999242 999242 ———~-999242 -999242 $99242 999242
JOB NO. 999242 UNIVERSITY OF MICHIGAN TERMINAL SYSTEM (MOOEL CT137) 22:23.35 12-21-617
MMMMM MAMMMM TITTTTTITITTITITINTINITTINT SSSSS55SS
MMMMMM MMMMMM TITTFTTITTTITITTIITIITINTT $S5555555555S
MMMMMMM MMMMMMM TTTTTITETTITTATIITITTITITT $SS55555555555558
MMMMMMMM MMMMMMMM TTTTT $S5S5SS 5555585
MMMMMMMMM MMMMMMMMM TTITITT SSSSS S555S
MMMMMMMMMM MMMMAMMMMM TYTIT SSSSS
MMMMM MMMMM MMMMM MMM MM TTTITT $SSSSS
MMMMM MMMMM MMMMM MMMMM TITTT 55555555555
MMMMM MMMMM MMMMM MMMMM TITTT $SSS55555555S
MMMMM MMMMMMMMMMM MMMMM TTITT 5555555555858
MMMMM MMMMMMMMM MMMMM TITTT 555555S
MMMMM MMMMMMM MMM MM TTT7T 558SS
MMMMM MMMMM MMMMM TIITT SSSSS
MMMMM MMM MMMMM TITTT $S5SS $SSSS
MMMMM MMMMM TTITT 5555555 555555S
MMMMM MMMMM TINIT SSSSSSSSSSSSSSSSS
MMMMM MMMMM TTITT 5555555555555
MMMMM MMMMM T $S555S5SS
999242 999242 999242 999242 999242 999242

$SIGNON QOSV
TLLEGAL SIGNON

1.D-

VOLUM

second edition

Decemb

er 1,

1967

MICHIGAN TERMINAL SYSTEM

SECOND EDITION

December 1, 1967

This edition is a major revision of, and obsoletes, the first edition
(June 1, 1967).

This work was made possible in part by support extended to the
University of Michigan by the Advanced Research Projects Agency of the
Department of Defense (contract number DA-49-083 O0SA-3050 ARPA order
number 716 administered through the Office of Research Administration, Ann
Arbor) .

DISCLAIMER

These MTS writeups are intended to represent the current state-of-the-
systen. This publication must not be construed as an obligation to
maintain the system as so stated. The system is still being developed and
additions, extensions, changes, and deletions will occur. At times these
changes may result in some parts oif the new system being incompatible with

their corresponding parts of the oid systen.

Preface to the Second Edition

The first edition was published in June. In September we began
collecting corrections for issuing a set of changed pages and discovered
that we would be replacing two-thirds of the pages in the manual. Hence
this new edition.

In an attempt to make things easier for people acquainted with the first
édition, revision bars have been placed in the margin alongside of changed
lines. If a section is completely replaced or is new, a revision bar is
placed alongside of the section number only.

To keep the sizes manageable and to logically split the manual, a new
major section (MTS-500) was created and made Volume II. This section is
comprised of the IOH/360 and UMIST (change in name only) writeups, the bulk
of the Fortran G (*FORTRAN) and assembler (*ASMBLR) writeups, and four new
writeups. Also the two sections of subroutine writeups (253 and 254) were
combined into one section of subroutine descriptions (253). 1In addition, a
list of major differences from the first edition follows:

New Sections
Introductory and Usage Writeups
Calling Sequences
Data Concentrator Usert's Guide
General view of UMMPS and MTS
1050 User's Guide
2250 User's Guide

Language Processors
PIL writeup
SNOBOLY4 writeup
WATFOR writeup
8ASS writeup

Library File Descriptions

*ASA *ASMEDIT *BATCH
*CATALOG *¥*CONVSNOBOL *DOUBLE
*FILEDUMP *FILESCAN *GPAKDRAW
*GPAKGRID *GPAKLIB *GRAPHLIB
*GRAPHMAC *IHC *LINPG
*0SMAC *PAL8SS *PIL

*SDS *SNOBOLY *SQUASH
*SSP *UPDATE *WATERR
*WATFOR *WATLIB *2250EDIT
*8ASS *8SSPAL

Macro Descriptions

ACCEPT BAS,BASR DFAD,DFSB,DFMP
DFIX,EFIX DISMOUNT ENTER

EXIT FLOAT GETSPACE

MOUNT SCARDS,SPRINT,SPUNCH, SERCOM,READ,WRITE
SLT SWPR

Subroutine Descriptions

ATTNTRP Bitwise Logical Blocked I/0

EMPTY E7090,D7090,E7090P,D7090P

TI0OPMOD LINPG REWIND

REWIND# SETIOERR SETPFX

Extensively Changed Sections
Files and Devices (MTS-210)
I0H/360 (MTS-530)

Change of Name
UMIST (was TRAC)
LISTVTOC (was CATALOG)

Other major new features, in addition to +the new 1library files,
subroutines, macros and language processors listed above, are explicit and
implicit concatenation of files (see MTS-210), ability of the user to
specify a password (see descriptions of the $SET and $SIGNON commands), and
the ability of a batch user to specify time, page, and card limits for his
job (see limits Specification, section MTS-225).

Donald W. Boettmner
Computing Center
University of Michigan
Ann Arbor, Michigan
Dezember 1, 1967

PREFACE

This manual represents an attempt to document, for the benefit of both
users and the people working on it, a rapidly changing system. The systen
described here is essentially the system as it existed about June 1, 1967.
By the time anyone reads this, various parts of this manual will most
certainly be obsolete.

The Computing Center would like to acknowledge I.B.M. for sections,
primarily listings of error comments, from their Fortran IV ([G]
Programmer's Guide and Assembler F Programmer's Guide which are reproduced
here.

Acknowledgement should also be made to the numerous people who helped in
preparation of +this manual, especially Ronald Srodawa, for the Teletype
User's Guide and Loader Description; Leonard Harding, Fortran writeup;
Larry Flanigan, Concepts and Facilities; Charles (Kip) Moore, File Routines
Internals; Fred Swartz, Batch User's Guide; Allan Emery, 2741 Users Guide
and descriptions of debug commands and routines; Jay Jonekait, Tape User's
Guide; Vic Streeter, Assembler writeup and plotting routines descriptions;
Charlie Benet, for IOH writeup; Dave Mills, Data Concentrator User's Guide;
Michael Alexander, proofreading and revision of the manual; and last but
certainly not least, Karen Dymond, for keypunching this whole mess in
TEXT90.

Donald W. Boettner
University of Michigan
Computing Center

June 1, 1967

This comprises the first volume of the MTS manual. It contains writeups
concerned with use of MTS and use of the language processors within MTS,
whereas the second volume contains writeups concerned with the content of
the languages available.

A complete table of contents which covers the entire manual follows.

VOLUME I . ¢ ¢ ¢ « o o o o @« o o a = o &«
GENERAL INTRODUCTION « « o o o o o o o &
USAGE DESCRIPTION. ¢« o ¢ o « « o o« o o o
Concepts and FacilitiesS. « « « « « « o« &

Calling Conventions. « . « <« . « « « . .
Introduction. « « o« ¢ o« « ¢ & o o o o
Register and Storage Variants of Type
Parameter Lists ¢« « ¢« o o o o o o o o
Register Assignments.« <« « .
Returning Results « . . « « « ¢ o« & &
Save Area Format. « « « <« « .« o . .

Calling Program Responsibilities and Considerations
Called Program Responsibilities and Considerations.

Example Calling Sequences . « « « « .
Macros for Calling Sequences.

Batch User's Guid€ « « « o « o « o« « « o
BatCh JObS. v« ¢ ¢ o o o o o o « « o o
Advantages and Disadvantages of Batch

Differences Between Batch and Terminal Use. . . .

Useful Hints for Running a Batch Job.
Examples of MTS Batch Jobs.

Terminal User's Guides . « « « « « o « @
Teletype User's Guide . . . « « « « «
Introduction « « ¢« <« ¢« o o ¢ o o .
Initiation Procedure . . « « « « o«
Keyboard Operation . « « « « « « &«
AttentionsS « ¢ o o o @ o @ o o ° =
Normal Termination Procedure . . .
Sample Session . . <« ¢ . @ o o . .
Translation to and from ASCII. .
IBM Terminal Type 27471 User's Gulde .
Introduction « « 2« o « ¢ o o o o
Terminal Procedures: « « « « o« «
1050 User's Guide . « ¢ o « « « « « o«
2250 Model I Display User's Guide . .
Initiation « « « ¢ o ¢ ¢ o @ o o .
Conversational Operation

Tape Users Guide « « « « « « « o « & o &
Introduction. « « « ¢ « ¢ ¢ o o o o o
Basic ConceptsS. « o o <« ¢« o o o ¢ o o

COMPLETE TABLE OF

e ®© o ® e o ® e ® o e o
e ®© ® @ e ® © ® e e = e
e e e e e e ® & e o o o
e @ o e ® e @ e e e ® o
e e e ® e ©® © © ® e e e
o - e e ®© ® @ © ° o
Calls « = ¢ o o o o o =
e e @ e o ® ® ® e © e =
e e ® & o ® @ . e o & e o
e e @ e o e e & @ e e e
e ®© o ® ® ®© @& e @ o ® e
e« o e o o o

e e @ e o o

e« o o o *» e @ e e ° e
e« e @ o © ® e e & v o =
e @ ®» e e ® © e e o o
e ®© & e ® © @ ® 6 e ® o
e« e e o o e @ o @ o = o
e @ e ® e e -

e ®© e s o ® @ o ® e e o
e e o o o o - e = e o o
@« e e ® ©o @& ® & 8 o e =
@« ®© e e ®o e ®© © e s o o
e e ® © ©®© ®© @ ®© o o o -o
® @& @ o e e © e e o o
- L - . L) - - - - - ‘@ [
@ o ®o e e o e e e o e
®« e ® e e ® ® ®© s e e o
e & @ o e e ©®© © @ & o =
@« o @ e ® e e o & o o o
- - - - - - . - - - L -
e & ®© e @ e e e e o .
e ®o© e & ® @& @ e e ®© = =
e e @ 8 ® e @ ® & o * =
e © e 8 8 ® & e e e e o
e ®© ® ¢ @& & & e & e o o
e ® ® o e ®© e o o e o
e @ e e ® e & © @« o o =
e o ® ® @ @ e e e e o -
e & ®© © o @ ®© ®o @ o e

CONTENTS
. - - 6
« o o 21
« o o 22
« o <« 23
« « « 30
« « « 30
- « o 31
« o < 31
« o« o 32
- - - 34
« « « 35
« - « 36
« « < 37
« o o« 37
« « o 39
< « o 40
« o o« W40
« - o U0
« o - 41
o o o 41
. o o 41
o o o U4
e « o U5
e « o U45
.« o o U5
« « o U6
« o o 49
« « « 50
« o « 51
« « « 53
« o« o 57
« « = 57
- « - 57
« « « 60
<« « o 61
« « - 61
« « o 61
« o o 63
« « « 63
« « o« 63

COMPLETE TABLE OF CONTENTS 7

7 and 9 Track Tapes. . .
0dd and Even Parity. . .

Densities. . . .

Translator and Data Convertor

File Protect Ring.
Record Size. . . .
End of Tape Area .

Pseudo-Device NamesS. . .

Using Tapes . . « .+ .«
Mounting a Tape. .
Removing Tapes . .
Data Transmission.

Return Codes. .
Control Functioams.

Paper Tape User's Guide.

Data Concentrator User's
The Data Concentrator
MTS Interface. . .
Message Formatting

Use of Data Concentrator by

ATST Models 33/35.

-

(Teletypes

MTS Jobs.

IBM 2741 Typewriter Termlnal -

Remote Computer Terminal Transmission Facilities

UMMPS and MTS: A General
UMMPS o« & ¢ o« o o o @
MTS v o o« o o o o o @

EXTERNAL SPECIFICATIONS.

Files and Devices. . . .
Files o v v ¢ o o o @

Description

Implicit Concatenation. . .

File NameS. . « « « .
Device Names.
Pseudo-Device
¥*DUMMY*.,
¥SOURCE*
¥STNK . . . ¢ o
¥AFD¥®, . & o o o @
¥PUNCH*, . .+ o« o« &
MSINK,
MSOURCE.,
Modifiers
Line Number Ranges. .

Explicit Concatenation. . .

Usage « ¢« ¢« « o o « &

Input Lines. . . « « «
commands. « « « .« « .
Data Lines. « « « < .

of the Operating System

- - -
- - -
- e e
] - -
- - .
« o =
- . .
. - -
- . -
o e .
. e e
0y - .
. . -
. - .
Y . -
- . .
- - -
- - .
. . .
- - -
o - -
- 3 o
- . -

e e
e
« o
« e
o o
e e
e e
e e
e e
e &
e =
e o
e e
e e
e =

L]

Remote

- o
‘e ®
- -
e e
e o
e e
- e
e o
-
-«
. e
- e
e e
o e
. .
e o
o o
e o
e o
LY
* o
e
.

Computers).>

¢« & o (]

Prefixing

Editing

- - - - -

Continuation. . . .

Limits Specification .

Commands .
Name:
Name:
Nanme:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:

ALTER. . .
COMMENT. .
COPY . . .
CREATE . .
DESTROY. .
DISPLAY. .
DUMP . . .
EMPTY. . .
ENDFILE. .
ERRORDUMP.
GET. . . =

e« ® o o e
e ® o o
e« e ® o o
e o e o
e e ® e =
«a e & o e
e e o o
e o o o =
« e ® e =
e = o o =
e ® & e e
e e o o o
e« o » o =
a o e o o
e ® o o e
« e o o

HEXADD,HEXSUB. . . .

LIST . . .
LOAD . . .
NUMBER . .
PASSWORD .
RESTART. .
RUN. . . .

Library Fac111ty. e o o
Parameter Specification

Name:
Name:
Nanme:
Name:
Name:
Name:
Name:

Data lLines

SET. . « =
SIGNOFF. .
SIGNON . .
SINK . . .
SOURCE . .
START. . .
UNNUMBER .

Line Numbers. . . .

User ProgramsS. . « . =
User Program Constraints. . .
I/0 Routines - Parameter Description.
subroutine Descriptions . . .

MTS System and Library External Symbols. « o o o s e e @

Name:

ATTNTRP. .

e e = o =
s @ e e e
e e o o e
e ® ® e e
e e o »
« e & o
e ® ® e o
e @ e e o
e e 8 o e
e« @ o o o

Bitwise logical Functions.

AND,LAND,OR,LOR,XOR,LXOR,CONPL, LCOMP,SHFTB,SHFTL./. .
Blocked Input/Output
Name: QGETUCB
Name: QOPEN .
Name: QGET. .
Name: QPUT. .
Name: QCLOSE.
Name: QCNTRL.

Name:

(QGTUCB) .

Routines.

- . - - - - . - -
. . - - - - - - -
- - - - - - - - -
- - - - - - - - -
. - - - - - - - -
. - - - - - - - -
- - - - - - L] - -
- s e - - . . e -
. - - - - LY - - -
. - - - - - - - -
. - - - - - - - -
- - - - - . . - -
. - - - - - - -
- - - - - - - - -
- e e - - - - - .
. . e - - . - - -
. - - - - - - - -
- - - e . . - - -
- . e - - 3 . - -
- - - . - - - - -
- e = . - - - - -
- - - - - - - - -
- - - - 3 - o - -
- e e . - 3 - - -
- - - - - . - - -
- e e - - . - - .
- - - - - . - - .
- - - - - - - - -
- - - - - . - - -
- o o - - - - - -
- e = - e - - - .
- - - - - - e e -
- . - - - - . - -
- - - - . - . o .
e e - - - - - e .
e e . . - - - - -
- - . - - - e - -

- - - - - -) - - -

- - - - . - - - -
- - - - - . - - -
- - - - - - - - -
- - L] - - - - - -
- - - - - - - - -
- . . - - - - - -
e - . - - - - - -

COMPLETE TABLE OF

98

e e o = < 99
« e - « 2102
e o = - <103
e « « o =105
- o « - <106

e -« - - 2107
e « « « <110
« . 112

« o o - 2113
e o « « <114
« « « « <115

e o « « <116
e o o « <117
e « « « 2118
e « « « <119
e o « « <120
P |
e o « o <123
e o e o <124
e « « o <125
e « -« o <126
. 128
- e e e« <129

« « <130

e o <131
e o o o <132

« - <133

e o - - <138
« o « = <134

« - o o o136
e o e e <137

.- - - - .138

e e e . o2
e - - . 2143
e e - . o146
I 'Y
. e e - 2147
U 7
.« - . 2150
. e - . 2151
.« - - 2152
e « « » .153
I BT
e - « - 2155

CONTENTS 9

10

Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:

Printer Plot

CANREPLY . . .
DISMOUNT . . .
EMPTY.
ERROR.

E7090,D7090,E7090P,D7090P.

FCVTHB
FREEFD
FREESPAC . . .
GDINFO
GETFD.
GETSPACE . . .
GUSERID. . . .
IoPMOD
LINK,XCTL,LOAD
LINPG.
MOUNT.
PGNTTRP. . . .
Routine

PLOTT
PLOT2
PLOT3
PLOTH
PLOT14.
STPLT1.
STPLT2.
SETLOG.
OMIT. -« .« . « . .

Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:

READ .«
REWIND .
REWIND#. . . .
SCARDS
SDUMP.
SERCOM

SETIOERR . . .

SETPFX « . .
SPRINT
SPUNCH
SYSTEM
WRITE.

Macro libraries .

System Macro

Name:
Names
Name:
Name:
Names:
Name:
Name:
Name:
Name:
Macro
Name:
Name:

Library
ACCEPT
BAS,BASR . . .
LFAD,DFSB,DFMP
DFIX, EFIX . .
DISMOUNT . . .
ENTER.
BXIT . «. « .« .
FLOAT. « « .«
GETSPACE . . .
Calls to
MOUNT. . . .

SCARDS,SPRINT,SPUNCH,SERCOM

IOE/360

. . - -
- L - -
- - - -

*SYSMAC

. e e e
e o o
« o e =
« e e e
« o o o
e o o @
“- = e =
« o o
“ o e =
e e e .
- e . .
“ e o e
« e e e
« e e e
e e e e
e o o =
« e e .
« o o .
« o e e
« e o .
« o e e
© o o e
- -) - -
c e o .
« e o
o . e .
o e e
e e e .
e e .
« e o e
v e e .
« e e
e . e
o« e o o
s - e e
“ e e .
« . o .
« e e .
- e e
« e e
o o e .
e e e
« e o
« e e .
« o e .
« o e
e . e .
o . e
. e e .
« o e .
« e e

+KEAD,WR

.
-
iT

.

. 156
.157
.158
.159
. 160
.161
.162
.163
. 164
. 165
. 166
.167
.168
. 169
L1171
.175
.176
2177
.177
.178
.178
<179
.179
. 180
.180
.180
. 180
.182
.183
.184
.185
. 186
.189
.190
.191
.192
.193
.194
.195
.196
.197
.198
.199
.200
.201
.202
.203
.204
.205
.206
.207
.216
.217

Name:
Name:

SLTe & « o« &
SWPR

MTS Assembly Language Testing Macros
Structure of a Macro Library .

Phone Numbers - Data Set Directory

Library File Descriptions

Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Nanme:
Name:
Name:
Name:
Name:

Compiler

Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Nanme:
Name:
Name:
Name:
Name:

*ASA
*ASMBLR. . .
*ASMEDIT . .
*ASMERR. . .
*BATCH . . .
*BCDEBCD . .
*CATALOG . .
*¥COINFLIP. .

*CONVSNOBOL.:

*DISKDUME. .
*DISMOUNT. .
*DOUBLE. . .
*DRAW. . . .
*EBCDBCD . .
*FILEDUMP. .
*FILESCAN. .
*FORTRAN . .
*FORTEDIT. .
*GPAKDRAW. .

*GPAKGRID. . .

*GPAKLIB . .
*GRAPHLIB. .
*GRAPHMAC. .
*HEXLIST . .
¥*IHC

*LINPG . . .-

*LISTVTOC. .
*MOUNT . . .
*NEWFORT . .

*OBJSCAN . .
*OSMAC . . .
*PAL8SS. . .
*¥PIL . . - -
*PLOT. - . -
*ROSSPRINT .
%SDS . . . -
*SNOBOLUY . .
*SQUASH. . .
*SSP
*STATUS. . .
*SYMBOLS . .
*TABEDIT . .
*UMIST . . .
*UPDATE. . -

Options

" 4 e 0

. . L I) .

- e - -
e o e -
o e e .
. - - -
- 3 . .
e . - -
e ® . .
- e e o
- o - .
o - < -
. . - -
- . . .
. - - -
e - .
. . - .
e - - -
- . - -
. . - -
- - - e
. - - e
. . - -
- . - -
- . . -
. . - -
e = . L]
- - . .
- w . -
- - - -
. . - -
« e . -
. 3 . -
. - - L]
- LI -
- - - .
- - - -
- . - -
e = - -
. 3 - e
e = - .
- - - -
- - - °
e @ - -
e - = -
. - - -
- . - -
e - -
e e - -
- - .
. - - -
- - e -
- - - .

COMPLETE

- - -
- 3 .
. - -
e e -
. - .
- 5y -
- - -
e e -
- - -
- - .
- . -
- - -
- - -
- - -
- - -
- - -
- - 3
- - -
- - .
- - 3
- - .
- - -
e e -
- - -
* L] -
L) - .
. - .
- - -
- - -
3 - -
- - -
- - .
- - -
* e -
- - -
) e o
- . .
- - -
[- -
. - -
- - e
- . -
- - -
- - -
. e -
- - .
- '- -
- o -
. . -
- - -
. - -

TABLE

- e e e e =
e ® ® e ° =
e © o ® e e
e o o o o o
- - - - - L
- - - - - L
e o e e o o
e« ® o e e o
e ® e o e o
e ® o o o =
e @ e e o o
e e o © o e
e e o @« e o
e o o « e o
e ®© o e & o
e e o e o o
® @ o e o
e @ o o o e
- o « e o
e 8 e @ e =~
e« o o e o e
e o e e« o o
e @ o o o o
e e o e« o o
- - - - .]
e @ o e o =
* e o e e &
- - L - o -
- - - - - -
e e e e o e
e e = @& e o
e e o e e o
@« e e e o o
e o o e e o
e e ®© e o =
e ® o @ e @
e e o « o o
e e @ e e =
e e @ e o =
e o o « o e
@« e e ® o o
e e o e e o
e« e o e o o
e e o e e o
e e o e e o
« e e e o
e o @ e e e
@« @ o e o o
e o e e e =
e s e « ® o
- o @ e o =

OF CONTENTS

«219
«220
«221
« 226

. 2217

. 231
«232
233
« 235
«236
. 237
«238
«239
240
- 241
243
. 245
2047
. 249
«251
253
«254
« 256
«257
258
259
«260
261
<263
. 264
« 265
-266
«267
<268
270
«271
<274
«276
277
.278
<279
. 283
.285
<295
.296
«297
. 298
«299
300
.301
302

11

Name: *WATERR. . «307

- L] -) - L) - - - - -
Name: *¥WATFOR. < . & & o o ¢ o o o o s « = o s o « o & o o« o« =« » «308
Name: *WATLIBe o o o o o o o o o « a o a & =« o » & o« o « s« « o « 2309
Name: *¥2250EDIT. ¢ o v o v o o o o o v o % o o o o o« = « o« = o = 2310
Name: *¥BASS. . . & & 4 ¢ o o 4 o o o 2 o o o o o = o o o e & o o 313
Name: *¥8BSSPAL. « ¢ o ¢ ¢ ¢ v o o 4 o o o @ s o =« o« » = o o o« o o <314
The DYnamic LOAAer « « v v & ¢ 4 ¢ ¢ o o o o o o o o o o« o o« 4« o« o o « «315
Description of the Loading ProCesSS. . « =« o « « « « = « = s« « « « » 316
INtroduction « o ¢ ¢ o ¢ 4 4 e 4 i e 4 e e e s e s s s 4. e o o o <316
Loader InPUL o ¢ & ¢ ¢ 4t 4 e 4 2 4 e 4 e 8 e o o 6 o = e o o o o 316
Resident System SYBDOLS. . v v ¢ ¢ ¢ v 4 o o o o o « o 4 o« o« « « 2316
Loader OUtput. o o o & ¢ ¢ ¢t e 4 4 e s e 2 8 s e e o 4 o o o & «317
Entry Point DeterminatioN. « « ¢ o ¢ 4 o o o « e o o o & = o o 317
Loader Processing Details. . . . & & o ¢ ¢ ¢ 4 ¢ o o « 4 =« « » « 318
Loader Invocation DetailS. « v v v ¢ ¢ ¢ o o o o « o« « » « « » =« «319
A. Invocation by a SRUN command. . « « « « « « « « » « « & o« <319
B. Invocation by a $LOAD command . « « « « « « « =« o« « « = o «319
C. Invocation by a call upon LINK: « ¢ ¢« ¢ « « « =« o =6 » » «319
D. 1Invocation by a call upon LOAD: « « ¢ « o = o « = = & o @ <320
E. 1Invocation by a call upon XCTL. « « ¢« « « « o« « = o« = « @ 320
Description of the Loader INPUt « ¢ ¢ «¢ & o « o o & o « % o o « o« = «321
1. Translator-generated Load RecordS. « . ¢« ¢« v « & o « « o« o« 321
A. ESD Input ReCOTd. v o v « v & « o o o o o « o« « = « « « 321
B. TXT Input Record (TeXt) e« ¢ o ¢ o & o « « o« o o « » <321
C. RLD Input Record (Relocation Dictionary)321
D. END Input RECOTA. © «e v 4 ¢ & o o o « o s o« « o« o « o = 322
E. SYM Input ReCOrd. - - ¢ ¢ o ¢ o o o o o o o« o =« o « o« & «322
2. User—-generated Load RECOTdS. v &« v o o o o o 2 « « « & « o 322
A. LDT Input Record (Load Terminate RECOrd). « o « o o « « 322
B. REP Input Record (Replace RECOLA) « o o « e = o o o o = 322
C. DEF Input Record (Define Extermal Symbol) ¢ . o .322
D. ENT Input Record (Entry Point Record) + . « ¢ « « =« « « «323
E. NCA Tnput Record (No Care RECOLA) « v o « « o o o o o« & «323
3. Library Control RecCOrdS. « + o« « o o 2 o v o « « « « = o & <323
A. LCS Input Record (Low Core Symbol Table). « v« « « « . » .323
B. LIB Input Record (Library record) . . « o o« o« « o o « o« 2323
C. RIP Input Record (Reference If Present Record).323
Record Formats — Dynamic Loader. . . . ¢ 4 &« ¢ v o o o « « = =« « «325
Loader Input Deck Ordering and Restrictions. « « « « & « « 2 « « 336
Description of the Loader Output. . ¢ ¢ & ¢ 4 ¢ ¢ ¢ v ¢ e o o o « « <381
IntroQUCtion « o o 4 o 4 ¢ b 4t 4 4 e 4 e e s e e o o e o o o o o <381
The PrOgralle « « o o o o o o o o o o « s o o o o o o« o o o o « « +341
Printed Output . . . o & & ¢ 4t 4 4 4 4 4 e e e e b e e o o o o o 342
Sample Loader Printed OUtPUt v .+ ¢ ¢ 4 ¢ 4 ¢ & o o o o o « o o o« <342
The Entry Poilt. . ¢ o & 4 4 o 4 6 4t o o o o o o o o « o o« » « « «343
The MapP. . < o o & o o o 0 v 0 0 it 4t e e e e e e e e e e .o o343
EITOr MESSAQgES « « o o o o « o o o o s o o o o s o o o = o-a =« o« <3044
MTS Errors or Program Interrupts During LoadinNg. « « « « « « . & 346
Loader Library FAacility « ¢« ¢ ¢ ¢ ¢ o ¢ 4 ¢ o o o o o o o o o o« o = 2347
The System (Public) Library. « o ¢ o 4 v ¢ v o e« o o « = o o o« « <347
Optional Libraries o o« v v ¢ 4 4 4 4 4 4 4 v o o o o o « o o » « <348
Pre-Defined Symbols and Low Core Symbol Dictionaries348

12

INTERNAL SPECIFICATIONS. . . . =«

File and Device Management . . .

Introduction. « « « « « « « =

Public Entry. =«

DSRY Prefix . « « « « =

DSR « ¢ o o e o o o o =

DSRI Postfix. . « « « =

FDUB Structures. « « « « =«
Structure of Device Tables.

Device Support

Common Information. . . .

1. INITIALIZATION. . « « =

2. DITCH ¢« « o o o « o o =

3. GETFROM . ¢ « « « o o =

4, WRITEON <« « « « o o o =«

S. ATTENTION . ¢« o o o « =«

6. WAITFOR @« o « o o o o @

7. RELEASE v o« o« « o o « =

Routines (DSR)

Processor Internal Specifications.
Loader Internal Specificationms.

Introduction . . . « « < =«
NaME « o o = = o o o o o« =
Fuanction . « « ¢« .« o o o .
Calling Sequence . . « « -«
Parameter List . . . « . .
Return Sequence. . -
External Symbol chtlonary
Error Recovery and Restart
Return Codes « « « « =« «
Loading Status Word Format

Format.
Procedures.

General Organization of the Loader Psect

More Details on the Loader Structure

The Loader-MTS Interface .

File RoutineS. .« o« o« o o o o «

File Format - General Description.

Allocation of
Files written
€tC) « o o o o o o e o .
Physical format of the
The Track 1Index . . .
The Line Directory. .
The Line File
How the
File size

space and

limitations. -«

components are

through systen

-

cataloging

subroutines

components.

tied

External File System Subroutines.

Name: CHKSUM . ¢ « « « <« =
Name: CLOSE. « ¢ « o« o =« =«
Name: CREATE . < « o « « &
Name: DESTRY « . . « « « =
Name: GETDSK « « « « « o =

-

together

COMPLETE

(SCARDS

]
e & & 0
.

L] .] []
[]
[]

TABLE

e 2 & & o & 0 0
.
.
[]
[]

.
)
)
.
L]
¢ 8 & & o s 3 s ¢

[] .
L] L]
.]
. .
. L]
o & o b &

[}

.

.

.
PP
* & & 0

.
.
D S I)

3

SPUNCH,

s 0 0 8 & N
e e & & &
s ¢ ¢ & s DB
o & @ e o
L] L]
]

»
]
.
]
| Y T S S

OF CONTENTS

- 351

. 352
.353
353
<353
354
.355
.356

«359

.361
.361
.362
<362
.362
.363
.363
.364
«364

365
.366
.366

.366

.366
.367
.367
.368
.369
-370
-.370
<371
<375
.376
376

.378
«379
.379

.379
.380
-380
.380
. 381
381
-382
.386
-387
.388
389
<391
.392

13

Name: OPEN v v ¢ v 4 o o o o o
Name: READ . ¢ & v o o o o o o «
Name: READL. v «v ¢ o e o 2 o o =
Name: READS. v v o ¢ o o o o o o
Name: RELDSK ¢ ¢ ¢ v v v o o o o
Name: SCRTCH . . . « . . ¢ . .
Name: WRITE. « « . o « . -
File Subroutines Internal Structure

VOLUME TII. &o 2 v 4 ¢ v o o o o o « o
LANGUAGE PROCESSOR DESCRIPTIONS. . . .

F-level Assembler.
Assembler Listing
External Symbol Dictionary (ESD)
Source and Object Program. . . .
Relocation Dictionary.

Cross Reference. . «
Diagnostics.
Diagnostic Messages « « . « o o . .

FORTRAN G:. v v v v v ¢ o o o o o o o =

Source Module Error/wWarning Messages

Fortran User's Guide. « « « o o . .
Files and Data Set Reference
Tape Support Statements. . . .
Sequential Files.

Numbers.

Record Format for Sequential Files . .

Default Record Length for Sequential Files

Record Format for Direct Access

The STOP Statement
The PAUSE Statement.
Execution Error Messages . . .
Program Interrupt Messages . .

Non-arithmetic Program Interrupts.

Arithmetic Program Interrupts.

TOH/360 - I,/0 with Conversion.
Specification Characters.
Usage - Normal Context
Literal Context.
Format-Gff Context
Default-Scan Context
Format-Variable Context.
Useful Entry Points to I0H/360. . .
Block-Addressing Section
Standard-Format Input Section. .

PIL - - Pitt Interpretive language . .
Desk Calculator Mode. «
Variables and Constants

ConstantS. « v v v v o ¢ w o . .

14

Files

& s & a

.393
-394
«395
-396
397
.398
-399
.400

500
-501

.503
-503
504
505
507
.508
-509
.51

.525
.525
+530
.530
530
« 530
. 531
.531
. 531
.533
«533
.533
.538
-.538
.539

542
.553
.553
.578
.579
.580
.584
.585
.588
.588

-591
.592
-593
-593

Variables. . « « « « « o« o o o o =«
Algebraic Expressions . . . « < <« «. .
Boolean EXpressions. . . « « « « =«
Interchange. « « o« « « o o o o = =«

stored Program Mode . . . ¢« 4 ¢ o o ..

Parts and StepS. « « « o o o o o .
Indirect Error Reporting .. .

Running A Stored Program. . . . ¢« - =
Program StopS. « . « o o s = o o .
Transfer of Control . . . « = « « « =
DO Statement « « ¢ « o ¢ o o o .
TO Statement « « ¢ « ¢ o o o o o o

IF Statement . « « o « o o o o o &
Simple Console I/0. « « « « o o » « =«
Output « « ¢ ¢ ¢ o o o o e o e . .
Input. « « « o o o ¢ o o e e e = .
Program Changes . « « « o « o« o o o =«
DEletion v « o o « o« o o o o o =
Variable Deletion =«
Part and Step Deletion.
Form Deletion « « « - &
Storage Clean-up . . . -«
Iteration Statements. . . « « <« < . .
Implied LoOpS. s « « « .
Explicit Loops « . « « . -«
Restart. ¢ ¢ ¢ o e o o o o o o o
For Control. <« « « o o ¢ o o o o &
Character Strings . « « « « o o o o
String Comparison. . . . « « « o« =«
string Functions . . . « .« . « . .
String Operations. « « « « « « «
Extended Console I/O. - = s =
A. Numeric Informatlon «
B. Alphabetic Informatlon. -
C. Other Characters.
Form Statement . . « « « « ¢ o o .
Type In Form n, List
TYPE FORM Do ¢ o« ¢ o o o o o o o o
TYPE ALL FORMS . <« o« ¢ o o o o o
Form Deletion. . « « « « o o o « &
User Directed Input. . « e e e
Extended I/0 List Features « o o o
Literal FOLMS. « « o o o o o o « o
Program Management. . .« <« < .« <« o =
Pagination . . « ¢ 4 o o . o e o .
Storage Acquisition. . . . « <« . .
PILmanship. . . - . - .
APPENDIX A: Summary of PIL Statements
APPENDIX B: Precision of Arithmetic .

SNOBOLU . &« « e o e o« s s« o o o s s o o o
1. IntroductioNe « « o « o = « o @
2. Differences between SNOBOL3 and

- - - - - .
- - - * e .
- e o - - .
- « o e e .
- e o = - 3
. . e - - .
- - - s e .
- - - - .
- - o e - -
- e o - - -
- . o - . -
-) - e o -
- . . - - -
- - . - - .
- - . - - -
. . - - - .
. - - . e -
. - . - . 3
o . . - - -
- - . . . -
- - . L} - -
. - - . . -
- . . - . -
- . - - - -
. e e ® - -
- e e . . -
. . . e e -
. - - . . -
- . . e e -
- .) - - -
. - - - - -
- . . - - -
. - . . - -
- o - - e -
- . e e - -
- . - . e -
- . - . - -
- - - - - -
- - - - L] -
3 3 - e e -
- - - - . .
. - - o e -
- - - .
. . - e e -
- . - o e -
- o - e e 03
- . - - - -
. . - . o -
. . - . e -
. - - - - -
- . - . . . -

SNOBOL4 . .

COMPLETE

- - .
. . .
- . L]
- . -
- . -
. - -
- o e
- - -
3 . .
- . -
- - -
- - -’
. - -
- o -
- 3 .
- . 3
- . L)
. o -
- - L3
- - .
- - .
- L3 -
- L3 -
- . -
- . -
. . 3
- . -
- . -
. - 3
- - -
. - -
- L) -
- L -
- . -
- - -
[- -
- - -
- - -
3 . -
- - -
- - -
- - -
- - -
. - -
- - -
- . -
- - -
- - -
. . -
L3 - -
- 3 -
° - -

e e o *« e e
e o o e e o
o e o e o o
» e s © & e
e o e e e e
o o o - e .
- o e - - -
.. e« . e =
* ® e e e o
e e o e o o
e o o o o =
- - - - LI
e o = * & e
- - - - - -
e ® & @ e o
-« ® e e o e
e o e « e e
e e e . o
e ® ® e o e
e ® e o e e
« o e . ® e
- s @ o o =
® e @ o e @
e o @ e e =
é o @ e e o
° - - - - -
e o e & e e

e e e o e
« o o ® o -
e @ ® o ® o

o ®© e ®o e =
e e e e w e
- - - - - -
e ©®© & e & o
- - - L] - L]
s e° e « ®
e ®© e o o o
e @ e o & =
e ® e e e o
e ® ®© ® e o
e« @ © e e o
e o e e e o
e e ® e e e
e @ e o e o
- - - - L -
« o o o o o
e e ®o e o =
« @ e e« e e
@« o e o o =
e e e o o o
e ® o o e ®
e @ e ® e =

OF CONTENTS

.593
.596
.598
.598
.602
.602
.603
-604
.605
.606
-606
.606
.607
.608
.608
.610
.612
.612
.612
.612
.613
.613
.613
-614

.61

«615
.616
.617
.617
.617
.618
.621
.621
.622
.622
.622
.623
.623
<6204
.624
. 624
625
.626
. 626
.626
.628
.628
.631
.632

.635

.637
.638

15

16

3.

11.

12.

13.

2.1 Changes in Syntax

2.2 Changes in Names and Functions.

Pattern Matching.
3.1 Pattern Construction.

3.1.1 Aiternation.
3.1.2 Concatenation.
3.1.3 Arbitrary Strings. . . .
3.1.4 Balanced Strings
3.1.5 Fixed-length Strings . .
3.1.6 Fixed Positions in String
3.1.7 Tabulation
3.1.8 Remainder.
3.1.9 Alternative Characters .
3.1.10 Runs of Characters. . .
3.1.11 Repetitions
3.1.12 Signalling Failure. . .
3.2 The Order of Pattern Matching
3.3 Deferred Pattern Definition .
3.4 Value Assignment.

3.4.1
3.4.2 Dynamic-Value Assignment
ATTAYS: o« « o o o o o « o o o o =
Real Numbers. ¢ . o« o .
Data TYPeS. v o o ¢ o o o o o o «

s

¢« ¢ s & @

Post-matching Value As51gnment

6.1 Data Types in Operations.
6.2 Concatenation with the Null String.
€.3 Data Type Determination

Programmer-defined Data Types . .
Compilation during Execution. . .

8.1 Creating Object Code.
8.2 Direct Gotos.
Keywords. « o o o ¢ ¢« ¢ ¢ o o o
9.1 Protected Keywords.
S.1. Internal Values.
°.1. Predefined Values. . . .

1
2

9.2 Unprotected Keywords.
c.2.1 Internal Switches. . . .
G.2.2 Internal Parameters. . .
Truth Predicates . . « . ¢« . o .
Negation
Affirmation.
Input and Output

11.1 I/0 Association Functions. .
11.2 Output . . «, . .
11.3 Input. ¢« &« ¢ ¢ ¢ ¢ ¢ & ¢ o .
11.4 Rewind
11.8 Back Space
11.6 End of File.

NAMESe o o o o o o o = o o o o «

12.1 Passing NamesS. . . ¢« « « . .
12.2 The Name Operator.
12.3 Returning by Name.

Additional Functions

. L] L]] L]

. .] . [

. L] . . L] L] [

e & 8 @

[] . ¢ 8 [2] * & o & o e 3 ¢ ¢ s 0 .

s & 8 @

* . L] .] e]

I T T

.638
. 640
.641
- 641
<641
-641
.642
642
«642
-642
-643
- 643
-643
<644
-644
<645
- 646
.646
-648
.648
- 649
.652
« 655
«656
- 656
- 656
<657
.658
. 661
. 661
.661
«663
. 663
. 663
.663
.664
.664
. 664
.666
.666
« 666
<667
.667
.668
.669
.669
« 669
.669
-.670
.670
.671
«672
<674

13.1 Character Replacement. .

13.2 Lexicographical Comparison

Acknovwledgements. «
References. .« « o« o ¢ o ¢ o o o o @
Appendix A: Operator Precedence . .

Appendix B: List of Functions with Section References .

Appendix C: Sample Progralms
Appendix D: Trace Facility.

OMIST. « @ o o o o o o o o o a o s s =

Preface . . o ¢ o @ o @ o o o o o
Chapter I: Introduction
TRAC o« ¢ o o o o o o o o« o o o =
UMIST. ¢ o o o o o o o o o o o =
Guide to this Manual
Chapter II: The UMIST Processor . .
Mode of Operation. . «
SYntax + v 4 e 4 4 e 4 e e e e .
Chapter III: UMIST Primitives . . .
Read String and Print String . .
Define, Call and Segment String.
The Form Pointer « <« . .
The Equal Function
Other Language Features.
Chapter IV: UMIST Variations. . . .
Input Functions. . « . « . « . .
Arithmetic Functions
Boolean Functions.
External Storage Functions . . .
Other Differences. . . . « « . .
Chapter V: UMIST Extensions
Special Symbols. « « . « ¢« . . .
Set Definition Function.
Class Membership « « « « « « .«
Parameter Setting.
Protection Parameters
Parameter Switches.
Special Character Parameters.
Integer Parameters.

Name Parameters . . . - -

Implicit Calling and Call Procedure.

External Functions
Status Recording
Chapter VI: Internal Structure. . .
Pushdown Stack « « « « o « o .
Scanning Algorithm
Storage Management < . .
Bibliography. . « « <« « « .« . .«

Appendix A. A Guide to Using UMIST 1n‘

Appendix B. Primitive Functions . .
print string function.
read string function
signoff function

-

MTS .

COMPLETE

TABLE

OF CONTENTS

- 674
-674
.675
.676
-677
.678
.679
. 715

.717
.718

»-719

-719
-719
- 720
.721
.721
722
.723
.723
<724
. 725
-726
<726
<727
727
<727
.728
.728
729
<730
«730
. 731
«731

=131

<732
<732
«733
.733
<733
733
<735
-735
737
. 737
.738
.738
<742
<743
- 745
. 745
745
- 745

17

18

define string function
define form function . «« .
segment string function.
call function. « + ¢« ¢ « ¢ ¢ o« o .
call procedure function.
print form function.
initial function . « & & « ¢ o o .
call segment function.
call character « « « « ¢ « ¢ « « =«
call n charactersS. « « « « o« « « =«
call restore function.
set function . .+ « ¢ 4 4 ¢ o o o
delete definition function
delete all function. . . . « . « =
equal function
decimal arithmetic functions . . .
add decimal. . . ¢« & o ¢ ¢ ¢ o o
subtract decimal . . . « .« .+ « + .
multiply decimal« . . .
divide decimal « . ¢ ¢ o .
test decimal . « ¢« ¢« ¢ ¢ o ¢ & . .
special symbol functions
parameter set function
print parameter functiom
load external functions function .
read character function. . . « .« .
read n characters function
dump function. . . .« ¢« ¢« + .+ o .o .
niull function. « ¢« ¢ ¢ ¢« « o o o .
restart function . . . <«
reinitialize function.
set form pointer function.
call form pointer function
call gap function.
call ordinal value . « . « « « « =«
erase segment gaps function. . . .
set protection classes function. .
list selected names function . . .
test character function.
length function. . « .« « « . « . .
hexadecimal to character function.
character to hexadecimal function.
hexadecimal arithmetic functioans .
add heX: o o o« o ¢ o o o o s o o o
subtract hex . . ¢« ¢ ¢ ¢ ¢ o o o =
test heéX o« o o ¢ ¢ o o o o = o o =
if functioNe.e « « ¢« o « = o o « « =
not function 4 & 4 & . o .
and, or, and xor functions
define special symbol function . .
date function. « ¢« « o« « o o o o =
time of day function
translate function . « « .« ¢« « o .

.

¢« o &

.745
.746
.746
.746
.746
.747
.747
. 747
.748
.748
.748
. 748
. 749
.749
.749
.749
.750
.750
.750
.750
.750
.750
.751
.751
.751
.751
.752
.752
.752
.752
.752
.753
.753
.753
.753
.754
.754
.754
.754
.755
.755
. 755
.755
.755
.756
.756
.756
.756
.756
.757
.757
.757
.757

translate print functiom .

hash history function. . <« . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o a a« o« o o
Appendix C. UMIST Line EQitOr « ¢ ¢ ¢ ¢ o ¢ o o o o « o o o« o o « o
WATFOR ¢ ¢ <« o ¢ o o o o o o o o o = o o a o o s o o-» ® @« a a s o o =
I WATFOR Control Cards « ¢« « ¢ « ¢ o o © o o o o o @« a2 o o o =

II Error Diagnostics and Running Modes . « ¢« o ¢ o o o a. o 4 o «
IITI Subroutine ReferencesS. . « o« ¢« ¢ o o o « o o« o « a o a o« o & «
IV-— WATFOR Subroutrine Library Structure. . . « ¢« o « o o « o « «

v Language EXtensSionsS. . ¢« v ¢ ¢ ¢ o o e o o 2 s o o a. o o o =

VI Language RestrictionS.. . o ¢ ¢ ¢ o ¢ ¢ ¢« « o o o o o o =« o @
WATFOR COMPILER ERROR MESSAGES. « v ¢« ¢ o e o o o o @ o o a o =« o« =
BASS —— PDP-8 AssemMbler. . .« « «c ¢ o ¢ o s o 2 o o = s o« o o s o« o a »
IntroductionN. « o ¢ ¢ ¢ o ¢ o o o« e o o s o o o s @ a o o 8 s o o =
Assenbly ProCesSSiNg o« « o « o o o « o o o o s’ o o o a o o o s s = =
BASS IN MTS ¢ v ¢ « o o o o o o s o o s s s a e« o o s o s s o o o @
Names and EXPTeSSIiONS ¢ v o o o « 2 o o o o o ¢ o o = o o o o o o o
Instructions and Procedure Calls. . . . ¢ ¢ e ¢ o « o o o o « o o =
Debugging AidS. o« ¢ o ¢ o o o o e ¢ o 2 = s o o s o s a s s o a w° o
Object DECKSe « ¢ ¢ o ¢ ¢ ¢« o o o o o o o o« s o s s s« s o o a.a s =
Appendix 1: 8ASS Standard OpcodeS. « « o e ¢« o o o« o o o o o & @«

COMPLETE TABLE OF CONTENTS

.758
758
759

<766
+766
767
.768
-.768
769
<772
- 773

.782
.782
782
-.783
. 784
.785
. 787
.788
<790

19

20

MTS

(MICHIGAN TERMINAL SYSTEMN)

"Hriteups are like watches; the worst is
better than none, and the best cannot be

expected to go quite true."

[with apologies to

Samuel Johnson]

MTS-000-1

12-1-67

GENERAL INTRODUCTION

MTS is a time-sharing system designed to be run primarily from remote
terminals. It also has a batch mode to allow batch processing of jobs.
The system allows the user at a remote terminal to create files consisting
of general text or program material, to call in processors to translate
these files, to run translated programs, to inspect and debug programs, to
obtain hard copy of files on high speed printers and punches, to
communicate between consoles, etc.

The system is described in a series of sections (of which this is the
first), labelled as follows: The upper left hand corner of each page of a
document contains

(1) the document number

(2) the date of issue

The document number is constructed as follows: The general fora is

MTS - <section number> - <level number>

for example: MTS-210-0

Section 230 covers the commands (in alphabetical order). The section
number for «commands is extended by adding a slash followed by the first 3
letters of the command. If this is not unique, a colon and distinguishing
letter (s) are added, and so on, e.g., MTS-230/CRE-0

Section 253 covers subroutines available to> user programs (in alphabeti-
cal order). The section number is extended there by adding a slash
followed by a five-digit number identifying the subroutine e.g., writeup on
SPRINT has the number MTS-253/62515.

Section 255 covers macro library descriptions amnd is handled 1like
section 253.

Section 280 covers library file descriptions and is handled like section
253.

General Introduction 21

22

MTS-100-0

12-1-67

USAGE_DESCRIPTION

This major section of the manual is concerned with presenting a general
overview of the system and usage guides for different types of users at
different kinds of terminals.

MTS-110-0

12-1-67

CONCEPTS AND_ FACILITIES

A present day computing system is a complex blend of hardware (the
actual physical components of a computer) and software (programs which
control the functioning of the hardware). The purpose of the software is
to provide to the user the full capabilities of the hardware without
requiring a detailed knowledge of the hardware, and in addition to provide
functions and facilities not directly available in the hardware. PFrom the
system viewpoint, on the other hand, the software provides for reasonably
efficient usage of the hardware by removing the user from the basic levels
of hardware function (such as I/0 and interrupt handling). In effect, the
user sees a computer which 1is the sum of the hardware and software
facilities, so that he 1is, in fact, not running on the actual hardware
computer which supports the software.

This manual is a description of the MIS (Michigan Terminal System); MTS
is a software system designed to run omn an IBM System 360 hardware
configuration. This manual introduces the basic concepts and facilities of
this software system; details and descriptions of the hardware must be
obtained from the appropriate IBM manuals.

MTS is designed to handle both interactive operations (terminal
operations) and batch operations. In interactive operations, the user is
situated at a terminal device (such as a teletype) and communicates with
the system in real tinme. Requests for system action are received,
performed, and the results immediately returned to the user, who may then
react and enter new requests. MTS is able to support several terminals at
a given time by giving each user a certain amount of time in sequence. In
batch operations, the user submits a deck to the Computing Center and waits
until this deck has been run to obtain output. The center collects these
decks into batches, and then runs a whole batch at once. Thus, tura-
around-time 1is 1longer for batch operations; but due to the need of
terminals and communication lines in interactive mode, batch operations are
normally significantly cheaper for the same processing.

MTS contains a number of facilities to make the computer more readily
accessible. The system contains an assembler (F level IBM assembler), two
Fortran compilers (Fortran IV G 1level and WATFOR), an interactive
calculator language (PIL), a symbol manipulation language (SNOBOL4), and a
symbol-macro processor (UMIST). Additional translators will be available
in the future. The system user is able to define, store, and use
collections of information (files-see later) either from terminals or in
batch. These collections are generally whatever the user wishes to file
away for 1later wuse. Once defined, such collections may be modified,
deleted, or reused at later times. The user from a terminal has full
facilities for running, interrupting, modifying, and restarting (i.e.,
debugging) programs which he has written and translated. The systen
includes both a macro library for assembler users and a subroutine library

Concepts and Facilities 23

24

MTS-110-0

12-1-67

for all users, thus easing many of the programming burdens. In addition to
these facilities, the user is able to communicate between terminals, to
copy files and make hard copy of them, and, in general, to obtain all those
services necessary to make the computer accessible as a tool.

This section will serve as a brief introduction to MTS. Basic
definitions will be given, and simple examples will explain some of the
functions of MTS. An understanding of the remainder of this section should
allow one to use the remainder of this manual with relative ease.

A file is a logically ordered set of lines, where each line is some unit
of information. For example, a line may be a source card of 80 characters,
an object card, an output print line, or any other unit of information
desired by the definor of the file. Files may be created, modified, or
destroyed as necessary; they may be permanent or temporary for a single
part of a job; they act as storage areas for collections of information
wvhich will be needed at some later date. There are three types of files in
the system: user files, library files, and scratch files. Library files
are files which are available to all users of the system; - the tramslators
are examples of such files. User files are private files defined by
individual users and cataloged under particular ID numbers; such files are
available only to those users who have the proper ID number. Scratch files
are files created for use in a single job and destroyed automatically at
the end of that job. All files in thne system bear distinct names for
reference purposes; in fact, a file must be named before it can be
cataloged. A library file has a name which begins with an asterisk (¥*) and
is followed by 1 to 15 <characters; this name nust be used for all
references to the file. User files have names consisting of 1 to 12
characters; it is strongly suggested that only alphanumeric characters be
used in naming user files, although other characters may work. To prevent
different users from defining files of the same name, the system prefixes a
four character ID to the file name given by the user; this ID is assigned
to each user by the computing center and is unique to each user. A scratch
file has a name which begins with a minus sign (-) and is followed by 1 to
8 characters. '

SXXXXX.XXX, where s 1is a sign (plus or minus), x is a decimal digit, and
the . is a period or decimal point. At the time a file 1is defined
(created), one may supply with each line its line number; alternatively,
one may simply supply to the system a beginning 1line number and an
increment, and 1let the system supply a line number for each line. Either
way, each line within a file has a unique line number. After a file has
been created, various parts of the file may be referenced or modified by
referring to the appropriate line numbers.

There is a set of special files in the system which may be used at any
time and which are always defined. Each of these special files has a file
name of the form *NAME*, where NAME specifies the particular special file.
Thus, for example, *DUMMY* is a system special file which is always empty.

MTS-110-0

12-1-67

. If one tries to read this file, an EOF (end of file) indication is
received. If one attempts to place information in this file, the
information is lost (an infinite garbage pail). This special file 1is
useful during debugging or as an easy way to ignore some particular output.
Other special files will be described later in this section.

; Another type of name recognized by the system is a device name. This is
the name of a particular physical device on the computer, and the built-in
device names are always 4 characters in length. These names are used when
one wishes to refer directly to some particular physical device (such as a
card reader, a printer, a disk, etc.) rather than to a logical file.
Under normal conditions, reference to device names would occur only durinmg
terminal operations. One difficulty does arise due to the presence of
these device names; a user may unwittingly use such a name as a file name,
causing problems in referencing the file. To prevent such problems, a
pound sign (#) may be prefixed to a file name to indicate that it is a file
name even if there is a device name of the same symbol.

There are a number of attributes or modifiers which may be attached to a
file name wherever a file name occurs. An attribute is attached to a file
name by prefixing the attribute with the character @ and placing the whole
construction after the 'file name. For example, FILE@I is the file name
FILE with the indexed (I) attribute. The various attributes which may be
designated with a file name are specified elsewhere in this manual and will

not be further discussed here.

Now let us consider how to run in the MTS system. The basic philosophy
of MTS is that at any given time tae system is either in command mode or
some particular program is being run. When in command mode, there are two
kinds of input lines to the system: command _lines and data 1lines. A
command line contains a $ in its first character position (columa 1 if on a
card) followed immediately by a command name, followed by whatever
parameters, if any, are needed by the particular command. - Any line which
is not a command line is, by default, a data line. Command lines are used
to provide commands to the system; that is, to provide information to the
system, to request information from the system, or to specify some
particular action to be taken by the system. Data lines are what the name
implies: a data line is a line of data to put in a file. Whenever MTS
finds a command line, the command is carried out. Whenever MTS finds a
data line, the line is added to some current file for later processing; the
particular file used here is whichever file the user is currently defining
(the current active file).

On the other hand, when some particular program is being rum, then all
input lines are data for the program. The data required depends upon the
program being run. If a translator is being rua, then the data is a source
program. If a loader is being run, then the data is an object module. If
a user program is being run, "~ then the data is whatever that progranm
requires as input. Thus, a data 1line may be any one of the above
possibilities. i)

To initiate a run (job) in MTS, the first line must be the command
$SIGNON id ' o

Concepts and Facilities 25

26

MT5-110-0

12-1-67

where 1id is a four character ID assigned to the user. If this ID is
acceptable, the user is signed on in the system and is ready to run. The
ID given in this command is the ID used to prefix all user file names
during the run. As part of the signon procedure, the system prints out the
last time this ID was used to signon in the systen. Furthermore, two
special files are opened for this job; these are *SOURCE* and *SINK*.
SOURCE is defined as the source of incoming lines; it is the terminal for
terminal operations or the input device for batch. *SINK* is defined as
the destination of outgoing 1lines; it is the +terminal for terminal
operations or the output device for batch. In addition, the special file
PUNCH is defined as the punch device if this is a batch run. These
special file names make it possible to refer to the pertinent devices
without knowing their actual device names. Since the actual devices used
for source, sink, and punch in batch runs varies from batch to batch, the
use of thése names is mandatory for references to the batch input and batch
output devices.

To introduce some basic concepts and procedures in using MTS, let us now
consider a simple use of the system. The examples in the remainder of this
section will be written as batch input decks; the primary distinction
between batch and terminal operations is that no interaction between the
user and the system is possible in batch.

The following deck causes the compilation and execution of a Fortran
program which computes square roots.

$SIGNON IDNO
$RUN *NEWFORT; 0=-LOAD
NAMELIST /NL/SQ,ROOT
10 READ (5,NL)
ROOT = SQRT (5Q)
PRINT (6,N)

GO TO 10
END
$ENDFILE
$RUN -LOAD *SINK*; 5=%SOURCE* 6=%SINK*

ENL SQ=10. &END
&NL SQ=20. SEND
$ENDFILE
$SIGNOFF

The signon statement has already been discussed. The next statement is the
run command, and it requests that MTS run the program whose name is
*NEWFORT. This 1is the Fortran compiler, so this statement effectively
requests a compilation. (The various MTS commands are described in detail
later in +this manual. This section will not go into the full details of
each command.) In order to understand the remainder of this command, it is
necessary to define the concept of logical I/O unit. A logical I/0 unit is
a name which may be used in a program to request I/0 (input/output)
activity. The name is not connected to any particular device or file by

MTS-110-0

12-1-67

the program, so the program is independent of the actual device or file
which eventually holds the information. The logical I/0 units available in
MTS are SCARDS, SPRINT, SERCOM, SPUNCH, and 0 through 9. If we look at the
Fortran writeup in this manual, we see that Fortran expects a source deck
on SCARDS and places a listing on SPRINT, error comments on SERCOM, and an
object module on unit 0. . Therefore, when a request is made to run Fortran,
it is necessary to specify which devices or files are actually to be used
for these purposes. The description of the run command shows that SCARDS
is taken as. the current source, if not specified; therefore we need not
specify it since our program is in the source stream. Further, SPRINT and
SERCOM are, by default, the current sink; again we need not specify these
since we desire this output to return via the system output devices. Unit
0, however, has no default assignment; thus, it is necessary to assign some
particular file to 0 to get an object deck for running. Since we want this
file only 1long enough to collect an object deck for execution, we really
need a temporary file which can be deleted at the end of the job. This may
be done by specifying a file name preceded by a minus sign. MTS declares
such a file as temporary and automatically destroys the file at the end of
the job. Thus, on our run command we have 0=-LOAD. This tells MTS that a
temporary file named -LOAD should be created, and all references to 0 in
Fortran should refer to -LOAD. Therefore, we run Fortran with the source
deck on *SOURCE*, the printed output on *SINK*, and our object module on
-10AD. In this particular case, we will have an unsuccessful = compilation,
since our PRINT statement has an illegal namelist name in it. Therefore,
we will not have an execution. To correct this, we would change our
erroneous statement to
PRINT (6,NL)

and resubmit the deck. On this run, compilation will be successful. The
$ENDFILE command simply signals to Fortran that it should quit reading the
source file and finish the compilation. The next command reguests running
the object module produced by Fortran by requesting that -LOAD be run. The
SINK requests that a loading map be placed on the output; a loading map
gives a list of the various programs loaded into physical memory and their
locations. This is handy for later debugging of the progran. To provide
input and output files for the program, 5 is defined as *SOURCE* and 6 as
SINK, where 5 and 6 are the data set reference numbers used in the READ
and PRINT statements. Note that these data set reference numbers are
simply the logical I/O units defined earlier. Thus, our program expects to
read from logical I/0 unit 5, and when we run the program we must tell the
system what file to use when 5 is referenced. In this case we chose
SOURCE since our data will be there. The $ENDFILE after the data tells
the vprogram that this is the end of the data. The final comnand $SIGNOFF
must be the physically last line of any run.

Now let us consider a slightly different version of the previous deck:

$SIGNON IDNO
$CREATE SOQRT
$NUMBER
NAMELIST /NL/SQ, ROOT
10 READ (5,NL)
ROOT = SQRT (SQ)
PRINT (6,N)

Concepts and Facilities 21

MTS-110-0

12-1-67
GO TO 10
. END
SUNNUMBER

SLIST SQRT

SRUN *FORTRAN; 0=-LOAD SCARDS=SQRT
$RUN —LOAD *SINK*; 5=*SOURCE* 6=*SINK*
ENL SQ=10. &END '

&NL SQ=20. &END

$ENDFILE

$SIGNOFF

Here, rather than compiling our source deck from *SOURCE*, we first place
it in a permanent user file. The $CREATE command requests that a user file
with the name SQRT be created; it also makes this file (SQRT) the current
active file. A special file named *AFD* is defined as the current active
file and may be used for references; hence, SQRT and *AFD* each refer to
the same file after this $CREATE command has been processed. The $NUMBER
command indicates that the system should supply a line number for each data
line which it encounters; it is possible to specify a beginning line number
and an increment in this command if one wishes, but here we have taken the
default case of startlng at line number 1 with an increment of 1. Now, as
the source program is read, each source program statement is a data line to
the system. Since data lines are always stored in the current active file,
the source program statements are successively numbered and placed in the
file SQRT. (If the $NUMBER command had not . been given, MTS would have
searched each 1line for a line number and used it if there; otherwise, a
line number of zero would have been assumed. Disastrous results vwould
obviously have followed.) Note that no $ENDFILE command is needed here
since the source deck is not being read by Fortran. The $UNNUMBER command
turns off the automatic line numbering by MTS. The S$LIST command requests
that a listing of the file SQRT be placed on *SINK* (by default). This
command would generate the following output:

- NAMELIST /NL/ SQ, ROOT
10 READ (5,NL)
ROOT = SQRT (SQ)
PRINT (6,N)
GO TO 10
~ END

AN EWN

The numbers on the left of each line are the line nunbers from the file
SORT. The remainder of this deck is as before, except that now on the $RUN
command for Fortran we must spec1fy SCARDS=SQRT so Fortran will take its
source deck from our new file. As before, this deck will not compile due
to the erroneous PRINT statement.. However, since the source deck is in a
pernanent user file, we need not read in the whole deck after removing our
program error. We can simply correct our file and run. The following deck
does this:

$SIGNON IDNO

$GET SOQRT

4 PRINT (6,NL)
$RUN *FORTRAN;....

MTS-110-0

12-1-67

where the dots indicate same as the previous deck. The $GET command makes
SORT the current active file. Note that we cannot use $CREATE again, since
the system would balk at creating two files of the same name. Since
$NUMBER was not given, MTS assumes the data line has jts own 1line number.
Thus, the 4 is stripped from the PRINT (6,NL) line, used as a line number,
and our data line replaces line number 4 in SQRT; this corrects our source
program in SQRT. If we had wanted to add statements to our file, we could
have picked line numbers between those in the file; in this case the new
lines would be inserted in the appropriate places. Thus, the following
deck would place a comment card after the NAMELIST statement in SQRT:

$GET SQRT
1.5C SQRT PROGRAM

There are a number of commands which have not been discussed here, but
the reader should by now have gained some basic understanding of the
concepts and procedures of MTS. It is possible to destroy or empty files,
to change the source or sink assignments, etc. There are also commands
which allow one to interrupt a running program, dump out pertinent
variables from the program, modify various of the locatiomns in the progranm,
and then restart the program. These capabilities are primarily of use to
those running from terminals; the debugging facility providing by this type
of interaction should be obvious.

This has been a brief introduction to the concepts of MTS. However, if
the definitions and procedures discussed here have been understood, one
should have little difficulty in obtaining more detailed information fronm
the remainder of this manual.

Concepts and Facilities 29

MTS-130-0

12-1-67

CALLING CONVENTIONS

INTRODUCTION

A calling convention is a very rigid specification of the sequence of
instructions to be used by a program to transfer control to another program
(usually referred to as a subroutine). It is very desirable although not
always practical to set up only one set of conventions to be used by all
programs no matter what language they are written in so that FORTRAN
programs may call MAD programs and assembly language programs and so forth.
In the MTS system the OS type I calling conventions have been adapted as
the standard. A complete specification of these standards can be found in
the TIBM System/360 Operating Systen Publication, Supervisor and Data
Management Services, Form C28-6646. This writeup shall try to bring out
pertinent details of these calling conventions.

Throughout this discussion we will refer to the terms calling program,
called program, save area, and caliing sequence. The calling brogram is
the program which is in control and wants to now call another progran
(subroutines) . The called program is the program (subroutine) which the
calling program wants to call. The Save area is an area belonging to the
calling program which the called program uses to save and later restore

general purpose registers. The save area has a very rigid format and is
discussed in more detail later on. A calling sequence is the actual

sequence of machine instructions which perform the tasks as specified by
the calling conventions.

The facilities that must be provided by the calling conventions are:

1. Establish addressability and transfer to the entry point.

2. Pass parameters on to the called progran.

3. Pass results back to the calling program.

4. Save and restore general purpose and floating point registers.

5. Re-establish addressability and return to the calling program.

6. Pass a return code (error indication) back to the calling program so
it knows how things went.

The remainder of this writeup will describe the 0S type I <calling
conventions to show how they are used and how the facilities listed above
are provided for.

MTS-130-0

12-1-67

REGISTER AND STORAGE VARIANTS OF TYPE I CALLS

The 0S Type.I calling conventions actually consist of two very similar
calling conventions, referred to as 0S (I) S Type calling conventions and
0S (I) R Type calling conventions. The two differ only in the way
parameters and results are passed between the calling and called programs.
The R refers to register and the S to storage.

The 0S (I) R type <calling conventions utilize the general purpose
registers 0 and 1 for passing parameters and results. This allows only two
parameters or results and cannot be generated in higher level languages as
FORTRAN. Its advantages are that calling sequences are shorter and take
less time to set up. These are very popular in lower-level systenm
subroutines such as GETSPACE or GETFD.

The 0S (I) S Type calling conventions require a pointer to a vector of
address constants called a parameter 1list (in register 1). Since the
parameter list can be of any required length, several parameters can be
passed using 0S (I) S Type calling comnvention. These conventions are used
by system subroutines such as SCARDS or LINK and are generated by all
function or subprogram references in FORTRAN. Results can be passed back
by giving variables in the parameter list new values or via register 0.

PARAMETER LISTS

As stated above a parameter list is a vector of address constants. The
parameter 1list must be on a fuil-word boundary and the entries are each
four bytes long. The address of the first parameter is the first word of
the 1list, the address of the second parameter the second word of the list,
and so on. For example the parameter list for the FORTRAN statement

CALL QQSV(X,Y,Z)

might ke written in assembly code as:

PAR DC A (X) address of X
DC A(Y) address of Y
DC A (Z) address of 2

Now this parameter list works well enouga when the parameter list for the
subroutine is of fixed length, but there is not enough information yet to
allow a subroutine to determine the length of the parameter 1ist and hence
accept variable 1length parameter 1lists. For this reason there are two
types of parameter lists, fixed length parameter lists as described above,
and an extended form of parameter list called a variable-length parameter
list which is described next.

Since a standard 360 computer uses 24 Dbyte storage addresses the

left-most byte of an address conrstant is usually zero. 1In a variable
length parameter list bit zero of the left-most byte of the last parameter

Calling Conventions 31

32

MTS-130-0

12-1-67

address constant is set to 1 to show that it is the last item in the list.
The example above then would be written as:

PAR DC A (X) address of X
DC A (Y) address of Y
DC XL1'80°" turn on bit zero.
DC AL3 (Z) address of 2

if it generated a variable-length parameter list. As a nmatter of fact
FORTRAN does generate variable-length parameter lists. Note though that

_programs expecting a fixed 1length parameter 1list will work with a

variable-length parameter 1list, provided it is a least as long as the
fixed-length list they are expecting.

REGISTER ASSIGNMENTS

Of the sixteen general purpose registers, five are assigned for use in
the calling conventions. The use of the general registers differs slightly
depending upon whether an R or S type call is being made.

MTS-130-0

12-1-67

The following table specifies exactly what each register is used for during
a call:

Register Number Contents

0 Parameter to be passed in R type sequences.

Result to be passed back in R and S type sequences.

Parameter to be passed in R type sequences.

Address of a parameter list in S type sequences.

2-12 Not used as a part of the calling sequence. Must be
saved and restored by the called progranm. The save

area is usually used for this.

13 The address of the save area provided by the calling

program to be used by the called progran.

14 Address of the location 1in the calling program to
which control should be returned after execution of

the called progran.

o e o —— —— —— — —— o W oo (o ot o oot e)

15 Address of the entry point in the called program at

the time of the call.

A return code at the time of the return that indicates
to the calling program whether or not an exceptional
condition occurred during processing of the called
progranm. The return code should be zero for a normal
return or a multiple of four for various exceptional
conditions.

e e e e e e e o - e o — e e e e - e o —— e —]
e e e o o e o e e s e o e e ——— e — e

General Purpose Register Linkage Conventions

Notice that it 1is the called program's responsibility to save and
restore registers 2-12 in the save area provided by +the calling progranm.
There are two reasons for this. Pirst of all only the called program Knows
how many of the registers from 2-12 it is going to use. Since a register
need be saved and restored only if it is actually going to be changed, the
called program may be able to save some time by saving and restoring only
those ragisters which it will use. Secondly, the called program requires
addressability over the area in which it will save registers upon entry,
since any attempt to acquire the address of a save area would destroy some
of the registers which are to be saved. Furthermore, the save area should
not be a part of the called program since that would prevent it from being
re-entrant (shareable). This means the calling program should provide the
save area in which registers are saved and restored. And so we have the

Calling Conventions 33

34

MTS-130-0

12-1-67

called program saving and restoring registers 2-12 in a save area provided
by the calling prcgran.

The calling conventions are quite different with floating point reg-
isters. Since a 1large percentage of programs do not leave items in
floating point registers across subroutine calls it seems rather wasteful
to always save and restore the floating point registers. So the convention
has been established that the calling program must save and restore those
floating point registers which contain items which are wanted. Also,
programs which return a single floating point result quite frequently do so
via floating point register 0.

RETURNING RESULTS

Therea are in the 0S Type I calling conventions four ways in which a
subroutine can return a result. These are:

1. Value of result in general purpose register 0.

2. Value of result in general purpose register 1.

3. Value of result in floating point registers. (usually 0)
4. Value of a parameter from the parameter list changed.

The particular method used depends upon whether the R or S type convention
is used and whether the called program can be used as a function in
arithmetic statements.

The first three methods are used by R type calling conventions for all
returned results. The contents of eaca of the registers depends upon the
particular called program and are described in the subroutine writeup for
each subroutine using the R type calling conventions.

The first, third, and fourth methods are used by S type calling
conventions for all returned results. The first and third methods are used
by function subprograms whose calls can be embedded in FORTRAN and MAD
statements. The choice of general register 0 or floating point register 0
depends upon whether the result returned is integer or floating point mode,
respectively. An example of subroutines which return results in this
manner are the FORTRAN IV Library Subprograms, such as EXP, ALOG, or SIN.
The fourth method can be used by a subprogranm. An examnple would be a
subprogram called by the statement

CALL MATADD(A,B,C,M,N)

which might add the MxN matrices A and B together and store the result in
c.

MTS-130-0

12-1-67.

SAVE AREA FORMAT

The save area is an area belonging to the «calling program which the
called program uses to save and later restore general purpose registers.
The address of the save area is passed to the called program by the calling
program via general purpose register 13. The save area has a very rigid
format and is described in the table:

T ¥ L) 1
| Word | Displacement | Contents 1
[1 i '
L} T Ll L
{ 1 0 { Used by FORTRAN, PL/I, and other beasties for |
| | | many devious purposes. Don't touch! |
1 i i . |
F + i o
2 4	Address of the save area used by the «calling	
		progranm. Forms a backward chain of save areas
i	stored by calling program.	
[l [l [']
L] Ll 1 t
{ 3 8 | Address of the save area provided by the called |
l | | program for programs it calls. Forms a forward |
{ | | chain of save areas. i
[1 i I
1) 1 N T L}
| o | 12 | Return address. Contents of register 14 at time|
| | | of call. |
t } } —
| 5 i 16 | Entry point address. Contents of register 15 |
{ | | at time of call. |
F + } {
| 6 | 20 | Register 0 contents. i
L i Fl 4
. L} Ll) Ll
| 7 1 24 | Register 1 contents. {
- : : 1
I 8 | 28 { Register 2 contents. |
L i 1 " |
) Al) L
| 9 32 | Register 3 contents. {
L i 1 J
] 1 1) B
| 10 | 36 | Register 4 contents. |
L 1 l]
L) 1 T . |
| 11 40 | Register 5 contents. {
L 1 [l (]
t t T !
i 12 | oy | Register 6 contents. |
[i i i
1 1 1 L}
1 13 48 { Register 7 contents. {
L 1 1]
v - T T 1
L 52 | Register 8 contents. |
F + + 1
I 15 | 56 | Register 9 contents. |
1 1 4 i
1 L] 1 L}
| 16 | 60 | Register 10 contents. {
[H k| . - ¥ |
| o t T !
17 64 | Register 11 contents. |
L } i I
] T Ll L]

Calling Conventions 35

MTS-130-0

12-1-67

| 18 | 68 | Register 12 contents.

L [] 1 " |

SAVE AREA FORMAT

There are two things to be noted about the save area format, namely who
sets what parts of the save area and how these areas might be set up. The
calling program is responsible for setting up the second word of the save
area. This is to contain the address of the save area which was provided
when the calling program was itself called. Although this is technically
set up by the calling program as a part of the call, most programs set up
the save area they will provide to subroutines they call once and leave its
address in general register 13. The work then does not need to be repeated
for each call. The called program is responsible for setting up the third
through eighteenth words of the save area. The called program usually
saves the general registers which it will use as a part of its dinitializa-
tion procedure and restores the registers as a part of the return
procedure. Notice that the save area format is amenable to use of the
store multiple and 1load multiple instructions for saving and restoring
blocks of registers. All of this will be made clearer in the examples at
the end.

Some system subroutines (notably GETSPACE, FREESPAC, and a few others)
do not require that a save area be provided for thenm. For these
subroutines general register 13 need not be set up before a call and its
contents are preserved by the called subroutine. The subroutines which
need no save area are clearly marked as such in the MTS subroutine
writeups. Notice that it is all right to provide a save area to one of
these subroutine; it will simply be ignored.

CALLING PROGRAM RESPONSIBILITIES AND CONSIDERATIONS

The calling program is responsible for the following:

1. Loading register 13 with the address of the save area and setting up
the second word of the save area.

2. Loading register 14 with the return adaress.

3. Loading register 15 with the entry point address.

4. Loading registers 0 and 1 with the parameters in an R type call or
loading register 1 with the address of the parameter list in an S
type call.

5. Saving floating point registers, if necessary.

6. Transferring to the entry point of the subroutine.

7. Restoring floating point registers, if necessary.

8. Testing the return code in register 15, if desired.

After the return from a subroutine, the status of the program will be as
follows:

1. In general, the contents of the floating point registers will be
unpredictable unless saved and restored by the calling progran.
2. The contents of general registers 2 through 14 will be restored to

MTS-130-0

12-1-67

their contents at the time the called program was entered.
3. The program mask will be unchanged.
4. The contents of general registers 0, 1, and 15 may be changed.
5. The condition code may be changed.

Note that general registers 0 and 1 and floating point register 0 may
contain results in the case of R type subroutine calls or a function
subprogram. General register 15 will normally contain a return code,
indicating whether or not an exceptional condition occurred during process-
ing of the called progran.

CALLED PROGRAM RESPONSIBILITIES AND CONSIDERATIONS

The called program is responsiblie for the following:

1. Saving the contents of general registers 2 through 12 and 14 in the
save area provided by the calling program. These registers need be
saved only if the called program modifies these registers.

2. Setting up the third word ot the save area with the address of the
save area which will be provided to subroutines it will call.

3. Restoring the contents ot general registers 2 through 14 before
returning to the calling programn.

4. Restoring the program mask if changed.

5. Loading general registers 0 and 1 and floating point register 0 with
the result in the case of R type subroutine <calls or a function
subprogran.

6. Loading general register 15 with the return code.

7. Transferring to the return location.

EXAMPLE CALLING SEQUENCES

This section will describe and give the assembly language statements for
the typical machine instructions necessary to implement 0OS Type I calling
conventions.

A typical entry point might consist of the following statements:

USING SUBRA,12 12 wiil be a base register
SUBRA STM 14,12,12(13) save registers
LR 12,15 set up 12 as the base register
LA 11,SAVE this is save area provided for others
ST 11,8(0,13) set up forward pointer
ST 13,4(0,11) set up backward pointer
LR 13,11 set up for any calls we issue)
LR 11,1 get parameter pointer into noan-volatile
© reg.

Calling Conventions 37

38

MTS-130-0

12-1-67

o
SAVE DS 18F save area we provide for others

Inside a subroutine that began with the entry sequence given above, the
value of the second parameter in the parameter 1list could be put into
general purpose register 3 with the following sequence:

40,11 pick up second adcon from parameter 1list
0(0,3) pick up value of parameter

¢ 6 o HEto 00
S w
. N

Inside a subroutine that began with the entry sequence given above,
another subroutine, SUBRB, could be called using the following sequence.
Remember that register 13 already points to the correct save area:

La 1,PARLIST set up parameter list address
L 15,=V (SUBRB) set up entry point address
BALR 14,15 set up return address and branch to the
subroutine
B *+4 (15) test return code via a transfer tabie
B AOK RC=0
B BAD1 RC=4
B BAD2 RC=8
L J
[J
L]
AOK ece normal return to here
[]
L]
L J
PARLIST DC A (PAR1T) first parameter address

Finally, a subroutine that began with the entry sequence given above
could return to the program that called it with the following sequence:

LE 0,RESULT tloatingy point result to FPR 0.

L 13,4(0,13) use back pointer to get right save area.
LM 14,12,12(13) restore registers.

SR 15,15 indicate a zero return code (no errors)
BR 14 return to what called us

MTS-130-0

12-1-67

It should be pointed out that aithough the above sequence are typical of
the instructions used to implement the calling conventions, many variations
are possible.

MACROS FOR CALLING SEQUENCES

There are two sets of macro definitions in the MTS Macro Library which
can be used to help generate calling sequences. These are the 0S macros
SAVE, CALL, and RETURN; and the macros ENTER and EXIT. The more useful of
these macros are ENTER, CALL, and EXIT. Besides these there is a set of
macros which generate the entire calling sequences for many of the systen
subroutines and IOH/360. More details may be found in section MTS-255.

Calling Conventions 35

Lo

MTS-140-0

12-1-67

BATCH _USER'S_GUIDE

BATCH JOBS

MTS batch Jjobs are those which are turned in at THE WINDOW for amn MTS
receipt card and are run in the order that they are turmned in. The output
may then be picked up at THE WINDOW as soon as the job has been run. A
batch job must not require any interaction.

ADVANTAGES AND DISADVANTAGES OF BATCH

Although many users will need to have interactive capability, many users
will find that batch is satisfactory and perhaps even advantageous to then.
There will probably be few if any interactive users who do not make at
least occasional use of batch.

Batch has several advantages, even for those who have access to remote
terminals. There is at present no way to use a high speed line printer or-
card reader or card punch directly from a terminal. But when running in
batch mode one uses these devices at the Computing Center. Therefore, a
user who does =some of his work on a terminal may wish to create files
containing the information he wishes to be printed and then either turn in
a batch job to list these files or run *BATCH from his terminal to create a
batch job to do the listing (see the writeup on *BATCH in section 280).

Batch may often be more economical than an interactive use of MTS.
Since the charge for a job is based, in part, upon elapsed real-time, the
terminal user will find that he is being charged something for just sitting

and thinking. When running in batch, not only does the card reader not
have to think about the next line to input but the input-output rates are
much higher in Dbatch. A disadvantage may arise in batch when the user

wishes to compile and execute in the same job. Since there is presently no
way for a run command to be made conditional, every run command will be
executed even though the compilation which was to produce the object file
was not successful. Usually a program interrupt occurs early in the
execution of this file. This etfect may or may not be desirable but the
user should be aware of it.

MTS-140-0

12-1-67

DIFFERENCES BETWEEN BATCH AND TERMINAL USE

There are two commands which are not legal in batch ($SOURCE and $SINK)
and three commands which are slightly different ($EMPTY, $DESTROY, and
$RUN). SEMPTY and $DESTROY differ only in that no confirmation of the
command is needed. $RUN differs in that *SOURCE* is set to the card reader
containing the input stream, that *SINK* is the printer associated with
this batch run and *PUNCH* is the punch associated with +this batch run.
PUNCH does not exist for terminal users. In batch, if the user does not
specify global limits for time, pages, and cards on his $SIGNON card,
default values will be supplied automatically and his job will be held to
those limits. See the section Limits Specification, section MTS-225, for
details.

USEFUL HINTS FOR RUNNING A BATCH JOB

1. It 1is often necessary to create an end-of-file while running a batch
job. A SENDFILE placed at the point where an end-of-file is needed
will accomplish this. In addition there is an automatic end-of-file at
the end of each batch job.

2. Any object deck in the source stream should be terminated with either
an LDT card (see loader section) or a $ENDFILE.

3. It is strongly recommended that the user place his name enclosed by
primes as the last parameter on the $SIGNON card.

4. Occasionally it 1is necessary to rerun a batch job and a user should
take this possibility into account. For example, a user may create and
give contents to a file in the first part of his job and empty and give
new contents to the same file later. If it became necessary to rerun
this job after it had already given the second contents to the file, it
would not run the same if any of the line numbers in the second
contents differed from the line numbers in the first. To solve this
problem, instead of $CREATE use either $CREATE followed by $GET and
$EMPTY or $DESTROY followed by $CREATE.

EXAMPLES OF MTS BATCH JOBS

1. Sample FORTRAN compilation and run.

$SIGNON X007 Y*JAMES BOND'
$RUN *NEWFORT; 0=-0BJECT

Batch User's Guide 41

42

MTS-140-0

12-1-67

FORTRAN progranm

.

$ENDFILE
$RUN -OBJECT *SINK*; 1=*SOURCE* 2=%SINK*

Comments: This job will compile the FORTRAN program in the source streanm,
putting the 1listing on the printer and the object program in a temporary
file called -OBJECT. The object program is then run producing a map on the
printer. The program will use logical unit 1 for input from the job streanm
and write the output on logical unit 2 which will be the printer.

2. Batch job to initialize the file PHROG from cards in the input strean.

$SIGNON P314 'G.J. NOHOPE!'
$CREATE PHROG

$EMPTY PHROG

$GET PHROG

$NUMBER

cards to go into file

SUNNUMBER
$SIGNOFF

Comments: The $EMPTY and $GET commands are is only important if the job is
to be rerun. See above.

3. Batch job to list the file LISTING-B on the printer.

$SIGNON Q123 'FIFO STACK!'
$LIST LISTING-B
$SIGNOFF

4. Batch job to assemble a program, punching the object deck produced
(default case).

$SIGNON XXXX *L. USER!
$RUN *ASMBLR

MTS-140-0

12-1-67

assembly input

$SIGNOFF

5. Batch Jjob to run the object deck produced in the previous example. No
map is wanted, and the program will read from SCARDS and print on
SPRINT.

$SIGNON XXXX TIME=20 PAGES=62 'L. USER!
SRUN

object deck

$ENDFILE

data for the program

Batch User's Guide 43

Oy

MTS-150-0

12-1-67

TERMINAL_ USER'S GUIDES

This section contains usage information for the various types of console
and terminal devices supported by MTS, such as teletypes, 2741s, etc.

MTS-151-0

12-1-67

TELETYPE USER'S GUIDE

(For Teletypes through 2702)

Introduction

This document gives instructions for initiating, operating, and termi-
nating use of a teletype terminal calling in on numbers that go through a
2702 transmission control in MTS. (See section MTS-170 for a description
of teletype use through the Data Concentrator — which is being used depends
on the telephone number called.) The teletype terminal may be either a
model 33 or 35, ASR or KSR model connected to the Bell Telephone Systenm
dialable network through an upright data phone and must be capable of
half-duplex operation. A teletype with an inverted data phone or connected
to the TWX network cannot be used as an MTS terminal. Although am ASR
teletype with paper tape equipment may be used via the keyboard, MTS has no
provisions for receiving or transmitting information via paper tape.

Teletypes are connected to the IBM System/360 through an IBM 2702
Telecommunications Control using a Telegraph Type II adapter. The IBM 2702
is connected to the telephone system through model 103A2 data sets. These
data sets are assigned a block of telephone numbers in a trunk-hunting
sequence within the University Centrex System. The telephone number is
listed under 2702 - TELETYPE_PORTS in MTS-270.

Iritiation Procedure

To ready the teletype for use with MTS, proceed as follows:

1. 1If the teletype has the option to run in either half-duplex or
full-duplex mode, place it in aalf-duplex mode. On some model 35
teletypes this is accomplished by twisting the HDX switch, which is
located to the left of the keyboard, im a clockwise direction. On a
model 33 and some model 35 teletypes flip the toggle switch located
above the telephone dial to the HDX position.

2. Press the button labelled ORIG located beneath the telephone dial.
You should row hear a dial-tone over a speaker inside the teletype.
The volume control for the speaker is a knurled knob located to the
right of the keyboard of a model 35 teletype or on the front panel
of a model 33 teletype.

3. Dial the telephone number ot the IBM 2702 =~ TELETYPE PORT. The

Teletype User's Guide 45

46

¥TS-151-0

12-1-67

telephone number is listed in MTS-270. The first telephone number
listed will search all of the numbers and connect you to the first

available one. If your teletype 1is in the University Centrex
System, you need dial only the last five digits of the telephone
number.

4. If MTS is on the air and there is a free line, your call will be
answered. Either a busy signal or a ring with no aaswer indicates
that MTS is not on the air or there are no free lines.

5. After answering your call MTS types out:

UNIVERSITY OF MICHIGAN TERMINAL SYSTEM: ANN ARBOR,MICHIGAN.
WHO ARE YOU? ‘

If your teletype does not respond with an automatic answerback, you
must type one. To do this, press the K button to the 1left of the
keyboard and type: :

a. RETURN

b. LINE FEED

c. A sequence of up to ten characters.
d. RETURN

e. LINE FEED

f. X-OFF

6. If you have not already done so, press the K button to the left of
the keyboard. This connects the keyboard to the telephone line.

7. When MTS types the character #, it is operational and ready for a

command line. The first command you issue should be $SIGNON. For a
description of the commands see MTS-230.

Keyboard Operation

During normal operation, the teletype is in one of three modes: receive
mode, transmit mode, or idle mode. Since the teletype keyboard does not
lock or otherwise indicate the current mode, it is the user's
responsibility to be aware of the current mode and act accordingly. A
description of each mode and the action to be takem by the user in that

mode follows:

1. The teletype is in receive mode whenever a message is being typed on
the teletype by MTS or some program running under MTS. The first
character of the output line is a prefix character which indicates
"who is speaking". These prefix characters are defined in MTS-220.
The terminal user should not type on the keyboard while the teletype
is in receive mode.

2. The teletype is in transmit mode whenever MTS or some program
running under MTS is waiting for the terminal user to type imn a line

MTS-151

12-1-67

-0

at the teletype. A prefix <character is typed out as the omnly
character of the line to show that input is expected and indicate
"wvho has requested it". These prefix characters are defined in
MTS-220.

The terminal user should respond by typing in the requested line,
terminating it by typing the «character X-ON (control Q) or the
character X-OFF (control S). Note that the RETURN character is
treated Jjust as any other character and will not terminate a line.
There are two classes of characters which have special significance.
The first class are characters which can be used to edit the line as
it is typed in before it is given to the routine requesting it. The
characters are described briefly in MTS-220 and in more detail in
the table below. Characters of this <class will be treated as
ordinary characters if preceded by the "literal next character"
character. The second <class of characters are those whiéh are
treated peculiarly by the IBM 2702. These characters cannot be
treated as ordinary characters because of hardware limitatioas.

If a transmission error is detected while the teletype is in
transmit mode, the prefix character is retyped on the same line and
all characters typed up to this point are ignored. The teletype
remains in transmit mode waiting for the input line.

An input line may consist of up to 96 characters, not including the
line termination character. If this .count is exceeded, an attention
is assumed. See the next section of the writeup for details about
attentions.

The teletype is in idle mode when it is neither in receive mode nor
in tramsmit mode. That is, the teletype is in this mode when the
program or command -being performed is neither writing information on
the teletype nor waiting for a input line from the teletype. For
instance, the teletype will be in idle mode if the program the user
is running is computing with no input or output, or is imn an
infinite 1loop, and so forth. While in idle mode, the teletype will
"grunt" for about a second once each thirty seconds. This is meant
to reassure the user that MTS has not forgotten him. The terminal
user should not type on the keyboard while the teletype is im idle
mode.

Teletype User's Guide 47

48

MTS-151-0

12-1-67

r L 1
| CHARACTER | FUNCTION i
1 []
L Rl |
| CONTROL A | The previous character is deleted. i
| (SOH) | |
t } |
| CONTROL C { A logical end-of-file return is i
{ (EON) | presented to the program. Any other |
| | contents of the line are not returned. |
[1 'l
LB Ll Ll
| CONTROL N | The current input line is deleted. |
{ (s0) { The teletype returns to transmit mode |
| | for the line to be retyped. |
[l 1 ']
1) 1 |
| CONTROL Z | The next character typed is treated |
| (S2) | as an ordinary character, even i
i | if it is a CONTROL A, CONTROL C, |
| | CONTROL N or a CONTROL Z. |
| i This has no effect on characters |
i { below. |
b + !
| RUBOUT | This character is completely ignored |
| | by the IBM 2702. i
] 1 4
r T :
| CONTROL Q | This character terminates a transmit]
| (X-ON) | operation in a normal manner. |
[1 J
L] 1 '
| CONTROL S | This character terminates a transnmit i
| (X-0FF) | operation in a normal manner. }
i [)]
r 1 .]
| CONTROL E | This character terminates a transmit |
| (WRU) | operation in a normal manner, unless i
| | it is the only character typed, in which|
i | case it causes MTS to give its answer- |
| | back and the transmit to be retried. |
i i -]
L T) L]
| CONTROL D | This character terminates a transmit |
| (EOT) | operation by hanging up the tel- {
| | etype. This is not the approved |
| | way to terminate a session. |
L ' 3
Table I: Characters wanich have special significance dur-

ing tramsmit operatiomns. Control characters
are typed by holding down the control key while
typing the character, control-shift characters
by holding down both the control and the ghift
keys while typing the character

MTS-151-0

12-1-67

An attention is a signal to MTS to interrupt whatever it is doing for
you and return for further command lines. An attention can be used, for
instance, to interrupt a $LIST command after you have seen all which you
wish to see from the file, to interrupt a program which is executing to
check its progress and so forth. A program that has been interrupted via
an attention can be continued at the point of the most recent interrupt by
using the $RESTART command. There are a few times when an attention will
not interrupt MTS. These are: during the initial signon procedure, during
the signoff procedure, and if you have just issued an attention which has
not taken effect yet.

To issue an attention to MTS press the BREAK button. This button is
located to the left of the keyboard on a model 35 teletype and at the right
end of the keyboard on a model 33 teletype. After pressing the BREAK
button, press the BREAK RELEASE button located above the telephone dial and
the K button located to the left of the keyboard. MTS should now type out
the message:

ATTENTION ASSUMED.

The exact action taken next depends on what mode the teletype was in at the
instant the the BREAK button was pushed:

1. If the teletype is in receive mode, the exact action taken depends
on what MTS was doing at the moment of the attention. Three
situations are possible:

a. If MTS has already set up the next 1line of output and was
waiting for the «current line to finish so that it could type
this new line out, the new line is typed out before the
interrupt is taken.

b. If MTS was waiting tor the current line to finish so that it
could request a new line from the user, the new line 1is
requested before the interrupt is taken. This is necessary in
case the user decides to continue after the interrupt.

c. If MTS was not waiting tor an input or output 1line from the
teletype the interrupt is taken immediately.

2. If the teletype is in transmit mode, the line which was requested

must be entered before the interrupt is taken. This is necessary in
case the user decides to continue after the interrupt.

3. If the teletype is in idle mode, the interrupt is taken immediately.
When the interrupt is finally taken as described above, the message

ATTENTION INTERRUPT AT XXXXXXXX

Teletype User's Guide 49

MTS-151-0

12-1-67

is typed, where XXXXXXXX is the right half of the PSW at the time of the
interrupt. The teletype is then placed in transmit mode waiting for a
command line to MTS.

Normal Termination Procedure

If the teletype is not in transmit mode waiting for a command line,
issue an attention. When the teletype does enter transmit mode waiting for
a command 1line, type in a $SIGNOFF command. MTS will now close all your
files, type out several lines of statistics for this session, and turn off
the teletype.

MTS-151-0

12-1-67

Sample Session

Following is a sample session using MIS from a teletype. Because the
edit and control characters are non-printing, a control character is
indicated below by a lower-case letter, the letter being the one pushed
with the control key down. (e.g., X-OFF is CONTROL-S which is printed as
"s") At this session, a file was created and a FORTRAN progran typed into
it, the file was edited and then compiled, and finally the object deck was
Tun. Messages to the right in parenthesis are editorial conments.
Underlined characters were typed by the user.

UNIVERSITY OF MICHIGAN TERMINAL SYSTEM : ANN ARBOR,MICHIGAN.
WHO ARE YOUZe
UM CMPC B RA (Answerback code from teletype)

#$SIGNON_QQQs

#**¥LAST SIGNON WAS: 12:15:42 05-01-67
USER "0QQ." SIGNED ON AT 13:31.50 ON 05-01-67
#3SCREATE DEMOSs

TFILE "“DEMOS " HAS BEEN CREATED.
#3NUMBERS

1100 _FORMAT (AlU) s

2READ_(5,100) ALPHAS

3WRITE_ (6,100) ALPHAS

GO_T0_1s

5ENDs

63UNNUMBERS

D
1 100 FORMAT (AY4)
1.5 1 CONTINUE
2 READ (5,100) ALPHA
3 WRITE (6,100) ALPHA
3 GO TO 1
5 END
#END OF FILE
§$€RUN *FORTEDIT; SCARDS=DEMOS SPUNCH=-SQURCES
#EXECUTION BEGINS
*EXECUTION TERMINATED
#SLIST -SOURCES
> 100 FORMAT (A4)
1 CONTINUE

READ (5,100) ALPHA

WRITE (6,100) ALPHA

GO TO 1

END

VVVVVYV #&3# & H#H# HF H &
tA |
s

YU & W N -

>
>
>
>
>
#END OF FILE

Teletype User's Guide 51

52

MTS-151-0

12-1-67

#3RUN_*NEWFORT; SCARDS=-SQURCE 0=-OBJECT PAR=NO APs
#EXECUTION BEGINS

FORTRAN IV G LEVEL 0, MODE 0 MAIN DATE = 13:3
0001 100 FORMAT (A4)

0002 1 CONTINUE

0003 READ (5,100) ALPHA

0004 WRITE (6,100) ALPHA

0005 GO TO 1

0006 . END
FORTRAN IV G LEVEL 0, MOD 0 MAIN DATE = 13:3

TOTAL MEMORY REQUIREMENTS 000132 BYTES
#EXECUTION TERMINATED
#3RUN_~OBJECT —MAP_; 6=*SINK*s
#EXECUTION BEGINS

5 WAS CALLED BUT NOT SPECIFIED. ENTER UNIT NAME OR "CANCEL"

?XSOURCE*s

ABCDs

ABCD (Program types back its imnput)
ABCDnsDELETED (An example of deleting a line)
ABCa¥Zs (Example of deleting a character)
ABYZ

X (The break key was pressed here)
ATTENTION ASSUMED.

ABBAs (Line requested again in case of
ATTENTION INTERRUPT AT 4E0396AA restart)
#SRESTART

ABBA (Note interrupt was transparent)
CSENDFILE (End-of-file generated)

THC217I
#EXECUTION TERMINATED
#$SIGNOFF
#*x%%%* OFF AT 13:41.14
#*%%% ELAPSED TIME 564.593 SEC.
#*%*%%x CPU TIME USED 9.5 SEC.
#*%*¥% STORAGE USED 5051.616 PAGE-SEC.
#**%x% FILE STORAGE 1234 PAGE-MIN.

MTS-151-0

12-1-67

Translation to _and from ASCII

The IBM/360 computer represents characters internally in a code referred
to as EBCDIC which stand for Extended Binary Coded Decimal Interchange
Code. This code represents each character uniguely in eight bits, with a
hidden ninth bit for parity. Hefice there are 256 possible characters
within the encoding. Of these 256 possible characters, approximately 100
have been assigned commonly used graphics and meanings. The others are
more or less available for arbitrary use.

Model 33 and 35 teletypes, on the other hand, encode data imn a code
referred to as ASCII-8. This code represents each character in an eight
bit code, where seven of the bits are unique for each character and the
eighth bit is optionally used for parity checking. Hence there are two
representations for each <character, an even-parity representation and an
odd-parity representation. There are exactly 128 characters in ASCII-8 and
each is assigned either a graphic or some control function.

The teletype support routines in MTS then must translate every input
character from a teletype 1into the egquivalent EBCDIC character and must
translate every character going to the teletype into ASCII-8. 1In order to
accomplish - this, a mapping function was set up. The criteria used in this
function are:

1. Zvery unique ASCII-8 character typed in at the teletype is assigned
a unique representation within tae IBM/360.

2. Input characters are not checked for correct parity. This means the
teletype can generate even parity, odd parity, or arbitrary parity.

3. All characters sent back to the teletype are sent in their
even-parity representation.

4. Any EBCDIC character which does not correspond to an ASCII-8
character (there are 256-128=148 of these) will be converted to tae
ASCII-8 NULL chnaracter if sent as output to a teletype.

5. ®very ASCII-8 character 1s +transiated into amn EBCDIC character
having the same graphic or controli function 1if such exists. If
there is no EBCDIC character witn the same meaning, one of the
left-over EBCDIC characters was cnosen rataner arbitrarily.

Following is a table showing the correspondence between the ASCII-8
character and EBCDIC representation. The X in the eighth bit of the
ASCII-8 character can bes either 0 or 1 on input and is set to force even
parity on output.

Teletype User's Guide 53

MTS-151-0

12-1-67

EBCDIC_ENCODING ASCII-8 ENCODING NAME TTY KEY FUNCTION

(HEXADECIMAL) (BITS 1...8)
00 0000 000X NULL C-S-P BLANK TAPE
04 0010 100X -TAPE C- T TAPE PUNCH OFF
05 1001 000X HTAB C- I HORIZONTAL TAB
07 0000 100X DL c- P
12 0111 111X ESC ESCAPE KEY
15 1011 000X RETURN CARRIAGE RETURN
17 1111 111X RUBOUT ALL HOLES PUNCH
18 1111 100X s7 c-S-0
19 0111 100X S6 Cc-S-N
1A 1011 100X S5 c-S-M
1B 0011 100X S4 c-s-1L
1c 1101 100X S3 Cc-S-K
1D 0101 100X s2 c- Z
1E 1001 100X S2 c- ¥
1F 0001 100X S0 c- X
21 1000 000X SOM C- A START OF MESSAGE
22 1011 111X ALT MD ALTERNATE MODE
25 _ 0101 000X LF LINE FEED
26 1100 000X EOM C- C END OF MESSAGE
28 0011 111X CN FM SPECIAL FORM
2c 1110 100X LEM c- W
2D 0110 100X SYN c- v
2E 1010 100X ERROR C- U
2F 1000 100X X-ON C- Q TAPE READER ON
30 1111 000X SI c- o0
31 0111 000X S0 c- N
32 0011 000X FORM C- L FORM FEED
33 1101 000X VT C- K VERTICAL TAB
34 0100 100X TAPE C- R TAPE PUNCH ON
35 1100 100X X-OFF C- S TAPE READER OFF
37 0010 000X EOT C- D END OF TRANSMN
3B 0001 000X FEO c- H
kl 1110 000X BELL C- G RINGS BELL
3D 0110 000X RU c- F ARE YOU?
3E 1010 000X WRU C- E WHO ARE YOU?
3F 0100 000X EOA C- B END OF ADDRESS
40 0000 010X SPACE BLANK SPACE
4B 0111 010X . PERIOD (DECIMAL)
4c 0011 110X < LESS THAN
4D 0001 010X (LEFT PAREN
4E 1101 010X + PLUS OR ADDITION
50 0110 010X & AMPERSAND
SA 1000 010X ! EXCLAMATION PT
5B 0010 010X $ DOLLAR SIGN
5C 0101 010X * ASTERISK
5D 1001 010X) LEFT PAREN
5E 1101 110X : SEMI-COLON

MTS-151-0

12-1-67

60
61
6B
6C
€E
6F
7A
7B
ic
7D
7E
7F
81
82
83
84
&5
86
87
88
89
91
92
¢3
o4
¢5
96
97
98
99
A2
A3
Al
A5
A6
A7
A8
a9
AD
BA
BB
BC
BD
C1
c2
Cc3
Cu
Cc5
C6
c7
Cc8
Cc9

D1

1011
1111
0011
1010
0111
1111
0101
1100
0000
1110
1011
0100
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
1011
0111
1111
0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
1101
0011
0111
1111
1011
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101

010X
010X
010X
010X
110X
110X
110X
010X
001X
010X
110X
010X
011X
011X
011X
011X
011X
011X
011X
011X

011X’

011X
011X
011X
011X
011X
011X
111X
111X
111X
111X
111X
111X
111X
111X
111X
111X
111X
101X
101X
101X
101X
101X
001X
001X
001X
001X
001X
001X
001X
001X
001X
001X

w0

QHEQWMUO&PH"‘./"NMNS<Cﬂ’lﬂHLQ"UObEI—WLJ.HB'LQH(DQOUQ SN =W oee WV ES N
H =

NEG. OR MINUS
ORDINARY SLASH
COMMA

PERCENT
GREATER THAN
QUESTION MARK
COLON

POUND SIGN

AT SIGN
APOSTROPHE
EQUAL SIGN
DOUBLE QUOTE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LOWER CASE
LEFT BRACKET

NKRMKEdORMPTOYOZIHNRUHIMRAEBO OWR

"BACKWARD SLASH

UPWARD ARROW

LEFTWARD ARROW
RIGHT BRACKET
UPPER CASE
UPPER CASE
UPPER CASE
UPPER CASE
UPPER CASE
UPPER CASE
UPPER CASE
UPPER CASE
UPPER CASE
UPPER CASE

UHIIOHMEOD O P

Teletype User's Guide 55

56

MTS-151-0

12-1-67

D2
D3
D4
D5
D6
D7
D8
D9
E2
E3
E4
E5
E6
E7
E8
E9
F0
F1
F2
F3
Fy
F5
F6
F7
F8
F9
FE
FF

1101
0011
1011
0111
1111
0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
0101
0000
1000
0100
1100
0010
1010
0110
1110
0001
1001
1101
0000

001X
001X
001X
001X
001X
101X
101X
101X
101X
101X
101X
101X
101X
101X
101X
101X
110X
110X
110X
110X
110X
110X
110X
110X
110X
110X
111X
011X

LXECNCUFRFUNSCNKRKESCHUIDO WO =2 & b X

UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER
UPPER

NUMERAL
NUMERAL
NUMERAL
NUMERAL
NUMERAL
NUMERAL
NUMERAL
NUMERAL
NUMERAL
NUMERAL

CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE
CASE

WCoOoONOCULEPEWNO

NMMEdadhnoonOo =it xR

MTS-152-0

12-1-67

IBM TERMINAL TYPE 2741 USER'S GUIDE

(For 2741s through the 2702)

Introduction

This guide gives instructions for the use of the 2741 as a remote MTS
terminal when connected through the 2702 (see section MTS-170 for descrip-
tion of use through thes Data Concentrator - which is being used depends on
the telephone number called). The transmission of information between the
2741 and the CPU is accomplished yia the 2702 Transmission Control and 2870
Multiplexor -Channel. Common carrier connections are utilized and require
the use of a standard data phone and a 103A aata set. The telephaone
numbers for 2741 terminals are_different tnan those for teletypes and are
1isted in the Data Set Directory MTS-270-1. :

The 2741 may be used as an ordinary electric typewriter when it 1is not
being used as a communications terminal. For this type of use the main
power switch (keyboard) should be M"ON" and the "LOCAL-COMMUNICATIONS"
switch (left side panel) should be set to LOCAL.

Terminal Procedures:

1. Initiation

A. For use as an MTS terminai tne LOCAL-COMM switch nmust be set to
nCOMM" and the main power switch must be "ON" before dialing the
computer telephone number. Tae position of tne "golf balil"
carrier is not important; it will Dbe reset automatically.

3. To make the telepnone connaction depress the "TALK" button on
the data phon2 panel, pick up the nand set, and dial the proper
number. Whan the high pitched tomne is heard depress the "DATA"
button and hang up the pana set. Either a busy signal or a ring
with no answer indicates thnat MTS is not available at that time
or that there are no free lines.

C. A completed call to the system wiil cause the message UNIVERSITY
OF MICHIGAN COMPUTING CENTER, ANN ARBOR to be typed out. This
is followed by a carrier return (with line feed) and then tae
typing of the character %. This: indicates that the first

Teletype User's Guide 57

58

MTS-152-0

12-1-67

command line ($SIGNON XXXX) can be entered. After entering
the "signon" command character string, the carrier return key
should be depressed to indicate the end of the message.

2. Conversation Operation

A.

Terminal modes: During operation the 2741 may be in one of three
modes: receive, control-receive, or transmit. The keyboard
(with the exception of the "attention" key) is locked except
when in transmit mode. Normally the 2741 is placed in tramsmit
mode only when MTS expects a line to be entered.

Entering MTS 1lines: Alphabetic characters in command lines are
always converted to upper case before the command line is
analyzed; thus $SIGNON and $signon produce the same effect.
Data lines, however, are entered exactly as they are typed at
the terminal. If automatic upper case conversion is desired for
keyboard entry of alphabetic characters, one may use the $SET
command to specify forced upper case conversion for lines read

by the MTS monitor, and the @UC modifier in all other cases.

A line may be deleted by depressing the "attention" key. 1In
addition to the 1line delete function three characters are
assigned special control functions for the 2741 communications
with MTS. These are:

1. Back space ~ this causes the preceding character of am input
line to be deleted. Consecutive backspaces may be used to
delete several previous characters or even an entire line;
however, if an entire line is wiped out with backspaces and
then the carrier return key is depressed a zero length line
is transmitted to the MTS routines. (Note that his differs
from a 1line delete via the attention key. A line deleted
via "attention" is never transmitted to the MTS routines.

2. Cent sign - this is used to indicate logical end of file;
the contents of the input containing a £ are not transmitted
to MTS, only the end-of-file signal is transmitted.

3. Exclamation point - this is used as the "literal next
character" character. Should it be desirable to actually
enter a backspace, cent sign, or exclamation point into a
command or data line, these characters can be preceded by
one "exclamation point" . In this context the pair of
characters is taken as a single character with the normal
graphic value of the second rather than as a sequence of
control characters.

The order for analyzing input lines is as follows.

a. A 1line is deleted if the attention key 1is depressed
Legardiess of the contents of the input line.

MTS-152

12-1-67

-0

b. Literal next characters are applied (note that literal next
characters have no meaning unless they precede one of the
three special characters and are ignored if out of context).

c. If any backspaces remain they are applied to delete the
appropriate previous characters.

d. If an end-of-file character remains, a logical end-of-file
is returned to MTS; otherwise the edited line is returmned.

Any length of time may be used to enter a single input line via
the 2741; however if there is no activity for a span of
approximately 15 minutes the user and terminal will be automat-
ically signed off. Actually a "timeout" occurs (in the 2702) if
no character is enterea within 28 seconds of the previous
character. in this event all characters transmitted are saved
and the 2702 is again prepared to receive text from the 2741 so
that another segment of tne input line can be entered. An input
line is +thus accumulated over a relatively long time interval.
It may occur that a user enters a character while the 2702 is
being reset for the next line segment (very unlikely but it can
happen) ; in this case tne message LINE DELETED: LOST DATA will
appear and the entire 1line will have to be reentered. Input
lines may contain up to 128 characters.

C. Attention interrupts: An attention interrupt is a signal to MTS
to interrupt whatever it is doing for you and to return for
another command line. One may interrupt the execution of a
program, the 1listing of a file, etc. by depressing the
attention key. If an attention interrupt is desired while the
2741 is in transmit mode the attention key should be depressed
twice; the first time to cause line deletion and the second time
during the typing of the "LINE DELETED" message. That is,
attention interrupts are possible only when the 2741 is in
receive mode, i.e. only when it is receiving a line from MTS or
during execution of some program. The 2741 will type out the
message ATTENTION INTERRUPT AT XXXXXXXX and return to transmit
mode after typing #. At this time you may enter a new command
including $RESTART which cause execution to resume where it was
interrupted.

mermiration Procedure: With the 2741 in transmit mode enter the
command $SIGNOFF. After this command line is scanned MTS will
properly close all of your riles (this may take a few seconds) and
then type out a summary ot your session at the terminal. The line
will be automatically disconnected.

Teletype User's Guide 59

MTS-153-0

12-1-67

1050 USER

It is
numbers
features
Guide is

'S GUIDE

possible to use an IBM 1050 terminal in MTS by dialing

the

same

as are used for an IBM 2741. The 1050 must have several special
and RPQ's, primarily send and receive break. A complete

in preparation and will be released as soon as possible.

User's

MTS-154-0

12-1-67

2250 MODEL I DISPLAY USER'S GUIDE

mhis writeup gives instructions for the use of the 2250 Model I Display
as a terminal running under MTS. Terminal and system interaction is
strictly in character mode using only the alphanumeric keyboard and the
programmed function keyboard. Various library files and user programs that
run via a RUN command may (and do) use the light pen and graphics features
of the 2250.

Initiation

Wwhen the 2250 is activated and ready for users, the screen is blank and
the programmed function keyboard lights are 1lit up in a Dblock npw,
Pressing any programmed function keyboard button causes the standard reply
WONTVERSITY OF MICHIGAN TERMINAL SYSTEM" to be displayed on the screen and
a cursor is positioned at the bottom of tne screen. The $SIGNON command
may now be entered via the alphanumeric keyboard.

Conversational Operation

In command mode and during RUN's that are not gJraphics programs, the
last 20 input or output 1lines are displayed on the upper half of tae
screen, and space for two lines (148 characters) of characters to be input
is provided at the bottom of tae screen, with a cursor when the program
(YTS or user program) r2quests input. These two 1lines <form one logical
line of up to 148 characters to be sent to the computer when reguested.

Alphanumeric Keyboard. Striking a character key on the keyboard (when
a cursor is displayed) causes that character to be input to the input
region which is displayed at the bottom of the screen. END (hitting the 5
key while holding down the ALTN CODING key) causes the contents of that
input region, up to the cursor, to be input to the program. CANCEL
(kitting the O key while holding down the ALTN CODING key) causes the
contents of the input ragion to be erased; nothing is sent to the program.
The ADVANCE and BACKSPACE keys position tué cursor along the input line.
The JUMP key moves the cursor back to tne first character in the input
line. The space bar is not the same as ADVANCE: it enters a blank into tae
irput 1line as well as advancing the cursor by one position. The CONTINUE
key, if held down when a character xey is hit, causes that character to be
repeated across the input line untii bota keys are released.

2250 User's Guide 61

MTS-154-0

12-1-67

Programmed__Function Keyboard. All keys except 28 and 29 are legal
only when they are 1it.

Key 0 causes an attention interrupt to be generated.

Key 3 causes the display to revert to the last 20 lines. (way to get
back to original position after scrolling)

Keys 11,16,18,23.

At any given time, up to the iast 2000 lines of input/output are
saved in virtual storage. (If this limit is exceeded, all but
the 1last 4096 characters are thrown away) These lines can be up
to 148 characters (input) or 255 cnaracters {output) 1long. The
display screen may be thougat of as a "window" 74 characters wide
and 20 lines deep, looking out over this region. 1In order to see
everything, it is necessary to be able to scroll (move back and
forth) the background up and aown, and right and left behind this
window. These four keys (11, 16, 18, 23) are arranged in a
diamond, and pressing the obvious key starts scrolling in that
direction. Pressing the key a second time stops it. Key 28 (see
description) controls speed.

Key 15 releases all previous input/output lines saved except the last
4096 bytes.

Key 27 when pressed causes a ‘'new output page" to be displayed. The
last 20 lines are saved and the 20 line display area is blanked.

Key 28 is a slow-fast key which controls the rate at which output is
displayed.
UNLIT: fast - as fast as can be received.
LIT: slow:- - about one line per second.

Each press of the key flips it between the fast and slow states.
It is initially unlit.

Key 29 is a stop-go key which controls the accepting of output lines
from the progranm.
UNLIT: go - lines are accepted and displayed at the speed
specified by key 28.
LIT: Stop - accept no more output lines for the time being.
Each press of the key flips it between the stop and go states.
It is initially unlit.

Key 31 gives an end-of-file.

MTS-160-0

12-1-67

TAPE USERS_GUIDE

INTRODUCTION

This document gives instructions for mounting and accessing data stored
or magnetic tapes. Nine track tapes and seven track tapes written at
either 200, 556, or 800 BPI with odd or even parity are currently
supported.

BASIC CONCEPTS

In order +to absolve any ambiguities which might arise the following
definitions are offered.

7 and 9 Track Tapes

A 7 track tape frame contains 6 bits of data and one parity bit; a 9
track tape frame contains 8 bits ot data and one parity bit. This property
of the tape is a direct function of the tape unit upon which the tape was
written; that is, all 7 track tapes must be read and/or written on 7 track
tape units, all 9 track tapes must be read and/or written on 9 track tape
units. All 7090 compatible tapes are 7 track tapes.

0dd and Even Parity

The above mentioned parity bit may be manipulated so that there are
either an odd (odd parity) or an even (even parity) number of bits set to
one in each tape frame. If binary records are to be written odd parity
must be used to prevent loss of data. Common usage also requires that 7
track BCD tapes be written with even parity.

Densiti=s
Tt is possible to write 7 track tapes in any one oi three densities:
(a) 200 BPI which corresponds to our 7090 low demnsity

(b) 556 BPI which corresponds to our 7090 high density
(c) 800 BPI which cannot be read by our 70690.

Tape Users Guide 63

e4

MTS-160-0

12-1-67

All 9 track tape drives write at 800 BPI density.

Translator and Data Convertor

Since 7 track tape characters contain only 6 bits of data and 360 data
bytes <contain 8 bits of data it seems like there is a problem getting from
ore to the other. To solve these problems the translator feature and data
convertor features are provided. By playing the appropriate games it is
possible to write a 7 track tape with either tramnslator on, data convertor
on, or both features off.

If translator feature is on an automatic conversion is invoked which
translates most 8 bit EBDIC characters into their corresponding 6 bit BCD
counterparts.

If data convertor feature is on 4 tape characters will be produced for
each 3 data bytes. All 8 bits in each byte are thus transmitted. Data
convertor on forces odd parity.

If neither translator or data convertor is specified the low order 6
bits of each data byte are transmitted to/from the tape. To insure
accurate data transmission odd parity snould be specified when both
translator and data convertor are off.

9 track tape users should just torget all that noise. All 9 track tapes
are written in odd parity at 800 BPI.

File Protect Ring

Since writing on a tape destroys any information which may have been
stored upon it a file protection device is provided to prevent accidental
erasure of save tapes. This device, hereafter called file protect ring, or
just ring for short, must be inserted in a groove in the back of the tape
reel to allow writing on the tape. Tihe user must specify at the time the
tape is mounted whether the ring is to be in (allowing writing) or out
({prohibiting writing).

Record Size

Every normal read or write operation transmits a block of data to/from a

tape unit. This block of data is called a record. Usually a record
corresponds to one line in a file; but it is also possible to vwrite very
large records. One of the attributes associated with a tape is an upper

bound to the size of a record.

MTS-160-0

12-1-67

End of Tape Area

Approximately 20 feet from the end of each reel of tape there 1is a
silver strip known as the end of tape marker. There is enough tape after
this marker to allow users who desire to write a short (5 records or 1less)
trailer label. Users will not be allowed to write more than 5 records in
this area.

Pseudo-Device Names

Because there will usually be more than one active user at any given
+time it is not always possible to predict with any great probability of
success what particular tape unit will be free. Therefore all references
to tapes should be made through pseudo-device names (PDN's). MTS will then
determine which unit the PDN refers to and the appropriate read/wvwrite
function will be performed. A PDN may be used exactly as if it were a
"FDname".

A PDN consists of an asterisk followed by a string of from one to
fourteen alphanumeric characters and terminated by another asterisk. For
example, *NAME* and *TAPE* are valid pseudo-device names. Note that MTS
preempts certain PDN's (see MTS-210). Those names may not be used as
PDN's.

USING TAPES

Mounting a Tape

Tt 1is possible to have a tape mounted while in execution or command
mode. Tn either case the file *MOUNT should be used - see MTS-280/44645,
MTS-255/40645 and MTS-253/44645. The user should specify at the time of
the mounting of the tape both the mode and record size of the volume if the
default parameters are not to be usea. A table of all legal modesets may
pe found later in this section. The current default mode is SEN for 7
track tapes (corresponding to 7090 aigh density BCD tapes). Users wishing
to write 7090 binary tapes should specify MODE=50F. 9 track tapes do not
have a mode associated with themn.

Tke default record size is 256 characters but susers reading and/or
writing large records may specify any maximum up to 32767 characters.

Tape Users Guide 65

66

MTS-160-0

12-1-67

]

Removing_ Tapes

There are three ways to have a tape removed from a tape drive:
(1) Mount another tape on the same pseudo-device - that is, invoke *MOUNT
using a PDN which has been used betore for another tape. The first tape
will be removed and the second mounted in its place. The mode and record
size of the first tape will be used for the second tape unless explicitly
reset.
(2) Invoke *DISMOUNT (see MTS-280/24627 and MTS- 253/24627)
(3) Sign off MTS.

In either case if the last operation performed on the tape was a write,
five end-of-file marks will be written on the tape to terminate it before
it is unloaded.

Data Transmission

To transmit data to/from a tape in a program attach the PDN associated
with the tape to any logical device. Then transmit to/from that logical
device as if 1t were a sequential tfile. For example,

SPRINT=*TAPE*
Ir commands, use the PDN for a FDname. For example,
$COPY FILE1 TO *TAPE*

RETURN_CODES

The return codes resulting from data transmission to/from tapes extend
beyond those returned from other devices. They are

0 Normal return

4 (from read operations) End-of-file mark detected.
(from write operations) End of tape strip sensed.

8 Tape load point has been sensed on backspace conmand.

12 User attempted to write more than five records in end of tape
area.

16 Permanent read/write error (on read, tape will be positioned past
bad record).

20 Attempt to write on a fiie protected tape.

24 Equipment malfunction.

Unless the device error exit has been set by the user, all return codes
greater than 4 will be intercepted by MTS and the current RUN will be
terminated. Control will be returned to the user in command mode. If the
device error exit has been set the user may recover from the error in any
way he chooses and still remain in execution. (see a description of the
SETIGERR subroutine)

MTS-160-0

12-1-67

Control Functions

Users may want to initiate such control functions as vrewinding and
backspacing tapes. This is done by attaching the logical carriage control
attribute to the tape. 1In this case the first three bytes of the ‘"region"
specified in the wuser's call are used to specify the control operation
desired. A complete table of the tape controls is given below.

This same procedure allows users to change modes during execution.
(perhaps to read a record Wwith bad parity) The legal modesets are also
listed below. In addition to <changing the mode, the data is also
transmitted on recognized modesets. In the case of a write the remaining
"length"-3 bytes are written; for read, the record is read into the region
beginning at the first byte of the region (and wiping out the modeset).

1f logical carriage control was specified but the first 3 bytes are

neither a legal control function nor legal modeset, the entire record is
written (or read) as if logical carriage control had not been specified.

Tape Control Functions

T.ogical Command Action Taken Non-Zero Return
Code Meaning

WTH End of file record written. none
WEF
FSF Tape spaced forward past next 4=in end of
end of file record. tape area
FSR Tape spaced forward one record. 4=tape mark
sensed
BSF Tape spaced backward past 8=loadpoint
next end of file record sensed
BSE Tape spaced backward ome record. 4=tape mark
sensed
8=loadpoint
sensed
REW Tape rewound to Loadpoint. none
RUN Tape rewound and unloaded. none
SRL Resets maximum record length. 4=jllegal
(the length should be the five length

characters foliowing the "SRL",
left-justified with trailing blanks)

"Mode Setting Commands
(for 7 track tapes only)

(1) Typ2 1 are of the form "4CV"
(2) Typ=2 2 are of tane form "dpt"

Tape Users Guide 67

63

MTS-160-0

12-1-67

where "d" is the code for density:
2 for 200 BPI
5 for 556 BPI
8 for 800 BPI
and "p" is the code for parity:
0 for odd
E for even
and "t" specifies whether or not the translator is on:
F for translator off
N for translator on

Since 7 track tapes can carry only 6 bits of information per tape

Character and 360 bytes have 8 bits per word a compromise was necessary.

Type 1 records, written with DATA CONVERTOR ON write 4 tape characters for
each group of 3 bytes, overlapping from one tape character to the next.
Type 2 records maintain a one-to-one correspondence between core bytes and
tape characters, but use only the low order six bits in each byte.

MTS-160-0

12-1-67

PAPER TAPE USER'S_GUIDE

The Computing Center has installed on the 360/67 a 2671 paper tape
reader (see IBM manual A24-3388) and a 1012 paper tape punch (see IBM
manual A26-5776 plus RPQ 834427 description "1012 Attachment to Systen
360") . Programming support for these is underway, and a full writeup will
be issued shortly. The routines are being constructed so that using paper
tape will be 1like wusing magnetic tape, and the MOUNT and DISMOUNT
subroutines will be used to mount and remove paper tapes.

Tape Users Guide 69

70

MTS-170-0

12-1-67

DATA_CONCENTRATOR_USER'S GUIDE (TELETYPES, 2741S, REMOTE COMPUTERS)

THE DATA CONCENTRATOR

Terminal equipment with unusual characteristics can be attached to MTS
using the facilities of the Data Concentrator, a special-purpose terminal
control attached directly to the Model 67. The Data Concentrator consists
of a Digital Equipment Corporation PDP-8 computer to which special
interface equipment has been attached. Due to its programmable nature the
specification of supportable terminal equipment is rather flexible, and
includes provisions for all available AT&T Teletype equipment including
Models 28,32 (45.45) baud), 33/35 (110 baud), and 37/38 (150 baud)
operating at speeds to 150 words-per-minute. Also supportable is all
announc=d IBM remote terminal equipment capable of operation on the
switched-telephone network at speeds to 2000 baud, as well as certain
special-purpose data transmission equipment including that intended to
interconnect remote computer terminals and the MTS systen.

All of the Data Concentrator equipment is sponsored by the Advanced
Research Projects Agency (ARPA) in support of the CONCOMP (Research in

Conversational use of Computers) project. Usage by the general user
population is possible after inquiry to the CONCOMP project and approval by
the Project Director, F. H. Westervelt, on an as-available basis.

Initially, the following terminals will be supported (about 1 December
1967): ATET Model 33/35 Teletype, IBM 2741 Typewriter Terminal, and remote
computer terminals wutilizing AT&T 2012 serial synchronous data sets.
Operating procedures for use with these terminals are discussed below. At
some future date, about 1 January 1968, ATST X403A Touch Tone digit
receivers and 801C3 automatic calling units will become available to MTS
users. Other data set eguipment may be added by arrangement with the
Computing Center and the ARPA project.

MTS Interface

The Data Concentrator appears to MTS as a collection of 32 devices, each
of which operates independently of all the others. One or more of these
MTS devices may be logically connected to one or more data set circuits for
use by the remote terminal. The MTIS devices serviced by the Data
Concentrator are all of +type PDP8 and are identified by names of the
generic class "DCXX", where XX is a two-digit decimal number in the range
00 through 31. These names can by used anywhere in MTS that a device name
is meaningful. Within the Data Concentrator itself all of these devices,
and, in addition, all of the attached data set circuits, appear as a
homogeneous collection of devices. Each of these Data Concentrator devices
is assigned an intermnal logical device number in the range from 00 through
77 (octal) as indicated in Figure 1. Each device may be used both as a

MTS-170-0

12-1-67

source and a sink without regard as to whether it is capable of full- or
half-duplex operation.

Generally, message formatting and error control are transparent to the
use of a device by MTS, and each such device can be characterized by the
ability to transmit an indefinite number of records (of 255 characters or
less) in one direction without regard to traffic in the other direction.
Although some of the data sets and terminal equipment can operate in a
full-duplex mode, that is in poth the MTS-outbound and MTS-inbound
directions sinultaneously, each ot the 32 devices interfaced with MTS and,
indeed, MTS itself can operate in only a half-duplex mode, that is in omnly
one direction at a time. If a particular device is constrained to
half-duplex operation, then the inpound and outbound traffic is interleaved
on a record-by-record basis by butfering the messages and turning the
transmission circuit end-for-end as reguired.

A pair of Data Concentrator devices can be interconnected by a copy
operation, which assigns to each source device a sink device to which all
message traffic produced Dby that source will be directed. Although only
one sink may be assigned to each source by such an operation, any number of
sources may produce traffic to the same sink. In this case the traffic is
interleaved on a record-by-record basis. Those particular copy operations
which define the configuration of the Data Concentrator at any moment are
‘changeable by commands directed to the Data Concentrator itself. In
addition, certain commands can cause the behavior presented by any one data
set circuit to be altered to fit a particular terminal. In this manner one
set of data set equipment can serve terninals of different -types, all of
which require the same data set type.

aAlthough it 1is possible to associate a copy operation between any two
devices and to change the configuratiom of any data set from any terminal,
and for that matter from MTS itselr, the obvious dangers associated with
the use of this feature require entorcement of a policy that all such
operations will be supervised by special MTS library programs. For the
present, the equipment will be operated in a rixed configuration providing
service to those IBM, AT&T, and special terminals as described in a later
section.

Data Concentrator User's Guide 71

MTS-170-0

12-1-67
FIGURE 1:
¥ T T i) L |
{ | | | i i
| l | | [l
| LDN | DATASET TYPE | TERMINAL TYPE | FUNCTION | PHONE |
| (OCTAL) | i | | NUMBERS |
| | [| i {
| | | | | |
+ + { } + 4
[| | | | |
| { | i | |
i 0 | =—==—-——— | mm————— e | DUMMY FILE | —-———- I
{ | | | i |
t t t t i 4
| { i | | |
I 1 I 103 | ASYNCHRONOUS; |MASTER | 4-4496 |
1 I | FULL DUPLEX |CONSOLE | i
] | | KEYBOARD | (4-9526) i |
| | | (SOURCE) | | |
I i | PRINTER | I i
| | | (SINK) ; { | |
I I | MODEL 33 TTY | | |
| | | (110 BAUD) | | i
| l | | I |
F } { + { —
| | | | | |
| 2 | mme—meee | HIGH-SPEED | SYSTEM | —————- |
| I | PAPER TAPE | RESIDENCE i |
| | | READER i i I
! | | (SOURCE) | | |
| I | PUNCH (SINK) | i |
| | { i | |
t } l } t 4
| | | | i |
I 3 | ——eeem— | ——————— {UTILITY FILE | ———=—=m i
| | i l | |
F } t + + —
| | | | | |
| 2014 | SERIAL-SYNCH- |HIGH-SPEED | 4-4481 |
| THRU | | RONOUS; i DATA TRANS— | 4-4482 |
b7 | HALF-DUPLEX; |MISSION I 4-4399 |
I i | (2000 BAUD) | BETWHEEN A | 4-6334 |
i i I | REMOTE COM- | i
I I i | PUTER OR I |
I | i | GRAPHICS | i
i I | i TERMINAL AND | i
| | | | MTS | |
| | i [| i
L 1 A1 1 1 |

MTS-170-0

12-1-67
FIGURE 1: (Continued)
L B L)] 1 L i
| { | | 1 i
10	1032	ASYNCHRONOQUS;	LOW-SPEED j 4-0200	
THRU	{ FULL DUPLEX;	DATA	THRU	
17		KEYBOARD	TRANSMISSION	4-0207
		(SOURCE)	BETWEEN A	
		PRINTER	REMOTE TYPE-	
		(SINK);	WRITER TER-	i
i { MODEL 33/35	MINAL AND i			
		TTY OR IBM	MTS i	
	i MODEL 2741		i	
{ I (UP TO 200		I		
		BAUD)		{
t t } + } 4				
i				
20	103A/202C	ASYNCHRONGOUS;	MEDIUM SPEED	4-4208
THRU		HALF DUPLEX	DATA TRANS-	4-4297
27] (103'S ARE i (1200 BAUD)	MISSION i			
i	DESCRIBED	{BETWEEN A	{	
1	ABOVE, INFO		REMOTE COM-	i
!	HERE IS FOR	{ PUTER, K i		
i 202's) { i GRAPHIC TER-	i			
i			MINAL, OR i i	
			PAPER TAPE/ i	
i			CARD DEVICE	T
{	{AND MIS. i			
]				
F ' } t i 4				
		i {		
30	X403A { ASYNCHRONOUS;	LOW~-SPEED	4-44384	
AND		HALF DUPLEX; {REMOTE TER-	4-4483	
1 31		10 CHARACTERS	MINAL FOR { i	
1	PER SECOND	TRANSMISSION	i	
i	[TWELVE BUTTON}	TO AND AUDIO		
i	TOUCH-TONE { RESPONSE i i			
	{ TELEPHONE { FROM A CEN- i i			
i	RECEIVER; {TRAL COM-	{		
i { AUDIO RESPONSEZ	PUTER. 1			
	{ URIT]			
i |] i i i
L i L 4 A]

Data Concentrator

User's Guide

74

MTS-170

12-1-67

-0

FIGURE 1:

(Continued)

32
THRU
36

801C3 ACU

(AUTOMATIC

CALLING UNIT)

ASSOCIATED
WITH A TOUCH-

L)

|
| USED FOR

| MAKING A

TONE TELEPHONE| PHONE CALL

RECEIVER

| UNDER COM-
| PUTER CON-
| TROL; TO
JINITIATE

| COMMUNIC-

| ATIONS

| BETWEEN A
{403 DATASET
{ (TOUCH-TONE
| RECEIVER)

{ AND THE

| CENTRAL COM-
| PUTER

(NOT
ASSIGNED)

37

(NOT
ASSIGNED)

[P S i e o D el St P m— e o e . S - G S — - ot T w———— — — — — — — -

40
THRU
77

o e b e ——— — —— —]

IBM 360/67

e e e e o e o o — o ——— — — ——— - — o —— o —

MTS DEVICE
NAMES DCOO
THROUGH DC31

| DIRECT LINES
| OF COMMUN-

{ ICATION BE-
| TWNEEN THE

{ MULTIPLEXOR
| CHANNEL AND
jTHE DATA

| CONCENTRATOR

’-—-—-————————-4———-—-—-,—_———_————————————-—-
b oo e — e o ot T ol e G — e ki — ——— ——— —— — — — p— G = — v — — — —)

MTS-170-0

12-1-67

Message Formatting

All transmission between devices within the Data Concentrator is
according to the ASCII code interpretation, with translation to that code
peculiar to any one terminal type provided in the Data Concentrator and MTS
itself. Thus, an automatic translation is effected between the MTS EBCDIC
codé and the Data Concentrator ASCII code as appropriate and unless
explicitly modified (see below). In addition the prefix characters
transmitted by MTS will be forwarded to the device unless explicitly
modified. Since the internal file structure of MTS permits only those
records up to 255 characters in length, any longer inbound message will be
automatically split into several records as necessary. In most cases the
splitting operation is transparent in the converse outbound operation.

A message between any pair of devices attached to the Data Concentrator
is constructed of a string of characters chosen from all those 8-bit
characters with the exception of certain control characters defined as in
Figure 2. Certain devices cannot recognize some of these characters, and
in such a case those characters may be part of the transmitted data streanm.
This particular choice of control characters reflects current ASCII-8
standards with the provision that all control characters are constrained so
that the high-order three bits are (100). This convention is adopted <for
convenience in the transmission of certain tape formats popular with remote
computer terminal equipment; and, in particular, allow transmission of a
message consisting of arbitrary 7-bit bytes if the high-order eighth bit is
forced to a zero.

The Data Concentrator resident supervisory program recognizes those
characteristics peculiar to each of its attached devices which are
logically equivalent to an occurrence of one of the control characters. BY
convention all of these characters, except the SOH and STX, end the record
of which they are a part. The ETB, ETX, and EOM are equivalent within the
Data Concentrator but have various interpretations to the particular
devices involved. The ENQ and EOT may occur asynchronously with traffic
between any pair of devices and are interpreted as the attention and the
halt conditions respectively. Both the ENQ and the EOT have the affect of
purging all buffers involved and forcing device resets. The ACK and NAK
are used in connection with circuit supervision and error recovery. The
SOH is used to precede a header, which is processed by the transmission
equipment itself (see below). The STX is used to precede a message under
certain conditioms.

Data Concentrator User's Guide 75

745

MTS-170-0

12-1-67 -
v
Name Function ASCIi EBCDIC TIIY 2741
SOH start of header 001 01 ctl-A L\
STX start of text 002 02 ctl-B !B
ETX end of text 003 03 ctl-C RETURN
ETB end of text block 027 17 ctl-w W
EOM end of file 033 1B ctl-Y z
ENO enquiry 005 05 ctl-E ATTN
(WRU)
EOT end of transmission 004 o4 ctl-D D
(EOT)
ACK positive acknowledge 006 06 ctl-F IF
(RU)
NAK negative acknowledge 025 15 ctl-U 1u
DLE literal-next 020 10 ctl-pP !
line delete RUBOUT #
character delete <— backspace

Figure 2

USE OF DATA CONCENTRATOR BY MTS JOBS

Since the operation of the Data Concentrator is constrained in a
fixed-configuration mode from the viewpoint of the user, the internal copy
associations and device characteristics will not normally be modifiable
except on special request. The initial configuration will include support
for some quantity of each of the following terminals as master source/sink
to an MTS job: IBM 2741 Typewriter Terminal, AT&T Model 33/35 Teletype, and
serial-synchronous transmission circuits to remote computer terminals.
Support for some quantity of each of the above terminals will be available
for use as a utility device within MTS. These are obtained by any MTS job
as the result of the specification of one of the device names assigned to
the Data Concentrator (see above) in an I/0 operation.

MTS-170-0

12-1-67

A MTS-inbound or MTS-outbound record beginning with the SOH character is
directed to a small command language interpreter which is embedded in the
device support routines associated with the MTS devices. Such a record is
constructed within MTS by prefixing the SOH character to one of the command
lines Adescribed below. The same record can be constructed at the terminal
by prefixing the STX-SOH code combination to one of the command 1lines
described Dbelow. The first STX 1is necessary in the 1latter case to
differentiate the MTS - interpreted commands from those interpreted within
the Data Concentrator itself. Commands recognized at present include:

JOoB - Print MTS job number and device name for this I/O device.

PFX OFF

|

Turn off prefix character transmission from MTS. (equivalent
to @?SP modifier).

PFX ON - Turn on prefix character transmission from MTS (egquivalent to
@-~SP modifier).

BIN ON - Turn off both EBCDIC/ASCII code translation and prefix charac-
ter transmission from MTS (eguivalent to @BIN modifier).

BIN OFF - Turn on EBCDIC/ASCII code tramnslation (equivalent to @-BIN

modifier) .

These commands are erffective only if the MTS job is in condition to read
from or write on the device in question. If a command 1is not recognized
following the SOH the entire command line is deleted.

A reference to an MTS device name of type PDP8 may be followed by
modifiers of the form @M0OD or @-MOD (see elsewhere, this manual). Those
modifiers recognized in an wunusual manner in connection with the Data
Concentrator are:

aSP - Turn off prefix character transmission from MTS (equivalent to
PFX OFF).

?-SP - Turn on prefix character transmission from MTS (equivalent to PFX
ON) .

2RIN - Turn off both EBCDIC/ASCII code translation and prerix character

translation from MTS (eguivalent to BIN ON).

2-8BIN Turn on EBCDIC/ASCII code transiation (equivaleat to BIN OFF).

Other modifiers applying to the MTS device itself are given the standard
meaning.

ATET Models 33/35

The operation of the Teletype itseli is outlined els