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INTRODUCTION

Introduction

An algebraic language translator-compiler is a computer program
which reads and translates mathematical algorithms written in a language
close to mathematical notation, and produces, i.e., compiles, a computer
program which when executed will perform the described algorithms.

MAD, the Michigan Algorithm Decoder, is an algebraic language
translator-compiler, programmed at the Computing Center of the University
of Michigan. This manual is a description of the MAD language, the
language in which algorithms must be written in order to allow MAD to
translate them. It is also a guide to the use of MAD. |

This mahual was designed and organized as a reference manual. It
is not intended by itself to meet the requirements of a text book. The
book, THE LANGUAGE OF COMPILERS: AN INTRODUCTION, by Bernard A. Galler,
to be published by McGraw Hill, does,very satisfactorily, meet the re-

quirements of a text book. The combined use of this manual and that text
book should provide the user with a satisfactory introduction to MAD.

This goal of producing an easily used reference manual rather than
a text has dictated several of the noticeable features of this book. No
index is provided, but a complete Table of Contents labeled by a nested
decimal classification system is used. No page numbers are used in the body
of the work, but the material is labeled in parallel with the Table of Contents.
Gaps provided in the Table of Contents and the use of loose-leaves will
enable the manual to be conveniently revised and augmented.

In keeping with the reference nature of the manual, an attempt
at precise definition of the terms and elements of the MAD langusge has

been made even at the expeunse of often being quite formal.

0.7
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CHARACTER SET

1l A Preliminary Survey
1.1 The Hollerith Character Set
The characters to be used in writing in the MAD language are as
follows:
(1) Alphabetic Characters, or Upper Case Letters:
A,B,C,D,EF, G, H I,J,K L, M, N, 0, P, Q R, S, T,
U, V, W, X, Y, Z3
(2) Numeric Characters, or Decimal Digits:
0, 1,2, 3, 4,5, 6, 7, 8, 93
(3) Special Characters (The characters ", quotation marks, are
not characters of the language. They are used here tc set off
the characters):"+", "-" (minus), "'" (apostrophe), "=", "',
mry o, M), " (comma), "$", " " (blank space,
sometimes represented by the character "b").

Groups (1) and (2) are referred to collectively as Alphanumeric

Characters.

1.0
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SEQUENCE OF EVENTS

1.2 The Sequence of Events in Using MAD

(1)

(@)

(3)

The problem is expressed in the MAD languagé as described in
this manual. This expression of the problem is a "source
language program'.
The source language program is ingested by the MAD translator-
compiler (see section 14, Mechanics of Using MAD). The MAD
translator reads and translates the source language program
and from it compiles a "machine language' computer program.
This computer program is the "object program'.

This phase is called "compilation™. The time at which the
program is compiled is said to be "compilation time".
The object program is executed on the computer. This is the
"execution phase" and the time at which the object program is

executed is said to be "execution time".

1.1
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STATEMENTS

1.3 Statements

A source language program is an expression of a problem in the form
of algorithms which, when executed, provide the desired solution.

Algorithms are expressed in MAD by writing a series of "statements".
Statements may be either executable statements or non~executable state-
ments, known also as "declarations". It is possible further to sub-
divide statements into classes such as "control statements"”, "testing
statements", "iteration statements", "input-output statements, etc.

All statements which are available in the MAD language are explicitly
defined in sections 3, 4, 5, 6 and 7.

Every statement must begin on a card, column 11 of which is blank.
There may not be a remmant (a tail end) of a preceding statement on the
same card. (This information appears elsewhere in this manual} i% is
given here, also, for emphasis to aid readers in overcoming preconceived
notions due to familiarity with other translators.) Any card is recognized
as the last card comprising a statement when the card which follows it has

a blank in column 11.
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OPERATING SYSTEM

1.4 MAD and the Operating System

All of the properties which are strictiy properties of MAD and which
are necessary to enable g user to write a MAD prcgram are described in
this manual. There are certain other facilities which might be desired
and, which, although not described herein, may exist. Generally, if such
options exist, they exist as properties of the operating system of which
MAD is a part, and the user must consult the description of the properties
of the pertinent operating system in order to determine what other useful
options are available.

By the same token, it is true in most computing installstions that,
in order to run a MAD program tc solve a problem, the existence cof a MAD
source program designed to do just that 1s not sufficient. Again, the
operating system of which MAD is a part must be considered. The very
properties of the opersting system which make it flexible and useful
impose requirements on a problem in addition to those necessary to satisfy
MAD.

The intention of any operating system is to provide greatly increased
flexibility and many useful options with but few accompanying extra re-
gquirements.

In particular it is in the province of MAD to translate the source
language program and compile sn object progrsm. After this, MAD has no
more control over the destiny of the psrticular problem. It is in the
province of the operating system to load the MAD cobject program into the
computer, and transfer control to it sc that it may execute. After
execution of the object program is completed, it is the operating system
which assumes control of the computer and proceeds to the next problem.

Examples of properties which may be aveilable to users of MAD but
which are in reality properties of the contzining operating system are:

(1) Compilation with the option of executing the object pro-

gram on the same computer rung

1.5
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(2)

(3)

(3)

1.4
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OPERATING SYSTEM

Execution of a problem which requires more than one "core
load", each of which is an object program resulting from
separate compilations. This option is variously known

as "ping-pong" or "chaining".

Translation and compilation processing of more than one
MAD source program in a single computer run;

Use of an assembly language translator and the MAD compiler

together on the same problem.






ELEMENTS OF THE LANGUAGE

2 Elements of the Language

In this section the basic building blocks of the language are de-
scribed. These elements are used in the construction of the statments
described in chapters 3, 4, 5, 6 and 7.

A brief discussion of the concept of "mode" is in order. It is s
basic concept of the language. The "mode of an element" (and specific
mention will be made throughout the remainder of the manual regarding the
specific elements to which the concept is applicable), is determined by
the quantities which the element in question may represent. The mode of
any element in turn influences the manner in which operations are performed
on the element. -

There are five and only five modes in the MAD language. They are
the following:

Integer
Floating Point
Boolean
Statement Iabel
Function Name

(a) Any element of integer mode will be interpreted as representing

a value equal to an integer i such that i satisfies
-9999999999 < i < +9999999999

The decimal point is assumed to be immediately to the right of

the rightmost digit and no fractional part may appear.

(b) Any element of floating point mode will be interpreted as
representing a value equal to any real number r such that r
satisfies:

1078 < |¢] < 1098
Thus such an element is a "mixed number”.
Example to cover (a) and (b):
Although the integer 1 is a real number 1 and the real number
2 is an integer, the integers 1 and 2 are quite distinct from the

floating point numbers-1 and 2, respectively.
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(c)

(a)

(e)

ELEMENTS OF THE LANGUAGE

In particular, using octal digits (0 through 7) to re-
present groups of three binary bits (O, 1) the internal
representations of 1 and 2 are as follows in actual internal

IBM 7090 representation.

Number Floating Point Integer
1 201400000000 000000000001
2 202400000000 000000000002

Any element of Boolean mode will be interpreted as representing

a value equal to one of:

”JCI'U.e Il’

"false".
These values will be represented in MAD in the following way:

"true" by 1

[wo]

5

"false" by OB.

Any element of statement label mode will be interpreted as
representing a value equal to a statement label. See section
2.5, Statement Labels, for a complete description.

Any element of function name mode will be interpreted as re-
presenting a vaiue equal to a function name. See section 2.k,

Functions, for a complete description.

Although, abstractly, the value of an element of any given mode may

be "equal" to the value of an element of one of the other four modes, the

format of the representations internal to the computer is different and

operations on the elements will be performed differently.
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CONSTANTS

2.1 Constants

The following types of constants may be written in the MAD language.

2.1.1 Integer Constants

Integer constants may be one to ten decimal digits preceded by
sign (- or +). Hence, integers can range from ~9999999999 to +9999999999

with the decimal point always assumed to be immediately to the right of

the rightmost digit but always omitted. Integer constants are of integer

mode.

Signs

(1) Sign if present is always placed to the left of the integer.

(2) Negative sign is never omitted.

(3)

Positive sign may te (and usually is) omitted.

EXAMPILE: 2, -2, 0, +0, 100 are all integers.

Leading Zeros

Leading (but nct trailing) zeros may be omitted.

EXAMPLE: 5 and 005 are the same but 3 and 300 differ.

2.1.2
There
a floating

Floating Point Constants
are two basic forms, with and without exponent. In all cases
point constant F must satisfy:

102 < |r| < 1078

Floating point constants are of floating point mode.

(a)

(v)

2.2
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Without exponent the constant contains one to eight digits and

a decimal point (.) which must be written but which may appear

anywhere in the number. Examples:
O-’ 105, ’0-05, +lOO-O, ‘-)-l"

With exponent the constant contains from one to eight digits

with or without & decimsl point, followed by the letter E,

followed by the exponent. Exponent is one or two digits pre-
ceded by sign and represents the power of ten by which the

number to the left of the exponent is to be multiplied.



CONSTANTS

Examglesz
MAD NOTATTON MEANING
.05E-2 .05 x 1072
- .05E2 -.05 x 10°
5E02 5 x 10°
5.5 5 x 10°

Note that:
(1) Plus signs may be optionally omitted in front of the exponent
as well as in front of the number itself.
(2) Decimal point may be omitted, in which case it is assumed to be
immediately to the left of the letter E.

2.1.3 Alphabeti
Alphabetic constants consist of from one to six characters from the

following set of admissible characters:

A", "B", ..., "Z": alphabetic characters.
"O", "l", ceey "9": decimal digits,

n,an n_n

ny o
+

(minus ), (apostrophe), "=", "*",

mjmo o, mynp om0t (comma), " " (blank space, sometimes represented

by the character "™"). -

Each alphabetic constant must be delimited on the left and on the
right by the special character "$". The mode of alphabetical constants
used in arithmetic expressions is integer.

Notice especially that although blank spaces are ignored elsewhere in
the language, except where it is specifically indicated that they are not,
they count as characters in alphabetic constants.

EXAMPLES: $ABCDS, $T¢ BES, $DEC. 4$,$5 +3=8%.

NOTE: An alphabetic constant is stored internally as an integer. Any
alphabetic constant which is written with fewer than six characters
will be stored internally left justified with blanks appended on
the right; thus,$ABCD$ will be stored internally as if it had
been written $ABCDLDLS .

2.3
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CONSTANTS

Since the character "$" serves to delmit an alphabetic
constant, it is not possible to write an alphabetic constant
with "$" as one of the internal characters. An alphabetic
constant with the character "$" as the left-most of the
internal characters may be created, however, by writing the

following alphabetic constant:
~3=$
2.1.4 Boolean Constants

There are two Boolean constants:

1B is written for "true",

OB is written for "false".

2.1.5 Octal Constants

Octal constants may be written in two ways, with or without scale
factor. The mode of octal constants is integer.

Without. scale factor an octal constant 1s written with from one to

twelve octal digits followed by the letter "K".

EXAMPLE: O3K, 123K, TTTTTT77TTT7K

With scale factor one or more decimal digits follows the "K". This
decimal integer is interpreted as the exponent of the power of eight by

P 1" 1" . s 3
the octal integer preceding the "K" is to be multiplied.

EXAMPLE: 127K2 becomes 000000012700,
1K10 becomes 010000000000 .

2.1.6 Statement Label Constants
See section 2.3, Statement Labels.

2.1.7 Function Name Constants

See section 2.4, Functions.

2.1.8 Redefinition of The Mode of Constants
Any constant whether Integer, Floating Point, Boolean, Alphabetic

or Octal, may be declared to be of a mode other than its normal mode.

2.4
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CONSTANTS

When a constant which is to have its mode redefined is used it is written

in the form

cMi

M. n

where "c" is the constant in question written as described above for each

of the five types, "M" is the character "M" written following the last

character of "c" to indicate mode redefinition and i is one of the integers

0 for Floating Point
1 for Integer

2 for Boolean

% for Function Name

4 for Statement Label

The conversion performed on the constant in reading it and the form
in which it appears internally is that associated with its original mode.
The mode of the constant is reassigned to be the mode whose code is i

after the standard processing of the constant is completed.

2.5
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VARIABLES

2.2 Variables
The name of any variable consists of from one to six alphabetic
or numeric characters, the first of which must be an alphabetic character.
The name used for any variable must not be identical to any statement

label or to the alphanumeric part of any function name.

EXAMPLES: TEMP,KIMZ,F55,P32K,RESULT,X,ALPHA
2.2.1 Simple Variables
A simple variable is a variable whose name refers to a unique
element. It may be thought.of as a degenerate vector with one element, or zs
a matrix of order (1,1).

Simple variables are written in the form
NAME

where NAME adheres to the form of a variable name as defined above. Fach
of the names in the immediately preceding example is written as a simgple

variable.

2.2.2 Arrays
_ An array is a set of elements. The number of elements in the set
is greater than one. Every variable name which is the name of an array
must be so declaréd as explained in section 3.6, DIMENSI@N Declarations.

Arrays of order (m,l) or (1,n) where m and.n > 1, are "Vectors", "Linear
Arrays", or "One Dimensional Arrays". Vectors are stored internally with
the elements in adjacent locations.

Two dimensional arrays, or matrices, of order (m,n) are stored

internally by rows, i.e., in the order:

81798755 *58115857 98505 0 e 5By e e s 098 5y e,

In general, n-dimensional arrays, where n > 2, are stored in the order de-
termined by varying the rightmost subscript first, then the next rightmost,
etc. Thus, a four dimensional array of order (m,n,p,q) would be stored in

the order:

2.6
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VARIABLES

811117211127 " **%111q°%1121 0811007 - * " #8110q 7 " *#®11pg %1011,

seesByppas e sBpng

It is possible in MAD to regard any array of dimension n, even
though n may be greater than one, as a linear array. The order of the
elements of an array when regarded as a linear array is as described in
the preceding paragraph. Any element of an array may thus be referred
to by a subscripted variable with a subscript of one element rather than
n. This single element subscript of an array element is called a "linear
subscript” of the array element. The value of the linear subscript is
equal to the position of the given element relative to the element with
all subscripts zero, the linear subscript of which is also zero.

See sections 2.2.4, Subscripts of Subscripted Variables, and 3.6.2,

Matrix DIMENSIQN Declaration, for additional comments concerning

;;;;; i

subscripts.

2.2.%3 Subscripted Variables

A subscripted variable is written in the form

NAME (sl,s S )

YRRV
where NAME adheres to the form of a variable name as defined above, and
must be the name of an array variable, and each Si’ i=1,2, ..., n, is

a permissible subscript as described in sections 2.2.4k, Subscripts of
Subscripted Variables, and 2.2.9, Statement Label Variables. The characters
"(" and ")" delimit the subscript and the character "," separates the
elements of the subscript. Notice that the subscripts written in the MAD
language are written on the same line as the name they are subscripting

and are not written below the line as in usual mathematical notation.

2.7
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VARTABLES

At any given time a subscripted variable is the name of a single
specific element of an n-dimensional array of elements.

At any given time the value of a subscripted variable is a single
specific element of an n-dimensional array of elements.

It is a convention of the language that if a name, NAMEA, which is

. .
an ywraoar ~ rrwnaidd A
an array. 1s writte

p]

T P .
the name of LONE Iir il 1T were

=]
m

a simple variable, i.e.,

its value is equivalent to the value of the subscripted variable
NAMEA (0,0, ...,0).
Examples of subscripted variables whose values are array elements:

BETA(I)

X(J,5)

Y(7)

N(B+k*F,Q)
MA(K(Z+5 4T (1)+6)
BETA = BETA(0)

X = x(0,0)

2.2.4 Subscripts of Subscripted Variables

With one exception, the following discussion applies to all types
of subscripted variables. See section 2.2.9, Statement Label Variables,
for the exception.

As far as the translator is concerned, any arithmetic expression
(see section 2.6, Arithmetic Expressions) may be used as a subscript when
the subscript is a linear subscript. This is true whether the dimension
of the array is one or greater than one.

The qualification "as far as the translator is concerned" arises
from the fact that the value of the expression must be greater than or
equal to zero. This restriction applies when the expression is evaluated
at execution time; violations are not discernible by the translator at

compilation time.
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VARTABLES

If the value of the subscript expression used as a linear subscript
is in floating point mode (see section 2.6.4, Mode and Arithmetic Ex-
pressions), it will be truncated to an integer before it is used as a
subscript.

When, in the general form of a subscripted variable, the dimension
n > 2, each subscript element may be an arithmetic expression but the
expression must be of integer mode. Moreover, the use of subscript ex-
pressions having values of other than integer mode will gé undetected
by the translator when n > 3. Unlike the case of linear subscripts, it
may be meaningful for a subscript expression appearing as an element in a
non-linear subscript, to have a value less than zero. Care must be exer-
cised. See section 3.6.2, Matrix DIMENSIbN Declaration, for a complete

discussion.

2.2.5 1Integer Variables
All of the preceding general discussion of variables applies to the

integer variables. Values represented: any integer number I satisfying

-9999999999 < T < +9999999999

These variables are of integer mode.

2.2.6 Floating Point Variables
All the preceding general discussion of variables applies to the

floating point varigbles. Values represented: any real number F satisfying

38 38

10777 < |F| <107

These variables are of floating point mode.
2.2.7 Boolean Variables
The values represented by Boolean variables are

1B = true,

OB false.

These variables are of Boolean mode.

2.9
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VARTABLES

The discussions under the sections Simple Variables, Array Variables,
Subscripted Variables and Subscripts of Subscripted Variables apply to

Boolean variables.

2.2.8 Function Name Variables
The values represented by function name variables are any function
name, see section 2.4, Functions. These variables are of function name
mode.
The discussions under the sections Simple Variables, Array Variables,
Subscripted Variables and Subscripts of Subscripted Variables apply to

function name variables.

2.2.9 BStatement Label Variables

The values represented by statement label variables are any statement
labels, see section 2.3, Statement Labels. These variables are of state-
ment label mode.

The discussion of Simple Variables applies to statement label
variables. Subscripted statement label variables are more restricted
than general subscripted variables. Because of the way in which elements
of statement label vectors are defined, "arrays" of statement label mode
are restricted to one dimensional arrays. Thus, subscripts of subscripted
statement label variables must satisfy n = 1, of the general form of a

subscripted variable described in section 2.2.3, Subscripted Variables.

2.10
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2.3

Statements are defined in sections 3 and k4.

STATEMENT LABELS

Statement Labels

A statement must be

labeled when it is desired to have another statement refer to it.

A statement label may take on one of two forms:

(a) c

where C consists of from one to six alphabetic characters or

decimal digits, the first of which must be alphabetic;

(b) C(n)

A
A
to the
A
10, of

where C is as in (a), n is an integer constant and the special

characters "(" and ")" delimit n on the left and right re-
spectively. A statement label of this form is an element
of a statement label vector.
statement label is a constant of statement label mode.
statement label must not be identiecal to any variable name or

alphanumeric part of any function name.

statement label appears in the label field, columns 1 through

the statement it identifies. When a statement extends to additional

cards (see sectioniﬂkl.2.2, Continuation Cards), the statement label

need not be punched on the additional cards.

2.11
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FUNCTTIONS

2.4 PFunctions

The name of a function is written in the form
c.

where C may consist of from one to six alphabetic characters or decimal
digits, the first of which must be alphabetic. The special character
"." is part of the name and must follow the last character of C. A
function name is a constant of function name mode. The alphanumeric
portion of the name must not be identical to any variable used in the
program, or to any statement label.

Examples of function names:

SIN.
SQRT .
ELAG.

2.4.1 Single Valued Functions
The yalue of a single valued function is represented, in general,
by the form:

Co (A AL.esA )

In the form, "C." is a function name and each Ai’ i=1,2,...,n, is an
argument of the function (see section 2.4.5, Arguments of Functions).

The special characters "(" and ")" delimit the field of arguments-and’

the special character "," separates pairs of arguments. The single valued
functions may be used by specifying the appropriate value form as an operand
in any arithmetic expression (see section 2.6, Arithmetic Expressions).

The value form of a function is also often referred to as the "call"
for the function, i.e., the value form "calls" for the function to be
evaluated.

Examples of .values of single valued functions:

SIN.(3.141596)
SQRT. (X+Y*Z=10.)
MLTRGF . (A,B-C*D,2.¥X,5)

2.12
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2.4.2 Non-Single Valued Functions

Since the result of the operation of a single valued function
upon its arguments is by definition a single value, it made sense in
section 2.4.1 to define the value of a single valued function. In MAD
the facility exists for allowing arguments to be operated upon by
"functions"” which may not be used in any expression. These are called
non-single valued functions. The notation to indicate such an operation

is identical to that used for the value of a single valued function, namely,

c. (Al,Ag,...,An)

where the elements of the form are exactly as described in section 2.4.1,
Single Valued Functions. The only distinction, which is, however, a
non-trival one, is that the name used for any non-single valued function
must be different from the names of all single valued functions and
conversely.

The additional mechanism required to execute non-single valued
functions is explained in section 4.8 EXECUTE Statement.

Example of the specification of a non=-single valued function which

is to sort the n elements of some list according to prescribed rules:

SEPRT. (LIST,N)

2.4.3 Translator Defined Functions
Certain commonly used functions are already available to the MAD
translator. The programmer may use these functions merely by writing
them in the appropriate manner. A iist of the currently available
translator defined functions may be found in the manual describing library

subroutines.

2.4.4 Programmer Defined Functions
The facility exists in MAD to permit the programmer to define for -
his use functions of any complexity. Two types of functions, "internal
functions" and "external functions", may be defined. The procedure for
defining functions is explained in section 3.8 Single Statement INTERNAL

FUNCTIﬁN'Definition, and in sectiom 6, Function Definitions.

2.13
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The form to indicate the use of any function of either of these
types is the same as that described in section 2.4.1, Single Valued Functions.
Programmer defined functions may be either single valued or non-single

valued functions.

2.4.5 Arguments of Functions
In general, as far as the MAD translator is concerned, any argument
of any function may be any expression. For a given function however,
the function itself imposes restrictions on the arguments. Therefore,
in determining the restrictions upon the arguments for a given function,

it is necessary to consult the function description.

2.4.6 The Mode of a Single Valued Function

By “the mode of a function" is meant "the mode of the value of a
function", e.g., if the mode of the value of a function is integer, then
the mode of the function is integer.

The mode or modes of various arguments of a function do not prejudice
the mode of the function. There may be functions all of whose arguments
may have modes different from the mode of the value of the function.

2.14
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2.5 Arithmetic Operations
A number of unary and binary arithmetic operations are avaiiable.
The arithmetic of the binary operations is integer arithmetic or floating
point arithmetic according to the modes of the operands. If both binary
operands are integer then integer arithmetic is used. If both operands
are floating point, floating point arithmetic is used. If the operands
are of mixed modes, the operand in the integer mode is first converted
to floating point; the arithmetic operation is performed as a floating

point operation, yielding a floating point result.

2.5.1 Unary Operations

These operate on the single operand immediately to the right of

the operator.

Operation Symbol Definition Example
.ABS. Absolute ABS. (X+Y) means |(X+Y)]
Value
+ Tdentity +(X/Y) means (X/Y)
- Negation - (Q*P) means -Q¥P

2.5.2 Binary Operations
These operations involve the operand to the left and the operand

to the right of the operation.

2.15
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Oper.
Symbol Definition Example
+ Addition Zh+QUP
- Subtraction A-XY7
* Multiplication. Juxtaposition 2.5%T
may not be used to signify
multiplication.
/ Division. If both operands are D3B/ (C~3)
integers the result is made an
integer. The fractional part of
the true quotient is truncated
(not rounded).
.P. Exponentiation. Raise the left VAR.P.2
operand to the power which is means
the value of the right operand. (VAR)2
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2.6 Arithmetic Expressions
2.6.1 Definition of Arithmetic Expressions

(a)

(b)

(c)

(d)

Every unsigned constant, whether integer, floating point
or alphabetic, is an arithmetic expression. Every individual
variable, whether integer or floating point, is an arithmetic
expression. Every subscripted array variable, whether integer
or floating point, is an arithmetic expression. Every value
of a single valued function, whether integer or floating
point, is an arithmetic expression.
If V is any arithmetic expression of a type in (a) above
then both

+V

-V
are arithmetic expressions.

If E is any arithmetic expression, then

(E)

is an arithmetic expression, and also both

+ (E)
- ()

are arithmetic expressions.
If F is any arithmetic expression, then all of the following

are arithmetic expressions:

ABS. F
F+V
F+ (E)
F-V
F - (E)
F*xV
F * (B)
F/V
F/ (B)
F .P. E
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(e) The only arithmetic expressions are those arising in (a)
through (d) which do not exceed a length which can be

contained on ten cards.

2.6.2 Hierarchy of Operations in Arithmetic Expressions
The order in which individual terms of an expression are to be
evaluated and combined must be unique and in the MAD language is made
so by defining the hierarchy of the arithmetic operations. Unless
altered by parentheses the order of arithmetic operations performed

within an arithmetic expression is  given by the following list:

Operation
Symbol
ABS. , + (unary operations) (equal hierarchy)
.P.
- (unary operation)
* / (equal hierarchy)
+ ., - (binary operations) (equal hierarchy)

Within an expression, operations of equal hierarchy are performed
from left to right unless otherwise indicated by parentheses.

Example:1l: The expression

A+ B/C+D .P. E¥XF - G

means

A+%+DEXF-G

Example 2: A * B/C * D/E * F
means
AB.X
e ®
E
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Example 3: C(K) + A(3) * B(J)/9.7 + 3.5 * P

means

Cc(K) + éié)§?7§££l + 3.5 % P

Example 4: A+ B =C+ D - E
means

(((A+B)-C)+D)-E

Example 5: X/Z * Y/R * 8
means

((®/z)* ¥) /R) * 8

2.6.%5 Parentheses in an Arit
Parentheses as used in the ususl algebraic sense may be used to
override the usual rules of precedence for a given expression and are

frequently used for the purpose of simplifying mathematic expressions.

Example 1t A * B - C/D + E*F

means

C
AB - 5t EF

but
A*¥ B-C)/(D+E)*F
means

A(B - C)

“orE "
Example 2: (C(K) + A(3) * B(J))/{9.7 + 3.5 * P)

C(X) + A(3) * B(J)
9.7 + 3.5 %P

2.19
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2.6.4 Mode and Arithmetic Expressions
As just defined, it is possible for an arithmetic expression to
contain operands of either integer mode or floating point mode. When

an arithmetic expression is evaluated, the result, which is the "value

point mode. Thus it is proper to speak of the mode of the value of an
arithmetic expression; a somewhat looser terminology, "the mode of an
arithmetic expression”, is sometimes used in place of this.

In an arithmetic expression an alphabetic constant is a constant
of integer mode.

An arithmetic expression is considered to be in the floating point
mode if any operand of any arithmetic operation in the expression is in
the floating point mode. If all operands are integer (or alphabetic),
then the expression is considered to be in the integer mode. In this
determination arguments, though not values, of functions are ignored.

Thus, if Y, Z, and W are floating point variables, while the
function GCD. and the variables I and J are in the integer mode, then

the expressions

Y + GCD.(1,J)
Y+ 2 -1

I+ 1.

GeD. (1,J3)/%

are all floating point expressions while the expressions

I + GCD.(1,J)
(I+93)3
I+1

Gep. (1,3)/1

are all integer expressions.
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If an arithmetic expression has subexpressions of different modes,
a conversion may be necessary before some of the operations can be per-

formed. Thus, in the expression
Y+ 3

if Y is in the floating point mode it cannot be added directly to the
integer 3. But for one precaution the user need not be concerned with
this since the instructions necessary for the conversion of the integer
to floating point form before adding are automatically inserted by the
translator during the translation process. The precaution is that if
the integer being converted is greater than 134,217,728 (i.e., 227)
then an improper conversion will take piace.

In some cases, however, the user must understand the sequence in

which the conversions will be made. Consider the expression
(Y + 7/3) + (T * 3/X)

where Y is in the floating point mode, and I, J, and K are in the integer
mode. According to the parenthesizing conventions the computation will

proceed in the following order (where the T's are temporary locations):

T, =I*J
T2=T1/K
T = T/3

Th =Y + T5
'I'5 = ’]?-4 + Té

and T_ will be the value of the expression.

5
Now, since both I and J are integers, the first multiplication
will be integer multiplication, and Tl will be an integer. ©Since

the following involves two integers, it will be integer division, and,

if K happens to have a larger value than Tl the quotient is O. Similarly,

. e . PO
T, will have the value 2 becauce of the divisicn of tw

.1.5 @)
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computation of T), however, we have "mixed modes," since Y is floating

point and T3 is integer. Here T, will be automatically converted to

floating point before adding. L?kewise, in the next step, the integer
T2 will be converted to floating point before adding to the floating
point number TQ-

In other words, although the mode of the expression is floating point
because of the presence of the floating point variable Y, some of the
computation (until Y is involved) is performed in integer arithmetic, and
this may occasionally cause the final value to be different from the
value one might expect from a different analysis.

In the example above, the divisions would be performed in the floating

point mode if the expression were written:
(t +7./3) + (T *3)/(x+0.)

Of course, many times the expression will be written as originally

stated just to achieve the "truncation" effect.
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2.7 Mathematical Relations
In order to permit comparison of the algebraic values of pairs of
arithmetic expressions (see section 2.6, Arithmetic Expressibns), state-
ment label expressions (see section 2.10, Statement Iabel Expressions)
or function name expressions (see section 2.11, Function Name Expressions),

the following mathematical relations are provided:

MAD Symbol. Mathematical Symbol Meaning
L. < E.L.F means "E is less than
FH
IE. < E.LE.F means "E is less than

or equal to F"

E. = E.E.F means "E is equal to F"

.NE. £ E.NE.F means "E is not equal
to F"

“G. > E.G.F means "R is greater
than F"

.GE. > E.GE.F means "E is greater

than or equal to F"
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2.8 Boolean Operations

The following Boclean, or logical, operations are available. Let

M and P be Boolean Expressions as defined in section 2.9, Boolean

Expressions.

il

MAD Corresponding
Operation Logical

Symbol Symbol Definition

.NgT. ~ The value of .N@T.M is 1B if and only
if the value of M is OB.

.OR. \4 The value of M.fR.P is OB if and only
if both M and P have the value OB.

EXfR. 0 The value of M.EXfR.P is 1B if and
only if exactly one of M or P has
the value 1B.

.AND. N\ The value of M.AND.P is 1B if and
only if both M and P have the value
1B.

.THEN. > The value of M.THEN.P is OB if and
only if the value of M 1s 1B and
the value of P is OB.

EQV. The value of M.EQU.P 1s 1B if and

only if the value of M is equal to
the value of P.
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2.9 Boolean Expressions

2.9.1 Definition of Boolean Expressions

(a)

()

~~
(e
~—r

(a)

Boolean constants, Boolean simple variables, Boolean subscripted
array variables and Boolean~valued single valued functions are
Boolean expressions (see section 2.1.4, Boolean Constants, 2.2.7,
Boolean Variables, and 3.2, Mode Declaration).

If E and F are arithmetic expressions, then the following are

Boolean expressions:

E .L.F
E .LE. F
E E.F
E .GE. F
E .G. F

If G and H are both statement lable expressions or both function
name expressions, then

G .E. H
G .NE. H

are Boolean expressions.

EXCEPTION: If G or H are elements of a vector preset by a VECTﬁR
VALUES statement (see section 3.7, VECTPR VALUES De-
claration), then G .E. H and G .NE. H are not expressions.

If M and P are Boolean expressions, then the following are Boolean

expressions:

(M)

NgT. M
M .fR. P
M .EXfR. P
M .AND. P
M .THEN. P
M .EQV. P

2.25
6/20/62



BOOLEAN EXPRES3TONS

(e) The only Boolean expressions are those arising from (a) through

(a).

Examples of Boolean expressions:

(X .G. 3 .AND. Y .LE.2).fR. (GAMMA L. EPSILN)

2.9.2 Hierarchy of Operations in Boolean Expressions

As for arithmetic expressions, the hierarchy of operations which may

appear in a Boolean expression must be defined in order to establish a

unique srder in which the terms of the expression are evaluated and com-

bined. Unless altered by parentheses, the order of operations psrformed

within a Boolean expression is given by the following list:

Operation Symbols

.ABS., + (equal hierarchy)
.P.

*, /(equal hierarchy)

+, - lequal hierarchy)

.E., .NE., .G., .GE., .L., .LE. (equal hierarchy)
NPT

.AND.

.fR., .EXfR. (equal hierarchy)

.THEN.

.EQV.

Within an expression, operations of equal hierarchy are performed
from left to right unless otherwise indicated by parentheses.
IxXamples:

(1) .ABS.(B - C) means |B - C|, while .ABS.B - C means |B| - C.

(2) - B + C means (-B) + (C), while -(B + C) means the negation

of the sum.
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(3)
(&)

(5)
(6)
(7)
(8)

BOOLEAN EXPRESSIONS
B.P. - X + Y means BX + Y, while B.P.(-X + Y) means B 'Y,
K2/Z - 3 means (K2/z) - 3, while XK2/(Z - 3) implies that Z - 3
is the denominator.
A * B+ Cmeans (A *B) + C.
A.P.3/J means (A5)/J.
X.L. Y + 3 means (X) .L. (Y + 3).
P.AND..NGT.P .EQV.Q means (P.and.(.N@T.P)).EQV.Q

2.9.3 Parentheses in Boolean Expressions

Parentheses are used in the usual way in Boolean expressions.

2.9.4 Mode and Boolean Expressions

If an expression is a Boolean expression (see section 2.9.1, De-

finition of Boolean Expressions), then the expression has a value which

is of the Boolean mode; a somewhat looser terminology is to say that

"the mode of the expression is Boolean'.
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2.10 Statement Label Expressions
A statement label expression may be any of the following:
(a) A statement label constant;
(b) a statement label variable;
(c) a function value of statement label mode.
There are no other statement label expressions.
If an expression is a statement label expression, then the expression
has a value which is of statement label mode; a somewhat looser terminology

is to say that "the mode of the expression is statement label".

Examples:
(a) 1If each of the following:
LABEL
c(3)
XYZPDQ

appears in the label field of some statement, then each one
is a constant of statement label mode and hence each is a
statement label expression.

(b) If each of the variables

has been declared to be of statement label mode (see section
3.2, Mode Declaration), then each is a statement label ex-
pression. Notice that the entire array IJK must be of statement
1abel mode.

(c) If the function value given by
PAIR. (X,YZABC,IJK(Q))

is of statement label mode, then this is a statement label

expression.
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2.11 TFunction Name Expressions

A function name expression may be any one of the following:

(a) a function riame. constant;

(b) a function name variable;

(c) a function value of function name mode.

There are no other function name expressions.

If an expression is a function name expression, then the expression

has a value which i1s of function name mode; a somewhat looser terminology

is to say that "the mode of the expression is function name".

Examples:

(a)

(v)

If each of the following:

SIN.
ATAN.
FUNCTN.

is a function name, then each is a function name constant
and hence each 1s a function name expression.

If each of the variables

Al23

C2BX11l

LcA (12,P)
has been declared to be of function name mode (see section 3.2,
Mode Declaration), then each is a function name expression.

If the function value given by:
XYZF. (A1,A2)

is of function name mode, then this is a function name expression.
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2.12 Summary of Expressions

Four kinds of expressions have been defined and may occur in the
MAD language:

Arithmetic Expressions, section 2.6.

Boolean Expressions. sect

Statement Label Expressions, section 2.10.

Function Name Expressions, section 2.11.

Of these, the Boolean expression is the most general since all of
the others may appear as sub-expressions of a Boolean expression.

When the terminology "any expression"” is used, it is to mean any

of the above four types of expressions.
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3 DECLARATIONS (Non-executable statements)
. Pre purpose of declarations is to furnish information to the translator.
With the exception of function declarations, all such statements may occur

“anywhere in a program. Declarations may have statemept labels, but,they are

ignored by the translator and may not be referenced by other statsments
=S =il e et bt il e i b - T e VidWw ST wy “iaea =2 =R Vi A SR ¥~ 1

3;1 Remark Declaration
Each card containing a Remark declaratiott must have an "R" in column 11.
The statement itself in columns 12-72 is any string of allowable characters
(see sec. 1.1, The Hollerith Character Setj and is ignored Wy the translator.
It is reproduced where it occurred in the printed Aisting of the source
language program, thus furnishing information to the reader of the program.
Exémple;

/'//Cols° Col. Cols. Cols.
1-10 | 11 12-72 73-80

R THE FOLLOWING IS THE 3RD OF A SET OF 5. 3/12/6
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3.2 Mode Declaration
Variable and function values may be declared to be one of the following

modes:

FLZATING PEINT
INTEGER
BIPLEAN
FUNCTI@N NAME
STATEMENT LABEL

The form of the mode declaration is

MUy Uy oc o5 U

whereZW:is one of the five modes listed above and each U,, separated from the
next by "," is a variable name or function name. In pargicular, no sub=-
scripted variable form may appear in the mode declaration. No Ui may be
declared to be of more than one mode throughout a program.
mxamples: INTEGER  ADDN., Z5X, ALPHA

BAPLEAN  BAR, ANA., N32

FUNCTTN NAME BETA, CLT.

MsaD assumes the mode of all variables and function names to be FLE.TING

POINT unless otherwise declared: This normal mode may be altered by a

statement of the form
NORMAL MODE IS /77

wnere7r) is one of the five modes listed above. Only one such statvement may
ocour in & given program and this declared normal mode is in effect through-
oul the program, regardless of where it appears in the program.

Alsos

{1) 4ll constants are assigned a mode consistent with troir
respective forms. (See sec: 2.1, Constants.)

(2) A vector which is a dimension vector of some array in a
DIMENSI@N declaration is assigned INTEGER mode (see sec. 3:.6,2, MaTRIZ
DIMENSION, -

o~

e

N

o
\g’g
o o
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(3) A vector which is preset by a VECT@R VALUES declaration is
assigned a mode consistent with the assigned values (see sec. 3.7 VECTZR
VALVES ). |
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3.3 EQUIVALENCE Declaration
The EQUIVALENCE declaration is of the forms

EQUIVALENCE (Vy, Vo = = =, V), (V00 V_oy o o - -

Ce (Vn+p+q+l’ vn+p+o,+2’ I Vn+p+q+r}
where each Vi is a variable name or a subscripted variable, the subscript of
which is lirear. All the elements indicated within a pair of parentheses
will be assigned to occupy the same storage location throughout the program.
An array name V written without subscript is by convention taken to mean the
element V{0, O, - - . , 0). Ifme array element from each of two different
arrays appears within a pair of parentheses these are made equivalent and
a one-to-one equivalence is thereby induced upon the overlapping remaining
elements of the two arrays. One element from each of any number of different
arrays may appear within a pair of parentheses.

names within a group need not be of the same mode; the mode
must be established by the appropriate mode declaration for each variable
name -

Any number of groups of equivalencesmay occur in any one EQUIVALENCE
declaration {up to ten cards/statement), and any number of EQUIVALENCE
declarations may appear at any place within a progranm.

Examples:

(a) A single statemen.:

EQUIVALENCE (A, B, C2), (XLF, TSH), {Pi34, XXX, 2ZZ), (Q, R), (SIX, I6)
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(b) A portion of a program:

EQUIVALENCE (A, B, C2), (XLF, TSH)

&

EQUIVALENCE (P43A, XXX), (Q, R)
EQUIVALENCE (XXX, 22Z)

°

EQUIVALENCE (SIX, I6)

The results of examples (a) and (b) are identical.
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3.4 PROGRAM CAMEN Declaration
The PRZGRAM C@MM@N declaration has the form

PRPGRAM CEMMEN Vs Vo o o ey Vo

where each Vi is a variable name separated from the next by ",". This
declaration causes the specified simple variables and entire arrays to be
stored in an area separate from the usual storage and separate from ERASABLE
storage, section 3.5. These variables are not stored overlapping in storage
as in EQUIVALENCE: They are stored successively in order of their appearance.
Reoccurrences of the PHﬁGRAM CAMM@PN declaration do not erase the

variables already assigned to PRUGRAM CAMM@N; the new assignments are appended
to the previocus list.

{1) One use of this declaration is the provision for several

sections of a program to refer to variables and arrays by the same name, thus

allowing the sections cf the program tc be translated and checked out
independently of each other. A program segmented in this fashion would have
the form of a main program plus several EXTERNAL FUNCTI@N programs, section
6.5, with the main program being used primarily to call on each of the
EXTERNAL FUNCTI@N programs. Both the main program and the segments must
contain the necessary PROGRAM CEMM@N declarations. Although variables and
arrays to be used jointly by several EXTERNAL FUNCTI@Ns can be communicated
as arguments to the functions, assigning them to PR@GRAM CAMM@N makes them
available with greater ease to all of the functions. The reservatior of
PROGRAM CAMM@N storage is performed only once and for the main program onlys
the PRUGRAM C@MM@N declaration in the EXTERNAL FUNCTIUN segment allows the
proper storage references to be made. If PRUGRAM CAM@N is to be used in
this way (main program and EXTERNAL FUNCTI@Ns) the main program must be

loaded into the computer first.
(2) Another use for the PRUGRAM C@MM@N declaration is in the

situation where a program is so large that it cannot all be contained in

the computer at once. The program must then be written in segments, and if
one segment is to use the resulis of a previous segment's computation; the
variables involved shonld be declared in PREGRAM COMMEN storage and will be
retained throughout- The PRYGRAM CAMM@N and DIMENSION (sec. 3.6) declaration
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which set up the storage allocation must be identical in all segments which
use these variables and arrave. Additional variables and arrays may be added
to the end of the PREGRAM CAMMEN list by any segment.

A

~
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3.5 ERASABLE Declaration
The ERASABLE declaration has the form

23 { s 5 th

ERASABLE V, V
where each Vi is a simple variable or an array, separated from the next by
",". The variables and arrays assigned to ERASABLE are not overlapping as
in EQUIVALENCE, but are put in a storage separate from the usual and separate
from PRYGRAM CAMM@N. Each ERASABLE declaration deletes the effect of any
previous ERASABLE declaration, thus allowing variables and arrays to occupy
the same storage at different times-

Notice that external functions and translator defined functions may,
and do, make use cf erasable storage. Therefore care must be exercised if
the programmer wishes data in erasable storage to remain intact after the
operation of such a function. The data which is to be preserved must appear
as an entry in an ERASABLE declaration so that entries which appear to the

left of it represent at least as much erasable storage as is to be used by

the function which is to execute in the interim and which requires the
greatest amount of erasable storage. The entry or entries to the left of the
eritical entry in ithe ZHASABLE declaration may be a dummy or dummy entries
solely for the purpose of skipping over the non-safe erasable storage-
Zxample: Suppose the following program segment appears:

o
°

°

EEASABLE X; Y, Z

Z = 1.207
R = SQRT. (A)
T =R+ Z

3.7
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where SQRT. is assumed to use two locations of erasable storage and X and Y
are assumed to be expendable at least for this segment. The variable Z is
calculated before the SQRT. function is executed and is used afterwards. The

expendable variables X and Y, by virtue of appearing to the left of Z in the

.|

=
o
(1]
=

&

b
b
-

Z is assigned to a safe location one beyond those destroyed by SQRT..

3.8
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3.6 DIMENSIgN Declarations
Vectors and matrices may be declared in the same DIMENSIﬁN declaration.
The separation of their descriptions here is done for‘the sake of clarity-
If a variable is to be an array it must be declared in a DIMENSI@N decla-
ration; this declaration need not appear in the program before the first

use of the name.

3:6-1 Vector DIMENSI@N Declaration

The form of a DIMENSI@N declaration for vectors (one-dimensional arrays)

DIMENSIPN V,(py), V,(py)s oovs V. (P.)

where each Vi is a variable name and is followed by an integer constant
enclosed in parentheses. This integer constant is the largest value that
the subscript of Vi will assume during execution of the program. The size
of the region reserved for the array Vi will be this integer +1. The ","
separates each declared vector from the next. The subscript of an element
of & vector array should not attain a value less than zero during execution

of the program.

3.6.2 Matrix DIMENSI@N Declaration
The form of a DIMENSI@UN declaration for matrices (n ~ dimensional

arrays where n > 2) is

DIMENSI?N Vl(pl’Dl(xl) ) 5 Vz(pstZ(Xz) ) 9 ocoy Vm( pmst(xm))

where each Vi is a variable name (other than Statement Label) and is
followed by two arguments enclosed in parentheses. {The general form of a

subscripted variable which is an element of Vi is

A (sl, Sys coey sni)
where n{is the number of dimensions of Vi)° Each P, s the first argument;
as in vector DIMENSI@N above, is an integer constant whose value is the largest
that the linear subscript of Vi can assume. Bach Di(xiL the second argurent,
defines the "dimension vector'! for the assoclated Vi array in the following

way:
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is a variable name;
X, 1is an inteéer constant designating a specific element
in the Di vector;
D,(x.) contains an integer constant, n,, whose value is the
number of dimsnsicns of ii,
Di(xi+l) -'contains the linear subscript (integer) of the Vi
array which is also to be the base element of the
V., matrix, i.e., v(l, 1, ..., 1)
Di(xi+2) contains an integer constant which is the largest

value that the 2nd subscript of Vi may assume;

Di(xl+ni) contains an integer constant which is the largest

value that the nth subscript of Vi may assume.

(The lowest value of each subscript of Vi is assumed to be 1).

The dimension vector, Di(xi), is automatically of INTEGER mode and may
not be declared other than INTEGER. Di must itself be dimensioned, either
by:DIMENSI¢N or by i iR VALUES (sec. 3.7); D; must be dimensioned to have
its largest linear subseript 2>Xi+ni“

As is mentioned above, it is possible to declare an array in such a

way that the linear subscript of the base element (the element with all

subscripts = 1) is greater trar  gmii-~- ~hig is done it becomes meaningful,
and it is permitted, to refer i: ¢ elements with linear subscripts less

than the linear subscript of the base element but not less than the linear
subscript zero, using the multi-element;subscript (non-linear subscript)
form with the values of the subseripts equal to zero and even less than
zero. See example 3 below.
Examples:

(1) DIMENSI@N XA(400,V), V(3)

XA is a 4Ol-element array whose elements may be referred to as Xa(0),
XA(1), ..., XA(400). V contains the 3-glement dimension vector for the

3.10
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matrix XA (V is itself a h-element array and is automatically of INTEGER

mode); if V has been preset as follows:

v(0) = 2;
V(1) = 63
V(Z) = 1% 3

V(3) may pe used as an integer variable elsewhere;

and if XA(I, J) is any element in the matrix XAs

(a) XA has 2 dimensions, since V(0) = 23

(b) the base element of XA, XA(1,1l), is XA(6), since V(1) = 63

(c) the allowable range of J is =5 < J < 13, since V(2) = 13.

So that the elements XA(O) through XA(5) are not "™within™ the matrix XA,
and XA(6), XA(7), <., XA(395), ..., XA(LOO) may be referred to as Xa(1,1),
XA(lQZ), -esy XA(30, 13), .00, XA(31, 5). Aithough XA(0) through XA(5) are

not ®™within" the matrix XA, the following is true:

1
w

XA(5) = Xa{0,13) = XA(1,0)
XA(4) = XA(0,12) = Xa(l,-1)

XA(3) = xa(0,11) = xA(1,-2)
xa(2) = x4(0,10) = Xa(1,-3)
XA(1) = xa(0,9) = xa(1,-4)
Xa(0) = XA(0,8) = xa(1,-5)

(2) DIMENSIEN Y5(250, J(5)), J(15)

Y5 is a 251-element array whose elements may be referred to as Y5(0),
Y5(1); =00y Y5(250).

J contains the 5-element dimension vector for the matrix Y53 if J has

been preset as follows:

J(0) through J(5) may be used as integer variables elsewhere;

J(5) = 43
J(6) = 203
J(7) = 4
J(8) = 63
J(9) = 33
J(10) through J(15) may be used as integer variables elsewhere;

3.11
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and if Y5{I, X, L, M) is any element in the Y5 matrix:

(a)
(b)
(c)
(a)

Do ¥
S

So that

and

NOTE 1:

NOTE 2:

3.12
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Y5 has 4 dimensions, since J(5) = 43

the base element of Y5, Y5(1,1,3,1), is ¥5(20), since J(6) = 203
the allowable range of K is 1 ékK < L, since J(7) = L3

the allowable range of L is 1 < L < 6, since J(8) = 6;

the aiiowabd~

the elements Y5(0) through Y5(19) are not ™within" tie matrix Y5,

Wo<a 3 M adinan IO i
rFl Lo 4 Ll——: )’ [~ R WIS -] 0\7; = g

[
'/\. |

P e - TP}
LGUETS W

¥5(20) : ¥5(1,1,1,1);
¥5(22) = v5(1,1,1,3);
¥5(23) = ¥5(1,1,2,1)3
Y5(35) = ¥5(1,1,6,1)s
Y5(37) = Y5(1313633)5
Y5(38) = ¥5(1,2,1,1)s
Y5(91) = Y5(1,4,6,3);
Y5(92) = ¥5(2,1,1,1);
Y5(235) = Y5(3,4,6,3);
and Y5(250) = ¥5(4,1,5,3)-

The general formula for computing a linear subscript L of the
array X from a known matrix subscript (wi, Wy so0y Wiy cooy wh),
where the upper values of W, through w_ are Wé, Wos ooy Woy cooy

W , and where the linear subscript of the base element X(1,1,000,1)

is B, is:
n-1 i-1
L =B+ (w -1}y + ¢ [(wn .- 1) TT W ]
i=1 -1 _o n-J
E.g., given Y5(3,4, 6,3) YS(W W WL) above,

L =20 + (3-1) + E(6~l)(3)J + [(4-1)(3)(6)]
+ [(3-1)(3)(6)(4)] = 235
and Y5(3,4,6,3) = ¥5(235).

An algorithm for computing for the matrix X a subscript
(wl, Wos eoes wn) which corresponds to the linear subscript L,
where the linear subscript of the base element is B, and the upper

bounds on Wys Was ooy W are W Wos coo, W ist

3 3
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(1) L-B=R
r
R _ 1 . -
(2) n = Ql + n 2 Ql + 1= wl
TT W, T W,
i=2 i=2
r r
1 2 _iQtl=w
- +
(3) n Q2 n 2 2
TT W, TT W,
i=3 i=3
r2 r,
W) ST =gt ey
77_ oy 77— W,
i=4 i=
{ \ Tn'“‘:/: — o~ . n"]_; [ AY =
1/ o e + £ L | rlo= h;wj.
n n
{nt+1) roq* 1= W
B.gs, glven Y5(250) and Wy = b, W3 =0, W B WL = 3 above
(L) msoe2e = 230
N o~ ry. l
() 236/72 =3+ 25 k=
(3) 14/18 = 0 + ig 1 - W,
‘ ) 2
() W3 =b+ 535 =w
(atl) 3 = w_

FTN G

automatic DIMENSLYN

Thers are two cases in which }

NST¢Ning:

(1) If L is a statement lal
ymich appears with Loan
Statement Labels)

MAD performs automa’ically the neces

nume, ant a is the larsest subserd
ne stateoment Labol fiold (s¢c. &3,

I

[

ot

then an automatic DIMENSI@N L(n) occurs, i.e.,

3.13
/20/52



DIMEN SIPN DECLARATIONS

n+l locations are reserved for the L vector. (No harm is done if
L is also dimensioned by the programmer).

Example: If the following appear as labels of various statements
throughout the program:

LABELV(1)
LABELV(3)
LABELV(7)

and LABELV does not appear in a DIMENSI@N declaration, then 8
locations will be reserved for the LABELV vector automatically.

(2) If part or all of a linear array is preset by VECT@R VALUES
(sec. 3.7), the array need not be declared by DIMENSI@N unless
the size of the array automatically reserved by VECTPR VALUES
is not sufficiently large.

3.14
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3.7 VECT@R VALUES Declaration
Any vector or portion of a vector (or array, when using its linear
subscripts) may be preset by a VECT@R VALUES declaration of the form:

VECTYR VALUES ¢/ = Cgr Cp2 er C

where U/is any variable V or linearly subscripted variable V(m); each
cy is any constant, and all c; are of the same mode. The elements of the
vector V through V(n), or V(m) through V(m+n), are preset with the values
cO through c, at compilation time. The mode of the vector ¢ is auto-
matically assigned by MAD to be that of Sy and may not be declared to be
a mode other than that of c, A region of n+l (or m+n+l) storage locations
is reserved for C/: but this region may be enlarged by a DIMENSI@N declar-
ation or by another VECTZR VALUES declaration.

For alphabetic constants, the effects of VECT@R VALUES may be extended
to the following:

VECTOR VALUES V= $cicicy. e §, $e

onoc $,

n+lcn+2cn+3 n+p

cooy $cn+p+q+lcn+p+q+2°°'cn+p+q+r$

where there may appear between $'s a string of characters (see sec. 2.1.3
for allowable characters in alphabetic constants) of any length. Each
cy is considered to be a group of six characters. If the last ¢y between
$'s does not contain six characters, blanks are appended to the right to
make a group of six.

It is allowed to intermingle integer constants and alphabetic constants
in any VECT@R VALUES declaration, €8,

VECTGR VALUES BETA = 42, $THISbISbNUMBERbL2.$, 3

and BETA will have reserved for it five locations which will be preset as

follows:
BETA(O) = 42
BETA(1) = THISbI
BETA(2) = SbNUMB
BETA(3) = ERb42
BETA(4) = 3

3.15
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Example:

VECT@R VALUES ALPHA(32) = $33HOTHISbSITUATI¢ND
CREATESbANbERRZR*$,
$16HbREADRMPREBDATARS

The vector ALPHA; elements 32 through 41, are being preset to be used

- s - N R *
as a message at exscution time. The characters between §

print formats (sec. 5.5.3, PRINT FORMAT Statement).
Forty-two locations are reserved for ALPHA, ALPHA(O) through ALPHA(41).
Values will be presdt as follows:

ALPHA(32) = 33HOTH ALPHA(33) = 1SbSIT
ALPHA(34) = UATIgN ALPHA(35) = bCREAT
ALPHA(36) = ESbANb ALPHA(37) = ERRgR*
ALPHA(38) = 16HBRE  ALPHA(39) = ADWM@R
ALPHA(40) = EbDATA ALPHA(41) = ®bbbbb

In order to print these messages, the program would have‘tbicOﬁtain

PRINT FURMAT ALPHA(32)
PRINT FURMAT ALPHA(38)

RESTRICTIONS:

(1) Vectors which have been declared in ERASABLE storage may not be
preset by VECT@R VALUES. '

(2) Vectors which have been declared in PRPGRAM CAMON storage may mot
be preset with statement labels or function names; also, these vectors
may be preset only in a l-section program, or, in an n—sectian‘program it
the PREGRAM CEMM@N region is identical in all n sections.

3.16
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3.8 Single Statement INTERNAL FUNCTI@N Definition
A description of the procedures necessary to enable the user to define
more general types of functions appears in sec. 6, Function Definitions.
The single statement internal function definition is the simplest
type of function definition. Since this is an internal function, it is
translated as part of the main program. This single statement has the

forms
INTERNAL FUNCTI@N F. (AlgAzsoon,Ah) = E

where F. is a function name {see sec. 2.4, Functions), the Ai“s are "dummy
argunents®™ and E is any expression which is consistent with the declared
mode of F..

The "dummy arguments" are used in the expression E to indicate the
correct correspondence between a variable name used in E and a position in
the list of arguments. When the internal function F. is used, every
occurrence cof the "™dummy variable¥® Ai in the expression E will be replaced
by the value of the argument which occupies the position in the list of
arguments cof the ¥dummy argument®™ Ai:

The form of a dummy argument may be:

(1) a name of a simple variable,

(2) a name of an array variable,

{2) a name of a function.

Notice tha% neither constants nor subscripted variables may appear as
dummy arguments and that arguments of a function do not appear following
the function name in the dummy argument list.

Names used as dummy arguments must be distinct from all other names in
the program- Names which appear as dummy arguments may not appear in any
PROGRAM CAMM@N, ERASABLE or EQUIVALENCE declaration:

The modes of the dummy arguments must be declared as for other variables
if of other than normal mode-

Dummy arguments which are array names need not be dimensioned.

The alphanumeric portion of the name F. of the defined function must be
distinet Trom all cther names used in the program, and from the names of the
functions already availavle to the translater. For a list of these names see
the manual of library subroutines:

- 3:17
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Ordinarily, all the names of the dummy argument list will appear in the
expression E (otherwise, the unused ones need not appear as dunmy arguments).
Names of variables or functions which do not appear as dummy arguments, but
which are defined elsewhere in the program, may also appear in the expression

E. The value of such a variable or function in the expression is the current

T oas & i 1 i i i Faasm mde s ey & - vrmem == g, s dl. oo TOUEVITTOOND 8 A
value at the time the function F. is used, either by the UTE statement

E

or as a term in an expression.

In the use of a function an argument may be any expression which. agrees
in mode with the corresponding dumy argument.

A single statement internal function definition may appear anywhere
within a program except in another internal function (see sec. 6.4, Internal
Function Definitions).

In the example:

INTERNAL FUNCTI@N PQLY. (N, X, FN.) = FN. (J*X).P.N - X/XBAR
which might be used in the statement (the statement label is BETA):

BETA 2Q = P@LY. (M + 1, Y, SIN.) + PgLY.(M - 1, Z, CgS.)
it is understood that if N is in the integer mode, then so is.M, and if X
is in the floating point mode, then so are Y and Z. Both M and N would
have had to be declared to be in the integer mode, of course. Similarly,
the values of SIN. and C{@S. must be the same hode‘as the values of FN.
Moreover; in the use of functions, this mode correspondence cannot be
checked by the translator.

The function PPLY. has as one of its arguments the name of a function.
In the statement BETA the function used in the first term to the right of
the =" sign is SIN. and in the second term C@#S.. Hence, statement BETA
is then equivalent to: 4 |

ZQ = SIN.(J*Y).P.(M+l) - Y/XBAR + C@s.(J%*Z).P.(M-1)-Z/XBiR.

3.18
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4, Basic Executable Statements

L.l Substitution Statement

This statement has the form:
¥=F

e ° a r
u

~ an  ma
eTT = ¥
s h W -

af +the Wi
Ci =

Fn
FY vile

1at is, the 1 sign consists ¢
variable or a subscriptéd array variable, and the right side, F, consists
of any expression of the same mode. The only exceptions to this mode
requirement are the cases:

(1) If the variable on the left is of integer mode then the value
of a floating point expression on the right will be converted to integer
mode. :
(2) If the variable on the left is of floating point mode then the
value of an integer expression on the right will be converted to floating
point mode. '

These conversions are the only automatic ones and any other disagree-
ment of mode is not permitted.

The substitution statement is to be interpreted in the following way:

(1) compute the value of the expression on the right,

(2) convert it, if necessary and possible, to the mode of the variable
on the left of the =" sign, and

(3) give the variable on the left the value which results from steps
(1) and (2).

Thus, if Y is a floating point variable, then the statement
Y=1

will cause the integer 1 to be converted to floating point and then stored
in the location called "Y"; i.e., Y will now have the value 1. (as a

floating point number). If the statement were written
Yzlo

then the floating point number 1. would be stored in the location ®Y%;
i.e., Y would again have the floating point value 1., but in this case
the conversion of the integer is unnecessary, thus speeding up the
computation.

4.0
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When a floating point number is to be converted to an integer, it is
first expressed as a number with both an integer part and a fractional part,
and then the fractional part is truncated. Thus, the following floating

point numbers:

3E5, .3E0, .34568127E2, - .345681El0
would convert to the following integers, respectively:

300000, O, 34, - 3456810000

4.1
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4.2 TRANSFER T@ Statement

This statement has the form:

TRANSFER 79 of

Here@V may be any expression in statement label mode and in particular
may be any statement label. Execution of this statement causes the
computation to continue from the statement whose label is the value of J .
Examples: (1) TRANSFER T¢ SUMX

(2) TRANSFER T@ SWTCH (K+2)
If Ka4 then the valus of SWTCH(K+Z) &s SWRCH (6)).

4.2
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4.3 Conditional Statements
There are two types of conditional statements.

4¢3.1 Simple Conditional
This statement has the forms

WHENEVER B, Q

Here B is a Boolean expression and Q any executable statement except
the followings END @F PRUGRAM, another conditional, THRPUGH or EXECUTE.
If at the time of execution of this statement;, the expression B has the
value 1B, the statement Q is executed. If, however, B=0B, then Q is skipped
and computation continues from the next statement in sequence. The comma
in this statement, as in other statements containing punctuation, must be
written.
Examples:

WHENEVER XM.LE.1, TRANSFER T@ END
WHENEVER I.GE.N.AND.J.NE.I-1, I=0

4:3.2 Compound Conditional
This type of conditional has the forms

G/l WHENEVER B

, ‘j} Ql

sz @R WHENEVER B

1

2

o0

(Z/k #R WHENEVER B,

GQL+

END ¢F C@NDITI@NAL

4:3
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Often the last condition Bk
always true. This may be expressed by the statement

expressed is one for which the condition is

¢R WHENEVER 1B

or alternately the statement

@THERWLSE

- The GJZ are statement labels which need nct be used unless desired; k
may equal 1 (if no "gR WHENEVER..." Statements are used). Here Bys coes
Bk are Boolean expressions, and the execution of this block of statements
is as follows:

Bach Bi is tested in turn, starting with Bl. If B1 has the value OB,
then B2 is tested, etc. As soon as some expression, say Bi?has the value
1B, then the statements between (but not including) ] ande/2+1(i,e. oi)
are executed. At this point the execution of the entire block is con-
sidered ended, and computation continues from the first statement after
the declaration labelled L
alternative computations is performed; e.g., that one which immediately
follows the first expressionABi which has the value 1B. If hone of the

Bi has the value 1B, none of the computation in the scope of these state-

In other words, at most one of the

ments is performed.

Among the statements of Qi for any i there may appear other compound
statements: The maximum permissible nesting depth of compound conditional
statements is 30.

sxamvle: The evaluation of the function whose graph is

!

Q

—

PR

e
}

might be given by the section of the program:
WHENEVER X .LE. O. .gR. 1. .LE. X <AND. X .L. 2. .@R. X .GE.3
Y = 0.
¢R W}{ENEVER Ot uI.aEi X AANDO" X'Lolw
Y=X

A
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¢R WHENEVER 2. .LE. X .AND. X .L. 3.
Y = lc
END @F CgNDITIGNAL

This sectior of program could be rewritten in another way.

WHENEVER O..LE. X AND. X .L. 1.
Y-=X

OR WHENEVER 2..LE. X .AND. X .L. 3.
Y = 1.

OTHERWISE
Y = 0.

END #F C@NDITIgNAL

Theindentation of the statements between the conditional statements is

not reguired but contributes to the readability.

L.5
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iel, CONTINUE Statement
This statement has the simple form:
CENTINUE

no computation

+
Wi

[¢2

It serves as an entry point in the program, and causes
T

A mamfParwmad ey 14
€ PEridrmea oy 9

s

oA A
resenc

[)]
o]
[
©

r

4
)

~ i =
N S8, ii: 0.
= 11 SCs L5 2

[
N

>

THRAUGH Statement, illustrates the use of C@NTINUE.
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4.5 THRPUGH (Iteration) Statement
This statement causes the block of statements which follows immediately
afterwards to be repeatedly executed; each time varying the value of some
variable, until the specified list of values for that variable is exhausted,
or until some specified conditien is satisfied. The THRPUGH statement may

take either of the following two forms-

4.5.1 THRPUGH J, FgR VALUES @F V = Eis Bys cony B

Here Q;:is the statement label of the last executable statement in the
block to be repeated: The block of statements following (and not including)
the THRPUGH statement, up to and including the statement whose label iséjyy
will be called the Wscope" of the THRPUGH Statement. Following the word @F

appears the name of the iteration variable V, which may-be either an

individual variable or subscripted array variable of any mode. To the right
of the "=" sign may appear any number of expressionsEi, ceoy Emc The modes
of the Ei bear the same relationship to the mode V as they would in the
Substitution statement V = E, (see sec. 4.1).

The execution of this statement causes the statements within its
"scope™ to be executed, first with V = El’ then again with V = E2, and so
on, until the list of expressionsis exhausted. Computation then proceeds
with the statement immediately following statemento/ - At this time the
iteration variable will have the value of the expression Em unless its
value was changed during the final iteration. Should a transfer be made to
another part of the program at any time during the iteration, V will have

its current value-

An example of this type of statement is:

THRGUGH A, FPR VALUES §F BETA = 3, 4, X5, Y{(6 + I) +.3
J=5%BETA+ 6
Jl=4J .P..5-1

A X(BETA) = J1 % C@S.(2. * THETA)

4.5.2 THR@PUGH Q/, FRRV = E;; E, B
Here gf is a statement label which defines the "scope" exactly as in
(sec: 4:5.1) above (with the exception: ifglis the label of the THRGUGH

L.7
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statement itself, the iteration will proceed as described below, but the
scope will be empty, and the iteration will consist only of the incrementing
of V by E2 and the testing)’. Following the word F@R is the name of the
iteration variable V which may be an individual variable or subscripted.
array variable of any mode. The modes of El and E2 are subject to the rules
which would apply to the substitution statements V = El and V = V + E,. B
is a Boolean Expression. ; - _~

The execution of the statement proceeds as follows: The variable V is
set equal to El‘ If the value of B = 1B, the scope of the THRJUGH statement
is not executed. If the value of B = OB, the scope is executed. V is then
incremented by E2, and B is tested again. In general, as sodn as B = lB,
the scope is not executed, and the computation proceeds from the statement
immediately following statement Q(- Each time B = OB, the statements in the
scope are executed, then V is incremented by E2, and B is tested again.
Thus, when the iteration is finished and B = 1B, V has the value used during
the last computaﬁion of the scope, incremented by Ez‘ The scope will not
have been executed for this value of V. (The value of V will be E,, of
course, if B = 1B before the scope is executed at all.) If, at any time,
the computation transfers out of the iteration to another part of the
program, the value of V will be the current value at the time the transfér
Example: The following prcgram segment illustrates this type of THRPUGH

statement.

L=1
K=1
4 =D(1,1)
THRPUGH ST1, F¢R I = 1,1, I .G. 10
THRPUGH ST1, FgR J = 1,1, J .G. 10
WHENEVER A .LE. D(I, J), TRANSFER T@ ST1
K=1I
L=J
A =D(I, J)

STl  CUNTINUE

4.8 .
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This program will locate the algebraically smallest element of the
ten-by-ten, 100 element, matrix D, and the column and row subscripts of the
first such element, if the smallest element occurs more than once.

The statements

L=1 and
K=1

initialize the column and row subscript indicators to 1.

The statement

A = D(1,1)
initializesthe variable A, which is to hold the "smallest element so far",
to the base element of the matrix.

The statements

THRYUGH ST1, F@R I
THRGUGH ST1, FER J

1,1, I .G. 10
l’l, J 0G' lo

define the iteration. The first will count from the first row through
the tenth row and the second will count from the first column through the
tenth column. Since the second THRPUGH statement is nested inside the first
it will count through the 10 columns for each of the 10 rows.
The statement
WHENEVER A .LE. D(I, J), TRANSFER T@ ST1

makes the comparison between A, the smallest so far, and the next untested
element D(I, J). If A is less than or equal te D(I, J).it is still the
smallest so far, so control is transferred to statement ST1.

If A is greater than D(I, J), transfer is not made; instead the state-
ments

K=1I

L=J
are executed which update the row and column subscript indicators to the
subscripts of the new ™smallest element so far" and the statement

A =01, J)

updates the "smallest element so far" variable A, to the new "smallest

element so far".

L.9
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THRPUGH STATEMENT

The statement
ST1  C¢NTINUE

results in no operation. It does, however, provide a statement inside the
scope of the iteration to which the WHENEVER statement can transfer to

continue the iteration but which will change nothing else.
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In 21l cases, every reference to
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current value at the time of reference. Moreover, the variable V may have
its value changed at any time during the execution of the scope. In a
statement of the form of section 4.5.1, the value of V will be reset by
the value of the next Ei for the next computation of the scope. In a
statement of the form of section 4.5.2, the current value of V will be used
for incrementing, testing, etec.

Examples:

n-1

X H...tc X+ using the
n-1 1 co g

formula (.,.((cnx + Cn-l)x + Cn-2)x +o. 0t cl)x teg (nested multiplication),

(i) To evaluate the polynomial cnxn +c

we may write the program:

INTEGER J,N

Y = 0.

THRPUGH PPLY, FPR J = N, -1, J L. O
PELY Y=X%Y+ c(J)

f(x )
A . k .
i 4 i g i > = -
(ii) A Newton's Method solution (xk+l xk ETT_‘T ) of the equation

f(x) = cos x = x = O could be written as a single statement, using the
£(x) |
k

f'(xKS

< € " for stopping the

criteria ®|f(x)| < € and !Xk - x4l =

iteration: i

NEW THRPUGH NEW, FgR X = X0, (c@s.(X)-X)/(SIN.(X) + 1.),
1 .iBs.(C@gs.(X) - X) .L. EPSL@N .AND.
2 .ABS. ((C@sX.(X) - X)/(SIN.(X) + 1.)) .L. EPSLEN
where X0 is the initial guess. The digits ™1™ and "™2" which appear at the
left of the second and third lines serve to show that the second and third
lines appear on second and third cards; i.e., the statement is "continued"

4. 10
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from the first card and occupies three cards. See sec.14.1.2.2, Continu~
ation Cards.

(iii) If the transformation of the iteration variable is to be per-
formed within the scope of the iteration, one may use a zero increment.
E.g., if J is an integer variable, and the scope of the iteration is to be
performed for those multiples of 2 which are not multiples of 5 and which

are less than the value of the integer K, one might write the iteration as

follows:
THRPUGH END, FOR J = 2, 0, J .GE. K
J=Jd+2
END WHENEVER J .E. (J/5) # 5, J =J + 2

(iv) A table-look-up procedure using an iteration statement. Suppose
that a string of alphabetic (or numeric) characters (i.e., a Msentence")
has been decomposed into single characters stored in C(1), €(2), ..., C(X),
where K is the length of the string. Then the first occurrence of a comma
could be found as follows:

LOPK . THROUGH L@@K, FPR I = 1, 1, o(I) .E. $,$ PR. I .G. K
WHENEVER I :G. K, TRaNSFER T¢ N@C@MA

411
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4.6 Nested THRPUGH Statements
As indicated in sec. 4.5; the "scope®™ of an iteration statement is the

block of statements designated for repeated execution:

THR@UGH END, FZR V = E;, E,, B

‘ e 8¢

scope ¢
i

L END oes
Some of the statements within the scope of an iteration may, them-
selves, be iteration statements. However, if iteration statement b is in
the scope of iteration statement a, then the scope of b must be entirely

within the scope of a. The following diagrams represent some valid con-

figurations:
(1) THRPUGH K, FPR ... (Iteration statement a)
Scope oo
of a THROUGH M, FPR ... (Iteration statement b)
Scope of coe
b Ve
M cae
K L -
(2) THRAUGH K, FOR ... (Iteration a)
THRPUGH K, F#R ... (Iteration b)
Scope of ’
Scope of e
é LR 2 -
E ¢ 9 0
K LI

Here, although the scopes of a and b both end on statement K, iter-
ation b is incremented and tested first. Therefore, iteration b is com-

pleted before iteration a is incremented.

[OAF o
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(3) _ THROUGH K, F@R ... (Iteration a)
THRGUGH M, F@R ... (Iteration b)
Scope eof
Scope :
b ¢ o
of a = M s
THRGUGH N, F@R ... (Iteration c)
Scope of cas
c N qe;
K oo

The following diagram represents an invalid configuration:

(4) Scope of THRGUGH K, FPR ... (Iteration a)
2 THRGUGH M, FPR ::: (Iteration b)
Scope
of b
K e o
M L)

When iteration statements occur in the scope of other iteration
statements, they are said to be ™ested." The Ynesting depth" of an iter-
ation statement is the number of iteration statements in whose scope it

appears: The nesting depth of an iteration may not exceed 50. For example:

i

(5) , THRGUGH K, FPR ... (Iteration a)
THRFUGH M, FPR ... (Iteration b)
Scope of Scope of | THRGUGH N, FOR ... (Tteration c)
a b Scope
of ¢ N 5
M .
K coe
4e13
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In example (5), iteration a has a nesting depth O, iteration b has
nesting depth 1, and iteration c has nesting depth 2.  In example (3), both
b and ¢ have nesting depths of 1.

There are no restrictions on jumping into or out of the statements in
the seope of an iteration. If the program jumps out bf’the iteration and

+

the iteration variables are not modified while outside the iteration

and

e

if control is returned to the statement in.the iteration following the
"jump out™ statement, then the execution will continue as if it had not

been interrupted.

boll
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4.7 PAUSE N@. Statement
This statement has the form:

PAUSE N@. n

This statement indicates a breakpoint in the program, and it causes
the computer to stop in such a way that the operator can manually start it
and automatically go on to the next statement in the program. The number
"n" is an octal integer containing up to 5 digits, which will be displayed
on the computer console for the operator to note when the computer stops,
thus indicating the point in the program at which the stop occurred. This
statement is used only in very special circumstances; the majority of users

will have no need for it.

Lel5
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4.8 EXECUTE Statement
The EXECUTE statement may have either of two forms:

(&) EECU‘I’E CD (Al, Az, oo’y An)
where C. is the name of the function and the A; are permigsible arguments
for the partigular function (see sec. 2.k4, Functions); and

(b) EXECUTE C.

where C. is the name of the function and the particular function does not
require arguments.

This statement is provided to permit non-single valued functions to be
executed.
| Example: To execute the function of section 2.4.2, Nen Single Valued
Functions, which sorts a list, write:

EXECUTE S@RT. (LIST, N)
It is not meaningful to write

EXECUTE SIN. (X)

L.16
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4.9 END @F PROGRAM Statement
This statement has the forms

END @F PREGRIM

This statement must be the physically last statement in the program
(i.e, the last card); it serves tb terminate compilation of the prograi.
If it is executed it will terminate the computation of the object program.
Execution of this statement at exsécution time will transfer control to the
operating system in which the tridnslated program is imbedded. An alternate
way of terminating the executioh of a program - i.e. returning to the
operating system ~ is to attempt to exeoute an input statement when the
data has been exhausted (see se¢. 5.5, Basic Input - Output Statements).

417
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5 Input and Output
In this section the various statements, specifications;and lists which
may be used to read in fresh data, output results, and save and read data

onto and from auxiliary storage, are described.

5.1 Simple Input-Output Statements
These statements are referred to as Simple Input-Output Statements be-
cause their use does not involve the use of Format Specifications and Input-
Qutput Lists (sections 5.2 through 5.3).

Of these, the input statements are used in order to read any data which

may appear on cards following the user's program in which these statements
appear. The output statements are used in order to cause results calculsted
when the program is executed to be printed on paper (listed) or punched on

cards.

5.1.1 READ DATA Statement
The feorm of this statement is

READ DATA

This statement causes information to be read from cards. The values

to be read and the variable names are punched in the data cards in a se-

quence of fieids of the form:

V2 = n,, V, =0,y veey, V., =n_*

1’ > i k k

The lewq,, Vk are the variable names and Ny, -+, Ty 8re the corresponding
values. Rezadlng is continued frcm card to card until the terminating mark
* is encountered. Fields cannot be divided between cards, so that the last
character in a card not terminated by an asterisk would normally be a
comma . However, as a convenience, the end of the card is treated as an
implied comma and hence this final comma may be omitted. The variable
names may designate simple variables or elements of linear and two-
dimensional arrays. The subscripts on the array variasbles must be integer
constants. The values may be floating point, integer, octal, Boolean, or
alphabetic with the forms described in section 2.1, Constants.

5-0
6/20/62



SIMPLE INPUT-OUTPUT STATEMENTS

For convenience in entering values of array elements, it is
possible to designate only one variable name and have successive
numbers, written without names, interpreted as the consecutive

values of the array, i.e.,
V(3) = D)y Doy Dgeeesy Oy
would be the same as

v(j) = n, V(i +1)=n., ..., V(j+k - 1) = n

For two-dimensional arrays, successive numbers will be entered
in succeeding columns of the designated row until the row, as de-
termined from the current value of the dimension vector, is filled,
and then the next row will be started.

Zeros must be punched; adjacent commas (,,) are simply skipped.
Blanks are ignored throughout except between dollar signs (which are
used only to delimit a string of Hollerith characters).

A simple integer variable may take on a value equal to a group
of six or fewer Hollerith characters delimited by dollar signs,
i.e., an alphabetic constant.

Longer strings of Hollerith characters may be entered as elements
of arrays. OSuch strings are divided into six character groups
for storage.

As an example illustrating many of the features described herein

consider the data card set:

X1 =1.2, Y1 = -6.8, INDEX = 4, A(4) = 3.1, -10.93,
12.6, MATRIX(2,1) = 25E-2, 1.8E-10, 3.14E-8,
STRING(1) = SENDb@FbPRUBLEMS *

A MAD program deck having in its body a READ DATA statement
would be followed by the preceding data cards. At the time the
READ DATA is executed (not compiled), these three cards would be
read and the values in storage of the computer would be set as

.
follows:

5.1
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X1 would become 1.2

Y1 would become -6.8

INDEX would become 4

A(4) would become 3.1

A(5) would become -10.93%

A(6) would become 12.6

MATRIX (2,1) would become 25E-2
MATRIX (2,2) would become 1.8E-10
MATRIX(2,3) would become 3.14E-8
STRING (1) would become ENDbfF
STRING(2) would become PRPBLE
STRING(3) would become Mbbbbb

Note that although the components of the data cards resemble sub-
stitution statements (X1=1.2, Y1=-6.8, etc.), these cards are not parts
of the source language program and no attempt should be made to compile
them. ’

5.1.2 PRINT RESULTS Statement
The form of this statement is
—
PRINT RESULTS "

P d
where |, is a list of the form

Tl’ T2, "., Tn

and the Ti‘s are terms of the list. The Ti’s may be
(1) simple variables;
(2) subscripted variables;

(3) block designations of the form

V(sl, Bos vees sn) aee V(rl, Ty eony rn)

where the.V(il, i cray in) are subscripted variables.

2}
Note that expressions may not appear as terms T qf the list but subscripts
of subscripted variables in the list may be expressions (see section 2.2.k,

Subscripts of Subscripted Variables).

5.2
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The printed output is analogous to the data input in that the numbers
printed are preceded by the appropriate variable name and an equal sign,
e.g., X = -12.4, and only the initial elements of arrays are so labeled. :
Elements of three and higher dimensional arrays will be labeled with the
equivalent linear subscript. If dummy variables (in a function definition)
are included in the list the specific variables assigned to such variables
during execution will not be labeled but simply preceded by .

Example statements are:

PRINT RESULTS X1, vi, Z(1), ..., Z(N+1), MIX(1,1)...MTX (M,N)
PRINT RESULTS X(1,3,4,2), ..., X(N+1,4,4%,1)

5.1.3 PRINT C/MMENT Statement

This statement has the form:
PRINT CEMMENT $S$

Here S designates a string of no more than 120 Hollerith characters.
These characters may not include dollar signs and here blanks are not
ignored. The string, delimited by dollar signs as indicated, will be
printed. The first character will be interpreted as a carriage control
code (see section 5.2.14.2(b)).

An example statement is:

PRINT C@MMENT $1 J@HN PUBLIC, MATH 373 FROBLEM 1$

5.5
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5.2 Format Specifications

When information is read from (or punched intc) a card into (or
from) a computer, it is necessary to know how this informatidn has been
allocated among the available columns of the card. Similarly, whenever
information is to be printed by a printer (either on-line or off-line),

" it is necessary to know how this information has been allocated among the
columns available on the printer. A description of each allocation is
called a format specification. Usually, but not always, a list of variables
(see section 5.3, The Input-Output List) whose values are to be printed,
punched or read, is associated with a format specification. (Occasionally,
the information is contained entirely in the format specification, so the
list may be empty.)

In substance, a format specification is a string of alphanumeric .
characters and a restricted subset of special characters, all terminated
by the (very)special character "¥¥, All characters which may be used
are mentioned explicitly in the following subsections of this section.

A format specification, in order to be used, must be stored in
successive elements of a vector of integer mode; therefore, it is stored
in groups of six characters per element. A format specification should
be stored in such a way that the first character in the specification is
the left-most of the six in a vector element. If the specification is
stored in such a way that the first character is not the left-most in
an element, then those characters to the left of it must be blanks.

A vector may be preset with a format specification by the use of
a VECTPR VALUES declaration (see section 3.7). Also, the elements of

the vector may be computed or read in as data.

5.2.1 Single Line Format Specifications

A single line format specification has the form:

Ty, Tyy eees T %

5.4
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where the Ti's are terms of the format specification, the character. ","
separates pairs:.of terms:and is included in the format specification, and
the character "*" follows the last term of the format &pecifiéation and
must appear in the format specificationy it serves to terminate the
specification.
Any term Ti may be one of the following:
(a) a Basic Field Description (see section 5.2.11, Basic Field
Descriptions - A Resumé);
(b) A multiple Basic Field Description (see section 5.2.12, Multipke
Basic Field Descriptions);
(c) a Scaled Field Description (see section 5.2.13, Scaled Field

Descriptions).

5.2.2 Multiple Line Format Specifications

B .
ro4+ v o 12}
fica 10 m8Y ©

.
4
-

line or card at the time it is used.

A multiple line format specification has the form
.. *
NN e S N

where each hi may have the form of a complete single line format specifica~-
tion without a terminating "*" but with carriage control if required (see
section 5.2.1k.2, Carriage Control) or any A, may be blank to indicate a
blank line or card for output or an ignored card for input; the character
"/" is used to terminate a single line format specification N\ within the
multiple line format specification, and the character "*" is used to
terminate the last single line format specification of the multiple line

format specification.

5.2.3 Format Fields
Each format specification describes successive fields across
the svallable columns, starting from the left. If the specifica=’ ..

tion describes fewer than the total number of available columns,

245
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the remainder of the line or card will be filled in with blanks.

If, at execution time, a format specification is used which dex-

scribes more than the total number of available columns,an error
indication will be given and the problem will be terminated.
The seven types of fields which may be described in a format

specification appear in the following list:

g-Field; skip or blank information
I-Field; integer
F-Field; fixed point number
E-Field; floating point number
N-Field; octal number

- C-Field; BCD characters

. H-Field; Hollerith information

The terminology "fixed point number" used in connection with
F-fields and "floating point number" used in connection with
E-fields is rather unfortunate but is difficult to avoid. It is
meant solely to provide a means of distinguishing "the form of
the information which occupies an F field" from "the form of the
information which occupies an E field"” and throughout this section
is used solely for that purpose. MAD does not handle "fixed point
numbers” internally.

"Format Field" is a name for two concepts taken together.

First, there is the "Basic Field Description". This is an
item which appears in a format specification.

Second, there is the "Field Information". This refers to the
information and the form of the information which may appear on
a card or a printed line in the field described by the corresponding
Basic Field Description. '

Both the Basic Field Descripton and the Field Information for
each of the seven types of format fields are described in the

following seven sections (section 5.2.4 through 5.2.10).

5.6
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5.2.4 S-Fields

5.2.4.1 S-Field Basic Field Description

The basic field description for an S-field has the form:
Sn

where the character "S" indicates an S-field and n is a decimal integer

equal to the number of columns in the field.

5.2.4.2 8-Field Information
If an S-field basic field description appears in a format specifieation
which is used for input, any information which appeans:in the corresponding

columns will be ignored.

If an S-field is used for output the corresponding columns will be
blank.
Example: The basic field description

S31
indicates that thirty-one columns are to be skipped.

5.2.5 I=-Fields

A number in an I-field has the form of an integer internally.
5.2.5.1 1I-Field Basic Field Description
The basic field description for an I-field has the form
In
where the character "I" indicates an I-field and n is a decimal integer
equal to the number of columns in the field.
5.2.5.2 I-Field Information
The information in an I-field may have any of the following forms:

+m
=

m

2.7
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where m is any integer satisfying

0 < m < 9999999999

If, as in the third form, no sign is punched, the integer
will be assumed to be positive. Any possible sign must be counted
. the field si

s
f an I-field is used

a

-

z
for input:

4

All blanks in the field are ignored;

If the entire field is blank, the value will be set
equal to minus zero;

Leading zeros need not be punched;
Trailing zeros must be punched;
If the integer is negative the "-" sign must be punched.

If an I-field is used for output:

"n on

For positive integers, "+" slgns are not printed or
punched;

For negative integers, signs are printed or punchéd;

If the integer internally contains fewer digits than
provided for by the field size, it will print right
justified in the field with blanks in the remainder
of the field;

If the integer internally contains more digits than
provided for by the field size, the least significant
digits will be printed and the sign and the remainder
of the most significant digits will not appear;

No decimal point, ".", is printed or punched in an
I-field.

Example: The basic field description

I3
will cause three columns of an input card to be treated as a
decimal integer. The same basie field description will cause
information printed or punched into some particular three columns

to have integer representation.

5.8
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5.2.6 F-Fields
A number in an F-field has the form of a floating point number

internally.
5.2.6.1 F-Field Basic Field Description
The basiec field description for an F-field has the form
Fn.k

where the character "F" denotes an F-field, n is a decimal integer
equal to the number of columns in the field, k is a decimal integer
equal to the number of digits to the right of a missing decimal point,
and the character "." (period) separates n and k. The integer k is

always interpreted med 10, e.g., k = 13 is equivalent to k = 3.

5.2.6.2 F-Field Information
£

The information may have any one of the following forms:

+m /Q i—_m.,QE+e +m LEre

m.i& m.jfﬁie quE&ﬁ
im,Q, _tm.)zEe im,?.Ee
m 2/ m. 4L Ee m £ Fe
_-tm.ﬁ,ie imﬁie

m.,Q_te ml,_te

where m is a decimal integer, ﬁ is a decimal fraction, and
e is a decimal integer equal tg the exponent of the power
of 10 by which the number + mjor imﬂpis to be multiplied;
e may contain one or two digits, no more.

The character "E", 1f punched, indicates that an exponent
follows;

If a sign ("+" or "-") does not appear as the left-most
character, the number is assumed to be positive;

The sign which follows the character "E" is the sign of the
gxponent, &;

2.9
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If no sign character follows "E" the exponent e will be assumed
to be positive;

Notice that the "E" is necessary only 1f the sign of the ex-
porient is not punched and that the sign of the exponent is
not necessary only if the "E" is punched and the exponent is
positive;

All blanks are ignored;

If an entire F-field is blank the value will be set equal to
minus zero;

If the F-field information is in one of the forms with a decimal
point ("."), this "." in the field information will override the
effect of the number k in the basic field description. In that
case, trailing zeros 1n4ﬁ,need not be punched;

If the form of the field information is one for which the decimal
point is not punched, then trailing zeros must hot be omitted;

Any number of digits may be used in the field but only eight
digits of precision are retained.

In determining the field size, n, in.the basic field description
the count must include any possible occurrences of the sign

of the number, "+" or "-" & decimal point, ".", an "E", and

an exponent sign "+" or "-" as well as maximum number of digits

in m, ﬁ, and e, combined.

If an F-field is used for output:

5.10
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The printed or punched information will have one of the following

forms:
m.JZ
T

E

- X ¢

B

~-m

where m is a decimal integer and,Q.is a decimal fraction rounded
to k digits;

The character‘"+" is not printed, the form without sign represents:

a positive number;

One of the two forms m or -m will occur when k=0 (the "." is
not printed);

The number will be right justified in the field in all cases;

If the field size, n, is larger than required, for information,
blanks will be printed or pumnched in the remaining columns to
the left;
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If the field size is smaller than required, information will
be output from right to left until the field is exhausted;

notice that a sign, "-", and/or a decimal point, ".", which

otherwise would print or punch may be lost in this event;

In determining the field size n the count must include possible
occurrences of the characters "-" and "." as well as the
maximum total number of digits in m and £ .

Example: The basic field description
F9.3

will cause the following data all to be given the same machine representa-~
tion, namely that of 3.9962x102:

+39962
39962
399 .62
3.9962E+2
3.9962E2
3996 .2E~1

etc.
The basic field description
F9.3

will cause the machine representation of 5.9962x102 to be printed or

punched as
399 .620
right justified in the 9 columns.
5.2.7 E-Fields

A number in an E-field has the form of a fleating point. number:

internally.
5.2.7.1 E=Field Basic Field Description
The basic field description for an E-field has the form:
En,k
where the character "E" denotes an E-field, n is a decimal integer equal

5.11
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to the nugber of columns in the field, k is a decimal integer equal to

the number of digits to the right of a missing decimal point and the

character

"." geparates n and k. The integer k is always interpreted

mod 10, e.g., k = 22 is equivalent to k = 2.

[~4
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If ah E-field is used for input:

The information may have any one of the following forms:

im.,ﬁ, jp].@ Eve imiZE&g
m. /Q' m,(’, Eie m (‘ E+e
+m /e, +m A Be +m X Ee
m,g, mJ‘ Ee m,Q.Ee
im'&Liﬁ im9~i¢
mtﬁiﬁ znﬁie

where m is a decimal integer,Jz is a decimal fractlon, and

e is a decimal integer equal to the exponent of the power of
10 which the number +m.Z or +m £ is to be multiplied; e
may contain one or two digits, no more.

The character "E", if punched, indicates that an exponent
follows;

If a sign ("+" or "-") does not appear as the left-most
character, the number is assumed to be positive;

The sign which follows the character "E" is the sign of the
exponent, ej

If no sign character follows "E" the exponent e will be
assumed to be positive;

Notice that the "E" is necessary only if the sign of the
exponent 1s not punched and that the sign of the exponent

is not necessary only if the "E" is punched and the exponent
1s positive;

All blanks are ignored;

If an entire E-field is blank the value will be set equal to
minus zero;

If the E-field information is in one of the forms with a
decimal point ("."), this "." in the field information will
override the effect of the number k in the basic field
description. In that case, trailing zeros in,ﬁ need not be
punched;
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If the form of the field information is one for which the dee-
imal point is not punched, then trailing zeros must not be
omitted;

Any number of digits may be used in the field but only eight
digits of precision are retained.

In determining the field size, n, in the basic field description
the count must include any possible occurrences of the sign of

the number, "+" or "-", a decimal point, ".", an "E", and an
exponent sign "+" or "-" as well as maximum number of digits

in m, ﬁ and e, combined.
If an E-field is used for output:

The printed or punched information will have one of the following

forms:

m.f Eb’ele2 mEbele2
-m.,g E--ele2 mE-ele2
-m /Q Ebele2 -mEbele2
=M. !. E=ele‘2 -mE—ele2

where m is a decimal integer, /Q is a decimal fraction rounded

to k digits, "o" represents a blank and e] and e, are the two

digits of the exponent of the power of 10 by which the m.ﬂ or -m.,&
is to be multiplied; ey is always punched or printed s even when
equal to zero;

The four forms in the right hand column result when k = 0;
The number will be right justified in the field in all cases;

If the field size, n, is larger than required for the information,
the remaining columns to the left will be blank;

If the field size is smaller than required, information will be
output from right to left until the field is exhausted; notice
that signs, "-", and/or decimal points "." which otherwise
would print or punch may be lost in this event 3

In determining the field size, n, the count must include possible
occurrences of the characters "-" and ".™ and the two exponent
digits as well as the maximum total number of digits in m and .
Example: The basic field description
E10.2

will cause the following data all to have the same machine representation,
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namely that of 24.629

24 629
24629.E-3
24629.-3

atn
M -

The bagicd field description
E10.2
will cause the machine representation of 24.629 to be printed or punched as
246 .29-01

right justified in the 10 columns.

5.2.8 K-Fields

There is a one-to-one correspondence between the 36 bits internally
and the bits represented by the number in a K-field. Any octal digit
represents 3 binary bits as follows:

QOctal Binary
000
001
010
011
100
101
110
111

NN += O

5.2.8.1 K-Field Basic Field Description
The basic fleld description for a K-field has the form

Kn

where the character "K" denotes a K-field and n 1s a decimal integer
equal to the number of columns in the field.

5.14
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8.2 K-Field Information
K-field is used for inmput:
The information in a K-field may have any one of the following
forms:
+p
- D
P

where p is an octal integer satisfying

O < » S TTTTTTTTTTTTs

The octal integer p either contains or implies & value for each
of the 36 binary bits in a computer word; the left-most of these
36 bits coincides with the sign bit; the sign of the number is
determined by the.lbgical "or" of the sign, if any, and the
left-most og the 36 bits as given by the following list ("+" is
0, "-"4ds 1)¢

Sign-in Field Left-Most Bit Sign of Number

+ 0 +
- 1 -
b 0 +
+ 1 -
- 0 -
b 1 -

All blanks dn the field are ignored;

If the entire K-field is blank.the valiue will be set .equal to
plus zero;

Leading zeros need not be punched;
Trailing zeros must be punched;

The field size must include possible occurrences of a sign
character in the count.

K-field is used for output:
The information punched or printed will have the following form:

Y
where p is an octal integer;
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No sign is punched or printed; the sign of the number is indicated
by whether the left-most of 12 octal digits is less than & (+) or
greater than or equal to 4 (-);

The number is right justified in the field;

If the field size is larger than required for the information the
remaining columns to the left are filled with blanks;

If the field size is smaller than required for the information
the information issoutput from right to left until the field is
exhausted and the most significant part does not appear.

Example: The basi¢ field description
K3

will cause the appropriate 3 columns of data card to be interpreted as

containing three octal digits. For example the configuration
043
will become the machine word
000 000 000 000 000 000 000 000 000 00O 100 011
5.2.9 C-Fields

The Hollerith card code for each character corresponds to the internal
6-bit BCD code for the same character.

5.2.9.1 (C-Field Basic Field Description
The basic field description for the C-field has the form:
Cn
where the character "C" denotes a C-field and n is a decimal integer equal
to the number of columns in the field.
5.2.9.2 C(C-Field Information
The information in a C-field Ims the form:
e
where ¢ is any string of Hollerith characters available on the computer

(see section 1.1, The Hollerith Character Set). Blanks are not ignored.
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C-field is used for input:

Characters are taken from the field from left to right either
until six columns have been read or until the field has been
exhausted whichever occurs first;

The information is left Justified internally;

If the field size, n, is less than six, the right-most 6-n
characters are filléd with blanks;

If the field size n is greater than six, the right-most n-6
characters are lost;

C~field is used for output:

Characters are output from left to right either until six have
been transmitted or until the field has been exhausted, which-
ever comes first;

The information 1s left justified in the field;

If the field size, n, is greater than six, the right-most n-6
characters are filled in with blanks;

If the field size, n, is less than six the right-most 6-n
characters are lost.

Examples:

(1)

(2)

If the format specification
2C3%
were used to read a card punched with
ABCDEFGHIJK

in columns 1 through 11, the two computer words involved would

contain

ABCbbb
DEFbbb

If the format specification
co*

were used to read the card of example (1), the single computer

word involved would contain

ABCDEF
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(3) If the format specification
CT,C3*%

were used to read the card of example (1), the two computer

words involved would contain

ABCDEF
HIJbbb

5.2.10 H-Fields

The purpose of the H-Field is to permit the inclusion of strings of
Hollerith characters (see section 1.1, The Hollerith Character Set) directly
in the format specification itself.

5.2.10.1 H-Field Basic Field Description
The basic field description for an H-field has the form

nHc

where the character "H" denotes an H-field, ¢ is any string of Hollerith

characters and n is a decimal integer equal to the number of characters

in the string c counting from the character immediately following the "H".
‘Although, for every other type~of field) the basic field deseription’

which appears in a format specification must be separated.from a following

basic field description by a character ",", for the H-fields, since the

number n explicitly defines the number of characters in the basic field

description, the character "," after the last character in the string c

is gptional.

5.2.10.2 H-Field Information

If an H-field appears in a format specification which is used for
input, the Hollerith characters which appear in the corresponding card
columns will replace the n characters in the string ¢ in the format

specification itself.
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If an H-field is used for output, the n characters of the string c
will be printed or punched in the corresponding columns. The characters

of the string c¢ in the format specification are not disturbed.

Example: The basic Field Description
ZHABC

or alternately,
2H

will cause, upon reading of a data card, the characters "ABC" in the field
description to be replaced by the Hollerith characters from the appropriate
three columns of the card.

The basic field description

AHARC
onArp

~

will cause printing, or punching, of the characters "ABC" on the output

in the appropriate columns.

5.2.11 Basic Field Descriptions - A Resumé
The purpose of this section is merely to gather together all in one

place a recapitulation of the possible seven types..of basic field descriptions.

They are:

Sn (see section 5.2.4.1)
In (see section 5.2.5.1)
Fn.k (see section 5.2.6.1)
En.k (see section 5.2.7.1)
Kn (see section 5.2.8.1)
Cn (see section 5.2.9.1)
nHe (see section 5.2.10.1)

5.2.12 Multiple Basic Field Descriptions
If several consecutive fields can be described by the same basic field
description, repetition may be avoided by using a multiple basic field

description.
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(a) a multiple basic field description may have the form
iD

where D is any one of the basic field deseription forms of
section 5.2.10, Basic Field Descriptions - A Resumé, and where
i is a decimal integer equal to the number of consecutive fields
with form Dy

(b) if M is a basic field description of the form

D

or a multiple basic field description of the form
iD
or a scaled field description S, where S may have the form of
either a scaled basic field description (see section 5.2.13.1)
or a scaled multiple basic field description (see section 5.2.13.2),
then a multiple basic field may have the form

JO, Myy oeoy M)

where J is a decimal integer equal to the number of times the

group of q field descriptions Ml’ N&, orey Mé is to be repeated

and where the characters "(" and ")" delimit the group of field
descriptions on the left and right respectively.

(¢c) a multiple basic field description may have no other form than
those given by (a) and (b) above.

Notice in particular that parenthesized groups may not be nested.

Examples:
(1) the format specification

3F10.3,E18.4,2E9.1,312%
is a short way of writing the format specification
FlO.B,FlO.B,FlO.5,E18.h,E9.l,E9.l,I2,I2,12*

They are logically equivalent.
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(2) The format specification
3E10.3,2(I2,3F10.1),2C5%
is logically equivalent to the format specification

E10.3,E10.3,E10.3%,I2,F10.1,F10.1,F10.1,T2,F10.1,F10.1,F10.1,C5,C5%

5.2.1%3 Scaled Field Descriptions
It is possible to write an F-field or an E-field description with a
scale factor which will be applied to every number to which the description

is applied.

5.2.13.1 Scaled Basic Field Descriptions
A scale factor may be applied to & basic field description. Such a

scaled basic field description may have any one of the following forms:

sPD
+ sPD
- sPD

where D is either an F-field basic field description (see section 5.2.6.1)
or an E-field basic field description (see section 5.2.7.1), the character
"P" (for "power") denotes a scale factor and s is a decimal integer equal
to the exponent of the power of 10 times which the number is to be multiplied.

non
-

If the exponent is negative the sign must be punched; if the exponent

is positive, the sign "+" is optional.

5.2.13.:2 Scaled Multiple Basic Field Descriptions
A scale factor may be applied to a restricted form of a multiple basic
field description. Such a scaled multiple basic field description may

have any one of the following forms

sPiD
+ sPiD
- sPiD

where D is either an F-field basic field description (see section 5.2.6.1)
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or an E-field basic field description (see section 5.2.7.1), i is a decimal
integer equal to the number of consecutive fields described by D (so that

iD -

alone hag the form of the primitive multiple basic field description of

O

S~ RS {a )
ECTI0N Decwic \& )/,

w
S

a decimal integer equal to the exponent of the power of 10 times which
the number in each of the consecutive i fields is tc be multiplied. If
the exponent is negative, the sign "+" must be punched; if the exponent

is positive, the sign '"+" is optional.

5.2.13.3 Scaled F-Fields
When a scale factor is applied to an F-field the following formula
is true:

EN = TREN * 10 Scale Factor

where EN stands for "External Number" and IREN stands for "Internal Re-

presentation of External Number". The scaling (multiplication by

lOScale Factor) is done before the number is converted for output and

after the number has been read and converted for input. Notice that

scaling actually changes “the value of the number in an F-field.

Example:
Suppose the format specification
3FT.3%
is used and as a result the three numbers which follow are printed:
- bb0.522b-1.567693.671
If, instead, the format specification
-2P2F7.3,F7.3*%

were used, the same numbers would print as:

bb0.005b-0.016b93.671
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5.2.1%3.4 Scaled E-Fields
When a scale factor is applied to an E-field the basic field de--
scription may be used only for output. Although the number is modified
the exponent is also modified so that the value is unchanged; only the

form in which the number is printed is changed.

Example:

Suppose that the format specification
E18.4*
is used and as a result the number
bbbbbbb0.9321E-03

is printed.

If the format specification
OPE18.L*
were used instead, the same number would print as

bbbbbbb93.2100E-05

5.2.1% Format Specifications and Reading, Punching and Printing
With the following two exceptions, specifications for reading or

punching cards and printing lines are identical.

5.2.14.1 Available Columns

(a) Cards
Whether reading or punching, the maximum number of card columns
is 80. A format specification used for cards may describe 80
columns. If more than 80 columns are described at execution
time indication of an error is given and the job is terminated.
It is an often useful convention that the card columns used
for data be limited to 72, leaving the remaining columns for

purposes of identification. Machine configurations at some
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(b} Print Lines
As in the case of cards, the number of characters available for
a print line depends on the equipment being used. When printing
on-line 119 columns are available. Otherwise (off-line) 132
columns are available. On-line printing is to be used extremely
rarely. If more than 132 columns are described at execution
time, indication of an error is given and the problem is

terminated.

5.2.14.2 Carriage Control

(a) The character destined for the first column of a card, when
punching, has no special significance. It 1s regarded in the
same light as the remaining 79 columns. It is punched in column
1 and the successive characters go to successive columns.

(b) The left-most character output for a print line is the "carriage
control character." It controls the printer carriage "vertical

1

motion," immediately before the line is printed, i.e., "controls
the preprint skipi" The code for the carriage control character

is given by the following table:

If the left-most The preprint
characher ist skip is:
blank single space
d double space
+ no space

3

triple space

sheet eject (skip to next page)
skip to next half page

skip to next quarter page

o = B

skip to next sixth page

This control character is specified in a format specification in

addition to the 119 or 132 information positions.
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In any format specification which is used to print a line, the left-
most character output is detached to be used as carriage control and is
not printed. The appearance of the line which is printed is as if the
carriage control character had gone to "print position zero" which is non-
existent. The second character is printed in print position 1, the third
in print position 2, etc.

Note that blanks count as characters.
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5.3 The Input-Output List
The purpose of the'inpuz-output list is to specify sources or des-
tinations of the information transmitted. An input-output list, which
will be referred to as k., has the form

T, T, ..., T

~
=
=

1
jo

where the Ti‘s are the elements of the list. The elements of an I/0 list
may be:
(1) simple variables or subscripted array variables;
(2) blocks, which may be written in one of the two forms:
(a) Visq, Shs wres sn) e V(rl, Tps +ees rn)

where V(s;, s,, ..., 5 ) and V(r{, r,, ..., ) are

3
subscripted'airay variables with the si's and ri‘s any
integer valued zrithmetic expressions and where the
characters "..." indicate that all consecutive elements
of the n-dimensional array from V(Sl’ S, «ve) sn) through
V(rl, T, eee, rn) inclusive are to be transmitted;
(b) V(Sl’ Sos ""»Sn)’ cee, V(rl, Yoy wees rn) where commas
", ") appear between the end elements in accoydance with
usual mathematical notation. The appearance of the
commas is the only difference between (a) and (b) and the
meahings are identical..
If the block specification is used in an Input-Output list for reading
or writing binary tape, the linear subscript corresponding to Sl’452’ REVEE N
may not be greater than the linear subscript corresponding to rys ;2, cees Ty

The elements of the list are transmitted from left to right, but,,?érrbinarz

tapes, within a block"the?ordér”ian(rl, Yoy wees rn) to V(sl, Sps vty Sn)’
i.e., right to left.

In the particular case when a list is used for output only and not.
input, additional elements of the list may be:

(3) any constants;

(h) any expressions.
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Example of a list which may be used either for input or output:
A,B,K(3),T(25%1-L),A(K+1)...A(L*2)
Example of a list which may be used for. output only:

AB,D2.5,MTY(1), ... ,MTX(N),P(14),J(1,K)
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5.4 Relationship Between the I¢ List and the Format Specification
The "list" consists of a set of names of variables to or from which

information is to flow.: Except for Hollerith strings imbedded in the
format specification itself (see section 5,2hlﬂ and the S fields, each
field in the specification refers to one item on the list. For this
purpose, a regional entry on the list, such as A(6)...A(8), counts as
several names of variables (in this case, the three variables A(6),A(7),
and £(8)). During the transmission of information, the input or putput
subroutine scans both the list and the specification simultaneously,
correlating corresponding entries, and associating a field size, a type
of conversidn, etc., to each variable. If a Hollerith string is encountered
in the specification, it is immediately transmitted, and it is not associated
with any item on the "list".

For example, if the list consisted of:
A, 3(1,1), 1, K
where I and K were integers, and the others floating point, and the
specification were
1H1, F1l1.3, -2PElk.k, S13, 3HM=I3, S9, 2HJ=I3*
we might find a printed line like the following (at the top of the next
page because of the 1H1):
456 .010bb-16 .1251E+02bbbbbbbbbbbbbM=50bbbbbbbbbJ =17
The same list would lock as follows with the format specification
1H1, 2F11.3, S16, 2HM=I3, 59, SHJ=13%:
h56.0lObb=i612.5iObbbbbbbbbbbbbbbe=50bbbbbbbbbJ=l7

As stated above, a specification may not account for more than 80
columns on a card. It may happen; however, that a list calls for more
information than can appear on a single card. Or perhaps only a certain
part of each card is to be read. The determining factor in every case
is whether or not the entire list has been accounted for. After each
card is read according to the format specification,; the list is consulted;
28
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if it is not yet satisfied, another card is read, and so on. It is important
to realize that the specification is not necessarily scanned from the
beginning when a new card is read. In fact, the specification scanner moves
to the left from the end of the specification (the *) until it hits a left
parenthesis not in an H field. (If there is no left parenthesis, it will
move to the beginning of the spécification). It then examines the characters
just to the left of this left parenthesis to see if they are a multiplicity
indication (see section 5.2.2). The information from this left parenthesis
(together with the multiplicity, if any) to the end of the specification now
becomes the format specification until the list is satisfied. A similar state-
ment may be made for printed or punched output.

Thus, if the specification which follows
3F10.3 /4(F10.3, GHBETA = I2)*

is used with an I/@ list which contains more than 11 elements (say 19 or
27), then the first line printed (or read) would have three fixed point
numbers. Subsequent lines would all be printed (or read) according to

the specification
4(F10.3, 6HBETA = I2)*

until the last element of the I/¢ list were transmitted.
As another example one might have an integer equal to a count of sub-
sequent cards on a first data card, followed by many cards, each with six

floating point numbers. The specification might then be:
16/ (6E10.5)*.

Only the first six columns would be read on the first card, and only 60
columns would be read on subsequent cards. The remaining columns are
ignored and may contain any legitimate Hollerith characters.

If a specification contains a Hollerith string of the form nHalag...an,
certain conventions are observed:

(1) If the list is satisfied, but the next field specification is

& Holleriilh string, lhe string is Lransmitted anyway;
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(2) On input, i.e., reading from cards, when a Hollerith string is
enconntered in the specification, the infgfﬁétion in the
corresponding columns of the input card will be‘brought in and
will replace the Hollerith string itself within the format
specification. This can then be used as a specification for out-
put. TFor example, this is useful for lsbeling a set of data
and causing the label to appear on the output along with a date, etc.

Thus, a card punched as follows:
1  DATA SET NO. 3-A JULY 31, 1959 J DOE
might be read in with a forma£ specification |
T2H (72 vlank spaces) *,

later, this specification could be used to print the same information as a
heading for the results. Note that "1" provided for carriage control for
the printing. .

WARNINGi The specificationscST72* and 72(1H)*, while indicating 72 blank
spaces, do not allow the resding in of an entire card, as indicated above,
since they do not provide a storage region of 72 characters in length into
which the information on the card may be read gnd stored until needed.

See the example in section 3.7, VECT/R VALUES Declaration.

5.4.1 Input and Output of Boolean Values
For the purposes of input and output the Boolean values OB and 1B are
considered as integers and an I-field should be used to transmit them.

Externally these values have the form of the digits O and 1 respectively.

5.4.2 Input and Output of Statement Label Values
Output of statement label constants may be accomplished by means of
a C-field or an H-field. Input and outputof variable values may be
accomplished by means of K-fields but involves concepts beyond the scope
of this manual. This will be of no use to most users and should not be

attempted without a deeper investigation of MAD.
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5.4.3 Input and Output of Function Name .Values

Output of function name constants may be accomplished by means of a
C-field or an H-field. Input and output of variable values may be accomplished
by means of K-fields but involve: concepts beyond the scope of this manual.
This will be of no use to most users and should not be attempted without

a deeper investigation of MAD.
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5.5 Basic Input-Output Statements ‘

Of these, the input statements are used in order to read any data
which may appear on cards following the user'sg progrém in which these
statements appear. The output statements are used in order to cause
results calculated when the object program is executed to be printed on
paper (listed) or punched on cards.

Throughout the following sections the following notation will be used:
F: P is the name of the first element of a format specification vector

which must be of integer mode. F may be written as

(a) an array name,

(b) a subscripted variable,

(c) a simple variable in case the format specification is less than

or equal to six characters.
See section 5.2, Format Specifications.

:zi? is an input-output list, see section 5.3, The Input-Output List.

5.5.1 READ FPRMAT Statement

This statement has the form
READ F{RMAT F, ;f

This statement causes data in the users data deck to be read into
list:jiin accordance with the format &t F. If the purpose is merely to
read characters into a format specification compiised entirely of an H-field,

in which case the list will be empty, the statement may be written

READ FURMAT F

5.5.2 PUNCH FRMAT Statement
This statement has the form

PUNCH F@RMAT F, z

R S Py 3 2 o Tda -~ 4
This statement causes data in the lis t;(f;u be punched onto cards

in accordance with the format at F. If the purpose is to punch using a

1))

format specification comprised entirely of an H-field, in which cage the
list will be empty, the statement may be written
PUNCH FZRVMAT F
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5.5.3 PRINT FYRMAT Statement
This statement has the form

PRINT FPRMAT F, e

This statement causes data in the list&ﬁto be printed in accordance
with the format at F. If the purpose is to print a comment or heading
line using a format specification comprised entire of an H-field, in
which case the list will be empty, the statement may be written

PRINT FZRMAT F
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5.6 PRINT ¢N LINE FPRMAT Statement
This statement has the form

PRINT N LINE FARMAT F,;if

The 1ist &L is printed on-line in accordance with the format at.F. [ If
the purpose is to print a comment using a c
entirely of an H-field, in which case the list will be empty, the statement

may be written

PRINT ¢N LINE F/RMAT F

After Ihas been printed, a skip of one-sixth page is produced to allow
the operator to read the comment.

This statement provides the facility for printing comments to the
computer operator on the on-line printer at execution time. The usage is

quite restricted; and thé statement will not be~used by most users.
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5.7 Auxiliary Tape Storage Statements
In this section, the following notation will be used:

N: N is an integer valued expression. The value will be used as a tape
number and must be in the range [1, 10]. To determine which numbers
in particular may be used, see the manual describing the operating
system in which MAD is imbedded.

5.7.1 READ BCD TAPE Statement
This statement has the form:
READ BCD TAPE N, F, éiE
This causes the listézfto be read from tape N in BCD mode in accordance
with the format at F.
5.7.2 WRITE BCD TAPE Statement
This statement has the form:
WRITE BCD TAPE N, F, c;fi
This causes the list:)?to be written onto tape N in BCD mode in
accordance with the format at_F.
5.7.5 READ BINARY TAPE Statement
This statement has the form: '
READ BINARY TAPE N, 6z£

This causes consecutive words from the next record on tape N to be
read into the list Sein binary mode. Transmission stops when the list

is exhausted or when the end of record is reached, whichever occurs first.

5.7.4 WRITE BINARY TAPE Statement
This statement has the form:

WRITE BINARY TAPE N, éi?

This causes the listCZ?to be transmitted as consecutive words com-

prising the next (l) record on tape N, in binary mode.
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5.7.5 REWIND TAPE Statement
This statement has the form:

REWIND TAPE N

This causes tape N to be rewound, i.e., positioned at load point.

5.7.6 END ¢F FILE TAPE Statement
This statement has the form:

END ¢F FILE TAPE N

This causes an end~of-file mark to be written on tape N.

5.7.7 BACKSPACE RECRD ¢F TAPE Statement
This statement has the form:

BACKSPACE RECORD §F TAPE N

This causes tape N to be moved backwards to the beginning of the

- preceding record.

5.7.8 BACKSPACE FILE Statement -

This statement has two forms:
(1) BACKSPACE FILE fE TAPE: Ni% . .

This causes tape N to be moved backwards until an end-of-file mark,
the load point gap or the load point is encountered. If it is an end-of-file
mark which is encountered, this statement will cause the tape to be

positioned immediately preceding the end-of-file mark.
(2) BACKSPACE FILE §F TAPE N, IF L@AD P?INT_TRANSEE@ 7% S
The action for this statement is exactly as the preceding one with
the additional facility that, if the tape is already at load point, the

program transfers to the next executable statement given by the:rdtatement

Iabel expression S.
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2.7.9 Action of End-of-File and End~of-Tape

If an error (improperly formed format specification, invalid data,
a tape check, etc.) occurs during any input-output statement, the system
subroutine ERRfR. is automatically entered. The subroutine ERR{R. sets an
error flag and returns control to the system in which the translated program
is imbedded.

If an end-of-file is encountered while executing a READ FPRMAT, READ
BCD TAPE, or READ BINARY TAPE statement the subroutine SYSTEM. (a subroutine
which returns.control to the system in which the translated program is
imbedded) is automatically entered. This action can be changed by executing
the statement

EXECUTE SETEGF. (S)

The subroutine SETESF. sets the read routines to transfer to the executable
statement labeled S when an end-of-file is encountered. If the statement
EXECUTE SETE@F. (0) is executed the read routines will be reset to enter
SYSTEM. when an end-of-file is encountered.

’ If an end-of-tape is encountered while executing a WRITE BCD TAPE or
WRITE BINARY TAPE statement, no special action is taken. If writing continues,
the tape may run off the reel. This can be changed by the executing the

statement
EXECUTE SETETT. (S)

The subroutine SETETT. sets the write tape routines to transfer to the

executable statement labeled S when an end-of-tape is encountered. Executing

EXECUTE SETETT. (O) will reset the write tape routines to the normal situation.
The spbroutines SETEﬁF. and SETETT. mayvbe executed as many times as

desired. ‘Only one setting is in effect for end-of-file (that specified by

the latest execution of SETEfF.) and end-of-tape (that specified by the

latest execution of SETEIT.), i.e., each setting cancels the previous one.
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6 Function Definitions

In this section the executable statements and declarations necessary
to define function subprograms are described; for use of defined functions
see secs. 2.4.1, ‘Single Valued Functions, 2.4.2, Non-single Valued Functions,
and 2.4.5, Arguments of Fimctions.

A "function definition™ is a sequence of executable statements from
section 4 and declarations from section 3 qualified by and delimited by
the declarations and executable statements of sec. 6.3, Function Definition
Statements, below. Further restrictions are imposed upon the sequence of
statements by the considerations given in sec. 6.4, Internal Function
Definitions, and sec. 6.5, External Function Definitions.

As has already been alluded to, there are two main types of programmer
defined functions: the internal function and the external function.

Either of those types may include single valued functions or non-single
valued functions (non-single valued functions are sometimes referred to as
"procedures").

A Mrecursive function" of either type may also be defined. For the
purposes of this manual a recursive function is a function whose definition
calls for the function being defined or calls for a function which
ultimately calls for the function being defined.

The general structure of the definition of a recursive function is the
same as for any other function but it will include some of the statements
described in section 7, List Manipulation Statements.

When defining a recursive function, it is necessary to keep in mind
that names are used as function arguments and not values (see section 15,
kExamples, for further considerations with regard to recursive functions).

The name of a defined function must be distinct from the names of
functions already available to the translator. For a list of these
names see the manual of library subroutines available.

Each function definition (except Single Statement INTERNAL FUNCTI@N
Definitions, sec. 3.8) may define any number of functions and/or any

number of procedures.
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6:1 Dummy Arguments

Some functions may be defined which require no arguments: Often,
however, it is convenient to be able to specify which values are to be used
during the evaluation of a function, i:.e.; to specify arguments. A dis-
cussion of the form of the arguments when a function is used appears in
secs: 2:4:1; Single Valued Functions, 2:4:2, Non-Single Valued Functions,
and 2:4:5;, Arguments of Functions-.

We are concerned here with the form of the arguments when the function
is defined; these are called "dummy arguments"-

A dummy argument is used in the statements of the function definition
to indicate a correspondence between the variable name in the statement
and a positiom in the list of arguments. When the function is used every
occurrence of the "dummy variable™, say Ai’ in the statements of the

definition will be replaced by the value of the expression in the position
of Ai in the list of dummy arguments.

The form of a dumy argument may be:

(1) a name of a simple variable,

{2' & name of an array variable,

3" a name of a function:

dotice that neither constants nor subscripted variables may appear as
dumny arguments and that arguments of a function do not appear following
the function name in the dummy argument list.

Names which appear as dummy arguments in any function declaration may
not appear in a PR@GRAM CEMM@N, ERASABLE or EQUIVALENCE declaration.

The modes of dummy arguments must be declared as for other variables
if of other than normal mode-

Dummy arguments which are array names need not be dimensiocned.
Example: The list

(SIMPLE,;FCN. ,ARRAY)
is a valid dummy argument list. The following list is not:

(FCN.(X,Z+2. ,VAR1), ARRAY(1,9))
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6.2 The Use of a Defined Function
In the use of a function, either in an expression or in an EXECUTE
statement, the arguments may be constants, variables or expressions.

However, if one of the dummy arguments in the definition appears to the
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statements, then it is not meaningful to use a constant or an expression

<
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in the position of that argument in the call for the function. The
arguments in the call for a function cannot be checked by the translator

for correspondence in mode and number to the arguments in the definition.

It is left to the user to see that they agree.

6.2
6/20/62



FUNCTION DEFINITION STATEMENTS
6.3 Function Definition Statements

6.3-1 INTERNAL FUNCTI@N Declaration
This declaration indicates that an internal function is to be defined

by. the statements which follow.. This declaration has the form:
INTERNAL{FUNCTI¢N_(A19 By <oos An)

where the Ai are the dummy arguments for the function. Note that no
function name appears in the declaration: This statement must necessarily
appear as the first statement of an internal function definition. Section
6.4, Internal Function Definitions, contains further discussion regarding

the definition of internal functions.

6.3.2 EXTERNAL FUNCTI@N Declaration
This declaration indicates that an external function is to be defined

by the statements which follow: This declaration has the form:
EXTERNAL FUNCTI@N (Ays Ays ooy A)

where the Ai are the dummy arguments for the function. Notg that ne
function name appears in the declaration. This statement must necessarily
appear as the first statement of an external function definition. Section
6:5, External Function Definitions, contains further discussion regarding

the definition of external functions-

6.3.3 ENTRY T@ Declaration

This declaration has the form:
ENTRY T¢ F-

where F. is a name of a function which is to be defined by this function
definition. This declaration marks the entry to the function F.: Execution
of the function F. begins with the first executable statement following
the ENTRY T@ F. declaration-

In a single program a given function name may appear in only one ENTRY
T@ decleration; also a given function name may appear in only one ENTRY T¢
declaration within a given function definition. However, a single function
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definition may contain many ENTRY T@ declarations each with a distinct name
F., todesignate entry points to several function names within the function

definition.

6.3.4 FUNCTI@N RETURN Statement
This is an executable statement which terminates the execution of the
function and returns to the place in the program where the function name
was used in such a way that computation may procede using the result or
results of the function.
There are two forms of the FUNCTI@N RETURN statement:
(1) FUNCTI@N RETURN E
where E is any expression, the mode of which is consistent with
the mode of the function being evaluated. At the time of return
the value of the function will be made the value of E. The mode
of the expression E is not checked by the translater. If =
function name is to be used in any expression, i.e., if it is to
be a M™single valued function" (see sec. 2.4.1, Singie Valued
Functions), then the FUNCTI@N RETURN statement which terminates
the execution of the function must have this form.

Example: The statement

FUNCTI@N RETURN

causes the valﬁe of the function in which it appears to be set

equal to the expression
BETA/K5-4.%D

(2) FUNCTI@N RETURN
This form of the FUNCTI@N RETURN statement, which does not include
an expression, is used to terminate the execution of any function
which is not a "single valued function" in the sense of this
manual, i.e€., any function which is not used in an expressiozn.
It should be noted that a function may have a single gggglg, such as
setting a single variable equal to a calculated value, and still not be a
"single valued function" in the sense of this manual.
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On the other hand, a function may be defined which yields several
results, such as setting several variables equal io several calculated
values, but which may nevertheless be a single valued function if it
terminates execution by a FUNCTI@N RETURN statement of the form under (1)
above:

A single FUNCTI@N RETURN statement may be used by many functions
within the function definition.

Examples: ;

(1) The internal function definition

.

INTERNAL FUNCTIgN (X,Y,Z)

ENTRY T@ FCN.

X = SIN.(Y) .P. 2 + SIN.(Z) .P. 2
FUNCTI@N RETURN

END ¢F FUNCTI@N

has a single result; the value of X is set equal to the value of the
expression
sinz(Y) + sinz(Z)

Nevertheless, this is not a "single valued function™ since the FUNCTI@N
RETURN statement used contains no expression-

(2) The internal function definition

INTERNAL FUNCTION (X,Y,Z)
ENTRY T FCN2-

X = SIN-(Y)
Y = Cfs-(Z)
Z = ATAN.(X)

FUNCTIGN RETURN X + Y+ Z
END ¢F FUNCTIQN

is a Msingle valued function" whose value is equal to the value of the

expression
X+Y+2

even thogh, in addition, new values for all of X, Y and Z are calculated-
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6.3.5 ERRZR RETURN Statement

This statement has the form:
ERR@R RETURN

It is an executable statement which may be used in a function defin-

siL2_ . =t .

T10n

L
[=h
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@

If the right-most argument in the call of the function in the defin-
ition of which the ERR@R RETURN statement appears is an expression of
statement label mode (see sec. 2.10, Statement Label Expressions), and if
the ERRZR RETURN statement is executed, then execution of the function is
terminated and control is transferred to the statement the label of which
is equal to the value of the aforementioned statement label expression.

If the ERRUR RETURN is used in a function definition and a call for
the function is made such that the right-most argument is not of statement
label mode, and if the ERR@R RETURN statement is executed, control will be
returned to the system and the execution of the program will be terminated.

An error indication will be printed.

6.3.6 END @F FUNCTI¢N Declaration

This declaration has the form:
END @F FUNCTI@N

It delimits the extent of any function definition and hence must
appear as the physically last statement in any function definition (with
the exception of the Single Statement INTERNAL FUNCTION Definition of
section 3.8). It is not an executable statement and the execution of the
function may not be terminated by attempting to execute it. If it is
executed an error indication will be given and the problem will be termi-

nated at execution time.
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6.4 Internal Function Definitions

An internal function definition is a function definition which is to
be translated as part of the main program.

Names used as dunmy arguments must be distinect from all other names in
the program.

The name of the defined function must be distinct from all other names
used in the program.

Names of variables or functions which do not appear as dummy arguments
but which are defined elsewhere in the program may also appear in the
internal function definition statements. The value of such a variable or
function is the current value at the time the internal function is used-

Internal function definitions of all kinds (including single statement
definitions), may occur anywhere in the program, except within another
internal function definition Internal function definitions may occur
within external function definitiens.

Example: The following is an internal function definition of the function
whose name is NAMEF.:

INTERNAL FUNCTIgN (P,D,F.)
ENTRY T@ NAMEF.

TEMP = P

P = F.(D)

D = F. [TEMP)

FUNCTI@N RETURN O

END @F FUNCTIZN

This is a single valued function whose value is a constant integer zero.
In addition the function sets P equal to F.(D) and D = F.(P) where F. is
any defined function name (other than NAMEF-) used in a call for NiMEF..

6.7
6/20/6



EXTERNAL FUNCTION DEFINITIONS

6.5 External Function Definition

An external function definition is a function definition which is to
be translated completely independently from the main program in which it is
to be used: The external function definition as a whole appears completely
outside any other program. Because of this an external function definition
is an entirely separate, complete program. Thus it must contain its own
DIMENSI@N declarations, mede declarations, PRAGRAM CAMPN declarations,
ERASABLE declarations and any others which it itself requires. However,
it is terminated by an END @F FUNCTI@N statement and not by an END @F
PRUGRAM statement as are other programs.

Declarations required on the dummy arguments appear within the external
function definition.

Since an external function definition is a complete program there is
no conflict between names used within it and names used within a main
program using it or names used within another external function used by the
same main program.

Example: The following is an example of an external function whose value
is 1/x if 0 < x < 1 and l/x2 if x> 1. If x <0, one obtains an error
return (see section 6.3.5, ERRR RETURN statement).

x>

EXTERNAL FUNCTION (X)

ENTRY T@ INVSF-
WHENEVER X-G.0: oAND. X .LE. 1.
FUNCTIgN RETURN X .P. -1

@R WHENEVER X .G. L.
FUNCTI@N RETURN X .P. =2
@THERWISE
ERRZR RETURN
END @F CONDITIONAL
END @F FUNCTIGN

o = = H O T QO @Q <

Here the statements are all labelled only for reference in what follows.
This definition program defines a single-valued function of X, caliled

INVSF.. Since no mode declaration is given it is assumed by the translator

that X is floating point even though a different normal code were declared
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in the main program. The value of INVSF.(X) is computed by the use of a
compound conditional. If O0<x < 1; (statement G) then statement C is
executed,; causing a return to the‘calling program with th~ value % s If .
the condition O < x < 1 is not true; then the condition x > 1 is tested
(statement H)- If,#’> 1, statement D is executed: Finalily, if neither of
the conditions 0 < x<lorx>1 is true, then statement I finds that

X < 0 and statement E (the error return) is executed. If
A =B ~D
Z T(I) + INVSF.(Y) % T(I-1)
Y(I) = Z + R(J) % 2.5

fl

is part of a program and the error return statement is executed during the
evaluation of INVSF.(Y) (i-.e., Y > 0), then control is returned to the
system in which the translated program is imbedded, with an error flag set-
If

A4 =B-D
F Z = T(I) + INVSF.(Y,ER) * T(I-1)
S Y(I) =2z + R(J) * 2.5

ER 2 =0
L Y(I)=1.

¢ 09

is part of a program and Y S 0, then when the ERRZR RETURN statement is
executed control transfers‘%o statement ER (then goes on to L); instead of
finishing the execution of statement F (and then going to S). Note that

the END @F FUNCTI@UN statement will never be executed, but must be pregent in

the definition-
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7 List Manipulation Statements

These executable statements facilitate the writing of recursive
internal and external functions (see sec. 6, Function Definitions). They
cause the designation and use of a vector for the temporary storage of

data and function returns.

7.1 SET LIST T¢ Statement

This statement has the form:
SET LIST T V

where V is the name of an array element, i.e., either an array variable
name or a subscripted variable: The name V specifies the initial element
in a vector to be used as temporary storage. Consecutive elements will be
used as required by executions of the statements which follow in this
section The number of elements in the list-vector V is determined by
the amount of data the user specifies to be stored there.

In the following the terminology "SAVE statement" will refer to any -
SAVE DATA or SAVE RETURN statement (see secs. 7.2 and 7-3). The terminology
"RESTPRE statement™ will refer to any RESTZRE DATA or RESTPRE RETURN state-
ment {see secs. 7.4 and 7-5)

A SET LIST T@ statement must be executed before any SAVE or RESTZRE
statemeni is executed.

A SET LIST T@ statement defines the list-vector to be used by all SAVE
and RESTPRE statements until another SET LIST T@ statement is executed.

Example: The statement
SET LIST T¢ VECTZR (12)

results in the assignment of the first element of the current list-vector
to the 12th element (where O is the Oth element), of the vector VECTER.
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7.2 SAVE DATA Statement
This statement has the form:

SAVE DATA 2

whereaﬁfhas the most general form of an input-output list (see sec. 5.3,
The Input-Output List). This statement causes the current values of the
elements of the listéifto be stored; in the order of their appearance from
left to right in the list, in consecutive elements of the current list-
vector as specified by the most recently executed SET LIST T@ statement,
starting with the first available element of the list-vector. The element
which is the first available element of the list-vector is either
(1) the initial element of the list-vector V as specified by the most
recent SET LIST T@ statement if no other SAVE statement has been
executed since the SET LIST T@ statement,

{2) the element one past the last element used ty the most recently
executed SAVE statement:
Zxamples:

If the following segment of program is executed:

SET LIST T¢ LIST3

SAVE DATA MAX, MIN

SAVE DATA LIST1(0), .--, LIST1(L)
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the statement
SET LIST T¢ LIST3

assigns the first element of the current list-vector to LIST3(0).

The statement

SAVE DATA MAX,MIN
stores the values of MAX and MIN as if the following two substitution

statements were executed:

LIST3(0) = MAX
LIST3(1) = MIN

During the execution of the statements a the next available element in the
surrent list-vector is LIST3(2).

The statement
SAVE DATA LIST1(O), ..., LIST1(4)

stores values of the elements of the block as if the following substitutior

statemenis were executed:

LIST3(2) = LIST1(0)
LIST3(3) = LIST1(1)
LIST3(4) = LIST1(2)
LIST3(5) = LIST1(3)
LIST3(6) = LIST1(4)

During the execution of the statements B the next available element in the

current list-vector is LIST3(7).
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7.3 SAVE RETURN Statement

"This statement has the form:
SAVE RETURN

This statement is meaningful only when it appears in a function
definition. It causes the location in the program which called the
function to which the function is te return upen completion to be stored
as the next available element in the current list-vector. The determi-
nation of the next available element is made as under SAVE DATA Statement

above-
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7.4 RESTZRE DATA Statement

Trkis statement has the form

RESTERE DATA X

whereéﬁ,has the restricted form of an input list (see sec. 5.3, The Input-
Qutput List)}. If a total of n names Nps Ny ooy N {n data elements) are
designated by the list in oraer from left to right, and if elements through
the kth of the list-vector have been used by SAVE statements, then the
variable Ni is replaced by the value of the k-i+l'st element of the list-
vector, i:e-, Nl is replaced by the kth element, N2 by the k-1'st element,
sooy Nn by the k-nt+l'st element. Notice that the form of the list implies
that n names may be designated without the appearance of n terms in the
list; a term which is a block designation must be counted to represent as
many names as elements in the block.

After this operation is completed, these n elements of the list-vector
are made available in the list-vector. This means that the value of the
first name in a SAVE statement list executed immediately after a REST@RE
DATA statement will be saved in the k-nt+list element of the list-vector.
Example:

Suppose that the following segment of program were executed after, in
time, the execution of the program segment in the example of section 7.2,
SAVE DATA Statements

3

o

REST@RE DaTa LISTI(4), o--, LIST1{0)

o A.

REST@RE DATA MIM,MAX

°

. b
the first REST@PRE DATA statement has an effect exactly the reverse of the

second SAVE DATA statement in the earlier example and the second RESTZRE
v\’
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DATA statement has an effect exactly the reverse of the first SAVE DATA
statement. During the execution of the statements A, the next available
element in the current list-vector is LIST3(2). During the execution of
the statements p the next available element in the current list-vector
is LIST3(0).
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7.5 RESTPRE RETURN Statement

This statement has the form
REST@RE RETURN

This statement is meaningful only when it appears in a function
definition. It causes the current last element in the current list-vector
to be used as the location to which contrel is returned upon completion of
the function program, i.e., when the next FUNCTI@N RETURN statement is
executed. The last element of the list-vector is then made available for
use by the next SAVE statement.
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12 Advanced Features
This section is devoted to a discussion of features which are exten-
sions of the basic features described in preceding sections. 4n under-

standing of the preceding sections is presumed here.

12,1 Subscription Redefinition

In order to conserve storage it is sometimes desirable to store less
than the total number of elements of an array. For example, it is often
desirable to store only half of a symmetric matrix or only the non-zero
elements of a sparse matrix.

This can be done using the features of MAD already described if the
user is content te use linear subscripting exclusively for the matrix in
guestion.

Since the standard array subscripting process used by MAD presumes
the presence of an entire array stored in the order described in section
2.2.2; Arrays, however, it is not possible to use the array subscripting
notation for an abbreviated array with the standard array subscripting
procedure.

A special subscription routine may be written by the user as a single
valued internal function, external function or assembly language subroutine

. L . ,
to permit the user to use the array =

43Sy VI V5 41 Wis

array.

bt
ot

Raguirements Imposed on the Swheewiption Routine

1) The arguments for the routine must have the following forms

Zar ™ o a
RAMI‘J S-, 9 o coo g &
\ Y P 29 2 n/

where NAME is the name of ihe abbreviated array and the Si‘s have the wvalues
of the n subscripts resuiting from the conventional notation, 1-€. the use of

the subscripted variabie

NAME(S, S,, =--, S )

2)
(2) The routine must be a single valued function whose value is equal

to the linear subscript of the array NAME which corresponds to the array

subscript (51, Sys ooes Sn)°
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A subscript routine written in assembly language may use the fact that
the lecation of the dimension vector; ADIM(O), appears in the decrement
part of the calling sequence parameter containing in the address part the
first lecation of the array, A(0) (see sec. 14.3, Structure of Subroutines).
Example: Suppose that the matrix A of order n is an upper triangular
matrix, with all elements below the main diagonal equal to zero. Instead
of storing the entire matrix, it is desired to store only the elements above
and on the main diagonal; i:.e.; only the elementsa%j for which i < j where
i is the row index and j is the column index: The eiements are to be stored
by row, i.-e. so thats

(1) 4if the elementai . where j < n, is in matrix location A(k) then

£

the element a, .

§ s is in matrix location i(k+1); and
Sy

+1
{(2) if the elemantem'n is in matrix location A(ja, then the element in

N 3 51 4 - @
matrix location A(f¢1) is the element a 141,141

Then; assume further that the matrix A is stored in the MAD array A
with the base element A(1l,1) equivalent to the element A(B), and the array
element A(B-1) is set equal to zero whenever computation is performed using
the matrix A.

If SUBF. is the name of a function written to calculate the correct
linear subscript given the conventional matrix subscripts i and j then the
desired value of the function is given by

. .o B=1; if 1> 3

SUBF. (£,1,3) =§(2(n+l)=i)(j—l)

2

+3-i+B, if 1 < j

where 1 and j may be, as usual, any integer expressions, but whose values
should satisfy 1 < i; j<n-

The value of SUBF. (A,i;j), then, is the linear subscript of the
element A(i,j) if A(i,j) is one of the elements which is actually stored,
and is the linear subscript (B-1l) of an element whose value is equal to
zero; which is all that is necessary, otherwise.

The subscripting function must have access to the values of n and B:
If it is an internal function they can be gotten from the dimensicon vector
of A by using the name for it, say ADIM, which the main program used:

12:.1
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Otnerwise, for external and assembly language functions; the values of n
and B can be made available tnrough PROGRAM C@MM@N.

12.1.2 Use of the Subscription Routine

Once a routine is written to perform subscripting in other than the
conventional manner, it is still necessary to indicate to MAD that this
new routine 1s to be used instead cof the standard one:

As always the array, A, in question must appear in a DIMENSION

dezlaration in the follewing form
DIMENSION - A(p,ADIM). ...
where ADIM is the name of the dimension .ector of A
n this case {that is when redefining subscripticn) a statement of
one of the following two forms must be used w0 set at least the first

slerert ¢f whe dimension vectors

VECTER VALUES ADIM = SUBF., d
VECTPR VALUES ADIM = SUBF. . d., d., cc., d
L < n

where SURF. is the name of the subscription function to be used with the
array A and the d’s are integer constants:

is discussed in section 3.6.2, Matrix DIMENSION Declaration; it was
rossivle to compute or read in as data the entries in the dimension vector:
This still is possible when redefining subscription but each of the entries
cescraived in section 3-6.2 must e stored in the dimension vecior in the

slement whose linear subscripi i

b

equal to L pius ihe linear subascripit of

L6

the e

ement as described in section 3.6-2.

The name of the subscription function must appear in the first element
of the dimension vector and may be put there in no other way than by
presetiing with VECT@R VALUES:

The first form of VECTPR VALUES declaration listed above may be used
when the dimer.sion entries are 1o be computed or read ing even if the array
dimension; in the element of d, is t¢c be computed or read in,an integer d,
pessibiy a dummy, must appear. The second form is that used when elements

can be preset, where d. is the array dimension, d, is the linear subscript
. .

2
of the base element, etc.

12.2
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12:1.3 Available Subscription Routines

The following two special subscription routines are available in the
subroutine library:

(a) SYMM.

The subroutine SYMM. calculates the correct linear subscript for a two
dimensional; symmetric matrix for which only the elements above and on the
main diagenal are stored, by rows.

SIMM. has access to the dimension vecter of the matrix in question so

no information other than the arguments is necessary:

(b) TRANSP.

The subroutine TRANSP. calculates the correct linear subscript for a
complete two dimensional matrix, A; stored as the transpose of Ay i.e. the
transpose of A is stored by rows or A is stored by columns-

For example; a refe;ence to the element A(6,2) using subroutine TRANSP-
will result in the linear subscript for the element A(2,6):

TRANSP: has access to the dimension vector of the matrix in question

s¢ no information other than the arguments is necessary:

12.3
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13 Recommended Programming Practices

This is an expandable section designed to have added to it; from time
to time, recommendationsfor programming procedures which will result in
increased efficiency in some manner, e.g- spted of compilation; speed of
execution, conservation of storage, etc:

For this reason this section contains a separate table of contents.

By definition, this section is incomplete at any given time and there

Lota

may exist methods “nen thessa  which appear here which could be used

to accomplish the same ends:



13.1 Table
13.1
13.2
13.3

TABLE OF CONTENTS, SECTION 13

of Contents, Section 13
Table of Contents, Section 13
Efficient Programming of Boolean Expressions

Use of Parameters in Function Definitions
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EFFICIENT PROGRAMMING OF BOOLEAN EXPRESSIONS

1i3.2 Efficient Programming of Boolean Expressions
The object program produced by the MAD translator evaluates the terms

of a Boolean expression from right to left.

It is clear that; in a Boolean expression of the form
Ti .@R. T2 ofR. === .@R. Tn

which may be called an ".@R. expression”, where the Ti's are any permissible

terms and where the Boolean operations

¢ EXQRO
- AND.

do not appear in the expression; the value of the .@R. expression is
certain to be 1B; true, as soon as; in the evaluation process, the value
of some Ti nas been found to be 1B. The object program produced by the
MAD translator evaluates the terms of an -@R. expression until the value
of some term is 1B or until all the terms have been evaluated, whichever
happens first. Thus possible remaining terms, after the evaluation of some
term whose value 1s 1B, are not evaluated needlessly.

This; together with the fact that the terms are evaluated from right
to left as mentioned above, implies that, if the programmer has any way of
Judging, he shculd write the terms of an .@R. expression from left to right

in order of ascending likelyhcod of truthfulness. Thus; in an expression
TL @R, T2

if T2 is likely to be Mirue™ (have value 1B) more often than T1l, the
expression shouid be written as 1% appears above, otherwise the order

should be reversed; i.e-.
T2 .@R. Tl
It is clear that, in a Boolean expression of the form
Ti -aND. T2 <ANDo === .AND. Tn

which may be called an ".AND. expression", where the Ti's are any permissi-

ble terms and where the Boolean operations

-@R.

-EXZR-
13.2
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EFFICIENT PROGRAMMING OF BOOLEAN EXPRESSIONS

do not appear, the value of the .AND. eipreésion is certain to be OB,

false, as soon as, in the evaluation process; the value of some Ti has been
found to be OB: The object program produced by the MAD translator evaluates
the terms of an AND. expression until the value of some term is OB or
until all the terms have been evaluated,; whichever happens first. Thus
possible remaining terms; after the evdluation of some term whose value is
OB; are not evaluated needlessly: )

This, together with the fact that the temms are evaluated from right
to left as mentioned above, implies that; if the programmer has>any way of
judging, he should write the terms of an .AND. expression from left to
right in order of descending likelyhood of truthfulness. Thus, in the

expression
Tl .AND. T2

if T2 is likely to be %false" (have value OB) more often than T1l, the
expression should be written as it appears above, otherwise the order

should be reversed; i.e:

T2 .AND. T1

13.3
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USE OF PARAHEEERS IN FUNCTION DEFINITIONS

13.3 Use of Parameters in Function Definitions

During compilation of a function definition, MAD records in a table,
called the Parameter Use Table, all references in the function definitien
to the dummy arguments of the function, which will be references to the
actual arguments when the function is used.

These entries are used to compile into the function subroutine.
instructions to initialize the references upon each call of the function.

If too many references are made the Parameter Use Table may not be
able to contain them all and compilation cannot be successful {in which
case the comment PARAMETER USE TABLE EXCEEDED is printed).

Thus it may be necessary to minimize the number of entries in order
to make compilation possible and it is desirable to minimize the number
of entries both to shorten the object program and speed up the execution
of the subroutine. This may be done in any of the following ways:

(1) If the dummy variable X supplies data to the subroutine, i.e. is
inpuat to the subroutine, and i1s referred %o several times, one may use

the substitution statement
Y=X

where Y is not a dummy variable, immediately after entry te the subroutine
and use Y instead of X thereafier. Then initializatioen of references to
X is done only in the substitution statement and there is only one entry
for X in the Parameter Use Table.

(2) If the address of a variable is needed, as in the case of an output
argument. or an argument which is an array name; it is net possible to use
the method of (1) above. Instead it may be possible to put the variable
or array in PRUGRAM CEMM@N, by means of identical declarations in both the
main program and subroutine if the subroutine happens to be either an
external function or an assembly language subroutine. Then the variable

or array will not be an argument at all.

13.4
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MECHANICS OF USING MAD
14 Mechanics of Using MAD
1ho1 Card Format

In order to compile a source language program using the MAD translator

the program must be punched on cards. These cards have the following

format:
Columns (inclusive) Content
1~ 10 Statement Label
11 Remark or Continuation Designation
12 = 72 Statement
73 - 80 Identification

14.1-1 Statement Label Field
Statement labels may be punched anywhere in columns 1 - 10. Spaces

are ignored.

1412 Column 11
Except for a "Remark™ a statement must begin on a card which has a

blank in celuwmnn 11l.

1h.1:2:1 Remarks Cards
If an ™R" is punched in column 11, the card is a Remark Declaration

(see sec. 3.1)-

14.1.2:2 Continuation Cards
A card which has a decimal digit O, 1, =---; 9, punched in column 1l
is a continuation card. Continuation cards may be used in the event that
a statement cannot be put on one card. The order of the digits appearing
on consecutive continuation cards is not significant; the statement is
ordered by the physical order of the cards comprising it.
A maximum of nine continuation cards may be used; so that a statement

may be comprired of no more than ten cards.

14.0
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14.1-3 The Statement Field
MAD language statements may be punched anywhere in columns 12 - 72 and
only in columns 12 - 72: Spaces are ignored except when they appear between

pairs of dollar signs ("$m's).

14.1.4 The Identification Field

The information in the identification field is not translated by MAD.
It is transcribed onto the source language listing produced during compil-
ation. The user may punch any legitimate characters in this field.

It is good practice to include in this field identification information
and sequence numbers which define the order of the cards in the program
deck-

14,1
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2 UTLiagnostizs

During the process of translation many kinds of errors in the formation
of statements and the allccavion of storage can be detected. To understand
this error detection and the subsequent printing of diagnostic comments some
knowiedge of the structure of the transliator is helpful:. The translation
from statements to machine code is accomplished in three major sections:

{1) The decomposition of the original statements into arrays of binary
operations and pssudo-operatiocnss:

{(2) The analysis of all of the declarative information in order %o
allocate variable storage and identify the arithmetic types (i.e.
modes) of variables.

(3) The combination of the information produced from (1) and (2) io
translate the arrays to relocatable binary programs.

When an error is encountered in one of these sections the translation does
not proceed to the next section. However, insofar as possible; the entire
s2t of =tatements is precessed through the section in which the error is
detezted and therefore more than one error may be detected. It should be
understood then. that not all detectahnle errors may be found beczause:

(a) They are detectable only in a later stage of the translation:

(b) Some types of errors make it impossible to attemp’ “urther
detection within the section in which it cccurs;

{¢) One error may actually obscure another error.

QCeccaszionally; an error in one statement may be such that it causes the
translator to misinterpret a second statement., thus giving an error indica-
t1on even thougn no error exists in tne later statement.

The printed diagnostic comment may very often have an alternative or
ambiguous form. This results from the fact that it is fregquently not
possible to determine what form was intended, merely that the present
structure is not admissibles and therefore some of the alternative possibili=-
ities are suggested by the comment.

Aftver MAD has completed translation of a source language program, a
list is printed of all variable names which appeared in the program, but
which appearsd only once. This list does not include names appearing in
any of the following declarations:

14:2
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PRAGRAM CAMMEN
ERASABLE
DIMENSI@N
VECTZR VALUES
EQUIVALENCE
Variable names which appear in the list are all assigned to the same
location, under the assumption that they are not purposely used for anything
except perhaps redundant labelling of statements-
The list is a valuable debugging aid due to the fact that it is very
likely that in it misspelled names will appear-

14.3
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143 Structure of Subroutines
The information in this and the following sections is to be found in
much greater detail in other installation write-ups. However, the following
sections should be sufficient for the general use of MAD.
Subroutines which are written for use by MAD programs, whether written
in MAD as functions or in assembly language code, must- be relocatable and
must operate from the calling sequences the translator produces: Consider,

for example the function call

FN. (4;B;C)
which might appear in the bedy of a statement. Assume that B is an array
which has an associated dimension vector BDIM: Using assembly language

notation for illustrative purposes, the calling sequence produced would be:

TSX FN,4

TXH A

TXH B,;C.BDPIM
TXH ©C

Input-output routines utilize two types of parameters, the regional
and single variable types: In addition an error return is given as well as
a format specification location. The parameter operation code used is STIR
and the end of the parameter list is indicated by an STR operation with a

blank address- Thus the statement
READ FORMAT FMT, BETA, X(1) ...X(100), K

would produce the calling sequence

TSX EREAD, 4

STR ERRGR

STR FMT

STR BETA

STR X-1,0,X-100
STR K

STR

On occasion it is useful to use the regional notation in subroutines
whizh are not in the input-output category, for example; G. (GAMMA, DELTA,
Z2(10):-..2(20)). The calling sequence would be

s
6/20/62



STRUCTURE OF SUBROUTINES

TSX G,k
TXH GAMMA
TXH DELTA

TIX Z-10,0,Z-20

It is important to notice that in this example, as well as in the first,
the parameters; if executed as instructions; would produce no operation.

It is beyond the scope of this manual to discuss the structure of
relocatable programs. It is sufficient to say that a relocatable program
must contain; in addition to the actual instructions in the program,
information as to which addresses must be relocated at the time of loading
for execution and which addresses must not: In addition, the first card
{or record) of such programs must contain information about the size of
the program; the number of subroutines it calls on; the amount of storage
it will share with other subroutines; the location of the list of sub-
routines it calls on, and the names by which the routine itself is referred
to. The symbolic names of the subroutines called on must appear as the
first words after this information.

The execution of MAD programs requires the use of a loading routine to
relocate and store the program and subroutines. 4 slightly modified BSS
FORTRAN loader is automatically produced by the opersting system in which
MAD is imbedded:. Also there are certain subroutines which may be auto-
matically called for by a MAD program withcut an explicit reference %o them

in the scurce program.

1.5
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14.4 Systems Subroutines

The use of the following names for functions (subroutines) should be

avoided except where the operation is the one indicated here.

SYSTEM

ERRZR

TAPEWR

PRINT

TAPERD

READ

PUNCH

CAMNT-

1L.6

by O

6/20/62

Entry to this routine causes a return to the operating system.
The END @F PROGRAM statement produces a call for this routine.
Entry to this routine also causes a return to the operating
system: However, if a dump of storage was requested of the
operating system such a print of storage will be produced before
the return to the system: The ERR@R RETURN statement may
produce a call for this routine.

Entry to this subroutine causes BCD information to be written
on tape. The arguments are: (1) location of the format
specification, (2) tape number, and (3) a list of variables to
be written. The WRITE BCD TAPE statement produces a call for
this subroutine.

Similar to TAPEWR above except that the use of the peripheral
output tape is implied. The PRINT F@RMAT statement produces

a call for this subroutine:

Entry to this subroutine causes BCD information to be read
from tape. The arguments are: (1) location of the format
specification, (2) tape number, and (3) a list of variables

to be read. The READ BCD TAPE statemeni produces a call for
this routine:

Similar to TAPERD above except that the use of the peripheral
input tape is impiied. The READ F@RMAT statement produces a
call for this subroutine.

Entry tc this subroutine causes BCD information to be written
on the peripheral output tape. The arguments are the same as
those of PRINT and the PUNCH F@RMAT statement produces the call.
Entry to this subroutine causes BCD information to be printed
on the attached (on-line) printer. The arguments are the same
as those of PRINT except that the line spacing is not given in
the format specification since an automatic 1/6 page skip is
produced. The statement producing the call is PRINT @N LINE.



SYSTEM SUBROUTINES

SETE@F - This name may appear explicitly in the form SETE@F.(S), where S
is an expression of statement label mode designating the point
of return when an end-of-file is encountered during the reading
or writing of magnetic tape:

SETEIT - This name may appear explicitly in the form SETETT-(S), where S
is an expression in statement label mode designating the point
of return when an end-of-tape is encountered during the reading
or writing of magnetic tape.

SETERR - This name may appear explicitly in the form SETERR.(S), where S
is an expression of statement label mode designating the point
of return after an illegal data character or illegal format
specification has been encountered by an input-output sub-

routine-

It should be understood that the subroutinesdescribed above may be
called by other subroutines as well as statements. Thus, for example,
SETE@F is called by TAPERD, TAPEWR calls PRINT, and all of the input-

output routines call ERRER.

C14.7
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15 Examples of MAD Programs

The following examples illustrate how some programs may be written
in the MAD language. Since they were written to illustrate as many features
of the language as possible, they are not necessarily the most efficient

or elegant programs which could have been written.

15.0
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15.1 BScieéntific Examples
Example 1

Problem: To solve the quadratic equation ax2 + bx + ¢ = 0 for various sets
of coefficients a, b, and c.

Analysis: Let Xy and X, be the two roots of the equation. Then their values

are found by the formulas,

Ve2 - lac - b - b2 - lac

_=b +, % -
1~ 23 2 2a

X

whenever a % 0. The single root X of the equation when a = 0 is X, = wc/b.
The input values of a, b, and ¢ are printed immediately after they are brought
in teo help in finding trouble spots during the development of the program

not ag necesssry here ss in longer prcblems, but a good idea!).
Ed

15.1
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Read

a,b,c

@.

Print

"Iinear A -
Equstion"

ﬁ=é<i'

u
(@}

Frint "REAL

&

SO UTIONS"
(=b +ﬁ)/2~a

(-v -Ya)/ea

5.2
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Print "COMPLEX
SOLUTIONS"
R(X1)=sb/2a
1%, )= Y-d/2a

R(X2)= ~b/2a

T (x2 )=-¥-d/2a

Note-

Thne

Y ang (X,
L

and imaginary parts

CN—

are

]

1
of X,, and, similarly,
R(XZ) and I(XQ) are the
real and imaginary parts

of X2.



SCIENTIFIC

R
RMAIN PROGRAM
R
GAMMA READ FORMAT INPUTsAsBsC
PRINT FORMAT CHECKsAsBsC
WHENEVER A «NE. 0sTRANSFER TO ALPHAZ2

ALPHA1 PRINT FORMAT LINEAR,~C/B
TRANSFER TO GAMMA

ALPHAZ D = B «Pe2 =4e%A%C
WHENEVER D «Le 0Oes TRANSFER TO BETA2

BETA1 PRINT FORMAT REALs (—-B+SQRT«(D))/(2.%A) s (~B-SQRT (D} )/(2e%A}
TRANSFER TO GAMMA

BETA2 PRINT FORMAT COMPLXs=B/(2e%A) sSQRTe (=D} /(2e%A) s

1-B/(2e%A) s=SQRTe(~D)/(2e%A})

TRANSFER TO GAMMA
R

RFORMAT SPECIFICATIONS
R

VECTOR VALUES INPUT $ 3F10e4%%

VECTOR VALUES CHECK $ 4HOA = F1l0445S5S8,

13HB = F10e45S8s3HC = F1l0e4%3

VECTOR VALUES LINEAR = $21HOLINEAR EQUATIONs X = Fl0e4%$3
VECTOR VALUES REAL = $21HOREAL SOLUTIONSsX1l =
1F10e455854HX2 = F10e4%%

VECTOR VALUES COMPLX = $19HOCOMPLEX SOLUTIONS,

H N

1S4 7HR(X1) = F10e45S8s7HI(X1) = F106¢4958,
27HR{X2) = F1l0e43sS8s7HI{X2) = F10es4%3
END OF PROGRAM
% DATA
4o =8¢ 4o
e 54 10
1. 1. 10

15.3
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Example 2

3

Problem: A logical (BooLean) expression such

T = (P .AKD. Q) .#R. (.NgT. P .AND. R .AND. 8) .fR. (R .fR. P)
will have a value TRUE or FALSE (represented here by 1B and OB, respectively)
depending on the "input values'" of the variables involved: P,Q,R,S. Thus,

if P=1B, Q@ =R =8 = OB, then the total expression T will have the value

1B. The entire table of ocutputs for all possible inputs would be as follows:

o2 | 18| OB | 03 || 0B
OB | 1R . OB | 15 OB
ol 12! 1! omlli3
o5 12 1B ! 13 /1B

1E | 1B OB, 1E || 1B
1
1 ! i i § . - ¥
LB R = R - O | 1B ;
18 : 1B 1B ' 1B ?g 1B |
s ! A

The problem is to write a program to generate the entire "truth table"

for the given expression T.

15.k4
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SCIENTIFIC

THROUGH A, THROUGH A,
FOR VALUES OF FOR VALUES OF
P = 0B, 1B Q = OB,
THROUGH A, THROUGH A,
FOR VALUES OF FOR VALUES OF \
R = OB, 1B S = 0B, 1B
PRINT (P.AND.Q
.OR. (.NOT. P
.AND. R .AND.
PRTNT s) .CcR. (R .OR.
P)
P,q,R,S

15.5
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PRINT FORMAT HEADER
BOOLEAN PsQsRsS

THROUGH A,FOR VALUES OF P = 0OB»s18B
THROUGH AsFOR VALUES OF Q = OB»1B
THROUGH AsFOR VALUES OF R = 0OB»1B
THROUGH AsFOR VALUES OF S = 0OBs18B

PRINT FORMAT TABLEsPsQsRsSs(P «ANDs Q) «OR.(«NOTe P oAND. R
1+AND¢S)eORs (R «OR4P)

VECTOR VALUES HEADER = $1H1s
15155 1HT*$

VECTOR VALUES TABLE = $1H0s4(S10511)55S15,11%%
END OF PROGRAM

CINTHD . CTN.THNA.CTIN. THD .
DLW T LT SLUITLIIWS S UFa 1

IREA 4

<
3
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(V] 5
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SCIENTIFIC

Note: Although it would have meant only a slight change in the format
information, no attempt was irade here to label the "0" and "1" that
print as values in the table as Boolean, i.e., "OB" and "1B". This
points up the fact that internally OB and 1B are stored as O and 1,

respectively. Also, the statement
N@RMAL MPDE IS BYPLEAN

could have been used as the second statement of this program instead

of the BAPLEAN geclaration.

15.7
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Example 3
U/’b
Problem: To approximate L f{x) by Simpson's Rule, for an arbitrary
interval [a, b] using N equal subintervals (where N is an arbitrary even
integer). fb
Analysis: By Simpson's Rule, Y fx)dx

&

b=-a
3ﬁ_(y0 + hyl + 2y2 + hyB F oenn

+ by g+ vy

I

where y; = f(xi), and a = Xgs X1s =ees Xy b are the partition points of
the interval [z, b].

Method: We shall write the program in the form of an external function, so
that it could be used with any other program. The evaluation of f(x) may be

accomplished by another external function or an internal function.



LENTIFIC

SCL

Flow Diagram::

h = (b-a)/n

THROUGH ALPHA
FOR x=a+h,2h,

x>0

L a4 _
B1=81

+f(x)

82=S2+f(x+h)

FUNCTION RETURN

h

3(f(a)+MSl+282
~£(b))

15.9
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EXTERNAL!FUNCTION (AsBsNsFa)

INTEGER N

ENTRY TO SIvPS.
H = {B-A)/N

S1 = Qe

S2 = 0e

THROUGH ALPHASFOR X = A+Hs 2+%Hs X oGeo B
S1 = S1 + Fae(X)
ALPHA S2 = S2 + FelX+H)
FUNCTION RETURN H¥*(Fe(A)+44%S1+2.%S2-F«(B)) /30
END OF FUNCTION

If, for some reason, the integral of sin 3x = cos(rx + 1) were needed if O <r <3,
and the integral of sin 3x - cos rx otherwise, the program might then be as

follows:

READ READ FORMAT INPUTS»AsBsNsR
INTEGER N
WHENEVER Oe okEe R ¢ANDe R «LE« 3o
PRINT FORMAT RESULTsAsBsNsRsSIMPSe(AsBsNsFls)
OTHERWISE
PRINT FORMAT RESULTsAsBsNsRsSIMPSe(AsBsNsF2.)
END OF CONDITIONAL
TRANSFER TO READ
R
RDEFINITION OF FUNCTIONS
R
INTERNAL FUNCTION Fle(X)
INTERNAL FUNCTION F2.(X)
R
RFORMAT SPECIFICATIONS
R
VECTOR VALUES INPUTS $2F12e49169sF1244%$
VECTOR VALUES RESULT $23H1 FOR THE INTERVAL FROM
1F12e433H TO Fl24495H WITH 16+38H EQUAL SUB-INTERVALS AND
2PARAMETER F1244/29H0THE VALUE OF THE INTEGRAL IS Fl2.4%$%
END OF PROGRAM

SINe [3e%¥X)=COSe{(R¥X+14)

HoH

i

EXTERNAL FUNCTION (AsBsNsFa)

INTEGER N

ENTRY TO SIMPS.

H = (B-A}/N

S1 = Qe

S2 = 0

THROUGH ALPHAs FOR X = A+Hs2+%Hs X «Ge B

15.10
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S1 = S1l+F«(X)
ALPHA S2 = S2+Fe(X+H)

FUNCTION RETURN H*(Fe(A)+44%51+2.%S2-F4(B) ) /3,
END OF FUNCTION

$ DATA
0 2 10 10.

An alternate way to write the first eight lines of this program, illustrating
one use of the FUNCTI¢N NAME mode, would be:

READ READ FORMAT INPUTSsAsBsNsR
INTEGER N
WHENEVER OesLEs R ¢ANDe R +LEs 3.
S = Fle
OTHERWISE
S = F2le
END OF CONDITIONAL
PRINT FORMAT RESULT»AsBsNsRs SIMPSe {AsBsNsS)
TRANSFER TO READ '
FUNCTION NAME S

15.11
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Example 4

Problem: To find a real solution (if it exists) of the equation f(x) = 0
(where f is a continuous function) on an arbitrary interval [a, b], pro-
vided the roots (if there are more than one) are at least € apart.
Analysis: We specify a, b, and € as parameters. The method used will be
"half-interval convergence," in which the function is evaluated at x = a,
and then the interval is scanned for a change of sign¥* in the value of
f(x). If no change of sign is found, the scanning 1s repeated with a step
size for searching equal to one-half the previous step size. If the step
size becomes smaller than €, and no change of sign is found, the process
is terminated, and comment is printed: Ng SﬁﬁUTIﬁN}

If a change of sign is found between Xp and Xps the value of f is
computed at Xy = L " *R , 1.e., the midpoint of the interval of uncertainty
[XL, xR]. We then d%termine which of the intervals [xL, XM], [xM, xR] now
contains a change in sign. We then compute the value of f at midpoint
of that smaller interval, etc., until the interval being considered finally
has length less than €, at which time either end may be taken as the
solution with an error less than €.

The method used here to handle the x,, computation is perhaps not

the most obvious one. It consists of a s?mple loop in which the value
x is adjusted by h' = %, then h" = %l = E, etc., until h is small enough.
The adjustment cf x is either to the left or right, depending on the
occurrence or non-occurrence, respectively, of a change of sign between
f(a) and f(x).

It should be understood that this method may not find a root which

is one of a pair of roots which either coincide or are less than € apart.

*A change of sign is detected when the numbers involved have a negative

product.
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‘IHI. Print

Read a, b, ¢ Y =f(a)

a, b, €
,,—\\\\\_/ i
THROUGH ALPHA)
FOR
h..-ii uh/2
h < €
THROUGH
ALPHA, FOR £ ()10 j}lé(?g.f(X)ro 2§
x=a+h,h,x>b :
= P <
\ /
Print
HNO
SOLUTION"
OUGH X =X+ h" ? i
STGMA, FOR . | Print
S STIGN. (¥_ £ (x)) [—{SI0MA |
hey a
22 2? :
h < e
Definition

SIGN.(z) = 2/]|z| |
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(It is assumed here that f (referred to as F. in the program) will be defined

as an internal function.)

PSI

ALPHA

DELTA
SIGMA
ETA

INTERNAL FUNCTION FelZ)= Z «Pe 2 = 2.
READ FORMAT ABEPSs AsBsEPS

PRINT FORMAT INVALs AsBSEPS

YA = Fel(A)

THROUGH ALPHASFOR H (B-A)/2e9-H/2esH oLe EPS
THROUGH ALPHASFOR X A+HsHs X «Ge B

WHENEVER Fe(X) eEe 0ssTRANSFER TO ETA

WHENEVER YA%Fe(X) oLe 0e¢sTRANSFER TO DELTA
PRINT FORMAT NO ROOT

TRANSFER TO PSI

R
RTHE NEXT SECTION IS ENTERED WHEN A CHANGE
ROF SIGN IS FOUND
R

THROUGH SIGMAsFOR H=H/2es~H/2e¢sH oL EPS

X = X+SIGNe (YA®F o (X)) *¥H

PRINT FORMAT ROOTsX

TRANSFER TO PSI
R
RDEFINITION OF SIGN. FUNCTION
R

INTERNAL FUNCTION SIGNe(Z) = Z/+ABS.Z
R
RFORMAT SPECIFICATIONS
R

VECTOR VALUES ABEPS $ 3F12.4%9%

VECTOR VALUES INVAL $18HIINPUT*VALUESs A = F1244,5S53,
13HB = F1244453,5HEPS = F12e44%$

VECTOR VALUES NO ROOT = $12HONO*SOLUTION *3%
VECTOR VALUES ROOT = $14HOSOLUTIONs X = F1l2.4%$
END OF PROGRAM

nn

"o

DATA

1. 2 «01
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Example >
Problem: Find the transpose A' of an nxn matrix A = (aia)

Analysis: HwewmeA—(%ﬁ,mmbm—aﬁ.
symmetrically placed pairs of elements, leaving untouched elements on

We shall interehange

the main diagonal. The program will be in the form of an external function.

15.15
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Flow Diagram:

THROUGH
BETA, FOR

K=1,1,1ON

THROUGH
BETA, FOR

I=K+1,1,

Z = A(I,K)

I >N

(:::::>‘““ A(I,K)=A(X,T)

A(K,I) =2

OTATINEIOS
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EXTERNAL FUNCTION (AsN)
ENTRY TO TRANS.

THROUGH BETAs FOR K
THROUGH BETAs FOR I

1919 K oGEo N
K+1els I «Ge N

Z = A(IsK)
A{IsK) = A(K»I)
BETA AlKsI) = Z

FUNCTION RETURN
INTEGER NoKosI
END OF FUNCTION
No dimension information is needed for A, since it is an argument in a

function definition program. This function would be called in a statement

of the form EXECUTE TRANS. (A,N).
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Example 6

Problem: Multiply the matrix A = (aij) by the matrix B = (bij) to produce

the matrix C = (cij), i.e., C = A-B. Assume that A has dimensions m x n
with m-n < 1500, B has dimensions n x p, with n-p < 1500, and C has

dimensions m X p, with m-p < 1500.
Analysis: An element cij of C is computed by the formula

[a}

®i5 T &1 %ix"xj

15.18
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Flow Diagram:

Start

4

Read m,n,p,
N all,QC .,
a

m,nP117 "

b
np

Print
all in-

put -~
values

€15715" |
ik kj

THROUGH Q,
FOR i=1,1,
i>m

THROUGH Q,
FOR j=1,1,

J>p

ij =~

THROUGH Q,
FOR k = 1,1

k>n

15.19
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SCIENTIFIC

DIMENSION A{1500sADIM) +B{1500+BDIM)+C{15004CDIM)
FQUIVALENCE(NsADIM(2)1)s(P+BDIMI{2))
INTEGER TsJsKosMsNsP

VECTOR VALUES ADIM = 250,40
VECTOR VALUES BDIM = 2,040
VECTOR VALUES CDIM = 2,040

READ FORMAT INPUTsMsNsPsA(1lsl)oeseA(MsN)sB(1lsl)eeeB(NsP)
PRINT FORMAT INVALsMsNsPsA(1s1)cesA{MsN)4yB{1s1l)eeeB(NsP)

rTYETMI DY - D
LiSiiuv g 8 =

THROUGH Qs FOR 1
THROUGH Qs FOR J
C(IesJ) = 0o
THROUGH Qs FOR K 1519K oGe N
ClIsJd) = Cl(Isd) + AlTsKI¥*¥B(KsJ)
PRINT FORMAT RESULTsC{(Isl)eeeC(MsP)
TRANSFER TO READ

1sls I «Ge M
19ls J ¢Ge P

H o

n

R
RFORMAT SPECIFICATIONS

R

VECTOR VALUES INPUT $314/(6F1244)%%

VECTOR VALUES INVAL $13HOINPUT*VALUES/4HOM = [6+S693HN = 16
1s5693HP = 16//(1H0s8F1344)%%

VECTOR VALUES RESULT = $9H1C MATRIX//(1HOs8F13.4)%$

END OF PROGRAM

$ DATA

2 3

A
Te 8e 9 10. 11. 12.

3
le 2e 3. 4s .

13, 14. 15

15.20
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Example 7
Problem: Solve a system of n < 20 simultaneous linear equations in n
unknowns, assuming that one does not encounter a zero on the main disgonal
of the coefficient matrix during the solution process.
Analysis: We shall use a Jordan Blimination Method, in which each’ diazonal
coefficient is used to '"clear" all other coefficients. in its column to
zero by appropriate multiplications and subtractions. Since we shall
divide the "clearing row" by the diagonal element in that row before clear-
ing the column, we shall finish the process with only a diagonal of ones
and the solution to the problem as the resulting right hand side of the
equations.

We denote the system of equations to be solved by:

B11% T R o F 8% T 81 na
(1) BopXy + BppXy e kLX) =8y
8 %) * ALK, foeee va X = -

we divide the first row by its diagonal element 817" Then to clear

a5 to zero we subtract a5 times the first row from the second row, and

so on. In general, to clear i to zero (after row k has been divided

by akk)’ we subtract ay times row k from row i (i#k). A typical element

k
aij is thus transformed each time by the formulas:

(2) 85 = Py B

835 T 83578418 (ifx)

where the value of a5 in (3) is the result of (2). These transformations
are performed for k = 1,2,...,n. For each (fixed) k, we will let i =1,

15.21
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2,e.0kl ,k+l, ...,n, .80 as to cperate on all rows except i=k. While
transforming each row we will cycle on j from right to left; i.e., J =

n+l,n,n-1,.. K, and we stop at j=k since for j < k there is no change in

the matrix.

The arrsy
81875t al,n+l
A (aij) .
8% an,n+l
— -

is called the "matrix of coefficients" of the system (1).

Tt should be understood that this method, involving the assumption
of no zeros on the diagonal and not searching for the largest element of
a row to use as a divisor (to minimize round-off error), is not satis=-
factory from a mathematical point of view. It could serve as a basis
for a larger, more complete program, however, and serves here only as

an example problem.

15.22
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Read

Q.08
Pa871 n,n+l

SCIENTIFIC

Print
input

<z%;:> akaakj/akk

values |

—_

THROUGH B,

FOR

k = 1,1,

k>n

THROUGH C,
FOR j=n+l1,

\

-1,5 <k /

.

THROUGH D
FOR j = n+l,
21, <k @

Print
"'an,n+l

THROUGH B,
o FOR i = 1,
' l, i>n
<:%::>
137015 %k \\~§//

ik *:)ié—‘l!II’
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DIMENSION A(420+ADIM)
VECTOR VALUES ADIM = 2,050

DELTA READ FORMAT NVALN
ADIM(2) = N+1
READ FORMAT INPUTs A(lsl)ecosA(NsN+1}
PRINT FORMAT INVAL sNsA(1s1l)eesA(NsN+1)
THROUGH Bs FOR K = 191K «Ge N

THROUGH Cs FOR J = N+ls=1sJ eLe K
c A(Ksd) = A(KsJ)/ALKSK)

THROUGH Bs FOR I = 15151 4Ge N

WHENEVER I +Ee Ks TRANSFER TO B

THROUGH Ds FOR J = N+ls=1ls J ebke K

D AlTsd) = AT sJ)=A(T+K)*A(KsJ)
B CONTINUE

THROUGH Es FOR I = 1419 oGe N
E PRINT FORMAT RESULTsIsA{IsN+1)

TRANSFER TO DELTA

INTEGER IsJsKsN
R
RFORMAT SPECIFICATIONS
R

VECTOR VALUES NVAL = 3% I4% §

VECTOR VALUES INPUT $ 6F12e44% %

VECTOR VALUES INVAL $7H1 INPUT//4H N = 147/
17H MATRIX//{1HQ+8F12.4)%S

VECTOR VALUES RESULT = $ 1HO0sS209s2HX(91293H) = F1l2.4%$
END OF PROGRAM

$ DATA
3
1. 1. 1. &5 -1 0
] ~le ) S ~2 e "'90 "“324
15.24
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BUSINESS DATA PROCESSING

15.2 Business Data Processing Examples

Example 1
Problem: Compute the social security deduction and accumulated gross pay.
The program should read a card containing: (a) the employee's name, (b)
his payroll number, (c) his gross pay for the current week, and (d) his
accumulated gross pay for the current year (but not including item (c)).
For each card read, the program should print (a) and (b) from the card,
and, in addition, print (e) the updated gross pay, (f) the social security
deduction for the current week, and (g) the net pay for the current week,
taking into account only the soclal security deduction.
Analysis: The social security deduction is currently 3 of the gross pay
until the accumulated gross pay for the year exceeds $h800.00. The :
updated gross pay can be computed from the formula, (e) = (c) + (d). The

gocial security

- S =

o I D ST R ac oleras =
acluCuLlOll lldb dliitdly

Ta N m A~ o~ MM A~ ~ e
been made on The are thus

three cases to consider:
(1) (a) > 4800.00;:in this case (f) = O3
(2) (d) < 4800.00 and (c) + (d) > 4800.00, in this case (f) = 3% of
4800.00 - (d);
(3) (c) + (d) < 4800.00, in this case £ = 3% of (c).

The information on the cards to be read will be in the following

format:
Card Columns Information
1-30 (a) employee's name
31-38 (b) payroll number
39-L44 (c¢). gross pay for the current week in
the form XXX.XX
45.52 (d) accumulated gross pay for the

current year in the form XXXXX.XX

The printed output will be in the following format:

15.25
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Line Columns Information
1 Carriage control for printer
2-31 (a) employee's name
32-34 Blank
35-42 (b) payroll number
L3-45 Blank
L6-53 (e) updated gross pay for current year
in the form XXXXX.XX
.53_56 Blank
57-61 (f) social security deduction for current
week in the form XX.XX
62-64 Blank
65-T0 (g) net pay for current week in the form
XXX . XX

Flow Chart: We will use the following abbreviations,

NAME for employee's name (a)

PAYNR for payroll number (b)

GRPSSW gross pay for current week (c)

AGRESY accumulated gross pay for current year (d)
UGR#SY updated gross pay for current year (e)

FICA soclal security deduction for current week (£)

NET PAY net pay for current week (g)

15.26
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Start

/]

READ NAME,
PAYNR, GROSSW
AGROSY

(§§ROSY:h800.j><

z

FICA = 0.

<
7 N\ =
\- GROSSW+AGROSY:4800. 4/)
e
>
FICA = .03 (4800.-AGROSY)

FICA = .03 GROSSW

UGROSY=AGROSY+GROSSW

NETPAY=GROSSW-FICA

Print NAME,
PAYNR, UGROSY,
FICA,NETPAY
on one line

N~

15.27
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BUSINESS DATA PROCESSING

START READ FORMAT INs NAME(1)eeseNAME(5)sPAYNRGROSSWsAGROSY
VECTOR VALUES IN = $5C6318sF6429F8.2%$%
DIMENSION NAME(5)
INTEGER PAYNRs NAME
WHENEVER AGROSY +GE. 4800.sTRANSFER 7O BIGGRS
WHENEVER GROSSW+AGROSY «Ge 4800+sTRANSFER TO BIGTOT

FICA = +03%GROSSW
BIGGRS FICA = O.

TRANSFER TO UPDATE
BIGTOT FICA = +03%(4800.~AGROSY)
UPDATE UGROSY = AGROSY+GROSSW

NETPAY = GROSSW«FICA

PRINT FORMAT OUTsNAME(1)eeeNAME(5)sPAYNRIUGROSYsFICASNETPAY
TRANSFER TO START

VECTOR VALUES OUT = $1HOs5C6953518953sF842353sF542953sF642%%
END OF PROGRAM

$ DATA

GEORGE WASHINGTON 12345678 100. 48004
JOHN ADAMS 12345679 200. 49004
THOMAS JEFFERSON 12345680 200. 46004
JAMES MADISON 12345681 200, 4700,
JOHN QUINCY ADAMS 12345682 100. 3004

Alternate Program:

START READ FORMAT INsNAME(1)eeeNAME(5) sPAYNR sGROSSWsAGROSY
VECTOR VALUES IN = $5C6918sF6.29F8.2%%
DIMENSION NAME(5)
INTEGER PAYNRs NAME
WHENEVER AGROSY .GE. 4800.
FICA = 0.
OR WHENEVER GROSSW + AGROSY +Gse 4800.
FICA = +03%({4800.«AGROSY)
OTHERWISE
FICA = +03%GROSSW
END OF CONDITIONAL
UGROSY = AGROSY+GROSSW
NETPAY = GROSSW-FICA
PRINT FORMAT OUTsNAME(1)essNAME(5)sPAYNRIUGROSY sFICAsNETPAY
TRANSFER TO START
VECTOR VALUES OUT = $1HO095C65s539183534F8425S533F5e23953+F642%%
END OF PROGRAM

$ DATA
GEORGE WASHINGTON 12345678 100. 4800,
JOHN ADAMS 12345679 200. 4900,
THOMAS JEFFERSON 12345680 200e 4600,
15.28
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JAMES MADISON 12345681 200. 4700
JOHN QUINCY ADAMS 12345682 100, 300,

15.29
6/20/62



Notes on Example 1

1.

15.30
6/20/62

The maximum number of characters which can be stored in one
machine word is six. Hence, we need five machine words to
store the 30 characters allowed for the employee's name. We
= a3 d 3 : that NAME is
actually to be a block and that NAME(5) is the last word of

this block. In the read and print statements we specify that
the whole block is to be read or printed by writing NAME(1)...
NAME(5) and giving the format specification 5C6, i.e., 5 words
of 6 characters.

Since the payroll number is an integer (18, i.e., an 8 digit
integer) we give an integer mode declaration stating that

PAYNR is an integer. Similarly, since alphabetic information is
assumed to be in the integer mode, NAME is also declared to be

integer.
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Example 2

Problem: Assume that a master tape is available containing basic informa-
tion for each employee: (1) tie employee number, (2) his hourly rate,

(3) gross pay to cate, (4) amount of withholding tax withheld to date,

(5) social security deduction withheld to date, (6) net pay to date, and
(7) the number of exemptions. Input will be in the form of m cards re-
presenting the current pay record, containing the employee's number and
the number of hours worked during the current week. Pay is to be computed
at time and a half for any hours worked over forty. (We shall assume

that the input deck is already sorted according to increasing employee
number, but we shall provide for cards which may be out of order.) The
last input carcd must have an employee number greatcr than the last
employee number of the master tape.

The withholding tax W is to be computed by the formula:
W = .18(Gross pay - 13 n)

where n is the number of exemptions. If n is negative, we set W=0 (see
Note 2 below). The social security deduction FICA is 3 percent of gross
pay up to $4800, with no deduction ror gross pay over $4800.

A program is desired which will produce a listing (for each input
card) of (a) employee number, (b) gross pay this week, (c) withholding
tax, (d) FICA, (e) net pay for the week. Moreover, a new updated master
tape should be prepared, with provision for saving the previous master
tape as well. As much checking as possible should be incorporated,
including specifying to the operator the number of the master tape needed,
and the number to be assigned to the new tape produced by the program, and
the automatic checking that the correct tape has been mounted on the

unit.

15.31
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Notes on Example 2

Note 1: Abbreviations used here are outlined in Example 1, except
for the following new terms:
AWITHY accumulated withholding tax for year
AFICAY accumulated social security deduction for year
ANETY accumulated net pay for year
EXEMPT number of exemptions

Note 2: In the computation of the gross pay for the current week we
shall find it useful to be able to compute a function (which
we shall call EXCESS.) of two numbers, say a and b, whose
value is O if a < b, and a-b if a > b. A formula for this

funection is

EXCESS.(a,b) =

a-b+ |a- bl
2 3

where | | denote the usual "absolute value". In fact, by using

this function, a simple one~line formula for this function is:
FICA = .03 EXCESS.((GR@SSW - EXCESS.(AGR@SY, 4800.)),0)

where AGRdSY is assumed to already contain GR¢SSW, i.e., to
have been updated already. We shall also apply this function
in the case of the withholding tax to guarantee that we do

not make a negative deduction. Thus

W = .18%EXCESS. (GR@SSW, 13*EXEMPT)

Note 3: To check the order of input cards (normally in order of increasing
employee number with a large ‘employee number greater than the
last employee number on the master tape) the program uses the
subroutine SETE¢F.(LABEL), where LABEL is the statement label
.. of a statement to be executed if:.an end-of-{ile condition is

detected during reading.
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Since the last input card has a large employee number,
the first end-of-file condition is normally detected at the
end of processing, but an illegal input card may also exist
with a high employee number. After the first end-of-file
is detected the end-of-file return is changed and the input
tape checked for end-of-file. If no end-of-file exists a

comment is printed to change tapes and processing begins again.
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Print
Comment to
Operator

Accumulate
Lrand
Totals

Print

Man's
Totals
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—_|
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Set End
of File
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Pause while

Pause
while oper-

Backspace

ator re-
selects

tape units

Input
Tape

=

operator Print
removes Grand

Totals
master tapes

—~_

—~__

15.%5
6/20/62



BUSINESS DATA PROCESSING

START READ FORMAT IDENT4TAPENO
INTEGER TAPENO,PAYNRsNUMB s JsOL TAPE
PRINT ON LINE FORMAT OPERsTAPENO
PAUSE NO. 1
REWIND TAPE 4
TEST REWIND TAPE 3
READ BINARY TAPE 3,0LTAPE
WHENEVER OLTAPE «Ee« TAPENOsTRANSFER TO MAIN

CoOTNT BI.Y i TR YDA AT 13PN/ at o
PRINT UN LINE FORMAT WRONG

PAUSE NO. 3
TRANSFER TO TEST
MAIN CUMGRS = 0.
CUMFIC = 0.
CUMNET = 0.
CUMW = Q.
REDO EXECUTE SETEOF«(M FILE)
WRITE BINARY TAPE 4,TAPENO+1
READ(1) READ FORMAT EMPLOYsPAYNR sHOURS
READ(2) READ BINARY TAPE 3, NUMBsRATEsAGROSYsAWITHY s
1AFICAY s ANETY sEXEMPT

WHENEVER NUMB.E. PAYNR

GROSSW = RATE®HOURS+e5%RATEXEXCESSe (HOURS 40, )
AGROSY = AGROSY+GROSSW

W = ¢1B%¥EXCESSe{GROSSWs13.#EXEMPT)

FICA = ¢ O3*EXCESSe ({ (GROSSW-EXCESSe ({AGROSY 48004} ) 50)

NETPAY = GROSSW-W-FICA
AWITHY = AWITHY+W
AFICAY = AFICAY+FICA
ANETY = ANETY+NETPAY
CUMGRS = CUMGRS+GROSSW
CUMFIC = CUMFIC+FICA
CUMNET = CUMNET+NETPAY

CUMW = CUMW+W
WHENEVER «ABSs (AGROSY-ANETY-~AFICAY=AWITHY) «GF. «0059 PRINT
1FORMAT ERRORSsPAYNR
PRINT FORMAT OUTPUTsPAYNRsGROSSWsWsFICASNETPAY
J =1
OR WHENEVER NUMB.GePAYNR
PRINT FORMAT ORDERsPAYNR
BACKSPACE RECORD OF TAPE 3
TRANSFER TO READ(1)
OTHERWISE
J = 2
END OF CONDITIONAL
WRITE BINARY TAPE 4sNUMBsRATE s AGROSY s AWITHY s AFICAY 9 ANETY,
IEXEMPT
TRANSFER TO READ(J)
M FILE END OF FILE TAPE 4
REWIND TAPE 3
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REWIND TAPE 4

EXECUTE SETEOF.{C FILE)

READ FORMAT EMPLOY sDUMMY » DUMMY

PRINT FORMAT NOMANsPAYNRoTAPENO

PRINT ON LINE FORMAT NOMANsPAYNRsTAPENO

PAUSE NC. 4

TAPENO=TAPENO+1

BACKSPACE RECORD OF TAPE 7

READ BINARY TAPE 3,DUMMY

TRANSFER TO REDO

PRINT ON LINE FORMAT OFF,TAPENOs TAPENO+1

PAUSE NO. 2

PRINT FORMAT TOTALSsCUMGRSsCUMFICsCUMNET » CUMW

EXECUTE SYSTEM.

R

INTERNAL FUNCTION EXCESSe(XsY}=(X=Y+ «ABSe (X~Y))/2.
R
RFORMAT SPECIFICATIONS
R

VECTOR VALUES IDENT = $I8%$%

VECTOR VALUES OPER = $15H4MOUNT TAPE NOe. 18,S2,30HON TAPE UNI
1T NO. 33,PRESS START*S

VECTOR VALUES WRONG = $48H4THE WRONG TAPE HAS BEEN USED. PLEA
1SE TRY AGAIN.¥*3%

VECTOR VALUES EMPLOY = 3$18sF1042%3

VECTOR VALUES ERROR = $37HOERROR IN CHECKING TOTALS FOR MAN N
10. 18#%

VECTOR VALUES OUTPUT = $1HOs185s4F2042%%

VECTOR VALUES OFF = $24H4REMOVE TAPE 3,LABEL IT 18+54523HREMO
1VE TAPE 4, LABEL IT I8%#%

VECTOR VALUES NOMAN = $38HOTHERE IS NO MASTER RECORD FOR MAN
1INO.18/22HOPULL TAPE 3. LABEL IT I8/51HORESELECT TAPE 4 AS TAP
2E 3 AND HANG BLANK TAPE ON 4/16HOTHEN PUSH START¥*$

VECTOR VALUES ORDER = $8HOMAN NO.I8s43H IS OUT OF ORDER OR NO
1 MASTER RECORD EXISTS#*%

VECTOR VALUES TOTALS = $13H1CUMe GROSS =F10.2/12H0CUM. FICA =
1F10¢2/11HOCUMe NET = F1042/23H0CUMe WITHHOLDING TAX = F10.2%$

END OF PROGRAM
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BUSINESS DATA PROCESSING

Example 3

Problem: Mortgage Payment. The type of mortgage we consider here is the
fixed principal type for which each installment consists of an interest
payment, a fixed amount to be deducted from the outstanding principal,

and an additional amount to be placed in escrow, to be used to make

Assume that a master card file is available containing the following
information for each mortgage: (l) the mortgage number; (2) amount of
outstanding principal; (5) annual payment on principal; (4) interest
rate; (5) annual escrow payment; and (6) current escrow balance. There
is also a file of cards available containing the current payment record
consisting of mortgage number and amount of payment received. The master
file and current payment file are assumed to be in order of increasing
mortgage number.

The program is to read a card from the current payment record and
check to see if it is acceptable. A payment is deemed acceptable if
it consists of a single normal payment (i.e., a payment consisting of
a single principal payment, a single escrow payment, and an interest
payment for a single period) or if it consists of exactly two normal

payments and any number (i=0,1,2...) of principal payments.

Notes on Example 3

Note l: Observe the use of the alphabetic constant
53

to print the character "$" using a C-field specification (see .
section 2.1.3, Alphabetic Constants).

Note 2: The current payments are processed until the file is exhausted.
The detection of the end=of~file on reading transfers control

1o the section of the program which punches the new master file.

15.38
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READ

READ Current
File
IDENT ,AMOUNT

Single
Payment
[JE]

Compute

THROUGH A,

FOR
i=1,1,i>N

THROUGH B,
FOR
i=1,1 i>N

__<§&KMNT:DUElj):f

Update Out-
standing
Principal
and Amount
in Escrow

(Read Master
File RECORD
b (i,1)...

RECORD (i,6)

ORTGAGE: TDENT\ ~
/A

Compute

Double Pays
ment DUE2

[

o &

/ - °

Connect
ouT OF
ORDER

—_|

)

NO

____<§¥OUNT:DUE24:> =

Connect‘____<i:::>

MASTER
RECORT

Update

—®

(Or

Outstand-
ing '
Principal
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BUSINESS DATA PROCESSING

DIMENSION RECORD(1400sDIM)
INTEGER IsNUMB
VECTOR VALUES DIM = 2517

VECTOR VALUES DOLLAR = -%=%
START READ FORMAT SIZEsNUMB
THROUGH As FOR I = 15151 +Ge NUMB
A READ FORMAT MASTERSRECORD(Is1)essRECORD(I56)
EXECUTE SETEOF.(UPDATE)
1 =1
CARDS READ FORMAT PAYMT, IDENTsAMOUNT

THROUGH Bs FOR I = Is1sI «Ge NUMB
WHENEVER RECORD(Is1) «Ee IDENT

DUE1 = RECORD(I+3)+RECORD(I155)+RECORD(I94)*%¥RECORD(1I+2)
WHENEVER «ABSe (AMOUNT-DUE1l) +Le 005
RECORD (Is2) = RECORD(I»2)~RECORD(I4+3)
RECORD(Is6)=RECORD(I4+6)+RECORDI(Is5)
TRANSFER TO CODE

OTHERWISE

DUE2 ‘= 2.%DUE1 - RECORD(I1s4)%¥RECORD(I53)
END OF CONDITIONAL

WHENEVER OABSO (AMOUNT“DUEZ) oLe 0005

NCAANnpDNIT YT DEANDNIT D =
RECORD{I 42 )=RECORD{1s2)-2%RECORDI{Is3)

TRANSFER TO ESCROW

OR WHENEVER AMOUNT +Ge. DUEZ2

THROUGH Cs FOR PAY = RECORD(I14+3)sRECORD(193)>
1AMOUNT «Le DUE2+PAY

C WHENEVER «ABSe. (AMOUNT-DUE2-PAY) +Le «005» TRANSFER TO
1PAID
TRANSFER TO OVRPAY

PAID RECORD(1+2)=RECORD(I52)-2.%RECORD(I53)~PAY

ESCROW RECCORD(146)=RECORD(I+6)+2*RECORD(Is5)

CODE RECORD(Is7)=1e
OTHERWISE

OVRPAY PRINT FORMAT REJECTsIDENTsDOLLARSAMOUNT

END OF CONDITIONAL
OR WHENEVER RECORD(Is1) «Ge IDENT
PRINT FORMAT ORDERsIDENTsDOLLAR»AMOUNT
OTHERWISE
B CONTINUE
I=1
PRINT FORMAT NONE, IDENT
END OF CONDITIONAL
TRANSFER TO CARDS

UPDATE THROUGH Ds FOR I=1s1s1 «G. NUMB
D WHENEVER RECORD(I97)eGe OesPUNCH FORMAT MASTERSRECORD(Is1)ees
1RECORD(1+6)
R
RFORMAT SPECIFICATIONS
R

15.41
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BUSINESS DATA PROCESSING

VECTOR VALUES SIZE=3$I10%5

VECTOR VALUES MASTER=3F1040+5F10s2%3%

VECTOR VALUES PAYMT = $F10.0sF1042%$

VECTOR VALUES REJECT = $20HOPAYMENT ON MORTGAGEsF10. s3Hs sC
115F1042919H 1S UNSATISFACTORY.*3

VECTOR VALUES ORDER = $26HOPAYMENT CARD FOR MORTGAGEsF10.0s3H
1s C1:F10:2.44H IS OUT OF ORDER OR NO MASTER RECORD EXISTS.#*$
VECTOR VALUES NONE = $41HONO MASTER RECORD EXISTS FOR MORTGAG
1E NOesF10+0%$

END OF PROGRAM

6/20/62



BUSINESS DATA PROCESSING

Example 4
Problem: Computation of actuarial commutation columns based on an
arbitrary set of mortality rstes and an interest rate, as an external
function to be used by another program.
Analysis: Commutation columns, which are very important tools in
actuarial problems are generated very easily by means of the formulas
given below. The quantities M%, Nk, and DX in these formulas occur most
often in combination, as in the computation of Px' Assuming a population
of some initial size (at x = bo) there l,OOO,OOO),)ZX is the number living
at age x (so that,ﬁbo = 1,000,000), q, is the mortality rate, and d_ is
the number of deaths at age x. Thus dx = qX-,é;. The quantity DX is
computed by the formula DX =:£;(l+i)_x, where i 1s the interest rate.

- () gy o

Another quantity, C_ is given by the formula CX =d, (1+1
can be used, for example, to compute the cost of term insurance, since ﬁi
X

is the premium for one year term insurance of $l at age x.

The sums Mx and Nx are obtained by the formulas

%) [« e]
M, =L Sys N = 2 D,
=X y=x

1, so that,}? =0
(since ,2 =E -4 =£ ~/Q =0), therefore D =0, d =0 W_C;l =0

w+l wow Tw W - w+l ? Tw+l ? vl ?
and the sums for Mx and Nx are actually finite sums.

The three most useful guantities computed here are (l)'Px = MQ/ng

We note that for some w, we always have q,

which is the annual premium payable for an entire life for §l of whole
life insurance, (2) AX = MX/Dxs wnich is the single premium payable at
age x for $1 of whole life insurance, and (5) AX = N%/DX, which’'is the
present value at age x of a whole life annuity of $1, first payment at
age Xx.

Printing of results is under control of an input variable PRINT.
Certain relationships must hold between some independently computed

values, and these are used 2s checks on the computation:

M+ N
%O b

1]

o=y o= /()
o B e M o

15.43
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- Y
P, = 1/ax 1/(1+1)

These cannot be expected to come out exactly equal, because of round-off,
but they should differ by very little.

15.4L
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@

>

THROUGH A,  \
£ b FOR
=1,000,000 4 g
] bO,l’ _900 v = (l+l) O —<X=bo,l, /‘ dX %( /ﬁ
X > W
D, =2X'v v = v/(1+1) Cp = 9V Qx+l= ﬂxmd
THROUGH B, _ _
" FOR N, = M o=
=C — x=w-1,-1 ,
W v > N5(+1+Dx Mk+l+cx
x<b
(o]
THROUGH G, |
Check:l Yo/ TOR A =Xx a - Mx
7 x=b x Dx x Dx
oJlF

Error

X >w

Comment

~_|

Error

Comment

<
__CP Check:10 ")'*};r{@-—(Print :0
=

Print
all
results

Return



BUSINESS DATA PROCESSING

R
RSAMPLE CALLING PROGRAM
R

READ FORMAT INs Q{0)eeeQ{100)

VECTOR VALUES IN =$12F6+5% $

DIMENSION Q(120)sL(120)9SMALLD(120)sBIGD(120)sC(120)sN(120)>»
IMI120) sRIGAI120)sSMALLAL120):P 1120}

EXECUTE COMFCN«(Qs050993e03sLs SMALLDSBIGDsCsNsMsBIGAsSMALLAS
1Ps1)}

INTEGER PRINT

END OF PROGRAM

The External Function:

RCOMMUTATION TABLE FUNCTION
RIF PRINT = 0sSUPPRESS PRINTING

EXTERNAL FUNCTION({QsBZEROsOMEGAsI oL s SMALLDsBIGDsCsNy
IMsBIGA 9 SMALLASPSsPRINT)

ENTRY TO COMFCNe.

INTEGER BZEROsOMEGASPRINT X

L(BZERO) = 1E6

V = (le+I) «P. —BZERO

THROUGH AsFOR X = BZEROs1sX «Ge OMEGA
SMALLD(X) = Q(X)*L(X)

BIGD(X) = L{X)®V

V = V/(1.+1)

C{X) = SMALLD(X)*V

LiX+1) = L{X)=SMALLD(X)

N(OMEGA) = BIGD(OMEGA)

M(OMEGA)} = G(OMEGA)

THROUGH Bs FOR X = OMEGA-1s~1s X eLe BZERO
N(X) = N(X+1) + BIGD(X}

MIXi = M(X+1) + C{X) -
WHENEVER «ABSs (M(BZERO)+N(BZERO+1)=N(BZERO)/{(I+1e)) «Ge les
1TRANSFER TO MNERR

THROUGH G sFOR X = BZEROslsX «Ge OMEGA

BIGA(X) = M(X}/BIGD(X)

SMALLA(X) = N(X)/BIGD(X)

P{X) = M(X)/N(X)

WHENEVER «ABSe (P{X)=1le/SMALLA(X) + I/{(I+1a}) «Ge
11E~4,TRANSFER TO PERROR

CONTINUE

WHENEVER PRINT «Es OsFUNCTION RETURN

R

ROUTPUT GENERATOR

R

PRINT FORMAT HEADO1ls1I

VECTOR VALUES HEADOLl = $1H1s4HI = F5.4//

15.46
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BETA

GAMMA

DELTA

PERROR

MNERR

$
2258
192
277
486
1064
2659
6966

BUSINESS DATA PROCESSING

1 4H X9S13s4HQ(X) 9S1894HL(X)9S15s10HSMALL DX}
2 S8slHX*S

THROUGH BETASFOR X = BZEROs1sX «Ge OMEGA

PRINT FORMAT F1sXaQ(XJoL{X)sSMALLDIX) oX

VECTOR VALUES F1 = $1H09I1343E22.9-17%%

PRINT FORMAT HEADOZ2

VECTOR VALUES HEADO2 = $1H1,4H XsS11s8HBIG DI(X)s

1 S16s4HCIX)9S1894HM(X) 9S1894HN{X) 9S11s1HX¥*S
THROUGH GAMMASFOR X=BZEROslsX «Ge OMEGA

PRINT FORMAT F2sXsBIGD(X) sC(X)sMIX)sN(X)sX
VECTOR VALUES F2 = $1HOs1494E22.9517%$

VECTOR VALUES HEADO3 = $4H1 X»S11+8HBIG Al(X)s
1513 910HSMALL A(X)s S15s4HP(X)sS11s1HX *9%

THROUGH DELTASFOR X = BZEROs1sX «Ge OMEGA

PRINT FORMAT F39sXsBIGA(X) sSMALLA(X)sP (X)X
VECTOR VALUES F3 = $1HO0sI35,3E22.9s17%%

FUNCTION RETURN

PRINT FORMAT PERRsP(X)sSMALLA(X) I

VECTOR VALUES PERR = $27HOERROR ON P CHECK. P(X)
1S1I0s13HSMALL A(X) = E18493510s4HI = F5¢4%%
TRANSFER TO G

PRINT FORMAT MNERR1

VECTOR VALUES MNERR1 = $19HOERROR ON MsN CHECK*$
TRANSFER TO E

END OF FUNCTION

DATA
577 414 338 299 276 261 247 231 212
198 207 215 219 225 230 237 243 251
288 299 311 325 340 356 373 392 412
515 546 581 618 659 703 751 804 861
1145 1232 1327 1430 1543 1665 1798 1943 2100
2878 3118 3376 3658 3964 4296 4656 5046 5470
7550 8181 8864 9602 10399 11259 12186 13185 14260 15416 16657

E18¢99
197 191
259 268
435 459
923 991
2271 2457
5930 6427

17988 19413 20937 22563 24300 26144 28099 30173 32364 34666 37100 39621
44719 54826 72467100000



SYMBOL MANTIPULATION AND RECURSIVE FUNCTIO

15.3 Symbol Manipulation and Recursive Function Examples

Example 1

Problem: Find the first occurrence of an arbitrary word in a given text.
/

-
ne
|9 44

LY I, T
ne numne
11T 4 10054

< »
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T(N) be the text stored one character per word. Let L be the number of

letters in the word which is stored one character per word in W(1)...W(L).
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S\t

N

o
~ o

oN

V)



SYMBOL MANIPULIATION AND RECURSIVE FUNCTION

(Read N, T(1)
... T(W)

a
Q (Read L, W(L)

oo W(L)

THROUGH
SCAN, FOR
I=1,1,I>

\ N-L+l

THROUGH >
TST, FOR
™
)/

J=0,1,
J>L

G(I+J);W(J+l

PRINT
"Word not
Found"

"found at
character",
I
N
15.49
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SYMBOL MANIPULATION AND RECURSIVE FUNCTION

DIMENSION T(720)sW(30)

NORMAL MODE IS INTEGER
READ FORMAT CNTsN
READ FORMAT TXTsT{1l)eseT(N)
ALPHA READ FORMAT CNT.L
READ FORMAT TXTaW{1l)eeeW(L)
THROUGH SCANs FOR 1=1s1sl Gs NabL+l
THROUGH TSTs FOR J=0slsJ «GEs L
TST WHENEVER T{I+J) oNEe W(J+1)s TRANSFER TO SCAN
PRINT FORMAT OUTsIsW(l)eseW{L}
TRANSFER TO ALPHA
SCAN . CONTINUE
PRINT FORMAT NOT
TRANSFER TO ALPHA
VECTOR VALUES CNT=$13%%
VECTOR VALUES TXT=3%72C1%#%
VECTOR VALUES OUT=$11HOCHARACTER I3,13H IS START OF 30C1#$
VECTOR VALUES NOT=3$15HOWORD NOT FOUND*¥*$

END OF PROGRAM

15.50
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Example 2
Problem: Evaluate the recursive function,
£(0) =1
f(n) = f(n=1) * n

Analysis: This is the definition of n!. Although n! can be evaluated
directly using a THRPUGH statement, in this example it will be evaluated

using its recursive definition to illustrate how recursive functions can
be handled in MAD.

15.51
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EXTERNAL FUNCTION (N)
NORMAL MODE IS INTEGER
ENTRY TO FACT.
WHENEVER N oEe 0s FUNCTION RETURN 1
SAVE RETURN

SAVE DATA N

Tl = FACT.(N-1)
RESTORE DATA N

RESTORE RETURN
FUNCTION RETURN TI1*N
END OF FUNCTION

In order to use this function the calling program would have to specify
a list for use in the SAVE and REST¢RE statements. The following is

an example of a program which uses FACT..

DIMENSION LIST (100)
NORMAL MODE IS INTEGER
SET LIST TO LIST
BACK READ FORMAT INs NR
PRINT FORMAT OUTs NRs FACT.(NR)
TRANSFER TO BACK ‘
VECTOR VALUES IN = $12%%
VECTOR VALUES OUT = $4HON= I3,14HN FACTORIAL= 111%$%
END OF PROGRAM

15.52
6/20/62



SYMBOL MANTPULATION AND RECURSIVE FUNCTION

Examgle b)

Problem: To find the greatest common divisor of two integers Z and Y.
Analysis: The greatest common divisor is defined recursively by three

equations:

Y > 2, - GCD.(Y,2)
Gcp.(z,Y) = REM.(Z,Y) = 0 o> Y
otherwise — GCD.(REM. (Z,Y),Y)

where REM.(A,B) is the remainder of A/B. This function expects the
arguments to be found on the temporary storage list as the two most recent
additions. The use of the list as a parameter list makes the establishment
of dummy variables unnecessary. This is less efficient than the usual

way of defining functions but serves to remove many pitfalls encountered

in using dummy variables with recursive functions.
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EXTERNAL FUNCTION

INTERNAL FUNCTION REM.(AsBi}= A - {A/B)*B
ENTRY TO GCD.

NORMAL MODE IS INTEGER
RESTORE DATA Z,Y

WHENEVER Y «G. Z

SAVE RETURN

SAVE DATA Z,Y

X = GCD«(0)}

RESTORE RETURN

FUNCTION RETURN X

OR WHENEVER REMe (ZsY) «Ee O
FUNCTION RETURN Y

END OF CONDITIONAL

SAVE RETURN

SAVE DATA REMe(ZsY)sY

X = GCD.(0)

RESTORE RETURN

FUNCTION RETURN X

END OF FUNCTION

When called upon for a value, a function such as GCD. must: havecat
least one argument (in this example a dummy argument,of zeroc is used) even
though the argument: is never called upon. .:This is: because .GCD. is: the:

name of the function while GCD.,(ﬁgf)_is the value of the function.

The SET LIST T¢ statement need be executed once, either in the main
program or in a subprogram (but before any use of SAVE or REST¢RE), since
the SAVE and REST{RE statements always refer to the current list.

NORMAL MODE IS INTEGER

SET LIST TO LIST

DIMENSION LIST (50)

READ FORMAT INsMsN

SAVE DATA MsN

PRINT FORMAT OUTsMsNsGCD. ()
TRANSFER TO S

VECTOR VALUES IN = $216%$%
VECTOR VALUES OUT = $1HOs3HM= s17s51093HN= sI17s510s5HGCD
1%#%

END OF PROGRAM

15.54
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- SYMBOL MANIPULATION AND RECURSIVE FUNCTION
Example 4

Problem: To evaluate Tschebychev polynomials.
Analysis: The Tschebychev polynomial T(N,X) is defined recursively as

follows:
N=0-1
T(N,X) = N=1-X
N > 1 - 2%X*T7(N-1,X)-T(N-2,X)

It is important to understand that when an expression is written as
an argument of a function its value is computed and stored in a temporary
location. It is this location (or‘address) which is actually used as the
argument of the function. The implication of this use of a temporary
location is that often expressions cannot be used as arguments of re-

cursive functions.
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EXTERNAL FUNCTION (NsX)

ENTRY TO TSCHEB.

INTEGER N»Z :

WHENEVER N +Ee O FUNCTION RETURN 1.
WHENEVER N «Ee 1s FUNCTION RETURN X
SAVE RETURN

SAVE DATA N-2

Z = N=1

Y = 2¥X#TSCHEBe(Z9X)

RESTORE DATA Z

SAVE DATA Y

M=TSCHEB.{ZsX)

RESTORE DATA Y

RESTORE RETURN

FUNCTION RETURN Y=M

END QF FUNCTION

A Progrzm whi-h uses TSCHEZ. is:

SET LIST TO LIST
DIMENSION LIST(1000}
BEGIN READ FORMAT INPUTsNsX
PRINT FORMAT OUTPUTsNsXsTSCHEBW {NsX)
TRANSFER TO BEGIN
RFORMATS
VECTOR VALUES INPUT=$I148sF10,2%%
VECTOR VALUES QUTPUT=$1HOs4HN= sI6s4H X= F1042
111HOFUNCTION= F15.6%%
END OF PROGRAM

—_
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SUMMARY OF MAD STATEMENTS

20 Summary of MAD Statements

I. Declarations

A,

20.C
6/20/62

Remark
R in column 11
any remark in columns 12-72

Mode

8. TNUL T,y ooy U,
where fif is one of:
FLAATING PHINT
TNTEGER
BPPLEAN
PUNCTTON NAME
STATEMENT LAREL

and each l& is a varisble name or function name.
b. NERMAL MEDE 15 TV
where W) is cne of five listed in a. gtove.
IIVALENCE (V i ey V / \ e s
EQUIVALENCE (V19 ‘/2: 3 \1’1)’ (\'n+l’ Vn+2: ) Vn+p)’ 3
Wn+p+q+]..*’a Jn+p+q+2’ e Vn+p+q+r?
where each Vi is a variable name or linearly subscripted wvariable.

PROGRAM CEMMON Vis Vs ooy Vo

where e3zh Vi is & variable name.
ERASABLE V., "qs ees, ¢
i n
where each Vi is a simple variasble or array.
DIMENSIPN Jl(crl); pla ), » Vo la)

where each Vi is a variable name and each o& iss

nd

a. for vector BII\GENSIﬁ‘f’l\l,cui is one argument, an integer constant ,
which is the largest véiue that the subscript of Vi will assume;:
h. for matrix DFMENSI@Nﬁzzi represents two arguments: the first
is an integer constant, which is the largest value that the
subscript of Vi will mssume; the second is the name of the first

element cf a dimension vector for Vi°



SUMMARY OF MAD STATEMENTS

G. VECTAR VALUES Y= ¢y, Cq5 -y ¢,
or
] = 3 ’ s e g s e & .
VECT@R VALUES Y = $cocs > e s $cn+p+11 soesCpinig
The two above types of values may be intermixed.
H. INTERNAL FUNCTIfN F.(Al, Ayy +eey A) = E

(single statement internal function definition)

$

II. Executable Statements
A. Substitution

V="F
B. TRANSFER TP 45
C. Conditional
a. Simple Conditional:
WHENEVER B,Q
b. Compound Conditional:
:é 1 WHENEVER 31
.. Ql
2 {R WHENEVER B,

4

®

. R WHENEVER B,

L)

%

3 END $F CONDITIGNAL

k+1l
* The kth statement may be replaced by:
fR WHENEVER 1B
or:g
PTHERWISE

20.1
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D. CPNTINUE

E. THRAUGH (Iteration)
a. THRPUGH &, FfR VALUES #F V = E,, Eys +ovs B
b. THRPUGH 4, FPR V = B, E,, B

F. PAUSE Np. n

G. EXECUTE C.@l,A

or

EXECUTE C.

H. END §F PROGRAM

n

ps ees &)

20.2
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