BERNARD A. GALLER

Associate Professor of Mathematics and
Research Associate, Computing Center
The University of Michigan

THE
LANGUAGE
OF
COMPUTERS

McGRAW-HILL BOOK COMPANY, INC.

New York San Francisco Toronto London

THE LANGUAGE OF COMPUTERS

Copyright © 1962 by the McGraw-Hill Book Company, Inc. All Rights
Reserved. Printed in the United States of America. This book, or
parts thereof, may not be reproduced in any form without permission
of the publishers. Library of Congress Catalog Card Number 62-13811

I

22730

PREFACE

This book was written for the person who is interested in learning
how problems are solved on electronic computers. In order to solve
any problem, a method of solution must be found. But if a computer
is involved, the method must be made very explicit, and it must
somehow be communicated to the computer. We are concerned here
with the entire process of solving problems. In every case we must
ask the same questions: What is the method by which this problem
is to be solved? How can we make this method explicit, i.e., how
should it be expressed as a set of rules? What sort of language can
we use to let the computer know what the problem is and what our
method of solution is?

We shall study a series of problems in this book. These problems
have been chosen from many different areas, such as the simple,
everyday computation of making change, the decoding of secret mes-
sages, and the solution of simultaneous equations. For each problem
we shall devise a method of solution, and we shall make this method
quite explicit by means of flow diagrams, which indicate the step-by-
step solution. From the study of such problems we shall construct
the kind of language which we need in order to express each method

v

vi Preface

of solution as a set of instructions (i.e., a program) to a computer.
By the time we have finished, our language will be complete enough
to allow us to solve even complicated problems.

Our goal, therefore, is twofold: We are interested in the discovery
of algorithms, or methods of solution of problems; and we are interested
in the way a language is designed for the communication of algorithms
to computers.

As high schools and universities recognize the relevance of com-
puters and computer-oriented mathematics to their curricula, courses
are being organized to introduce students to machines. These
courses are usually offered to high school juniors and seniors or uni-
versity freshmen and sophomores, and it is for these students that this
book has been planned. The basic ideas are not difficult. Most
of the difficulties that one encounters in using computers arise in the
analysis of the problems to be solved. If the problem is statistical,
then one needs a good command of statistics. If the problem con-
cerns the translation of Russian into English, then one needs a good
background in linguistics and natural languages. But the under-
lying computer concepts may be studied quite independently of these
specialized applications of the computer. The problems we discuss
here involve these basic computer concepts without requiring an
extensive mathematical background.

The rules for the language which evolves in this book are sum-
marized in Appendix A. Each rule or definition or new kind of
statement is discovered because something is needed to express the
solution of a problem. Thus, in the first four chapters, while dis-
cussing the change problem and the computation of the social security
tax, we are led to the definitions of arithmetic and Boolean (i.e.,
logical) expressions, the arithmetic substitution statement, and the
simple conditional and iteration statements. If necessary, these four
chapters could be used alone as a quick introduction to the writing
of simple computer programs.

The next four chapters cover the decoding of secret messages, sim-
ple numerical integration via Monte Carlo methods, several sorting
methods and the binary search procedure, and an elementary dis-
cussion of the correlation coefficient. While considering these prob-
lems, such language concepts as a more general iteration statement,
internal and external functions (sometimes called subroutines), and

Preface vii

input-output statements are encountered. Again, if necessary, a
short course could easily stop at this point.

In Chapters 9 and 10 we take on somewhat more difficult problems.
The first involves a program which must itself write programs. The
automatic generation of programs is a fairly recent development in
the computer field, and one which will definitely become more
important in the future. Chapter 10 deals with the solution of
simultaneous equations, covering all the subtle cases (such as the
system of equations with an infinite number of solutions or no solution
at all), as well as the general case.

The book might have ended with Chapter 10, but the question
inevitably arises, “Is this language which we are developing really
the language used on computers?” This question, and the related
question, “Are there any other languages for computers?” are dis-
cussed in Chapters 11 and 12. Readers familiar with computers
may recognize the MAD (Michigan Algorithm Decoder) language in
our statements. What about other languages, such as FORTRAN
and ALGOL? For that matter, what about NELIAC, JOVIAL,
IT, GAT, and FLOWMATIC? These languages are similar in
many ways, as we point out in Chapter 12, and any one of them
might have served as a basis for this book. The particular language
(MAD) used here is easy to describe, easy to motivate, easy to use,
and it is available on several computers. Those who have access
to a computer may wish to introduce some simple input-output pro-
cedures before reaching Chapter 8 in order to run examples on the
computer. For those who have access to a computer for which
FORTRAN is available, but not MAD, Appendix B provides a set
of rules which allow translation of programs from the language of
this book into FORTRAN. Appendix C provides similar rules for
translation to ALGOL. It certainly is not necessary to have access
to a computer to be able to use this book, however. There are many
exercises in the book, and none requires a computer.

Another question which is sometimes asked is, “If I learn something
about this particular language, will I be able to use computer X
which uses language Y?”” It is well known among computer users
that the use of any computer or computer language makes the next
one much easier to learn. The fundamental ideas concerning algo-
rithms, loops, the making of decisions, the structure of arithmetic

viii Preface

expressions, and so on, are common to every computer and every
language. The answer to the question, then, is most definitely:
“Yes, you will be able to use language Y on computer X with a
minimum of attention to the new details of that computer and
language.”

“But what about the hardware? What are magnetic tapes? How
are index registers used?”” Quite a few excellent books have already
been written about the circuitry and the hardware components of
computers. 'This book is concerned with the procedure-oriented language
and its use in solving problems. After reading this book, the reader
may very well wish to find more details on the computer hardware.
Two excellent sources of such information are: “Digital Computer
Primer,” by E. M. McCormick, McGraw-Hill Book Company, Inc.,
New York, 1959, and “Digital Computer Programming,” by D. D.
McCracken, John Wiley & Sons, Inc., New York, 1957.

I would like to express my gratitude for the support of the project
on the Use of Computers in Engineering Education at the University
of Michigan sponsored by the Ford Foundation. I would also like
to acknowledge the many suggestions and criticisms offered by my
colleagues and friends.

Bernard A. Galler

Chapter 1.
Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

CONTENTS

Preface v

Introduction 1

THE CHANGE PROBLEM

EXPRESSIONS

2.1 Names of Variables 10
2.2 Constants 11

2.3 Operations 12

2.4 Arithmetic Expressions 12
2.5 Boolean Expressions 19

CONDITIONAL STATEMENTS AND ITERATION STATEMENTS

3.1 The Simple Conditional Statement 25
3.2 The Transfer Statement 26
3.3 The Iteration Statement 28

THE SOCIAL SECURITY PROBLEM
4.1 The Compound Conditional Statement 34

THE SECRET-CODE PROBLEM

5.1 The Statement of the Problem 40

5.2 Another Iteration Statement 44

5.3 The Decoding Problem 51

5.4 Congruence 53

5.5 More Complex Codes—Random Numbers 55

10

25

33

40

X

Chapter 6.

Chapter 7.

Chapter 8.

Chapter 9.

Chapter 10.

Chapter 11.
Chapter 12.

Contents

MONTE CARLO METHODS

6.1 Computing an Amount of Work 61
6.2 External Functions 65

6.3 Random-number Generators 72
6.4 Internal Functions 78

6.5 The One-line Internal Function 82

A SORTING PROBLEM

7.1 The Algorithm 86

7.2 The EXECUTE Statement 91
7.3 Another Sorting Algorithm 93
7.4 A Search Algorithm 97

THE CORRELATION COEFFICIENT

8.1 The Program 106
8.2 Input-Output Statements 114

A PROGRAM TO PRODUCE PROGRAMS

9.1 Statement of the Problem 119

9.2 Boolean Variables 122

9.3 Network Descriptions 124

9.4 The Network Algorithm 128

9.5 The Algorithm for Generating Programs 134

SIMULTANEOUS LINEAR EQUATIONS

10.1 The Geometric Interpretation 148

10.2 Algorithms for Simultaneous Linear Equations 151
10.3 The Jordan Algorithm 154

10.4 The Dimension Statement for Arrays 166

10.5 The VECTOR-VALUES Statement 173

10.6 The Program for the Jordan Algorithm 177

10.7 The Division by Zero Problem 179

THE MAD LANGUAGE

OTHER COMPUTER LANGUAGES

12.1 The Language and the Computer 192
12.2 The FORTRAN Language 195

12.3 The ALGOL Language 203

12.4 Conclusions 207

APPENDIX A. SUMMARY OF THE RULES OF THE LANGUAGE
APPENDIX B. TRANSLATION TO FORTRAN
APPENDIX C. TRANSLATION TO ALGOL

Index 239

61

86

106

119

148

188
192

209
215
229

INTRODUCTION

THis Book is intended as an introduction to the language of digital
computers. We shall not be concerned here with the hardware,
such as magnetic drums, high-speed printers, and so on, but with
the soffware. 'This refers to the language by means of which we com-
municate with the computer. By studying typical problems which
might be posed to a computer, we shall generate a description of a
computer language. When we finish, this language will be complete
enough to enable us to describe a great many of our problems to the
computer, and it will also be quite natural for everyone to use.

More important than the development of a suitable language,
however, is the insight we shall obtain into the structure of many of
the problems which we bring to the computer. We shall see that
the ability to make decisions is a basic ingredient in the solution of
every problem, and we shall need a way to describe the decision to
be made as well as the courses of action which are possible as a result
of that decision. Another common ingredient is the Jloop, which
requires a sequence of steps to be performed over and over until an
appropriate decision is reached as to the effectiveness of the procedure
or the number of repetitions made.

This view of the structure of problems and the computational

procedures leading to their solution does not depend at all on any
1

2 The Language of Computers

particular computer, nor does it depend on a particular language.
We shall find it convenient, however, to develop a suitable language
for describing procedures. Later, we shall discuss the relationship
between this language and other similar languages.

The ideas that we shall deal with are not hard to understand.
Many high school students have already been introduced to com-
puters, and they are quite capable of understanding the basic con-
cepts. Why, then, is there the strong emphasis that is always placed
on mathematics in any discussion of computers? It happens that
most of the problems that have been successfully attacked by means
of computers have had mathematical formulations. Mathemati-
cians have been interested in computational procedures for hundreds
of years, and it is quite natural that the first problems which were
considered feasible for machine computation were mathematical
methods already studied and developed in the form of algorithms, i.e.,
sequences of well-defined steps leading to the solution.

In recent years, however, we have become more and more aware
of the power of the computer to solve nonmathematical problems,
such as the simulation, in a few minutes, of the behavior of a factory
over a period of five years or the translation of articles and books
from one language to another. Many of the problems we shall
consider here will be nonmathematical. In fact, since the main
ideas will be quite independent of formal mathematics, none of the
examples will demand more than a bare minimum of mathematics,
such as the solution of quadratic equations or the law of cosines.

It was indicated that we shall generate a description of a computer
language. The reader should understand that the final version of the
language toward which we shall aim does in fact exist and is called
MAD (the Michigan Algorithm Decoder). It was developed at the
University of Michigan by Bruce W. Arden, Robert M. Graham,
and the author, and has been in use by students at the University
since February, 1960. Nothing that follows, therefore, is hypothet-
ical or fictitious.

CHAPTER ONE

THE CHANGE PROBLEM

AN INTERESTING PROBLEM which all of us solve every day, almost
without realizing it, is the “change problem.” What happens when
you hand the grocer a dollar bill in payment for something which
costs 21 cents? He gives you 79 cents in change, of course, but
which coins does he use? Actually, there are many different ways
to make up 79 cents, such as seven dimes and nine pennies, or five
dimes, five nickels, and four pennies, and so on. Suppose we make
the problem more specific, then, and ask him to use the fewest coins -
in making change, which is what most grocers do, anyway.

One way, used by many people, is this: Start with the amount
being charged (21 cents). Add enough pennies to just come to a
multiple of 5. (In this case we use four pennies.) Now build it up
to a multiple of 25 by adding two dimes, a dime and a nickel, one
dime, one nickel, or nothing at all. (Since we are already at 25 we
add nothing.) Now add enough quarters to take the amount to a
multiple of 50. TFollow this with enough half-dollars to take it up
to a dollar. This gives us, in our particular example, four pennies,
a quarter, and a half-dollar, which is the best way to do it.

What would happen in the very special case in which the cost of

the article we are buying is zero? (This is sometimes called “getting
3

4 The Language of Computers

change for a dollar.”) The same rule still works, giving just two half-
dollars, which is not the usual way we change a dollar, but which
does use the smallest number of coins. In applying the rule in this
case, remember that we are starting with zero, and zero is a multiple
of any number.! Thus, we need to add no pennies to make zero a
multiple of 5, and so on. It usually pays to test any rule against
some very special cases, since these cases actually show up errors on
occasion. What would happen here, for example, if the article costs
exactly one dollar, so that one should get no change?

To show that the same problem can have more than one rule, or
algorithm, for its solution, we shall state another rule for the change
problem: Subtract the cost of the article from one dollar (giving the
amount of change to be made, e.g., 79 cents in the above example).
Divide this amount by 50. The quotient indicates how many half-
dollars are needed, and the remainder is the amount still to be
accounted for. (We find that we need one half-dollar, and we still
need to account for 29 cents.) Divide in the same way by 25, so
that the quotient indicates how many quarters are needed, and so
on. We divide in turn by 50, 25, 10, 5, and 1, each time noting
the quotient, and using the remainder for the next division. It is
easy to see that this also leads us to a half-dollar, a quarter, and four
pennies for the 21-cent article and two half-dollars as change for the
dollar.

The second rule is easier to write, but not as easily carried out
without writing down some of the numbers. This is probably the
reason most people do not use it in their grocery change. A com-
puter, however, can easily save numbers for future reference, since
it has a storage section (sometimes called its memory). Information,
such as numbers or strings of letters, may be stored in the storage
section of the computer and may later be recalled as often as neces-
sary. The second method would therefore be quite feasible for a
computer.

Let us look at this method a little more closely. We note first
that if A is the amount of change we must give and g5, is the quo-
tient we get when we divide A by 50, then the remainder is Rjo =
A — 50 g5, so that in our earlier example A = 79, g5 = 1, and

1 Take any number w, and you have 0 - w = 0; so zero can be written as some-
thing times w, making it a multiple of .

The Change Problem 5

Rg = 79 — 50+ 1 = 29. A similar statement holds for division by
25, 10, and so on. In order to discuss this more easily, we shall find
it convenient to introduce here the greatest-integer function. When
we write [B] for some number B, we shall mean B itself if B is an
integer, and if B is not an integer we shall mean the greatest integer
less than B. Thus, [6] = 6, [0] =0, [-3] = —3, [2.4] = 2, and
[—3.2] = —4.! The reason for using this function here is that we
can now write

g50 [A/50] Ry = A — 50 * gs0

gas = [Rpo/25] Ras = Rgo — 25 ¢2s

I

qi0 = [R25/10] Ry = Rg5 — 10~ d10
g5 = [Ruo/5] Ry =Ry—5"¢s
q1 = [Rs/1] Ri=Rs—1"q

Of course, g1 = Rs and R; = 0, but it is interesting to see that
they do fit into the same general pattern. In fact, the pattern itself
can be used to simplify the description of the rule. In each step
there is a divisor, which is the same number used afterward as a
multiplier. Also, after we use Ry to find gs5 and Ry, we really do
not need it anymore. We might as well just remember g5 and Rgs
and forget Rg. In fact, as soon as we have used any one of the R’s
to compute the next ¢ and R values, we no longer need it. Com-
puter people are usually on the lookout for such situations, since they
are not too anxious to waste part of the storage section of the com-
puter remembering numbers that are no longer needed. (It does
not hurt until one runs out of storage, but one might as well develop
good habits.) Let us then reserve one place for the R’s, called R
(without a subscript), and as soon as we compute any new R value,
we will put it there, wiping out the previous value. Of course, we
will still remember all the ¢’s separately, since we need all of them
as the answer to the problem. The second line of the computation
outlined above would now appear as follows:

q25 = [R/25] R =R — 25" ¢

LA function is a rule by means of which one assigns to each number a unique
second number. Thus, the function x? assigns to each number chosen as a value of
x the square of that number. This function may be represented as a set of pairs
0,0), (1,1), (2,4), (—2,4), etc., where the first number is a value chosen for x, and
the second value is the square of that value. For the function [B] used here, typical
pairs are (6,6), (—3,—3), (2.4,2), and (—3.2,4).

6 The Language of Computers

Note, however, that if we subtract R from both sides of the last
equation, we obtain 0 = —25 - ¢q5, so that ¢s5 = 0 no matter how
much change we need, which is impossible. The trouble is that we
are now using the equal sign in a new way. We are not asserting
that R = R — 25 ¢35 and asking for which value of gs; this is true,
as in ordinary algebra. We are instead saying: Compute the right
side, i.e., R — 25 - ¢35, using the current value of R, and put the
result in the place whose name is given on the left, e.g., R. This
new interpretation of the equal sign is sometimes described by saying
that we are using a command language, rather than a descriptive language.
Sometimes an arrow (<) is used instead of the equal sign, so that
the second line of the computation would be written:

q25 — [R/ZS] R <_‘R. - 25 * 425

In diagrams, such as Figure 1.1 below, we shall use the arrow in this
way, but in the text we shall continue to use the equal sign with this
new meaning, since the devices used for input to most computers do
not recognize the arrow. The above rule for computing change can
now be written in the following way:

ds0 = [A/SO] R=A-50" 450
q25s = R/25] R =R — 25" g3
di0 = [R/lO] R=R-—-10" d10
g5 = [R/5] R=R—-5"¢
¢ = [R/1] R=R-1-'q

The first line can be made to look exactly like the others if we set R
equal to A to begin with. The first line would then be

gs0 = [R/50] R =R —50"g¢s

The other feature of the general pattern we noted above was the
divisor which occurs in each step. If we call the divisor d, all five
lines of the rule can be written in the same way:

qa=[R/d] R =R —dg

Now we need start with only R = A, and let 4 take on in turn each
of the values in the “coin list”’: {50,25,10,5,1}. The process termi-
nates when R has been reduced to zero, as it always must. In fact,

The Change Problem 7

since we may ask after each step whether R = 0, occasionally we
shall be fortunate enough to have the process end early. For example,
if A = 0, so that no change is needed, the termination condition is
satisfied as soon as we set R = A. There is one slight complication
here, however. If the computation ends on the very first step, what
will be the values of g¢so, ¢25 - - . , 17 These are, after all, the
answers to the problem. Of course, they should all be zero, and in
general, whenever the process ends at some early stage, the ¢’s not
yet computed should be zero. The easiest way to accomplish this
is to set all the ¢’s to zero at the very beginning. Some (or all) of
the ¢’s will receive new values as we proceed, but the remaining ¢’s
will still be zero if the process should happen to end early.

Figure 1.1 is a flow diagram of the algorithm. We shall see that
flow diagrams are among the most useful devices we have for com-
municating algorithms. Remember that g4 is the number of coins
we need of denomination d; A is the total amount to be given in
change, and R is the amount remaining at cach step of the procedure.

The first three boxes (after the word START) perform the ¢ni-
tialization. There is then a loop, which consists of a termination condi-
tion (in this case R = 0); a block of computation, sometimes called
the scope or body of the loop (here the substitutions ¢4 < [R/d] and
R <« R — dgy); and a box which changes 4 each time around, called
the modification box. We shall use the shape of each box to suggest
its role in the algorithm. Rectangular boxes will be used for actual
computation and diamond-shaped boxes for the decisions. Since
decision boxes always contain assertions which are either true or false,
there will always be two arrows leaving each diamond-shaped box,
one labeled #rue, the other false.

As an example of the actual application of the algorithm as
given in the flow diagram, we shall consider the case in which
A = 25 (i.e., the article originally cost 75 cents). Initially, one
would set gso = ¢25 = 10 = ¢5 = ¢1 = 0, R = 25, and 4 = 50, and
because R 3 0, one would compute g5 = [284¢9] = [.5] = 0 and
R =25 —50-0 = 25. Setting d = 25, we examine the termina-
tion condition R = 0. Since it is false, another cycle of the loop is
performed, vyielding ¢e5 = [2545] =1 and R =25 —25-1 = 0.
Setting d = 10, we again examine the termination condition and
find it #rue; so the computation is terminated. Since the values of

8 The Language of Computers

q10, s, and ¢1 did not change, they remain zero, and we conclude
that one quarter is needed to give 25 cents in change.

Suppose now that we have the task of determining the specifica-
tions for the language in which this algorithm could be communicated
to a computer. Although it would be desirable to feed Figure 1.1

(START)

4
Sét all ¢'s to zero

Y
R<A

Set d to the first
value in the coin list

R~R-dgq,

Y
Set d to the next
value on the coin list

{

Figure 1.1

into the computer directly, we shall assume that we can feed in only
strings of letters and digits. Since we can set the specifications for
the language, we must first recognize the need for straight com-
putation. We shall therefore ask for the privilege of writing any

The Change Problem 9

substitution statement we need, that is, any equation in which the equal
sign is interpreted as indicated above, e.g., the left side gives the
name of the place in storage into which the value of the right side
is to be stored. The reason for the name substitution statement is that
the new value is substituted for the old value in storage.

Note that in the termination condition the equal sign is used in
yet a different way. When we wrote R = 0, it was intended to be
an expression which could be labeled true or false, depending on the
current value of R. It is #rue for some values of R (in this case only
one value) and false for others. The equal sign is called a relation
when it is used in this way. Other relations that are used a great
deal are <, <, >, >, and 3%, meaning, “less than,” “less than or
equal,” “greater than,” “greater than or equal,” and “not equal,”
respectively. Although a simple expression (R = 0) sufficed for the
termination condition here, it is not hard to imagine situations
arising in other problems in which the termination condition would
have to be more complicated, such as

M<NadP#QorM>NadP <Q+3

This is again an expression which is true for some sets of values of
M, N, P, and Q and false for other sets of values. We will probably
want to include in our specifications for the computer language the
ability to write very complicated true-false expressions for use as ter-
mination conditions and, as we shall see, for use in other ways.

We have to be careful, however, in making these specifications.
How complicated an expression can the right side of a substitution
statement be? How can one determine whether an expression is
legitimate or just a meaningless collection of characters, such as
Q/T + ((A($? We must carefully describe just what shall be
considered a legitimate expression in the proposed language. Then
we shall be able to build from this the description of our statements,
such as the substitution statement, the simple and compound condi-
tional statements that we shall introduce later, and so on.

CHAPTER TWO

EXPRESSIONS

WE MusT Now take a good look at what we have been calling expres-
sions in the preceding chapter. The first thing is to distinguish
between the arithmetic expression, which has a number as its value,
and the logical expression, which has true or false as its value. (Logi-
cal expressions are usually called Boolean expressions, after the logi-
cian George Boole.) We have seen examples of both kinds of
expressions in our change problem, e.g., R — dgg is an arithmetic
expression, and R = 0 (as used there) is a Boolean expression.

Now, what kinds of things go into making up an arithmetic expres-
sion? We have names of variables, such as R and gq; constants, such
as 50 and 25; and operations, such as + and —. Our job, then, is
to set forth the rules as to what constitutes a legitimate name for a
variable, a legitimate constant, and a legitimate operation. After
that we shall decide what combinations of these three ingredients
make up acceptable arithmetic expressions.

2.1 NAMES OF VARIABLES

What, then, should be acceptable as the name of a variable (i.e.,

the symbol used in referring to the variable)? Why is it necessary
10

Expressions 11

to put any restrictions on these symbols at all? It is obviously nec-
essary to have some restrictions; otherwise someone might write
A + B, and we could not tell whether he meant the variable repre-
sented by the symbol “A + B or the sum of the two variables A
and B. We will probably all agree that the symbol for an operation
may not occur within the symbol representing a variable. Similarly,
we shall have to rule out parentheses. What about a symbol like
“91”? This symbol is commonly understood to represent a con-
stant, i.e., the integer 91, rather than a variable. The rule we
choose for describing symbols acceptable as names of variables will
have to rule out such constants. What about the number of char-
acters in a symbol? Since even the largest computer has a fixed
amount of storage, we cannot allow arbitrary lengths for these sym-
bols. We shall therefore set some upper limit (such as six) to the
number of characters in each symbol. We could just as well have
chosen ten as the upper limit, but we shall use six. Restrictions
such as these, which are based on machine considerations, are not
particularly desirable, but they greatly facilitate the handling of
expressions inside the computer.

Let us agree on a rule, then, for the construction of symbols to
represent variables. A symbol which represents a variable will contain
one to six capital letters or digits, the first of which must be a letter. Examples
of acceptable symbols are Q1, BC3A, and R. Examples of unac-
ceptable symbols are 9ED, 1.5, 91, and E1 4+ 2. We shall also find
it convenient to use the following terms in referring to symbols repre-
senting variables: the name of the variable, the variable, the vari-
able name. (In using “variable name,” there is no implication that
the name will be changing.)

2.2 CONSTANTS

Without going into a similar discussion with regard to constants, let
us simply state the rules for forming acceptable constants. A numeric
constant contains one to eleven digits with or without a decimal point and with
or without a sign. Examples of acceptable numeric constants are 0,
—1.0, 1., .0, and 51.246513912.

12 The Language of Computers

In Chapter 5 we shall discuss a problem concerned with decoding
messages. In such a problem one must be able to ask, for example,
whether a particular character is an “A”, etc. We shall therefore
find it convenient to allow alphabetic constants such as “A”. We
shall write alphabetic constants in a way which will correspond to
the way quotation marks are used in English in writing about the
the name “A” of the variable A. An alphabetic constant contains up to
six characters (any character except the $ itself), preceded and followed by
dollar signs (our substitute for quotation marks, since the input devices
on most present-day computers do not accept quotation marks).
Although we will completely ignore blanks elsewhere, here we will
count the blank space as a character, so that examples of alphabetic
constants are GO, $GO ONS$, $5 + 3§, and $4TE—18.

2.3 OPERATIONS

What about the operations which can occur in arithmetic expres-
sions? We obviously want to allow +, —, and multiplication and
division, and probably exponentiation, i.e., AB. We cannot omit
the multiplication sign as we do in ordinary algebra, however, since
then we could not tell if “AB” is a variable name or the product of
the variables A and B. (We shall use “*” for multiplication, since
the center dot “*” is not acceptable to the input devices on most
computers.) Also, since we do not have a way to raise something
to the level of an exponent on most computers, we shall invent a
symbol for exponentiation. We shall write A .P. B for AB, where .P.
reminds us of “raising to the power.” (We cannot just write A P B,
since we could not distinguish it from the variable name “APB”.)
Similarly we shall write .ABS. for absolute value.

2.4 ARITHMETIC EXPRESSIONS
We are finally in a position to say what an arithmetic expression is.
An arithmetic expression is defined as follows:

1. Numeric and alphabetic constants and variable names are
arithmetic expressions.

Expressions 13

2. If @ and ® are already known to be arithmetic expressions,
then so are the combinations @ + ®, @ — &, +@, —@, @ * B, @/®,
@ .P.®, .ABS. @, and (@), the last one meaning that any expression
may be enclosed in parentheses at any time, if desired.

3. The only arithmetic expressions are those which are generated
by (1) and (2).

Note that in this definition, (1) allows us to start with certain very
elementary expressions with which we are already familiar. Then
(2) allows us to combine the expressions we have from 1 into more
complicated expressions. If we apply (2) again to these expressions,
we obtain even more complicated expressions, and so on. This
process goes on and on, but (3) closes the definition by asserting that
there is no other way to obtain an expression. In other words, (1)
and (2) provide a way to obtain expressions, and (3) makes this the
only way. (We shall see this method of definition again later.)

These rules allow very complicated arithmetic expressions to be
formed, such as

B.P.(X —Y) + (C—D).P. (E/F +G)

Let us write the same expression without parentheses, however.
We then obtain the expression

BP.X—-Y+C—-—D.P.EF+GC

If we were to ask several people (who had not seen the original
expression) to put in the missing parentheses, we might get the orig-
inal expression back again, or we might not. We should really ask
a more basic question, e.g., what is the reason for having parentheses
in an expression? Their job is to indicate the order in which the
steps of the computation are to be done. Thus, if we write 6 + (12/2)
and (6 4 12)/2, we obtain two different values, e.g., 6 + 6 = 12
and 18/2 = 9. It makes a difference, then, in which order we do
things, and parentheses help us understand which particular sequence
of computation is intended for each expression.

Why do we ever leave parentheses out at all, then, if we need
them to specify the sequence of the computation? Too many paren-
theses would make any expression very difficult to read. If @/ the
parentheses were written for the example above, we would have the

14 The Language of Computers

following:
(B.P. (X -Y))+ ((C—-D).P. (E/F) +G))

We see that some parentheses were omitted even from the original
expression. There is no harm in this, provided that there is some
well-known rule, or agreement, which indicates precisely how any
missing parentheses are to be inserted. If we were to write 6 + 12 /2,
most of us would immediately understand it tomean 6 + (12/2) = 12.
If we had intended it to mean (6 + 12)/2, we would be obliged to
keep the parentheses there. It is important now that we make
explicit the agreement on the order in which operations will be per-
formed when parentheses have been omitted, so that there will be
no doubt as to the meaning of any expressions we may encounter.

The reason we decided to do the division first in the expression
6 + 12/2 is that we have always agreed to do division before addition
unless parentheses indicate otherwise. We say that division takes pre-
cedence over addition. This implies that we have in mind a ranking
(i.e., ordering) of the operations, and we always do an operation
with a higher rank before an operation with a lower rank. Let us
determine what this ranking is. We have already indicated that
division ranks higher than addition. Division would rank higher
than subtraction as well, and multiplication would also rank higher
than addition or subtraction. Unfortunately, we cannot claim that
multiplication ranks higher than division, nor that division ranks
higher than multiplication. The same holds true for addition and
subtraction. For example, if we write 6 — 4 + 2, we would arrive
at a value (6 —4) +2 =242 =4. From this we might be
tempted to say that subtraction, being done first, has a higher rank.
However, if we write 6 + 4 — 2, we would compute 6+4) —2=
10 — 2 = 8, and it would appear that addition has the higher rank-
ing. There is no harm in having some operations (such as these)
with the same rank, since we will include in our rule a special pro-
vision for handling operations of the same rank.

Before stating the rule, however, we must decide how to rank
the exponentiation operation .P. and the absolute value operation
.ABS., and we should also take into account the fact that a minus
in front of an operand (representing negation) is quite a different kind
of operation from the minus between two operands (representing

Expressions 15

subtraction). (An operand is a symbol or expression upon which an
operation is performed.) In order to place the operation .P. in our
ranking, let us consider a typical expression involving exponentiation,
such as A *B.P. C *D, and decide where we would want to put
the parentheses if we had to insert them. In ordinary mathematical
notation, there would be no need for a decision, since this expression
would be written as A - B, or A-BC-D, or perhaps (AB)°D, or
some other way, but there would be no doubt as to the nature of the
exponent. We should try to be as close to ordinary mathematical
notation as possible, however; so let us note that in evaluating
A+ B® - D, we would evaluate the factor B¢ before doing either of the
multiplications. We are thus led to decide that .P. should rank
higher than multiplication.

Except for the negation operation and .ABS. mentioned above,
we now have the following ranking:

.P.

*/

I, —_
where each operation on a particular line has higher rank than any
operation on any lower line. It is important to observe at this point
that we could have decided on a different rank for .P. if we had
wished. Provided that we were consistent throughout the rest of
our work, there would be no lack of communication as a result of
such a decision. These rules are simply agreements so that we all
do our computations the same way. Since we do not have any com-
pelling reasons for departing from standard mathematical notation,
however, we will try to be consistent with it whenever possible, but
with the understanding that we could depart from it if we needed to.

Now let us rank the absolute value operation .ABS. relative to the

other operations. Using the same procedure that we used above,
let us examine standard mathematical notation. Unfortunately,
we are not helped much here, since absolute value ordinarily indi-
cates very clearly where it fits into the computation by means of
beginning and ending vertical lines, such as in the expression
X +Y Z —4-X + Y. This time we must make our own rule
without any help from standard mathematical notation, since we
do not have a terminating symbol. The question is: Where would

16 The Language of Computers

we put parentheses in the expression A * .ABS. B * C? As a gen-
eral rule, a unary operation, i.e., an operation which stands in front
of one operand, rather than between two operands, should be applied
just to that object in front of which it appears. “That object”
might be a variable, a constant, or a compound expression enclosed
in parentheses. This would imply that the example above would
be interpreted as A * .ABS.(B) * C, and if we wanted A - B - Cl,
we would write A % .ABS.(B*C). It appears, also, that the
unary operation .ABS. should be ranked higher than the binary
operations +, —, *, /, and .P., which would guarantee that .ABS.
is done as soon as possible whenever it occurs. Our ranking now
appears as follows:

.ABS.

D

*/

+, —

Continuing in this way, we would argue that the unary minus
sign, i.e., negation, should go very high on the list as well, since it is
unary and should apply to its immediate successor in the expression.
Here we meet a quirk of standard mathematical notation, which will
force us to do things slightly differently. Consider the expression
—A P.B. In mathematical notation, we would write it —A?, and
normally we would interpret this as —(A®), rather than (—A)=.
We are thus forced to let exponentiation (.P.) rank higher than
negation. We therefore end up with the ranking

.ABS.

.P.

— (unary)
*/

-+, — (binary)

All that remains is the rule for handling two operations with the
same rank. We may take our clue from the way we evaluated several
earlier expressions, suchas 6 — 4 +2 = (6 — 4) +2=2+2=4
We simply proceed from left to right. Returning now to our original
complicated expression without parentheses,

BP.X-Y+C—-D.PEF+G

Expressions 17

our rules would lead us to insert first the following parentheses:

B.P.X)—Y+C— (D.P.E)/F+G
and then
((B.P.X) —Y)+C) —~ (D.P.E)/F) + G

This is not the interpretation we wanted when we wrote it the first
time with parentheses

B.P. (X —Y) + (C — D) .P. (E/F + G)

and that is exactly why it was written as it was, with parentheses.

‘There is one detail that we must consider before leaving arithmetic
expressions. We saw in the change problem that it is sometimes
very useful to be able to compute [A/B], where A and B are integers.
What this really amounts to is the stipulation that we obtain an
integer for a quotient when we divide two integers. This suggests
that perhaps the arithmetic we do with integers should be different
from the arithmetic on nonintegers. (Actually, this arises only in
division, since the sum, difference, and product of two integers are
always again integers.) Since most computers can do additions and
subtractions faster with integers than nonintegers, we usually find
it useful, anyway, to spell out which variables have integer values
and which do not, and which constants are integers, and so on.

Let us then agree to do integer arithmetic on those variables and
constants which are recognized as integers, even to the point of
using ““truncated division,” i.e., A/B means [A/B] if A and B are
integers. But how do we recognize integer constants and variables
whose values will always be integers in our language? We shall
first stipulate that any numeric constant which contains no decimal point is
an integer. Thus, 5, 0, —3 are integers, and 3.2, 1., —1.0 are not,
even though their values may in some cases be integral. This gives
us the privilege of deciding, by using the decimal point or not,
whether a particular number should be considered an integer or not.

In the case of a variable we find that we can no longer tell whether
its values will be integers or not merely by looking at it. We shall
have to make a special descriptive statement (sometimes called a
declaration) about those variables whose values are to be considered
integers, i.e., those variables which are to be of integer mode. We

18 The Language of Computers

could write
A IS AN INTEGER, R IS AN INTEGER

and so on for each variable. The clause IS AN INTEGER should
not have to be repeated each time, however. We shall write

INTEGER A, R, D, Q50, Q25, Q10, Q5, Q1

and agree that the word INTEGER will apply to the entire list of
names.

A statement such as the INTEGER declaration we have just written
will not be executed, in the sense that a substitution statement is
executed. There is no computation resulting from a declaration;
it is only descriptive information about the program. We shall, in
fact, sometimes refer to such declarations as nonexecutable statements.
It should be understood that executable statements, such as substitution
statements, will be executed in the order in which they occur, one
statement after another; so it is important to have them in the right
order. Since declarations are not executed, they may occur any-
where. During the execution of the other statements, declarations
are simply bypassed. Actually, it sometimes happens, as it did
here, that every variable is to be of integer mode. In this case we
shall write

NORMAL MODE IS INTEGER

which will settle it once and for all.

Now for the inevitable complications. What happens if we write
B/N, where B has not been declared to be of integer mode, but N
has been so declared? The easy way to settle it would be to say
that it is illegal to write it at all. A more realistic policy (which we
shall adopt) would be to say that for this particular division opera-
tion we will treat N as noninteger. Then we get the full quotient,
without any harm being done.! Also, if we write N = B, where
N is of integer mode and B is not, then N must have an integer value,
and we shall have to interpret it as N = [B], i.e., the greatest integer

1 Warning: Many quotients can be represented only by means of an infinite num-
ber of digits; e.g., 7% = 2.33333333. . . . Since computers cannot store all these
digits, we must stop at some point, e.g., 2.3333333333. 'This introduces an error into
the computation, called roundoff error, but a discussion of such errors is beyond the
scope of this book.

Expressions 19

less than or equal to B. (We could round B, instead of just dropping
its fractional part, but it is often more convenient to avoid rounding.
Besides, one can always achieve the rounding effect by writing
N =B + .5 instead of N = B. Adding the .5 forces a carry into
the integer part of B if the fractional part of B is .5 or more. This
carry, if it occurs, together with the “greatest-integer” interpreta-
tion of the equation N = B + .5, i.e, as N = [B + .5], has the
effect of a rounding process. Note that this is not the most common
rounding procedure (which rounds to the nearest cven integer),
since 2.5 rounds to 3 rather than the nearest even integer 2. It is
one of the easiest rounding procedures to perform, however, and it is
therefore the procedure actually built into most computers.)

2.5 BOOLEAN EXPRESSIONS

I't was pointed out in Chapter 1 that we would probably want to
include in our language the ability to construct quite complicated
logical, or Boolean, expressions, i.e., expressions which may only
have the values frue or false. The smallest unit in such expressions
is the basic Boolean expression. A basic Boolean expression consists
of one of the relations =, #, <, <, >, and > preceded and fol-
lowed by any two arithmetic expressions. Examples of basic Boolean
expressions are X 4+ Y >48, A <B4+ (O — K, and X =Y.
Unfortunately, most present-day computers do not accept or recog-
nize the characters <, <, >, >, and . We shall use instead the
easily remembered names .L., .LE., .G., .GE., and .NE. for “less
than,” “less than or equal,” “greater than,” “greater than or equal,”
and “not equal,” respectively. The one remaining case is the equal
sign, which many computers do recognize. Since we are already
using the equal sign in the substitution sense, however, we might as
well recognize its appearance as a relation as something entirely
different. Corresponding to the names given to the other relations,
we now shall write .E. for the equal sign when it is used as a relation
(that is, when “equal t0” appears in a Boolean or logical expression).
The basic Boolean expressions given as examples above are now
written X + Y .GE. 48, A.L.B+ C— K, and X.E.Y. Here,
for example, X 4 Y .GE. 48 means that the values of X and Y

20 The Language of Computers

will be added, with the result being compared with 48. The expres-
sion is #rue if the sum is greater than or equal to 48, false otherwise.

Once again we have been omitting parentheses, and now we see
that the new relations, such as .GE., must also be included in the
rules which were developed in Section 2.4 to indicate the order in
which the operations and relations are to be applied in the computa-
tion. Fortunately, we need merely place them in the list which
indicated the ranking of the operations. The same general rules
may then be applied. From the example above,

X + Y .GE. 48

we see that the only meaningful way to insert parentheses is as
follows:
(X +Y).GE. 48

Any other insertion of parentheses, such as
X + (Y .GE. 48)

would lead to a meaningless expression, not just a wrong answer.

It should be clear, then, that all the relations .E., .NE., .G., .GE,,
L., and .LE. should appear in the ranking below all the arithmetic
operations. We shall consider below the ranking among the rela-
tions, i.e., the ranking of .L. with respect to .G., and so on. It
will turn out that we will not need to rank the relations relative to
each other at all.

Although basic Boolean expressions are usually enough for us to
express the logical conditions which we wish to use in our decisions,
we sometimes need to make more complicated decisions. For
example, how do we ask whether x is between 4 and 5? The usual
algebraic notation is 4 < x < 5, but this is really a compressed form
of the expression

4 <xandx <5

We see now that we need to express not only basic Boolean expressions
such as 4 < x, x < 5, and so on, but combinations of these using
the word and, which is sometimes called a connective. What happens if
we try to say that x is not between 4 and 5? It is not hard to see that
we would write

x<4orx =5

Expressions 21.

So we need the connective or, also. Are there any other connectives
which we might need? There are others which are sometimes used,
such as nof, but as long as we can use all the relations <, <, >, >,
=, and %, we can get along perfectly well with just and and or.

We may now give a general definition of a Boolean expression:

1. Basic Boolean expressions and the Boolean constants frue and
false are Boolean expressions.

2. If ® and & are already known to be Boolean expressions, then
so are (®), ® .AND. &, and ® .OR. &.

3. The only Boolean expressions are those which are generated
by (1) and (2).

The symbols .AND. and .OR. are usually written A and V by
logicians, but these symbols are not available on present-day com-
puters. Here, as in other places, we find a symbol preceded and
followed by periods. Just as in the case of .P., the periods are needed
to separate the symbol from other symbols on either side of it. ‘

The connectives .AND. and .OR. are used to combine two Boolean
expressions into a new Boolean expression with its own truth value,
i.e., its own value #rue or false. The understanding is that the truth
value of the new expression is completely determined just by the
truth values of the original expressions and the particular connective
used, and not by the meanings of the expressions involved. We
shall agree, then, that no matter what expressions ® and ® might

Table 2.1
@ ®R ®.AND.® | ®.OR. R
False False False False
False True False True
True False False True
True True True True

be, the new expression ® .AND. ® is #rue if and only if both @ and ®
have the value true, while ® .OR. ® is true if and only if either ® or ®
(or both) has the value true. These agreements are usually sum-
marized by means of Table 2.1, in which all combinations of truth
values for ® and ® are considered. Such a table is called a #ruth
table.

22 The Language of Computers

The third line of Table 2.1 says, for example, that if @ is a Boolean
expression whose truth value is #rue (such as 2 .L. 3) and ® is an
expression whose truth value is false (such as 2 + 3 .E. 4), then the
expression

2 .L.3.AND.2+4+3.E. 4

is to be assigned the truth value false, while the statement
2.L.3.0R.2+4+3.E. 4
is to be assigned the truth value frue. As another example,
(X + Y.L.3.AND. I .E. 3) .OR. X + Y .GE. 2

would be false if X = 0, Y = 0, and I = 2, but it would be true if
X=2Y=2andl=3ifX=0Y=0andIl =3;0rifX = 2,
Y=2,and I = 2.

The rules given above are enough to generate very general Boolean
expressions, and although it is not yet apparent, such logical expres-
sions are the most powerful part of any language. They provide
the capacity to make decisions, as we have already seen in the change
problem. An example which illustrates this point even more clearly
is the Social Security problem, to be considered in Chapter 4. Before
going on, however, we must again consider the rules for omitting
parentheses. In fact, every time we consider adding any new opera-
tions or relations to the language, we must immediately place them
in the ranking which we have developed. As soon as we have done
this, the general rule for missing parentheses will do the rest.

Consider the example used just above:

(X 4+Y.L.3.AND.I.E. 3) OR.X + Y .GE. 2

This expression will have as its value true or false, and it is clear that
we must determine the values of the subexpressions X + Y L. 3,
I .E.3, and X + Y .GE. 2 before being able to ask about the effect
of .AND. and .OR. . This implies that the arithmetic operations
and the relations must be applied before any logical operations.
In other words, just as the relations have been given a lower rank
than any of the arithmetic operations, we now must rank the logical
operations below the relations.

The next thing to be determined is the relative ranking of the

Expressions 23

logical operations. Strangely enough, although these operations
have been in use for many years, logicians still have not been able
to agree on a standard ranking. (This only emphasizes the state-
ment made earlier that these rankings are only agreements, and they
can be changed by an author whenever he has a good enough rea-
son.) Some authors rank .AND. and .OR. on the same line, and
others place .AND. higher than .OR.. Since we must make a
decision, let us rank .AND. higher than .OR., so that the example
used above

X+ Y.L.3.AND.I.E.3) .OR.X 4+ Y .GE. 2
really has redundant parentheses and could have been written
X+Y.L.3.AND.I.E.3.0R. X + Y.GE. 2

just as well.

It is clear from this example, also, that there must be at least one
logical operation (LAND. or .OR.) between any two relations (.E.,
.NE., .L., .LE., .G., and .GE.), and therefore we will never be in
the position of having to decide which of two relations must be applied
first. They will be applied quite separately, without any interaction
between them. It follows that we need not rank relations relative
to each other at all, and therefore we might just as well place them
all on the same line in the ranking. We have finally arrived at a
complete ranking of all our operations and relations:

.ABS.

.P.

— (unary)

*, /

+, — (binary)

E.,, NE, .L, .LE., .G., .GE.
AND.

.OR.

This ranking, together with the rule that operations of the same
rank are applied from left to right, completely specifies the meaning
of an expression in which the precedence is not determined by
parentheses. As a final illustration, the reader should verify that
none of the parentheses in the following example is redundant. In

24 The Language of Computers

other words, if any of the parentheses were taken out, the value of
the expression would be changed.

((A + B) .P. —X .L.3.0R. I/(J — K) .GE. X/Y)
AND.N.E.I — 4/((L + 1) xZ)

PROBLEMS

1. In Section 2.1 several unacceptable names of variables were listed,
e.g., 9ED, 1.5, 91, and E1 + 2. Why is each of these unacceptable accord-
ing to our definition?

2. For each of the following, decide whether it would be acceptable or
not as the name of a variable: E1, A2B3, A2.B3, 2B3, 2 * B3. Explain
your answer.

3. Which of the following would be acceptable as constants in our lan-
guage? 9ED, 1.5, 91, E1 + 2, 2B3, —91. Explain your answer.

4. Which of the following are acceptable arithmetic expressions? 3. *
B*C, 3.%.ABS.B +C, 3. x.ABS. (B*C), 3. % (.ABS.B), 3. % (((.ABS.
(B)) * C) + D. Explain your answer.

5. Using the precedence ranking which we have established, evaluate
the following expressions: 3 +4/2 .P.2+1,3 4+ 4+2.P.2+4+ 1,3 % 4 -2
P.24+1,3+44+2).P.241.

6. Determine whether the following Boolean expressions are acceptable
or unacceptable. For each acceptable Boolean expression, find the truth
value:

o ko TN
N N
QeerE
U\U'IU'IU"U"

!

&

o

CHAPTER THREE

CONDITIONAL STATEMENTS
AND ITERATION STATEMENTS

LET US SUMMARIZE the state of our language. We can now write
arithmetic and Boolean expressions, and we can construct a substi-
tution statement such as Z = X 4+ Y — 3. If we were to try to
write the algorithm given in Figure 1.1 for the change problem, how-
ever, we would immediately find two glaring defects. First of all,
even with our ability to write Boolean expressions, we have as yet
no way to examine their truth values to make decisions. Secondly,
we need a way to describe the loop process, in which d takes on a
whole sequence of values. Actually, if we can solve the first diffi-
culty, we can “get around” the second one, but only in a very clumsy
way. We will show the clumsy method below, but only to emphasize
the simplicity of the better solution which we will develop afterward.

3.1 THE SIMPLE CONDITIONAL STATEMENT

In order to make decisions we must be able to examine one or more
Boolean expressions, and we must be prepared to specify various

alternative actions to be undertaken, depending on the truth values
25

26 The Language of Computers

of the expressions we are considering. We saw such a decision in
Figure 1.1 where the value frue for the expression R = 0 (we now
write R .E. 0) led us to one action, e.g., we stopped the algorithm,
and the value false led us into another action, i.e., another trip
around the loop.

One very convenient statement we can add to our language in
order to make decisions is the simple conditional statement. Here we
specify a Boolean expression to be examined and a single statement
to be executed if the expression is true. It will be understood that
if the expression is false, we will not execute the other statement,
but skip it and go on in sequence. An example of this is the
statement

WHENEVER J .E. (J/2) #2, I =1 + 1

where I and J have been declared elsewhere to be of integer mode.
This statement represents the following decision and action: If J is
even, increase I by 1; if J is not even, do not increase I. In either
case, go on to the next statement. (It is not completely obvious,
perhaps, how we determine that J is even. Remember that if J is
an integer, division by the integer 2 is interpreted in the sense of the
greatest integer less than or equal to J/2, i.e., [J/2]. Multiplication
by 2 will give us J back again if J is even; otherwise it will give us
J - 1. For example, (144) *2 = 7 *2 = 14, but (134) *2 = 6 * 2
= 12.)

3.2 THE TRANSFER STATEMENT

We are considering here collections of statements, which, when
executed, will solve a particular problem. Such a collection of
statements is called a program (sometimes, a routine). (Figure 3.1
is an example of a program.) Occasionally, on the basis of some
decision, it will be determined that some of the statements should in
fact be skipped. Or perhaps after reaching a certain point in the
program it is determined that a section of program which occurred
earlier is to be executed again. When the normal sequence in which
statements are executed is changed, as in these cases, we refer to
the change in sequence as a fransfer, or jump, to another part of the

Conditional Statements and Iteration Statements 27

program. Thus, if we call the first executable statement in a par-
ticular program START, we may very well end the program with
the statement

TRANSFER TO START

Then, after the other statements in the program have been executed,
the execution of the transfer statement will change the sequence so
that the statement labeled START is the next to be executed.

We see now that it will also be necessary to allow the second state-
ment in a simple conditional to be a TRANSFER TO statement.
Then, on the basis of the decision in the first half of the simple con-
ditional, a transfer will or will not be made to some other part of
the program. This is a very important addition to the language,
since it enables us to determine, on the basis of the computation thus far
carried out, whether or not to change the order in which later state-
ments of the program are to be carried out. This will be seen more
clearly in Figure 3.1. Of course, in order to indicate a transfer to
another part of the program, we must be able to label the place to
which the transfer is to be made. In other words, we need a way
to attach a label such as START to a statement. Let us specify
that statement labels must have the same form as names of variables,
i.e.,, up to six letters or digits, the first of which must be a letter.
Then we can write

WHENEVER R .E. 0, TRANSFER TO FINISH

where FINISH is the label of the last statement in the program.

Below is a clumsy but correct program for the change problem,
according to the specifications we have made so far for our language.
(We do not really need a variable named d in this version since each
value of d is explicitly used.)

(In Figure 3.1 we use the knowledge we have of the algorithm
that if it ever gets to the computation of Q1 at all, then Q1 must
equal R, and R must become zero at the next step.) The END OF
PROGRAM statement must be used on all programs so that the
reader can recognize that he is seeing a complete program. As
indicated in Figure 3.1, it may be given a label (FINISH), and
transferring to it may then serve as a way to end the computation.

28 The Language of Computers

NORMAL MODE IS INTEGER

Q50 = 0

Q25 =0

Q10 = 0

Q5 =0

Qt =0

R=A

WHENEVER R .E. 0, TRANSFER TO FINISH
Q50 = R/50

R = R — 50 * Q50
WHENEVER R .E. 0, TRANSFER TO FINISH
Q25 = R/25
R =R —25%Q25
WHENEVER R .E. 0, TRANSFER TO FINISH
Q10 = R/10
R =R — 10 *Q10
WHENEVER R .E. 0, TRANSFER TO FINISH
Q5 = R/5
R=R-—-5=xQ5
WHENEVER R .E. 0, TRANSFER TO FINISH
Ql =R
FINISH END OF PROGRAM
Figure 3.1

3.3 THE ITERATION STATEMENT

The other gap we need to fill now is the need for handling loops.
By far the greatest number of computer programs that are written
contain loops of one kind or another, and we shall see examples of
several kinds of loops as we continue. For the change problem, we
already saw the need for indicating that a collection of statements
(the scope of the loop) is to be repeated again and again (i.e., iterated)
with some variable (in our case, d), taking a different value each time
from some specified list of values. We shall write this kind of itera-
tion statement as follows:

THROUGH SCOPE, FOR VALUES OF D = 50, 25, 10, 5, 1

Here SCOPE will be the label on the last statement in the scope of
the loop; i.e., after executing that statement, the entire scope is
executed again with the next value of D.

Conditional Statements and Iteration Statements 29

Unfortunately, although we are much better off with this iteration
statement than we were before without it, there is still one small part
of the flow diagram in Figure 1.1 that we have not accounted for.
When we wrote q; there, d was a subscript; that is, because we
knew the value of 4 each time around the loop, we were aware that

we were referring to separate storage locations gso, 25, - - - » g1, and
by specifying d we indicated which of these ¢’s we meant. In Figure
3.1, we referred to Q50, Q25, . . ., Q1. Although the numbers

50, 25, etc., appear as part of the name, there is no reason to tie them
to some quantity 4. In fact, there was no mention of 4 in Figure
3.1 at all. We would like now to recapture the dependence of these
quantities on d, since our entire loop will depend on the current
value of d each time around. What we really need is a way to say
that we are dealing with several quantities, all named ¢, but distin-
guished by means of a subscript 4. We shall need to specify, of
course, just what constitutes a legal subscript in our language. In
some complicated programs, subscripts may be quite complex, such
as a; ax(;—1. We should therefore not restrict the form of subscripts
unnecessarily. We can assume that subscripts will be of integer
mode, since they were intended to locate a position in storage relative
to the beginning of the set of numbers being subscripted. Let us
designate the beginning element of the set as having subscript zero.
We may then specify that any nonnegative integer expression may
qualify as a subscript. Examples would be A;, Biyj, and Aiposti—ns
provided that in each case the value of the subscript is not negative.
There is now another difficulty. It was mentioned before that
even large computers have a fixed amount of storage. In order
to allocate properly the available storage, therefore, it will be neces-
sary to specify how much is to be set aside for each subscripted
variable. Accompanying any use of subscripts would be the obliga-
tion to declare the highest subscript to be used, so that adequate
storage can be set aside for this vector. (Generally, one refers to a
string of quantities, indexed by some subscript, as a vector; we do
so here, also.) The number of quantities is referred to as the dimen-
sion of the vector. In the change problem, then, we shall refer to
Q(50), Q(25), . . . , Q(1) and make the following declaration as to
the highest subscript:
: DIMENSION Q(50)

30 The Language of Computers

[To be absolutely precise, since we shall allow the use of zero as a
subscript, when 50 is the highest subscript we actually have 51 quan-
tities in the vector, e.g., Q(0), . . . ,Q(50); so the true dimension
should be 51. It is more convenient, however, to declare the highest
subscript used and still refer to it as the dimension.] Note that the
expression in parentheses is the subscript, and it is the presence of
the parentheses that indicates that it is a subscript.

We are now in a much better position to write a program for the
change problem. The flow diagram still looks the same as in Figure
‘1.1, but now we may even set up the initialization of the Q’s as a
loop. Notice that the essential structure of the algorithm, e.g., two
loops, shows up very clearly in the language we are developing.
We shall put the mode and dimension statements last this time to
emphasize that declarations may appear anywhere in the program
(except after the END OF PROGRAM statement).

THROUGH LOOP1, FOR VALUES OF D = 50, 25, 10, 5, 1
LOOP1I QD) =0
R=A
THROUGH LOOP2, FOR VALUES OF D = 50, 25, 10, 5, 1
WHENEVER R .E. 0, TRANSFER TO FINISH
QD) = R/D
LOOP2 R =R — D = Q(D)
NORMAL MODE IS INTEGER
DIMENSION Q(50)
FINISH END OF PROGRAM

Figure 3.2

In reading this program, remember that the statement labeled
LOOP1, which is the entire scope of the first loop, will be executed
for each of the indicated values of D before the statement R = A
is executed at all.

PROBLEMS

1. Since most people make occasional errors, it is useful to predict the
behavior of the computer when an error is made. Sometimes a program
will accidentally produce the correct answers in spite of errors, but this does
not happen very often. In each of the following programs, Figure 3.2 has

Conditional Statements and Iteration Statements 31

been modified to contain an error. What computation will result in each
case?

a.
THROUGH LOOP1, FOR VALUES OF D = 50, 25, 10, 5, 1
QD) =0
LOOPI R =A
THROUGH LOOP2, FOR VALUES OF D = 50, 25, 10, 5, 1
WHENEVER R .E. 0, TRANSFER TO FINISH
QD) =R/D
LOOP2 R =R —D *Q(D)
NORMAL MODE IS INTEGER
DIMENSION Q(50)
FINISH END OF PROGRAM

b.
THROUGH LOOP1, FOR VALUES OF D = 50, 25, 10, 5, 1
LOOPL QD) =0
R=A
THROUGH LOOP2, FOR VALUES OF D = 50, 25, 10, 5, 1
WHENEVER, R .E. 0, TRANSFER TO FINISH
LOOP2 QD) = R/D
R =R —D *Q(D)
NORMAL MODE IS INTEGER
DIMENSION Q(50)
FINISH END OF PROGRAM

2. In describing the simple conditional statement in Section 3.1, we
apparently allowed any statement to follow the comma after the Boolean
expression, although we have had occasion so far to use only a transfer
statement. We also saw how a substitution statement might be used, such
as in the following:

WHENEVER I .E. K, I=1+1

which states that I is to be increased by 1 whenever it is equal to K. We
have now seen another kind of statement, however, which cannot be used
in a simple conditional, e.g., the iteration statement. Thus, we cannot
write

WHENEVER I .E. K, THROUGH LOOP2, FOR VALUES OF J =1, 2, 3

Why must we rule out this use of the iteration statement? (Hint: What
happens to the loop if the Boolean expression I .E. K is false?)

32 The Language of Computers

3. In the following sequence of statements, what is the value of Y when
the computation reaches the point indicated by the three asterisks? Answer
this question for cach of the sets of values listed below.

Y=B
WHENEVER .ABS. (B — C) .LE. A, TRANSFER TO Q
Y=Y+C

Q Y=Y+A
% ok ok
a. A=2,B=50C=6
b. A= —11,B=50C=6
¢.A=0,B=0,C=0

CHAPTER FOUR

THE SOCIAL SECURITY PROBLEM

A GREAT MANY people in the United States are affected by the federal
social security program. While those who are self-employed com-
pute their own taxes, it is usually the employer’s responsibility to
deduct an employee’s tax from his wages along with the withhold-
ing tax and perhaps other taxes. The social security tax is based
on a tax rate (to be called RATE here) and a threshold amount
(THRESH). The employee’s income is taxed at the given rate
until it reaches the threshold amount, and then there is no further
tax during the remainder of the year. Thus, if RATE = .03 and
THRESH = $4800, a man earning $6000 would be taxed $144 on
the first $4800, and that would in fact be his total social security
tax for that year. Let us suppose that this tax computation is to be
given to the computer (most likely as part of a much larger complete
payroll computation). We will assume that the employee’s total
wages up to, but not including, this week’s earnings are called
WAGES. Let this week’s earnings be called SALARY. Then a
program for the tax computation (which leaves WAGES increased,
ready for next week’s computation) might be written as in Figure 4.1.

(The digit 1 just to the left of the point at which statements are
33

34 The Language of Computers

started indicates that the line so marked is a continuation of the pre-
vious line.)

WHENEVER WAGES -- SALARY .LE. THRESH, TAX = RATE * SALARY
WHENEVER WAGES + SALARY .G. THRESH .AND.

1 THRESH .G. WAGES, TAX = RATE * (THRESH — WAGES)
WHENEVER THRESH .LE. WAGES, TAX = 0
WAGES = WAGES -+ SALARY
END OF PROGRAM

Figure 4.1

4.1 THE COMPOUND CONDITIONAL STATEMENT

Although the program in Figure 4.1 does illustrate the use of more
complicated Boolean expressions than we saw in the change problem,
it is still not a very good algorithm, in the sense that there is some
wasted computation built right into it. As it is now written, when-
ever one of the Boolean expressions is frue, we would compute TAX,
but then we would go right on to the next statement, even though
it means examining expressions which must be false (since a previous
one was frue). In this problem, as in many others, we know that
the three alternatives are mutually exclusive; so there is really no
need to test the other conditions once one of them has the value rue.
It would be useful to have a way to choose that alternative which
is true and then skip the rest of the possible alternatives.

Let us then add to our language the compound conditional. Before
we describe it, however, let us see what it will do for the social secu-
rity problem. Figure 4.2 shows the same program as in Figure 4.1,
written to use the compound conditional.

WHENEVER WAGES + SALARY .LE. THRESH
TAX = RATE * SALARY
OR WHENEVER THRESH .G. WAGES
TAX = RATE * (THRESH — WAGES)
OTHERWISE
TAX =0
END OF CONDITIONAL
WAGES = WAGES + SALARY
END OF PROGRAM

Figure 4.2

The Social Security Problem 35

(The indention of the three statements in which TAX is actually
computed is entirely for readability. Since blank spaces are ignored,
a few blanks at the front end of a statement will not affect the inter-
pretation of the statement.) From Figure 4.2 we see that the pro-
gram now has the following structure. There is a WHENEVER
statement, very much like a simple conditional, except that the
Boolean expression is not followed by a comma, nor by another
statement written on the same line. Instead, a section of program
follows immediately below the WHENEVER statement. (It is only
a one-line section of program in this case, but in more complex
problems, it could be much more complicated.) Then there is an
OR WHENEVER statement which is also followed by a section of
program. 'The initial word “OR” simply serves notice that this is
not the first of the statements in this compound conditional. There
may be several OR WHENEVER sections (or none at all) in a
compound conditional. The last section may be (but need not be)
an OTHERWISE section, and the last statement of the entire com-
pound conditional must be an END OF CONDITIONAL statement.

We must now describe how such a sequence of statements is exe-
cuted. We first evaluate the Boolean expression in the WHENEVER
statement. If it is #rue, we execute the section of program which
follows directly below it. If it is false, we skip the section of pro-
gram which follows it, and we evaluate the Boolean expression in
the first OR WHENEVER statement, and so on. The first time
we find a Boolean expression which is true, we execute its section of
program, and then skip all the remaining statements in the compound
conditional. The END OF CONDITIONAL statement serves very
conveniently to let us know where to transfer after executing one of
the sections above it. Of course, it may happen that none of the
Boolean expressions is #ue. This does not create any difficulties,
however, since then we merely skip all that part of the computation.
The OTHERWISE statement serves as a trap for any case not
covered by the preceding Boolean expressions. In other words,
OTHERWISE has exactly the same effect as OR WHENEVER
2 .L. 3 in that we always execute its section of program if no earlier
Boolean expression was true. The reader should now verify that the
program in Figure 4.2 does indeed solve the social security problem.

It is possible to see the difference between the programs in Figures

36 The Language of Computers

4.1 and 4.2 even more clearly by drawing their flow diagrams. The
diagram for Figure 4.1 is given as Figure 4.3, while the diagram for
Figure 4.2 is given as Figure 4.4.

It is interesting to observe that there is a single formula for com-
puting the social security tax; so we could have written just one

START

TAX « RS =3~
TAX «
> R+«(T-W) [~
False
y
TAX <0
y]
S=SALARY
Y T=THRESH
(stor) (stop) R=RATE
Figure 4.3 Figure 4.4

substitution statement. Here it is (with T for THRESH, S for
SALARY, and W for WAGES, for simplicity):

TAX = RATE*(S+ T — W — .ABS. S+ W — T) + .ABS.
(S+T—-W—.ABS. S+ W —) /4

The reader should verify that this formula works by trying a few sets
of values, such as T = 4800, W = 4000, and S = 200, or T = 4800,

The Social Security Problem 37

W = 4600, and S = 400. Later, when we are discussing functions
(Section 6.5), we shall sce how this formula is derived.

If we were to write a program which made use of this formula,
we would observe that there are in it some common subexpressions.
The expression S + T — W occurs in two places, and the expres-
sion S + W — T also occurs in two places. Rather than go through
the computation for each of these expressions twice, we may write
separate statements to compute them as the values of some new vari-
ables, say Z1 and Z2, and then use these in the long expression.
We would then obtain the following program.

Z1=S+T—-W

72 =S+W-T

TAX = RATE % (Z1 — .ABS. Z2 + .ABS. (Z1 — .ABS. 72))/4
W=W+S

END OF PROGRAM

We could go one step further to obtain an even better program by
noting that the compound expression Z1 — .ABS. Z2 occurs in two
places. This would lead to the following program:

Z1=S+T—-W
Z2=8S+W-T

73 = 71 — .ABS. Z2

TAX = RATE * (Z3 + .ABS. Z3)/4
W=W+S§

END OF PROGRAM

Of course, better means here fewer arithmetic operations performed, even
though we may write more statements in the program.

PROBLEMS

Be sure to draw a flow diagram to organize the algorithm before trying
to write the program. A solution to the first problem is given after Prob-
lem 4. Write your own solution before consulting the solution given there.
They will probably differ, since there are usually several ways to organize
an algorithm for a particular problem.

1. If P is the day, Q the month, and N the year of some event, then if we
compute D, where

38 The Language of Computers

D=P+2+Q+[3+(Q+1)/5]+N
+ [N/4] = [N/100] 4 [N/400] + 2

then the remainder R obtained when D is divided by 7 gives the day of the
week on which the event occurred. January and February should be con-
sidered the thirteenth and fourteenth months of the preceding year. Here
we interpret R = 0 as Saturday, R = 1 as Sunday, and so on. Write a
flow diagram and program which will produce the day of the week (as R)
for a given date. Assume that a date such as February 14, 1960, is given in
the form P = 14, Q = 2, and N = 1960 (i.c., as the actual date), and
include statements to test for January and February and adjust the data
accordingly. Why does this method work? On which day of the week did
July 4, 1776, fall?
2. The formulas for the two solutions of the quadratic equation

AX?4+BX 4+ C=0
are

X1 = (—B+ 4/B? —4AC)/2A X2 = (—B — /B = 4AC)/2A
Since we do not yet have a way to find a square root in our language, let
us just write SQRT.(Z) for the square root of Z. Write a flow diagram
and program to compute X1 and X2 from A, B, and C. If A = 0, you
cannot divide by 2A, so you had better set X1 = —C/B, X2 = 0, and seta
count of real roots, say R, to 1. (You may assume then that B £ 0.) If
there are no real roots, set X1 = X2 = R = 0. If there are two real roots,
compute them as the values of X1 and X2 and set R = 2,

3. In a certain town the water bill is (perhaps) computed as follows: If
the number of gallons used is below K|, the rate is RATE1. If the number
of gallons used is between K1 and K2, the rate is RATE1 for the first K1
gallons and RATE2 for the number of gallons above K1, and so on. Assum-
ing that there are four thresholds K1, K2, K3, and K4 and five rates RATE1,
RATE2, RATE3, RATE4, and RATES5, write a flow diagram and program
which will start with an amount of water used, called GALLON, and
compute the BILL.

4. Given the compound conditional:

WHENEVER C+ A L. 0

B=A
A=C
C=8B

END OF CONDITIONAL

* ok ok

The Social Security Problem 39

What will be the values of A, B, and C when the computation reaches the
three asterisks, if A, B, and C start with the following values:

a. A=2B=50C=6
b.A=—-11,B=50C=6
¢ A=0,B=0,C=0

A Solution to Problem 1

START

D-P+2%Q+3+(Q+1)/5+N +N/4 —N/100 + N/400 + 2

\ .
| Re-D-—(D/7)7

G

Figure 4.5

Q-12+Q

The program:

NORMAL MODE IS INTEGER
WHENEVER Q .L.3

N=N-—1

Q=12+Q
END OF CONDITIONAL
D=P+2%+Q+3*(Q+1)/5+N+4 N/4— N/100 -+ N/400 + 2
R=D— (D/7) 7
END OF PROGRAM

Note that the brackets are not needed in the program because of the trun-
cated division which is performed on integers.

CHAPTER FIVE

THE SECRET-CODE PROBLEM

WE HAVE BEEN looking at some small, but typical problems in great
detail. From this study we have been able to identify several very
important features of problems in general, and these in turn have
suggested features which belong in any language whose job it is to
express algorithms.

5.1 THE STATEMENT OF THE PROBLEM

Let us consider now the problem of decoding a secret message.
There are a great many ways to encode information so that it will
be unintelligible to anyone except the person for whom it is intended.*
A necessary condition, however, is that it be possible for that person
to be able to decode the message. This can be described by saying
that, no matter what transformation is used to produce the encoded
message, there must be an inverse transformation which can produce
the original message again. Moreover, practical considerations dic-
tate that the key be easily transmitted. (The key is the designation

! See, for example, Cryptography in an Algebraic Alphabet, by Lester S. Hill,

Amer. Math. Monthly, 32:306~312 (1929).
40

The Secret-code Problem 41

of the particular transformation used, or the designation of the inverse
transformation which is needed to decode the message.) The key
might be the name of a book containing the code, or it might be
some number that specifies a permutation of the alphabet, or it
might be any one of a number of other possible devices. We shall
use a rather simple code, just to illustrate the ideas, and afterward
mention a few of the ways in which the code could be made more
complicated.

Let us suppose that the key to this particular code is a simple per-
mutation of the alphabet. To be more specific, we must explain
exactly what alphabet means here. Our alphabet will consist of the
letters A to Z in normal order, followed by the digits 0 to 9, which
are in turn followed by the characters -+, %, and /, in that order.
The standard alphabet for this code is thus:

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 -/

(Note that the letter O has a line through it to distinguish it from
zero.) We shall assign a position number (starting with 0) to each
character in the standard alphabet, as shown in Table 5.1.

To encode a message in the code which we are going to use, we
shall specify as a key a particular permutation of the alphabet. As
an example, we shall use the key (selected at random) shown in
Table 5.1.

The encoding rule for this particular code will be as follows: Given
a message to encode, we shall assign to each character in the message
a number, called its shift. The first character will have shift 5, the
next 10, the third 15, and so on, with the nth character having a
shift of 5n. To encode any particular character in the message, take
its position number in the standard alphabet, add its shift, and look
up the key character with that sum as its position number. Blanks
will be ignored.

Consider the message:

FENCE TAKEN/PLEASE ADVISE

According to the above rule, we would encode the F as the character
4, since its position number as a character in the standard alphabet
is 5, its shift is 5, and the key character with position number 10 is 4.

42

The Language of Computers

Table 5.1

Standard
alphabet

Position
number

Key
alphabet

A

N % L0 N URE LNRON KHS<a RuROoR CZZOR “~IQTW HUQW

o

0N AN =

(=]

e e e s
BAON = O

ek ek b b
AoRe TN B« N

NN NN
AL =O

BN NN
K=l BN o S, |

LWL LW
LU= O

W W LW
[o BN I NS

FUNNZ HSOZRI BBL NS ke 2900 »

NV oW OO HemO

The Secret-code Problem 43

Similarly, the first E in the message would be encoded as an E, while
the second E in the message would be encoded as the character L,
since its shift amount is 25.

We soon find, however, that the sum of the position number and
the shift exceeds 38, and we need to extend the encoding rule to
cover this situation. The simplest way to handle this is to assume
that after the last character of the key alphabet we start over again
with the first character. Thus, the N in TAKEN has position num-
ber 13 and shift 50, so that its key character would have position
number 63. This is position 24 in the second listing of the key
alphabet, so that N is encoded as the character 8. In general,
although the key-character position numbers will become very large,
all we need to do is subtract out complete key alphabets, i.e., sub-
tract 39s, until we have left a number between 0 and 38, and then
use that as the key-character position number. The reader should
verify before going on that the entire message then encodes as follows:

4EI2L 43748 H6936 W7-+WM 37G

(Standard cryptographic procedure is to write encoded characters in
groups of five so that the spacing will be meaningless.) It should
be noted that a simpler procedure than repeated subtraction of 39
is dividing by 39 and retaining the remainder. Thus, when we sub-
tracted 39 from 63 in the example above, we could have divided 63
by 39 and used the remainder 24. We shall return to this point later.

In order to draw a flow diagram for the encoding procedure,
we shall need some notation. Let us suppose that the original mes-
sage contains N characters and is stored one character per com-

puter location as LETTER;, LETTER,, . .., LETTERy, and
the standard alphabet consists of the characters stored as STAND,,
STANDy, . . ., STANDss. Thus STAND, = A, STAND, = B,

and so on. We shall refer to the subscript I of STAND; as its posi-
tion number so that A has position number 0, B has position number 1,
and so on. The key alphabet will consist of the characters KEY,,
KEY;, . . ., KEYy, so that in our example key, KEY, = A,
KEY: = D, and so on. Here, also, we shall refer to the subscript
J of KEY; as its position number so that, for example, D has position
number 1 here. We shall refer to the current shift amount as S, so

44 The Language of Computers

that at the beginning S = 5. Finally, let us store the encoded mes-
sage as the characters

CODE;, CODE,, . . . , CODEy

5.2 ANOTHER ITERATION STATEMENT

If we now begin to plan the flow diagram, we soon see the need for
a new kind of iteration statement. We need to be able tosay: “When
we consider the message characters LETTER;, LETTER;, and so
on, we shall want to refer to LETTERx with K starting at 1 and
increasing by 1 until it exceeds N, the number of characters in the
message. Moreover, for each value of K, i.c., for each character in
turn, we shall want to do the following block of computation.” This
is very similar to the iteration statement used in the change problem,

THROUGH SCOPE, FOR VALUES OF D = 50, 25, 10, 5, 1

except that now we do not intend to give a definite list of values for
K. We wish to give a starting value (K = 1), a modification rule
(K = K + 1), and a termination condition (K > N). We cannot,
in fact, list explicitly all the values to be used for K, since N will vary
from one message to another, and a program written for this encod-
ing procedure should be expected to work for any message. Since
the modification of the iteration variable K generally takes the form
of adding something to K (i.e., incrementing K), we shall specify,
along with an initial value for K, the amount to be added each time
the scope is executed. This amount could be the value of some.
expression, and it could be negative as well. Let LOOP be the
label on the last statement of the scope, i.e., the last statement in the
block of statements to be executed for each value of K. We would
now write :

THROUGH LOOP, FOR K =1, 1, K.G.N

(Note that we may distinguish this kind of iteration statement from-
the explicit list kind by the omission of the words VALUES OF.)
This statement is to be interpreted as: Perform the computation
written from this point in the program through the statement labeled

The Secret-code Problem 45

LOOP, starting with K = 1. Each time, before carrying out the
computation, test to see if the termination condition (K .G.N) is
satisfied. If it is satisfied, proceed immediately from the first state-
ment after LOOP. If the termination condition is not satisfied,

execute the scope and increment K by 1.
A convenient way to represent such iteration situations in a flow

diagram is to use the iteration box, shown in Figure 5.1.

In Figure 5.1 we enter the iteration box at the initialization (K «—1).
We then proceed across the upper diagonal line to test the termina-
tion condition (K > N). If this condition were true, it could happen
that the scope (i.e., the computation within the loop) would not be
executed at all. (We saw a situation similar to this in Figure 1.1

—— e —{ Ke1 Tr‘u_e» — ——
K>N |~
- False S
KK “‘“"“*L___"f’f_J
Figure 5.1

for the change problem, when A = 0.) In the particular problem
shown in Figure 5.1 the termination condition would not be #rue
(unless N = 0); so we would execute the scope and return to the
modification section of the iteration box (K «— K -+ 1), after which
we would cross the lower diagonal to test the termination condition
again, and so on.

We are now in a position to construct a flow diagram for the
encoding problem. In fact, Figures 5.2¢ and 5.256 show two differ-
ent diagrams. The strategy is the same in the two diagrams, but
Figure 5.2a is somewhat easier to understand. (Figure 5.25 illustrates
a more concise way to express the same algorithm.) In Figure 5.2q,
then, we start by initializing the shift S to 5. Each time we finish
encoding a character and are about to move to the next character,
we shall increase S by 5, in accordance with our definition of the
amount of shift to be associated with each character. After the
initialization of S, we move into a large iteration, so large, in fact,
that its scope includes the rest of the program. It is an iteration on

46 The Language of Computers

=~
1
f
®
z
@]
L]

K>N

K-K+1 False

'

P~I+8S

\
QP -39%(P/39)

\
CODE ~KEY,

\
S~S8+5

Y

S = shift

STAND; = standard alphabet character with position number 1
LETTERk = Kth character of message to be encoded

P = position number of desired character in key alphabet (before reduction)
Q = reduced position number of desired character in key alphabet
CODEg = Kith character of encoded message

KEYq = character selected from key alphabet according to position num-

ber Q
Figure 5.2a

The Secret-code Problem 47

)
S«5
—f K1 2 stop
K>N
KeK+1 Fals; ;
y
P<I+S
y
CODEg~KEYp. 39+(P/39)
S<S+5
< Y
S = shift

STAND; = standard alphabet character with position number I
LETTERx = Kth character of message to be encoded

P = position number of desired character in key alphabet
CODEg = Kth character of encoded message

KEYp_soxp/309p = character selected from key alphabet

Figure 5.2b

the value of K, in exactly the form described above in the discussion
of Figure 5.1. In this algorithm, K will act as a “pointer,” indicat-
ing in each iteration which character in the message is currently
being encoded. In order to do this, K starts with the value 1 R
increases by 1 after each iteration, and causes the loop to be termi-
nated when it finally exceeds N,

48 The Language of Computers

The computation within the loop accomplishes the encoding of
the current (Kth) character of the message. In fact, at the end of
the loop we see the substitution

CODEx «— KEYq

which puts a suitably chosen character from the key alphabet into
the Kth position in the region in which the encoded message is
stored. This is followed by the substitution

S«—S+5

which increases S, as we indicated above. The earlier part of the
scope of the iteration has the job of determining the appropriate
character in the key alphabet or, more exactly, determining its posi-
tion number. 'The first step is to find out where in the standard alpha-
bet the current message character LETTERx occurs. To do this,
we shall compare LETTER with each of the letters in the standard
alphabet and ask of each one whether it is the same character as
LETTERgk. In Figure 5.2a there is another “pointer” (the vari-
able I), which will move us along the standard alphabet. We start
with T = 0 and ask if LETTERg is the same as STAND; (in this
case STAND,, which is A). If the answer is negative, we increase
I by 1 and ask the question about STAND;, and so on. Eventually
we will come to the standard alphabet character which is the same
as LETTER, and the answer to the question will be in the affirm-
ative. At this time, the current value of I will be the position num-
ber of the character STAND); just identified as the one that matches
LETTERx. We may now compute P, the position number of the
corresponding key character, by adding the current value of S to
the standard position number I. This is done in the substitution

P—I+S

Since we have already seen that P may exceed 39 and must be
reduced to a value, say Q, which is between 0 and 38, the substitution

Q «— P — 39 % (P/39)

is included. Note that P/39 is an integer, since we are using integer
division, and indicates how many multiples of 39 are contained in P.
In other words, since 10949 = 2, we see that there are two 39s (or

The Secret-code Problem 49

78) in 100. If we subtract 78 from 100, we have a measure of how
far we are into the next 39. In terms of our alphabets, P/39 indi-
cates how many complete alphabets can be subtracted out. Multi-
plying P/39 by 39, then, gives us the actual number of characters
in that many alphabets, and if we subtract 39 * (P/39) from P, we
have Q, the number between 0 and 38 which represents the extent
to which we have gone into the next alphabet. We may then use
Q to select the key character. Note that if P is already between 0
and 38, we have P/39 = 0, so that nothing is actually subtracted
from P. In this case, it turns out that Q = P.

To illustrate the algorithm in Figure 5.24 by using our previous
example starting with the word FENCE, we first set S = 5 and
K = 1. In other words, we are now considering the first character
of the message, LETTER, == F. The inner loop on I now searches
out the position number of F as a character in the standard alpha-
bet. Thus, when I =0, LETTER;.E. STAND, is false, since
STAND, = A, so that I is increased to 1. Continuing in this way,
we find that LETTER; .E. STAND; is true, and we leave the inner
loop with I = 5. Since 8 =5, we compute P =545 = 10,
Q =10 — 39 * (1%,) = 10 — 0 = 10, and CODE, = KEY,, = 4.
Then 8 is increased to 10, and we return to the iteration box which
increases K by 1, thus effectively moving us to the next message
character LETTER, = E. This time we leave the inner loop
with T =4, so that P = 4 + 10 = 14, Q=14 — 39 x (144,) =
14 — 0 = 14, and CODE, == KEY, = E.

The substitution Q = P - 39 % (P/39) illustrates a very conven-
ient formula for finding a remainder, provided P is an integer and
the division is the truncated integer division which was introduced
in the discussion of the change problem. This remainder formula
is in fact very similar to the formula

R=R—d-q

used in the change problem, since the statement g; = [R/d] becomes
qa = R/d if integer division is used, and substituting this expression
for ¢, in the formula for R, we have

R =R — d- (R/d)

which is now in exactly the same form as the formula used above

50 The Language of Computers

for the key-character position number. Since 39 * (P/39) is the
largest multiple of 39 less than or equal to P, we sce that P— 39 %
(P/39) is the remainder.

As a further example, if P = 63, as in our previous illustration,
we have

P — 39 % (P/39) = 63 — 39 * (63/39)

= 63 — 39 % (1)
=63 — 39
= 24

Also, if P = 128, we would have
P — 39 % (P/39) = 128 — 39 = (128/39)

= 128 — 39 * (3)
= 128 — 117
=11

In this case, if the character 2 were in the twentieth message position
(shift = 100), it would be encoded as 7. 'The program for the encod-
ing problem corresponding to the diagram in Figure 5.24 is given
in Figure 5.3a.

NORMAL MODE IS INTEGER

S=5
THROUGH LOOP1, FOR K = 1,1,K.G.N
=0
LOOP2 WHENEVER LETTER(K) .E. STAND(I), TRANSFER TO FOUND
I=1+1

TRANSFER TO LOOP2
FOUND P=1+45
Q = P — 39 = (P/39)
CODE(K) = KEY(Q)
LOOPI S=S+5
DIMENSION STAND(38), KEY(38), LETTER(1000), CODE(1000)
END OF PROGRAM

Figure 5.3a

The DIMENSION statement in this program serves for each of the
vectors in the list. Since we do not know how large N might be,
i.e., how long the messages will be, we shall arbitrarily set an upper
bound of 1000 characters per message.

The Secret-code Problem 51

We now observe that the search of the standard alphabet inside
the scope of the K loop really has the complete structure of a loop,
except that it does not have any scope. The variable I is initialized
and it is modified, and there is a termination condition. This shows
that it is quite reasonable to have loops in which there is no scope,
i.e., no actual computation within the loop. The task that the loop
is supposed to accomplish is performed right in the termination condi-
tion. It would be convenient to use the available iteration state-
ment for such a loop as well. All we have to do in the program is
put the label which indicates the end of the scope right on the itera-

NORMAL MODE IS INTEGER
S=25
THROUGH LOOP1, FOR K =1,1,K.G.N
LOOP2 THROUGH LOOP2, FOR I = 0, 1, LETTER(K) .E. STAND(I)
P=T148
CODE(K) = KEY(P — 39 % (P/39))
LOOP1 S=S+45
DIMENSION STAND(38), KEY(38), LETTER(1000), CODE(1000)
END OF PROGRAM

Figure 5.3b

tion statement itself. This is illustrated in the flow diagram of Fig-
ure 5.26 and in the program of Figure 5.35. One other simplifica-
tion that is made in the more concise diagram and program is that
we do not compute Q in one statement and use it in another. The
expression P — 39 % (P/39) is used directly as the subscript of KEY.

5.3 THE DECODING PROBLEM

Let us consider now the inverse transformation, i.e., the decoding of
the secret message. Using the example of the preceding sections

FENCE TAKEN/PLEASE ADVISE
which was encoded as
4EI2L 43748 H6936 W74+WM 37G

we now need a procedure which will start with the first 4 and pro-

52 The Language of Computers

duce F, then produce an E from the E, an N from the I, and so on.
The obvious solution is to reverse whatever was done in the encod-
ing process. If there were no shift involved, we would simply find
the coded character in the key alphabet and read off the correspond-
ing standard alphabet character. Thus, without any shifting, the
original message above would be encoded as

PMBGM TA4MB /HIMA QMAJZ YQM

and the decoding process is obvious.

The effect of the shift is to move us down the list before reading
off the corresponding key character. To decode, then, we need to
reverse the direction of shift. For example, the first character 4 in
the encoded message has position number 10 as a character in the
key alphabet. Subtracting the shift amount 5 yields 5, the position
number of F in the standard alphabet. This is a very simple pro-
cedure, except that we soon encounter negative position numbers
after subtracting larger shift amounts. Again we may move through
successive listings of the standard alphabet by adding 39 as many
times as necessary to produce 2 number between 0 and 38. Thus,
for the sixth character 4 in the encoded message, we have key posi-
tion number 10, and shift amount 30, leaving a standard position
number of 10 — 30 = —20. If we add 39, we obtain the correct
standard position number 19 for the character T, from which it came
originally. As another example, the character G in the twenty-third
position of the encoded message has key position number 2 and shift
115, leaving a standard position number of —113. Instead of just
adding 39 several times, let us again use the earlier formula

P — 39 % (P/39)

and let P = —113. Weobtain —113 — 39 x (—113/39) = —113 —
39%(—3) = —113+1 17 = 4, whichis the standard position number
for the character E. It is clear then that we may use this formula
even for negative position numbers.

It is now a simple matter to write the program for decoding mes-
sages. We need assume only that the message to be decoded is
stored as LETTER,, . . ., LETTERY, that the decoded message
which results will be in CODEs, . . ., CODEy, and that the stand-

The Secret-code Problem 53

ard alphabet is stored as KEY,, . .., KEYs. Then the only
change necessary in the program we already have in Figure 5.35 is
that the amount of shift starts with the value —5, and it decreases by
5 for each character. Thus, the source message (the message to be
encoded or decoded) always goes into the vector LETTER, and its
alphabet goes to STAND. The alphabet to which we are translat-
ing is in KEY, and the message which is produced is in CODE. Let
us suppose that the signal as to whether we are encoding or decoding
is the value of a variable named SIGNAL, i.e., SIGNAL = 1 if we
are encoding and SIGNAL = —1 if we are decoding. Then Fig-
ure 5.4 shows one program which will do the entire job. This pro-
gram should be compared with Figure 5.35.

NORMAL MODE IS INTEGER
S = 5 % SIGNAL
THROUGH LOOP1, FOR K =1, 1, K .G. N ’
LOOP2 THROUGH LOOP2, FOR I = 0, 1, LETTER(K) .E. STAND(I)
P=I+4S
CODE(K) = KEY(P — 39 % (P/39))
LOOP1 S = S+ 5 * SIGNAL :
DIMENSION STAND(38), KEY(38), LETTER(1000), CODE(1000)
END OF PROGRAM

Figure 5.4

5.4 CONGRUENCE

It is interesting to see the mathematics which was really involved in
the encoding-decoding problem. We needed to substitute for an
integer which was too large (positive or negative) a number between
0 and 38, and this small positive integer was to differ from the orig-
inal integer by a multiple of 39. There are obviously many integers
differing from some given integer by a multiple of 39, but we needed
a particular one, e.g., the one between 0 and 38. If we put into one
collection all integers differing from 0 by a multiple of 39 (e.g., 0,
39, 78, —39, etc.) and into another collection all integers differing
from 1 by a multiple of 39 (e.g., 1, 40, 79, —38, etc.), and so on, we
obtain 39 different, nonoverlapping collections. Moreover, every

54 The Language of Computers

integer is in one of these collections. Each collection will contain
exactly one integer between 0 and 38, and we shall call this integer
the representative of the collection.
An interesting property of these collections is that the difference

a — b of any two integers e and b in the same collection will be a
multiple of 39. To see why this is true, let us suppose that the col-
lection in question has as its representative the integer k(0 <k < 38).
Then

a=k-+ 39

b=Fk+ 39

for some integers r and 5. Then
a—b= (k4 39) — (k+ 39) = 39(r — s)

so that @ — b is in fact a multiple of 39. It is also true that if @ and
¢ are in different collections, then a and ¢ cannot differ by a multiple
of 39. For, suppose the representative of the collection containing
cisk (0 < ¥ < 38), with &’ = k. Then, for some integer ¢,

a =k -+ 39
c =k 4+ 3%
a—c=(k—FK)+390—1)

If a — ¢ were a multiple of 39, £ — £’ would have to be a multiple
of 39 also. But k — &’ must satisfy the inequality

0<|k—Kl <38

sok — k' = 0 and k = K/, a contradiction.

We shall say that a is congruent to b modulo 39 if ¢ and b differ by
a multiple of 39. In terms of the collections of integers just described,
we see that we have simply put into each collection all those integers
which are congruent to each other. The usual way to write con-
gruence of two numbers is

a = b mod 39

where the three lines = are intended to suggest the equals sign. In
many ways, congruence is very much like equality (although it is
obviously not the same as equality). For example, if a = b mod 39
and ¢ = d mod 39, then (a + ¢) = (b + d) mod 39. To see how

The Secret-code Problem 55

an assertion of this kind may be argued, we translate the congruence
statement ¢ = » mod 39 into the statement that for some integer £,
a — b = 39, ie., that a — b is a multiple of 39.- Similarly, for some
integer &k, ¢ —d=239%". Then (a+4¢) — (b+d) = (a —b) +
(¢ — d) = 3% + 39%" = 39(k + k'), so that (a+¢) — (b+d) is a
multiple of 39, and therefore (a +¢) = (b + d) mod 39. Other
properties of congruence may be argued in a similar way.

Before we go any further, it should be pointed out that use of the
number 39 as the modulus (or base) of the congruence was a con-
venient step from the encoding problem. Any other integer could
have served as well. Thus, we could talk about congruence modulo
7, for example, and state that 24 = 10 mod 7. With this under-
standing, we shall continue to use 39 as the modulus, but the reader
should be continually checking that no special properties of the num-
ber 39 are used.

In the discussion of the encoding problem we noted that, instead
of subtracting multiples of 39 from a large positive integer to find its
representative between 0 and 38, one could divide by 39 and use
the remainder as the representative. To see that this will always
yield the correct number as the representative, we may argue as fol-
lows: Suppose a is a positive integer and we wish to find its represent-
ative. If we divide a by 39, we obtain a quotient ¢ and a remainder
r (0 <r £38). Thus, a =39 + r. Since a —r = 39¢, we see
that ¢ and r are in the same collection. But r satisfies the condition
0 < r £ 38; so it must be the representative.

5.5 MORE COMPLEX CODES—RANDOM NUMBERS

There are, of course, many devices which may be used to make it
harder to break a code (i.e., discover the decoding transformation).
Here we shall simply point out some of the directions in which one
might go to achieve this desired complexity. It is very important
to be sure that each device used has its inverse transformation. A
code that could not be translated by anyone would be worse than
useless.

We shall assume here that a source of random numbers is avail-
able. Not completely random, however, since the inverse transfor-

56 The Language of Computers

mation which will be used for decoding it will undoubtedly need to
use the same numbers in some inverse way, as the shift amount was
used earlier. We need, then, numbers which have as much built-in
randomness as possible, but which can be generated in a predictable
way by some rule. (One might have several rules and make the
choice among them part of the key which describes the decoding
transformation.) Numbers which are random in this sense are
usually called pseudorandom numbers. We shall discuss the generat-
ing rules in the next chapter. Let us agree to use the term random
to mean pseudorandom, unless otherwise specified.

One of the ways in which random numbers could have been used
to complicate the code is to make the amount of shift random. There
is one difficulty here, however. How wide a range of shifts should
we allow? What about a shift of 3.75? It is clear that we must be

0 Yo 1 0 Yo 1
T T U ~
/ \ ! AN NN ~
VA \\ \ ! ’I : VNN N S
VAR A I T U [T AU N NN N
2NV A B R U Do U NN NN
/ [v\] VLN N N ~o
b ¥ ¥ v ¥ ¥ N Ly ¥ NN N TN N
- 500 0 +500 a atd b
2
(@) ®)
Figure 5.5

able to control these random numbers, and while still allowing ran-
dom variation, we must somehow interpret this variation in terms
of our needs. One very basic decision to be made is the range over
which these numbers should occur. If we were simulating the
economy of the entire country on a computer and wished to include
some variation in the amount of income tax to be collected, we
might wish for a variation which represented millions of dollars. In
our encoding problem, on the other hand, we need various shift
amounts, probably ranging from —500 to +500. Because these
needs are unpredictable, the usual methods of generating random
numbers produce numbers between 0 and 1. The user then trans-
forms these numbers to suit himself.

Suppose we have a source of random numbers between 0 and 1,
and we need for our application numbers ranging from —500 to
+500. The following simple formula, inspired by the transforma-

The Secret-code Problem 57

tion illustrated in Figure 5.5a, will change any random number x
between 0 and 1 into a number y between — 500 and -+500, and the
distribution of #’s over the range 0 to 1 will be mirrored in the dis-
tribution of y’s over the range — 500 to 500:

y = 1000x — 500

Thus, when x = 0,y = —500 and when x = 1,y = +500. Assug-
gested by Figure 5.5, a more general formula may be obtained
which will transform the range 0 to 1 into the range a to b:

y=(b—ax+a

[Those who know some analytic geometry may verify that this is the
equation of the line passing through the points (0,z) and (1,6). If

n
5o
33
L

Number of me
83
1] T

<
T

|
| .

1

|

/ |
!

A

|

L 1 Il

51 6" 5’ 10!'_ 61 2”
Height

Figure 5.6

a curve other than a line had been used, the distribution of y’s would
be related to the distribution of the #’s in a much more complicated
way than we have here. Another interpretation of this transforma-
tion is that we are simultaneously changing the scale by multiplying
by b — a and shifting the origin by adding a.]

There is still another direction in which our control of the random
numbers might go. Many physical phenomena which exhibit ran-
domness still have the property that the values near the average, or
mean, value are much more common than other values. This is
true, for example, if we measure the height of various men in some
community. Most of the men might be in the range 5 ft 6 in. to 6 ft
2 in., but there will be some men outside this range. One of the
distributions which has this property is the normal distribution, shown
in Figure 5.6 and labeled as if men’s heights were being shown.

58 The Language of Computers

On the other hand, if we watch the
rain fall on an exposed square of side-
walk, the distribution of drops along the
length of the square would not be nor-
mal, in the sense of the preceding par-

Figure 5.7 agraph. It would be quite uniform in
that any position would be as likely to
receive the same amount of rain as any other position. "The uniform
distribution is shown in Figure 5.7. There are many other distri-
butions, as well. Two other types are shown in Figure 5.8a and b.
The first distribution (Figure 5.8a) might be the interest expressed
in dolls by boys of various ages. The second (Figure 5.86) might
be the interest expressed in girls by boys of various ages. The user
of a source of random numbers would want to specify the kind of
distribution of the numbers he would be receiving, e.g., normal,
uniform, etc.

Let us assume for the encoding problem that we have a source of
uniformly distributed numbers. We have already mentioned the pos-
sible use of randomly generated amounts of shift in this problem.
We might wish to add to this the complication of a random permu-
tation of either the key alphabet or the standard alphabet. Let us
go so far as to make even the choice of which alphabet to permute a
randomly determined choice. Here we see the need for interpreting
a number between 0 and 1 as a binary switch, i.e., we want the number
to point toward one of two alphabets. If we want to make either
alphabet as likely to be chosen as the other, we could say that when-
ever the number is less than .5, it means the key alphabet; otherwise
it means the standard alphabet. If we wished to force the key alpha-
bet to be chosen three times as often, for some reason, we could

rZ'I.234:l)678 l24éél\')lél;lﬁ‘l
(@) ®
Figure 5.8

o - ——

The Secret-code Problem 59

specify that any number less than .75 means the key alphabet, any
number greater than or equal to .75 means the standard alphabet.
Even the ratio involved here (3:1) could be randomly changed each
time. It is obviously not hard to find ways to complicate codes.
Unfortunately, some of these methods become time-consuming for
human beings. A computer can do this kind of routine work very
well, however, and computers are, in fact, being used for such
problems.

What about the question raised earlier of a shift of 3.75? 1In many
situations we clearly need randomly generated infegers. Suppose
we wish to obtain integers between 0 and 1000. A simple device,
using random numbers between 0 and 1, is to use the greatest integer
function which we have already seen:

y = [1000x]

When x = 0,y = 0, when x = 1, y = 1000, so that this transforma-
tion does produce integers in the desired range. The graph of this
transformation is shown in Figure 5.9. The reader should verify that

y
1000 [~ -
- !
0 1 x

Figure 5.9

the following formula will produce randomly generated integers in the
range — 500 to -+ 500.

y = [1000x] — 500

PROBLEMS

1. In Problem 2, Chapter 4, we wrote SQRT.(Z) for the square root
of Z. Let us now write RAND.(0) for a uniformly distributed random num-
ber between 0 and 1. In other words, every time we execute RAND.(0)

60 The Language of Computers

we obtain a new random number. Thus, a program which contains the
statements

Q = Q 4+ RAND.(0)

R = R — RAND.(0)

would expect to have one random number added to Q and a different ran-
dom number subtracted from R. [You may assume that each time the
program is executed from the beginning, the sequence of numbers obtained
by using RAND.(0) is the same.] Now write a program which builds some
additional complexity into the encoding-decoding program shown in Figure
5.4,

2. Write a section of a program (presumably to be embedded in a larger '
program) which will determine whether two integers X and Y are congruent
modulo 39 or not. Better still, write it to determine whether two numbers -
are congruent modulo M or not, for any positive integer M. What would
happen here if M = 0?

3. At the end of Chapter 3 is an exercise which considers the effect on the
computation of an error in the program. Now let us examine the corre-
sponding problem for an error in the flow diagram. What computation
would result in each of the following cases:

a. In Figure 5.24, the arrow coming out of the box containing the sub-
stitution :

S«<—8+5

goes into the wrong iteration box; i.e., it enters the I iteration at the point
I<—T1+41
instead of the K iteration at the point
K—K+1

b. In Figure 4.4, cach of the arrows marked True is incorrectly marked
False, and each of the arrows marked False is incorrectly marked True.

c. In Figure 1.1, the arrow from the bottom of the diagram back up into
the earlier part of the diagram enters just below the box containing

R=0
instead of just above it.

CHAPTER SIX

MONTE CARLO METHODS

6.1 COMPUTING AN AMOUNT OF WORK

IN THE PRECEDING chapter, we noted that there were several methods
of generating pseudorandom numbers, and we saw one possible appli-
cation of random numbers in making the decoding of messages more
difficult. Much more common, however, is the use of random num-
bers to build into an algorithm some definite probability of the occur-
rence of an event, thus allowing a great deal of very powerful and
interesting mathematics to be used. (Methods based on the use of
random numbers and probability in this way are called Monte Carlo
methods, for obvious reasons.) We shall illustrate this by studying in
some detail a simple physical problem, e.g., the calculation of the
amount of work done in applying a known (but not necessarily con-
stant) force to some object along a path.

We know from elementary physics that the work done in pushing
an object a distance S with a constant force F is the product F « S,
If we plot on a graph the force f(x) as a function of the distance x,
we see (Figure 6.1) that the work in this case is represented as the
area within the rectangle, since the dimensions of the rectangle are
F X S. If the force is not constant, but varies with the distance x,
: 61

62 The Language of Computers

f f
f=F &

Figure 6.1 Figure 6.2

we may still plot the force function, but it will not produce a rectangle,
i.e., it may look something like Figure 6.2. Here, too, however, the
work may be interpreted as being the area under the curve f(x). The
problem now centers on how one can compute the area, when the
function f is known, but perhaps complicated.

One approach, familiar to those who know some calculus, is to
approximate the area in question by rectangles or trapezoids. Thus,
in Figure 6.3, we see the use of two trapezoids. The area of the
trapezoids will be a fair approximation to the area under the curve.
If we subdivide the horizontal axis even more finely, as in Figure
6.4, we may even improve the approximation. Since the area of a
trapezoid is computed by multiplying the altitude by the average of
the bases, we see that the area of the trapezoid from x; to s, for
example, is

Azs = W[(f(x2) + f(x3))(xs — x2)

[Here the altitude is x3 — x2 and the lengths of the bases are f(x2)
and f(xs), respectively.] We may express the total area (interpreted
as work, in this problem) as

A = Y[(flxo) + fx))(x1 — x0) + =+ + + (fx3) + f(x4)) (xa — x3)]

This may be simplified somewhat by assuming that the points xo,

Figure 6.3 Figure 6.4

Monte Carlo Methods 63

*1, . . ., X4 are equally spaced, so that x;;1 — x; = % for some fixed
h. Then we have

A= 1[(f(xo) + f))h 4 -+ 4 (Flxs) + f(x0))A)]
= JeAl(f(x0) & f(x1)) + (f(r) + f(x2)) + * + 4 (F(xs) + f(xa))]
= 2hlf(x0) + 2f(x1) + 2f(x2) + 2f(x3) + f(x)]
In general, if we have n 4+ 1 equally spaced points xo, . . . , X, we
have

A = 3H[f(s0) + 2 + 2 + * -+ + 2fCe) + fe)]

"This is called the trapezoidal rule, and if 4 is small and the function f
not too wild, this rule will give quite a good approximation to the
area. (There are other formulas for numerical integration! which
furnish better approximations but which sometimes require more
computation. These may be found in any book on numerical
analysis. ?)

We shall consider now a quite different method, based on the use
of uniformly distributed random numbers (see Chapter 5). Let us
construct a rectangle large enough to contain the area we wish to
measure. The rectangle can easily be constructed by drawing a
horizontal line of height M, where M is some number greater than
or equal to the maximum value of the function /. (We shall assume
that f has a maximum value.) Then the area which we wish to
measure is less than or equal to the area M * S of the rectangle.
Now we shall assume that we can obtain two (uniformly distributed)
random numbers from the interval from 0 to 1, and by suitable trans-
formations (as outlined in Chapter 5), we may arrange it so the first
number will be uniformly distributed over the interval 0 to S and
the second over the interval 0 to M. (It
is very easy to slip into calling a single f
number “uniformly distributed.” This Mf|——m—

is incorrect, since this is a property that f®) E
only collections of numbers can enjoy. ' \|
+ Although we may occasionally use the 0 S
phrase “uniformly distributed number,” Figure 6.5

! Computation of the area under a curve is called integration in calculus.
?For example, see “Numerical Methods for Science and Engineering,” by R. G.
Stanton, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1961.

64 The Language of Computers

it should always be understood to mean “a number drawn from
a uniformly distributed collection.” Similar remarks hold for
normally distributed collections.) Taking these numbers as pairs of
coordinates, then, we now have a uniformly distributed collection
of points of the rectangle. Using the notation suggested in Problem
1, Chapter 5, we could write statements for these coordinates as
follows:

X = S %+ RAND.(0)

Y = M * RAND.(0)

We shall call a point chosen randomly in this way a success if it
falls under the curve f(x) and a failure if it falls outside the area of
interest to us. (It must always fall in the rectangle, however.) We
then observe that the ratio of successes to the total number of points
generated will be approximately the same as the ratio of the desired
area to the area of the entire rectangle. In other words, if we try
N points and Ng of these are successes, we have

Ns A
N ~ M-S

where A is the desired area, and therefore
Ns-M-S
A= —N
(The symbol “=~" is used instead of the equal sign to remind us that
this is an approximation.) It can be shown, using straightforward
mathematics, that the approximation gets better and better as the
number of points gets very large. It is clear now why computers
can be used to advantage here and, in fact, why such methods were
rarely used before the advent of the computer.

When we plan to write a program for some particular force func-
tion, say f(x) = 6x® + 5x* + x + 7, we should first observe that
there is an ecasy way to test whether or not a point (x0,y0) s in the
area under the curve. We need test only whether or not yo is less
than the height f(x,) of the curve at xo, i.e., whether yo < f(xo) =
6x0% + 5x0% + xo + 7. Figure 6.6 exhibits a program for the prob-
lem we have been considering. Here we have written NS for Ng,
the number of successes. In the loop, which starts with I = 1 and
increments I by 1 each time until I exceeds N, random coordinates

Monte Carlo Methods 65

X and Y are computed, scaled, and tested against the values of the
function. Whenever a success occurs [i.e., Y < f(X)], NS is in-
creased by 1; whenever there is a failure, NS is not increased, and
the loop is completed. After N such tests, the iteration ends, and
the area A is computed.

NS = 0
THROUGH LOOP, FOR I =1, 1, I.G.N
X = S * RAND.(0)
Y = M * RAND.(0)
LOOP WHENEVER Y .LE. ((6. *X 4+ 5) *X + 1) X 4+ 7., NS = NS + 1
A = NS *M %S/N
INTEGER NS, N, I
END OF PROGRAM

Figure 6.6

Note that in the statement labeled LOOP we wrote the polynomial
6x% + 5x2 4+ x - 7 in a form called nested multiplication. In this form
both computation time and accuracy are improved by using fewer
multiplications.

6.2 EXTERNAL FUNCTIONS

Now that we have written a program which computes the area
under the curve representing the particular function f(x) = 6x% 4
5x2 4+ x + 7, one might very well ask whether the program could
be easily modified to handle some other function, such as g(x) =
(3x® — 4)/(4x® + 1). This could be done very easily by changing
the formula for the value of the function in the statement labeled
LOOP. An even better question, however, would be whether the
program could be written in some general form so as to handle any
function on any interval, given only the “name” (or other description)
of the function. We might find it very convenient, for example, to
say something like this: “Compute the area under the curve f(x), on
the interval from S; to S,, using N trials, assuming that the maximum
value of f(x) on the interval [Si,S;] does not exceed M.” The
explicit form of the function f would be given somewhere else.

Let us assign a name to the general integration program we are

66 The Language of Computers

considering. Again, as in Chapter 2, we need some conventions on
the types of names we may choose for programs. We might just as
well use the same rules that we have for variables, i.e., up to six cap-
ital letters or digits, the first of which must be a letter. There ought
to be a way to tell program names from variable names, however,
since they are really different kinds of objects. Let us follow the
name of a program by a period. (This is quite natural, since many
of the names of programs will bc abbreviations, anyway.) We have
already seen examples of such names as SQRT. and RAND., which
were suggested with these conventions in mind. Although we usu-
ally think of the square root as a function which assigns to each non-
negative number its (principal) square root, we are suggesting here
that we can regard it also as a program. This is what actually hap-
pens, anyway, since we use a program to compute a square root for
us each time we need onc. There is no harm, therefore, in referring
to SQRT. as either a function or a program. Each of these names
implies that, when presented with a value for its argument, SQRT.
will come up with a second value, i.e., the square root of the argu-
ment (see footnote on page 5).

We shall find it very useful to distinguish carefully between the
name of a program and the value (or values) that may be computed
by the program. In the same way, the mathematician is very care-
ful to refer to the function f as being different from the value f(x).
Now that we have names of, functions, such as SQRT., how shall
we refer to their values? In each case let us write the name, fol-
lowed by the list of parameters (i.e., those variables, function names,
etc., which may change from one computation to another) just as
we write the arguments of ordinary functions in mathematics. Thus,
we have already seen the use of SQRT.(Z) to indicate the (principal)
value of the square root of Z. What we really mean here is the
value computed by a special program which accepts a parameter Z
and returns the value of the square root of Z.

Returning to our integration program, then, we need a name for
the program, say INTEG., and a list of parameters. The obvious
parameters are S, S2; N, M, and the name f of the function which
defines the area. Thus we might very well write

AREA = INTEG.(0,10,1000,4.,SQRT.)

Monte Carlo Methods 67

if we wish to compute the area under the curve of the square-root
function over the interval [0,10]. This also specifies that 1000 trials
should be used and that the maximum value of the SQRT. function
is not expected to exceed 4. Note that we are saying here that the
value of the function INTEG. (i.e., the value computed by the pro-
gram called INTEG.) should be stored as the new value of AREA.
We may even find it convenient to use values of functions in more
complicated expressions, such as

X =(-B+SQRT.(B*B — 4. x A % Q))/(2. x A)

which would occur in the solution of a quadratic equation.

We have seen that in order to compute the value of a function,
such as SQRT., we generally need a program. This program, in
fact, defines the function by providing the rule by which the values
are determined, and we will call it the definition program. FEach com-
putation in some other program which involves the value of a func-
tion is referred to as a call for that function. Thus, the quadratic-
cquation example just above illustrates a call for the square-root
function. A call for a function must occur in some program other
than the program which defines the function, and one should be
careful to distinguish between the calling program and the definition
program.

The next question is: How does a program become a definition
program? In order to answer this question, let us consider making
the program in Figure 6.6 a definition program for the function
INTEG,, i.., the program which could be called upon whenever
we needed to obtain a value of INTEG.. We must first determine
the properties that a definition program must have. (1) It must
have a name. (In this case, INTEG. has been chosen to be the
name.) (2) It must have a list of parameters, i.e., for each call we
must be able to specify which values or function names we wish to
use as arguments for that call. (We have here Sy, S5, N, M, and f.)
(3) We must have a definite value, computed by the program, which
can be designated as the value of the function. (In Tigure 6.6, the
value is A.)

Since this program will be separate from any program which calls
it, we should expect to put into it such declarations as INTEGER,

68 The Language of Computers

etc., as usual. We will need to identify the program as a function
definition program, however; so let us put as the first line the fol-
lowing statement.

EXTERNAL FUNCTION (S1,S2,N,M,F.)

The word external implies that this program is to be completely
independent of any calling program. (We shall consider internal
functions later.) In parentheses, we have listed the arguments to
the function. Whenever another program calls on this program for
a value of INTEG., the calling program will use a specific set of
values as arguments. As we saw above, a call might be

AREA = INTEG. (0,10,1000,4.,SQRT.)

In writing the definition program, however, we shall use the names
S1, 82, N, M, and F., with the understanding that these names will
be replaced by the appropriate values or names for each call. Fig-
ure 6.7 shows the program in Figure 6.6 converted to the form of an
external-function definition and modified slightly to use the general
interval S; to S; (see Section 5.5). Note that we have changed the
END OF PROGRAM statement to END OF FUNCTION to be
consistent. Also, note that we have clearly designated the value to
be returned to the calling program by the use of a FUNCTION
RETURN statement. The one remaining property that this defi-
nition program needs to have explicitly stated is its name. 'This is
supplied by the ENTRY TO statement.

EXTERNAL FUNCTION (S1,82,N,M,F.)
ENTRY TO INTEG.

NS =0

THROUGH LOOP, FOR I =1, 1, .G.N
X = (S2 — S1) * RAND.(0) + S1

Y = M * RAND.(0)

LOOP WHENEVER Y .LE. F.(X), NS = NS + 1
FUNCTION RETURN NS #*M # (S2 — S1)/N
INTEGER NS, N, I
END OF FUNCTION

Figure 6.7

Monte Carlo Methods

Table 6.1
I NS NS/1
100 32 .320
200 63 .315
300 92 .307

400 119 .297
500 154 .308

600 191 .318
700 220 .314
800 253 .316

900 286 .318
1000 319 .319

1100 347 .315
1200 379 316
1300 425 .327
1400 450 321
1500 486 .324
1600 515 322
1700 548 .322
1800 576 .320
1900 614 323

2000 651 325
2100 682 .325
2200 719 .327
2300 751 .327
2400 786 .327
2500 816 .326
2600 848 .326
2700 878 .325
2800 908 .324

2900 934 322
3000 960 .320

3100 997 .322
3200 1029 .322
3300 1068 324
3400 1091 321
3500 1126 .322
3600 1162 .323
3700 1209 .327
3800 1232 324

3900 1262 .324
4000 1303 .326

69

70

The Language of Computers

Table 6.1. (Continued)

I NS NS/I1
4100 1342 .327
4200 1376 .328
4300 1416 .329
4400 1451 .330
4500 1486 .330
4600 1524 331
4700 1552 .330
4800 1580 .329
4900 1618 .330
5000 1648 .330
5100 1679 .329
5200 1722 .331
5300 1760 .332
5400 1785 331
5500 1818 .331
5600 1851 .331
5700 1882 .330
5800 1918 .33
5900 1952 331
6000 1993 .332
6100 2031 .333
6200 2061 .332
6300 2092 .332
6400 2128 .332
6500 2153 .331
6600 2186 331
6700 2214 .330
6800 2245 .330
6900 2278 .330
7000 2309 .330
7100 2335 .329
7200 2376 .330
7300 2403 .329
7400 2433 .329
7500 2469 .329
7600 2503 .329
7700 2535 .329
7800 2570 .329
7900 2612 331
8000 2649 331

Monte Carlo Methods 71

Table 6.1. (Continued)

I NS | Ns/1

8100 2672 .330
8200 2702 .330
8300 2739 .330
8400 2773 .330
8500 2812 .331
8600 2846 331
8700 2886 .332
8800 2923 .332
8900 2964 333
9000 3004 .334

9100 3022 .332
9200 3047 331
9300 3078 .331
9400 3107 331
9500 3142 331
9600 3173 331
9700 3198 .330

9800 3224 .329
9900 3257 .329
10000 3290 .329

As an illustration of the behavior of this external function, an
actual run was made on the IBM 704 computer. In this case, the
following values were used: S1 = 0, S2 = 1, N = 10,000, M = 1,
and F.(X) = X .P. 2. This represents :
the area under the curve of the function
f(x) = x? over the interval [0,1], using
a rectangle of height 1 to contain the
area. The true value of 14 for the mag-
nitude of this area is easily obtained
using elementary calculus. The area Figure 6.8
and the rectangle are shown in Figure
6.8. The computation took 50 seconds on this moderately fast com-
puter, and values of I, NS, and the approximation to the area NS/I
were printed out after each 100 trials. The table of values (Table
6.1) show. the pattern of the approximation.

72 The Language of Computers

6.3 RANDOM-NUMBER GENERATORS

We have been using the name RAND. for some time now to repre-
sent a random-number generating function. It might be of interest
to digress here and see how an external-function program bearing
the name RAND. might be written.

There are many ways to generate numbers which behave quite
randomly. One of the early methods for generating uniformly dis-
tributed numbers (called the center-squaring method) was to start with
a large number, such as 3', and each time another number was
needed the current number would be squared and one-fourth of the
digits in the result would be deleted from each end, leaving a num-
ber with the same number of digits as the original one. This num-
ber would be the desired random number as well as the starting
number for the generation of the next number. The assumption
here (supported by quite rigorous statistical tests) is that any digit
is as likely to result in this way as any other, and therefore the num-
bers obtained in this way will be uniformly distributed. To illus-
trate this method with manageable numbers, let us start with 2¢ (i.e.,
64) instead of 315. To obtain the next number, we form (64)% = 4096
and drop one digit off each end to obtain 09 as the next number.
The next number after that would be 08 (from 0081), and then in
turn, 06, 03, 00. Unfortunately, at this point the sequence degen-
erates into a succession of zeros, which is a very nonrandom sequence.
Although this method was used on many computers, its tendency to
degenerate into short cycles in which the same number (or sequence
of numbers) is repeated caused it to fall into disrepute. It was then
necessary to find ways to obtain uniformly distributed numbers by
methods which did not give rise to short cycles.

One class of methods which has been investigated and is gaining
in popularity is the class of Fibonacci methods, which are based on
addition procedures rather than the multiplicative kind illustrated by
the center-squaring method above. A simple example of such a
method! employs a sequence of numbers called the Fibonacci numbers.
This sequence starts with the numbers 1, 1, 2, 3, 5, 8, 13 and con-
tinues indefinitely according to the rule that each number (after the

1“Fibonacci Series Modulo m,” by D. D, Wall, Amer, Math, Monthly, vol. 67
(1960), pp. 525-532.

‘Monte Carlo Methods 73

first two in the sequence) is the sum of the two numbers which pre-
cede it. Thus, a general formula for obtaining Fibonacci numbers is
the following:

Uy = 1
Uy = 1
Uy = Ui_1 + Uy for: > 3

This sequence of numbers appears to have some amazing properties
in that many natural phenomena seem to be organized according to
the relationships which exist between successive Fibonacci numbers.
For example, the spirals along the exterior of many seashells follow
this sequence in their spacing. Other examples of such phenomena
are often found at science fairs and in mathematical journals.! The
use of Fibonacci numbers for random-number generation is based on
the apparent random behavior of the right-most digits when the
numbers get large enough. What makes these numbers very attrac-
tive to computer users is that the generation of each number involves
a simple addition of the two numbers most recently generated.
Moreover, one need store only these two numbers in order to be able
to continue. It may be that this method is not so popular as the
next method to be described simply because the extent to which the
numbers thus generated behave randomly has not been well enough
established.

Before going on to the next method, we should examine how one
obtains the “right-most” digits of a large number, as in the Fibonacci
method just described. Since most present-day computers (but not
all) represent numbers internally as words (i.e., sequences of digits)
which have a fixed number of digits—such as 10 decimal digits with
a plus or minus sign—the usual method is to start with a number
large enough to fill all these digits. ‘Thus, in the Fibonacci sequence,
for example, one would start far enough along the sequence so that
the numbers have enough digits. Then, each time an addition is
performed, one simply ignores any carries generated off the left end.
Using a two-digit decimal word as an example, we might start with
the Fibonacci sequence at 13. Then, ignoring carries off the left

! Leonardo Pisano (Fibonacci) in 1202 used this series in a problem on the number

of offspring of a pair of rabbits. See L. E. Dickson, “History of the Theory of Num-
bers,” vol. 1, p. 393, Washington D.C., 1919,)

74 The Language of Computers

end of our two-digit word, we would obtain the numbers 13, 21, 34,
55, 89, 44, 33, 77, 10, and so on. Again we obtain a highly non-
random sequence after a while, but we would expect that this would
not happen with very large numbers.

There is a convenient mathematical formulation of the use of the
right-most digits. Another way to describe what we are doing in the
two-digit example above is to say that we are dividing the result by
100 and using the remainder. In other words, using the congruence
relation introduced in Chapter 5, we may describe the sequence of
random numbers for the two-digit machine as follows:

r = 13
To = 21
r; = (T¢_1 + n'_z) mod 102 for ¢ Z 3

where it will be understood that r; should be chosen to be the repre-
sentative of the congruence class containing r;_1 =+ ris. In other
words, 7; is that number between 0 and 99 which is congruent to
i1 + ri_e. The number r; is sometimes called the residue of (ri_1 +
7:_2) mod 102,

A simple extension of this reasoning leads to the following formulas
for the 10-digit and n-digit machines, respectively, where u; is far
enough along the Fibonacci sequence to fill the word:

Ty = Uj

re = Ujp
= (7’1;_1 + 7’.;_2) mod 1010 for : Z 3

Ty = Uj

T2 = Ujpr
T = (T,’_1 + 7’,‘_2) mod 10" for : 2 3

We should also point out that not every computer represents num-
bers internally in decimal form. Many of the larger machines use
a binary representation, i.e., numbers are represented as strings of ones
and zeros, using 2 as the base of the number system instead of 10.
Thus, the number 39 (decimal) would have the binary representation
100111, since 39 = 1-2540-244+0-28+1-2241-2"41-2°
Note that each digit of a binary number contains much less informa-
tion about the size of the number than a decimal digit; so we would

Monte Carlo Methods 75

expect to need more digits in the binary representation. In fact, a
10-digit decimal number needs a 34-digit binary representation.
Machines with binary internal representations usually have words
containing 36 to 64 binary digits (sometimes called bits). A random-
number scheme based on Fibonacci numbers for a binary computer
with 36-bit words would then start with some u; large enough to fill
the word and use the following scheme:

T = Uj

Te = Ujty
7; = (rim1 -+ ri_2) mod 236 fori >3

It was indicated above that there is yet another method of gen-
erating uniformly distributed random numbers which is far more
popular than any of the procedures described so far. Now that we
have developed most of the ideas and notation which we need, the
description of this third method (called the power-residue method) is
quite straightforward. One starts with a number r, large enough to
fill up the computer word and a carefully selected number P. Then
we use the formula

r; = Pr,_y mod m® for: > 2

where m is the base of the internal number system (2 for binary, 10
for decimal, etc.) and # is again the number of digits in the computer
word. The effect of this formula is to start with an initial number
r1 and repeatedly multiply it by P, each time retaining only the right-
most 7 digits. Illustrating again with a two-digit decimal machine,
we may start with r; = 37 and P = 71. Then r, = Pr; mod 102, so
that 7, = (71)(37) mod 10% Then r, = 2627 mod 102, and finally
r2 = 27. In this way, we generate the following sequence: 37, 27,
17, 07, 97, 87, 77, 67, 57, 47, 37, 27, etc. Note that not only is
this sequence nonrandom, but it begins to repeat itself after a short
time. The sequences 64, 09, 08, 06, 03, 00, 00, . . . and 13, 21, 34,
55, 89, 44, 33, 77, 10, . . . , which we generated while discussing
the center-squaring and Fibonacci methods, respectively, actually
repeat, also, if carried far enough. (“Repeat’” means that although
some initial terms may not occur again, there will be a block of num-
bers that repeats indefinitely. The size of the block is called the
period of the sequence.)

76 The Language of Computers

It is important to observe that in a two-digit decimal ward, it is
possible to represent only 10? different numbers. (In general, then,
one can represent only m" different numbers.) As soon as one of
these numbers appears for a second time (such as 37 above), the
number which follows its first occurrence (27, in the example above)
must follow again, thus starting the repetition. One must therefore
try to choose 71 and P very well, so as to make the period (which
cannot exceed m™) as close to m® as possible. Using some very inter-
esting number theory, mathematicians such as M. L. Juncosa' have
shown that r; may be any number not divisible by m and that P
must be determined separately for each m and n. For example, for
m = 2and n = 36, one of the best choicesis P = 515 andr; = 23 — 1.
With this choice, the period of the generated sequence is 233, This
means that one can generate 2% (i.e., 8,589,934,592) numbers in
this way without repeating.

Now let us turn for a short time to the normally distributed num-
bers. As we indicated earlier, such a distribution has a graph such
as in Figure 6.9. The point on the x axis labeled % (pronounced “x
bar”) represents the average of the values in the graph and is called

i
i
!
1
x

x+0 x

Figure 6.9

the mean. The points labeled % + o and & — o are each at a dis-
tance o from the mean % and indicate the spread of the curve. This
measure ¢ of the spread is called the standard deviation and is tradition-
ally represented by the Greek letter sigma. If ¢ is small, we obtain
a narrow graph, such as in Figure 6.10q; if ¢ is large, we obtain a

1 Random Number Generation on the BRL High-Speed Computing Machines,
Rept. 855, Ballistics Research Laboratory, Aberdeen, Md. See also, Random
Number Generation and Testing, IBM Ref. Manual C20-8011; and “Microanalysis
of Socioeconomic Systems,” p. 356, by G. H. Orcutt, M. Greenberger, J. Korbel,
and A. M. Rivlen, Harper & Brothers, New York, 1961.

Monte Carlo Methods 77

graph such as in Figure 6.106. A complete discussion of the stand-
ard deviation can be found in any book on probability.! (Also, see
Problem 6 at the end of this chapter.)

Thus, if one were to ask for a program to produce normally dis-
tributed random numbers, it would be a desirable feature to be able
to specify in the call the shape of the graph, i.e., the desired mean and
standard deviation. Let us therefore revise the method of calling
on our external function RAND. so that a call with fwo arguments,

| I %-¢ % x40
)
Figure 6.10a Figure 6.105

the first of which is zero [i.e., RAND.(0,R1)], will still produce a
uniformly distributed number between 0 and 1, and a call with
four arguments, of which the first is 1 [i.e., RAND.(1,R1,XBAR,
SIGMA)], will produce a random number drawn from a collection
with a normal distribution having mean XBAR and standard devia-
tion SIGMA. (The names XBAR and SIGMA are used because
the characters £ and ¢ are not part of the available alphabet in our
language.) The argument R1 will be needed to produce the uni-
formly distributed number needed in either case, as we will see.

One very convenient way to obtain normally distributed numbers
with specified % and ¢ is to generate a collection of uniformly dis-
tributed numbers by one of the methods described above and trans-
form it into a collection that represents a normal distribution. One
such transformation is the following, where r represents a number in
the uniformly distributed collection:?

. 2
M= a9 o - e)

! See, for example, “Probability: An Introduction,” by Samuel Goldberg, Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1960.
% Juncosa, op. cit.

78 The Language of Computers

where
v = V=2 log, .5(1 — |1 — 2r])
sign(t) = +1 ift >0 and sign(f) = —1 ift <0

and

.010328
.001308

ao = 2.515517 a; = .802853 as
by = 1.432788 by = 189269 bs

|
|
I

6.4 INTERNAL FUNCTIONS

Let us denote the first argument for RAND. by the name DIST,
since it determines which type of distribution is needed. Then a
rough flow diagram for RAND. might be written as in Figure 6.11.

Generate
uniformly STOP
distributed r

Generate
uniformly
distributed r

_ | Compute v
using r

4

Compute N
using r, U, X, STOP

and ¢

Figure 6.11

From this diagram it is clear that the part which generates the uni-
formly distributed number r cither must be included twice, or it
must be something like an external-function definition program, i.e.,
a separate program which can be called on more than once. It
would be very convenient to be able to write it as an external-function
definition, but still keep it within the program which will call on it.

Monte Carlo Methods 79

One benefit which could arise from keeping such a function definition
internal to the calling program is that only those variables which are
expected to change from one call to another need be specified as
arguments. All other variables would be known simultaneously
to the calling program and the internal-function definition program.
This is not the case with the external-function definitions which we
considered earlier, since these are entirely separate programs which
can communicate with the calling program only via the argument list.

Let us agree, then, to allow a function definition program to occur
within a calling program. We shall write such a function definition
program in exactly the same way as an external-function definition
program, except that the word EXTERNAL in the first line shall
be replaced by the word INTERNAL (see Figure 6.7). It will be
agreed, also, that any variables not explicitly listed as arguments in
the internal-function definition program will be available to both
the calling program and the function definition program. For rea-
sons which would lead us too far afield, let us agree that internal-
function definitions may occur anywhere in the calling program
except within other internal-function definitions. Calls for internal
functions or external functions may occur anywhere.

There is one question remaining with regard to internal functions.
In the preceding paragraph we said that variables not appearing as
arguments in the definition program would be common to the defini-
tion program and the calling program. What about a variable which
occurs in the calling program and also as an argument in the definition
program? Is there (or should there be) any connection between the
occurrence of a name in the calling program and its use as an argu-
ment in the definition program? Because of the possibility of con-
flicting modes (i.e., one integer, the other noninteger), it is better
to specify that names occurring as arguments in internal-function definitions
should not occur elsewhere in the calling program (i.e., outside the
internal-function definition).

Figure 6.12 exhibits a complete program for RAND. as we have
discussed it. Let us proceed through the program one statement at
a time, bypassing remarks, which are recognized by the letter R at
the left. The first two lines declare this to be an external function
with four arguments, the first two of which are of integer mode.
We then find the definitions of three internal functions SIGN.,

80 The Language of Computers

EXTERNAL FUNCTION (DIST,R1,XBAR,SIGMA)
INTEGER DIST, R1
R THE NEXT 8 STATEMENTS DEFINE THE FUNCTION SIGN.
INTERNAL FUNCTION (X)
ENTRY TO SIGN.
WHENEVER X .GE. 0.
FUNCTION RETURN 1.
OTHERWISE
FUNCTION RETURN —1.
END OF CONDITIONAL
END OF FUNCTION
R THE NEXT STATEMENT DEFINES THE FUNCTION MODULO.
INTERNAL FUNCTION MODULO.(Y,Z) = Y — (Y/Z) *Z
INTEGER Y, Z, MODULO.
THE NEXT 5 STATEMENTS DEFINE THE FUNCTION UNIF.
WHICH GENERATES UNIFORMLY DISTRIBUTED NUMBERS.
INTERNAL FUNCTION
ENTRY TO UNIF.
R1 = MODULO.(5 .P. 15 * R1, 2 .P. 35)
FUNCTION RETURN R1/(2. .P. 35)
END OF FUNCTION
THE NEXT STATEMENT IS THE ACTUAL ENTRY
TO THE EXTERNAL FUNCTION RAND.
ENTRY TO RAND.
THE NEXT STATEMENT RETURNS A UNIFORMLY
DISTRIBUTED NUMBER IF DIST IS ZERO BY
CALLING ON THE INTERNAL FUNCTION UNIF. DEFINED ABOVE.
WHENEVER DIST .E. 0, FUNCTION RETURN UNIF.(0)
THE NEXT STATEMENTS ARE EXECUTED IF
DIST IS NOT ZERO. THEY CALL ON UNIF.
FOR A UNIFORMLY DISTRIBUTED NUMBER AND
TRANSFORM IT INTO A NORMALLY DISTRIBUTED
NUMBER, WHICH IS RETURNED AS THE VALUE OF RAND.
R = UNIF. (0)
V = SQRT.(—2. xELOG.(.5 * (1. — .ABS.(1. — 2. *R))))
FUNCTION RETURN XBAR + SIGMA # (SIGN.(R — .5)*
1 (V — ((.010328 %V 4 .802853) * V + 2.515517)/
2 (((.001308 * V + .189269) * V -+ 1.432788) *xV + 1.)))
END OF FUNCTION

w W

WRRRR RBRERAR AR

Figure 6.12

Monte Carlo Methods 81

MODULO., and UNIF. which are called upon for values at various
times in the program. The function SIGN. has the value +1. if its
argument is nonnegative and —1. otherwise. (Except for the fact
that the argument might be zero, we could have defined SIGN.
by the value of X/.ABS. X. The definition used here does not need
to make a special case of a zero argument.)

The single statement which defines MODULO. illustrates a short
form of definition program which we can use for simple functions
which can be defined by a single expression (see Section 6.5). It is
also introduced by the words INTERNAL FUNCTION, as are all
internal-function definitions. The function MODULO. computes
the integer Y modulo Z (i.e., the residue, or the remainder on dividing
Y by Z) by subtracting from Y the largest multiple of Z less than or
equal to Y. Thus, MODULO.(17,5) = 17 — (174) %5 = 17 — 3 %5
= 2. (Note that we are implicitly assuming here that Z will
never be zero and that the division used is the truncated integer
division.)

'The next five statements define the uniformly distributed random-
number generator UNIF., which is based on the power-residue
method described above for generating uniformly distributed num-
bers. This internal function uses the current value of the argument
R1, multiplies it by P = 5! (we are assuming here a 36-bit binary
computer), and reduces the product modulo 2%. This reduction
is done by calling on MODULO. (with Z = 235) according to the
formula

r; = Pr;_y mod m™ > 2

which was introduced earlier. (Since the new value is stored again
in R1, it is already in position for a subsequent call on RAND. J)
The new value of R1 is scaled down to a number between 0 and 1
and is simultaneously converted to noninteger form by dividing it by
2% (in noninteger form because of the period after the 2). Non-
integer form is necessary for the value returned as the value of the
function because it is between 0 and 1, and it therefore cannot be an
integer. Note that R1 does not need to be an argument in the call
for UNIF., since it is available to both the calling program and the
internal function UNIF. . If UNIF. had been an external Sfunction, we
would have been forced to make R1 an argument.

82 The Language of Computers

The actual entry to RAND. occurs after the function definition
programs. (The definition programs could have been placed at the
end just as well.) If DIST is 0, the function UNIF. is called upon
for a value, and this is returned as the (uniformly distributed) value
of RAND. . (Note that we use an argument of 0 even though UNIF.
does not need an argument, since this is the way we indicate that we
mean the value and not the name of the function UNIF..) If DIST
is not zero, however, we call upon UNIF. for a uniformly distributed
number, but we then transform it as indicated above into a normally
distributed number. Note that in the computation of V we call
upon two external functions SQRT. and ELOG., presumably available
from some standard collection of function definition programs.

6.5 THE ONE-LINE INTERNAL FUNCTION

In the preceding section we had an occasion to use a short form of
the internal-function definition, e.g., in the definition of the function
MODULO. . As another illustration of the use of this form of inter-
nal-function definition, let us return to the social security tax calcu-
lation which was discussed in Chapter 4. We saw there a single
expression which could be used to calculate the tax, e.g.,

TAX = RATE * (S+T — W — .ABS.(S + W — T)
4+ ABS.(S+ T — W — .ABS.(S + W — T)))/4

where S = SALARY (earned this week), W = WAGES (accumu-
lated up to but not including this weck), T = THRESH (the thresh-
old amount), and .ABS. denotes the absolute-value operator. In
order to see where this expression comes from, let us introduce a
rather useful function EXCESS.(X,Y), which has the value X — Y
if X > Y and the value 0 if X < Y. In other words, it represents
the excess of X over Y, if there is an excess. It is possible to give an
expression whose value is EXCESS.(X,Y) as follows:

X —Y+4 .ABS.(X - Y)
2

EXCESS.(X,Y) =

The excess of S + W over T, if there is any [i.e., EXCESS.(S +

Monte Carlo Methods 83

W,T)], represents that part of the total wages S + W (including
this week’s salary) that is not to be taxed. If we compute the excess,
if any, of this week’s salary S over the amount just mentioned as the
amount not to be taxed [i.e., EXCESS.(S,EXCESS.(S + W,T))],
we obtain the amount of S which should be taxed. In other words,
suppose S + W < T, so that total wages to date, including this
week, do not yet exceed the threshold. Then the amount to be
taxed should be all of S. Using the procedure just described, we
would find that the excess of S + W over T is zero, and the excess
of S over this zero amount is S. The reader should analyze each of
the cases which might arise, suchas W < TandW + S > T (i.e., the
case in which this week’s salary carries the total wages across the
threshold), and so on, to understand this method of computing the
tax.

Using the one-line definition program to define EXCESS., we
have the following program for the tax:

INTERNAL FUNCTION EXCESS.(X,Y) = (X — Y + .ABS.(X — Y))/2
TAX = RATE * EXCESS.(S,EXCESS.(S + W,T))
END OF FUNCTION

The complicated single line for the computation of the tax was
obtained by substituting for the two occurrences of EXCESS. the
expression used to define EXCESS. as an internal function. In
other words, we have

S+ W —T+ .ABS.(S+ W — T)

G
AZ

EXCESS.(S + W,T) =

and so on.

PROBLEMS

1. Write an external-function definition program called FIBNO. which
will produce as its value the next Fibonacci number each time it is called.
"The arguments should be U1 and U2, the two most recent Fibonacci num-
bers gencrated. On the return from the function, U2 and U1 should be
updated, i.e., they should have as values the new number and the previous

84 The Language of Computers

value of U2, respectively. (Since these numbers will become quite large,
provision should be made for reducing the new value modulo 238)

9. Write an external-function definition program called FIB. which will
contain the program produced in Problem 1 (converted to an internal-
function definition) and which will produce either uniformly or normally
distributed random numbers, just as RAND. does.

3. Write a program which will call on FIB. (from Problem 2) for a
sequence of 10,000 uniformly distributed numbers, and examine this
sequence (as described below) to see if it is really uniformly distributed.
Let us imagine the interval from 0 to 1 to be divided into 100 equal parts
by the numbers .00, .01, .02, . . .,.99. If we generate a large collection
of uniformly distributed random numbers, then we expect that these num-
bers would fall into each of the smaller intervals with approximately the
same frequency. The strategy should be to set up 100 locations V(0),
..., V(99) in which counts are kept of the number of times a random
number falls in the corresponding interval. To do this quite simply, you
should set up a vector V of dimension 99, i.e., vV(0), . . ., V(99). Then,
for each random number generated, separate the left-most two digits and
store them as an integer I between 0 and 99. Using this integer I as a
subscript for V, increase the count associated with that integer [V(I) =
V(I) + 1]. The final values of V(0), . . ., V(99) will then represent the
aumber of occurrences of the integers 0 to 99 and should be approximately
equal. To separate the left-most two digits, multiply the number which is
between 0 and 1 by 100, then simply store the result in I. (Storing in an
integer location will truncate the number down to its integer part.) Thus, if
one generates the number .14329467, multiplication by 100 yields 14.329467,
and storing it as an integer I truncates it to 14. Then V(14) would be
increased by 1 to record an occurrence of 14.

Hint: The statement which generates the number, multiplies it by 100,
and truncates it, all at once, is

I = FIB.(0) * 100.

Of course, I must be declared to be of integer mode.

4. In the remark following Figure 6.6 it was stated that there were fewer
multiplications if we wrote ((6x + 5)x + 1)x + 7 instead of 6x® + 5x* +
x 4+ 7. Verify that there are fewer multiplications but the same number
of additions and that the values of the function (except for roundoff) will
be the same no matter how we compute them.

5. By applying the algebraic formulation of EXCESS. to the expression

RATE * EXCESS.(S,EXCESS.(S + W,T))

Monte Carlo Methods 85

derive the longer expression for TAX which appeared in Section 4.1:

TAX =RATE*(S+T — W — ABS.(S+W —T)
+ .ABS.(S+T — W - ABS.(S + W — T)))/4
6. In our discussion of normally distributed random numbers, we men-
tioned the mean % and the standard deviation o of the set of numbers. We
can actually calculate a mean and a standard deviation for any collection

of numbers (or measurements, such as men’s heights, shown in Fi ure 5.6).
)y ghts, g

The formulas used in statistics for # and o are
n
X = X;

t=]

”=\/n_1_12(xi’—f)z

=1

n
The symbol 2 is used to denote summation, so that E X = %1+ x3 + x5 +
i=1

vt amand Y (=0 = (= D4 (o= 924 - -+ (= B

Note that the formula for # shows that the mean is just the average of the
numbers x;, . . ., xo. In a normal distribution the mean happens to
occur at the highest point in the graph. Write a flow diagram and a pro-
gram to compute ¥ and ¢, given 7 and x5, . . . , x,.

7. Using the notation of Problem 6, show that

i==] i=1

and use this result to simplify the flow diagram and program which you
produced for Problem 6.

CHAPTER SEVEN

A SORTING PROBLEM

7.1 THE ALGORITHM

IN HANDLING SETS of numbers, letters, or symbols, we very often find
that we have to arrange them in some particular order. This is
very desirable if we have to search through a set of numbers or letters
many times, since we can then make use of eflicient searching pro-
cedures. For example, since we often have a name and need the
corresponding telephone number, telephone directories are sorted
into alphabetical order by name. Occasionally, however, it is very
important to find out which name corresponds to a particular tele-
phone number, and in some cities the telephone company maintains
its version of the telephone directory sorted by number. In some
types of problems it is found to be worth the effort to sort the same
set of data several different ways and keep all the sorted lists around
during the computation. Another area where sorting becomes
extremely important is the processing of payroll or inventory files
by commercial firms. The people who maintain these files must be
able to make thousands of corrections every day, because of address
changes, new tax rates, and changes in the number of dependents,
in the case of the payroll. For large inventory files, each sale of each
86

A Sorting Problem 87

item must be recorded, incoming shipments added to the amounts
on hand, and so on. If the changes were to be made in the order
in which they arrive at the computer, even the fastest computer
could not find its way through such large files of information fast
enough to handle the changes. If the changes for a given day are
sorted into the same order as the information in the file (such as by
employee number or part number), then the computer can work its
way through the file once, always having the proper information
as to where the next change is to be made. We actually do a lot of
sorting in our day-to-day living, also. Arranging the volumes of an
encyclopedia on a shelf, the cards of a bridge hand, letters in a file
(by date or by author), bills to be paid, and so on, all require sorting
which we do manually. Most of the methods we use in these situa-
tions would break down completely if we needed to sort 40,000 items
instead of a dozen, but the changes to a large inventory file might
easily number 40,000 in a single day.

There are many algorithms for efficient sorting methods. Some
use very little storage space in the computer while sorting, but are
rather slow. Others are very fast, but use more storage space.
Still others are quite complicated but, by taking advantage of special
properties of some particular computer, turn out to be very fast
as well as economical in their storage requirements. We shall discuss
one algorithm which is quite easy to understand and does not use
much storage, but it is not so fast in actual computation time as some
other, more complicated procedures. Then we shall consider another
procedure which allows one to take advantage of prior knowledge
that the numbers to be ordered are almost in order to begin with.

The problem we shall consider may be stated as follows: Let
A(1), .. ., A(N) be N numbers. Sort (i.e., rearrange) these num-
bers into increasing order. Since this is probably a small part of a
larger problem, and since it may actually need to be done several
times in a large problem, we should prepare a program for sorting
numbers which will be in the form of an external function with input
arguments N and A. Before proceeding to the flow diagrams and
the programs, however, we should discuss the strategy of the algorithm.

One way to arrange numbers A(1), . . . , A(N) in increasing order
is to set aside another area in storage as large as the area in which
the numbers are presently stored. Then we could start by moving

88 The Language of Computers

A(1) into the new area. If A(2) is greater than A(1), we could put
it after A(1) in the new area; otherwise we could move A(1) over one
place and put A(2) in front of it. Now we could determine where
A(3) belongs and insert it in the proper place, moving the others
over, if necessary. Eventually, we would have placed all the num-
bers into the new area. This method is used very often by card
players who are dealt a hand for bridge or hearts, for example, and
arrange their cards in order by picking up one card at a time and
inserting it into the proper place in the hand. This method is quite
efficient for human beings because their eyes can very rapidly scan
the cards which they already hold and because they can easily shift
some of the cards to make room for the newcomer. In a computer,
however, the frequent shifting of many numbers would take a much
longer time than other methods would require, and the use of a
second storage area as large as the original would be wasteful.

Our procedure would be improved if we would search for the
smallest number among A(1), . . . , A(N) and move it to the new
storage area, then search for the next smallest number, and so on.
This would eliminate the shifting of numbers but would still require
the second storage area. One small point should be noted before
we leave the second method. After a number has been selected as
being less than the remaining numbers, how do we remove it from
further “competition”? We could delete it by closing up the remain-
ing numbers, but this would introduce the shifting of numbers that
we are trying to avoid. A more commonly used method is to replace
the selected number by a very large number, usually the largest
number allowed in the language (in our case, 99999999999). This
guarantees that it will not be chosen again as the smallest number.

Everyone would probably agree that the second method is better
than the first method because the shifting has been eliminated.
This raises an important question, however. What are the criteria
by which one decides which method is better? The usual criterion—
other things being equal—is to minimize the number of comparisons
that have to be made among pairs of numbers. This is a measure
of the amount of computation that is needed and, therefore, a rough
measure of the speed of the method. The other things that are
assumed equal, however, are the shifting around of numbers in
storage (which is really prohibitive in the first method) and the

A Sorting Problem 89

amount of extra storage needed. In the second method we have to
compare each number with each other number; so there are N2
comparisons. The next method which we shall discuss needs
N(N — 1)/2 comparisons, and it requires only one additional storage
location, rather than a second area as large as the first. Other
methods have been developed, however, which require only N logs N
comparisons. As N gets large, N log, N is much smaller than
N(N — 1)/2. Infact, even for N = 8, we have N loge N =8-3 =
24 and N(N — 1)/2 = (8-7)/2 = 28.

In the N(N — 1)/2 method we start with the first number A1)
and compare it with each of the others in turn. As long as it is less
than or equal to the other number, it deserves to remain in the first
position. As soon as another number is smaller than A(1), however,
it becomes a better candidate for the “smallest-number”’ position,
and it should be placed in position A(1) immediately. Since the
original value of A(1) must be stored somewhere else now, the easiest
way to handle it is to interchange the two numbers. If we now
continue to compare the new A(1) with the rest of the other numbers,
interchanging whenever necessary, we find that we end up with the
smallest value in the entire set as the value of A(1). We may completely
ignore the value of A(1) from now on, since it is in its final position
already. What we need to do now is find the smallest of the remain-
ing numbers, starting with A(2) and comparing with A(3), A(4),
and so on. FEach time we finish a string of comparisons, the number
of comparisons to be made the next time decreases by 1. The first
time when each of the other (N — 1) numbers was compared with
A(1), there were N — 1 comparisons. The second time there would
be N — 2 comparisons, and so on. The total number of comparisons
EIN=-1D)4+N=-2)+N—=-3)4 -+ + 1, which is easily seen
to have the value of N(N — 1) /2, since it is an arithmetic progression
with N — 1 terms.

How does one interchange two numbers? If A(I) and A(J) are
to be interchanged, one might try the statements

Ad) = AQ)
A = AQD)

but, unfortunately, after the first statement is executed the value of
A(I) will have been destroyed, and the second statement will not

90 The Language of Computers

accomplish its purpose. It is necessary to preserve the value of
A(I) while moving A(J) there. If we let X be some available vari-
able whose value is not currently needed, we may write the inter-
change as follows:

X = A(l)
A = A@J)
AQ) = X

This additional variable X is the only extra storage needed in this
method since the same variable X may be used for all the interchanges.

True
I=N
o False
M I-1+1 -
- J‘—I+1:
True
J>N
JJ+1]

AD-AW@)

y

| AP)-X

Figure 7.1a

A Sorting Problem 91

We see in this algorithm a loop which starts with the designation
of A(1) as a pivot value against which comparisons are made. After
A(1) is dealt with properly, we move to A(2) as pivot value, and so
on. For each choice of pivot value, we have another loop, which
consists of moving through the remaining values, interchanging when
necessary. The set of numbers to be compared with the current
pivot value A(I) always starts with A(I 4+ 1) and goes through A(N),
Since there is nothing with which to compare A(IN) when it becomes
the pivot value, there is no need to use A(N) as the pivot value at all.

7.2 THE EXECUTE STATEMENT

We have just exhibited a flow diagram (Figure 7.1a) for an external
function (let us call it SORT.), which will sort the numbers. A(1),

, A(N) into increasing order. In every way but one, SORT.
behaves just like the external functions discussed in Chapter 6. It
may be entered many times from different places in the calling pro-
gram; there are two arguments to specify on each call (N and A),
and so on. In one respect, however, it differs: it does not produce
a number as its value. It is meaningless (not just wrong) to write

Y = I+ J + SORT.(N,A)

What we need is a way to call on SORT. without bemg forced into
embedding it into an expression.
One way, which is at best a compromise, is to write

Z = SORT.(N,A)

where Z is some variable whose values will never be used for any
other purpose. We could then let the SORT. definition program
return some number as its value [after doing its real work of sorting
A(1), . . ., A(N) into increasing order]. This number would then
be stored as the value of Z, and we would have accomplished our
purpose. This is not a very good solution, however, because it dis-
guises what is really happening, and there is some unnecessary com-
putation built in as well, e.g., the return of an unwanted number to
be stored into an unwanted place.

92 The Language of Computers

A better way to handle this external function is to provide a new
kind of statement in the language, a statement which says simply,
“Execute the function SORT.(N,A), and then go on.” Let us intro-
duce such a statement into our language by writing

EXECUTE SORT.(N,A)

We shall always understand that after the SORT. function has done
its job, we go on to the next statement in the program. What hap-
pens to the FUNCTION RETURN statement in this case? Since
there is no value to return, we may simply omit the expression whose
value is returned as the value of the function. It will be understood
that a function whose definition program contains the statement

FUNCTION RETURN

will be called upon by means of the EXECUTE statement, and such a
function will not be expected to return a value. We are now in a
position to exhibit the program for SORT. (Figure 7.18). Note
that the new EXECUTE statement does not occur in this program.
It would occur in the calling program.

EXTERNAL FUNCTION (N,A)
INTEGER N, I, J

ENTRY TO SORT.

THROUGH B, FOR I =1,1, I.E.N
THROUGH B, FOR J=1+41,1,J.G.N
WHENEVER A(1) .G. A(J)

X = A(l)
A(D) = AQ)
A() =X

B END OF CONDITIONAL
FUNCTION RETURN
END OF FUNCTION

Figure 7.1

There is one new feature in this program which has not yet been
discussed. There are two loops terminating at the same place, i.e.,
at the statement labeled B. Although the flow diagram shows that
the J loop is executed completely for each value of I, this information
was lost when we wrote the program. In order to preserve the

A Sorting Problem 93

original relationship between the loops, let us adopt the following
convention:

Whenever two or more loops terminate at the same statement, the
scope of the last loop begun is the first to be completed. If the termi-
nation condition for that loop is not satisfied, the other loop variables
remain constant while the scope of that loop is executed again. In
other words, the behavior shall be the same as if the last loop that
was begun actually terminated at an earlier statement than the
others.

7.3 ANOTHER SORTING ALGORITHM

The SORT. program which was described in Section 7.2 is a general-
purpose program for sorting in that it makes no assumptions about
how well A(1), ..., A(N) may be ordered before the sorting
begins. This allows it to work equally well for all sets of numbers.
On the other hand, there is no provision for taking advantage of any
knowledge which we might have about A(1), . . . , A(N). Quite
often one knows that a set of numbers which was already sorted has
been only slightly rearranged (with a few new numbers added at the
end, for example). There are several algorithms which take advan-
tage of this, and we shall describe one of them.

In this method, which we shall call SORTI., we compare A(1)
with A(2), and if A(2) is less than A(1), we interchange them; other-
wise we do not. Then we compare A(2) with A(3) and A(3) with
A(4), and so on. We shall call one such scan of the set of numbers
a pass over the set. When we finish the last comparison and possible
interchange [of A(N — 1) with A(N)], the numbers will be closer
to being in order. In fact, if the numbers had been in order except
that two of them had been interchanged, they would now be in order.
There is only one way to know that they are now ordered, however,
and that is to make a complete pass through them again and find that
no further interchanges are necessary. As long as there are any
interchanges at all, another pass will be needed.

As an example, Table 7.1 shows a set of seven numbers after each
pass until they are sorted. During the last pass no interchanges were
needed; so the algorithm stopped.

94 The Language of Computers

There is a way to shorten the work somewhat even in this method.
As it was described above, the method calls for each pass to start with
the comparison of A(1) and A(2). It may be, however, that some
of the numbers near the beginning of the set were in order already,
such as in the case in which a few new numbers were added at the

Table 7.1

A1) | A@) | AG) | A@) | AG) | AG) | A

—_ e e e e e e
- e NN
|
NN P WA
LW WL~ LR
B i il *)
(SIS TS B S, U RS, B
[« =W« N = W W« WS,

end of a set already in order. It would be unnecessary, then, to do
all those initial comparisons again. The first point at which a com-
parison must be made is at the position most recently involved in an
actual interchange. In Table 7.1, for instance, we need not com-
pare the 1 and 2 or the 2 and 4 the second time around. But because
A(4) was involved in an interchange, we must be sure to begin our
comparisons with A(4) on the next pass. In fact, the next pass must
start with a comparison of A(3) and A(4), since the new value of
A(4) might require an interchange with A(3).

Table 7.2

Pass begins |A(1) [A(2) |A(3) [A(4) |A(5) A®6) | A7) | A@B) | A(9) |A(10)

1 3 5 7 9 11 13 15 17 8
A1) 1 3 5 7 9 11 13 15 8 17
A(8) 1 3 5 7 9 11 13 8 15 17
A() 1 3 5 7 9 1 8 13 15 17
A(6) 1 3 5 7 9 8 11 13 15 17
A(5) 1 3 5 7 8 9 11 13 15 17
A(4) 1 3 5 7 8 9 11 13 15 17

A Sorting Problem 95

Table 7.2 shows how a new number could be sorted into a set of
nine numbers already in order, using the work-shortening feature.
The column headed “Pass begins” shows where the first comparison
needs to be made. The first row shows the initial positions of the
numbers. In this example, we made 9 comparisons on the first pass,
2 comparisons on the second pass, and so on, amounting to 29 com-
parisons. If we had started with A(1) on each pass, we would have
had 9 comparisons on each pass, or 54 all together. It is now clear
that we must set an indicator (i.e., the value of some variable) during
each pass when the first interchange is made. This indicator will
show where the comparisons are to begin on the next pass. If it
turns out that the indicator does not get set at all during an entire
pass, this is the signal that the sorting has been completed. We
shall therefore set a variable CATOR (short for indicator) to zero at
the beginning of each pass. If A(I) and A(I + 1) are the first two
numbers to be interchanged, and if CATOR is still zero, we shall
set CATOR to I to remember the position of the first interchange.
(If CATOR is not zero, it is not the first interchange.) The next
pass will begin the comparisons with A(I — 1) and A(I) as we noted
above with A(3) and A(4). (The value of I with which we begin
the comparisons is called FIRST I in the flow diagram shown in
Figure 7.2a.) If the value of CATOR is 1, we shall have to start
with A(1) and A(2), however, since there is no A(0) in this problem.
The program corresponding to this flow diagram would look as
shown in Figure 7.25.

One new kind of statement has been used in this program, i.e., the
CONTINUE statement which bears the label PASS. The situation
arose in this program (and it is quite common) in which we wished
to transfer to the end of the scope of an iteration and bypass all the
remaining computation in that scope. In the sorting algorithm, if
A(I) is less than or equal to A(I 4+ 1), we needed to go directly on
to the next comparison, and we did not wish to execute any part of
the interchange computation. It was necessary to separate the label
PASS, which represented the end of the scope, from any of the com-
putation in the loop. The statement CONTINUE acts as a place
to hang a label, but introduces no additional computation. If there
were no CONTINUE statement, and we had put the label PASS

96 The Language of Computers

on the statement

WHENEVER CATOR .E. 0, CATOR =1
what would have happened? Since CATOR is set to zero by the
statement labeled ONE, the first time through the loop, whether there

was an interchange or not, CATOR would besettoI. The CONTINUE
statement allows us to jump past the conditional statement.

‘ Entry)

FIRST I-1

(O—

CATOR«0

I~ FIRST I CATOR=0 Sqr— Return

I=N

False _

A

I<I+1

FIRST I-1

True

False

Xe A(T)
A(D)—A(I+1) FIRST I~ CATOR -1
Ad+1)«X

i

CATOR=0

CATOR~1I

¥

Figure 7.2a

A Sorting Problem 97

EXTERNAL FUNCTION (N,A)
ENTRY TO SORT1.
INTEGER N, FIRST I, CATOR, I
FIRST I =1
ONE CATOR =0
THROUGH PASS, FOR I =FIRST I, 1, I .E.N
WHENEVER A(I) .LE. A(I -+ 1), TRANSFER TO PASS

X = A(l)
Al) = AT +1)
AT+1) =X

WHENEVER CATOR .E. 0, CATOR = I
PASS CONTINUE
WHENEVER CATOR .E. 0, FUNCTION RETURN
WHENEVER CATOR .E. 1,
FIRST I =1
OTHERWISE
FIRST I = CATOR — 1
END OF CONDITIONAL
TRANSFER TO ONE
END OF FUNCTION

Figure 7.26

7.4 A SEARCH ALGORITHM

Now that we know how to order a set of numbers, we must find ways
to search for a particular number in the set in such a way as to take
advantage of the order. One straightforward way to scarch through
a set of numbers is to start at one end and see if the searching argument
(i.e., the number which we are trying to find in the table or set of
numbers) is there by comparing it with each number in turn. We
did this in Chapter 5, in fact, when looking for the position number
of a character in the standard alphabet. (It was this search that
led us to the case of a loop with an empty scope, since the entire
computation was contained in the termination condition of the loop.)
Such a straightforward table look-up, as it is called, is very useful if
the table is ordered in such a way that the most frequently encountered
searching arguments occur at the beginning of the table—regardless
of the size—so that the search ends quickly. A specialist in cryptog-
raphy might have ordered the standard alphabet with the letter e
first, for example, since ¢ is the most commonly used letter in Eng-

98 The Language of Computers

lish. For a given language, the relative frequencies of occurrence of
the various letters are easily obtained. In Chapter 5 we did not
have this “high-frequency ordering,” but we used the table-look-up
procedure because we had no additional information to warrant
other search procedures.

Now we shall assume that the table A(1), . . . , A(N) has been
sorted into increasing order, and we shall look at a searching method
which takes very good advantage of this. The method we shall
describe is sometimes called the “binary search,” since at cach step
it cuts in half the part of the table which is still to be searched.
Because we shall be dividing repeatedly by 2, we shall want the
table size to be a power of 2. We cannot assume that every table
we need to search has this property, however, but we can think of
every table as being embedded in a larger table with a number of
elements which is a power of 2. How this enlargement is handled
will become clear as we proceed. The first step in the search makes
sure that the argument is somewhere in the range of the numbers in
the table. This is done by asking if ARG < A(1) or ARG > A(N).
In either of these cases, the search is over, and ARG is not in the
table. We shall continue the discussion, then, assuming that
A(1) < ARG < A(N). Knowing the size of the original table, say
N, we first compute the smallest power of 2 which is greater than
or equal to N. For example, if N = 5, we would choose 8. This
can be done using one statement in our language:

B THROUGH B, FOR X =1, X, X.GE.N

The reader should verify that this statement does compute as the
value of X the desired power of 2. (The variable X is repeatedly
incremented by the value of X, hence doubled. When the loop ter-
minates, X will have the desired power of 2 as its value.) Having
computed this power of 2, we shall treat the table to be searched as
if it were really this large, being careful to avoid using any numbers
not actually in the original table. It will be clear from the discus-
sion that follows that if the power of 2 that we use is 2%, then at most
n + 1 comparisons will be made in the search.

We now set Y = X, and if ARG = A(Y) and Y < N (so that we
are still in the original table), we are daone, i.e., we have found ARG

A Sorting Problem 99

in the table. This condition, i.e., ARG = A(Y) and Y < N, is the
condition which must be satisfied if we are to make the claim at any
time that ARG has been found in the table. We will see later that
this condition will serve as the termination condition for the iteration
which we will set up. If, at any stage of the search, ARG > A(Y)
or Y > N, we must clearly move farther down into the table. We
may do this the first time, for example, by jumping to the middle
of the table. (The way to jump to the middle of the table is to sub-
tract from Y half of X. We then cut X in half to prepare for the
next jump.) If ARG is greater than A(Y) at the middle of the
table, we next restrict our attention to the upper half of the table;
otherwise we restrict ourselves to the lower half. If it is the upper
half, we add to Y half of the current value of X and againset X = X/2,
and we are now considering the three-quarter point in the table.
If it is the lower half, we subtract from Y half of X and set X = X/2,
and we are now considering the one-quarter point in the table. We
simply repeat this procedure until X, by repeatedly being cut in
half, is reduced to 1, or we find at some point that A(Y) = ARG.
If we do have X = 1, ARG is not in the table.
Consider Table 7.3 where, for example, A(9) = 31.

Table 7.3
I |t |2 |3] 4| 5] 6] 7| 8] 9110
AD | 2 | 3 | 4 |10 [11 |13 [17 [23 | 31 | 40

If we search with ARG = 31, we obtain the sequence of values of

X and Y shown in Table 7.4. [The final value of Y should be 9,
indicating that 31 has been found as the value of A(9).] The initial
value of X is 16, since this is the smallest power of 2 greater than 10.

Table 7.4

Y X Action to be taken (X = X/2 in every case)

16 16 Y>10,50Y =Y —X/2

8 8 ARG > A(8),s0 Y =Y + X/2

12 4 Y>10,50Y =Y —X/2

10 2 A(10) > ARG, 50 Y =Y — X/2

9 1 A(9) = ARG and Y < 10, so the search ends

100 The Language of Computers

If ARG = 20, so that it is not in the table at all, we would have the
sequence shown in Table 7.5.

Table 7.5

Y X Action to be taken (X = X/2 in every case)

Y >10,50Y =Y — X/2

ARG < A(8),50Y =Y — X/2

ARG > A(4),s0Y =Y + X/2

ARG > A(6),s50 Y =Y + X/2

ARG > A(7), but X = 1, so search ends negatively

~N SN hCOS
- N Do

Table 7.4 suggests that whenever ARG is in the table, Y will be the
index of its position in the table. Examination of a few cases will
show that this must always be true. On the other hand, Table 7.5
would indicate that whenever ARG is not in the table, Y will point
to the number in the table which is just below the position ARG
would have occupied if it had been there. In that example, Y had
the value 7, so that A(Y) = 17, which is just below ARG = 20.
Unfortunately, Y will not always point to the number just below ARG.
Consider Table 7.6, where ARG = 30.

Table 7.6
Y X Action to be taken (X = X/2 in each case)
16 16 Y>10,50Y =Y — X/2
8 8 ARG > A(8),s0 Y =Y + X/2
12 4 Y>10,50Y =Y — X/2
10 2 ARG < A(10),s0 Y =Y — X/2
9 1 ARG < A(9), but X = 1, so search ends negatively

In this case ARG is not in the table, but the final value for Y does
not point to the number just below ARG in size. It points instead
to the number just above ARG. This time it actually points to the
position ARG should occupy if it is now to be inserted into the table.
It is unfortunate that sometimes Y will point to the position just
below the appropriate position for inserting ARG. Let us agree to

A Sorting Problem 101

watch for this situation and increase Y by 1 if A(Y) < ARG, so that
we will always find Y pointing to the proper position in the table
for inserting ARG. In the extreme cases which we caught earlier,
e.g., ARG < A(1) or ARG > A(N), we may automatically set Y to
1 and N + 1, respectively, so that Y will still point to the position
where ARG should be inserted.

Let us set up the flow diagram and program for this algorithm
(which we shall call SEARCH.) as an external function, since this
is likely to be called upon by other, more complicated programs.
The arguments in the call for SEARCH. should be N, A, ARG,
and Y. We should also provide a way to recognize the case in
which ARG is not in the table at all. If this should happen, we
would probably like to transfer to another part of the program in
order to do something about it. We shall add one more argument
to the call for SEARCH., e.g., the label of the statement to which
the transfer is to be made in case ARG is not in the table. It will
be understood that if we transfer to this statement, Y will have the
meaning indicated above; i.e., it will point to the position in which
ARG should have appeared. We shall now exhibit a flow diagram
for SEARCH. (Figure 7.3a), followed by the corresponding program
(Figure 7.35). The arguments to this external function are N, A,
ARG, Y, and NOT IN, where NOT IN is the label of the statement
to which we transfer if ARG is not in the table. The first two questions
asked in the flow diagram determine whether ARG lies in the table at
all. The small loop after that computes the appropriate power of 2, as
described above. The basic search is contained in the larger loop
that follows. Notice that the lower iteration box has for its initial-
ization X <= X. This illustrates the occasional situation in which the
variable of the iteration already has its initial value, and we do not
need to do anything to it. Another interesting point about this itera-
tion is that the termination condition does not involve X at all.
The change in Y depends on X, but the termination condition does
not mention X explicitly.

In order to understand this algorithm thoroughly, the flow dia-
gram and program should be simulated manually for at least the
examples given above. One new statement type was needed in this
program. Since the variable NOT IN is an argument to this exter-
nal function, there is no way to tell that this variable is a statement

102

The Language of Computers

Ye1

Y~N+1

XX

ARG=A(Y)
and YN

X-X-X/2

NOT
T\ IN

False

Y-Y

Ye-Y+1

Figure 7.3a

A Sorting Problem 103

EXTERNAL FUNCTION (N,A,ARG,Y,NOT IN)
INTEGER N, Y, X
ENTRY TO SEARCH.
WHENEVER ARG .L. A1)
Y=1
TRANSFER TO NOT IN
OR WHENEVER ARG .G. A(N)
Y=N+1
TRANSFER TO NOT IN
END OF CONDITIONAL
B THROUGH B, FOR X =1, X, X.GE.N
Y=X
THROUGH C, FOR X = X, —X/2, ARG .E. A(Y) .AND. Y .LE.N
WHENEVER ARG .L.A(Y) .OR. Y.G.N

Y=Y -X/2
OTHERWISE
Y=Y+X/2

END OF CONDITIONAL

C WHENEVER X .E.1, TRANSFER TO D
FUNCTION RETURN Y

D WHENEVER ARG .G.A(Y), Y=Y +1
TRANSFER TO NOT IN
STATEMENT LABEL NOT IN
END OF FUNCTION

Figure 7.3b

label in the calling program and that it thus may legitimately appear
ina TRANSFER TO statement. We therefore include a declaration

STATEMENT LABEL NOT IN

to indicate that NO'T IN is of statement-label mode, just as we indi-
cate that other variables are of integer mode. This is not needed
for variables such as B and C in Figure 7.35, which are obviously of
statement-label mode. If we had not provided NOT IN as an argu-
ment, and therefore as a link to the calling program, we would have
had to provide some other action in case the argument is not in the
table.

One further point may be made about this program. The ques-
tion may be raised as to why Y must be an argument to the function
when its value is being returned as the value of the function. It is
true that in the case of a successful search, the functional value is the

104 The Language of Computers

value of Y. In the case of an unsuccessful search, however, we
merely transfer to NOT IN, and there is no value returned. To
make use of the value of Y as an indication of the place ARG should
have occupied in the table, we have made Y an argument, and it is
therefore available to the calling program. If we had returned to
the calling program by means of the

FUNCTION RETURN Y

statement each time, whether ARG was in the table or not, we
would have no way of knowing each time whether the search was
successful.

PROBLEMS

1. Modify the SORT. definition program to sort the set of numbers
A1), . .., A(N) into decreasing order. (Hint: Only one letter need be
changed in the program.)

2. Write a new SORT. program and flow diagram which will have a
third argument T to indicate whether A(1), . . . , A(N) should be sorted
into increasing or decreasing order depending on whether T = 1l or T = —1,
respectively, and which will do either kind of sorting on request via this
third argument.

3. Suppose that A(1), . . . , A(N) were a set of telephone numbers and
D(1), . . . , D(N) were the names of the users of thesc telephones. Assume
that D(I) is the name of the user of the telephone whose number is A(I),
i.e., that the two lists correspond. Whenever the numbers A(1), . . . , A(N)
are rearranged, the names D(1), . .., D(N) must be simultaneously
rearranged; or the correspondence will be lost. Modify your solution to
Problem 2 to include a fourth argument D and to rearrange D(1), . . .,
D(N) while sorting A(1), . . . , A(N) into either increasing or decreasing
order.

4. Write a flow diagram and program to sort a bridge hand into order,
as follows. Suppose that V(1), . . ., V(13) are the values of the cards in
the hand, with the jack, queen, and king having values 11, 12, and 13,
respectively. Suppose, also, that S(1), . . ., S(13) are the suits of the
13 cards, with spades, diamonds, clubs, and hearts represented by the alpha-
betic constants $SPADE$, $DIAMNDS$, $CLUBS$, and $HEARTS, respec-
tively. (Inside the computer alphabetic constants are represented by
integers; so it is convenient to consider them to be of integer mode. With-

A Sorting Problem 105

out asking which integers are used for their representation, we may still
sort them into either increasing or decreasing order. All the spades will
then end up together, and so on.) Using the two-vector external function
SORT., which was developed in Problem 3, write your program to call on
SORT. to rearrange the cards first into groups of the same suit. Then,
after finding out how many there are of each suit, call on SORT. again to
rearrange the cards by value within each suit. (The program should be
written to handle N cards, rather than just 13, so that one could also use
it for games other than bridge.)

5. Sometimes a table contains two entries, such as name and telephone
number, stored in consecutive locations. For example, we might have
A(1) be a name and A(2) the corresponding telephone number. Then
A(3) would be another name, and A(4) would be the number which cor-
responded to that name, and so on. Write a flow diagram and program
for an external function called SORT2. which sorts such a table according
to increasing telephone number, using the algorithm of SORTI. (Figure
7.2a).

6. Write a flow diagram and program which uses the algorithm of
SEARCH. on a two-entry table such as that described in Problem 5. Assume
that ARG will be a telephone number and that we wish to find the name
of the subscriber with that telephone number.

7. The algorithm for SORT1. included a work-shortening feature which
remembered the earliest interchange for cach pass over the set being sorted.
The next pass could begin at this point (or one entry earlier), thus saving
repeated scanning of entries already in order. An additional saving in
time can be achieved by remembering as well the last interchange on each
pass, so that the next pass can often be stopped before all the entries are
scanned. Modify the flow diagram and program for SORTI. to include
this additional feature.

8. It is often necessary to insert a new number into a table if it is not
already there. Since SEARCH. returns an indication as to where the
argument should have been if it could not find it, it should be possible to
move the rest of the table over and insert the new number at that point.
Construct a flow diagram and program for an external function INSERT.,
with arguments N, A, ARG, Y (corresponding to the arguments in
SEARCH.), which will insert ARG into the table A at the point indicated
by Y and increase N by 1 to reflect the increased table size.

CHAPTER EIGHT

THE CORRELATION COEFFICIENT

8.1 THE PROGRAM

LET Us CONSIDER now one of the simplest of all prediction devices,
the correlation coefficient. 'This is a number which is attached to sev-
eral sets of data to indicate that their behavior is “similar” in some
sense. Thus the weather in the Midwestern part of the United
States would be highly correlated (i.e., have a high correlation coeffi-
cient) with the weather which occurred three days earlier in the
western part of the country. On the other hand, one would not
expect to find much correlation between the number of runs scored
in the American League each day and the price of milk.

The more highly correlated two phenomena are, the more confi-
dently can we use one to predict the other. Thus, we do use the
weather in one part of the country to predict the weather for other
areas, but we would not expect to predict baseball scores from the
price of milk. The correlation coefficient gives a measure, then, of
the degree of confidence we may have when using one of two phe-
nomena to predict the other. There are other, more sophisticated
prediction devices in use, such as multiple correlation coefficients,
regression equations, and so on, but the simple correlation coefi-

cient will suffice here.
106

The Correlation Coefficient 107

In order to obtain some intuitive feeling for the correlation coeffi-
cient (often designated r), let us consider a very simple example of
two observations of each of two phenomena. We may label the
observations of the first phenomenon x; and y; and the observations
of the second phenomenon x. and y,. Plotting these numbers as
coordinates of points (x1,y1) and (xs,93) on a graph, we may then
draw line segments from the origin
of the graph to the points, as in y
Figure 8.1.! One question arises
immediately: Does “similar behav- (x1,31)
ior” mean that the two points should
be very near to each other? It 8
is entirely possible that the actual
numbers involved might differ by
a great deal, and in this case the Lgure 8.1
points would be far apart. Their
variation could be quite similar, however, and this is what is impor-
tant to us. Thus, if the two phenomena we are observing are highly
correlated, we would expect that whenever y; = 2xi, then y, = 2x,,
at least approximately. In other words, we would expect to find that

(xz:yz)

Jir_ %

Ve X2
or, rewriting it in a different way,

Y1 Y

X1 Xo

The first equation suggests that the data for one phenomenon should
be proportional to the data for the other. The second equation may
be interpreted as implying that the two line segments in Figure 8.1
have the same slope, i.e., the lines containing these segments coincide.
In other words, the two points do not have to be very near each other
to be highly correlated, but the /lines they determine through the
origin must be as near coinciding as possible.

If we wish to measure the extent to which the lines do not coincide,

!The usual approach to the correlation coefficient in statistics does not use this
geometrical point of view, but the result is the same,

108 The Language of Computers

we might use the angle 0 between the lines (or some function of the
angle), so that the most highly correlated case would have 6 = 0°.
The measure actually used in statistical work is not the angle 8 itself,
but the cosine of the angle 8. One of the reasons for using the cosine
of the angle rather than the angle itself is that there is a simple for-
mula for the cosine in terms of the original data. This formula
comes directly from the law of cosines in trigonometry. Applied to
the triangle in Figure 8.2, which has
sides of lengths a, 6, and ¢, respec-
tively, the law of cosines states that
a2 _I_ b2 — 02

2ab

(xZ!yZ)
cos @ =

x We may obtain expressions for a,

b, and ¢ by applying the standard

Iigure 8.2 formula for the distance between

any two points whose coordinates

are known. For example, to compute ¢, the distance between (x1,y1)
and (x2,y2), we have

2= (xg — 2)2 + (y2 — y1)*
Therefore, since a = Vx1® + y1%, b = Vx2 + y.?, we have

(x12 + 919 + (x2® 4 997 — [(x2 — x)> + (2 — y1)°]
2 \/x12 + J’l2 \/x22 + y22

cos 0 =

XXy + Yiye
cos =
\/x12 + yﬁ \/x22 -+ y22

This gives us a very simple formula which we can use to measure
how nearly the two lines coincide (or fail to coincide).

If there are three observations (x1,y1,21) and (xs,ys,22) for each of
the two phenomena, we might extend what we have done by plot-
ting the data as two points in three-dimensional space, as in Figure
8.3. The formula used above for the cosine of § may now be used
in its three-dimensional form; so the correlation coefficient 7 now is

The Correlation Coefficient 109

obtained as follows:

y = X1X2 +){3}12 + 2129
V£ F 2t Vit + p F 50

As an illustration, consider the two sets of numbers {1,3,5} and
{2,6,10}. The second set contains numbers which are just twice
the numbers in the first set; so we would expect these sets to be highly

(xl:ylrzl)

/ (xz, Y2 22)

<=
AN
<—=|-—

Figure 8.3

(in fact, perfectly) correlated. Since the cosine of an angle varies
only from —1 to 41, the largest |r| can become is 1, and this repre-
sents an angle whose cosine is 1 (or —1), i.e., = (° (or 6 = 180°).
Our data determine the two points (1,3,5) and (2,6,10), which actu-
ally lie on the same line, as shown in Figure 8.4. Therefore the

(2,6,10)

(1,3,5)

=

/ Y

|
I
|
|
|
|
I
I
|
!
ll
I
|
V/

Figure 8.4

110 The Language of Computers

angle 0 between the lines from the origin to each of the two points
is 0°. Assuming that we do not know this, however, we use the
formula above for r and we obtain

L 1-24+3-6+5-10
V1% + 3% + 52 4/22 + 6% 4 107

. 70 _ 70
/35 V140 /4900

If we now choose another point on the same line, but on the opposite
side of the origin, such as (—3, —9, —15), we would expect to find
r = —1, since # = 180° and cos 180° = —1.

_ 1(=3) +3(=9) + 5(=15)
VIEF 3T+ 52 V(=3)?F + (—9)2 + (—15)*
—105 =105 _
/35 v/9(35) 3(35)

Two sets of data with r = —1 are said to be perfectly negatively corre-
lated. Tt is possible for r to take on any value between —1 and +1,
and the closer |7] is to 1, the better the correlation between the data.’
As another example, suppose we use the points (1,3,5) and (2,6,8)
to represent three observations of two phenomena. These numbers
are almost, but not quite, the same as those illustrated in Figure 8.4.
Since we have moved only one point slightly, we should expect to
find that the two phenomena are still highly correlated, but not per-
fectly correlated. In other words, we would expect the correlation
coefficient to be near +1, but not equal to +1. We find that

o 1-24+3-6+5"8
V1T 4 32 + 57 /22 + 6* + 8°
60
~ /35 V104
60
/3640
= .9945

11n statistics, 72 (sometimes called the coefficient of determination) is the fraction of
the variance in Y which is caused by the variance in X. When 7 = .5, so that
12 = 25, we may say that 25 per cent of the variance in Y is due to the variance in X.

The Correlation Coefficient 111

This is, in fact, the cosine of 6°; so the lines joining the origin to the
points (1,3,5) and (2,6,8), respectively, form an angle of 6° with each
other.

If we now consider the general case of many observations of two
phenomena, we may write the natural generalization of the formulas
we have already seen for . Let us suppose that there are N obser-

vations Xj, X, . . . , Xy for phenomenon X and N observations
Y, Ys . . ., Yy for phenomenon Y. Then we have for r:
X1Y1 "|" X2Y2 "l' e + XNYN

r

VR X A X VYRR Y F Y

(We might talk about N-dimensional space, just as we used two-
dimensional and three-dimensional space to plot our points above,
and even call r the cosine of some angle in this N-dimensional space.
We could even go on to talk about énfinite-dimensional spaces.)

One thing we would like to be able to verify, however, is that 7
still has the property it inherited from the cosine, e.g., |[r| < 1. There
is a very famous inequality, called Schwarz’s inequality, which states

|X1Y1+ T +XNYNI
SVXe2+ - X VY R+ - Y

for all numbers X;, . . ., Xy, Yy, . . ., Yy. If we assume that
not all the X observations are zero and that not all the Y observa-
tions are zero (which was implicitly assumed as soon as we wrote
the formula for r), we may divide both sides of Schwarz’s inequality
by the product of the two square roots on the right. This yields the
inequality |r| < 1.

Now let us move on to the flow diagram and program for comput-
ing r. Since this program would probably be used by other, more
complicated programs, let us write it in the form of an external func-
tion. Afterward we shall consider the form of a program which
would call on this external function. There are several ways to
organize the computation for r. Two different flow diagrams are
exhibited in Figures 8.52 and 8.56. (We use capital letters here in
anticipation of the symbols used later in writing the program.)

The variables SUM, XSUM, and YSUM are used to accumulate
the sum of the products XYy, the sum of the squares of the X’s, and

112 The Language of Computers

the sum of the squares of the Y’s, respectively. The method of
accumulating sums employed here is very commonly used on com-
puters. One starts with zero, and then each term of the sum is
added in turn, until finally the entire sum has been computed.

(Entry)}—» SUM<0 I-1 i

I>N

Y

{False

I~I+1

4
SUM«~ SUM + X ;+Y,

True
I>N
False
> [~1+1
Y
< XSUM«~ XSUM + X12
@-—» YSUM =0 I-1 __>@
True
I>N
False
—> I~I+1
Y
YSUM<~ YSUM + le

R~ SUM/(SQRT.(XSUM)+«SQRT.(YSUM)) L—*CReturn @

i

Figure 8.5a

These two diagrams illustrate that there may be several computa-
tional algorithms, all giving the correct answer, corresponding to
one mathematical algorithm. These computational methods will
usually differ in the amount of computation required, hence in the
time needed to carry out the computation. Sometimes, because of
roundoff error, the answers may actually be slightly different, and

The Correlation Coefficient 113

an entire branch of mathematics, called numerical analysis, is devoted
to the study of efficient methods for computing solutions to various
problems, with particular emphasis on the determination and con-
trol of roundoff and other kinds of errors which occur in numerical
work. In this example the value computed for R in Figure 8.5
will probably be closer to the theoretically correct answer because
the error incurred in computing the square root (and there is always
some error, if only becausc we cannot carry an infinite number of
digits inside the computer) will be incurred only once instead of
twice, as in Figure 8.54. The time needed to compute R (in the

SUM«0
YSUM- 0 ‘ True

False

v

SUM« SUM + X +Y,
XSUM«— XSUM +X 2
YSUM« YSUM + Y;?

@——» R SUM/SQRT.(XSUM+YSUM) | Return R

Figure 8.5b

box involving the square root) will also be less in F igure 8.55, since
the square-root computation, a time-consuming process, is done only
once. Even more important, the so-called red-tape time involved in
incrementing and testing the loop variable three times in F igure 8.5a
is drastically reduced in Figure 8.56. From several points of view,
then, the second diagram provides a much better algorithm. (Com-
parisons are not always this one-sided, however, and the decision as
to which algorithm to use is seldom this easy.) We can see the dif-
ference between the two algorithms again in the corresponding pro-
grams, which are shown in Figures 8.62 and 8.6, respectively. Note
that X and Y have been made arguments to the function, and we
therefore do not include DIMENSION statements for them here.
Since the effect of such statements is to set aside storage for the vec-

114 The Language of Compulters

tor so declared, we leave this to the calling program which will specify
which particular vectors are to be used. Storage space will have’
been allocated in the calling program, and none need be allocated
for these arguments in the external-function definition program.

EXTERNAL FUNCTION (N,X,Y)

ENTRY TO CORR.

SUM = 0

THROUGH LOOP1, FOR I =1,1, I.G.N
LOOP1 SUM = SUM + X(I) *Y(I)

XSUM = 0

THROUGH LOOP2, FOR I =1, 1, I.G.N
LOOP2 XSUM = XSUM + X(I) * X(I)

YSUM = 0

THROUGH LOOP3, FOR I =1, 1, I.G.N
LOOP3 YSUM = YSUM + Y(I) * Y(I)

FUNCTION RETURN SUM/(SQRT.(XSUM) * SQRT.(YSUM))

INTEGER I, N

END OF FUNCTION

Figure 8.6a

EXTERNAL FUNCTION (N,X,Y)
ENTRY TO CORR.

SUM =0
XSUM =0
YSUM = 0

THROUGH LOOP, FOR I=1,1, I.G.N
SUM = SUM + X(I) *Y(I)
KSUM = XSUM + X(I) *X(I)
LOOP YSUM = YSUM + Y(I) *Y(1)
FUNCTION RETURN SUM/SQRT.(XSUM * YSUM)
INTEGER I, N
END OF FUNCTION

Figure 8.6b

8.2 INPUT-OUTPUT STATEMENTS

In all the programs we have considered so far, we have never raised
the question as to how the numbers or letters with which we are
computing are brought into the computer. It is clear that we shall
need some kind of statement which will bring in (or read) some appro-

The Correlation Coefficient 115

priate amount of data. Equally important, we shall need a state-
ment that will cause the computer to produce results of the compu-
tation in some form which will be intelligible to the user.

For input, we shall use the statement

READ DATA

which shall indicate that several numbers shall be brought into the
computer. We shall label each number with the name of the vari-
able for which it is a value, and we shall continue to bring in num-
bers until we encounter a termination mark, such as an #, after one
of the numbers. When this character is brought into the computer,
no more numbers are brought in until a new call for data is executed.
For example, suppose that a program begins with the statement

START READ DATA

and ends by executing the statement

TRANSFER TO START

Each time the program transfers to START, it will execute the
READ DATA statement and read into the computer a sequence of
numbers, until an * is encountered after one of the data values.
Then the remaining numbers, if any, will wait until the next execu-
tion of a READ DATA statement.

It often happens that a program will repeatedly transfer back to
its beginning statements, read a new set of data, and do the same
computation on these new data. In such programs the second set
of data is usually exactly the same as the first set of data except for
a few key numbers. If the program is written so that the numbers
which do not vary from one set of data to the next are not changed
by the computation, then the second (and succeeding) sets of data
may assume that these values are already set properly. Only the
new values need be read in as the second set of data. For example,
in the social security problem which we considered in Chap. 4, the
first set of data would specify the values of WAGES and SALARY
for the first man, and THRESH and RATE as well (see Fig. 4.2).
The second set of data would need to provide new values only for
WAGES and SALARY. The values of THRESH and RATE

116 The Language of Computers

which were previously read in would still be available for the second
set of data.

To keep the rules for preparing the data as simple as possible, let
us use the actual name of the variable to indicate where the value
should go when it is read, and let us write constants just as we do in
the statements of the program. A typical sequence of data values
(terminated by an *) might then be

A=12C03) =4,D=.5%

Any arithmetic that needs to be done on these values can be written
into the program; so there is no need to allow expressions here. We
shall expect a constant on the right of each equal sign. For the same
reason, we shall expect only constant subscripts to be used on the left
side of the equal sign. If we wish to bring in several values for
entries in a vector, such as Q(6) = 1.2, Q(7) = 0, Q(8) = .34,
and Q(9) = —1.03, we may take advantage of their being stored con-
secutively and write Q(6) = 1.2, 0, .34, —1.03.

Our treatment of output will be very similar, except that here we
must provide a list of values to be produced as output. Since most
computers print results on some form of printer or typewriter, let us
write

PRINT RESULTS A, B + C, 3.14, F.(X,Y)

as a typical statement listing four expressions whose values are to be
printed. We shall assume some arbitrarily fixed printing format for
the results, such as six columns of numbers, and we shall stipulate
that every execution of a PRINT RESULTS statement causes print-
ing on a new line.

Two small extensions of the rules for forming expressions (see Sec-
tion 2.4) will be useful here. It is sometimes convenient to print a
comment (such as NO SOLUTION) as part of the output. The
rules given earlier for forming alphabetic constants allow only six
characters, including spaces, between dollar signs (which act like
quotation marks). We shall allow any length alphabetic constant
in PRINT RESULTS statements, so that we can write comments.
Thus, one might write

PRINT RESULTS $NO SOLUTION, INPUT WAS A= §,
A, 8, B =34, , 5, C=4%,C

The Correlation Coefficient 117

to obtain the printed output
NO SOLUTION, INPUT WAS A = 5.6, B =12, C = 0.51

The other change which we shall want to make in the rules for
forming expressions concerns the printing of values of a vector. If
we need to print the values of Q(1), . . ., Q(17), it would be very
convenient if we could write

PRINT RESULTS Q(1), . . ., Q(17)

We shall call this the dlock notation, since it describes a block of stor-
age, and agree that this block notation may be used, but only on
PRINT RESULTS statements.

As an illustration of the use of input and output statements, let
us write a small calling program (Figure 8.7) which makes use of
the correlation coefficient external function CORR. of Figure 8.65:

START READ DATA
PRINT RESULTS CORR.(N,X,Y)
TRANSFER TO START
DIMENSION X(300), Y(300)
INTEGER N
END OF PROGRAM

Figure 8.7

Here we arbitrarily set an upper limit on N of 300 when we used
this figure in dimensioning X and Y. Note that the program as
written continually returns to START to read more data each time
it finishes processing a set of data. The usual procedure is that the
computation stops when there are no more data waiting to be called
in. Then one may vary the number of sets of data at will. We
shall see additional examples of the use of input and output state-
ments later.

PROBLEMS

1. Insert appropriate input (i.e., READ DATA) and output (i.e., PRINT
RESULTS) statements in some of the programs which were developed in
previous chapters. In particular, for those indicated below, the following

118 The Language of Computers

values should be considered results:

Figure Results

3.2 Q(50), Q(25), Q(10), Q(5), Q1)
4.2 WAGES, SALARY, TAX

5.4 CODE(1), . . . , CODE(N)

2. It is usually considered a good idea to print the values of the data
immediately after bringing them into the computer by means of the READ
DATA statement. Why is this a good idea? Modify the three programs
produced for Problem 1 to include this initial printing.

3. One of the most important steps in creating a good computer program
is the check that the program actually works. For an ordinary program,
i.e., not an external function, this amounts to testing the program on several
well-chosen sets of data. For this purpose the data should be chosen to
force the program through as many different paths as possible. For exam-
ple, the social security program should be tested with data which require
that the tax be zero, with data that require that only part of this week’s
earnings be taxed, and with data that require that all this week’s earnings
be taxed. Of special interest are the boundaries, for example, the data
which make

WAGES 4 SALARY

exactly equal to THRESH. The check data should test whether these
boundary situations are treated correctly. Choose appropriate check data
for the following programs:

a. Figure 3.2 (the change problem)

b. Figure 4.2 (the social security problem)

c. Figure 5.4 (the encoding-decoding problem)

4. To check a program which is an external function (see Problem 3),
one must provide an appropriate calling program, as well as data. Con-
struct a test calling program and check data (if needed) for cach of the
following external functions:

a. Figure 6.12 (RAND.)

b. Figure 7.16 (SORT.)

c. Figure 7.36 (SEARCH.)

CHAPTER NINE

A PROGRAM TO PRODUCE PROGRAMS!

9.1 STATEMENT OF THE PROBLEM

ONE OF THE MOST interesting problems one can bring to the computer
is the writing of its own programs. This is not so difficult as it may
sound. We have already seen in Chapter 5 that by means of our
language we have been able to translate sequences of characters into
other sequences of characters. Writing a program is also the gen-
eration of sequences of characters (to make up statements), except
that we need a rule (or algorithm) to determine which sequences to
generate. Using an analogy, suppose we were in the tour depart-
ment of a large automobile club, with the task of providing each
driver with a set of marked maps (i.e., a program) showing his par-
ticular route in great detail. We cannot prepare any set of maps
until we receive a specific request from someone indicating his origin,
his destination, and whatever special conditions he wishes to impose,
such as historical sites, and so on. We can prepare a set of standard
procedures for preparing marked tour maps, however, so that as
soon as a request is received, a map is generated. The standard

! The material in this chapter is drawn largely from an unpublished paper, Gen-
eration of Computer Programs by a Computer, by Robert M. Graham and Bernard

A. Galler.
119

120 The Language of Computers

procedure is an algorithm. 'The result of applying it (i.e., the map)
is again an algorithm—at a different level—telling the tourist how
to proceed along his route.

In this chapter we shall consider a collection of problems, and for
each problem there will be a corresponding program for its solution.
We shall be interested in an algorithm for producing these programs.
(The programs which will result in this way will therefore correspond
to the marked tour maps.) After discovering this algorithm for
producing programs, however, we shall go one step further. We
shall write a program for this algorithm. This will be a program
whose input is a problem description and whose output is a program
to solve that problem. .

The problems we shall be dealing with will be simple networks of
switches, which we shall describe in more detail below. More specif-
ically, the problem will be to determine whether or not a particular
setting of the switches in a network will allow flow through the net-
work. Such problems arise with networks which occur in electric
circuits, railroad switchyards, irrigation canals, and so on. A typical
network might look like Figure 9.1. Here a, b, ¢, and d are switches
which are shown in open position, but which may be closed, also.

s
S
<

Figure 9.1

We shall say that there can be flow through a closed switch, but there
cannot be flow through an open switch. It is clear that in Figure
9.1 there can be flow from so to 1 if and only if a is closed, or d is
closed and either b or ¢ (or both) is closed. We shall study such net-
works and the conditions under which there can be flow for each
network. Although more sophisticated methods are available for
dealing with such networks, we shall aim toward a simple, easily
understood method.

A Program to Produce Programs 121

How complicated will we allow the networks to become? Let us
describe the collection M of networks which we wish to consider in
the same way that we defined arithmetic expressions in Chapter 2.
1. We shall say that switches s1, s3, . . . , s are connected in series
if the output from s; is the input to s;py for i =1,2, . . . k — 1.
Switches connected in series may be pictured as in Figure 9.2. Any
~ collection of switches connected in series will be a network in M.

5L -8 83 o ___/sk
Figure 9.2

2. If Gy and G are networks, we shall say that they are connected
in parallel if they have the same source of input and feed the same
output channel. This can be pictured as in Figure 9.3a. We shall
also say that Gi and G, are connected in series if the output of one net-
work is the input to the other. This can be pictured as in Figure
9.36. Any network formed by connecting, in series or parallel, net-
works already in M will also be in M.

, e
__< _ \— Gy |- G,
" b
(@) ©®)
Figure 9.3a Figure 9.3b

3. The only networks in M are those arising in (1) and (2).

This defines the class M of networks that we shall be considering
here. The reader should now verify that the network in Figure 9.1
is actually in M. For that network we earlier stated the conditions
under which one could have flow: if a is closed, or 4 is closed and
either & or ¢ (or both) is closed. Let us write “A” for the statement
“a is closed,” “B” for the statement “b is closed,” and so on, so that
a value true for A implies that the switch a is closed, and thus there
could be flow. Similarly, false corresponds to an open switch and,
therefore, to no flow. Then, using the computer language which
we have been developing, we may write the flow conditions for Fig-

122 The Language of Computers
ure 9.1 as the expression
A .OR. (D .AND. (B .OR. C))

Now, as soon as we know a particular setting of the switches, such
as a open, b closed, ¢ closed, and d open, we can determine whether
or not there can be flow in the network.

9.2 BOOLEAN VARIABLES

In Chapter 2, we defined Boolean expressions in terms of basic Boolean
expressions. A Boolean expression was obtained by combining basic
Boolean expressions in various ways by means of the connectives
LAND. and .OR. and the use of parentheses. The smallest unit that
could occur on either side of a connective was the basic Boolean
expression, which always consisted of a relation, such as .LE. (less
than or equal) or .NE. (not equal), and an arithmetic expression on
either side of that relation. Now we see that in this network prob-
lem it is very convenient for us to deal with single variables, such
as A, B, C, and D, which represent entire statements and, therefore,
have truth values of their own. It seemed quite natural to write,
as we did above,

A .OR. (D .AND. (B.OR. C))

where we thought of A, B, C, and D as being either true or false.
These variables are neither integer nor noninteger; their values are
logical (or Boolean) values, and they are therefore called Boolean
variables. Let us extend our previous definition of basic Boolean
expression to include Boolean variables. Then the definition of the
general Boolean expression need not be changed at all. The two
definitions would now appear as follows:

A basic Boolean expression is either a Boolean variable or one of the
relations =, #, <, <, >, and > preceded and followed by any
two arithmetic expressions.

1. Basic Boolean expressions and the Boolean constants frue and
false are Boolean expressions.

A Program to Produce Programs 123

2. If ® and ® are already known to be Boolean expressions, then
so are (®), ® .AND. ®, and @ .OR. ®,

3. The only Boolean expressions are those which are generated by
(1) and (2).

Now that we have introduced the Boolean variable, we face the
problem of recognizing one when we meet it in a program. Just as
we found that we had to declare integer variables (and later, state-
ment-label variables), we shall now need to have a way to declare
variables to be Boolean. Since we already have the statements

INTEGER N, J, GCD.
STATEMENT LABEL START, FINISH, GO

we shall introduce the new statement that is analogous to these:
BOOLEAN A, B, C, D, N1, N2

Now let us look at that last example more closely. The switch -
settings a open, & closed, ¢ closed, d open produce the values A false,
B true, C true, and D false. The computation which finds the truth
value of the flow-condition expression given above should be clear
if we go from left to right in Table 9.1. Since the final value is false,

Table 9.1
A B (o] D B.OR.C D .AND. (B.OR.) A .OR. (D .AND. (B.OR. C))
False True | True | False True False False

we would decide that there can be no flow in that network for those
switch settings. The complete truth table for the expression we have
been using as an example appears in Table 9.2. The arrow indicates
the row we have just computed as an example.

It is possible in theory to solve every problem of this kind by con-
structing the truth table, thus giving the behavior of the network for
all possible switch combinations. Since there are 2" rows in a truth
table for n switches, however, it becomes impractical to generate the
entire table for larger networks, but any particular combination of

124 The Language of Computers

switch settings can be used to evaluate the logical expression, as we
did above. What we need, then, is a way to obtain easily the logical
expression from a description of the network. Unfortunately, before
we can discuss an algorithm for generating the logical expression, we
must find a way to describe a network in a simple, but unambiguous
way.

Table 9.2
A B C D A .OR. (D .AND. (B.OR. C}))
True True True True True
True True True False True
True True False True True
True True False False True
True False True True True
True False True False True
True False False True True
True False False False True
False True True True True
False True True False False <
False True False True True
False True False False False
False False True True True
False False True False False
False False False True False
False False False False False

9.3 NETWORK DESCRIPTIONS

It is easy to see that along with the switches, the structure of a net-
work is given by the nodes, i.e., the points at which more than one
line enters or leaves. In order to describe the way the switches in the
network are connected, we may list with each switch the two nodes
on either side of it. Figure 9.4 shows the network of Figure 9.1 with
the nodes labeled 7, ns, n3 and ns. Each switch now has one node

A Program to Produce Programs 125

immediately to its left and one node immediately to its right. We
shall refer to these as the L node and the R node associated with
that switch. If there are two switches connected in series (which
does not happen to occur in this example), we will find it convenient
to introduce a fictitious node between them. This will ensure that
each switch will have its own L node and R node.

~a

So

Iigure 9.4

It is also possible for two nodes to have no switch between them,
for example, nodes ns and n4 in Figure 9.4. We could eliminate n;
entirely and let 7, be the R node for both and ¢. But we would then
have a branch point with no label. On the other hand, we could
handle this situation by inserting a fictitious switch z between n; and
ny and stipulate that this switch is always closed. In other words,
the statement Z, which means “z is closed,” is always true. If we do
this, each branch point is a node, but we have increased the number
of switches. Since none of these reasons seems to be compelling
enough to force us to choose one method over the other, let us develop
an algorithm which will allow both.

Just as we associated the name A with the switch a by letting A be
the statement “a is closed,” let us associate the name Ni with the
node n; by letting Ni be the statement, “There is a path through
which there could be flow through n;.”” Thus, from Figure 9.4, we
see that N1 is true, and N2 is true if N1 is true and D is true (i.e., d is
closed), and so on. In fact, the following statements describe the
network in Figure 9.4 quite well:

N1 = true

N2 = N1 .AND. D

N3 = N2 .AND. (B.OR. C)
N4 = (N1 .AND. A) .OR. N3

126 The Language of Computers

The value (true or false) of N4 is the answer to the problem as to
whether or not there could be flow through the network. For the
case we considered above, where A = false, B = true, C = true, and
D = false, we would have, from the above equations,

N1 = true
N2 = false
N3 = false
N4 = false

so there would be no flow in the network.

It is interesting to observe that since N1 is always frue, the expres-
sion N1 .AND. D is always true if D is true and always false if D is
false. Thus, N1 .AND. D behaves exactly the same as D itself, as
far as its truth value is concerned. We could, if we wished, write
N2 = D in the above set of equations. Similarly, N1 .AND. A may
be replaced by A alone, and we could write the whole set of equations
as follows:

N1 = true

N2 =D

N3 = N2 .AND. (B.OR. C)
N4 = A.OR. N3

If we now substitute D for N2 in the N3 equation, and substitute the
resulting expression for N3 into the last equation, we obtain

N4 = A .OR. (D .AND. (B .OR. C))

and we see that the right side is the expression with which we origi-
nally started (see Table 9.2).

Table 9.3

L node Switch R node

ny
n
3
n2
n3

ng
ng
R3
n3
ny

N OR8N

A Program to Produce Programs 127

Returning now to the need for describing a network by means of
its switches and nodes, we sce that a complete description can be
obtained by listing (in any order) all the switches and, with each
switch, its L. node and R node. Thus the network used as an example
(Figure 9.4) would be described as in Table 9.3.

Now that we have a way to describe a network, we are in a position
to discuss the algorithm which starts with the network description
and generates the equations which we saw above. These equations
were

N1 true

N2 = N1 .AND.D

N3 = N2 .AND. (B.OR. C)
N4 = (N1.AND. A) .OR. N3

We shall later find it useful to write the third equation in a different
way. Table 9.4 shows that the expression

(N2 .AND. B) .OR. (N2 .AND. C)
has the same truth values as the expression
N2 .AND. (B.OR. C)

for all combinations of values of N2, B, and C, and we may therefore
replace one expression by the other in such equations as we have.

Table 9.4
N2 - B C | (N2 .AND. B) .OR. (N2 .AND. C) | N2 .AND. (B.OR. C)
True | True | True True True
True | True | False True True
True | False | True True True
True | False | False False Falge
False | True | True False False
False | True | False False Falge
False | False | True False False
False | False | False False False

128 The Language of Computers

The equivalence of these two expressions with respect to their truth
tables is an example of the distributive law as applied to Boolean con-
nectives. The analogue in ordinary algebra is the law that allows
substitution of the expression

xy+x-z
for the expression

% (y+2)

It is interesting to observe that there is also in Boolean algebra a
second distributive law (i.e., with .AND. and .OR. interchanged)

P .OR. (Q .AND. R) = (P.OR. Q) .AND. (P .OR. R)

which is valid for all values of P, Q, and R. The corresponding
second law in ordinary algebra does not hold for all values of x, y,
and z; i.e., it is not true that for all values of x, y, and 2,

x4+ (y2)=(x+y) (x4 2)

9.4 THE NETWORK ALGORITHM

If we now examine the properties of the equations

N1 = true

N2 = N1 .AND. D

N3 = (N2 .AND. B) .OR. (N2 .AND. Q)
N4 = (N1.AND. A) .OR. N3

we see that the first equation will always have the form N1 = frue,
if ny is the node closest to the source of the flow. We also observe
that each equation involves on the right side only nodes which have
already been represented in a previous equation on the left side, i.e.,
nodes for which we have already computed a value. Finally, each
equation consists of one or more .AND. terms joined by the connective
.OR., and each .AND. term represents a path in the network diagram
which comes from the left into the node represented by the variable
on the left side of the equation. (The form of the third equation
indicates that it represents {wo paths coming into n3 from the left.)

A Program to Produce Programs 129

These properties will serve as a guide in our efforts to construct the
equations from a description of the network.

One slight complication which we must keep in mind is that there
are no rules as to how to number the nodes in the network; so we
cannot assume any sequential ordering of the nodes. Moreover, we
shall have to accept any listing of the switches and the L nodes and
R nodes as a description of the network, regardless of the order in
which they are listed. We could set down detailed rules for the
person who uses these algorithms as to how nodes are to be numbered
and how the switches are to be ordered in the network description.
It is very desirable, however, to place as few restrictions as possible
on the user. Not only do restrictions increase the chance of error
(because of violations of these restrictions, if nothing else), but they
make the use of an algorithm much less attractive. One stipulation
we will make, nevertheless, is that the left-most node shall always
be labeled 7.

In what follows we shall have occasion to refer repeatedly to those
nodes which have been represented on the left sides of previously
generated equations. We shall call such nodes computed nodes. We
have already remarked that each equation (after the first) in the
set which we wish to construct has a node represented on the left
side which is not yet a computed node and all nodes on the right side
of the equation are computed nodes. Let us call the node repre-
sented on the left side of the equation the farget node. Then all the
nodes involved on the right side immediately precede the target node on
various paths coming into the target node. As an example of this,
we see in Figure 9.4 that n; and ns; immediately precede ns on the
two paths coming into ns. Similarly, n; immediately precedes n; on
both the paths coming into n;. Thus, if we find all occurrences of
the target node as an R node in the network description, the L nodes
that occur on the same lines are the nodes which immediately pre-
cede the target node along the paths into the target node.

If ny is the target node, and if n; occurs on a line in the network
description such as

n; S nr

then there can be flow through n; if there can be flow through n; and
if the switch s is closed. Thus, we would expect to find, as part of

130 The Language of Computers
the right side of the equation for Nk, the expression
Nj .AND. S

This would be joined by the connective .OR. to all the other .AND.
expressions arising in the same way. Unfortunately, if even one of
the L. nodes which become involved on the right side of the equation
is not a computed node, the target node cannot be computed by this
equation. We can construct an equation only for a target node
which is not yet a computed node, but which has the property that
all the nodes involved on the right side of the equation are computed
nodes. In other words, whenever the target node occurs as an R
node in the network description, the corresponding L node must be
a computed node. We may now state the complete algorithm for
constructing the appropriate set of equations:

1. Generate the equation
N1 = true

and label the node n; “computed.”

2. In the network description, select as the target node the first
node from the top in the R-node column, say n;, which is not yet
computed, but which has the property that for every occurrence of
nr as an R node, the corresponding L node is a computed node.
(In Table 9.3, we would choose n,, since only n; is computed so far.)
If no target node can be found, i.e., if all nodes are computed, the
process is completed.

3. For each line of the network description containing the chosen
target node n; as an R node, such as

n; s ny

form the expression Nj .AND. S.

Generate the equation having Nk on the left side and having on
the right side all such .AND. expressions, joined by the connective
.OR.. (From Table 9.3 we would generate the equation

N2 = N1,AND. D

A Program to Produce Programs 131

since there is only one occurrence of n, as an R node.) Label ng
“computed.”
4. Repeat steps (2) and (3) until all nodes are “‘computed.”

Applying this algorithm directly to the network which is deseribed
in Table 9.3, we obtain

N1 = true
N2 = N1 .AND. D
N3 = (N2 .AND. B) .OR. (N2 .AND. C)

N4 = (N1 .AND. A) .OR. (N3 .AND. Z)

As we saw earlier, since Z is always true, we may replace
N3 .AND. Z

by N3, since this .AND. expression is tru¢ when N3 is #rue and false
when N3 is false. If we do this, we see that we have our original
equations.

8o
m
4
ne

Figure 9.5

If we had chosen to eliminate the fictitious switch 2z from the net-
work description by not labeling the node n; at all, we might have
labeled the network as in Figure 9.5. The network would then be
described as in Table 9.5.

Table 9.5

L node Switch R node

n
n
nz
ne

ng
ne
ng
ng

o o N8

132 The Language of Computers

If we apply to this network the algorithm stated above for generating
the equations, we obtain the following set of equations:

N1 = true
N2 = N1 .AND.D
N4 = (N1 .AND. A) .OR. (N2 .AND. B) .OR. (N2 .AND. C)

Again noting that N1 .AND. D may be replaced by D, we have
N2 = D, and therefore

N4 = (N1.AND. A) .OR. (D .AND. B) .OR. (D .AND. C)

and this in turn simplifies to

N4 = A .OR. (D .AND. (B .OR. C))

which agrees with the original equation.

Frigure 9.6

As a last example, we shall consider a more complicated network
as shown in Figure 9.6. (Nodes labeled in parentheses have been
eliminated in favor of the node carrying the same label without paren-
theses.) This network would have the description given in Table 9.6.
Applying the algorithm to this network, we obtain

N1 = true
N2 = Ni .AND. A
N3 = N2 .AND. C
N4 = N1 .AND. E
N5 = N1 .AND. G
N6 = (N2 .AND. B) .OR. (N3 .AND. D) .OR. (N4 .AND. F)
.OR. (N5 .AND. H) .OR. (N1 .AND. J)

A Program to Produce Programs 133

We may observe, as we did earlier, that by substituting from the
first five equations into the last, and simplifying, we may obtain a
single equation:

N6 = (A .AND. (B.OR. (C .AND. D))) .OR. (E .AND. F)
.OR. (G .AND. H) .OR. J

This is not really of any concern to us, however, since the set of equa-
tions above furnishes a very feasible procedure for determining

Table 9.6
L node Switch R node
ni a na
ne b Ne
ne ¢ ns
n3 d neg
ny e n4
ny f ng
ny g ng
ns k ng
n J ne

whether there can be flow or not. In fact, the only statements that
are missing from the complete program to compute the possibility
of flow in the network are (see Figure 9.7)

READ DATA
NORMAL MODE IS BOOLEAN

at the beginning and

PRINT RESULTS N6
END OF PROGRAM

at the end. The input data will consist of a complete set of switch
settings for all the nodes in the network, and the result will be #rue
or false, depending on the possibility of flow in the network with the
given switch positions.

134 The Language of Computers

To summarize what has been accomplished so far, then, we may
start with a network such as the one in Figure 9.6, described as in
Table 9.6. Associated with this network is a program, shown in
Figure 9.7. When this program goes to the computer, with it will
go some data. For this program the data will consist of values
(either true or false) for the Boolean variables AB,CD,EF,G,H,

READ DATA

NORMAL MODE IS BOOLEAN

N1 = true

N2 = N1 .AND. A

N3 = N2 .AND. C

N4 = N1 .AND. E

N5 = N1 .AND. G

N6 = (N2 .AND. B) .OR. (N3 .AND. D) .OR. (N4 .AND. F)
1 .OR. (N5.AND. H) .OR. (N1 .AND. I)

PRINT RESULTS N6

END OF PROGRAM

Figure 9.7

and J. Once a set of these values is read into the computer (because
of the execution of the READ DATA statement), the statements
evaluating N1, . . . , N6 will be executed, and finally the value of
N6 will be printed out as the answer.

9.5 THE ALGORITHM FOR GENERATING PROGRAMS

The problem we have set for ourselves is to write a program
whose output is the program in Figure 9.7. This program that
we need should first generate as its output the READ DATA
and NORMAL MODE statements, then follow the algorithm
described above to generate the equations, and conclude by printing
out the last two statements in Figure 9.7.

Let m be the number of rows in the network description. We
shall store the subscripts of the L nodes as the values of a vector L.
In other words, L(4) will be the subscript of the L node in the fourth
row of the network description. In Table 9.6, L(4) = 3. Similarly,

A Program to Produce Programs 135

we shall store as the values of a vector R the subscripts of the R
nodes. Thus, R(2) will be the subscript of the R node in the second
row of the network description. In Table 9.6, R(2) = 6. We shall
also let S(1), . . . , S(m) be the (alphabetic) names of the Boolean
variables associated with the switches. We then have for Table 9.6,
m =9, S(1) = A, S(2) = $BS, . . ., S(8) = HS, and S(9) =
J. The values of m, L(1), . . ., L(m), S(1), . . ., S(m), and
R(1), . . ., R(m) will be read in as data by our equation-generating
program.

We shall need an additional vector, which we shall call P. The
vector P will be used to record which nodes are computed nodes. We
shall set P(1), . . . , P(m) to zero at the beginning of the program,
and whenever a node n; becomes a computed node, we shall set
P(:) = 1, so that it will always be possible to find out very quickly
whether or not any particular node has been computed. The neces-
sary equations will have been generated when the values in the P
vector corresponding to nodes in the network description all have the
value 1.

Figures 9.8 and 9.9 exhibit the flow diagram for the equation-
generating program, while Figure 9.10 shows the program itself.
Before we begin the more detailed discussion of these figures, how-
ever, there is a small point that should be considered.

We have been writing true and false for the values of Boolean vari-
ables, and although this is certainly all right for the present context,
there is no provision in our computer language for small italicized
letters. When we actually need to include these Boolean constants
in statements in the language (such as in the statement N1 = #rue),
we need a representation which is consistent with the kinds of char-
acters which are available in our alphabet. Logicians often use
“T» and “F” for true and false, respectively, but these letters would
look too much like variable names. Sometimes logicians refer to
these constants as 1 and 0, also, but these could be confused with the
ordinary integers 1 and 0. Let us compromise on the following
notation. For true, we shall write “1B”, and for false we shall write
“OB”. Since a variable name can never start with a digit, these
two Boolean constants cannot be confused with anything else. The
statement

N1 = true

9¢t

Start

1
| Read Data l——-»

I-1
I>M
I-I+1

True

False

Print Results > Print Results || Print Results P(1)~1
$READ DATAS $NORMAL MODE IS BOOLEAN$ $N1 = 1B$ FINAL N«1
Print Results Print Results

K>M

—> K-K+1

True | $PRINT RESULTS N§, FINAL N

$END OF PROGRAM$

False

True

PREK)=1

False [True

I>M

F:
> I-1+1 alse

Figure 9.8

A Program to Produce Programs 137

now becomes
N1 =1B

This change has been incorporated into Figures 9.8 and 9.10.

If we look at Figure 9.8, we see that we begin by reading in the
data, which consist of the values of m, L(1), . . ., L(m), S(1),
. +., S(m), and R(1), . . ., R(m). There follows a small loop
which zeros the elements of the vector P. Then we generate the
initial statements of the program which we are producing as the
output of this program. Note that the alphabetic information
between dollar signs constitutes the output. To this point we have
produced the statements

READ DATA
NORMAL MODE IS BOOLEAN
N1 =1B

The next box contains the substitution P(1) <— 1 to record the fact
that n; is now a computed node and also records as the value of the
variable FINAL N the subscript of the last node to be computed.
This is necessary since the final PRINT RESULTS statement in
the program we are producing must name the last node which
was computed. (See Figure 9.7, where ng was the last node to be
computed.)

We now enter the loop which recognizes the next node to be com-
puted, i.e., the target node. Here we encounter for the first time a
subscripted variable of the form P(R(K)). This means: “Take the
integer which is the value of R(K) and use it as a subscript to find a
value in the P vector.” Let us see what meaning this has in our
situation. The variable K will designate which row of the network
description we are considering. Since R(K) is the subscript of the
R node which occurs in the Kth row, P(R(K)) is the number in the
P vector corresponding to that R node. Looking at Table 9.6, for
example, if K = 2, then R(K) = R(2) = 6 (the subscript of n¢) and
P(R(K)) = P(6). The Boolean expression in Figure 9.8

P(R(K)) = 1

implies that the R node in the Kth row is a computed node, and this

138 The Language of Computers

expression will be #rue if that node has been computed and false other-
wise. Using the same example, if ns is a computed node, then P(6)
will have the value 1; otherwise P(6) will have the value 0.

If we find that all R nodes have been computed, the equations
will all have been generated, and we can finish by generating the

Q1)+~ $N3
Q(2)-R(K)
QB)-%=8§
Q(4)— N3
Q(B)+~ L(K)
Je=5

Q(6)- $.AND.$
Q(N—S(K)
J—Jd+2

True J

S(K)=$73

h .| Print Results | | PREK))«1
VoK1 Tree | QL) ..., QW) [FINAL N R(K)
V>M
™ V—V+1
QW +1)~$.0R.$
Q(J +2)—N
QI +3)-L(V)
Je-J+3
Q(J +1)~$.AND.$)
] QD) (8= 578
—J+
True|

Figure 9.9

A Program to Produce Programs 139

statements

PRINT RESULTS N6
END OF PROGRAM

if FINAL N = 6, for example. Assuming, however, that at least
one node, say R(K), is not yet computed, we must now find all
occurrences of this node as an R node and check to see whether the
corresponding L nodes have been computed. If these L nodes have
all been computed, then we are able to generate the equation which
computes the value of the Boolean variable corresponding to this R
node. If any one of the L nodes that is associated with this R node
is not yet computed, we cannot generate the equation. If this hap-
pens, we must move to the next R node that is not yet computed, and
so on. The lower half of Figure 9.8, then, consists of the K loop,
which moves from one R node to another. If P(R(K)) is not 1
[so that the node with subscript R(K) is not yet computed], we move
to the I loop, which looks at each row to see (1) if the R node is the
R node we are considering, and (2) if it is, is the L. node computed
or not [i.e., is P(L(I)) = 0] As soon as a row is found in which
P(L(I)) = 0, so that the L. node is not yet computed, we cannot
construct the equation at all for R(K), and we leave the I loop alto-
gether. and return to increase K by 1 to search for another uncom-
puted node. If all the associated L nodes are computed, we exit in
the normal way to the entry marked 1 in Figure 9.9 to generate the
equation. At this time, we have a value for K which indicates the
row whose R node is about to be computed. Everything that hap-
pens in Figure 9.9 is related to this R node and, therefore, to this
value of K. After we generate the equation for this R node, we
shall return to Figure 9.8 at entry 2. As an example, let us refer
again to the network description given in Table 9.6 and assume that
we have already produced the equations for N1, N2, . . . , N5 by
going to Figure 9.9 for each one. Now we would discover that for
K = 2, P(R(K)) = P(6) = 0, since ns is not yet a computed node.
Since all the other nodes are already computed, we soon enter Figure
9.9 with K = 2 and R(K) = 6 and expect to produce at this time
the equation

N6 = N2 ,AND, B.OR. N3 .AND. D .OR. N4 .AND. F
.OR, N5 ,AND, H,0OR, N1 ,AND, J

140 The Language of Computers

Note that parentheses are not necessary here, because of our conven-
tion that .AND. has a higher precedence ranking than .OR. .

We shall build up the symbols that make up the equation in a
vector called Q and print out the equation only when it is complete,
since we wish the whole equation to appear on the same line of the
printed output. If we printed out each symbol or number when we
determined that it was to be included in the equation, we would find
them printed on different lines, since each PRINT RESULTS
statement prints on a new line. We shall therefore collect the various
symbols and numbers that are to occur in the equation and print
them all out together. If we need the symbol “N” (e.g., as the
first character in the equation), we must therefore put it into the Q
vector. This can be accomplished by the substitution

Q1) « N

Similarly, when we will need an equal sign at a later point, we shall
write

Q@B) «$=%

A vector in which information is collected so as to be treated all
together, for output or for some other purpose, is often called a
buffer. Later we will determine that the entire equation has been
constructed in the buffer, and we will be ready to print it out. The
most efficient way to do this is to print only that part of the Q vector
which this particular equation uses. In this way short equations
will require the printing of only a few values of the Q vector. In
order to know how far an equation extends into the Q vector, let us
remember as the value of a variable J the last subscript used in the
Q vector. Thus, when we have stored symbols or numbers in
Q), . . ., Q(17), J will have the value 17. Moreover, whenever
we add three more entries into the equation, we shall increase J by
3, and so on. At the end of the construction of the equation, we
may simply write

PRINT RESULTS Q(1), . . ., Q)

to print it out.
Table 9.7 shows the contents of the Q vector and the value of J

Table 9.7

26

24 125

23

22

21

19 120

]

(SR I T <]

cegag
£%494%

AR AR

A A A

el e e
oooooo

AAARAAR

2555555

@ NN M

R ARZZLZ

G QQ Q
~ AR MmMMMMMMA
- mmnnnnmnn

£4%4%%%44

5_

NN NNNNNN

b _

CRZZLLAZZZ A

b _

LT T A O I A A |

o _

A=IR IR A - - IR - R -

N

LR A

141

142 The Language of Computers

each time new entries are made during the part of the algorithm
shown in Figure 9.9. The example used in this table is the equation
for ng shown above.

We begin to construct the equation by putting the character “N”
into Q(1), then the value of R(K) goes into Q(2), the equal sign goes
to Q(3), another “N” goes to Q(4), and then Q(5) receives the num-
ber of the L node L(K). At this point J is set to 5, since Q(5) is the
last number to have been placed in the Q vector. Whenever the
switch in the Kth row is the fictitious switch z, we do not generate
the “.AND. Z” part of the right side of the equation. This corre-
sponds to the simplification made above, where we replaced

N3 .AND. Z

by the simpler expression
N3

The decision about z is made in the diamond-shaped box containing
the expression

S(K) = $Z%

The lower half of Figure 9.9 is a large loop which generates the
rest of the equation, if there is any. (The variable which controls
the iteration is V here. It could be any variable that does not already
have a value that is needed, such as K or J. A variable which con-
trols only the loop and has no meaning outside it, such as V here,
is often called a dummy variable.) In this loop we examine each row
below the Kth row for additional occurrences of the node whose
number is R(K). (In our example, we are looking for additional
occurrences of ns.) We check R(V) for each value of V to see if
R(V) = R(K). If this is true, we are not interested in R(V). Ifit
is false, and we have found another occurrence, we add a few more
entries to the Q vector, representing more symbols or numbers which
are to appear in the equation, and increase J accordingly. (Again
we watch out for the switch z. Table 9.6 does not illustrate this point,
but Table 9.3, which contains z in its last row, would make use of this
part of the algorithm when generating the equation for ns.) After
all the occurrences of R(K) have been handled in this way, and after
the equation has been generated by the PRINT RESULTS state-

A Program to Produce Programs 143

ment with the arguments Q(1), . . ., Q@J), we record the new

status of the R node as computed by the substitution P(R(K)) < 1.

We also record as the new value of FINAL N the value of K, as

indicated earlier, and return to Figure 9.8 to look for the next as-yet-

uncomputed R node. Thus, as we indicated earlier, each time we

enter Figure 9.9, we generate one equation and return to Figure 9.8.
When all nodes have been computed, we generate

PRINT RESULTS N

followed by the value of FINAL N, which adds to the statement the
subscript of the last node to be computed. The END OF PRO-
GRAM statement is then generated, and we have as our output a
program such as the one in Figure 9.7.

Figure 9.10 exhibits the program which corresponds very closely
to Figures 9.8 and 9.9. Only one point needs additional comment.
The two separate questions that are asked within the I loop in Figure
9.8 have been consolidated into the one Boolean expression which
appears in the statement labeled C3.

R THIS SECTION CORRESPONDS TO FIGURE 9.8.

NORMAL MODE IS INTEGER

START READ DATA
THROUGH C1, FORI=1,1,1.G. M

C1 PI)y=0
PRINT RESULTS $READ DATAS$
PRINT RESULTS $NORMAL MODE IS BOOLEAN$
PRINT RESULTS §N1 = 1B§
P(1) =1
FINAL N =1

C2 THROUGH C4, FOR K =1,1, K.G.M
WHENEVER P(R(K)) = 1, TRANSFER TO C4
THROUGH C3, FORI=1,1,I1.G.M

c3 WHENEVER R(I) .E. R(K) .AND. P(L(I)) .E. 0, TRANSFER TO
1 4
TRANSFER TO C5
c4 CONTINUE

PRINT RESULTS $PRINT RESULTS N§, FINAL N
PRINT RESULTS $END OF PROGRAMS$
TRANSFER TO START

Figure 9.10

144 The Language of Computers

R THE NEXT SECTION GENERATES THE EQUATIONS
R AND CORRESPONDS TO FIGURE 9.9.

C5 Q1) = §N$
Q(2) = R(K)
Q(3) = $=%
Q(4) = §N$
Q) = L(K)
J=5

WHENEVER S(K) .NE. Z

Q(6) = $.AND. §

Q(7) = S(K)

IT=T+2
END OF CONDITIONAL
THROUGH C6, FOR V=K +1,1, V.G. M
WHENEVER R(V) .NE. R(K), TRANSFER TO C6
QU +1)=$.0R. §

QU + 2) = $N§
QU +3) = L(V)
J=J+3

WHENEVER S(V) .NE. Z
QU +1) = §.AND. §
QU +2) = 8(V)
J=T+2
END OF CONDITIONAL
c6 CONTINUE
PRINT RESULTS Q(1), . . . , QQ)
P(R(K)) = 1
FINAL N = R(K)
TRANSFER TO C2
DIMENSION L(100), R(100), $(100), P(100), Q(500)
END OF PROGRAM

Figure 9.10 (Continued)

PROBLEMS

la. Carry out in detail the algorithm of Figures 9.8 and 9.9 and produce
a program for the network whose description is given in Table 9.8 below.

b. Construct the network from the description in Table 9.8.

2. In Figures 9.8 and 9.9 an algorithm is presented which generates
statements. In particular, the lower half of Figure 9.8 finds all occurrences
as an R node of a given node. This is done in order to apply a test to the

A Program to Produce Programs 145

corresponding L nodes. In the lower half of Figure 9.9, we again search
all R nodes, looking for all occurrences of the same R node as before. This
time we wish to generate the equation. It is rather wasteful to search all
the R nodes a second time, however, and if some record were maintained
of the occurrences of the R node during the first search (i.e., in Figure 9.8),
the second search could be entirely eliminated. Modify the flow diagrams
and the program so that each row (except row K) which contains the current
R node as its R node is remembered in some new auxiliary vector. This
vector can then be consulted in Figure 9.9 when one needs these rows again.
(Do not erase this list for each new R node. Simply place new entries on
top of old ones and keep a count of the length of the current list, just as we
did in the Q vector.)

Table 9.8
L node Switch R node
ni a Ng
ni b ng
ne c nyq
na d n4
n e ns
n3 f N4

3. Another way to handle the question raised in the preceding problem
is to chain together the rows in which we are interested. For example,
suppose rows 5, 7, 17, and 18 all had the target R node as their R nodes.
Let us create a new vector, called C, and start the scarch in Figure 9.8.
When the first of these four rows with the target R node is encountered
(i.e., row 5), we set C(5) = 0 and C(0) = 5. When we come to the next
such row (i.e., row 7), we set C(7) = 5 and C(0) = 7. At the seventeenth
row, we set C(17) = 7 and C(0) = 17. Finally, we sct C(18) = 17 and
C(0) = 18. Note that whenever we encounter some row in this process,
say row k, we set C(k) = C(0) and then C(0) = k. Thus, C(0) always
remembers the last such row encountered, the C entry corresponding to
that row remembers the one before that, and so on, until one of them con-
tains zero [C(5) = 0 in this example]. The final status of the C vector for
this example would be: C(0) = 18, C(5) = 0, C(7) = 5, C(17) =7, and
C(18) = 17. In Figure 9.9 one would simply start with C(0) and unchain
by using row 18, then finding from C(18) that row 17 is next, and so on,
each time watching for a C entry containing zero [i.e., C(5)] as the signal

146 The Language of Computers

to stop. Modify Figures 9.8, 9.9, and 9.10 to use this chaining procedure.
This method would be especially good compared with the original algo-
rithm given in Figures 9.8 and 9.9 if there are many nodes, but few occur-
rences of each one. Why?

4. Let us suppose that someone had been used to writing his simple con-
ditional statements in a somewhat different form before he came across
this book. In his method one would evaluate an arithmetic expression
and would transfer to one of three specified statements, depending on
whether the value of the expression was negative, zero, or positive. Thus,
he might have written

IF (A — B 4 C «D) NEG, ZERO, POS

where the expression to be tested is A — B + C *D and NEG, ZERO,
and POS are statement labels to which transfers are to be made. The
word IF indicates the type of statement, just as we have used WHENEVER.
Using our language, he can achieve the same effect now by writing either

WHENEVER A — B + C D .L. 0, TRANSFER TO NEG
WHENEVER A — B + C «D .E. 0, TRANSFER TO ZERO
TRANSFER TO POS
or
WHENEVER A —-B+ Cx*D.L.0
TRANSFER TO NEG
OR WHENEVER A—-B+ C=*D.E.0
TRANSFER TO ZERO
OTHERWISE
TRANSFER TO POS
END OF CONDITIONAL

or some variation of these. Discover an algorithm which translates his
form to ours. Be sure to allow extra parentheses in the arithmetic expres-
sion. [Hint: Since every left parenthesis must be matched by a right paren-
thesis, the end of the expression occurs when a right parenthesis appears
which matches the first left parenthesis. You can keep a count (starting
at zero) of left parentheses, raising it each time one is encountered and lower-
ing it each time a right parenthesis appears. What must the count be
when you reach the right end of the expression?] Construct a flow diagram
and a program for your algorithm. Assume that there is a vector C(0),
. - ., C(100) into which the IF statement will go when the READ DATA
statement is executed. Assume, also, that the data are such that we will

A Program to Produce Programs 147

have C(0) = $I§, C(1) = F, C(2) = $(8, and so on. In other words,
we may analyze the IF statement which is to be translated into our language
by looking at one character at a time. Furthermore, assume that with
the IF statement, as part of the data, is an integer N which indicates the
total number of characters (counting parentheses, commas, etc.) in the
IF statement. The IF statement may be expected to be free of errors and
to contain no blanks.

CHAPTER TEN

SIMULTANEOUS LINEAR EQUATIONS

10.1 THE GEOMETRIC INTERPRETATION

SoLviNG SETS of two, three, or four simultaneous linear equations
has been a standard part of high school algebra courses for genera-
tions. Although such sets of equations may arise in a great many
physical situations, 2 commonly used example was the mixture prob-
lem: What quantities of two solutions, one 95 per cent pure and
the other 15 per cent pure, must be mixed to obtain 10 gallons of a
45 per cent pure solution? Now one hears reports of problems arising
in the design of nuclear reactors which give rise to 25,000 equations
involving 25,000 variables. These equations usually have some
special properties, such as having no more than six or eight variables
in each equation, and algorithms are developed to take advantage
of these properties. We shall be concerned with the general prob-
lem, and we shall assume no special properties of the equations.

Problems involving simultaneous equations can be interpreted
geometrically. The linear equation involving two variables x» and
y can be represented by a graph which turns out to be a straight line.
In fact, this accounts for the name “linear’”” which is applied to an
equation in which each variable appears with no higherexponent
148

Simultaneous Linear Equations 149

than 1 and in which each term involves at most one variable. When
we plot the graph of a linear equation, we are really plotting the set
of points which satisfy the equation. If there are two variables, we
plot the graph using two coordinate axes, and we obtain a line. If
there are three variables in the equation, such as

3x 4+ 4y + 52 = 60

we plot the graph using three coordinate axes, and we obtain a
plane, part of which is shown in Figure 10.1. When there are more
than three variables, we cannot plot the graph, but we continue to
use terms which suggest the geometric interpretation. Thus, a linear

20 +
3x+4y+52=60

2
|

17 20 y
10/ /
20
X
Figure 10.1

equation in more than three variables is said to be the equation of a
hyperplane, with the prefix hyper used to indicate that there are too
many variables involved to allow one to graph it as a plane.

When we have a set of linear equations to solve simultaneously,
the geometric interpretation suggests that we are searching for a
point (or collection of points) satisfying each of the equations, and
thus lying on each of the lines or planes at the same time. If we have
two equations in three variables, such as

x4+ y+ 2z =
xt+4y —z=

l
[\

150 The Language of Computers

we are asking for the set of points [i.e., triples of numbers (x,9,2)]
satisfying the two equations simultaneously. Since two planes inter-
sect in a line (unless they are parallel), there are an infinite number
of solutions, e.g., all the points on that line. Figure 10.2 illustrates
the intersection of these two planes (with the line of intersection
shown as a dashed line). If a third equation were added to the set,
it would represent another plane. The set of points common to all

T x+y+z=1
1 /Af-x+4y-z=2
// g

Figure 10.2

three planes would be the set of points lying both on the dashed line
in Figure 10.2 and on the new plane. We would therefore be looking
for the intersection of a line and a plane. This is generally a single
point [i.e., a single triple of numbers (x,y,2)], which we then refer to
as the solution of the set of three equations.

It could happen that the first two planes were parallel to cach other,
however, or if they did intersect in a line, that this line either lay
entirely in the third plane or was parallel to it. In either of these
unusual cases, we would not have a single point as the solution.
We would either have no solution (if two of the planes were parallel,
such as planes b and ¢ in Figure 10.3), or we would have an infinite
number of solutions (if the third plane contained the line of intersec-
tion of the first two planes, as in Figure 10.4). In the rest of this

Stmultaneous Linear Equations 151

chapter, we shall be developing an algorithm for the solution of
simultaneous linear equations. We shall have to provide for some

Figure 10.3 Figure 10.4

part of the algorithm to recognize these cases, usually referred to as
degenerate cases.

10.2 ALGORITHMS FOR SIMULTANEOUS LINEAR EQUATIONS

In elementary algebra courses we usually learn several algorithms
which are quite suitable for sets of two or three equations. One
may use graphical techniques actually to plot the lines or planes
involved, or one may use algebraic techniques. One common
algebraic method is sometimes called “substitution,” in which one
solves for a variable, say 2, in one equation and substitutes the result-
ing expression into each of the remaining equations, thereby elimi-
nating z and at the same time reducing the number of equations by
one. If there are two or more equations remaining, the process is
repeated with some other variable. For example, given the set

x+ y+ z=1
x+ 4y — z=2
dx — y+2z=5

152 The Language of Computers
we might solve for z in the first equation,
z=1—x—y
and substitute this into each of the other equations, obtaining

2x 4 5y =

3
2x — 3y =13

Now, solving for x in the first equation,

x = —3%y -+ 34

we substitute into the second equation, obtaining

-8 =0
so the value of y in the solution is 0. Since x = — 9%y + 34, we have
x = 34, and since z = 1— x — y, it follows that z = —14. Thus,

the solution point is (34,0,—14). (This process of finding the other
solution values once one of them is known is called the back solution.)
We shall refer to this example several times as we develop other
methods.

Another method, sometimes called “addition and subtraction,”
consists in adding (or subtracting) multiples of certain rows to (or
from) other rows so as to eliminate one or more variables. Using the
same set of equations as above, this method would proceed as follows:

Given the equations

x+ 3+ z2=1
x4+ 4y - =z 2
4 — y+2z2=5

we subtract the first equation from the second, and we also subtract
four times the first equation from the third equation. This leaves
the following set of equations:

x+ y+ z2=1
3y —2z=1
-5 —2z=1

Stmultaneous Linear Equations 153

Subtracting the second equation from the third now leaves

x+ y+ z=1
Iy —2z=1
—8y =0

From the third equation we now have y = 0. From the second
equation of the last set, we then have z = —14, and from the first
equation x = 34.

There is one assumption which has been made in this method and
which should be made explicit. We have several times modified
an equation in a set of simultaneous linear equations by adding to it
or subtracting from it a multiple of another equation in the set. The
assumption is that the set of solution values does not change. More
explicitly, suppose now that all equations are written with all non-
zero terms on the left side. Then, if we are dealing with three equa-
tions as an example, we may write our set of equations in the following
way:

P(x,y,2) = 0
Q(x,,2) = 0
R(xzy,z) =0

or, using P, Q, and R as abbreviations,

P=90
Q=0
R=0

The assumption is that the set of equations

P=0
Q=0
R—FkP=0

has the same set of solutions as the original set of equations, for every
constant £.

Since this assumption is basic to everything that follows, let us
see how it may be justified. What we must argue is that every solu-
tion of the original set of equations is also a solution of the modified

154 The Language of Compulers

set of equations, and every solution of the modified set is a solution
of the original set. Suppose, then, that (¥,y0,20) is any solution of
the original set of equations, i.e.,

P(x0,90,20) = 0
Q(x0,y0,20) = 0
R(x0,y0,20) = 0

Since R(xo,y0,20) — kP(x0,y0,20) = 0 — k-0 = 0, we see that (xo0,y0,20)
is also a solution of the modified set of equations. On the other hand,
if (¥1,y1,21) is any solution of the modified set of equations, then

P(xlayl,zl) =0
Q(xbylszl) =0
R(xlaybzl) - kP(xbylszl) =0

It is clear, then, that
R(xlaylrzl) = R(xlaybzl) - kP(xl,}’th) =0

so the original set of equations is satisfied by (x1,y1,21) as well. We
see therefore that this operation on sets of simultaneous equations
does not alter the set of solution values.

10.3 THE JORDAN ALGORITHM

We are now faced with the problem of selecting a good algorithm
for machine computation. Of the many available, we shall develop
in some detail the Jordan method, which is based on the addition
and subtraction method discussed above. If we examine the illus-
tration used earlier with the addition and subtraction method, we
see that an attempt was made to pick out coefficients that were con-
venient. Thus, although x was eliminated first (from the second and
third equations), we next eliminated z. The coefficients of z were
equal, thus making it easy to eliminate z by subtraction. Such
scanning of coefficients to find convenient ones is simple for our
eyes, but quite difficult to organize into a computer algorithmn,
especially since we would have to describe operationally what “con-

Stmultaneous Linear Equations 155

venient coefficients” were. Actually, all this scanning for convenient
coeflicients is motivated by our desire to reduce the effort involved
in hand computation. Since computers do arithmetic on large
numbers or numbers with fractional parts just as easily as on small
integers, a great deal of this motivation now disappears. We shall
find it much more worthwhile to obtain a simple algorithm which
requires as little searching for special numbers as possible than to
look for a more complicated algorithm which attempts to find “con-
venient coefficients.”

In order to free ourselves from notation which suggests only two
or three variables, let us restate the problem, using a more general
notation. Starting with a set of » equations in n variables x1, . . . ,
xn, we shall write the equations as follows:

ayx1 -+ aisxs + ¢ gk = ai,n+1
agix1 + asexa + 0 0+ awXa = d2a41
An1X1 + aneXe + 0 aan¥a An,nt1

(Note that the comma used as part of the subscript on the right side
of the equations is there only to help keep the complicated subscript
easy to read. It is not needed with simpler subscripts, and when we
have a particular value for n, say n = 3, we shall WIite @n,nt1 88 @34,
without the comma.) In this notation, when we write a3, we mean
the coefficient of x; in the second equation. Thus, in the example
used above

x+ y+ z2=1
x+4y — z2=2
4x — y+2z2=5
where n = 3, we would have a1 = Qg = 4aig = A14 = A21 = 1,
azs = 4, a3 = —1, asq = 2, and so on. The array of numbers
aiy a2 a3 """ Qa Qlntt

Q1 a2 A3 d2n A2,n41

¢ o e e s e s & s 4 e o & s .

dnt Qne Qpg ' " Qan Qn,ntl

is usually called the matrix of coefficients of the set of simultaneous linear

156 The Language of Computers

equations. 'The matrix of coefficients of the three equations used as
an illustration above is

1 1 1 1
1 4 -1 2
4 —1 2 5

The reason we are interested in this matrix of coefficients is that
almost all the important information needed to solve the equations
is contained in this array. The only information not contained here
is the set of labels #, y, and 2 to be attached to the first, second, and
third columns, respectively. (We shall also have to remember that
there really is an equal sign in front of the right-most column.)
Because so much of the structure of the problem is contained in the
matrix of coefficients, our algorithm will operate entirely on this
matrix. The names of the variables may be attached to the solution
values at the very end.

We note that certain operations on the array (which we shall call
elementary operations) may be performed without changing the set of
solutions to the original equations. For example, we may multiply
(or divide) each number in a row of the array by any constant
(except that we cannot divide by zero). We may do this because
each row represents an equation, and performing this operation on
one of a set of simultaneous equations does not change the set of
solution values. Similarly, we may interchange any two rows with-
out changing the solution. We may even interchange any two
columns except the right-most one, provided we also interchange the
names of the variables attached to these columns. Finally, one of the most
important operations which we shall need, and which does not
change the solution, is adding (or subtracting) a constant multiple
of one row to (or from) another row. This is the operation on the
array which corresponds to the basic operation of the addition and
subtraction method discussed in Section 10.2.

Moving now to the actual algorithm, we might ask first: “Given
the elementary operations which may be performed on the array
without changing the solution values, how shall we best perform these
operations so as to be able to discover the solution? Each elementary
operation transforms the array into a new array. Is there some best

Stmultaneous Linear Equations 157

array toward which we should aim?” Suppose we actually had the
solution values

x1=b1
xz——-bz
X = by

Since these equations can be written as

1% +0x2+ -+ 4+0'%x, = b
O %14+1x+4+ -+ +4+0-x, = by
O x14+0-x 4+ - + 1 Xy = b,

10 «+«+ 0 b
0 1 0 b,
0 0 1 5,

If we could transform the original matrix of coefficients into this final
form, we could read the solution directly from the matrix. (If we
had for some reason interchanged some columns, we would have to
do some matching of names with solution values, but we shall see
later that this is a very straightforward process.) Note that the ones
in the final array are the values of the array entries a1y, ass, A3y « .« .
ann. This set of entries is called the main diagonal. We shall set as
our objective, then, the transformation of the original array into
this final form, which has ones on the main diagonal, the solution
values in the right-most column, and zeros everywhere else. If we
can do this, no back solution will be necessary, since each solution
value may be read directly from the array.

Let us choose as our starting point the upper left corner, i.e., the
entry ai. If we divide the entire first row by a1, we will already
have the desired 1. (We shall be applying the elementary operations
freely now, without always calling attention to their use.) We shall
have to avoid division by zero here, but for the time being, let us
ignore such complications. The next step is to obtain zeros in the

158 The Language of Computers

rest of the first column and/or the rest of the first row (except possi-
bly the right-most entry). Since the operation available to us for
modifying entries in the array deals with entire rows, it would not be
very easy to work within the first row. We may, however, use it to
modify other rows, just as we did in Section 10.2 when we used the
first equation to eliminate x from the second and third equations.
Eliminating x there corresponds exactly to obtaining zero entries in
all but one position in the first column of the matrix of coefficients.
Just as we subtracted four times the first equation from the third
equation, we now subtract a,; times the first row from the second,
as; times the first row from the third row, and so on. (In that
example, a1 = 1 and a3; = 4.) Each time we do this, all the entries
in the rows being modified will probably change, but this should not
concern us, since we obtain the desired zeros in the first column.
If we were to apply the process as we have so far described it to the
array of the example, we obtain the array

1 1 1 1
0 3 =2 1
(0 =5 =2 1

In this method we have so far used one special entry (a;;) in one
special row (the first row). We shall now want to do similar opera-
tions with other rows and other special entries in those rows. The
row being used to modify other rows will be referred to as the oper-
ating row, and the special entry in that row, which will always turn
out to be the entry on the main diagonal, will be called the
pivot entry.

We are now ready to move to the second column. The first
thought might be to use the first row as the operating row again in
order to obtain the zeros one needs in the second column. Unfor-
tunately, any attempt to use the first row to modify others now will
probably introduce nonzero entries into the first column again. If
we use any other row, however, the zero we now have created in the
first column of that row will not modify any of the other numbers
in the first column. The simplest rule is to move to the second row
and divide this row by the (current) value of as,; to obtain a 1 as the
value of the pivot entry. (The values of the second row entries in

Simultaneous Linear Equations 159

the illustration now become
0 1 —24 14

since the pivot entry az; had the value 3.) Then we may use the
second row as the operating row and a4, as the pivot entry to modify
every other row (including the first row) so as to obtain zeros every-
where in the second column except at the pivot entry. Again refer-
ring to the illustration, we see that 1 times the second row is sub-
tracted from the first row, and —5 times the second row is subtracted
from the third row. The illustration matrix now becomes

10 % %
0 1 —24 14
0 0 —1% 8

If we apply the same procedure to the third row of this illustration
matrix, we shall divide the third row by —184, obtaining

10 % %
0 1 -%

0 0 1 =14
We then subtract 34 times the third row from the first row and —24
times the third row from the second row. We then obtain the fol-
lowing array

1 0 0 %
0 1 0 0
0 0 1 -1
from which we may read the solution x = 34,y = 0, z = —14, by

inserting the equal sign and attaching the appropriate names to the
columns.

Still ignoring the question of division by zero, let us describe the
procedure we have developed in terms of the names of the array
entries. For example, dividing an entire row by a number requires
a small loop. The variable of the iteration (j) will be used as the
second subscript of the array entry, since this subscript designates the

160 The Language of Computers

column in which the entry occurs. To divide the first row by ai,
for instance, we might write the flow diagram as in Figure 10.5.
There is a rather subtle error in Figure 10.5, however. To under-
stand this error, one should actually carry out the computation for a
typical first row of an array. This means that a,; should have a
value different from 1, since a;; = 1 is not the typical case. The
trouble with Figure 10.5 is that for j = 1, ay; is really a;;. The very
first division the first time around the loop will compute a new value
(e.g., 1) for ai;. In every iteration of this loop after the first, we
shall use the current value of a;; in the division, i.e., a;1 = 1. Thus,
the effect of the diagram in Figure 10.5 is to set a1 equal to 1 and

j>n+1
Fal)
P je—j+1 a'set ayj—agifan
Figure 10.5

leave every other number unchanged. As an illustration of this
behavior, let us examine in detail what would happen to a typical
first row of some array, such as

10 3 -2 10
if we used the method of Figure 10.5. Forj = 1, we compute

an = 011/011
or ay =1

The value of a1; is now 1, and this will be the value used in the com-
putation that follows. Forj = 2, we have

ais = 012/411
or

012=%

so that
agp = 3

which defeats our purpose in dividing by the pivot entry.

Simultaneous Linear Equations 161

There are two ways out of this dilemma. One way would be to
save the initial value of a1; somewhere else and divide every number
in the row by it. This method is shown in Figure 10.6. Another
method, slightly shorter in execution time, simply starts dividing the

- e — dt—an I

B

False '
> ayeo;fd

A

Figure 10.6

numbers at the right end of the row and moves toward the left. In
this way, the division which destroys ay; is now performed during the
last iteration, and we are not in the position of using the new value
(e.g., 1) for any further divisions. This method, which we shall use,
is shown in Figure 10.7.

There is another point to be made about this particular loop, also.
Dividing the operating-row entries by the pivot entry is an operation
which we shall perform each time we move to another column.
Remember that in each case we shall move to a new operating row

__.....__>j(—n+1 —— - — v
True
< j<1i
L. False
> je—j-1 f— e agifan

:‘l\

Figure 10.7

with its own pivot entry on the main diagonal. It is the value of this
pivot entry which is to be used as the divisor when going through the
loop in order to obtain a 1 in the pivot position. We will, moreover,
have zeros to the left of the pivot entry, and there is no use dividing
these zeros by the pivot entry. The division loop might just as well
start from the right end and move to the left as in Figure 10.7, but
stop after dividing the pivot entry by itself. If we are working on

162 The Language of Computers

the third row, for example, we shall let j start with the value n 4+ 1
and end with the value 3, so that the first value divided by the pivot
entry a3 will be a;,»41 and the last will be a33. In general, if we are
working on the kth row, we shall let j decrease from n -+ 1 to £.
This is shown in Figure 10.8.

-.-—'—)jc—n+1 e Tk
True
j<k
.. Fal
> j—j-1 22 Q= Qi O

A

Figure 10.8

The other important part of this simultaneous-linear-equations
algorithm is the modification of a row by subtracting from it a mul-
tiple of the operating row. If, for example, the operating row is the
second row, and we are going to modify the entries in the third row,
then each of the entries in the third row will have something sub-
tracted from it. We have already seen that what we subtract from
the third row is as. times the second row (so that the new value of
ass will be zero). Therefore, each entry in the third row will have
ass times the corresponding entry in the second row subtracted from
it. Again, we write the diagram in Figure 10.9 for this loop, and

[— N S T § e = -
J True
j>n+l ||
L. False
> jej+1 I G3j¢ A3~ O3y Oy

Figure 10.9

we discover an error in it. Just as we destroyed the divisor in Figure
10.5 during the first time around the loop, we now destroy the value
of a3, except that here ay, is set to zero, In the example we have

Simultaneous Linear Equations 163

been considering, we had the following array at one stage:

|

The next step would be to use the second row to modify the third
row to obtain a zero as the value of ajz,. Using the algorithm of
Figure 10.9, and starting with j = 1, we have a31 = a31 — a32* @21 =
0 — (—5)(0) = 0, and then azs = azs — a3z * azy = (—-5) -
(=5)(1) = 0. Now a3 has the value zero, and this is the value
that will be used in the next computation:

SO\ O\

1 0 34 2
o1 -5 3
0 -5 =2 1

ass = ass — ag2* azs = (—2) — (0)(—2%5) = —2

which is incorrect. Again, to eliminate this difficulty either we may
save the value of a3, or we may start from the right end of the row

True
i<k

L. False | .
jej-1 Qi Qi = Bip Opj

< \

Ifigure 10.10

(i.e., with j = n 4 1) and modify a3, last. We shall choose the sec-
ond alternative again. We may ask now if some simplification such
" as stopping with the column containing the pivot entry will work
here as it did earlier. It will in fact work here, also, since the entries
in the operating row to the left of the pivot entry (if any) are all zero,
and we are therefore not subtracting anything from the entries in
these columns in the row being modified. If we let the kth row be
the operating row and the ith row be the row being modified, we
are now led to the diagram in Figure 10.10. Notice that in Figure
10.10 the number a; is that entry in the ith row (the row being
modified) which is in the same column as the pivot entry ax.. Figure
10.10 should be compared with Figure 10.9, in which? = 3and £ = 2.

164 The Language of Computers

We shall continue to refer to the operating row as the kth row.
The column being cleared to zeros (except in the pivot position) will
automatically be the £th column. The row being modified will con-
tinue to be called the :th row, and the variable that indicates the
column subscript (as in Figures 10.8 and 10.10) will be j. The gen-
eral algorithm (still ignoring division by zero) is shown in Figure
10.11. We begin by bringing in the data for the problem, e.g., the
number of equations n and the matrix of coeflicients a1, @12, . . . ,
a1,n41, A21, 22, « + « 5 A2n41, Q315 - « - 5 Quafl. Now we begin the
overall loop on the variable £, which is going to indicate at the same
time (1) the operating row (the kth row), (2) the pivot entry au, and
(3) the column being cleared to zeros (except for the pivot entry).
After the iteration in which % has the value n, the matrix will have
been transformed into the final form mentioned above, in which
there are 1s on the main diagonal, the solution values in the right-
most column, and zeros everywhere else. Since this algorithm does
not involve interchanging any rows or columns, we may simply print
out the right-most column exactly in order, and these numbers will
be the solution values. As indicated in Figure 10.11, these array
entries are aini1, @2,a41, « - - » dnmt1. 1N the example used above
as an illustration, with n = 3, these would be the numbers a1, = 34,
agoy = 0, and azs = -—%

Once £ has received a value and we are within the scope of the
overall iteration based on £, we have selected an operating row, a
pivot entry, and a column to be cleared to zeros. The first task now
is to divide the entries in the operating row by az to obtain a 1 in
the pivot position. We have already discussed the algorithm needed
to do this, and the next part of Figure 10.11 is just the loop shown
in Figure 10.8. Once this loop is completed, we come to that part
of the algorithimn which uses the operating row to modify each of the
other rows. (We should note that it does not modify itself.) We
now need a loop which will move us from one row to the next, allow-
ing us each time to modify the current row. If we call the row to
be modified the ith row, this means that we need a loop with itera-
tion variable ;. Whenever i receives a value and we move into the
scope of this iteration, we immediately ask whether ¢ = £. If so, we
go back and ask for the next value of 7, since the kth row (i.e., the
operating row) is the one row we do not wish to modify. If ¢ = £,

Simultaneous Linear Equations 165

we have the modification loop discussed above, and the part of the
diagram that follows is the same loop that appeared in Figure 10.10.
After 7 has run through its range of values, we have cleared one
entire column, and it is time to move to the next operating row.

(Start)

-

4 r
Read Data
NyQyyyeees an,,,,,_l
& .| Print Results
ke1 True Qiut1reees Oppil
k>n
hek+1 False

y
W@

False

False

< jen+1

Gej-1

Figure 10.11

We therefore return to the overall loop and increase £ so that the
process can begin again.

I't would be a good idea to do a careful computation on some set
of simultaneous linear equations using this algorithm before going on.

166 The Language of Computers

Set aside some fictitious computer storage locations called i, j, and
k, label the matrix of coefficients a11, a1z, . . . , @n,ny1, and follow
the algorithm in every detail.

10.4 THE DIMENSION STATEMENT FOR ARRAYS

We should now be able to write the program for the Jordan algo-
rithm, except that there is no provision in our language for writing
more than one subscript on an element of a vector. When we intro-
duced vectors in the discussion of the change problem, we always
used one subscript [for example, Q(25)], and the dimension declara-
tion indicated the highest subscript that might occur in the computa-
tion, thereby determining the amount of storage to be set aside for
the vector. Thus, we wrote

DIMENSION Q(50)

which indicated that 51 storage locations should be set aside for Q(0),
Q), . .., Q(50). Now we see that sometimes it is necessary to
describe the entries in this block of storage as a rectangular array
with two subscripts on each entry. In some problems it is necessary
to put three or more subscripts on each entry, thus subdividing the
block of storage even further.

One example of the use of several subscripts is the problem of
allocating shipping facilities, in which x;py.m might represent the
amount of item 7 to be shipped from plant p via warehouse w to cus-
tomer ¢ in month m. In this shipping problem it is actually very con-
venient to be able to change the number of subscripts the entries
will have each time the program is run on the computer. For
example, if an analysis is to be done for only one item during one
month, there is no need to carry the first and last subscripts along.
In this case, one would want to use only three subscripts. Then the
next set of data might need subscripts representing the item and the
month, but it might not have any provision for warehouses, and the
problem would involve only the four subscripts z, p, ¢, and m. . In
order to write a program which could accept as part of the data the
number of subscripts to be used, we must have a very flexible dimen-
sioning procedure.

Simultaneous Linear Equations 167

Another bit of flexibility which is useful is the ability to change
the number of rows (or columns) at any time. For example, in the
shipping problem it might develop during the computation that 12
months is too long a period to consider. The number of months
should be reduced, perhaps to 6. This means that the highest sub-
script to be used is now 5 or 6, depending on the method used for
labeling months. We shall see below what effect this has on the
storage allocation, but the important point here is that one might
need the ability to change the dimension information while executing
the program. If the shipping-problem algorithm is sufficiently com-
plete, it might even determine after computing for some time that
warehouses are not a good idea at all, and the number of subscripts
should be reduced to four during the execution of the program. We shall
not use much of this flexibility in the simultaneous-linear-equations
problem, but we should provide for it when designing a language in
which to express algorithms for a great variety of problems.

There is still the important question of how we should interpret
more than one subscript when we are actually using the storage of
a computer. Earlier we described the storage area as if all the loca-
tions were arranged in a single line, and we used a single subscript
as an indicator to tell how far along this line we were. Even though
we shall use the same storage area of the computer, we shall now be
using more than one subscript. In other words, whether we con-
sider a sequence of numbers stored in the machine to be one long
sequence (i.e., a vector) or whether we consider the sequence to con-
sist of blocks of numbers (i.e., the rows of an array) placed contig-
uously in storage depends only on how we choose to label the indi-
vidual entries. If we label an entry with a single numerical label
indicating how far down the sequence it is from some initial point,
then it is a vector. If we use a pair of numbers to label an entry
(one number to designate the row, the other to designate a position
in the row), we call it an array.

We shall thus find it necessary to know the relationship between
the single subscript we would use for an element if we consider the
sequence to be a vector and the multiple subscripts used for that
same computer location if we think of the sequence as an array. In
most computers, each storage location must be referred to by means
of a single number (called its address), and we may regard each block

168 The Language of Computers

of locations in the storage area as a vector. Multiple subscripts must
then be converted to a single subscript to indicate the position in
that vector. To be more specific, suppose A is a vector with 200
locations set aside for it (allowing subscripts 0 to 199). Suppose,
also, that we store an array of three rows and four columns inside
this vector in the order A1, Ay, A1y, A1y, Agi, Ags, . . ., Ags. This
order implies that we store the first row, then the second row, etc.
We shall say that this array is stored by rows, and we shall agree always
to store arrays in this way. (It does not make much difference
whether we agree to store by rows or by columns, as long as we are
consistent. We have chosen to store arrays by rows.) Arrays with
more than one subscript will always be stored with the right-most
subscript varying first, then the next right-most, etc. If there are
two subscripts, this amounts to storing the array by rows. If there
are three subscripts for an array B, with highest subscripts p, ¢, and

r, respectively, we would have Biyy, Birs, Bug, . . ., Biyy, Buay,
B122, ce ey qur, B211, e ey qur-
If the array Ay, . . ., A is stored so that Aj; coincides with

A(0), then the subscripts line up as shown in Table 10.1.

Table 10.1
Single subscript. ol 1] 2] 3] 4] 5] 6] 7] 8] 910]11
Double subscripts....| 11 | 12 [13| 14 [21 | 22|23 |24 |31 | 32 | 33 | 34

What is the rule which will determine the single subscript, given the
double subscripts? If 7 is the single subscript and j the double sub-
script, then the rule is given by the formula

r=40 -1+ (G—1)

It is easy to test this rule on Table 10.1. For example, if i = 3,
J=2,wehaver = 403 — 1) + (2 — 1) = 9, so that A;, coincides
with A(9). The derivation of the formula is quite straightforward.
The base entry Ay corresponds to A(0). Given any entry A;;, we
must determine how far out into the vector A it lies, i.e., how many
elements of the vector precede it. Since we are storing arrays by
rows it will be necessary to count the number of complete rows that
precede the entry A;; and multiply this count by the number of

Simultaneous Linear Equations 169

entries in each row. (There are i — 1 complete rows, since A;;is in
the /th row.) This will yield the number of elements of the vector
contained in all the complete rows before the ith row. If we add
to this the number of entries which precede A;; in the ith row itself
(i-e., j — 1), we would have the single subscript r we are after. We
see now that in the formula given above for 7, the term 4(; — 1)
represents the number of entries in complete rows, with four entries
per row, and (j — 1) represents the number of entries in that part
of the ith row which precedes A;;. It is interesting to observe that
the formula used here for relating single subscripts to double sub-
scripts does not involve the total number of rows in the array at all.
This is because we have stored the array by rows. If we had stored
it by columns, we would have needed the total number of rows, but
we would not have nceded the total number of columns. We shall
see a similar situation later in the handling of more than two subscripts.

In the example above of a 3 X 4 array A (i.e., three rows and four
columns), we assumed that the base entry A;; was made to coincide
with A(0). What would happen if someone wished to use zero sub-
scripts, such as Ajy, or Agy, or even Ay? If we apply to Age the
formula which we discussed above for finding the single subscript 7,
and if we assume that there are still four columns, we obtain

r=40—-1)+(0—1) = —5

so that Ao corresponds to A(—5), which does not exist. The num-
ber —5 implies, however, that A, should be five storage locations
before A(0). If we would move the whole array over, so that the
base entry Aj; coincides with A(5), then Ay, would coincide with
A(0), and we could allow zero subscripts. We could even allow
negative subscripts, if the base entry A;; were moved far enough along
the vector. (Negative subscripts are very useful when they corre-
spond to physical quantities, such as temperatures, debts, certain
examination scores, etc.) We shall have to modify the formula to
take into account this shifting of the base entry. If 4 is the single
subscript of the base entry Ay;, the new formula will be

r=nG-1)4+ G —1)+ b

where n is the number of columns. The only effect of the shift of

170 The Language of Computers

the base entry is to add the amount b in each single-subscript com-
putation. Using the example above, but putting Ay at A(5), we
would have Table 10.2.

Table 10.2
Single subscript | 5| 6| 7] 8| 9] 10]11]12]|13]14] 15|16
Double subseript....| 11| 12 | 13 | 14 | 21 | 22 |23 | 24 [31| 32| 33 | 34

To this array the following formula would apply:
r=4G-D+G-1D+5
Thus, for Ajs, we would have
r=43-1)+@2—-1)+5=14

showing that As,; now coincides with A(14).

Is there a similar formula for arrays with three subscripts? Using
the same method of counting the number of entries in the array that
precede the entry A;j, we may deduce the following formula for an
array with m rows, n columns, and p layers (the categories for the
third subscript are sometimes called ‘““layers”):

r=mpli —1) 4 pG—1) + k=1 +b

where b is again the shift amount for the base entry A It is an
interesting exercise to write down the derivation of this formula in
detail. Note that the total number of rows m was again not needed
in this formula. The formula for four subscripts for an m X n X
p X q array is now easily derived to be (for A;jkn):

r=npgli — 1) +pgG— 1) + gk =) + R =1 +b

The method used to create such formulas is to subtract one from each
of the subscripts and then multiply each one by the highest values
of each of the subscripts which follow (if any), adding b as usual at
the end. (If we were going to compute this value of r, a more effi-
cient way to write the formula would be

r=qlpnG -+ G-+ G -DI+GR-1) +b

since there are fewer operations to be performed.)

Stmultaneous Linear Equations 171

Let us return now to the question of building all this flexibility
into the dimensioning of arrays in our language. We saw earlier
that the greatest flexibility we could allow would be to let the pro-
gram modify the dimension information during execution. If this is to
be possible, however, this information must be stored in the computer
in such a way that one can write a statement in our language which
can refer to it. We are thus led to the very powerful procedure of
storing this dimension information for an array A (such as the num-
ber of subscripts, the value of 4, etc.) as ordinary integer values of
some other vector, say B, which we shall call the dimension vector for A.
We shall indicate the association between the array A and its dimen-
sion vector B by means of the dimension statement as follows:

DIMENSION A(500,B(0))

which will mean that the highest single subscript to be expected for A
will not exceed 500 (just as for ordinary vectors) and the dimension
information for A will be found starting in B(0), i.e., in B(0), B(1),
etc. The 500 is needed here, as before, to determine the total amount
of storage to be allocated to A. The dimension information stored
in the vector B as ordinary integer values will indicate how the block
of storage for A will be interpreted when subscripts are used. Let us
specify the form in which this information is to be stored. The num-
bers to be stored here are (1) the number of subscripts, (2) the value
of b, and (3) the total number of columns, layers, etc., but not the
total number of rows. The total number of columns will coincide
with the highest subscript for columns, if that subscript starts with 1.
If it ranges from —10 to 420, however, then the total number of
columns is 31. In general, if a subscript varies from a to 4, then the
number we need for the dimension information is 8 — ¢ + 1. Since
most arrays are numbered starting with 1, however, this number
will usually coincide with the highest subscript. Let the dimension
information be stored, then, as follows:

B(0) = number of subscripts
B(1) = b | |

B(2) = total number of columns
B(3) = total number of layers
etc.

172 The Language of Computers

The number of entries here will depend on the number of subscripts.
For example, an array with three rows and four columns might have
the following dimension information:

B(0) = 2
B(1) = 1
B(2) = 4

A vector is really a special case of what we are calling an array,
in that (1) we have just one subscript, (2) the base entry A, is always
at A(1), and (3) there is just one column per rew. Since this infor-
mation is always fixed for a vector, we do not need to store separate
dimension information, and this is indicated in the dimension state-
ment by not putting the name of the dimension vector in the paren-
theses along with the highest subscript. Thus, we wrote

DIMENSION Q(50)

in the change problem. Should we wish to vary the base-entry posi-
tion so as to use negative subscripts on vector elements, we may use
a dimension vector and indicate that there is only one subscript.
The value of b need not be fixed at 1 if we do this, and by making b
large enough we would be able to use negative subscripts. Thus, a
vector for which negative subscripts will be used might have the fol-
lowing dimension statement and dimension vector:

DIMENSION VEC(100,V(0))
V@) =1
V(@) = 50

This would allow the use of negative subscripts down to —50.

It is important to remember that the dimension vector is itself a
vector since we use subscripts for it, and its name must therefore
appear in a dimension statement also, showing the highest subscript
to be used for it. For the case of the vector VEC just above, we
would probably write

DIMENSION VEC(100,V(0))
DIMENSION V(1)

since the highest subscript expected on V is 1. To make such state-
ments more convenient, let us allow the combination of any number

Simultaneous Linear Equations 173

of dimension declarations (in any order) into a single statement.
Thus, we may write

DIMENSION V(1), VEG(100,V/(0))
for this case and
DIMENSION A(500,B(0)), B(2)

for the example mentioned earlier of an array A with three rows and
four columns. There is no need to declare dimension vectors to be
of integer mode, since the kind of values they will have (i.e., integers)
is clear as soon as they appear as dimension vectors in the dimension
statements of other arrays. We may make one other convention to
simplify some of our writing. Since the name of a vector or array
has at present no meaning if it is written without a subscript, let us
give it the meaning of having an implied subscript zero after it. Thus,
the dimension statement

DIMENSION V(1), VEG(100,V/(0))
could be written

DIMENSION V(1), VEG(100,V)

The question of how to write an array name with more than one
subscript raises another point that should be settled. Since we already
have a notation for vectors [i.e., VEC(1), VEC(2), etc.], let us extend
this to include arrays by writing the subscripts between parentheses,
separated by commas. Thus, Az would be written A(3,4). The
number of subscripts should agree with the number indicated in the
dimension vector, although we could always write the appropriate
single subscript (as computed by our formula for r) if we found it
convenient. The subscripts themselves may be any integer expres-
sions, as usual.

10.5 THE VECTOR-VALUES STATEMENT

We have now specified the form of the more general dimension state-
ment and the form of the information which is to go into the dimen-
sion vector, i.e., the number of subscripts, the base-entry shift amount

174 The Language of Compulers

b, and the total number of columns, layers, etc. We have also
described the method of writing multiple subscripts when referring
to one of these array elements, such as A(3,4). Looking ahead to
writing a program which uses these new additions to the language,
however, there is still one question to be answered: How does the
dimension information get into the dimension vector? One way
would be to write a sequence of arithmetic substitution statements,
such as

B(0) = 2
B(1) =1
B(2) = 4

but it is inconvenient to write this much for each array. Even more
important, these instructions take up storage space and take time to
execute. Although this method would work, it is not very desirable.
Another method would be to read in as data all the values needed
for the dimension vector. Thus, early in the execution of each pro-
gram would be a statement

READ DATA

and along with all the other data for the problem, all the dimension
information could be brought in. Although this method allows each
set of data to bring in its own special dimension information, it can
be a nuisance to have to prepare as data any information which will
not change at all. For example, in the simultaneous-equations prob-
lem the total number of columns may change with each set of data,
but not the number of subscripts or the base-entry subscript b.

What we need is a way to say, ‘“‘Here are some values which should
be set in advance for certain vectors. No time should be spent com-
puting these values; they should simply be entered into the computer
at the time the program itself is brought in.”> The writer of the pro-
gram should be able to write his statements as if the information is
already there. We must provide a new declarative statement which
has the job of describing some preset vector values. A convenient
form for this statement is

VECTOR VALUES B =2, 1, 4

Simultaneous Linear Equations 175

The interpretation of this statement is that B [which is really B(0),
according to the convention established in Section 10.4] will be pre-
set to the integer value 2 (meaning two subscripts), B(1) will be pre-
set to the value 1 (the value of 4), and B(2) will be preset to 4 (the
number of columns).

Such a statement will be useful for presetting vectors for many
other purposes, also. This is a convenient way to build into the pro-
gram certain constants which may be needed. We might have
chosen to use this type of statement to preset the values of the coins
in the change problem, for example. In the encoding-decoding
problem of Chapter 5, the standard alphabet could be preset in this
way by writing

VECTOR VALUES STAND = A, $B§, C

and so on. At the time we discussed this alphabet, we had no way
to bring these characters into the computer at all.

Since all entries of any vector are of the same mode, i.e., integer,
noninteger, Boolean, etc., we shall have to stipulate that all values
to be preset into a given vector have the same mode. Moreover,
for some problems it might be useful to preset values in positions
of a vector which are not at the beginning, such as R(6), R(7), etc.
The name of the vector should be allowed to have a constant single
subscript, then, so that values may be preset into any set of contigu-
ous locations within the vector. We might write

VECTOR VALUES R(6) = 1.2, .3, —4.1

which would preset R(6), R(7), and R(8) to the noninteger values
1.2, .3, and —4.1, respectively.

Certain additional information is available in the vector-values
statement. For example, the mode of the values of the vector is
established by the values to which it is being preset. Let us agree,
then, that no mode declaration is necessary for any vector which
appears in a vector-values statement. A program should not be
considered incorrect, however, if it contains more than one (implicit
or explicit) mode declaration for a given vector, provided they all
agree as to which mode it is. Some indication is also available as

176 The Language of Computers

to the total amount of storage needed for a vector which appears in
a vector-values statement. It needs at least enough storage to accept
the values being declared in that statement. Thus, the statement
Jjust above which presets R(6), R(7), and R(8) implies that R is of
noninteger mode and needs to accommodate a subscript at least as
high as 8. We should accept this as implicitly declaring the highest
subscript of R to be 8, i.e., as implying the statement

DIMENSION R(8)

Later, however, we may find the following statement in the program
(these statements, being declarative, may occur anywhere in the
program):

VECTOR VALUES R(17) = 2.1
which implies the effect of the statement
DIMENSION R(17)
Later in the program, we may actually find an explicit declaration
DIMENSION R(50)

Rather than consider these to be conflicting declarations, which
would not be the case, we shall simply use the largest value we find
for that vector, whether implicitly or explicitly declared.

Of the methods described above for putting the dimension infor-
mation into the dimension vector, the most commonly used are (1)
reading it in as data by means of the READ DATA statement and (2)
presetting it via the vector-values statement. As we indicated above
in the shipping problem, however, it is very useful in some programs
to be able to compute new values for some of the information. In
writing the program for the simultaneous linear equations we shall
deliberately use a combination of all three methods to illustrate their
use. The number of rows (n) of the matrix of coefficients will be
read in as data, the number of columns (n 4 1) will be computed
from this input value 7 and stored in the dimension vector, and the
number of subscripts and the value of 4 will be set by a vector-values
statement.

Stmultaneous Linear Equations 177

10.6 THE PROGRAM FOR THE JORDAN ALGORITHM

We are now in a position to write the program corresponding to the
flow diagram of Figure 10.11. The program appears as Figure 10.12.
For easier reference, the flow diagram of Figure 10.11 is reproduced

here.
Note that the box in Figure 10.11 which calls for printing out the

(Start)

-

\ A
Read Data
ByQ1yeees Gppyt
Bl . | Print Results
-
True Qinirserer Cppyl
k>n
) False
Y
jen+1 >
J + True i-1 True
i<k i>n
.. False .. False
> je-j-1 l—=1+1
4
True
False
PA—— j-n+1
True J
i<k
False ,
J—j-1
y

Qi Q= 0y Oy

Figure 10.11

178 The Language of Computers

R THE READ DATA STATEMENT WHICH FOLLOWS
R BRINGS IN THE NUMBER OF EQUATIONS N
R AND THE MATRIX OF COEFFICIENTS A(1,1), . . .,
R A(NN + 1)
INPUT READ DATA
R THE NEXT THREE STATEMENTS SET UP THE
R DIMENSION INFORMATION FOR THE MATRIX
R OF COEFFICIENTS
DIMENSION A(400,B), B(2)
VECTOR VALUES B =2, 1
B2)=N+1
R THE NEXT STATEMENT BEGINS THE JORDAN ALGORITHM
THROUGH LOOP1, FOR K =1, 1, K.G.N
THROUGH LOOP2, FOR] = N+1, —1, J.L.K
LOOP2 A(K)) = AK,J)/AK,K)
THROUGH LOOP1, FOR I =1,1,1.G.N
WHENEVER I .NE. K
THROUGH LOOP3, FOR J=N+1, —1, J.L.K
LOOP3 AT = AQJ)) — ALK) * A(K,J)
LOOP1 END OF CONDITIONAL
THROUGH LOOP4, FOR I =1,1, I.G.N
LOOP4 PRINT RESULTS A(I,N + 1)
TRANSFER TO INPUT
INTEGER N, K, I, J
END OF PROGRAM

Figure 10.12

results has been expanded into an iteration statement
THROUGH LOOP4, FOR I =1,1, I.G.N

and a standard output statement

LOOP4 PRINT RESULTS A(I,N 4 1)

One would normally expect to use the notation A(L,N + 1), . . .,
A(N,N + 1), but this notation always implies that a// storage loca-
tions between the first and last locations as indicated be printed out.
The entries A(I,N + 1), AN + 1), . . . , A(N,N + 1) are not
consecutively stored, since each occurs in a different row.

The question may arise as to why the number of columns (n + 1)

Simultancous Linear Equations 179

was computed by the statement
B(2) = N4 1

instead of being included in the vector-values statement, perhaps in
the following way:

VECTOR VALUES B =2, 1, N+ 1

Unfortunately, all numbers which appear in vector-values statements
must be constants, since they must be preset. Since n + 1 depends
on the value of n which comes in as data, it cannot be preset, and
therefore it must be computed after n comes into the computer along
with the other data.

10.7 THE DIVISION BY ZERO PROBLEM

We have now developed the Jordan algorithm through the flow dia-
gram and the program. There has been one important omission,
however, and that is the case in which the pivot entry on the main
diagonal is zero, causing a division by zero during the loop which
was shown in Figure 10.8. We can always put in a conditional
statement to test whether or not the pivot entry is zero, but we must
decide what to do if it does turn out to be zero. (If it is not zero, we
would go ahead as in the present program.)

An example of a set of simultaneous linear equations in which this
occurs is the following:

Xty 2=3
x4y + 2z =4
28—y — 2=0_

for which there is a solution, viz., x =y = z = 1. If we apply the
Jordan algorithm which we have developed to the matrix of

coeflicients
1 1 1 3
1 1 2 4
2 -1 -1 0

180 The Language of Computers

we obtain the following array after the first row has been used as the
operating row to modify the other two rows:

1 1 1 31
0 0 1 1
0 -3 -3 -6

Now we see that the entry az., which would have been the next pivot
entry, is zero, and the algorithm we have developed would be in
difficulty. One of the points we made earlier, however, is that inter-
changing rows (which amounts to interchanging equations) does
not alter the set of solution values. Using this, we may interchange
the second and third rows to obtain the array

1 1 1 37
0 =3 =3 —6J
0 0 1 1

which no longer has the zero-divisor trouble. Using the new second
row as the operating row leaves the array

1 0 0 1
01 1 2
0 0 11

and using the third row as the operating row now produces the array

1 0 0 1
01 01
00 11

from which the solution x = y = 2 = 1 is easily obtained.

One way out of the zero-divisor dilemma, then, is to find some
other row with a nonzero entry in the column containing the zero
pivot entry and interchange the two rows. The operating row now
does not have a zero on the main diagonal, and the problem is
avoided. It does not do any good to find a nonzero entry in a row
that has already been an operating row (such as the first row in the
example above), because it will have a 1 as its former pivot entry on
the main diagonal, and that 1 would destroy zeros in other rows if
that row were to be used as an operating row again. Thus, we need

Simultaneous Linear Equations 181

to look for nonzero entries below the row in which the zero pivot entry
occurs.

What will happen if all the rows below the one with the zero pivot
entry also have zeros in that column? This is exactly the case we
discussed in Section 10.1 in connection with F igures 10.3 and 10.4,
e.g., the situation in which there was no solution (because the lines
or planes did not meet at all) or the case in which there were too
many solutions (because the planes intersected in an entire line), As
examples of these possibilitics we shall consider the two sets of equa-
tions

x+y+z=23
x+y+z=4
2x—y—2z=0
and
x+ y+ 2=3
3x+3y+32=9

2x— y— z=0

The first set will have no solutions, since the first two equations can
never both be true at the same time. (The corresponding planes
are parallel.) The second set has too many solutions, since the first
two equations represent the same plane, and the first plane therefore
contains the whole line of intersection of the second and third planes.
Note that if we divide the second equation of the second set by 3,
these two sets will differ only on the right side of the equations, and
the trouble we will encounter will be discovered while computing
with the coefficients on the left side only. It follows that whenever
we encounter this zero-divisor difficulty and cannot find any nonzero
pivot entry at all, we shall conclude that there is no unique solution,
but we cannot say whether it is because there are no solutions at all
or because there are too many.! We shall have to modify the pro-

! For those who know about determinants, this inability to find a nonzero pivot
entry means that the determinant of the squarc matrix obtained by using just the
left side of the equations is zero. This can be shown to imply that there is no unique
solution to the equations. We could resolve the question. as to which is the correct
reason, since there is no solution at all if the right side of the equations contains any
nonzero values at all and there are many solutions if the right side containg only
zeros. We shall be content with a comment as to what has happened, however.

182 The Language of Computers

gram exhibited in Figure 10.12 to comment “NO UNIQUE SOLU-
TION? in case this situation arises.

Now let us see how to interchange two rows. Interchanging rows
requires saving one row in temporary storage while moving the other
row. The row that was saved must then be moved to its new posi-
tion. This is very similar to the interchange of two numbers in the
sorting algorithm which we discussed in an earlier chapter. The
statements in the sorting program which accomplished the inter-
change of A(I) and A(J) were

X = A(T)
AD) = AQ)
AQ) =X

Since such moves of entire rows of numbers can be time-consuming,
is there a way to accomplish the same thing without actually moving
so many numbers? The general problem of moving too many things
around in a computer must be considered in other situations as well,
for example, if one is sorting blocks of information according to some
key, or label, attached to each block. We saw earlier that many inter-
changes may be necessary in a sorting computation, and if each
interchange moves many aumbers around, the computation time
becomes prohibitive. A commonly used device is to leave the blocks
where they are and store with the key the location of the block.
Then only the keys are sorted, each one taking with it now not the
block, but its location. When the sorting is done, the blocks have
effectively been sorted, since their keys are in the correct order, and
each one leads immediately to its corresponding block via the block
location. In the process only pairs of numbers were moved, rather
than whole blocks.

A similar device will be useful here, where we wish to avoid mov-
ing entire rows. (The row here corresponds to the block of informa-
tion referred to in the preceding paragraph.) Let us attach a label
to each row, e.g., its row number as a row of the original matrix of
coefficients. Then, in handling the problem of division by zero, we
shall interchange the labels (i.., the row numbers) and leave the
rows themselves where they are. The effect that this will have on
the algorithm is that whenever an entry was identified as being in

Stmultaneous Linear Equations 183

a row, say the third row, it will now be identified as being in the
row whose number is currently the third number. As an example,
let us use the set of equations with the solution x = y = 2z = 1 which
we considered above:

x+y4+ z2=23
x+y+2z=4
2 —y— 2=20

We now must maintain a list of the row labels, with the normal
ordering as the initial setting:

Position | Label
1 1
2 2
3 3

We saw that the matrix of coefficients is transformed into the array

1 1 1 3
0 0 1 1
0 -3 -3 -6.

after the first row is used as the operating row. Now we interchange,
not the second and third rows, but the second and third labels,
giving the following list of row labels:

Position | Label

1 1
2 3
3 2

Since we will now refer to the pivot entry as the entry in the row whose
number is second (rather than the entry in the second row), we shall in
effect be referring to the entry in the third row. Since we are not
interchanging columns here at all, column references will remain
unchanged.

We now need a simple way to refer to the row whose number is
in the third position of a table. This is very similar to the situation

184 The Language of Computers

in Chapter 9, where we needed to refer to a node whose number
was to be found as the R node in another table, e.g., the network
description. Let us suppose that the row labels are stored as the
values of a vector called T (for table). We have at the beginning
of the computation, then, T(1) = 1, T(2) = 2,andsoon. [Itismore
convenient to avoid using T(0) for anything at all this time.] We
might expect to preset these values by means of the statement

VECTOR VALUES T(1) =1,2,3

except that our algorithm is supposed to work for n equations, and
we would not know how many values to preset. We shall therefore
use a loop, determined by n:

THROUGH LOOP, FOR I =1,1, I.G.N
LOOP T() =1

Throughout the program there will be references to entries in the
array, say A(L,J). Now, however, we will not want to refer to an
entry in the Ith row. If I is 3, we will need the third number in the
vector T; i.e., we need the T(3)th row. More generally, instead of
I, we need T(I) as the first subscript. Instead of writing A(LD),
therefore, we shall write A(T(I),J). At the beginning, T(3) =
so the effect will be the same, but once an interchange has been made,
the effect of going through the table will be noticed.

In Figure 10.13 we have the revised program. The following
changes have been incorporated: (1) All row references are now
made via the vector T, as described above. (2) Before dividing by
the pivot entry, a test is made to see if it is zero. If it is, a search is
made of the rest of that column to see if a nonzero entry can be found.
If not, the comment “NO UNIQUE SOLUTION” is printed. If
it can be found, the appropriate row labels (i.e., entries in the vector
T) are interchanged. (3) The vector T is initialized by a small loop,
as indicated earlier. Note that T is described as having highest
subscript 19. This follows from the allocation of 400 locations to
the n X n 41 array A. If n(n + 1) = 400, then n < 19. This
program should be compared with that shown in Figure 10.12.

INPUT

DIVIDE
LOOP2

Z1

FOUND

LOOP3
LOOP1

LOOP4

Stmultancous Linear Equations 185

R THE READ DATA STATEMENT WHICH FOLLOWS
R BRINGS IN THE NUMBER OF EQUATIONS N
R AND THE MATRIX OF COEFFICIENTS A(1,1), . .
R A(N,N 4+ 1)
READ DATA
R THE NEXT THREE STATEMENTS SET UP THE
R DIMENSION INFORMATION FOR THE MATRIX
R OF COEFFICIENTS AND ROW NUMBER TABLE
DIMENSION A(400,B), B(2), T(19)
VECTOR VALUES B =2, 1
B2)=N+1
R THENEXT STATEMENT BEGINS THE JORDAN ALGORITHM
THROUGH Z, FOR I =1,1, I.G.N
TI) =1
THROUGH LOOP1, FOR K =1, 1, K.G.N
WHENEVER A(T(K),K) .NE. 0
THROUGH LOOP2, FOR J =N +1, —1, J.L.K
A(T(K),J) = A(T(K),J)/A(T(K),K)
OTHERWISE
R FIND NONZERO PIVOT ENTRY, IF ANY
THROUGH Z1, TOR I =K +1, 1, I.G.N
WHENEVER A(T(I),K) .NE. 0, TRANSFER TO FOUND
PRINT RESULTS $NO UNIQUE SOLUTION$
TRANSFER TO INPUT
R TRANSFER TO FOUND INDICATES THAT ROW NUMBER
R INTERCHANGE CAN BE MADE, FOLLOWED BY
R NORMAL ROW DIVISION

*

X = T(I)
T(I) = T(K)
T(K) = X

TRANSFER TO DIVIDE
END OF CONDITIONAL
THROUGH LOOP1, FOR I =1, 1, I.G.N
WHENEVER I .NE.K
THROUGH LOOP3, FOR J =N +1, —1, J.L.K
A(TI),J) = A(T(I),J) — A(T(I),K) * A(T(K),J)
END OF CONDITIONAL
THROUGH LOOP4, FOR I =1, 1, I.G.N
PRINT RESULTS A(T(I),N + 1)
TRANSFER TO INPUT
INTEGER N, K, I, J, T, X
END OF PROGRAM

Figure 10.13

186 The Language of Computers

PROBLEMS

1. We saw in Section 10.4 that we could find the single (vector) subscript
r for an array entry if we are given the double subscripts ¢ and j, the single
subscript & for the base entry Ay, and the number of columns 7, according
to the rule

r=aG—1)+G—14+0b

What is the inverse rule, i.e., the rule for finding / and j when r is given,
assuming that # and b are known? Can you derive a more general inverse
rule to handle more than two subscripts? (Hint: Use the MODULO.
function defined in Figure 6.12.)

2. Derive the formula given in Section 10.4 for the single subscript r in
terms of 7, j, and k:

r=mpli— 1) +pG— 1)+ G —1) +5

where the array has m rows, n columns, and p layers.
3. The following two statements occur in a program:

DIMENSION A(150,B)
VECTOR VALUES B = 2, 10, 15

a. How many subscripts can be used with A?

b. How many columns does A have?

c¢. What is the maximum possible value of the row subscript of A in the
program?

d. What value must I have if A(I) and A(3,4) are in the same location?

e. How many locations are reserved for A?

f. What is the mode of the vector B> Why?

4. There is another algorithm for solving sets of simultaneous linear equa-
tions called the Gauss algorithm. This is similar to the Jordan algorithm,
except that instead of clearing to zeros every entry in a column except the
pivot entry, we clear to zero only those entries which lie below the main diagonal.
For the example used earlier

x+ y+ z2=1
x+4y - z2=2
4x — y+2z=5

with the solution x = 34, y = 0, and z = —14, the matrix of coefficients

Simultaneous Linear Equations 187

is transformed into the following array in this case:

1 1 1 1
0 1 —24 14
o 0 1 -l

From the last equation we obtain z = —14 and then a back solution is
needed, just as in the method of addition and subtraction discussed in Sec-
tion 10.2. Modify the flow diagram (Figure 10.11) and program (Figure
10.12) for the Jordan algorithm so that they will represent the Gauss algo-
rithm instead. In this problem you should ignore the possibility of division
by zero.

5. Numerical analysts have shown that the roundoff error is reduced
considerably if the largest entry in the operating row (in absolute value)
is used as the pivot entry. This is due to the fact that all numbers in the
operating row are then less than or equal to 1 (in absolute value) after the
division by the pivot entry. (Dividing a number by a larger number
always produces a number less than 1.) Many programs for the Jordan
algorithm use this as a guide and search out the largest value. They then
interchange columns (or column numbers, as we did row numbers) to make
this largest value the pivot entry. If all entries in a row are zero, there is
no unique solution, since any triple of numbers (xo,y0,20) is a solution to the
equation

0:x4+0:y4+0:-2=0
If this method is used, there is no need for row interchanges at all, since the

zero divisor difficulty is handled by column interchanges. Modify Figures
10.11 and 10.12 to use this method.

CHAPTER ELEVEN

THE MAD LANGUAGE

IN THE PRECEDING chapters we have studied a variety of problems,
and in the process we have described a language which has proved
quite useful for communicating algorithms to computers. One may
very well ask, however, how closely this language corresponds to the
languages actually being used on computers. The purpose of this
chapter and the next is to show how our language is related to some
of the languages in actual use and how these are, in turn, related to
the computer itself. The discussion of these topics must necessarily
be condensed, and we cannot, for example, completely describe the
other languages. We shall try, however, to show how our language
is related to each of them.

It should be quite apparent that many of the decisions we made in
developing this language could have been made differently. For
example, the word WHENEVER which is used in the conditional
statements might have been chosen to be IF instead. Why did we
choose the longer word? One reason is that IF might have been
confused with the name of a variable, whereas WHENEVER could
never be the name of a variable (since it contains more than six
characters). For example, given the conditional statement

WHENEVER A(I4+1,J4+K).L.3
188

The MAD Language 189

let us rewrite it using IF:
IF A0+ 1,7+ K) .L. 3

Remembering that we have decided to ignore blanks completely,
it takes a rather involved analysis to decide that the three letters IFA
at the beginning do not form the name of a variable but are in fact
two separate objects, a word IF indicating the type of sentence and
a variable name A. This difficulty in interpretation is avoided by
choosing the words which indicate the type of sentence in such a
way that they cannot be mistaken for names of variables. We chose
such words as THROUGH, WHENEVER, TRANSFER TO,
DIMENSION, BOOLEAN, EXECUTE, INTERNAL F UNC-
TION, READ DATA, and so on, because they all contain more than
six letters, and they cannot be confused with anything else.

Such decisions have led us to our particular language. Except for
some minor differences, which we shall point out below, this language
is entirely contained in a language called MAD, developed at the
Computing Center of the University of Michigan, and in use since
February, 1960. Almost all the important features of the MAD
language have been described here and included in our language.
We shall briefly describe some of the additional features which we
have not yet seen. Before doing that, however, let us point out
those features of our language which do not exist in MAD.

1. The integer division in our language agrees in every respect
with the greatest-integer function. In other words, 7§ = 2 and
—7 = —3. In MAD, the rule for integer division is that any frac-
tional part that the quotient might have is simply dropped. For
positive numbers the two definitions agree, but for negative numbers
with fractional parts, they do not agree. Thus, for programs written
in the MAD language, 75 = 2, but —7 = —2 instead of —3.
This difference would not have had any effect on the change problem
in Chapter 1, since we were dealing there with positive numbers,
but the program for decoding messages in Chapter 5 would have
to be modified slightly if written in MAD.

2. One cannot use a dimension vector for a vector in MAD. In
other words, a true vector using only one subscript cannot have its
base entry shifted to allow negative subscripts. We saw an example

190 The Language of Computers

of this in our language in Section 10.5 where a vector VEC was
given a dimension vector V by means of the statement

DIMENSION V(1), VEC(100,V)

This is a relatively minor point, and it does not affect any of the prob-
iems we have considered here.

3. In the PRINT RESULTS statement in MAD, one cannot
include comments such as $NO UNIQUE SOLUTIONS$. Another
statement, PRINT COMMENT, is available for this in MAD.

All the other differences between our language and MAD can
be described as additional features available in MAD. Some, but
not all, of these additional features are:

1. Nonintegers (i.e., floating-point numbers) may include an extra
integer which indicates the power of 10 to be used as a scale factor.
This integer is appended with the letter E. Thus, 3.2E—1 =
32 % 10~ = .32, .012E3 = 12., 1.2E—10 = .00000000012, and
4E5 = 400000. The presence of the E indicates that the number
is noninteger, even if the period is omitted.

2. Along with .OR. and .AND., several other Boolean connectives
are available. Three connectives .THEN., .EQV., and .EXOR.
(representing implication, logical equivalence, and the exclusive
or, respectively) are defined by the truth table below (Table 11.1).
Remember that we are now using 1B and OB for true and false,
respectively.

Table 11.1
@ G ® . THEN.® | ® .EQV.®& |® .EXOR.G&
0B 0B 1B 1B 0B
0B 1B 1B 0B 1B
1B 0B 0B 0B 1B
1B 1B 1B 1B 0B

The Boolean unary operation .NOT. is also available in MAD.
It is defined by Table 11.2.
3. There are a few special statements in MAD to enable one to

The MAD Language 191

write internal or external functions which call on themselves. In
other words, it may happen occasionally that within a definition
program for a function, there is a call for that function itself. This
is not allowed in our language.

Table 11.2
@ NOT. @
0B 1B
1B 0B

4. MAD has very general input and output statements, as well as
the READ DATA and PRINT RESULTS statements, which allow
the writer of the program great flexibility in describing the format
of the input on the punched card or other input medium and the
format of the line to be printed or punched as output. For the
purpose of communicating algorithms to the computer, this flexibility
is of minor importance, as we have seen.

5. MAD has facilities for allowing the writer of the program to
organize his variable storage to some extent. Thus, to conserve
storage, he may declare two arrays A and B to be “equivalent” by
means of the statement

EQUIVALENCE (A,B)

which means that they will share the same storage. The writer may
also declare certain variables, vectors, or arrays to be ‘“‘erasable,”
meaning that they are used only as very temporary storage, such
as X is used above in the interchange of two variables. The storage
space allocated to them may be “erased’ in the sense that it may be
shared by external functions that this program may call upon. When
these external functions use that storage space, they will erase any
information previously stored there.

These additional facilities in MAD do not add a great deal to the
language. The language we have discussed in the first 10 chapters
is essentially the same as MAD. From now on we shall refer only
to MAD, and we shall not need to distinguish between the real
MAD language and our language.

CHAPTER TWELVE

OTHER COMPUTER LANGUAGES

12.1 THE LANGUAGE AND THE COMPUTER

In THIS CHAPTER we shall be concerned with some of the other lan-
guages which are available for computers. Before we can appreciate
even the existence of several languages, however, we should consider
the relationship between a language, such as MAD, and the computer.

Throughout this entire study of computer problems and algorithms,
very little mention has been made as to how the statements of the
language would be rendered intelligible to the computer. This ques-
tion was avoided because we were interested in a language which
would be good for expressing algorithms, and we were only indirectly
concerned with the details of actually executing the program on a
machine. We did hint in Chapter 11 at one of the devices used to
make our statements more intelligible when we pointed out why
some words were deliberately chosen to contain more than six
letters. It is very reasonable to ask, however, how a computer does
make sense out of programs such as we have been writing, since
computers normally do not accept as their instructions such statements
as

THROUGH A, FOR I =1, 1, I.G.N
192

Other Computer Languages 193

The physical computer is designed to modify the contents of certain
registers (or storage locations) when its control unit is given an instruc-
tion which causes it to do so. The machine instruction is usually a
number, in which certain digits are interpreted as the operation to
be performed, other digits are interpreted as the address in storage
of the operand (or operands), and other digits might indicate where
the next instruction is to be found. Thus, in the IBM 650 computer,
for example, a typical instruction might be

1512150123

in which the first two digits (15) indicate that the contents of the
location specified by the next four digits (1215) are to be added to
the lower half of the accumulator register. The next four digits
(0123) give the address of the location in storage in which the next
instruction to be executed is stored. Most of these hardware instruc-
tions actually do very little computation. One instruction may
cause a number to be subtracted from another. Another instruction
may cause a number to be moved from one location to another loca-
tion in storage. Still another may instruct the control unit to examine
the contents of some storage location. If the number there is zero,
the next instruction should be skipped; otherwise it should be exe-
cuted. The point is that it normally takes long sequences of such
relatively small instructions to do the computation described in such
statements as

V = SQRT.(—2. * ELOG.(.5 x (1. — .ABS. (1. — 2. * R))))

which we saw in Figure 6.12. As an example, on the IBM 7090
computer this statement might be represented by the hardware
instructions shown in Figure 12.1. [The language used is FAP
(FORTRAN Assembly Program). It is essentially the same as
the hardware language.] On other computers, the sequence might
be much longer.

Where do these sequences of hardware instructions come from
when the computer is presented with one of our MAD programs?
The computer cannot actually execute anything but hardware
instructions; so somehow each MAD program must be franslated into

194 The Language of Computers

LDQ TWO
FMP R
FAD ONE
SSM

FAD ONE
XCA

FMP HALF
TSX ELOG, 4

XCA
FMP TWO
TSX SQRT, 4
STO A"
ONE DEC 1.
TWO DEC —2.
HALF DEC 5
Figure 12.1

the hardware language.! This translation process does not solve
the problem for which the program was written. It takes one repre-
sentation of the algorithm (i.e., a MAD program) and transforms
it into another representation of the same algorithm (i.e., a sequence
of hardware instructions). Each of the two representations serves
a definite purpose. The MAD representation is relatively easy for
a person to write and understand at a later time. It is also quite
easy to find errors, make corrections, and make changes in the
algorithm itself. The hardware representation, however, has the
one great advantage that it is directly intelligible to the computer.

We need a translator, then, which can look at a MAD program
and generate the corresponding hardware instructions. In the early
days of computers, before such languages as MAD were available,
computer users wrote the hardware instructions directly, and they
were (perhaps unconsciously) doing the translation themselves. They
had an idea of the form of the algorithm, and they often had a flow
diagram, but they translated the algorithm into hardware instruc-
tions manually. As these computer users became more sophisticated
in their use of the machine and more aware of its capabilities, lan-

1Some machines are now beginning to appear which can do a limited amount
of computation directly from an arithmetic expression. Statements which control
the order in which other statements are executed, such as iteration statements, must
still be translated into the hardware language of each machine.

Other Computer Languages 195

guages such as MAD and the others to be discussed below were
developed, and with each one a translator program was provided. The
translator program is a set of instructions, usually written in the hard-
ware language (or a language very close to the hardware language).
This program does the translation on the computer from the MAD lan-
guage to the hardware language. The translation is treated as just
another problem to be solved on the computer; the data consist of
our MAD statements, and the results of the computation are hard-
ware instructions. The translator itself is usually called a compiler
(since it compiles sets of hardware instructions), and the language
which it translates (in our case, MAD) is often called an algebraic
language.

The algorithm for carrymg out the translation was developed in
much the same way in which we worked out the algorithms for other
problems in this book, except that the translation problem is much
more complicated than the problems we have discussed. The trans-
lation algorithm was then (manually) translated into the hardware
language of the computer. When the errors had been discovered
and removed, the designers of the language had a translator with
which they could translate programs written in the MAD language
into the hardware language of their computer.

In the sections which follow, we shall discuss FORTRAN and
ALGOL, two other algebraic languages. We shall not attempt to
describe these languages in any detail at all. We are interested only
in making some comparisons between these languages and MAD.

12.2 THE FORTRAN LANGUAGE

One of the first algebraic languages to be developed was FORTRAN
(Formula Translator), produced by the IBM Corporation. The
design of the language and the writing of the translator for the IBM 704
computer were major steps forward in the use of computers at the
time (1956), since almost everyone was using the hardware language
of the computers that existed then. Actually, most people were
using languages which needed to be translated to the hardware lan-
guage, but which were not very far from the hardware language,
anyway. These languages, usually called assembly languages (because
the translator assembled the hardware instructions for them), did

196 The Language of Computers

little beyond allowing one to write
ADD

instead of the numerical code. (The example of a sequence of hard-
ware instructions for the IBM 7090 computer in Section 12.1 was
written in FAP, an assembly language.) On the other hand,
FORTRAN introduced the use of arithmetic expressions such as we
have used in MAD, and the translator for the FORTRAN language
was required to produce many hardware instructions for each state-
ment of the program. FORTRAN is now one of the most widely
used languages in the computer field. Translators have been written
for the FORTRAN language for several computers, and it is safe to
say that FORTRAN will be in use for many years.

Some of the statements of the FORTRAN language are quite
similar to those of the MAD language, but many of the features
which we have found very useful here are not available in FORTRAN.
For example, the language does not include alphabetic constants,
Boolean expressions, compound-conditional statements, or the vec-
tor-values statement. Corresponding to the very general conditional
statements in MAD, which allow one to construct complicated
Boolean expressions and even combine several alternatives by means
of the compound-conditional statement, FORTRAN provides only
the IF statement, which has the form

IF (I—3) 5, 6,7

This is interpreted as follows: If the expression in parentheses (i.e.,
I — 3) is less than zero, transfer to the statement labeled 5; if the
expression is equal to zero, transfer to the statement labeled 6; and
if the expression is greater than zero, transfer to statement 7. (In
FORTRAN all statement labels are integers.)

WHENEVER I.G.J.AND.G .E.1 + 2
A(I) = B(J) + 3.

OR WHENEVER G .E.1.0R.I.GE.J — 2 .AND. G .E. 0
A(I) = BJ)

OTHERWISE
A(I) = B(J) — 3.

END OF CONDITIONAL

C = AQD) *A(D)

INTEGER 1, J, G

Figure 12.2

Other Computer Languages 197

Figure 12.3 shows the FORTRAN program which is needed to
make the decision shown in MAD in Figure 12.2. We have replaced
the variable name G by the name LG, since in FORTRAN one
cannot declare the mode of a variable. Any variable name whose
first letter is I, J, K, L, M, or N is automatically of integer mode,
and all other names are automatically noninteger. The GO TO
statement corresponds to the TRANSFER TO statement in MAD.

IF I-1J) 3,3, 1
1 IF (LG —1—2) 3,2, 3
A(I) = B(J) + 3.
GO TO 8
IF I —J+2) 5 4,4
IF (LG) 5, 6, 5
IF (LG —1) 7, 6, 7
A(I) = B(J)
GO TO 8
A(I) = BJ) — 3.
C = A(I) * A(I)

Figure 12.3

()N, I) N

® 3

The iteration statement in FORTRAN (usually called the DO
statement) has a very restricted form:

DO n K = M;, M, M;

where n is a statement label, K is the iteration variable (integer
mode only), and M;, M;, M; may be either unsigned integer con-
stants or nonsubscripted integer variables. The interpretation is that
the scope consists of the statements which follow, up to and including
the statement labeled n. The scope is to be executed for K = M;,
then K = M, + M3, and so on, incrementing each time by Mj,
until K > M,. (If Mj is omitted, it is assumed to be 1.) Note that
this does not allow one to decrease the iteration variable; it may only
increase. This statement should be contrasted with the two itera-
tion statements in MAD:

THROUGH C, FOR X = X, —X/2, ARG .E. A(Y) .AND. Y .LE. N

which appeared in the program for SEARCH. in Chapter 7 (Figure
7.30), and

THROUGH LOOP1, FOR VALUES OF D = 50, 25, 10, 5, 1

198 The Language of Computers

which was used in Figure 3.2, the program for the change problem.

In order to achieve the action of the first of these MAD iteration
statements, one would have to write in FORTRAN:

1 IF (ARG — A(LY)) 3, 2, 3
2 IF (LY —N) 4, 4, 3
3 [Some block]
of program
LX=1LX/2
GO TO 1
4 [The next statement]

For the second MAD iteration statement, one would probably write
in FORTRAN:

DIMENSION N(5)

N(1) =50
N(2) = 25
N(3) = 10
N@4) =5
N(5) =1
DO1I=1,5
D = N()
[Some block]
of program

1 CONTINUE

Although FORTRAN allows one to write function-definition pro-
grams, these may be written only as external functions or as one-line
internal functions, such as the one-line definition of MODULO. in
Figure 6.12:

INTERNAL FUNCTION MODULO.(Y,Z) =Y — (Y/Z) *» Z

Moreover, the one-line definition, if used, must be at the beginning
of the program. The flexible dimension information which we pro-
vided in MAD does not exist in FORTRAN, either. All subscripts
of vectors and arrays must have positive integer values starting with
1, and once an array is declared to be two-dimensional, it must have
exactly two subscripts each time its name is used. Subscripts must

Other Computer Languages 199

have the form

c1 %0 -+ ¢ or C1 %0 — ¢y

where ¢1 and ¢, are integer constants and v is a nonsubscripted vari-
able. (Either ¢; or ¢; may be omitted, or ¢, may appear alone.)
Examples of the use of such subscripts are B3 *I+ 1), A(4), and
C(I). Unfortunately, this form must be adhered to so strictly that
it is incorrect to write B(1 4+ 3 *I). With this restricted form of
subscript, the MAD statement

A(T@),J) = A(T(D),]) — A(T(I1),K) * A(T(K),J)

which appeared in the program for the Jordan method (Figure 10.13)
would have to be written as follows:

M1 = LT(I)
M2 = LT(K)
AM1,]) = A(ML1,]) — AM1,K) * A(M2,J)

Finally, FORTRAN does not allow expressions to contain both
integer and noninteger terms. Thus, if A is a noninteger variable,
then

A+42

would be considered an error in FORTRAN, while MAD would
convert the 2 to the noninteger form 2.0 automatically.

‘These examples will serve to illustrate the differences between the
MAD and FORTRAN languages. There are differences between
the translators for these languages, also. On those computers for
which there exist both MAD and FORTRAN translators, the MAD
translator is 4 to 20 times as fast as the FORTRAN translator, thus
saving a great deal of computer time during translation. On the
other hand, the FORTRAN translators generally produce a better
- hardware version of the program than MAD, in that the FORTRAN
version usually has up to 20 per cent fewer instructions, and it may
execute (i.e., actually solve the problem) in half the time. Of course,
the time needed to run any program is the sum of the translation
time and the execution time.

Here we see the reason for the existence of several algebraic lan-
guages. Each language (together with its translators) must be judged

200 The Language of Computers

according to several criteria, and no one of them as yet excels in all
areas. These criteria include (1) completeness of the language, in
terms of the ease with which algorithms may be described, (2) effi-
ciency of the translator in doing its translation to the hardware lan-
guage, and (3) length and time of execution of the hardware pro-
gram produced. In addition to these criteria, one must consider
the needs of the person who is using the language. A program which
is expected to undergo constant revisions, such as a program to evalu-
ate various management-decision policies in a large corporation,
must have a translator which does its job very rapidly (since each
revision necessitates another translation). The hardware version of
this program need not execute as rapidly, however, since each revi-
sion will probably not be run on the computer very many times.
This is also true for programs written for a great many scientific
computations.

On the other hand, programs for payroll computation, inventory
control, and other fairly stable applications may be run for many
hours without changing anything except the data. Here it is impor-
tant to obtain an efficient hardware representation of the program,
so that the computer will be used as economically as possible. We
can tolerate a slower, less efficient translator for such programs, if it
is expected to produce good, fast hardware representations.

If we measure MAD and FORTRAN by the three criteria men-
tioned above, we see that MAD is a very fine language for expressing
algorithms, and the translator for MAD is extremely fast. On the
other hand, FORTRAN produces a hardware version of the program
which runs faster on the computer and takes up less of the storage.
Some users will decide that it is to their advantage to use MAD.
Others will decide to use FORTRAN.

It should be noted here that a program called MADTRAN has
been written entirely in the MAD language to translate statements
of the FORTRAN language into corresponding statements of the
MAD language.! Programs originally written in FORTRAN may
now be translated into MAD by the computer, using the MADTRAN
program. For example, the statement

DO 17 1 =4, 16, 2

1 The program was written by Robert F. Rosin of the University of Michigan.

Other Computer Languages 201

translates into
THROUGH S$17, FOR I = 4, 2, [.G. 16

and so on. The most difficult part of this particular translation is
the recognition of the fact that DO17I is not the name of a variable.

As a final example of the similarities and differences between the
MAD and FORTRAN languages, Figure 12.5 shows a FORTRAN
version of the program given in Chapter 7 for the binary search
algorithm called SEARCH. . To make comparison easier, the orig-
inal MAD program is reproduced here as Figure 12.4.

EXTERNAL FUNCTION (N,A,ARG,Y,NOT IN)
INTEGER N, Y, X
ENTRY TO SEARCH.
WHENEVER ARG .L. A(1)
Y=1
TRANSFER TO NOT IN
OR WHENEVER ARG .G. A(N)
Y=N+1
TRANSFER TO NOT IN
END OF CONDITIONAL
B THROUGH B, FOR X =1, X, X .GE.N
Y=X
THROUGH C, FOR X =X, —X/2, ARG .E.A(Y) .AND.Y .LE.N
WHENEVER ARG .L. A(Y) .OR.Y.G.N

Y=Y—-X/2
OTHERWISE
Y=Y+ X/2

END OF CONDITIONAL
WHENEVER X .E. 1, TRANSFER TO D
FUNCTION RETURN Y

D WHENEVER ARG .G.A(Y), Y=Y 41
TRANSFER TO NOT IN
STATEMENT LABEL NOT IN
END OF FUNCTION

Figure 12.4

Since FORTRAN does not allow statement labels or variables of
statement label mode as arguments to functions (i.e., external func-
tions), we shall use another variable M, which we shall set to 0 or 1,
depending on whether ARG is or is not in the table, respectively.
The calling program will have to test the value of M on the return

202 The Language of Computers

to see whether the argument was found in the table or not. More-
over, FORTRAN requires arguments to functions which are arrays
to be dimensioned in the function exactly as they are in the calling
program. Since the calling program for a function intended for
general use is usually unknown, this has hampered somewhat the
writing of general functions in FORTRAN. The name LSRCH is
again due to the mode convention in FORTRAN. Since the value
of Y is returned as the value of the search if ARG is in the table, the
name of the function must be of integer mode.

FUNCTION LSRCH(N,A,ARG,LY,M)
DIMENSION A(100)
IF (ARG — A(1)) 1, 19, 3

1 LY =1
2 M =1
GO TO 16
3 IF (ARG — A(N)) 5, 20, 4
4 LY =N+1
GO TO 2
5 LX =1
6 IF LX—N) 7,8, 8
7 LX =2 *LX
GO TO 6
8 LY =LX

9 IF (LY — N) 10, 10, 11
10 IF (ARG — A(LY)) 11, 15, 12
11 LY =LY — LX/2
GO TO 13
12 LY = LY 4 LX/2
13 IF (LX — 1) 17, 17, 14
14 LX = LX/2
GO TO 9
15 M=0
16 LSRCH = LY
RETURN
17 IF (ARG — A(LY)) 2, 2, 18
18 LY =LY 41
GO TO 2
19 LY =1
GO TO 15
20 LY =N
GO TO 15
END

Figure 12.5

Other Computer Languages 203

Additional information about FORTRAN is available in IBM ref-
erence manuals C28-6000-1 and C28-6003-1.

12.3 THE ALGOL LANGUAGE

'The other important language we shall discuss is ALGOL (Algorithm
Oriented Language). This language was developed by representa-
tives of computer organizations and mathematicians from Europe and
the United States in an attempt to standardize as much as possible
the way in which algorithms are communicated from one person to
another. As a result of several meetings in 1958 and 1960, a descrip-
tion of the reference language was published.! This reference lan-
guage is the standard with which individual interpretations of the
statements of the language may be compared. Such interpretations
may actually depart from this reference language to suit publication
practices, such as writing «, instead of a[6]. Other departures may
have to be made because of the hardware of acomputer. Forexample,
if brackets are not included among the characters acceptable to a par-
ticular computer, the writers of the translator may require in the lan-
guage that 4[6] be written as a(6). We shall consider here only the
reference language.

ALGOL is a relatively recent development as an algebraic language.
It is a very complete and general language, allowing one to write
extremely complicated programs, in some ways going beyond the fea-
tures that are built into MAD. This generality has made it difficult
to create translators for the ALGOL language which do the transla-
tion rapidly enough. Although some success appears imminent in
this area, ALGOL has been more successful as a publication language.
Several journals have adopted it as their official language for pub-
lishing algorithms, and as more people become accustomed to read-
ing it, its use should become quite widespread.

Another area in which ALGOL has had a great influence is in
the design of other algebraic languages, such as MAD. Many of
the features in MAD were patterned after the corresponding features
in ALGOL, in an effort to make translation from ALGOL to MAD
and from MAD to ALGOL as direct as possible. Thus, while there

t Comm. Assoc. for Computing Machinery, vol. 3, no, 5, May, 1960,

204 The Language of Computers

are differences between the two languages, they are far outweighed
by the similarities. For example, in MAD there are two forms of
the iteration statement. One form uses a list of values of the itera-
tion variable, as in the statement

THROUGH LOOP, FOR VALUES OF D = 50, 25, 10, 5, 1
LOOP A(D) = B(D)

The other form uses a termination condition, as in the sequence

THROUGH LOOP1, FOR K =1, 2, K.G.N
LOOP1 A(K) = B(K)

In the ALGOL language there is one very general iteration state-
ment which includes both of the MAD forms as special cases. This
ALGOL statement has the form

for x := &, &, &3 do §

where &, &, and &; represent the various sets of values over which
x ranges and § is the computation in the scope of the iteration.
(The scope § may be a single statement or a sequence of statements,
as we shall explain shortly.) Now, &, &, and & may be any
expressions, so that x takes on one value after another as in the first
MAD form. An example of this is the ALGOL statement

for D := 50, 25, 10, 5, 1 do A[D] := B[D];
Another form which &;, &, and &; may have is
&€ while ®

where & is an expression to be substituted for x each time through
the iteration and ® is a Boolean expression which serves as a continua-
tion condition. This means that the scope is repeatedly executed as
long as ® is true. This form is similar to the second MAD form shown
above, except that MAD uses a termination condition, and the scope
is repeatedly executed until ® is irue. An example of this form is the
ALGOL sequence

x:=1;for x ;= x+ 1 whilex <n 4+ rdoy[x] :=x —r;

Other Computer Languages 205

A third form in which &, &, and &; may occur is the following:
51 step 32 until fFa

where §;, &,, and 3 are expressions representing the initial value of
the iteration variable x, the increment to be added to x after each
execution of the scope, and the final value for x, respectively. This
is illustrated by rewriting the preceding example as follows:

for x := 1step 1 until n + r do y[x] := x — r;

In any iteration statement there may be several such descriptions of
ranges of values for the iteration variable, and they may be in any
or all of the forms we have seen. Thus, one might very well have

for x :=1, 3,5, x + 2 while x < 20, x + 3 step 3
until 35, 39, 40 do y[x] := 0;

One can accomplish the same thing in MAD by breaking this state-
ment into several of the MAD iteration statements, but it is possible
to write it in one statement in ALGOL.

In ALGOL the concept of scope of a statement, such as an iteration
statement or conditional statement, is indicated by using a kind of
“statement parentheses,” e.g., the words begin and end. Thus, the
following compound conditional in MAD

WHENEVER 1.G.J
B(I) = C(I) — 3

X =0
Y=1
OR WHENEVER 1I.E.J
B(I) = C(I)
X =1
Y =0
OTHERWISE
BA) = C(I) + 3
X =0
Y=0

END OF CONDITIONAL

206 The Language of Computers

would appear in ALGOL as

if { > j then begin B[¢] := C[{]] — 3; x:=0; y:=1
end else if ; = j then begin B[{] := C[¢]; x :=1;

9 := 0 end else begin B[] := C[7] + 3;

x =9 := 0 end;

‘This example shows some of the other differences between ALGOL
and MAD, such as the use of the term if instead of WHENEVER, else
if instead of OR WHENEVER, and else instead of OTHERWISE.

There are other differences, of course, but most of them cannot be
described unless we include a complete description of the ALGOL
language. The more basic differences mentioned earlier between
MAD and FORTRAN do not exist here. To illustrate this point,
the program for SEARCH., which appeared in Section 12.2 in both
MAD and FORTRAN, is given in Figure 12.6 in the ALGOL
language. Note that the term procedure is used to represent an
internal function. ALGOL does not have external functions. If
we want to use the same variable name in a procedure and in the
program which calls on the procedure, but still have no connection
between the two occurrences of the name, we would have to declare
the procedure to be a separate block of the program. MAD achieves

integer procedure Search (n, A, arg, y, not in);
value 7, arg; integer n, y; array A;
label not in;
begin integer x; if arg < A(1) then
beginy :=1; go to not in end
else if arg > A(n) then
beginy :=n-+1; go to notin end;
for x := 1,2 X x while x < n do;
y =X
for x := x, x + 2 while arg # A(y) V y > ndo
begin if arg < A(y) V y > n then
yi=y—x+2
elsey 1=y + x + 2;
if x = 1 then go to mark end;
go to out;
mark: if arg > A(y) theny :=y + 1;
go to not in;
out: Search := y end

Figure 12.6

Other Computer Languages 207

this effect by translating external functions separately from the main
program. A variable name used in an external function in MAD
has no relationship to the same name used in the calling program.

The symbol V which appears in the ALGOL program in Figure
12.6 is the Boolean connective or, represented as .OR. in MAD.
In the first for statement of the program, there is no statement to be
executed after the word do (i.e., before the semicolon). This cor-
responds to the empty scope which we obtained in the MAD program
by labeling the iteration statement with its own scope indicator B.

12.4 CONCLUSIONS

We have seen that there are other languages beside our MAD lan-
guage, and we have made some comparisons with two of them. Each
has its strong points and its weak points, and eventually all of them
will be replaced by better languages. The term beiter will imply
different criteria to different people, and we may expect that the
languages yet to be developed will again have their advantages and
disadvantages, which may be quite different from those we have dis-
cussed. The general form of these languages will probably change
slowly, however. We may find statements being executed concur-
rently, for example, once the hardware needed to do this is more
available. But the lessons learned here about the description of
algorithms, the design of a language, and the various techniques,
such as sorting and searching, should be useful for some time, even
if the languages (and machines) do change.

APPENDIX A

SUMMARY OF THE RULES OF THE LANGUAGE

For EASIER REFERENCE, the rules of the language and some of the
definitions are summarized here. They are listed according to the
order in which they appear in the book. If there is any question as to
the interpretation of any of the rules or definitions given here, the
discussion in the appropriate chapter should be consulted.

Chapter 1

DermniTion: The greatest integer function, denoted [x], assigns to
x the largest integer y such thaty < x.

SUBSTITUTION STATEMENT: A statement of the form U = &, where U
is the name of a variable (possibly subscripted) and & is any arith-
metic expression. (This is extended in Chapter 9 to include Boolean
variables on the left and Boolean expressions on the right.)

Chapter 2

DeriniTION: The name of a variable contains one to six capital letters
or digits, the first of which is a letter.

DEFINITION: A numeric constant contains one to eleven digits with or
without a decimal point, and with or without a sign. The constant

is an infeger if it does not contain a decimal point. An alphabetic
209

210 The Language of Computers

constant contains up to six characters (any character except the
dollar sign) preceded and followed by dollar signs.

DEFINITION: An arithmetic expression is defined as follows:

1. Numeric and alphabetic constants and variable names are arith-
metic expressions.

2. If @ and ® are already known to be arithmetic expressions, then
so are the combinations @ + ®, @ — ®, +@&, —@, @ *®, Q/®,
@ .P. ®, .ABS. @, and (@).

3. The only arithmetic expressions are those which are generated
by (1) and (2).

DECLARATIONS:
INTEGER A,B

This indicates that A and B are variables whose values are integers.
NORMAL MODE IS INTEGER

This indicates that all variables (unless declared otherwise) are of
integer mode.

DEFINITION: A basic Boolean expression consists of one of the rela-
tions =, #, <, <, >, and > preceded and followed by any arith-
metic expressions. (This is extended in Chapter 9 to include Boolean
variables.)

DEeFINITION: A Boolean expression is defined as follows:

1. Basic Boolean expressions are Boolean expressions.

2. If ® and ® are already known to be Boolean expressions, then
so are (@), ® .AND. ®, and @ .OR. &.

3. The only Boolean expressions are those which are generated by
(1) and (2).

ParenTHEsIS CONVENTION: When parentheses are omitted in an
expression, the order in which operations are performed is given by
the list:

ABS.

.P.

— (unary)

* /

+, — (binary)

E., NE, L., .LE, .G, .GE.
.AND.

.OR.

Appendix A 211

If two operations with the same position in this list occur in an expres-
sion, the left-most is executed first.

Chapter 3

TuE SiMpLE CONDITIONAL STATEMENT:
WHENEVER ®, §

where ® is a Boolean expression and § is a statement to be executed
if and only if ® has the value true. (Certain statements, such as the
iteration statements and the END OF PROGRAM statement, may
not be used for §.)

THE TRANSFER STATEMENT:
TRANSFER TO @
where @ is a statement label.
THE END OF PROGRAM STATEMENT:
END OF PROGRAM

This must be the last statement in any program (except in external
functions, where END OF FUNCTION is used; see Chapter 6).

AN ITERATION STATEMENT:

THROUGH @, FOR VALUES OF U = &, &

This indicates that the scope of the iteration statement (i.e., the block
of statements following the iteration statement down to and including
the statement labeled @) is executed for each of the values &;, &; of
the variable V. (There may be more than two values.)

Tue DIMENSION STATEMENT:
DIMENSION Q(50)

A block of storage locations is set aside for Q(0), . . . , Q(50).
(This is extended in Chapter 10.)

212 The Language of Computers

Chapter 4
Tue COMPOUND-CONDITIONAL STATEMENT:

WHENEVER ®,

...........
..............

END OF CONDITIONAL

If ®, has the value #rue, the block of statements which follows is exe-
cuted, and then a transfer is made to the first statement following
the END OF CONDITIONAL statement. If ®; is false, ®: is
evaluated, etc. The OTHERWISE statement is treated as an OR
WHENEVER statement containing a Boolean expression which is
always true. (The OR WHENEVER and OTHERWISE sections
need not occur.)

Chapter 5

ANOTHER ITERATION STATEMENT:
THROUGH Q, FOR U = &1, &2 ®

This indicates that the variable U is to be set equal to the value of
the expression &;. If ® is true, then the scope of this iteration state-
ment is not executed. If @ is false, the scope is executed. Then U
is incremented by &3, and ® is evaluated again. The scope is repeat-
edly executed, and U is incremented, until 8 has the value #rue.

DEFINITION: a is congruent to b modulo ¢ (written a = b mod ¢) if
a — b is a multiple of ¢. a is the residue of b modulo ¢ if a == b mod ¢
and 0 < a <.

Chapter 6
THE EXTERNAL-FUNCTION STATEMENT:
EXTERNAL FUNCTION (U,V1,51.,Fe.)

This indicates that the program which follows (and which ends with

Appendix A ' 213

the statement END OF FUNCTION) is an external-function defi-
nition, i.e., a program to be called by another program. The argu-
ments may be variables, names of functions, and/or statement labels.
Occurrences of variables in an external function have no relation at
all to variables with similar names in any other program. The entry
point and name of the function are indicated by the ENTRY TO
statement, and the value returned as the value of the function is
indicated by the FUNCTION RETURN statement.

THE INTERNAL-FUNCTION STATEMENT:
INTERNAL FUNCTION (01,05,F1.,F2.)

An internal function is similar to an external function except that it
is part of another program and may be called only by that program.
Also, variables which are referred to in the internal-function defini-
tion and which are not arguments are assumed to be part of the call-
ing program as well. There is a one-line form of the internal-func-
tion definition:

INTERNAL FUNCTION SQUARE.(X) = X X

If the one-line form is not used, the definition program is similar in
form to that of an external function.

Chapter 7
THE EXECUTE STATEMENT:
EXECUTE ..(01,0s)

This statement indicates that the function-definition program for ;.
is to be executed. Then the next statement in the program is
executed. There may be several arguments in such a function call,
or there may be none. The arguments may be expressions, function
names, and/or statement labels.

DECLARATION:
STATEMENT LABEL ®

This declares ® to be a statement label even though it does not appear
explicitly as the label of some statement.

214 The Language of Computers

Chapter 8
Tue INPUT STATEMENT:
READ DATA

This statement causes data to be read into storage until a terminat-
ing mark (#) is encountered. Each input value is identified by the
name of the variable for which it is the value.

Tue OUTPUT STATEMENT:
PRINT RESULTS &, &

This statement causes the values of the expressions & and & to be
printed. In this case the definition of an alphabetic constant is
extended to include more than six characters between dollar signs
to allow headings and comments to be printed.

Chapter 10
AN EXTENDED DIMENSION STATEMENT:
DIMENSION Q(50,B(3))

This declaration indicates that storage is to be set aside for
Q(0), . . . , Q(50), but additional dimension information about the
array Q will be found in the dimension vecior for Q, e.g., B(3),
B(4), In B(3) will be the number of subscripts to be used
with the name Q, in B(4) the single subscript to be used for the base
element Q(1,1, . . . ,1), in B(5) the number of columns in the array
Q, etc. The vector B is automatically declared to be of integer mode.

THE VECTOR-VALUES STATEMENT:
VECTOR VALUES U = €, Gy, Cs

The vector U is to be preset to the constant values €, €,, €4 (all
of the same mode). The vector U is automatically declared to have
the mode of its values, and it is dimensioned large enough to accept
these values. There may be several constants in such a statement.

APPENDIX B

TRANSLATION TO FORTRAN

.:3;WE POINT ouT in Chapter 12, there are many similarities between
the various computer languages, such as MAD, ALGOL, FOR-
TRAN, GAT, and IT. The language which is most often encoun-
icred on computers at present is FORTRAN, and in this appendix
- ='shall outline some rules for transforming a program written in the
iguage developed here into FORTRAN. This will enable those
-aders who have the FORTRAN language available on a computer
(but not the MAD language) to write programs in our language,
--anslate them to FORTRAN, and run them on that computer.!
If this procedure is to be followed, i.e., programs will be written
with a translation to FORTRAN expected, certain precautions should
be taken, since some of the more powerful features in our language
do.not translate easily (or, in many cases, at all) into FORTRAN.
We shall list here, by chapters, the rules for translating the various
elements of our language into FORTRAN, indicating as we go along
which features should be avoided to allow the translation to be made.
These rules were chosen to make the translation as automatic as pos-
sible, and they may not lead to the most elegant FORTRAN pro-
! Although there are many versions of FORTRAN, the most commonly available

is FORTRAN II, which we shall use.
215

216 The Language of Computers

gram that one could write. The notes which follow for each chapter
assume in each case that the chapter has been read. A complete
example is given in Figure B.1 at the end of this appendix.

Chapter 1

The substitution statement may be translated directly to FOR-

TRAN, subject to the rules which follow in the comments on
Chapter 2.

Chapter 2

1. Delete INTEGER and NORMAL MODE IS INTEGER
statements.

2. All integer variables must begin with one of the letters I, J, K,
L, M, or N. All noninteger variables must not begin with one of
these letters.

3. Alphabetic constants may be translated to FORTRAN by drop-
ping the dollar signs and prefixing a count of the number of char-
acters in the constant and the letter H. Thus, AB% becomes 2HARB.
This should be used with great care, if at all, because such alphabetic
constants are assumed to be noninteger in FORTRAN, and it is easy
to use them incorrectly.

4. Integer division agrees with the greatest-integer function on
nonnegative quotients, so that 74 = 2, but the fractional part of
negative quotients is truncated, so that —74 = —2,

5. Any one expression may not contain both integer terms and
noninteger terms. If at least one variable or constant is noninteger,
then each integer subexpression should be enclosed in parentheses and
preceded by FLOATEF, e.g., FLOATF(I1). Also, in this case, each
integer constant should be followed by a period to make it a non-
integer constant.

6. Replace .P. everywhere by two asterisks, so that A .P. B becomes
A #xB. (If the value of A happens to be negative, FORTRAN com-
putes |A|®.) Exponentiation is an exception to (5) above, in that B
may be an integer expression even if A is not. If A is an integer
expression, however, B must also be an integer expression.

7. At each occurrence of .ABS., enclose in parentheses the expres-
sion to which .ABS. applies, if it is not already enclosed in paren-

Appendix B 217

theses, and replace .ABS. by ABSF if the expression is noninteger,
otherwise by X ABSF.

8. There are no Boolean expressions in FORTRAN. Rules for
translating them from our language are given below (see notes on
Chapter 3).

Examples of the translation of expressions are:

From To
A5 *J 4+ 10) A(5*J 4 10)
B.PI+7J B #x I 4 FLOATF(J)
C+ ABS.(X 4+ Y) C + ABSF(X 4+ Y)

where only I and J are assumed to be of integer mode in MAD.

Chapter 3

1. The TRANSFER TO statement translates directly into the
statement GO TO, but FORTRAN only allows integer statement
labels less than 32,768. (If translation to F ORTRAN is anticipated,
labels should be chosen of the form S12, so that in the translation the
first letter may be dropped.)

2. In FORTRAN only one conditional statement is available, of
the form

IF (A—B) 6, 7,8

where the expression in parentheses (in this example, A — B) is com-
pared to zero and the next statement executed is (in this example)
statement 6, 7, or 8, depending on whether the expression is less than,
equal to, or greater than zero. Table B.1 shows how to translate
our simple conditional to FORTRAN in case the Boolean expression
is a basic Boolean expression, i.c., the connectives .AND. and .OR. are
not involved. In each case, §; is the statement to be executed if the
Boolean expression is true and 82 is the next statement in the program.
In the FORTRAN version, T and F represent the statement labels
(which must be numeric) of the #rue and Jalse jumps, respectively.
If the Boolean expression involves the .AND. and .OR. connectives,
Table B.2 shows how to reduce it to its component parts. By apply-
ing these rules (and those in Table B.1 for basic Boolean expressions),

218 The Language of Computers

one may translate every simple conditional statement into FOR-
TRAN. In Table B.2, statement T represents the frue situation for
the Boolean expression ®;. If the true outlet for ®; must be differ-
ent from Ty, T is used. The same is true for F; and Fs. (In an
actual case, these would be replaced by statement numbers.) The

Table B.1

WHENEVER X .L.Y, IFX—-Y)T,FF
S T &

F S
WHENEVER X .LE. Y, §: IFX-Y)T, T, F
S T St

F Se
WHENEVER X .G. Y, §: IFX-Y)FFT
Se T &

F Se
“WHENEVER X .GE. Y, §: IFX-Y)F T, T
Se T &

F Se
WHENEVER X .E. Y, §: IFX-Y)F T, F
Se T &

F Se
WHENEVER X .NE.Y, § IFX—-Y)T,F T
Se T St

F S

jumps represented by TF, TF, TF in Table B.2 are to be chosen from
the appropriate entry in the table for basic Boolean expressions,
Table B.1.

Table B.2
WHENEVER ®; .OR.®;, §: IF (®:) TF, TF, TF
S F, IF ®,) TF, TF, TF
T, St
F, S2
WHENEVER ®; .AND. ®;, 81 IF ®:) TF, TF, IF
St Ty IF ®,) TF, TF, TF
T2 51
F, Se

Appendix B 219

As an illustration of the use of these tables, we shall translate into
FORTRAN the statements

WHENEVER X .L.Y +3 . AND.I.GE.R, I =1 + 1
TRANSFER TO S13

where X, Y, and R are noninteger variables and I is an integer vari-
able. The result is

IF (X—-Y—3)1,022
1 IF (FLOATF() — R) 2, 3, 3
3 I=1-1
2 GO TO 13

3. The iteration statement which contains a sequence of values of
the iteration variable may be translated by using the computed GO
TO statement in FORTRAN. The following illustration will show
what is done in the translation. Here 81 and §, form the scope of
the iteration, and §; is the next statement to be executed.

THROUGH 8§12, FOR VALUES OF V = X, X + 4., X — 4.

S1
S12 &
Ss
This is translated to the following FORTRAN sequence:
V=X
I=1
GO TO 30
10 V=X +4.
I=2
GO TO 30
20 V=X — 14,
I=3
30 S1
12 8,
GO TO (10,20,40), I
40 g

Here it is assumed that I is an integer variable which is introduced
into the FORTRAN program just for this purpose. Its value picks
out which statement in its list is to be executed next after the GO TO

220 The Language of Computers

statement. Every statement that may be selected by I must appear
in the list.

4. The DIMENSION statement need not be changed in the trans-
lation to FORTRAN, but the zero subscript must not be used for any
vector. Moreover, the only legal subscript expressions in FORTRAN
are those of the form c¢; * v -+ ¢2 or ¢1 ¥ — ¢2, where ¢; and ¢y are
integer constants or are omitted and v is a nonsubscripted integer
variable. Thus 3 *I1 4 5 is a legal subscript, but 5 4+ 3 =11 is
not. The DIMENSION statement must precede the first use of
the array.

5. The END OF PROGRAM statement is translated into the
statement END. (Individual computing installations may require
slight variations of this statement.)

Chapter 4

1. The compound conditional does not exist in FORTRAN, but
it may be translated by using the same tables and conventions given
above for the simple conditional. The following example will illus-
trate the translation procedure. We wish to translate the compound
conditional:

WHENEVER &,

S1

OR WHENEVER ®,

Se

OTHERWISE

83

END OF CONDITIONAL
S4

The corresponding FORTRAN sequence is
IF (®,) TF, TF, TF

T St
GO TO 3
F, IF (®;) TF, TF, TF
T, 8§
GO TO 3
F, 8s

3 8

Appendix B 221

A specific example of the treatment of the compound conditional
would appear as follows:

WHENEVER X .L.Y + 3.
X =B+1.
TRANSFER TO S7
OR WHENEVER X .E.Y + 3. .OR.I.GE.R
X =2.%B
TRANSFER. TO S8
OTHERWISE
TRANSFER TO S9
END OF CONDITIONAL

This is translated to the following FORTRAN sequence:

IF(X—-Y—3)1,22
1 X =B+1.
GO TO 7
2 IF(X—Y —3)3,4,3
3 IF (FLOATF(I) — R) 5, 4, 4

4 X =2.%B
GO TO 8
5 GO TO 9

If the END OF CONDITIONAL statement has a label, replace
it by a CONTINUE statement bearing that label (in numeric form).

Chapter 5
The iteration statement of the form

THROUGH 86, FOR I = &, &, ®

S1
S6 §e

where &, and &, are arithmetic expressions and ® is a Boolean expres-
sion, may be translated exactly as if it were the sequence

I= 81
S5 WHENEVER ®&, TRANSFER TO S1
St
S6 8
I == I + 82
TRANSFER TO S5
S1

222 The Language of Computers

Although it is good practice to arrange it so that &; and 8&; have the
same mode as the iteration variable I, i.e., all integer, or all nonin-
teger, we have not insisted on it in our language. FORTRAN does
not allow mixed modes in expressions, however; so & must have the
same mode as I. Using the same conventions on the conditional as
above, the following FORTRAN sequence would result (where T
and F would actually be numeric):

1= 81
5 IF(®) TF, TF, TF
F &
6 S

I = I + 82

GO TO 5
T

As a specific illustration, we consider the following sequence, which is
similar to one which occurs in Figure 5.3b. Since zero subscripts
are not allowed in FORTRAN, however, the example has been
modified.

S2 THROUGH S2, FOR I = 1,1, LETTER(K) .E. STAND(I)
P=1+S8

This would be translated first into the sequence in our language (see
Figure 5.34):

I=1

2 WHENEVER LETTER(K) .E. STAND(I), TRANSFER TO 81
I=1+41
TRANSFER TO 52

S1 P=I4+S5S

Translating to FORTRAN, we obtain the following:

I=1

2 IF (LETTER(K) — LSTAND(D)) 3, 1, 3

3 I=I+1
GO TO 2

1 P=I+1IS

Note that some of the names have been changed here to make them
conform to the convention on names of integer variables.

Appendix B 223

One common form of this iteration statement may be translated
directly into the FORTRAN DO statement. IfIisa nonsubscripted
integer variable, and if 8, and &, are each either unsigned integer con-
stants or nonsubscripted integer variables, and if ® is the basic
Boolean expression I .G. M, where M is either an unsigned integer
constant or a nonsubscripted integer variable, and if the value of I
is not changed in the loop, then the statement

THROUGH S2, FOR I = &1, &, I1.G.M
may be translated to the FORTRAN statement
DO2I=2g8,M, &,
If &, is omitted, it is assumed to be 1. Thus, the statement
THROUGH S1, FOR K = 1, 1, K.G.N
which is similar to the third statement in Figure 5.3, is translated to
DO1K=1,N

It must be noted that in our language the Boolean expression (i-e.,
termination condition) is tested before the scope of the loop is exe-
cuted, so that in some cases the scope may not be executed at all.
In FORTRAN the test is made after the scope is executed, so that
the scope must be executed at least once. Moreover, if a FORTRAN
DO statement executes until the termination condition is satisfied,
the iteration variable may not be assumed to have any particular
value; i.e., it is undefined.

Chapter 6

Internal functions, other than the one-line internal function, may
not be used if translation to FORTRAN is needed, since only the
one-line form occurs in FORTRAN. The one-line form is translated
according to the rules:

1. Delete the words INTERNAL FUNCTION and the period
after the name of the function.

2. Move the one-line definition to the beginning of the program
or at least in front of the first executable staternent.

3. Names of functions and statement labels may not be used as
arguments.

224 The Language of Computers

External functions may be translated to FORTRAN by using the
following rules:

1. Replace the words EXTERNAL FUNCTION by the word
FUNCTION followed by the name of the function (without the
period). The arguments remain as before.

2. There may be only one name for the function.

3 Delete the ENTRY TO statement. The entry point will be
assumed to be at the first executable statement.

4. The statement FUNCTION RETURN g, where & is the expres-
sion whose value is to be returned, may be translated to the FOR-
TRAN sequence:

NAME = &
RETURN

where NAME is the name of the function.

5. The last letter of the name must not be an F if there are more
than three letters in the name.

6. The END OF FUNCTION statement is translated into the
statement END.

7. All vectors and arrays (see Chapter 10) used as arguments must
be dimensioned in the function definition exactly as the variables
which are to be substituted for them are dimensioned in the calling
program.

8. No statement labels or function names may be used as arguments.

9. If the value of the function is an integer, the name of the func-
tion must begin with I, J, K, L, M, or N. If the value of the func-
tion is a noninteger, the first letter of the name must not be one of
these letters.

Calls for functions (internal or external) are translated to FOR-
TRAN by deleting the period after the function name. Remarks
(recognized by the letter R just before the statement) should be
translated to comments, indicated by a letter C in the first column of
the statement number field. The letter R should be deleted.

Chapter 7

The EXECUTE statement is translated by replacing the word
EXECUTE by the word CALL and deleting the period after the
name of the function.

Appendix B 225

If a function-definition program contains the statement FUNC-
TION RETURN without an expression following, it should be
replaced by the FORTRAN statement

RETURN
The CONTINUE statement is not changed in the translation.

Chapter 8

Alphabetic data may not be used. The statement READ DATA
should be translated into the FORTRAN sequence

READ 5, A, B, G, (D), I =1, 6)
5 FORMAT (9F8.0)

or into the sequence

READ INPUT TAPE 7, 5, A, B, C, (D(I), I =1, 6)
5 FORMAT (9F8.0)

where the first assumes that a card reader is used and the second
assumes that the data have been transcribed to a magnetic tape called
tape “7.” In either case, it is assumed that the data are punched
into cards originally in nine eight-column fields, with decimal points
punched. The notation (D(I), I = 1, 6) is equivalent to our nota-
tion D(1), . . ., D(6), which may not be used. Note that the
names of the variables receiving values are written into the statement
and are not part of the data. If some of the data values are integers
(without decimal points), the FORMAT statement must indicate
this, as in the example:

READ INPUT TAPE 7, 5, I, A, B, N, M, D(3), D(4)
5 FORMAT (I8, 2F8.0, 218, 2F8.0)

The PRINT RESULTS statement is exactly analogous to the
input statements just described, except that the word READ is
replaced by PRINT, the words READ INPUT TAPE are replaced
by WRITE OUTPUT TAPE, and the format information should

be preceded by the characters 1HO, to control the page spacing.
Thus, the statement

PRINT RESULTS A, B, C(3), . . ., G@8), I

226 The Language of Gomputers

might be translated into

WRITE OUTPUT TAPE 6, 4, A, B, (C(I), I =3, 8), J
4 FORMAT (1Ho, 8F8.0, I8)

Alphabetic comments enclosed in dollar signs are translated by enter-
ing them directly into the format information, preceded by a count
of the number of characters (including blanks) and the letter H, as
in the following, where

PRINT RESULTS $NO SOLUTION, INPUT WAS A = §,
A, $,B=$,B: 8, C=$,C

is translated to

WRITE OUTPUT TAPE 6, 4, A, B, C
4 FORMAT (1HO, 27HNO SOLUTION, INPUT WAS A =
F8.0, 6H, B = , F8.0, 6H, C = , F8.0)

In FORTRAN one may not include expressions in the output list.
If an expression occurs in a PRINT RESULTS statement, it should
be computed in an earlier statement. Thus, our statement

PRINT RESULTS A + B, GCD.(IJ), I, J
should be translated into the sequence

X =A+B

11 = GCD(LJ)

WRITE OUTPUT TAPE 6, 4, X, I1, I, J
4 FORMAT (1HO, F8.0, 3I8)

Chapter 9

Boolean variables and constants should not be used, since they have
no analogue in FORTRAN. Also, the statement NORMAL MODE
IS BOOLEAN must not be used.

Chapter 10

The DIMENSION statement in FORTRAN does not provide the
flexibility that ours does. If translation to FORTRAN is antici-
pated, the following rules should be observed.

1. An array (or vector) may have one, two, or three (maximum

Appendix B 227

of three) subscripts of the form ¢; * v + ¢; or ¢; *v — ¢y as indicated
above. All references to that array must have the same number of
subscripts, and this number may not change. (An array name which
normally has two or three subscripts may be used with one subscript,
however.) .

2. Zero or negative subscripts may not be used, nor may ¢; * » be
zero or negative in the above subscript form. The base element
V(1,1) may not be moved, nor is it ever different from V(1).

3. The DIMENSION statement indicates the highest value that
each subscript may assume. No dimension vector is used.

4. The DIMENSION statement must precede the first use of the
name of the array.

As an example, if the array A is to have two subscripts and is to
have no more than 20 rows and 15 columns, we would write

DIMENSION A(20,15)
In our language, this would probably have been written as follows:

DIMENSION A(300,ADIM)
VECTOR VALUES ADIM = 2, 1, 15

although the last value (i.e., 15) would probably change as the par-
ticular set of data came in.

5. The VECTOR VALUES statement does not exist in FOR-
TRAN. To translate the statement

VECTOR VALUES R(6) = 1.2, .3, —4.1

into FORTRAN, the following sequence should be used at the
beginning of the program (but after any one-line internal-function
definitions):

R(E@G) = 1.2
R(7) = 3
R(8) = —4.1

6. If V is a vector but the symbol V is used without a subscript,
we have agreed to interpret it as V(0). In FORTRAN it is inter-
preted as V(1). To avoid this conflict, the subscript should not be
omitted if translation to FORTRAN is expected. Figure B.1 shows
an example of the translation from our language to FORTRAN.

228 The Language of Computers

Figure B.1 is the translation of Figure 10.12, the Jordan algorithm
for a system of simultaneous linear equations (ignoring division by
zero). The system is assumed to have, at most, 19 equations. Thisis
reflected in the DIMENSION statement.

THIS STATEMENT SETS UP THE
DIMENSION INFORMATION FOR THE MATRIX
OF COEFFICIENTS
DIMENSION A(19,20)
THE INPUT STATEMENTS WHICH FOLLOW
BRING IN THE NUMBER OF EQUATIONS N
AND THE MATRIX OF COEFFICIENTS A(1,1), ..., A(NN 4+ 1)
READ INPUT TAPE 7, 2, N
FORMAT (I8)
NP1 =N+1
READ INPUT TAPE 7, 3, ((A(LT), T =1, NP1), I = 1, N)
3 FORMAT (9F8.0)
C THE NEXT STATEMENT BEGINS THE JORDAN ALGORITHM
DO4K=1N
J=N+1
7 IF0—-K)6, 5,5
5 A(K,J) = AK,J)/AK,K)
IJ=J-1
GO TO 7
6 DO4I=1,N
IF (I —K) 8, 4, 8
8 J=N-4+1
12 IF (J — K) 4, 10, 10
10 A@J) = A(L)) — A(LK) *AK,])
IJ=J-1
GO TO 12
4 CONTINUE
DO13I=1,N
13 WRITE OUTPUT TAPE 6, 14, A(IN + 1)
14 FORMAT (1H0, F8.0)
GO TO 1
END

w00 Qa0

Figure B.1

APPENDIX C

TRANSLATION TO ALGOL

IN THIS APPENDIX, as in Appendix B, we shall consider the rules for
translating programs from our language into another language which
is quite similar. The ALGOL language (and in particular, ALGOL
60, see Chapter 12) is, or soon will be, available on several computers.
We shall use ALGOL 60 as the language to which we shall translate,
and the rules will be stated by chapter. In each case, it will be
assumed that the chapter has already been read. Anything not

mentioned explicitly below need not be changed in the translation
to ALGOL.

Chapter 1

Substitution statements are translated by replacing the = sign
by the “colon-equal” sign (:=). Expressions on the right side and
subscript expressions on the left side of the statement are translated
subject to the rules given below (see comments on Chapter 2).

Chapter 2

Numeric constants need not be changed in the translation, except
that no noninteger constant may end with a period. Alphabetic
229

230 The Language of Computers

constants are translated to ALGOL by replacing the dollar signs by
left and right (single) quotation marks. Operations are unchanged,
except that .P. is replaced by an upward arrow (1), .ABS.(X) by
abs(X), * by X, and I/J by I <+ J whenever I and J are both of integer
mode. Subject to these replacements, arithmetic expressions are
translated without further change.

There is no statement in ALGOL corresponding to the statement
NORMAL MODE IS INTEGER ; so this statement must be deleted.
Each variable and function with integer values must be declared
integer at the beginning of the program, and every Boolean variable
(see Chapter 9) must be declared Boolean.

Boolean expressions are translated by replacing .E., .NE., .L,,
.LE,, .G., .GE., .OR., and .AND. by =, #, <, <, >, =2, V, and

A, respectively.

Chapter 3

In an ALGOL program all statements must be separated by semi-
colons, even if they appear on separate lines. A statement label
must be separated from the statement to which it is attached by a
colon. The statement TRANSFER TO Al is translated to go to Al.

The simple conditional

WHENEVER ®, §
is translated to the ALGOL statement
if @ then §;
The iteration statement which lists a sequence of values, such as

THROUGH LOOP1, FOR VALUES OF D = 50, 25, 10, 5, 1
LOOP1 Q) =0

would be translated to

for D := 50, 25, 10, 5, 1 do Q[D] := 0;
(Note that parentheses used for subscription are replaced by brackets.)
If the scope of the iteration contains more than one statement, the

scope is preceded by begin and followed by end. (Any time a
sequence of statements must be considered as a single block, they

Appendix C 231

must be preceded and followed by begin and end, respectively. In
particular, the entire program being translated, after the initial
declarations such as mode and dimension, should be contained
between a begin-end pair.) For example, the iteration sequence
(involving only integer variables):

THROUGH LOOP2, FOR VALUES OF D = 50, 25, 10, 5, 1
WHENEVER R .E. 0, TRANSFER TO FINISH
QD) = R/D

LOOP2 R =R — D xQ(D)

would be translated into the ALGOL sequence:

for D := 50, 25, 10, 5, 1 do
begin if R = 0 then go to FINISH;
Q[D] := R + D;
R := R — D X Q[D] end;
Dimension declarations for vectors, such as
‘ DIMENSION Q(50)
are translated to

array Q [0:50]

indicating in brackets the lowest and highest subscripts to be used
for Q. If Q is an integer variable, the declaration is written

integer array Q[0:50]

Chapter 4
To translate the compound conditional to ALGOL, we replace the
word WHENEVER by if . . . then, the words OR WHENEVER

by else if . . . then, and OTHERWISE by else. The END OF
CONDITIONAL statement is then deleted. Thus, the compound
conditional

WHENEVER 1.G. K .AND.Z .NE. Y
I=1-1
K=XK+1

OR WHENEVER I.E. K
I=1+ B(I)

232 The Language of Computers

OTHERWISE
I=1+4+C®)
K=K - C@

END OF CONDITIONAL
would appear as follows when translated into the ALGOL sequence:

ifIl >KAZ =Y then
begin :=1—-1; K:=K 4 1end
else if I = K then
I:=1- B[]
else
beginI := 1+ C[I]; K := K — C[I] end;

Note that there is no semicolon after the first end in this example,
since the else if which follows is part of the same conditional statement.

Chapter 5
The iteration sequence of the form

THROUGH A, FOR V = g&,;, &, ®

St
A S

may be translated into an ALGOL sequence of the form

for V := &, V + &, while & do
begin $;; §: end;

where ® is the negation of the Boolean expression ®;i.e., ® is obtained
from ® by replacing each element of the first column of Table C.1
with the corresponding element in the second column.

Table C.1

.E.
.NE.
L.
.LE.
.G.
.GE.
.OR.
.AND.

<>AIAVIV N

Appendiz C 233

In the special case where ® is V. G. N and &, is positive, or ® is
V. L. N and §&; is negative, one may write

for V :== g step &; until N do
begin §:; $: end;

For example, the iteration sequence in Figure 5.35,

THROUGH LOOP1, FOR K =1, 1, K.G.N

LOOP2 THROUGH LOOP2, FOR I =0, 1, LETTER(K) .E. STAND(I)
P=1I4S8
CODEL(K) = KEY(P — 39 = (P/39))

LOOP1 S=S+45

may be translated into the ALGOL sentence

for K := 1 step 1 until N do
begin for I := 0, I -+ 1 while true do
if LETTER[K] = STAND[I] then go to next;
next: P := I 4 S; CODE[K] := KEY[P — 39 X (P + 39)];
S :=S 4 5 end;

Note that the inner iteration on I would normally have been trans-
lated into the ALGOL statement

for I := 0, I 4+ 1 while LETTER[K] » STAND[I] do

but in ALGOL any iteration which terminates because the termina-
tion condition is satisfied leaves the iteration variable undefined; i.e.,
we may not assume that it has any particular value. The true con-
dition which we used above guarantees that the iteration will con-
tinue until the if condition is satisfied, thus leaving I with the desired
value.

Chapter 6

Internal and external functions are combined into one kind of
function in ALGOL called a procedure. (The one-line form of
internal function does not exist in ALGOL.) To translate either
an internal-function (not the one-line form) or an external-function-
definition program to ALGOL, the following rules should be applied.

1. If the function returns a value to the calling program, the mode

234 The Language of Computers

of the value must be the first word of the procedure. The mode is
integer, Boolean, or real (noninteger).

2. The words INTERNAL FUNCTION or EXTERNAL FUNC-
TION should be replaced by the word procedure, followed by the
arguments, enclosed in parentheses.

3. Following the arguments should be a sequence of declarative
statements (separated as usual by semicolons) indicating those argu-
ments which are input values to the procedure (e.g., value x, y) and,
for every argument that is itself a procedure name, the mode of the
value, if any, followed by the word procedure and the argument
itself. Any argument whose value is changed by the function (i.e.,
is an output variable) should not be declared in a value statement,
even if it is also an input variable.

4. There may be only one entry to a procedure, from the beginning
of the computational sequence. All ENTRY TO statements should
be deleted in the translation to ALGOL.

5. The computational sequence following the declarations described
above should be preceded by begin and followed by LAST: end,
where LAST is a statement label not used elsewhere in the procedure.
Those variables referred to in the procedure, but not intended to be
common to the calling program, must be declared immediately fol-
lowing begin by giving their modes and/or dimensions.

6. The statement FUNCTION RETURN ¢, where & is the expres-
sion whose value is to be returned, is translated into the ALGOL
sequence

begin NAME :=§&; go to LAST end;

where NAME is the name of the procedure.

To translate a one-line internal function, replace the words INTER-
NAL FUNCTION by the words integer procedure, real procedure,
or Boolean procedure, indicating the mode of the value of the pro-
cedure. After the name (without the period) and the arguments
enclosed in parentheses, one writes the mode declarations for the
arguments and then one statement in the form of a substitution state-
ment, where the left side is just the name of the procedure. Thus,

INTERNAL FUNCTION EXCESS.(X,Y)
= (X — Y + .ABS.(X — Y))/2.

Appendix C 235
would be translated into the ALGOL sequence

real procedure EXCESS(X,Y); value X,Y; real X, Y;
EXCESS := (X — Y 4 abs(X — Y))/2.0;

As an illustration of the rules given here for translating internal and
external functions to ALGOL, Figure C.1 is a translation of F igure
6.12, without the remarks.

integer procedure RAND (DIST, R1, XBAR, SIGMA);
value DIST, R1, XBAR, SIGMA; integer DIST, R1;
real XBAR, SIGMA;
begin
real procedure SIGN(X); value X; real X;
begin if X > 0 then SIGN := 1.0
else SIGN := —1.0 end;
integer procedure MODULO(Y,Z); value Y, Z;
integer Y, Z; MODULO :=Y — (Y + Z) X Z;
real procedure UNIF;
begin R1 := MODULO(5 1 15 X R1, 2] 35);
UNIF :== R1/(2.0 T 35) end;
if DIST = 0 then begin RAND := UNIF; go to LAST end
else begin R := UNIF;
V i=sqrt(—2.0 X In(.5 X (1.0 — abs(1.0 — 2.0 X R))));
RAND := XBAR + SIGMA X (SIGN(R — 5) X
(V — ((.010328 X V + .802853) X V +
2.515517)/(((.001308 X V + .189269) X V
+ 1.432788) X V -+ 1.0))) end;
LAST: end

Figure C.1

Chapter 7

To translate the EXECUTE statement into ALGOL, delete the
word EXECUTE and the period after the name of the function.
If the statement FUNCTION RETURN occurs in a function-defini-
tion program without an expression following it, translate it into the
ALGOL statement

go to LAST

where LAST is the identifier (i.e., statement label) provided at the
final end of the procedure.

236 The Language of Computers

Chapter 8

There is no provision for input or output statements in ALGOL.
In any particular computer representation of ALGOL, there would
be provided some definite way to write input and output statements,
just as we have developed our own in this book. We shall stipulate
then, that the statement READ DATA should remain unchanged
in the translation to ALGOL (so that it becomes a call for a procedure
named READ DATA, which has no arguments). The PRINT
RESULTS statement should be translated by enclosing in parentheses
the list of expressions which follows the words PRINT RESULTS.
This amounts to a call for a procedure named PRINT RESULTS.
Since there is no analogue of the block notation [e.g., Q(1), . . .,
Q(17)], this notation should be avoided if translation to ALGOL is
anticipated.

Chapter 9

There is no provision in ALGOL for the statement NORMAL
MODE IS BOOLEAN, but variables may be declared to be Boolean.
The Boolean constants 1B and OB are translated into true and false,
respectively.

Chapter 10

Dimension information for arrays is declared in a manner similar
to that used for vectors (see comments on Chapter 3 above), except
that the lowest and highest values expected must be specified for
each subscript separately. Any of these values may be represented
by an integer expression, but the values of all variables in the expres-
sion must have been computed before calling on the procedure
involved. If the dimension declaration occurs in a main program
(ie., not a procedure), then the subscript values must be integer
constants. An example of a declaration is the following:

integer array[—5:20, 0:m]

The dimension vector is thus not used at all, and the number of sub-
scripts which must be written for any array is fixed throughout the
program. :

Appendix C 237

There is no analogue in ALGOL of the VECTOR VALUES
statement. The statement

VECTOR VALUES R(6) = 1.2, .3, —4.1

should be translated into the following sequence (at the beginning
of the ALGOL program):

begin R[6] := 1.2; R[7] :=.3; R[8] := —4.1 end;

The program shown in Figure C.2 is the translation of Figure 10.12
according to the rules given above. Remarks have been omitted,
although they could have been carried over preceded by the word
comment.

real array A[1:19, 1:20]; integer N, K, I, J;
begin INPUT: READ DATA;
for K := 1 step 1 until N do
begin for J :== N + 1 step — 1 until K do
A[K,J] := A[K,J]/A[K,K];
for I := 1 step 1 until N do
if I 5 K then
forJ := N+ 1 step — 1 until K do
A[LJ] := A[L,]] — A[LK] X A[K,J]
end;
for I := 1 step 1 until N do
PRINT RESULTS (A[LN + 1]);
go to INPUT
end

Figure C.2

INDEX

ABS,, 12, 15, 216
Absolute value, 12, 15
Addition and subtraction method, 152
Address, 167
Algebraic language, 195
ALGOL, vii, 203-207, 229-237
block in, 206
Boolean in, 230, 234
comment in, 237
integer in, 230, 234
procedure in, 206, 234
real in, 234
Algorithm, 2, 4, 120
Gauss, 186
Jordan, 154, 177, 186
translation of, 193
Alphabet, standard, 41
Alphabetic constants, 12, 196, 209, 216,
229
and, 20
.AND,, 21
Arden, Bruce W., 2
Area under a curve, 62
Argument, 66, 67, 79

Arithmetic expression, 10, 12, 210, 216,
229
Array, 167
(See also Vector)
Assembly language, 195
Average, 57
(See also Mean)

Back solution, 152, 187
Base entry, 168
Basic Boolean expression, 19,122, 210, 217
begin, 205, 230
Binary, 74
Binary operation, 16
Binary search, 98
Bit, 75
Block in ALGOL, 206
Body of loop, 7
Boole; George, 10
Boolean in ALGOL, 230, 234
Boolean declaration, 123
Boolean expression, 10, 19, 122, 196,
210, 217, 230
239

240 The Language of Computers

Boolean expression, basic, 19, 122, 210,

217
Boolean mode, 123
Boolean variable, 122, 123, 236
Buffer, 140

Call, function, 67, 79
Calling program, 67, 92, 114
Center-squaring method, 72
Chain, 145
Change problem, 3
Coefficient, correlation, 106-114, 117
Coefficients, matrix of, 155
Command language, 6
Comment in ALGOL, 237
Common subexpressions, 37
Compiler, 195
Compound conditional statement, 34,
196, 212, 220, 231
Conditional, compound, 34, 196, 212,
220, 231
Conditional statement, 217
Congruence, 53, 54, 74, 212
base of, 55
modulus of, 55
Congruent integers, 54, 60
Connectives, logical, 20, 190
precedence of, 23, 210
ranking of, 23, 210
Constant, 10
alphabetic, 12, 196, 209, 216, 229
integer, 17, 197, 209
noninteger, 17, 229
numeric, 11, 12, 209, 229
CONTINUE statement, 95
Correlation coefficient, 106-114, 117

Declaration, 17, 18, 30, 103, 174
Boolean, 123
explicit, 176
implicit, 176
Declarative statement, 17, 18, 30, 103,
174

Definition program, 67, 92, 114
external-function, 114, 213
internal-function, 79

Descriptive language, 6

Determinant, 181n.

Diagonal, main, 157, 158, 186

Dickson, L. E., 73n.

Dimension, 29, 30

DIMENSION statement (see Statement)

Dimension vector, 171, 172, 189, 214,

227, 236

Distribution, normal, 57, 63, 76, 77
uniform, 58, 59, 63

Distributive law, 128

Division, truncated integer, 17, 49, 189

Dummy variable, 142

.E,, 19
Elementary operation, 156
end, 205, 230
END OF CONDITIONAL statement,
35, 212, 231
END OF FUNCTION statement, 68,
211, 213, 224
END OF PROGRAM statement, 27,
30, 68, 211, 220
ENTRY TO statement, 68, 213, 234
Equation, linear, 148
quadratic, 38, 67
Erasable, 191
Error, roundoff, 18x., 187
Errors, in flow diagrams, 60
programming, 30
Executable statement, 18
EXECUTE statement, 92, 213, 235
Execution, 18
Explicit declaration, 176
Expression, 10, 229
arithmetic, 10, 12, 210, 216, 229
basic Boolean, 19, 122, 210, 217
Boolean, 10, 19, 122, 196, 210, 217,
230
logical (see Boolean, above)
meaningless, 20

Index

Expression, subscript (se¢ Subscript)

External function, 65, 68, 198, 224,
233

EXTERNAL FUNCTION statement,
68, 79, 212

false, 7, 19, 21, 236
FAP, 193, 196
Fibonacci (Leonardo Pisano), 73
Fibonacci number, 72, 83
Floating-point number, 190
(See also Noninteger)
Flow diagram, v, 7
FORMAT statement in FORTRAN,
225
FORTRAN, vii, 195, 203, 215
FORTRAN II, 215n.
Function, 5n., 66
argument of, 66
external, 65, 68, 198, 224, 233
greatest-integer, 5, 209
internal, 78, 79, 223, 233
one-line, 198, 213, 223, 233, 234
name of, 66, 82, 213
parameter of, 66, 67, 79
value of, 66, 67, 213
Function call, 67, 79
FUNCTION RETURN statement, 68,
92, 213, 225, 235

.G, 19

Gauss algorithm, 186

.GE., 19

Graham, Robert M., 2, 119n.
Greatest-integer function, 5, 209
Greenberger, M., 76

Hardware language, 193
Highest subscript, 29, 176
Hill, Lester S., 40n.
Hyperplane, 149

241

IBM 650, 193
IBM 704, 71
IBM 7090, 193
Implicit declaration, 176
Initialization, 7
Input statement, 214
Instruction, hardware, 193, 194
Integer, in ALGOL, 230, 234
congruent, 54, 60
(See also Constant)
Integer division, 17, 49, 189
Integer mode, 17, 197
Integer variable, 17, 216
Integration, 63
Internal function (see Function)
INTERNAL FUNCTION statement,
78, 79, 213
Iteration box, 45
Iteration statement, 28, 44, 211, 221

Jordan algorithm, 154, 177, 186
Jump, 26
Juncosa, M. L., 76

Key, 40
in sorting, 182
Korbel, J., 76

.L., 19

Label, 27
in sorting, 182
statement, 27, 103, 230

Language, 1
algebraic, 195
assembly, 195
command, 6
descriptive, 6
hardware, 193

.LE.,, 19

Line, 149

Linear equation, 148

Location, storage, 167

242

Logical connective, 20, 190
Logical expression (sec Expression,
Boolean)
Loop, 1, 7, 25, 51, 93, 160
body of, 7
scope of, 7, 28, 44, 51, 205, 230

MAD, vii, 2, 188, 189, 192, 203
MADTRAN, 200
Main diagonal, 157, 158, 186
Matrix of coefficients, 155
Mean, 57, 76, 85
Memory, 4
Method, addition and subtraction, 152
center-squaring, 72
Monte Carlo, 61
power-residue, 75, 81
substitution, 151
Michigan, University of, 2, 189, 200
Michigan algorithm decoder (see¢ MAD)
Mode, Boolean, 123
integer, 17, 197
normal, 18
(Se¢ also Statement, NORMAL
MODE IS)
statement-label, 103
Modification box, 7
Monte Carlo method, 61
Multiplication, nested, 65, 84

Name, of function, 66, 82, 213

of program, 66

of variable, 10, 11, 156, 197, 209
.NE,, 19
Negation, 14
Negative subscript, 169
Nested multiplication, 65, 84
Node, 124
Nonexecutable statement, 18
Noninteger, 17, 190, 197, 216
Noninteger variable, 17, 216
Normal distribution, 57, 63, 76, 77
Normal mode, 18

The Language of Computers

NORMAL MODE IS stateraent, 18,
226, 230
not, 21
Number, binary, 74
Fibonacci, 72, 83
floating-point, 190
position, 41, 43
pseudorandom, 56
random, 56
Numerical integration, 63

1B, 135
(See also true)
Operand, 15
Operating row, 158
Operation, 10
binary, 16
elementary, 156
unary, 16
or, 21
.OR., 21
OR WHENEVER statement, 35, 212
Orcutt, G. H., 76
OTHERWISE statement, 35, 212
Output statement, 214

Parameter of function, 66, 67, 79
Parentheses, 13, 210
redundant, 23
statement, 205
(See also begin; end)
Period of a sequence, 75
Pisano, Leonardo, (Fibonacci), 73
Pivot entry, 158, 161
Plane, 149
Position number, 41, 43
Power-residue method, 75, 81
Precedence, of connectives, 23, 210
of operations, 14, 23, 210
of relations, 23, 210
PRINT RESULTS statement, 116, 190,
225, 236

Procedure, 233
in ALGOL, 206, 234
Program, 26, 66
calling, 67, 92, 114
definition (see Definition program)
execution of, 18
names of, 66
translation of, 193-195
Pseudorandom number, 56

Quadratic equation, 38, 67

Random number, 56
Ranking, of connectives, 23, 210
of operations, 14, 23, 210
of relations, 23, 210
READ DATA statement, 115, 225,
236
real in ALGOL, 234
Redundant parentheses, 23
Relation, 9, 19
Remainder, formula for, 49
Remark, 79, 224, 237
Representative, 54, 74
Residue, 74, 212
Rivlen, A. M., 76
Rosin, Robert F., 200
Rounding, 19
Routine, 26
(See also Program)

Schwarz’s inequality, 111
Scope, 7, 28, 44, 51, 205, 230
Search, 97
binary, 98
Searching argument, 97
Shift, 41
Simple conditional statement, 26, 31,
211, 230
Social security problem, 33, 82, 115
Software, 1
Solution of equations, 150

Index ' 243

Sorting, 182
Square root, 38, 66
Standard deviation, 76, 85
Stanton, R. G., 63n.
Statement, compound conditional, 34,
196, 212, 220, 231
conditional, 217
CONTINUE, 95
declarative, 17, 18, 30, 103, 174
DIMENSION, 50, 113, 166, 171,
173, 214, 220, 226, 227
END OF CONDITIONAL, 35, 212,
231
END OF FUNCTION, 68, 211, 213,
224
END OF PROGRAM, 27, 30, 68,
211, 220
ENTRY TO, 68, 213, 234
executable, 18
EXECUTE, 92, 213, 235
EXTERNAL FUNCTION, 68, 79,
212
FORMAT, in FORTRAN, 225
FUNCTION RETURN, 68, 92, 213,
225, 235
input, 214
INTERNAL FUNCTION, 78, 79,
213
iteration, 28, 44, 211, 221
nonexecutable, 18
NORMAL MODE IS, 18, 226, 230
OR WHENEVER, 35, 212
OTHERWISE, 35, 212
output, 214
PRINT RESULTS, 116, 190, 225,
236
READ DATA, 115, 225, 236
simple conditional, 26, 31, 211, 230
substitution, 9, 18, 209, 229
TRANSFER TO, 26, 211
VECTOR VALUES, 173, 179, 196,
214, 227, 237
WHENEVER, 35, 212
Statement label, 27, 103, 230
Statement-label mode, 103

244 The Language of Computers

Statement parentheses, 205
(See also begin; end)
Storage, 4
Storage location, 167
Subexpressions, common, 37
Subroutine, vi
(See also External function; Internal
function)
Subscript, 29, 30, 166, 170, 186, 220,
229
highest, 29, 176
negative, 169
Substitution method, 151
Substitution statement, 9, 18, 209, 229
Subtraction, 15
Switch, closed, 120
open, 120

Table look-up, 97

Termination condition, 7, 9
Transfer, 26

TRANSFER TO statement, 26, 211
Translation of programs, 193-195
Trapezoidal rule, 63

true, 7, 19, 21, 236

Truth table, 21, 190

Unary operation, 16
Uniform distribution, 58, 59, 63

Value, absolute, 12, 15
of a function, 66, 67, 213
preset vector, 174
Variable, 10
Boolean, 122, 123, 236
dummy, 142
integer, 17, 216
name of, 10, 11, 156, 197, 209
noninteger, 17, 216
Vector, 29, 167, 172, 227
dimension, 171, 172, 189, 214,227, 236
Vector value, preset, 174
VECTOR VALUES statement, 173,
179, 196, 214, 227, 237

WHENEVER statement, 35, 212
Word, 73
Work, 61

0B, 135
(See also true)

	00001
	00003
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244

