
 and if X is in the floating point mode, then so are Y and Z. It
 is, of course, presumed that both M and N have been declared to
 be in the integer mode. Similarly, the values of SIN. and
 COS. must be the same mode as the values of FN. Moreover, in
 the use of functions, this mode correspondence cannot be checked
 by the translator since the machine uses independent routines
 for processing functions.

 The function POLY has as one of its arguments, the name of
 a function. In the statement BETA, the function used in the
 first term to the right of the "=" sign is SIN, and in the
 second term, COS is used. Hence, statement BETA is then
 equivalent to:

 BETA ZQ = SIN.(J*Y).P.(M+1) - Y/XBAR + COS.(J*Z).P.(M-1) -
 Z/XBAR

 GOM Manual 91
 Appendix F

 Appendix F

 Example Programs

 The following programs show how to get started in writing
 GOM programs. All of the programs were run under the *GOM
 compiler, and the object program was run under $DEBUG. The data
 used in all of these programs comes from a data file. Since
 Sections 2.8 and 2.9 don’t really state how to correctly set up
 a data file for reading, the first program AND it’s data file
 are listed. For the first example, the $RUN and $DEBUG commands
 that produced the output are shown. Note that the data file
 UNIT number is specified as 5, and the output listing is
 specified as SPRINT.

 How to set up the $RUN and $DEBUG commands ___ __ ___ __ ___ ____ ___ ______ ________

 For the first example program, this is how the $RUN command
 looked:

 $RUN *GOM SCARDS=program SPRINT=printout T=1 PAR=TEST

 Note that SPUNCH defaults to -LOAD, and that the PAR=TEST option
 is put in so that we can $DEBUG the program. Now, this is how
 the $DEBUG command looked:

 $DEBUG -LOAD 5=datafile SPRINT=printout(*L+1) T=1

 Once again note that the convention here is to use UNIT 5 for
 the data file.

 GOM Manual 92
 Appendix F

 Example Program #1: Program Listing _______ _______ ___

 This program computes the winning average of a baseball
 team given it’s won-lost record. Note that 2 sets of data are
 given so that the LOOP statement can be shown.

 **
 * *
 * EXAMPLE PROGRAM #1 *
 * *
 * This program calculates a team’s winning average from *
 * it’s won-lost record. The number of games won and lost are *
 * read in from a data file (shown below). *
 * *
 **

 INTEGER GAMES_WON, GAMES_LOST, GAMES_PLAYED, COUNTER
 FLOATING POINT TEAM_AVERAGE

 * Set the loop counter to 1 and begin the loop

 COUNTER = 1

 LOOP UNTIL COUNTER = 3
 PRINT COMMENT " TEAM STATISTICS PROGRAM"

 * Now read in the data

 READ DATA FROM UNIT 5

 * Now compute the games played, and then the team’s average

 GAMES_PLAYED = GAMES_WON + GAMES_LOST
 TEAM_AVERAGE = (GAMES_WON * 100) / GAMES_PLAYED

 * Now print out the statistics

 PRINT RESULTS GAMES_WON
 PRINT RESULTS GAMES_LOST
 PRINT RESULTS GAMES_PLAYED
 PRINT RESULTS TEAM_AVERAGE

 * Now get ready for another set of data

 PRINT COMMENT "-"

 COUNTER = COUNTER + 1

 END LOOP
 END OF PROGRAM

 GOM Manual 93
 Appendix F

 The data file for this program looks likes this:

 1 GAMES_WON=38, GAMES_LOST=12, *
 2 GAMES_WON=25, GAMES_LOST=75, *
 END OF FILE

 Note that the asterisk (*) tells the program when to quit
 reading when the READ FROM UNIT 5 statement is encountered (see
 Section 2.9).

 Example Program #1: Output _______ _______ ___

 TEAM STATISTICS PROGRAM

 GAMES_WON = 38

 GAMES_LOST = 12

 GAMES_PLAYED = 50

 TEAM_AVERAGE = 76.0000

 TEAM STATISTICS PROGRAM

 GAMES_WON = 25

 GAMES_LOST = 75

 GAMES_PLAYED = 100

 TEAM_AVERAGE = 25.0000

 GOM Manual 94
 Appendix F

 Example Program #2: Program Listing _______ _______ ___

 This program demonstrates how the IF statement works. The
 program determines whether numbers are even or odd via this IF
 statement. Note that in this program it would have been better
 to use the IF...ELSE statement because the GOTOs and statement
 labels would be eliminated. For an example of IF...ELSE, see
 Example Program #4.

 **
 * *
 * EXAMPLE PROGRAM #2 *
 * *
 * This program will read a value from the data file and *
 * determine if that integer value is either an even or odd *
 * number. the purpose of this program is to demonstrate the *
 * IF statement construct. *
 * *
 **

 INTEGER INPUT_VALUE, COUNTER

 * Set the loop counter to 1 and begin the iteration

 COUNTER = 1

 LOOP UNTIL COUNTER = 6

 * Now read in an integer value and echo it on the output

 READ DATA FROM UNIT 5

 PRINT RESULTS INPUT_VALUE

 * Now determine if it is even or odd

 IF INPUT_VALUE.REM.2 .EQ. 0, GO TO EVEN

 PRINT COMMENT "INPUT_VALUE IS ODD"
 GO TO REPEAT

 EVEN PRINT COMMENT "INPUT_VALUE IS EVEN"

 REPEAT PRINT COMMENT " "
 COUNTER = COUNTER + 1
 END LOOP
 END OF PROGRAM

 GOM Manual 95
 Appendix F

 Example Program #2: Output _______ _______ ___

 INPUT_VALUE = 123
 INPUT_VALUE IS ODD

 INPUT_VALUE = -222
 INPUT_VALUE IS EVEN

 INPUT_VALUE = 0
 INPUT_VALUE IS EVEN

 INPUT_VALUE = 9191
 INPUT_VALUE IS ODD

 INPUT_VALUE = -114
 INPUT_VALUE IS EVEN

 GOM Manual 96
 Appendix F

 Example Program #3: Program Listing _______ _______ ___

 This program demonstrates the LOOP FOR and LOOP WHILE
 constructs. Note that two nested loops are used. The program
 reads in numbers and prints out the largest power of two less
 than or equal to that number.

 **
 * *
 * EXAMPLE PROGRAM #3 *
 * *
 * This program reads in a positive integer value from *
 * the data file and then calculates the largest power of 2 *
 * that is less than or equal to the number that was read in. *
 * The purpose of this program is to demonstrate the LOOP FOR *
 * and LOOP WHILE statement constructs. Note that this program *
 * uses 2 nested loops. *
 * *
 **

 INTEGER DATA_VALUE, POWER_OF_TWO, COUNTER

 * Write a heading for this program and then begin the iteration

 PRINT COMMENT $ POWER OF TWO PROGRAM$

 LOOP FOR COUNTER=1, 1, COUNTER=6

 * Now read in a value and echo it on the output

 READ DATA FROM UNIT 5
 PRINT RESULTS DATA_VALUE

 * Initialize POWER_OF_TWO to 1 and then double it until it
 * finally exceeds the value in DATA_VALUE, at which time we
 * will have gone one power too far.

 POWER_OF_TWO = 1

 LOOP WHILE DATA_VALUE .GE. POWER_OF_TWO
 POWER_OF_TWO = POWER_OF_TWO * 2
 END LOOP

 * Adjust POWER_OF_TWO to the correct value and print it out

 POWER_OF_TWO = POWER_OF_TWO / 2

 PRINT RESULTS POWER_OF_TWO
 PRINT COMMENT " "
 END LOOP
 END OF PROGRAM

 GOM Manual 97
 Appendix F

 Example Program #3: Output _______ _______ ___

 POWER OF TWO PROGRAM

 DATA_VALUE = 54321

 POWER_OF_TWO = 32768

 DATA_VALUE = 89

 POWER_OF_TWO = 64

 DATA_VALUE = 4095

 POWER_OF_TWO = 2048

 DATA_VALUE = 1024

 POWER_OF_TWO = 1024

 DATA_VALUE = 3

 POWER_OF_TWO = 2

 GOM Manual 98
 Appendix F

 Example Program #4: Program Listing _______ _______ ___

 This program demostrates the use of the IF...ELSE statement
 construct. The program computes square roots WITHOUT using a
 SQRT subroutine.

 **
 * *
 * EXAMPLE PROGRAM #4 *
 * *
 * This program computes the approximate square root of *
 * a number read from the data file. This program shows you *
 * how to write a square root routine without using the SQRT *
 * subroutine. The successive approximations method is used. *
 * The algorithm terminates when the aprroximation is within *
 * 0.01% of the correct answer. This program demonstrates the *
 * IF...ELSE statement construct. *
 * *
 **

 FLOATING POINT INPUT_NUMBER, GUESS, QUOTIENT, LOWER,
 + APPROX_SQR_ROOT

 PRINT COMMENT " SQUARE ROOT PROGRAM"

 * Read in the first value from the data file and begin the
 * looping.

 READ DATA FROM UNIT 5

 LOOP WHILE INPUT_NUMBER >= 0
 PRINT RESULTS INPUT_NUMBER

 * Take care of the special case: Zero

 IF INPUT_NUMBER .EQ. 0, GO TO SPECIAL

 * Begin the routine for finding the square root

 GUESS = 3
 QUOTIENT = INPUT_NUMBER / GUESS

 * Now set LOWER to the "right" value

 IF GUESS .LT. QUOTIENT
 LOWER = GUESS

 ELSE
 LOWER = QUOTIENT

 END IF

 * Now get better approximations...

 GOM Manual 99
 Appendix F

 LOOP WHILE .ABS.(GUESS-QUOTIENT) > 0.0001*LOWER
 GUESS = (GUESS+QUOTIENT) / 2.0
 QUOTIENT = INPUT_NUMBER / GUESS

 * Set LOWER to an even more "right" value

 IF GUESS < QUOTIENT
 LOWER = GUESS

 ELSE
 LOWER = QUOTIENT

 END IF
 END LOOP

 * Skip over the special case

 GO TO OUTPUT

 SPECIAL GUESS = 0

 OUTPUT APPROX_SQR_ROOT = GUESS
 PRINT RESULTS APPROX_SQR_ROOT
 PRINT COMMENT " "

 * Read in another number and loop again

 READ DATA FROM UNIT 5
 END LOOP
 END OF PROGRAM

 GOM Manual 100
 Appendix F

 Example Program #4: Output _______ _______ ___

 SQUARE ROOT PROGRAM

 INPUT_NUMBER = 10.0000

 APPROX_SQR_ROOT = 3.16228

 INPUT_NUMBER = 1234.00

 APPROX_SQR_ROOT = 35.1295

 INPUT_NUMBER = 0.460000

 APPROX_SQR_ROOT = 0.678233

 INPUT_NUMBER = 3.00000

 APPROX_SQR_ROOT = 1.73205

 INPUT_NUMBER = 0.0

 APPROX_SQR_ROOT = 0.0

 GOM Manual 101
 Appendix F

 Example Program #5: Program Listing _______ _______ ___

 This program checks to see if a number is a palidrome. The
 numbers are inputted from a data file. Note that in this
 program we must make a copy of the information in order to test
 it later. By performing operations on the number, we are
 destroying its original contents.

 **
 * *
 * EXAMPLE PROGRAM #5 *
 * *
 * This program takes some data values read from data *
 * and determines whether the number is a palidrome; i.e., *
 * the reverse of the number is the number. The algorithm used *
 * will be to construct the reverse number from the given *
 * number and then test to see if the two are equal. This *
 * program gives you an idea of about number-crunching *
 * techniques used in more detailed programs. *
 * *
 **

 INTEGER ORIGINAL_NUMBER, REVERSE_NUMBER, DIGIT,
 + COPY_OF_1ST

 PRINT COMMENT " NUMERIC PALIDROME PROGRAM"

 * Get the value for the ORIG_NUMBER and begin the iteration

 READ DATA FROM UNIT 5

 LOOP WHILE ORIGINAL_NUMBER > 0
 PRINT RESULTS ORIGINAL_NUMBER

 * Initialize the reverse number to zero, and make a copy of
 * the number so we don’t destroy it when operating on it.

 REVERSE_NUMBER = 0
 COPY_OF_1ST = ORIGINAL_NUMBER

 * Reverse the number.

 LOOP WHILE COPY_OF_1ST > 0
 DIGIT = COPY_OF_1ST .REM. 10
 COPY_OF_1ST = COPY_OF_1ST / 10

 REVERSE_NUMBER = REVERSE_NUMBER*10 + DIGIT
 END LOOP

 * Now determine if it’s a palidrome and print out an answer

 IF ORIGINAL_NUMBER = REVERSE_NUMBER,
 PRINT COMMENT "THE NUMBER IS A PALIDROME"

 GOM Manual 102
 Appendix F

 ELSE
 PRINT COMMENT "THE NUMBER ISN’T A PALIDROME"

 END IF

 PRINT COMMENT " " ;* Added spacing control
 READ DATA FROM UNIT 5 ;* Read in another number
 END LOOP
 END OF PROGRAM

 Example Program #5: Output _______ _______ ___

 NUMERIC PALIDROME PROGRAM

 ORIGINAL_NUMBER = 1221
 THE NUMBER IS A PALIDROME

 ORIGINAL_NUMBER = 123123
 THE NUMBER ISN’T A PALIDROME

 ORIGINAL_NUMBER = 24642
 THE NUMBER IS A PALIDROME

 ORIGINAL_NUMBER = 33
 THE NUMBER IS A PALIDROME

 ORIGINAL_NUMBER = 99889988
 THE NUMBER ISN’T A PALIDROME

 ORIGINAL_NUMBER = 1
 THE NUMBER IS A PALIDROME

 GOM Manual 103
 Appendix F

 Example Program #6: Program Listing _______ _______ ___

 This program demonstrates the use of INTERNAL FUNCTIONs in
 a basic GOM program. This program is basically a rewrite of
 Example Program #6 except that functions are used to read in and
 echo the data, and to determine if the number is even or odd.
 Note the conventions used to pass and retrieve parameters in
 GOM.

 **
 * *
 * EXAMPLE PROGRAM #6 *
 * *
 * This program is a rewrite of Example Program #2 *
 * except that this program makes use of functions in GOM. *
 * A value is read from data, printed out, and then deter- *
 * mined if it is even or odd number. The purpose of this *
 * program is to demonstrate simple function usage in GOM. *
 * *
 **

 INTEGER INPUT_VALUE, COUNTER

 * Set the loop counter to 1 and begin the iteration

 COUNTER = 1

 LOOP UNTIL COUNTER = 6

 * Now call the INTERNAL FUNCTION READ. which will read a data
 * value from the data file and echo it on the output. This
 * value is then passed back into INPUT_VALUE.

 INPUT_VALUE = READ.(X)

 * Now call the INTERNAL FUNCTION EVEN_ODD. which will
 * determine if the number is even or odd, and it will print out
 * the appropriate message.

 EVEN_ODD.(INPUT_VALUE)

 PRINT COMMENT " " ;* Added spacing control
 COUNTER = COUNTER + 1 ;* Bump the loop counter
 END LOOP

 GOM Manual 104
 Appendix F

 **
 **
 *** ***
 *** INTERNAL FUNCTION READ. ***
 *** ***
 *** This function just reads in a number from data and ***
 *** prints it out. Note that the value is passed back to ***
 *** calling statement. Also take note that we must over- ***
 *** ride the default normal mode (FLOATING POINT) since ***
 *** we are passing back an INTEGER. ***
 *** ***
 **
 **

 INTERNAL FUNCTION READ.

 NORMAL MODE IS INTEGER ;* Overriding the default

 INTEGER DATA_VALUE

 READ DATA FROM UNIT 5 ;* Read in a value
 PRINT RESULTS DATA_VALUE ;* Print the value

 FUNCTION RETURN DATA_VALUE ;* Return the value
 END OF FUNCTION

 **
 **
 *** ***
 *** INTERNAL FUNCTION EVEN_ODD. ***
 *** ***
 *** This internal function determines whether the ***
 *** input value is even or odd, and prints out the approp- ***
 *** riate message. Note that INPUT_VALUE is passed to this ***
 *** function. ***
 *** ***
 **
 **

 INTERNAL FUNCTION EVEN_ODD.(NUMBER)

 INTEGER NUMBER

 IF NUMBER .REM.2 .EQ. 0
 PRINT COMMENT "INPUT_VALUE IS EVEN"

 ELSE
 PRINT COMMENT "INPUT_VALUE IS ODD"

 END IF

 FUNCTION RETURN
 END OF FUNCTION

 END OF PROGRAM

 GOM Manual 105
 Appendix F

 Example Program #6: Output _______ _______ ___

 DATA_VALUE = 123
 INPUT_VALUE IS ODD

 DATA_VALUE = -222
 INPUT_VALUE IS EVEN

 DATA_VALUE = 0
 INPUT_VALUE IS EVEN

 DATA_VALUE = 9191
 INPUT_VALUE IS ODD

 DATA_VALUE = -114
 INPUT_VALUE IS EVEN

 GOM Manual 106
 Appendix F

 Example Program #7: Program Listing _______ _______ ___

 This program calculates the square root of a number. This
 is essentially a rewrite of Example Program #4 except that an
 EXTERNAL FUNCTION is used and demonstrated. One difference
 between the use of INTERNAL FUNCTIONs in the last program (#6)
 and this EXTERNAL FUNCTION is that we must put an END OF PROGRAM
 statement at the end of the EXTERNAL FUNCTION as well as at the
 end of the main program. This program could have very well used
 an INTERNAL function as well but obviously the purpose of this
 example program is to show the use of an EXTERNAL FUNCTION.

 **
 * *
 * EXAMPLE PROGRAM #7 *
 * *
 * This program computes the approximate square root of a *
 * number read from the data file. This program is just a *
 * rewrite of Example Program #4 written with an EXTERNAL *
 * FUNCTION subroutine that calculates the approximate square *
 * root of a given number. This approximation is within 0.01% *
 * of the correct answer. This program demonstrates EXTERNAL *
 * FUNCTIONs in a GOM program. *
 * *
 **

 FLOATING POINT INPUT_NUMBER, APPROX_SQR_ROOT

 PRINT COMMENT " SQUARE ROOT PROGRAM"

 * Read in the first value from the data file and begin the
 * looping.

 READ DATA FROM UNIT 5

 LOOP WHILE INPUT_NUMBER >= 0
 PRINT RESULTS INPUT_NUMBER

 * First see if the number is zero. If so then just set
 * APPROX_SQR_ROOT to zero and don’t bother with the subrout-
 * ine... just branch to OUTPUT.

 IF INPUT_NUMBER = 0
 APPROX_SQR_ROOT = 0 ;* The sqrt of 0 is 0
 GO TO OUTPUT ;* Skip over SQROOT.
 END IF

 * Call EXTERNAL FUNCTION SQROOT. to get the square root. Note
 * that APPROX_SQR_ROOT will get the returned value.

 APPROX_SQR_ROOT = SQROOT.(INPUT_NUMBER)

 * Now print out the answer and skip a line

 GOM Manual 107
 Appendix F

 OUTPUT PRINT RESULTS APPROX_SQR_ROOT
 PRINT COMMENT " "

 * Read in another number and loop again

 READ DATA FROM UNIT 5
 END LOOP
 END OF PROGRAM

 **
 **
 *** ***
 *** EXTERNAL FUNCTION SQROOT. ***
 *** ***
 *** This External Function computes the square root ***
 *** value of the number passed to this subroutine. The ***
 *** square root value is then passed back to the calling ***
 *** statement. First we must declare some variables used ***
 *** to make "better" approximations, and then start calc- ***
 *** ulating.... ***
 *** ***
 **
 **

 EXTERNAL FUNCTION SQROOT.(DATA_VALUE)

 FLOATING POINT GUESS, QUOTIENT, LOWER

 GUESS = 3
 QUOTIENT = DATA_VALUE / GUESS

 * Now set LOWER to the "right" value

 IF GUESS .LT. QUOTIENT
 LOWER = GUESS

 ELSE
 LOWER = QUOTIENT

 END IF

 * Now get better approximations...

 LOOP WHILE .ABS.(GUESS-QUOTIENT) > 0.0001*LOWER
 GUESS = (GUESS+QUOTIENT) / 2.0
 QUOTIENT = DATA_VALUE / GUESS

 * Set LOWER to an even more "right" value

 IF GUESS < QUOTIENT
 LOWER = GUESS

 ELSE
 LOWER = QUOTIENT

 GOM Manual 108
 Appendix F

 END IF
 END LOOP

 FUNCTION RETURN GUESS ;* Returning the sqrt. value

 END OF FUNCTION
 END OF PROGRAM

 Example Program #7: Output _______ _______ ___

 SQUARE ROOT PROGRAM

 INPUT_NUMBER = 10.0000

 APPROX_SQR_ROOT = 3.16228

 INPUT_NUMBER = 1234.00

 APPROX_SQR_ROOT = 35.1295

 INPUT_NUMBER = 0.460000

 APPROX_SQR_ROOT = 0.678233

 INPUT_NUMBER = 3.00000

 APPROX_SQR_ROOT = 1.73205

 INPUT_NUMBER = 0.0

 APPROX_SQR_ROOT = 0.0

 GOM Manual 109
 Appendix F

 Example Program #8: Program Listing _______ _______ ___

 This program calculates the largest power of two for a
 value read in from data. This program is a rewrite of Example
 Program #3 except that I/O is not done using the simplified
 statements described in Section 2.9. Up until now, all I/O has
 been handled this way but for a general case, I/O will not
 coincide with the "simplified" format. The I/O demonstrated in
 this program calls on the IOH format routines described in MTS
 Volume #5 (System Services). For debugging purposes, simplified
 I/O in GOM will suffice, but when fancy I/O is required, it is a
 neccesity to use the IOH I/O formats (see Section 2.8).

 **
 * *
 * EXAMPLE PROGRAM #8 *
 * *
 * This program calculates the largest power of two *
 * that is less than or equal to a value read from data. *
 * This is essentially a rewrite of Example Program #3 *
 * except that the IOH input/output statement constructs are *
 * used. Up to now, all I/O was done using the simplified *
 * I/O statements described in Section 2.9. The purpose of *
 * this program is to demonstrate the IOH I/O statement *
 * types. *
 * *
 **

 INTEGER DATA_VALUE, POWER_OF_TWO, COUNTER
 CHARACTER TEXT(27), TEXTFMT(13), READFMT(2)

 * Set up the heading for this program

 TEXT(0|20) = "POWER OF TWO PROGRAM" ;* The header...
 TEXTFMT(0|12) = $"1",RC26.20*$;* and its format

 WRITE ON UNIT 6, TEXTFMT, TEXT ;* Print it out

 * Now begin the iteration. First read in a value and echo it
 * on the output.

 LOOP FOR COUNTER=1, 1, COUNTER=6

 TEXT(0|25) = "THE INPUT DATA VALUE WAS:"
 TEXTFMT(0|13) = $"0",C27.25,I*$

 READFMT(0|2) = "I*"

 READ FROM UNIT 5, READFMT, DATA_VALUE

 WRITE ON UNIT 6, TEXTFMT, TEXT, DATA_VALUE

 * Initialize POWER_OF_TWO to 1 and then double it until it
 * finally exceeds the value in DATA_VALUE, at which time we

 GOM Manual 110
 Appendix F

 * will have gone one power too far.

 POWER_OF_TWO = 1

 LOOP WHILE DATA_VALUE .GE. POWER_OF_TWO
 POWER_OF_TWO = POWER_OF_TWO * 2
 END LOOP

 * Adjust POWER_OF_TWO to the correct value and print it out

 POWER_OF_TWO = POWER_OF_TWO / 2

 TEXT(0|26) = "THE LARGEST POWER OF 2 IS:"
 TEXTFMT(0|9) = "C27.26,I*"

 WRITE ON UNIT 6, TEXTFMT, TEXT, POWER_OF_TWO
 END LOOP
 END OF PROGRAM

 Example Program #8: Output _______ _______ ___

 POWER OF TWO PROGRAM

 THE INPUT DATA VALUE WAS: 54321
 THE LARGEST POWER OF 2 IS: 32768

 THE INPUT DATA VALUE WAS: 89
 THE LARGEST POWER OF 2 IS: 64

 THE INPUT DATA VALUE WAS: 4095
 THE LARGEST POWER OF 2 IS: 2048

 THE INPUT DATA VALUE WAS: 1024
 THE LARGEST POWER OF 2 IS: 1024

 THE INPUT DATA VALUE WAS: 3
 THE LARGEST POWER OF 2 IS: 2

