999241 99924 1— GG 2l S == 999241 $99241 999241
JOB NO. 999241 UNIVERSITY OF MICHIGAN TERMINAL SYSTEM (MODEL c1137) 22:23.41 12-21-61
MMMMM MMMNM TITTTITTTITIIITIITININNITT SSS585SS
MMMMMM MMMMMM TITTITTITIITTITIITIITRINIT §SSSSSSSSSSSS
MM MMMMM MMMMMMM IRRAEERERERARERGARRREQRERE SSSSSSSSSSS5S5558S
MMMMMMMM MMMMMMAMM 12 R $555S8S SS55SSS
MMMMMMMMM MMMMMMMMM TTTTT SSSSS $5S8SS
MMMMMMMMMM MMMMMMMM MM IETVT $5S85S
MMMMM MMMMM MMMMM MMMMM TI777T SSSSSS
MMMMM MMMMM MMMMM MMMMM iSRRRS 5555555855558
MMMMM MMMMM MMMMM MMMMM TTYTT SSSSSSSS55558
MM MMM MMMMMMMMMMM MMMMM LT S$SSSSSSSSSSSS
MMMMM MMMMMMMMM MMMMM AREERS SSS5SSS
MMMMM MMMMMMM MMMMM TT1IT 55585
MMMMM MMMMM MMMMM TTIVT SSSSS
MMMMM MMM MMMMM TT1771 SSSSS SSSSS
MMMMM MMMMM LT S§S5S55SS SSS5SS
MMMM M MMMMM TI7TT SSSSSSSS5555S555S88S
MMMMM MMMMM TTI7T 5SSSS55S88S8S8S
MMMMM MMMMM TELEE §SS5555SS
999241 999241 999241~ 999241 599241 999241

$SIGNON QQsVy PH=0DHBARF
TLLEGAL SIGNON I.D.

VOLUME

second edition

December 1, 1967

MTS-500-0

12-1-67

This section comprises the second volume of the MTS manual. It contains
writeups concerned with the content of the languages available, whereas the
first volume contains writeups concerning usage of the language processors
within MTS.

COMPLETE TABLE OF CONTENTS

VOLUME I o ¢ o o e o o o o o o o o o o o o o o s s = =
GENERAL INTRODUCTION . ¢ ¢ ¢ o o o « o o o » o o o o o
USAGE DESCRIPTION. o o « o o o o = o o o o« & o« o o o =
Concepts and Facilities. . . ¢« ¢ o« ¢ « o ¢ o o o = o =

Calling ConventionsS. « « « o o « o o o o o o o o o« = »
IntroductioN. -« . ¢ ¢ &4 ¢« ¢ o ¢ o o o s e s o o o =
Register and Storage Variants of Type I Calls . . .
Parameter Lists . ¢« ¢ ¢ ¢ o ¢ ¢ ¢ ¢ o o o o o o = o
Register ASsSignmentS. « « o« o « o « o o o o @ o o o
Returning ResuUltsS . ¢ « o o o o o o o o o « o = o o
Save Area Format. « « o ¢ o o o o s o o o o o o o =
Calling Program Responsibilities and Considerations
Called Program Responsibilities and Consideratioms.
Example Calling SeqUENCeS « « « « « =« « o o o o = =
Macros for Calling S€eqUENCES. « . « « « o « o « o &«

Batch User's Guide « « ¢« o« ¢ v o o o o o o o o o = o =
BatCh JODbS. ¢ o o« o o o o o e o e« o o s o s s o o =
Advantages and Disadvantages of Batca . . «
Differences Between Batch and Terminal Use.
Useful Hints for Running a Batch Job.
Examples of MTS Batch Jobs. . « « « « ¢« & & « o « &

Terminal User's GUIid€S ¢ « « «o 2 « o « o o o o o o o =
Teletype User's Guide . « o« « o o « ¢ o o o o o o =
INtrodUucCtion o« « ¢ « o o « o = o o o s o o o o =
ITnitiation ProCcedUre « « « « « o o o o o o o o o
Keyboard Operation . « « « ¢ « v« ¢ ¢ o o o o o =
AtteNtiONS o o ¢ « o o 2 o s o o o o o o = o o =
Normal Termination Procedure . . « « o o o o « =
Sample Session e e o o o s ® o o
Translation to and fronm ASCII. e s o o ®w s = »
IBM Terminal Type 2741 User's Gulde e e e s e o o =
INtroduction .« ¢« ¢ ¢ e o « « o o s o o o o & o o
Terminal ProcedULeS: « o o o = s o o o o o o o =
1050 User's GUIde .« o o o o o o o o o o o o o s o @
2250 Model I Display User's Guide . . « « ¢ « « « &
Initiatiol « « o o o o « o o o o o @ o o o o o =
Conversational Operation . . . « o o o o o « o &

Tape Users Guide . . . -« < o o o ¢ o o o o o o o o = =
Introduction. ¢ « ¢ o« o o ¢ ¢ « o 4 o e o o o s o @
BAasicC CONCEPtSe o o = « o « « o s s o o o a « = o o

7 and 9 Track TAPESe « o ¢ o o o o o o o o o o =
0dd and Even Parity. « « o ¢ ¢ ¢ ¢ o o o o o o @
DENSitieS.e o« « « o o o o o a s o o o o o o s o o
Translator and Data Convertor. . « « « « o « o @
File ProteCct RiNg. « v o o o o o o o o o = o « =
ReCOT3 S1Z€u « « o o« o o a o s s s o = o s s o =
End Oof Tape ATCA &« o « « o o o o o o o o o o o
Pseudo-Device NA€S. « « « = « o s s o a o = o =
USINg TAPES « o o s o o s « o s o s s © = =« o » o =
MoOURting @ TAPEe « « o o o o o o o o o o = « =« «
REMOVING TAPES « v o o o o o« o o o o o o o« o o o
Data TransSmiSSiON. « « « « s « « « = o o o o« = «
Feturn CodeS. « « ¢ o o o o o s a a o « o o o
Control FUNCLiONS. « o « o o « o o o« o« o o o o

Paper Tape User's Guide. o « o « o o o o o = « « « « =

Data Concentrator User's Guide (Teletypes, 2741s, Remote

The Data Concentrator « « o « « o « o =« o o « o o =
MTS InterfacCee v« o« o o « 2 a 2 o o a o o o o o o

Message Formatting .« o« ¢« ¢ o ¢ ¢ o o o o o o o o

Use of Data Concentrator by MTS Jobs.
ATET Models 33/35. ¢ o o o o o o o o o o s o o =
IBM 2741 Typewriter Terminal . « « « o & o « o &
Eemote Computer Terminal Transmission Facilities

Computers)

UMMPS and MTS: A General Description of the Operating Systen

UMMPS & 4 6 e ¢ e o o a o o o o o s o & @ o o o o =

MTS o @ o &« o o o o « s o o o o s s o &« o o o« o o =

EXTERNAL SPECIFICATIONS. ¢ ¢ o « o o o o o o o s o o o

Tiles and DeviCeS.e v ¢ o o o o o o o o o a 2 o o o« = =
FlleS v v v o« o o o o o o o o s o o s s o s s s =« &=
Inplicit Concatenation.e « ¢« < o ¢ ¢ o o « o ¢ o o &
File NAGMESe « o 2 o « o o s o o o s o o« o s o o o =
DevicCe NAlESe o « o o o o o o o s o o = o s o o o o
Pseudo-DeVICe NAMECS o « » o o « o o o o o o« s o o =

¥DUMMY®. & 4o 4 o o o o s o o o s o o o = s o s o
*SOURCEX . & 4 o o e 2 o o o« s o = @« o o o » o =
XSINK* & & 4 4 o o e« o 2 o a s 2 o o a s a s o =
XAFD¥ . v ¢ o o o« o o o @« « o o o o o a s o o o =
¥PUNCHX., ¢ e o o « #2 o s o @« 2 o a a o s a s = =«
¥MSINEH. & o 2o o o o o 2 o a o s o o o« o a o « o
¥MSOURCEX. ¢ o o « o o a o o s o o o s o o s o =
MOAIifIOrS v « e o « o o o o o o s a s @ o s o o o =
Line Number RanNgeS. « « o o o = o o o o o « « « o
Explicit Concatenation. . . « o ¢ ¢ o o o o o o o @

USAGE o « o s o « o o o o o o o o o o s o« s « o« o« =

TnpUut TiNES. o v o o o« ¢ o o o o o o o o o o = o o o o
COMMANGES. « « o s « = o o = o » s s = a o o o o o o
Data LiNESe ¢ o o o o o o o o o o o s o o o o o o o

COMPLETE TABLE

OF CONTENTS

70
70
70
75
76
77
78
79

81
81
82

84

Prefixing . .«

Editing

Continuation.

Limits Specification . . .

Commands .
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:

- - - . - - -

ALTER.
COMMENT. . . .
CoPY . . -« . .
CREATE

DESTROY. . . .

DISPLAY. . . .
DUMP
EMPTY. « . . .
ENDFILE. . . .
ERRORDUMP. . .
GET. « « - .

HEXADD, HEXSUB.
LIST « « « « &
LOAD - . .« « .
NUMBER
PASSWORD . . .
RESTART. . . .
RON.

Library Fa0111ty.
Parameter Spec1f1cat10n

Name:
Name:
Name:
Name:
Name:
Name:
Name:

Data Lines

SETe o o o « =«
SIGNOFF. . . .
SIGNON
SINK ¢« ¢« « « &
SOURCE
START. . « - .
UNNUMBER . . .

Line Numbers. « « « « &

User ProgramsS. . « . . « .
User Program Constraints.
I/0 Routines - Parameter Description.
Subroutine Descriptions .

MTS System and Library External Symbols

Name:

ATTNTRP. . . .

Bitwise Logical Functions.

AND,LAND,OR,LOR,X0OR,LXOR,COMPL, LCOMP

Name: Blocked Input/Output
Name: QGETUCB (QGTUCB).
Name: QOPEN
Name: QGET. o « « o« o =
Name: QPUT.
Name: QCLOSE. « « « « =
Name: QCNTRL. . .« « « =

Routines.

SHFTR

sSH

« & s 3

s & 8 8 0

*

- 95

.102
.103
. 105
. 106
. 107
<110
<112
«113
<114
<115
- 116
<117
. 118
<119
- 120
-~ 121
123
<124
125
- 126
.128
- 129
<130
- 131
. 132
133

<134
. 134

- 136
« 137

.138

<142
<143
<146
147
<147
. 149
- 150
- 151
« 152
. 153
- 154
. 155

Name:
Nanme:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:

Nanme:
Name:
Name:

CANREPLY . . .
DISMOUNT . . .
EMPTY. . . .
ERROR. « . - =«

E7090,D07090,E7090P,D7090P.

FCVTHB .« . . .

Name:
Name:
Name:

Name:
Name:
Name:
Name:
Name:

FREEFD
FREESPAC
GDINFO« .
GETFDe o« « o o o«
GETSPACE
GUSERID. . . . -
IOPMOD . . « . .
LINK,XCTL,LOAD .
LINPG. « « « « =«
MOUONT. « « « « =«
PGNTTRP. . . . =
Printer Plot Routine .
PLOTT ¢« ¢ o o o o =
PLOT2 ¢« « o« « o « =
PLOT3 v o o « o o o
PLOTH . ¢ o o o o =
PLOT1U. . & o o o
STPLTT. ¢ o« o« o o« =
STPLT2. ¢ o o o o =
SETLOG. « ¢ o o «
OMIT. v o o @« o o =
READ ¢« & « « « =«
REWIND
REWIND#. . « . .
SCARDS . . « -« =
SDUMP. . . « . =
SERCOM
SETIOERR
SETPFX « o « «
SPRINT . . « « =
SPUNCH . . . « «
SYSTEM « o « o«
WRITE. « « o o« &

Vame:

Macro Libraries
System Macro

Name:
Name:
Name:
Name:
Name:
Name:
Nanme:
Name:
Name:
Macro
Name:
Name:

Library
ACCEPT
BAS,BASR . . .

DFAD,DFSB,DFMP .
DFIX, EFIX . . .
DISMOUNT . . . -
ENTER. « « « « =«
EXIT @ o o o o &«
FLOAT. « o« « « «

GETSPACE . .
Calls to
MOUNT. « o « «

SCARDS,SPRINT,SPUNC

I0H/360

*¥*SYSMAC .

H,SERCOM

. - 3 e e e -
- - . - - e -
- - - - « e -
- - - - - - -
- - - - - - -
. - . . - - -
- - - - e e -
3 - - - - -
- - - - - . -
- - - - - - -
- - . . - . -
- - - . . o -
- - - - . e -
. - - - e e -
- - - e - - -
- . - - - . -
e . - - - L] -
. -
- . . . - - -
- - - . - - .
- . - e e - -
- - e - . . -
- - - - - . -
- - - . e o -
- - - - e e 3
- - - - e e o
- . - - - e -
- - . - . . -
- - . - . e -
- - - - . - -
- - - - o . -
- . . 3 - - -
- . . - e e -
- - . - e e -
. - - - e - -
- - - - o . -
- - - - - . -
. - - - - - -
. - - . - - .
- - - - - . -
- . - - * e .
- - - e e - -
- - . . - - -
- - . - - - -
- - - - e e -
- . - - - - o
- - - - o e -
. - - - - . -
- - - o - -
- . - . - . -
- - . - - . -

+READ,ARITE .

COMPLETE

- - -
L] - -
- - -
- - -
- e -
. - -
o - -
e = -
- - -
- - -
- - -
. - -
- - -
- e -
- - -
o = -
- . -
- - -
- - -
- - -
- - -
- - -
- . -
. - -
- . -
- - -
- - -
- e -
- - -
- - -
- - -

.
L
.

- - -
- - -
e -
- - -
e e -
- - -
- . -
- - -
- - L]
- - -
- - -
- - -
- - -
. - -
- - -
- - -
- - -
- . -
- - -
- - -
- - -

e o ® ® ® =
e o o ® e o
e e e e e o
* e o e o @
® o @ e e =
e e o ° e =
e o o o = o
e« ® e o ® -
- ® e e e =
e o & o o e
e o o o o e
e« o e o o =
e o o e e o
e o o o e o
« ® o o e =
e @ e o o =
« o e o o o
e o e o o o
e e o & & e
*« & e e = e
e« ® e e e o
e« e o & o e
« o e e o e
¢ @ e © e o
e ® o ® e o
« ®© o o e e
e & o @ e o
e ® o o o o
e e o ® e e
® e e o e
e o e o e e
e e e e e o
e o e o ® o
e e o o o
* @ o e e o
e e & ° e @
e e e ® e =
*« e o ® e »
e« o e e o =
e o e & o o
« e & o o e
- - - - - @
@ ® o o & e
e e e o e =
e e o e e &
e e e e o o
e @ o e o &
e o o e e o
e ® e o s @
e & e © o e
@ e e e ° e
e e @ & e e
e« o s e o =

OF CONTENTS

- 156
« 157
. 158
. 159
. 160
<161
- 162
.163
. 164
. 165
- 166
. 167
. 168
. 169
<171
- 175
- 176
<177
<177
. 178
178
- 179
<179
. 180
. 180
. 180
. 180
. 182
. 183
- 184
- 185
- 186
. 189
- 190
. 191
. 192
- 193
. 194
- 195
. 196
- 197
- 198
. 199
200
- 201
<202
203
- 204
« 205
206
« 207
.216
<217

Yame:
Name:

MTS Assembly
Structure of

Phone Numbers - Data Set Directory

SLT. . .
SWPR . .

Library File DPescriptiors.

Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:

Compiler

Name:
Name:
Name:
Nane:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:
Name:

*ASA . .
*ASMBLR.
*ASMEDIT
*ASMERR.
*PATCH .
*BCDEBCD
*CATALOG

*CCINFLIP.
*CONVSNOBOL.
*DISXDUME.
*DISMOUNT.

*DOUBLE.
*DRAW. .
*EBCDBCD

-

*FILEDUMP.
*FILESCAN.

*FORTRAN

*FORTEDIT.
*GPAKDRAW.
*GPAKGRID.

*GPAKLIB

*GRAPHLIB.
*GRAPHMAC.

*HEXLIST
*IHC . .
*LINPG .

*¥*LISTVTOC.

*MOUNT .
*NEWFORT

*0BJSCAN
*OSMAC .
*PRL8SS.
*PIL . .
*PLOT. .

*ROSSPRINT

*SDS . .
*SNOBOL4Y
*¥SQUASH.
*SSP . .
*¥*STATUS.
*SYMBOLS
*TABEDIT
*UMIST .
*UPDATE.

-

Options

-

Language Testing Macros
a Macro Library .

.219
220
.221
<226

. 227

231
232
233
235
.236
.237
.238
.239
« 240
« 241
<243
<245
- 247
- 249
<251
. 253
<254
« 256
. 257
. 258
« 259
« 260
« 261
263
. 264
- 265
. 266
« 267
. 268
. 270
271
<274
+ 276
. 277
. 278
279
. 283
. 285
- 295
- 296
. 297
. 298
- 299
- 300
«301
«302

The Dynamic
Description of the Loading Process.

Description of the Loader

Name: XWATERR: « =« « o o o o o o o o = o
Name: *WATFOR. « « « « « o ¢ o o = = « « =
Name: *¥WATLIB. o« « « o « o o o o « o o « =
Name: *%2250EDIT. <« =« « o s o o o« '« o o o o

¥BASSe o ¢ ¢ o o o 2 v s s e e o o
#¥8BSSPAL. « « ¢ o « o o o o o o = o =

Name:
Name:

LOAAEr « ¢ « o o « s 2 o o o o o o @

Loader Input . . ¢« « « « <« ¢ & o«
Resident System Symbols.
Loader Output. . . ¢ o ¢ <« o ¢« o o o o o .
Entry Point Determination. < . .
Loader Processing Details. . . « « « « . &

Introduction « ¢ « « o o @ o o e o o w o @

Loader Invocation Details. . e o o e

A. Invocation by a $RUN command. - o

B. Invocation by a $LOAD command . . .
C. Invocation by a call upon LINK. . .
D. Invocation by a call upon LOAD. . .
E. Invocation by a call upon XCTL. . .

Inpat « « « - « < .

.
.
.
.
. []
[] [
L] . . . [} . .
. L] . . a .

L]
.
.
[]]
.
]
.
.

.
L]
.
* . . .

Dictionary) . .

Symbol)

1. Translator-generated Load Records. .
A. ESD Input Record. . . « « . « . .
B. TXT Input Record (Text) « . «
C. RLD Input Record (Relocation
D. END Input Record. . . « « « <« . .
E. SYM Input Record. . « « - « « <« .
2. User-generated Load Records.
A. LDT Input Record (Load Terminate Record).
B. REP Input Record (Replace Record)
Cc. DEF Input Record (Define External
D. ENT Input Record (Entry Point Record)
E. NCA Input Record (No Care Record)
3. Library Control Records. . . . o« .
A. LCS Input Record (Low Core 5ymbol Table). « o o o
B. LIB Input Record (Library record)
C.

Record Formats - Dynamic Loader.
Loader Input Deck Ordering and

Introduction
The PLogralle « « « o = « o o o o o = o o @
Printed Output . . « <« ¢ ¢ ¢« ¢ o o o o o .
Sample Loader Printed Output
The Entry Point. ¢« o« « o o o o o o o « o &
The MAP:. « o o « = = « o o s o o o o = o =
EXrOr MeSSAgeS « « o o o « o o o o o = o o
MTS Errors or Program Interrupts

The System (Public) Library. . . « « « .« .
Optional Libraries « « « « « o « &
Pre-Defined Symbols and Low Core

During Loading. . .
Loader Library Facility . « « « « & =« < o « &«

Symbol

RIP Input Record (Reference If Present Record). -

- - - - L] - - -

Restrictions. « « « « o « o
Description of the Loader Output. . . « . . .

.
.
L]
L
.
(] L] L] L]
¢ & & 0
L]

[

.

.

.

.
. L] L]]
L L[]]

.

Dictionaries

[s @ [] []

E] s & o

s 8 s 8 .

L] LN . .

COMPLETE TABLE OF CONTENTS

« 307
.308
.309
.310
.313
.314

.315
.316
.316
.316
.316
.317
<317
.318
.319
.319
.319
«319
«320
«320
<321
«321
<321
.321
«321
«322
.322
.322
«322
.322
.322
«323
.323
<323
«323
.323
.323
.325
-336
<341
<341
<341
«342
<342
<343
.343
<344
. 346
<347
<347
.348
.348

INTERNAL SPECIFICATIONS. o ©o o o « « « o o o

File and Device Management . . o« v v o = o o

Introduction. « « ¢ & & 4 ¢ 4 4 i i 4 4 4 e e e .

Public ERtry. . « ¢ ¢ ¢ 4 4 4 ¢ o o o o o &

DSRI PrefiX . ¢ < v ¢ ¢ 4 4 ¢ ¢ ¢ o o o o

DSR ¢ ¢ o o o ¢ 6 ¢ o e 4 ¢ o o o o o o = =

DSRI PostfiX. . o ¢ v ¢ 4 4 4o o o o o o« « =

FDUB Structures. . . ¢ ¢ o ¢ ¢ ¢ o @ o o o o

Structure of Device Tables. . . ¢ ¢ ¢ ¢ v & o o .

Device Support Routines (DSR) - Specifications

Common InformatioN. « & ¢ ¢ ¢« ¢ o o o o o o «

T. INITIALTIZATION. @ ¢ & o o o o o« o o o o o =

2. DITCH v v o o o o ¢ o o o o o o o o s o o

3. GETFROM & & v v 4 ¢ 4 o o o o o o o o o o «

B. WRITEON v v o ¢ o o o o o o o o o o o o o o

S¢ ATTENTION v ¢ & 4@ 4 o 4 o o o o o o « © « o

6. WAITFOR « o « « o « « o o o « o o o o o o =

To RELEASE © v @ vt ¢ 4 4 o o o o o o o o o o =

Processor Intermal Specifications.

Loader Internal Specifications. . . « ¢ ¢« . o« . .

Introduction « . . & & ¢ ¢ 4 4t 4 4 e e e o o

Name o . ¢ & ¢ o ¢ o 6 4 o 4 o o o o o o o o o

Function . . . <o . & ¢ & 4 4 4 i h e e e e . .

Calling SequUenCe . . ¢ v v 2 o o o o o o o o =

Parameter List ¢ ¢ ¢ ¢ v o 4 .

Return Sequence. . . . ¢ ¢ & ¢ 4 4 i 4 e 4 . .

External Symbol Dictionary Format.

Error Recovery and Restart Procedures.

Return CodeS o v & o 2 4 o « o o o o o « « «

Loading Status Word Format . « . . « o o o o .

General Organization of the Loader Psect . . .

More Details on the Loader Structure

The Loader-MTS Interface . « o o« « o« o o « o

File ROULtINeSe v v ¢ v 4 4 4 4 o o e o o o o o o « =

File Format - General Description. . « «

Allocation of space and cataloging
Files written througan system subroutines

L o o

Physical format of the components.

The Track TIndeX .« +v v v v o o o« o o o o =

The 1Line DireCtory¥. « « « o« = « o o o o &

The Line File . o v ¢ ¢ v ¢ v 4 v o o o @

How the components are tied together. . .

File size 1limitations. . « . v ¢ v v v o o

External File System Subroutines. « &

Name: CHRKSUM . « ¢ ¢ ¢ ¢ o ¢ ¢ o « « o o« o o =

Name: CLOSE. . v «c ¢ ¢ o o 2 o o o s o o o o

Name: CREATE « o ¢ & v ¢ o o o o o o o e o o

Name: DESTRY ¢ v v v 4 & o o o o o o o = « o

Name: GETDSK . v ¢ ¢ ¢ 4 ¢ o o o o o o o o o @

. .
o 2 & e 0o o

- -

(SCARDS

.
.] L[] L]

[]

* o & o

¢ 8 s s

. L] e . L[} [L} [

s & 8 8 i s s M s

L} . [L] L] [

«351

«352
«353
«353
353
.354
«355
356
. 359
.361
.361
362
<362
«362
<363
.363
.364
<364

365
.366
«366
366
«366
367
«367
.368
369
370
.370
«371
«375
«376
=376

.378
Ld 379
.379

<379
380
. 380
. 380
.381
-« 381
.382
.386
.387
.388
. 389
<391
«392

Name: OPEN + « ¢ « o o o o o = o o a o s o o a o« a s« s« o« s« o« o« « 2393
Name: READ « v « o e e o o o o o a a s o s s o o a o« o « o = @ «394

Name: READL. + « o o « o o o o o o s o a s a s s s « a =« « » « =« 2395
Name: READS. v ¢« o« o o o = o « o o s o o 2 o o a o a o = s« =« » « 2396
Name: RELDSK v « o o o o o o o o o o s o a o a o o a a = o« =« « » 397
Name: SCRTCH + o o o o o« « = o« o a« o o o o o o s a « =« o« o« o« o « 398

Name: HRITE. o o o o o o o o a o o o o s s » o s o o o« o« o« o = «399
File Subroutines Internal StruUCtUTe . . « « « o o o o =« « = « « « « 400

VOLUME IT. o o o « o o« o s o o o s o s o s s o » o a o« = o« « o « = « « 500
LANGUAGE PROCESSOR DESCRIPTIONS.: « o « « o o = o o o o o o o« o« « = « « 501

F-level ASSEMDLEr. « o « « = o o o s o o« a a o o o o o« o o o« = =« « = @+ 4503
Assembler LiSting « « o o ¢ o o o ¢ o o o o o o o o o« o« « « = « o « 2503
External Symbol Dictionary (ESD) « « o o « o o = = « « = =« « = « o504
Source and Object Progral. « « « « « « « o« o o« s =« o o« =« o« o« « o« 905
Relocation DictionaryYe « « « « ¢ o o« o s « o « o o o o o « & o « «507

CroSS REfErENCE. « « o = « o o s« a s a o o o« s o« = o =« « o« « o« « 508
DIiAgnOStiCS. « o « o o o o o o o o o e o o s o e 2 e o s + o = o 509
DiagnosticC MESSAgeS « « « o o« « o & o o = o o = o 2 o o o o o o « o 5N

FORTRAN Gue o « o « o o o o o o o o o o = a o s a o o« = s« o« o« o s =« » « 2525
Source Module Error/Warning MeSSageS . « « « o « o« o o o o « o = 29525
Fortran USer's GUid€. « « « « o o« « o o o o o o o + o o« o o o » « o« 2930

Files and Data Set Reference NuUMbers. . . « o « « ¢ « « « « 2530
Tape Support Statements. . . « « ¢ o « « o o « o o o o o = « « 3530
Sequential FileS. ¢ « o « « o o « o« « o o o o = o o o o o2 = = = 530
Record Format for Sequential Files . « ¢« o o o « o = o « « « 2531
Default Record Length for Sequential FileS. « « « « « « « o« +531
Record TFormat for Direct Access FileS . « « o « o « « =« « « «531
The STOP Statement o« o o « « « o o o « o « o o o« =« « = « = « =« 533
The PAUSE StatemMeNt. « « « o o o o o a o « o = o « o« = « « o « =533
Execution EITOr MESSAFES .o « « = = « o o« = o o o o« o « « = « #9533
Program Interrupt MeSSAgeS . « « « « « o o « « = o o o o o o o «538
Non-arithmetic Program INterTUPES. « « o = « o = o « « « =« « &« «538
Arithmetic ©Program IDterTuptsS. « ¢ o o« o o« o o o « o « = = « « 539

IOH/360 — I/0 with CONVELSiON. « ¢ o« ¢« o o o o o o o o « o o o s = = « o542
Specification Characters. . « « « « « ¢« o« o o = o o o« o o o« o « o « 953
Jsage - Normal COnteXt « « v« « ¢ « o « o« o o « o = « = = o = o « «553
Literal ConteXt. « « o « « ¢« o ¢ « o o o o s o = « o o = s o = o 578
FOrmat—-0Fff CONteXt « o o « « o « o o o o o o o o« o o« o = = » o« = 579
Default-Scan CONtEXt o o o« = « o o =« o o « « o o o o o o o o« « o =580
Format-Variable CONteXt. . ¢« « +o « o o o o o « = = « o« « « o« o « <584
Useful Entry Points to IOH/360. « o « « « « o o « o =« o = o« o = « « «585
Block—-Addressing SECtiOh « « « ¢ « o o o o« =« o o = o o o« o « o« « «588
Standard-Format Input SeCtiON. .« « ¢ « o o ¢ o o« « o a « & = « = 588

PIL - - Pitt Interpretive Language . « « « « « « « & = « = = = « o« « & 591
Desk Calculator MOAE.e v o « o o o o o o o o o o o » = a s o« « « o « 592
Variables and ConstantS « « « o« o o o « « o o o o o = s =« o & o o «593

CONStANLS. « o o a o o o o o o o o o o o a « s o = o o o « o« « « «593

COMPLETE TABLE OF CONTENTS

Variables. . . .
Algebraic Expressions .
Boolean Expressions.
Interchange. . .
Stored Program Mode .
Parts and Steps.

Indirect Error Reporting

Running A Stored Program.
Program Stops. .

Transfer of Control

DO Statement . .
TO Statement . .
IF¥ Statement . .
Simple Console I/0.
Output
Input.

Program

Changes . .

Deletion
Variable Deletion
Part and Step Deletlon. « e e .

Form Deletion

Storage Clean-up .
Iteration Statements.
Implied lLoops. .
Explicit Loops .
Restart.
For Control. . .
Character Strings .
String Comparlson.

String Functions

String Operations.
Extended Console I/O0.
Numeric Information . . .
Alphabetic Information. .
Other Characters.

A.
B.
C.

Form
Type
TYPE
TYPE
Fornm
User

Progran

Statement .
In Form n,

FORM n. . .
ALL FORMS .
Deletion. .

List

Directed Input.
Extended I/0 List Features c o o @
Literal Forms. .

Management.

Pagination . . .
Storage Acquisition.
PILmanship.

APPENDIX A:
APPENDIX B:

SNOBOL4. .

1. Introduction.
2. Differences between SNOBOL3 and

.

-

-

- 3 - - -
. . . . -
. . - . -
. . - - .
- . - - -
. e - - .
- e e e -
e e . - -
- . - . .
* o - . .
* e - - -
. 3 - - .
- - - - -
- . 3 e -
- - . . .
- . . - -
- - e - -
- . - - -

- 3 . - -
- - 3 - .
- - . - -
- . - - -
. - . - .
- - . - -
- - - - -
. . . - -
- - . - L]
- L] - . -
- . - - -
- - - - -

- . - - .
- . . . -
- e e - .
- . - - .
o e - - .

Summary of PIL Statements
Precision of Arithmetic .

. . . .
. - . -
- - e e
3 . - -
. e - -
. - e e
. L] .-
. - o =
. - . -
- ’l . -
. - - -
. - . .
. - . .
. - . -
. - e -
- - - .
- . - -
- . . .
. . . -
- - . 3
- - - e
- - . .
. - - -
- - . -
- - - -
- e . .
- - . -
. - - -
- . 3 -
. . . -
. . - -
- - - .
- - - -
- . - .
- - . -
. - . -
. - . -
- - - -
- [- -
- L] . o
- - - -
. - . .
. - - -
. - - -
. - - .
- - . -
- - - -
- - - .
- - - -
- - e e

SNOBOLY

[]

¢ o L] L N]

. . . . s @& L Y) [] L]

s ¢ & 0

s 4 & 9 0

L] L] L[] L . . L] L] L]

e & & o o & & & o

s o 3 & 2 & & e o

<593
<596
.598
.598
.602
+602
.603
.604
«605
.606
«606
.606
.607
-608
.608
.610
.612
«612
.612
«612
«613
«613
.613
.614
<614
«615
«616
<617
«617
<617
.618
.621
.621
.622
.622
«622
«623
.623
<624
.624
.624
<625
.626
.626
«626
.628
.628
«631
.632

.635
. 637
.638

2.1 Changes in Syntax . . « « « « =«
2.2 Changes in Names and Functions.
3. Pattern Matching.« « <« « .
3.1 Pattern Construction. . .
Alternation.
Concatenation. . . .
Arbitrary Strings. .

Balanced Strings . . .
Fixed-length Strings . .
Fixed Positions in String

Tabulation . . . « .
Remainder. « « « « «
Alternative Characters
0 Runs of Characters. .
1 Repetitions . « « . .« .
2 Signalling Failure. . .
3.2 The Order of Pattern Matching
3.3 Deferred Pattern Definition .
3.4 Value Assignment. . . « « « .
3.4.1 Post-matching Value Assignm
3.4.2 Dynamic Value Assignment
4. ATTAYS. = « « o o o o o < o o o o
5. Peal Numbers. « ¢« « « « « « « « &
6. Data TYPESe « + = o = o o o o o o =
1 Data Types in Operations. . . .
2 Concatenation with the Nuli Str
3 Data Type Determination
7. Programmer-defined Data Types . . .

wwwwwwwwwwww

. e 8 e e e & e o

- e e e e e e e
. s o

- s O ONOYNEWN -

¢ 0
oo-:ﬂo-t.oo-cu(ﬂuulaqnn

8. Compilation during Execution. . . .
8.1 Creating Object Code. . « . . &
8.2 Direct GotoS. « ¢ o « o o « o« =«

9. KeyWordS. « o « o o o o o o = o« =« o
9.1 Protected Keywords. « . « « + =«

9.1.1 Internal Values. . « « « =
9.1.2 Predefined Values.
9.2 Unprotected Keywords.
9.2.1 Internal Switches.
9.2.2 Internal Parameters. . . .

10. Truth Predicates . . . « « « « « =«
10.1 Negation . « « ¢ = o o o o o &
10.2 Affirmation. « . « « « « & o« .

11. Input and Output . . « « « « « < .
11.1 I/0 Association Functions. . .
11.2 Output o« o o o o o o o = o o o
11.3 Input. &« ¢ o 2o o o o o o o o .
11.4 ReWwind . « o o « o o o « o o o
11.5 Back SpPace€ « « « « o o o o o o
11.6 End of File. o« o« o o o o o o &

12. NAMNESe « s o = o o« o a o« a o o o =
12.1 Passing NameS. « « « « « o « =
12.2 The Name Operator. . . « . « &
12.3 Returning by Name.« . =«

13. Additional Functions « =

ent . .
ing. . .

COMPLETE

- - -
- - -
- - -
- - -
- - .
- . 3
. - -
- - -
. - -
- . -
- - .
. o .
- - -
- e .
e e -
. . -
- - .
- - -
3 - -
- - -
. . o
. . -
- o -
- - -
. - -
. - .
. - -
3 - -
- - -
- . -
- . -
- . -
- . -
. - -
- . -
e - -
- - -
- - -
- . L]
- - -
- 3 .
- . .
- . -
- - -
- . -
- - .
. - -
o ® .
- - -
- 3 -
- - -
o - -
- - -

TABLE

e e o e o e
e e o o o
e @ o @ e e
- e e e = =
e © e e o
- - - - . -
.« ® ® e ® o
e @ e e e &
e e e o .o o
e e e ®© e e
e ® o e © =
e ® e ® e =
e ®© e ® o e
e ® © e e =
e @ e o & e
e ® e e e =
e o e o e &
e« e e o e @
o e ® e o o
e e e e o
« @ e e e o
- - - - - L]
- - - - - -
e e ‘ e ®» e @
- ® e e e o
® @& ® ® e o
e o o e« e o
e e e o o =
® o e = o o
®« @ e o o =
e e « o o
e e e e o o
e © e e o
e e e e o o
e e o e e e
e o e e« e e
e e e . e =
e e e ® e e
® @ ® & e o
e e e ® e o
e o ® e o a
e ® & o o e
e e o e o o
* e e o o e
e o o ® e =
e e e e o o
e e e o s
« o o e ® e
- @ ® e e o
- e o o e =
- - . - - -
® o @ e o e
® e e ® ° e

OF CONTENTS

.638
.640
. 641
641
641
. 641
.642
. 642
. 642
. 642
.643
. 643
. 643
644
.644
. 645
.646
.646
.648
. 648
- 649
.652
. 655
+ 656
.656
. 656
.657
.658
.661
.661
.661
.663
.663
.663
.663
. 664
. 664
.664
.666
.666

- 666

.667
.667
.668
.669
.669
.669
.669
.670
.670
«671
.672
.674

13.1 Character Replacement.
13.2 Lexicographical Comparison . .

Acknowledgements. ¢ . . .
Feferences. ¢ ¢ v v ¢ 4 e ¢ o o o o o o
Apvendix A: Operator Precedence
Appendix B: List of Functions with Section References
Appendix C: Sample Programs . « « « « « -«
Appendix D: Trace Facility.

UMIST,
Preface o« ¢ ¢ ¢ v ¢ 4 4 e 4 4 e e o @
Chapter I: Introduction

TRAC ¢ & ¢ ¢ o o o o o o o o o « o o @

UMISTe « o o o o @ P,
Guide to this Manual e e e o = =

Chapter II: The UMIST ProcesSOr . « . . .

Chapter III:

Mode of Operation. « . . .
SYntax o« ¢ ¢ 4 e 4 e e 4 4 e e o & o
UMIST Primitives
Read String and Print String
Define, Call and Segment String. . . .
The Form Pointer « ¢ ¢ o o o« &
The Equal Function
Other language Features. . . . « . . .

Chapter IV: UMIST Variations. . . « . . .

Input FunctionsS. . .« o« o« ¢ « o « o o« =
Arithmetic Functions . « « ¢ o o « « &
Boolean FUnctionNS. « « « ¢ ¢ o o o o =
External Storage Functions
Other Differences. ¢ ¢ ¢ o . .

Chapter V: UMIST Extensions

Special Symbols. . . . ¢ ¢« & ¢ ¢« o« o @
Set Definition Function.
Class Membership ¢« ¢« « o . .
Parameter Setting.
Protection Parameters
Parameter Switches.
Special Character Parameters. .

Name Parameters« e .
Implicit Calling and Call Procedure
External Punctions .« . « .« . . + . . .
Status Recording . « ¢« o o ¢ « o o o« @

Integer Parameters. « « o«

Chapter VI: Internal Structure.

Pushdown Stack « . v v o v ¢ o o o o «

Scanning Algorithm

Storage Management ¢ o o o .

Bibliography. « « . ¢ o &« ¢« ¢« ¢« o« & -

Appendix A. A Guide to Using UMIST in MTS
Appendix B. Primitive Functions
print string function.
read string function
signoff function

-

[] . . . * . .

« o s

] L] L .

s & & & &

¢ ¢ 8 ¢ s v & 2

define string function .

define form function « « « « « « o o o o o @« o
segment string function. . . <. . < < < . - . .
call functioN. « « « ¢ ¢ o o o o o o o o o o @
call procedure function. <« ¢ ¢ o o o .
print form function. . . .« <« < ¢ ¢ o o o o o .
initial function « <« ¢ ¢ ¢ ¢ c ¢ o o o o o o o
call segment function. . . . <« < < . o o o o .
call Character « « o o o s 2 o o o o & o o = =
call n characCterS. « « « « o o o o o o = o o &«
call restore functioN. « « « ¢ o « o o o« o = o
set function « « « o o« o o o o o ° o o = o o o
delete definition function . « « « ¢ « « o < .
delete all fUNCtioN. « ¢ o « o o o o = o o « =«
equal function . . < ¢« & 4 4 ¢ e e e o o e e
decimal arithmetic functions . « ¢« ¢ ¢ o o « =
add decimal. « « <« « o « o s o o ° o o o @ o o
subtract decimal . « ¢ ¢ ¢ ¢ o o o o o« o o o
multiply decimal . <« ¢ ¢ ¢ o ¢ o ¢ o o o o o .
divide decimal « ¢« ¢ « ¢ o 2 2 o o o o o o o
test decimal &« ¢ ¢ ¢ o e o o o e o & e o o o o
special symbol functions <« <« o ¢ + . .
parameter set function
print parameter function
load external functions function
read character functioN. . « « o « o o o = o =
read n characters function . « « « « « « « o« &
dump function. « . ¢ ¢ & 4 4 e o e e e o e - .
Null fURCEiON. o« « o ¢ « « o« o @« o o o o o o =
Testart functionl « « « « o o o o o o o o @ o =
reinitialize functioNe.e « « « o o o ¢ o o o o =
set form pointer function. <
call form pointer function ¢ . .
call gap function. . <« <« ¢« + ¢ o o o o o e o .
call ordinal value . « « « « o « o« o o o o o =
erase segment gaps function. ¢ o . .
set protection classes function. « . .
list selected names function . « « ¢ « o o «
test character functionN. . .« « o« « o ¢ o o « =
length function. . <« ¢« « o & o o ¢ ¢« o o o o .
hexadecimal to character function. . « . « . =«
character to hexadecimal function. . . . « « .
hexadecimal arithmetic functions . . « « « « .
Add heX. « o e o o o s o o o s o o o o s = o =
subtract heX . « « o ¢ « o o o o « o o o o s =
te@St heX o o o « o o o o o s o o o « o o o o =
if functioN. ¢« « o o @ o o o o o o o o o & =
NOot fUNCLION v « « o o o o = o o o o o o « o =
and, or, and xor functions . . <« .« &« ¢ & o . .
define special symbol function « « .
date functioN.e « « « o ¢ o o o « o o o o o o @
time of day function . . . + & ¢ « & ¢ o & o o
translate function « « ¢ & ¢ o e 6 o o o ® o o

COMPLETE

- - -
- - -
- . -
- . -
- . -
- - -
. - .
- - .
- - -
3 - -
- . -
- - .
. - .
- - 3
. - .
. - -
. -
- - -
. - L]
- - -
- . -
- e -
. - L)
- - -
. - -
- - -
- - -
- - .
- - -
- - -
o 3 .
- - .
- -
- -
- -
- -
- -
- -
- -
- -
- -
- - .
- - .
- - -
. - -
e - -
- - -
- - -
- e -
- - -
- - -
- - -
- - -

TABLE

- e e e o o
« o e « o ®
e e o e« e @
o e o e e =
e« o o e o =
. e e * o e
e e o e o
e o o e o ®
e o o « o »
e e o e o
s e o e & o
e e o e e o
e o e« o o
- e '@ . - -
* o e e & =
e o e e o =
®« o o e o =
e o o e o &
« @ o e o
e« e e .« o e
e s = « o
e o - ® -
e e o * e
e o e e e e
e ® ®o e e e
e ° e « e =
- - - - . -

L[] []] [] [] L] * . [L] L[] » L[] L] . L] L] L] L] L] . []
[] [] [] L] [] L] .] L] . L] L]] [] []
e 6 8 0 0 & B 8 & 0 4 6 0 0 0 &+ 6 2 0 &t 0 0 0 3 o "
. L] [] . . L] [] LI [] L) [] . []] [] . . [] L] . * L] ¢ &
] [] L] [] ¢ o . L . [} ¢ L} [] L] . [L] L] L]] . [] [] L]

& 6 o & & 0 8 8 & B & & & & 2 & 5 6 0 0 ¥ o

*] . [. [] []

OF CONTENTS

. 745
. 746
.746
. 746
.746
747
L747
<747
.748
.748
.748
.748
.749
<749
.749
<749
.750
.750
.750
.750
.750
.750
.751
.751
.751
.751
.752
.752
.752
.752
.752
.753
.753
.753
.753
754
.754
.754
754
.755
.755
.755
.755
.755
.756
-756
.756
.756
.756
<757
.757
.757
.757

translate print function . . .
hash history function.
Appendix C. UMIST Line Editor . .

WATFOR o o o o o o o o o o o o o o
I WATFOR Control Cards . . .

11 Error Diagnostics and Running Modes

JIT Subroutine References. . . .

-

Iv WATFOR Subroutrine Library Structure.
v Language Extemsions.
VI Language Restrictions..

WATFOR COMPILER ERROR MESSAGES. .

8ASS -- PDP-8 Assembler.
Introduction. . . « ¢ ¢« & « . . .
Assembly Processing . . . « .« . .
BASS in MTS . . & ¢ ¢« o o o o o« &
Names and EXpressions « « « . « .
Instructions and Procedure Calls.
Debugging Aids. . . ¢ ¢ ¢« « ¢ . .
Object Decks. « ¢« « v o o o .
Appendix 1:

8A5S Standard Opcodes.

.758
.758
<759

.766
. 766
- 767
.768
.768
.769
.772
<773

.782
.782
.782
.783
. 784
-785
.« 787
.788
-790

MTS-500-0

12-1-67

This major section contains writeups for the "Language Processors" in

MTS. Included are two assemblers: Assembler F and 8ASS (PDP-8 assembler),
two FORTRAN compilers: FORTRAN G and WATFOR, two string processors: SNOBOLY
and UMIST, an interactive calculator language - PIL, and an I/O0 format

interpreter - IOH/360.

This section contains details pertinent to usage of these processors.
Each processor (except IOH/360) is in a library file in MTS, and details of
access to the processor will be found in the pertinent 1library file
descriptions in section MTS-280.

Language Processor Descriptioans 501

MTS-510-0

12-1-67

ASSEMBLEHTR

502

MTS-510-0C

12-1-67

T-LEVEL ASSEMBLER

The assembler in MTS is IBM's Operating Systenm F-level Assenbler for the

The language processed by the F-level Assembler is described in the IBM
publication form number C28-6514.

The translator exists in the library file *ASMBLR. Details for running
it and for specifying parameters are given in the library file description
for *ASMBLR in section MTS-280/21445.

The following are descriptions of the assembly listing produced and a
1ist of the error comments that may be produced.

ASSEMBLER LISTING

The assembler 1listing (Figure 1) consists of five sections, ordered as
follow: external symbol dictionary items, the source and object program
statements, relocation dictionary items, symbol cross reference table, and
diagnostic messages. In addition, three statistical messages may appear in
the listing:

1. After the diagnostics, a statements flagged message indicates the
total number of statements in error. It appears as follows: nnn
STATEMENTS FLAGGED IN THIS ASSEMBLY.

2. After the statements-flagged message, the assembler prints the
highest severity code encountered (if non-zero). This is equal to
the assembler return code. The message appears 'as follows: nn WAS
HIGHEST SEVERITY CODE.

3. After the severity code, the assembler prints a count of lines
printed, which appears as follows: nnn PRINTED LINES. This is a
count of the actual number of 121-byte records generated by the
assembler; it may be less than the total nunber of printed and blank
lines appearing on the listing if the SPACE n assembler dinstruction
is used. For a SPACE n that does not cause an eject, the assembler
inserts n blank 1lines in the 1listing by generating n/3 blank
121-byte records--rounded to the next lower integer if a fraction
results; e.g., for a SPACE 2, no blank records are denerated. The
assembler does not generate a blank record to force a page eject.

In addition to the above items, the assembler prints the deck identifi-

cation and current date on every page of the listing and the time of day to
the left of the date on page 1 of the ESD listing. This is the time when

language Processor Descriptioans (F-level Assembler) 503

MTS-510-0

12-1-67

printing starts, rather than the start of the assembly, and is intended
only to provide unique identification for assemblies made on the same day.
The format of the time is hh:mm where hh is the hour of the day (midnight
beginning at 00), and mm is the number of minutes past the hour.

External Symbol Dictionary (ESD)

This section of the listing contains the external symbol dictionary
information passed to the 1loader in the object module. The entries
describe the control sections, external reference, and entry points in the
assembler program. There are six types of entries, show in Table 1 along
with their associated fields. The numbers refer to the corresponding
heading in the sample listing (Figure 1). The X's indicate entries
accompanying each type designation.

Table 1. Types of ESD Entries

L v LE ¥ L Ll L
1 | | | | | |
| 1 | 2 | 3 i 4 | 5 | 6 I
| | | l I ! |
ISYMBOL | TYPE | ID | ADDR | LENGTH | LD ID |
F } { { } t 4
| X I SD i X [X I X | - l
t : : : + : .
| X | LD | - | X | - | X |
L i 1l i | i N |
L) T T T T LI 1
| X | ER | X [- I - I - [
H + : : + : ~
| - I PC I X | X | X | - |
F : t : + + —
| X | cn | X | X | X | - |
L] i i L 1 ']
¥ T L] |] 1] L3 L
| X | XD l X { X i X | - |
L L A L L L 1

1. This column contains the name of every external dummy section,
control section, entry point, common section, and external symbol.

2. This column contains the type designator for the entry, as show in
the table. The type designators are defined as:

SD--Names section definition. The symbol appeared in the name field
of a CSECT or START statement.

LD--The symbol appeared as the operand of the ENTRY statement.
ER--External referernce. The symbol appeared as the operand of an
EXTRN statement, or was defined as a V-type address constant.
PC--Unnamed control section definition.
Ch--Common control section definition.

XD--External dummy section.

MTS-510

12-1-567

Source

-0

mhis column contains the external symbol dictionary identification
number (ESDID). The number is a unique two digit hexadecimal number
identifying the entry. It is used by the LD entry of the ESD and by
the relocation dictionary for cross-referencing the ESD.

This colurn contains the address of the symbol (hexadecimal
notation) for SD-and LD-type entries, and zeros for ER-type entries.
For PC- and CM-type entries, it indicates the beginning address of
the contrcl section. for XD-type entries, it indicates the align-
ment by printing a number omne less than the number of bytes in the
unit of alignment, e.g., 7 1indicates double word alignment.

This column contains the assembled length, in bytes, of the control
section (hexadecimal notation).

mhis column contains, for LD-type entries, the identification (ID)

number assigned to the ESD entry that identifies the control section
in which the symbol was defined.

and Obiject Program

This

section of the 1listing documents the source statements and the

tesulting object progran.

7.

10.

11.

12.

This is the four-character deck identification. It is the symbol
t+hat appears in the name field of the first TITLE statement. The
assembler prints the deck identification and date (item 16) on every
page of the listing.

This is the information taken from the operand field of a TITLE
statement.

Listing page number. Each section of the listing starts with page
1.

mhis column contains the assembled address (hexadecimal notation) of
the object code.

This column contains the object code produced by the source

statement. The entries are always left-justified. The notation is
hexadecimal. Entries are machine instructions or assembled con-
stants. Machine instructions are printed in full with a blank

inserted after every four digits (two bytes). Constants may be only
partially printed (see the PRINT assembler instruction in the
Assembler lanquage publication).

These two columns contain effective addresses (the result of adding
together a base register value and displacement value):

a. The column headed ADDR1 contains the effective address for the
first operand of an SS instruction.

language Processor Descriptions (F-level Assembler) 505

MTS-510-0

12-1-67

b. The column headed ADDR2 contains the effective address of the
second operand of any instruction referencing storage.

Both address fields contain six digits; however, if the high-
order digit is a zero, it is not printed.

13. This column contains the statement number. A plus sign (+) to the
right of the number indicates that the statement was generated as
the result of macro instruction processing.

14. This column contains the source program statement. The following
items apply to this section of the listing:

a. Source statements are listed, including those brought into the
program by the COPY assembler instruction, and including macro
definitions submitted with the main program for assembly.
Listing control instructions are not printed, except for the
following case: PRINT is listed when PRINT ON is in effect and
a PRINT statement is encountered.

b. Macro definitions obtained from a macro library are not listed.

€. The statements generated as tne result of a macro instruction
follow the macro instruction in the listing.

1. Assembler or machine instructions in the source program that
contain variable symbols are listed twice: as they appear in
the source input, and with values substituted for the variable
symbols.

e. Diagnostic messages are not listed in-line in the source and
object program section. An error indicator, **%%¥ERROR¥* %%,
follows the statement in error. The message appears in the
diagnostic section of the listing.

f. MNOTE messages are listed in-line in the source and object
program section. An MNOTE indicator appears in the diagnostic
section of the listing ror MNOTE statements other than MNOTE =,
The MNOTE message format is severity code, message text.

g. The MNOTE * form of the MNOTE statement results in an in-line
message only. An MNOTE indicator does not appear in the
diagnostic section of the listing.

h. When an error is found in a programmer macro definition, it is
treated the same as any other assembly error: the error
indication appears after the statement in error, and a diag-
nostic is placed in the list of diagnostics. However, when an
error is encountered during the expansion of a macro instruction
(system- or programmer-defined), the error indication appears in
place of the erroneous Statement, which is not listed. The
error indication follows the last statement listed before the

MTS-510-0

12-1-67

erroneous statement was encountered, and the associated diag-
nostic message is placed in the list of diagnostics.

i. Literals that have not been assigned 1locations by an LTORG
statement appear in the 1listing following the END statement.
Literals are identified by the equal (=) sign preceding then.

j. If the END statement contains an operand, the transfer address
appears in the location column (LOC) .

k. In the <case of COM, CSECT and DSECT statements, the location
field contains the beginning address of these control sections,
i.e., the first occurrence.

1. In the case of EXTRN, ENTRY, and DXD instructions, the location
field and object code field are blank.

m. For a USING statement, the location field contains the value of
the first operand.

n. For LTORG and ORG statements, the location field contains the
location assigned to the literal pool or the value of the ORG
operand.

o. For an EQU statement, the 1location field contains the value
assigned.

p. Generated statements always print in normal statement format.
Because of this, it 1is possible for a generated statement to
occupy three or more continuation lines on the listing. This is
unlike source statements, which are restricted to two continua-
tion lines.

15. This column contains the identifier of the assembler (F) and the
date when this version was released by Systems Development Division
to DPD Program Information Department.

16. Current date (date run is made).

17. 1Identification-sequence field from the source statement.

Relocation Dictionary

This section of the listing contains the relocation dictionary informa-
tion passed to the loader in the object module. The entries describe the
address constants in the assembled program that are affected by relocation.

18. This column contains the external symbol dictionary 1ID number

assigned to the ESD entry that describes the control section in
which the address constant is used as an operand.

Language Processor Descriptions (F-level Assembler) 507

508

MTS-510-0

12-1-67

19.

20.

21.

This column contains the external symbol dictionary 1ID number
assigned to the ESD entry that describes the control section in
which the referenced symbol is defined.

The two-digit hexadecimal number in this column is interpreted as
follows:

First Digit. A zero indicates that the entry describes an A-type

or Q-type address constant. A one indicates that the entry
describes a V-type address constant. A three describes a CXD
entry.

Second Digit. The first three bits of the digit indicate the
length of the constant and whether the base should be added or

subtracted:

Bits 0 and_ 1 Bit 2
00 = 1 byte 0=+
01 = 2 bytes 1=-
10 = 3 bytes

11 = 4 bytes

This column contains the assembled address of the field where the
address constant is stored.

Cross Reference

This

section of the 1listing information concerns symbols which are

defined and used in the program.

22.

23.

24,

This column contains the symbols.

This column states the length (decimal notation), in bytes, of the
field occupied by the symboi value.

This column contains either the address the symbol represents, or a
value to which the symbol is equated.

This column contains the statement number of the statement in which
the symbol was defined.

This column contains the statement numbers of statements in which

the symbol appears as an operand. In the <case of a duplicate

symbol, the assembler fills this column with the message:
%%¥DUPLICATE**%*

The following notes apply to the cross-reference section:

. Symbols appearing in V-type address constants do not appear in
the cross-reference listing.

MTS-510-0

12-1-67
o A PRINT OFF listing control instruction does not affect the
production of the cross-reference section of the listing.
. In the case of an undetined symbol, the assembler fills columns
23,24, and 25 with the message:
**k%UNDEFINED¥*%*,
Diagnostics

This section contains the diagnostic messages issued as a result of
error conditions encountered in the program. The text, severity code, and
explanatory notes for each message are contained below.

27. This column contains the number of the statement in error.

29. This column contains the message, and, in most cases, an operand
column pointer that indicates the vicinity of the error. In the
following example, the approximate location of the addressability
error occurred in the 9th column of the operand field:

Example:
STMT FRROR CODE MESSAGE

21 IEU035 NEAR OPERAND COLUMN 9--ADDRESSABILITY ERROR

The following notes apply to the diagnostic section:

e An MNOTE indicator of the form MNOTE STATEMENT appears in the
diagnostic section if an MNOTE statement other than MNOTE * is
issued by a macro instruction. The MNOTE statement itself is
in-line in the source and object progran section of the listing.
The operand field of an MNOTE * is printed as a comment, but does
not appear in the diagnostic section.

e 1 message identifier consists of six characters and is of the form:
IEUxXXX
IEU identifies the issuing agent as Assembler F, and xxx is a
unique number assigned to the message.

Language Processor Descriptions (F-level Assembler) 509

MTS-510-0

12-1-67

EXTERNAL SYMBOL DICTIONARY

@60 6 6 06

EXAM

Page 1
SYMBOL TYPE ID ADDR LENGTH LD ID 00.16 4/11/66
SAMPLR SD 01 000000 000388

EXAM SAMPLE PROGRAM Page 3
© @) ®@ ®) ® ®
LOC ~ OBJECT CODE ADDRI ADDR2 STMT SOURCE STATEMENT F14FEB6S 4/11/66
000000 47F0 FOOA 0000A 59+BEGIN B 10(0,15) BRANCH AROUND ID
000004 05 60+ DC ALIG)
000005 C2C5C7C9D5 o1+ DC CLS'BEGIN' IDENTIFIER @
00000A 90EC DOOC 0000C 62+ STM 14,12,12(13) SAVE REGISTERS
00000E 050 63 BAR RI2,0 ESTABLISH ADDRESSABILITY OF PROGRAM SAMPLOS7
000010 64 USING *,R12 AND TELLTHE ASSEMBLERWHATBASETOUSE ~ SAMPLO58
@ RELOCATION DICTIONARY ®
EXAM Page 1
® 0 ® o ®
POS.ID RELID FLAGS ADDRESS 4/M1/66
o1 01 0C 000IFC
o1 o1 oC 00020C
ol o1 oC 00021C
ol 0 oC 000204
o1 o1 0C 000334
@) CROSS-REFERENCE ®
EXAM Page 1
@ ® 6 O @ ©®
SYMBOL LEN VALUE DEFN REFERENCES 4/11/66

BEGIN 00004 000000 0059 0156 0158 0174 0184 0186 0220
EXIT 00004 O00CO7E 00956 0111
HIGHER 00002 0000F4 0130 0125
{HBOOO5 00001 000078 0093 0090
IHBOGOOSA 00002 00007C 0094 0089

@ DIAGNOSTICS @
EXAM Page 1
@ @ ® ®
STMT ERROR CODE MESSAGE 4/11/66
19 1EU025 NEAR OPERAND COLUMN 7--RELOCATABILITY ERROR
21 1EU035 NEAR OPERAND COLUMN 9--ADDRESSABILITY ERROR
2 STATEMENTS FLAGGED IN THIS ASSEMBLY
8 WAS HIGHEST SEVERITY CODE
261 PRINTED LINES

Figure {. Assembler Listing

MTS-510-0

12-1-57

DIAGNOSTIC MESSAGES

Severity

Code Message Code

IEUCO01

IEU002

IEU003

IEU004

IEU005

IEU006

I®U007

TEU008

TEU009

DUPLICATION FACTOR
ERROR

RELOCATABLE DUPLI-
CATION FACTOR

LENGTH ERROR

RELOCATABLE LENGTH

S-TYPE CONSTANT IN
LITERAL

INVALID ORIGIN

LOCATION COUNTER
ERROR

INVALID DISPLACEMENT

MISSING OFERAND

Language Processor Descriptions (F-level Assembler)

A duplication factor is not an
absolute expression, or is zero in
a Jliteral; * in duplication factor
expression; invalid syntax in
expression.

A relocatable expression has been
used to specify the duplication
factor.

The length specification is out of
pernissible range or specified
invalidly; * in length expression;
invalid syntax in expression; no
left-parenthesis delimiter for
expression.

A relocatable expression has been
used to specify length

Selt4explanatory.

The location counter has been reset
to a value less than the starting
address of the control section; ORG
operand is not a simply relocatable
expression or specifies an address
outside the control section.

The location counter has exceeded
19777215, or passed out of the
control section in negative direc-
tion (3 byte arithmetic).

The displacement in an explicit
address is not an absolute value
within the range of 0 to 4095.

Selt-explanatory.

12

12

12

12

12

12

12

511

512

MTS-510-0

12-1-67

Code

IEU010

IEU011

IEUO012

IEU013

IEUO014

TEUO015

IEUO16

Message

INCORRECT REGISTER
SPECIFICATION

SCALE MODIFIER
ERROR

RELOCATABLE SCALE
MODIFIER

EXPONENT MODIFIER
EREKOR

RELOCATABLE EXPONENT
MODIFIER

INVALID LITERAL
USAGE

INVALID NAME

The value specifying the register is
not an absolute value within the

range 0-15, an odd register is

specified where an even register is

required, or a register was used

where none can be specified.

The scale modifier is not an
absolute expression or is too
large, negative scale modifier for
floating point, * in scale modifier
expression; invalid syntax or ille-
gally specified scale modifier.

A relocatable expression has been
used to specify the scale modifier.

The exponent is not specified as an
absolute expression or is out of
range; * in exponent modifier
expression; invalid syntax; ille-
gally specified exponent modifier.

A relocatable expression has been
used to specify the exponent modi-
fier.

A valid literal is used illegally,
it specitfies a receiving field or a
register, or it is a Q-type con-
stant.

A name entry is incorrectly
specified, e.g., it contains more
than 8 character, it does not begin
with a letter, or has a special
character imbedded.

Severity
Code

8

MTS-510-0

12-1-67

Severity
Code Message Explanation Code

IEU017 DATA ITEM TOO The constant is too large for the 8
LARGE data type or for the explicit
length; operand field for packed DC
exceeds 32 characters and for zoned
DC exceeds 16 characters (excluding
decimal points).

IEU018 INVALID SYMBOL The symbol is specified invalidly, 8
e.g., it 1is longer than 8 charac-
ters.

IEU019 EXTERNAL NAME ERROR A CSECT and DSECT statement have 8
the same name, or a symbol is used
more than once in an EXTRN or the
name field of DXD statements.

IEU020 INVALID IMMEDIATE The value of the immediate operand 8
FIELD exceeds 255, or the operand
requires more than one byte of
storage.

IEU021 SYMBOL NOT Selt-explanatory. 8
PREVIOUSLY DEFINED

IEU022 ESD TABLE OVERFLOW The combined number of control 12
sections and dummy sections plus
the number of unique symbols in
EXTRN statements and V-type con-
stants exceeds 255. (A DSECT which
appears as XD makes two entries).

IEU023 PREVIOUSLY DEFINED - The symbol which appears in the 8
NAME name field has appeared in the name
field of a previous statement.

IEU024 UNDEFINED SYMBOL A symbol being referenced has not 8
been defined in the progranm.

IEU025 RELOCATABILITY A relocatable or complex relocatable 8

ERROR expression is specified where an
absolute expression is required, an
absolute expression or complex
relocatable expression is specified
where a relocatable expression is
required, or a relocatable term is
involved in multiplication or divi-
sion.

lLanguage Processor Descriptions (F-level Assembler) 513

MTS-510-0

12-1-67

Code

IEU026

IEU027

IEU028

IEU029

IEU030

JIEU031

IEU032

TIEU033

TEUO34

IEU035

IEU036

TEUO037

Message
TOO MANY LEVELS OF
PARENTHESES
TOO MANY TERMS
REGISTER NOT USED
CCW‘ERROR
INVALID CNOP
UNKNOWN TYPE
OP-CODE NOT ALLOWED

TO BE GENERATED

ALIGNMENT ERROR

INVALID OP-CODE

ADDRESSABILITY
ERROR

(No message is

Explanation
An expression specifies more than 5
levels of parentheses.

More than 16 terms are specified in
an expression.

A register specified in a DROP
statement is not currently in use.

Bits 37-39.
non-zero.

of the CCW are set to

An invalid combination of operands
is specified.

Incorrect type designation is
specified in a DC, DS, or 1literal.

Self-explanatory.

Referenced address is not aligned
to the proper boundary for this
instruction, e.g., START operand

not a multiple of 8.

Syntax error, e.g., more than 8

characters in operation field, not
followed oy blank on first card,
missing.

The referenced address does not
fall within the range of a USING
instruction.

assigned to this number)

MNOTE STATEMENT

This indicates that an MNOTE
statement has been generated from a

macro definition. The text and
severity code of the MNOTE state-
ment will be found in line in the
listing.

Severit:
Code

12

12

12

Variable

MTS-510-0

12-1-67

Code

IEU038

TIEU039

IEDQO4O

IEUOUN

IEU042

IEUOL3

IEUOOLU

I®EUOL4S

Message

ENTRY ERROR

INVALID DELIMITER

GENERATED RECORD
TOO LONG

UNDECLARED VARIABLE
SYMBOL

SINGLE TERM LOGICAL
EXPRESSION IS NOT
A SETB SYMBOL

SET SYMBOL
PREVIOUSLY DEFINED

SET SYMBOL USAGE
INCONSISTENT WITH
DECLARATION

TLLEGAL SYMBOLIC
PARAMETER

Language Processor Descriptions (F-level Assembler)

Explanation

A symbol in the operand of an

ENTRY statement appears 1in more
than one ENTRY statement, it 1is
undefined, it is defined in a dumny
section or in common, or it is
egquated to a symbol defined by an
EXTRN statement.

This message can be caused by any
syntax error, e.g., missing delimi-
ter, special character used which
is not a valid delimiter, delimiter
used illegally, operand missing,
i.e., nothing Dbetween delinmiters,
unpaired parentheses, imbedded
blank in expression.

There are more than 236 characters
in a generated statement.

Variable symbol is not declared
in a defined SET symbol statement
or in a macro prototype.

This single term logical expression
has not been declared as
a SETB symbol.

Selt-explanatory.

A SET symbol has been declared
as undimensioned, but is sub-
scripted, or has been declared
dimensioned, but is unsubscripted.

An attribute has been requested
for a variable symbols which is not
a legal symbolic parameter.

Severity
Code

8

12

12

515

516

MTS-510-0

12-1-67

Code

IEUOU6

IEUOL7

TEUO48

IEUOL49

IEUQ50

IEU051

IEUQ052

IEUO53

IEUO5Y

IEUO55

Message

AT LEAST ONE RELOC-
ATABLE Y TYPE
CONSTANT IN ASSEMBLY

SEQUENCE SYMBOL
PREVIOUSLY DEFINED

SYMBOLIC PARAMETER
PREVIOUSLY DEFINED
OR SYSTEM VARIABLE
SYMBOL DECLARED

AS SYMBOLIC
PARAMETER

VARIABLE SYMBOL
MATACHES A PARAMETER

INCONSISTENT GLOBAL
DECLARATIONS

MACRO DEFINITION
PREVIOUSLY DEFINED

NAME FIELD CONTAINS
ILLEGAL SET SYMBOL .

GLOBAL DICTIONARY
FULL

LOCAL DICTIONARY
FULL

INVALID ASSEMBLER
OPTION(S) IN THE
PARAMETER LIST

Explanation

Selt-explanatory.

Selt-expianatory.

Selt-explanatory.

Selr-explanatory.

A global SET variable symbol,
defined in more than one macro
definition or defined 1imn a @macro
definition and in the source pro-
gram, is inconsistent in SET type
or dimension.

Prototype operation field is the
same as a machine or assenbler
instruction or a previous proto-

type.

SET symbol in name field does not
correspond to SET statement type.

The global dictionary is full,
assembly terminated.

The local dictionary is full,
current macro aborted. If in open
code, assembly terminated.

Selt-explanatory.

Severity
Code

12

12

12

12

12

12

MTS-510-0

12-1-67

IEU0S57

IEUO0S8

TEUO059

IEU060

IEU061

IEU062

IEU063

IEU065

Message

ARITHMETIC
OVERFLOW

SUBSCRIPT EXCEEDS
MAXIMUM DIMENSION

RE-ENTRANT CHECK
FAILED

UNDEFINED SEQUENCE
SYMBOL

ILLEGAL ATTRIBUTE
NOTATION

ACTR COUNTER
EXCEEDED

GENERATED STRING
GREATER THAN 255
CHARACTERS

EXPRESSION 1 OF SUB-
STRING IS ZERO OR
MINUS

INVALID OR ILLEGAL
TERM IN ARITHMETIC
EXPRESSION

language Processor Descriptions (F-level Assembler)

Explanation

The intermediate or final result
of an expression is not within
range of -231 to 231-1.

the

§SYSLIST or symbolic parameter
subscript exceeds 200, or is nega-
tive, or zero, or SET symbol sub-
script exceeds dimension.

An instruction has been detected,

which, when executed, might store
data into a control section or a
common area. This message is gen-

erated only vhen requested via con-
trol cards and merely indicates a
possible re-entrant error.

Self-explanatory.

L', S', or I' requested for a
parameter whose type attribute does
not allow these attributes to be

requested.

Selr-explanatory.

Selt-explanatory.

Self-explanatory.

The value of a SETC symbol used
in the arithmetic expression is not
composed of decimal digits, or the
parameter is not a self-defining

Severity
code

8

12

12

517

518

MTS-510-

12-1-67

Code

IEUO66

IED067

IEU068

IEU069

IEU070

IEU071

IEU072

IEU073

IEU074

0

Message

UNDEFINED OR DUP-
LICATE KEYWORD
OPERAND OR EXCESSIVE
POSITIONAL OPERANDS

EXPRESSION 1 OF SUB-
STRING GREATER THAN
LENGTH OF CHARACTER
EXPRESSION

GENERATION TIME
DICTIONARY AREA
OVERFLOWED

VALUE OF EXPRESSION
2 OF SUBSTRING
GREATER THAN 8

FLOATING POINT
CHARACTERISTIC
OUT OF RANGE

ILLEGAL OCCURRENCE
OF LCL, GBL, OR
ACTR STATEMENT

ILLEGAL RANGE ON
ISEQ STATEMENT

ILLEGAL NAME FIELD

ILLEGAL STATEMENT
IN COPY CCDE OR
SYSTEM MACRO

Explanation

The same keyword operand occurs
more than once in the macro

Severity
Code

12

instruction; a keyword is not defined

in a prototype statement; in a
nixed mode macro instruction, more
positional operands are specified
than are specified in the proto-

type.

Self-explanatory.

Selt-explanatory.

Self-explanatory.

Selt-explanatory.

LCL, GBL, or ACTR statement is not
in proper place in the progranm.

Selt-explanatory.

Either a statement which requires

a4 name nas been written without a
name, or a statement has a name
which is not allowed to have a
name.

Selt-explanatory.

12

12

MTS-510-

12-1-67

IEUOT6

IEU077

IEUO78

IEU079

IEUOE0

IFUO0E1

IEU082

TEU083

TEUO8Y

0

Hessage

ILLEGAL STATEMENT
OUTSIDE OF A MACRO
DEFINTION

SEQUENCE ERROR

ILLEGAL CONTINUATION
CARD

(No message is
assigned to this
number)

ILLEGAL STATEMENT
IN MACRO DEFINITION

ILLEGAL START CARD

TLLEGAL FORMAT IN
GBL OR LCL STATE-
MENTS

JLLEGAL DIMENSION
SPECIFICATION IN GBL
OR LCL STATEMENT

SET STATEMENT NAME
FIELD NOT A VARIABLE
SYMBOL

ILLEGAL OPERAND
FIELD FORMAT

Severity

Explanation Code
Selt-explanatory. 8
Selt-explanatory. 12
Either there are too many contin- 8
uation cards, or there are non-
blanks between the begin and
continue columns on the continua-
tion card.
This operation is not allowed 8
within a macro definition.
Statements affecting or depending 8
upon the location counter have been
encountered before a START state-
ment.
An operand is not a variable 8
symbol.
Dimension is other than 1 to 255. 8
Self-explanatory. 8
Syntax invalid, e.g., AIF statement 8

operand does not start with a left

parenthesis; operand of AGO is not
a sequence symbol; operand of
PUNCH, TITLE, MNOTE not enclosed in
quotes.

Language Processor Descriptions (F-level Assembler)

519

520

MTS-510-

12-1-67

TIEU086

IEU087

TEU088

IEU089

IEU090

IEU091

IEU0S2

0

INVALID SYNTAX IN
EXPRESSION

ILLEGAL USAGE OF
SYSTEM VARIABLE
SYMBOL

NO ENDING APOSTROPHE

UNDEFINED CODE

INVALID ATTRIBUTE
NOTATION

INVALID SUBSCRIPT

INVALID SELF-DEFINING
TERM

INVALID FORMAT FOR
VARIABLE SYMBOL

Invalid delimiter, too many terms
in an expression, too many levels
of parentheses, two operators in
succession, two terms imn succes-
sion, or illegal character.

A system variable symbol appears

in the name field of a SET
statement, is used in a mixed mode
or keyword macro definition, is
declared in a GBL or LCL statement,
or is an unsubscripted &SYSLIST in
a context other than N'S§SYSLIST.

There is an unpaired apostrophe
or ampersand in the statement.

Self-explanatory.
Syntax error inside a macro defin-
ition, e.g., the arqument of the
attribute reference is not a sym-
bolic parameter.

Syntax error, €.9g., doubie sub-

script where single subscript is
required or vice versa; not right
parenthesis after subscript.

Value is too large or is
inconsistent with the data
type,e.g., sSeverity code (reater
than 2565.

This first character after the
ampersand is not alphabetic, or the
variable symbol contains more than
8 characters.

Severity
Code

8

12

MTS-510-0

12-1-67
Severity
Code Message Explanation Code
IEU093 UNBALANCED PAREN- Selr-explanatory. 8
THESIS OR EXCESSIVE
LEFT PARENTHESES
IEU0O94 INVALID OR ILLEGAL Seltf-explanatory. 12
NAME OR OPERATION 1IN
PROTOTYPE STATEMENT
IEU095 ENTRY TABLE OVERFLOW Number of ENTRY symbols, i.e., 8
ENTRY instruction operands, exceeds
100.
TEU096 MACRO INSTRUCTION Selt-explanatory. 12
OR PROTOTYPE OPERAND
EXCEEDS 255 CHARAC-
TERS IN LENGTH
IEU097 INVALID FORMAT IN This message can be caused by: 12
MACRO INSTRUCTION 1. Illegal "=,
OPERAND OR PROTOTYPE 2. A single "§&" appears somewhere
PARAMETER in the standard value assigned
to a prototype keyword parame-
ter.

3. First character of a prototype
parameter is not "&".
. 4. Prototype parameter is a sub-
scripted variable symbol.
5. Invalid use of alternate format
in prototype statement, e.g.,

10 16 72
PROTO &A,6B,
or
PROTO &A,88B, X
&§C

6. Unintelligible prototype para-
meter, e.g., "&EAX" or "EAEE.M

7. 1Illegal (non-assembler) charac-
ter appears in prototype para-
meter or macro-instruction
operand.

Language Processor Descriptions (F-level Assembler) 521

MTS-510-

12-1-67

Code

IBU098

IEU099

IRU100

IEU101

IEU102

IEU103

IEU104

IEC105

IEU106

IEU107

TEU108

IEU109

Q

Message

EXCESSIVE NUMBER
OF OPERANDS OR
PARAMETERS

POSITIONAL MACRO
INSTRUCTION OPERAND,
PPOTOTYPE PARAMETER
OR EXTRA COMMA
FOLLOWS KEYWORD

STATEMENT COMP-
LEXITY EXCEEDED
EOD ON SYSIN

INVALID OR ILLEGAL
ICTL

ILLEGAL NAME IN
OPERAND FIELD OF
COPY CARD

COPY CODE

NOT FOUND

EOD ON SYSTENM
MACRO LIBRARY

NOT NAME OF DSECT
OR DXD

INVALID OPERAND

PREMATURE EOD

PRECISION LOST

Explanation

Either the prototype has more than
200 parameters, or the macro
instruction has more than 200 oper-
ands.

Selt-explanatory.

More than 32 operands in a DC,
ps, DXD, or 1literal DC, or more
than 50 terms in a statement.

EOD before END card.

The operands of the ICTL are out

of range, or the ICTL is not the
first statement in the source pro-
grame.

Syntax error, €.g., symbol has an
illegal character.

The operand of a COPY statement
specified COPY text which cannot be
found.

EOD before MEND card.

Selt-explanatory.

Invalid syntax in DC operand, e.g.,
invalid hexadecimal character in
hexadecimal DC; operand string too
long for X, B, C, DC's; operand
unrecognizable, contains invalid
value, or incorrectly specified.

Indicates an internal assembler
error; should not occur.

Selt-explanatory.

Severity
Code

12

12

12

16

12

12

12

16

MTS-510-0

12-1-67
Code Messagde
IEU109 PRECISION LOST

EXPRESSION VALUE
TOO LARGE

Explanation
Selt-explanatory

Value of expression greater than
-16777216 to +167772159

Expressions in EQU and ORG state-
ments are flagged if (1) they
include terms previously defined as
negative values, or (2) positive

terms give a result of more than
three bytes in magnitude. The
error indication may be erroneous

due to (1) the treatment of nega-
tive values as three-byte positive
values, or (2) the effect of large
positive values on the location
counter if a control section begins

with a START statement having an
operand greater than zero, or a
control section is divided into
subsections.

Severity
Code

8

Language Processor Descriptions (F-level Assembler)

8

523

MTS-520-0

12-1-67

FORTR RAN

524

MTS-520-0

12-1-67

FORTEAN G

mhe G-level FORTRAN compiler from IBM's Operating System for the 360 is
available in MTS in either *FORTRAN or *NEWFORT. Consult the library file
descriptions of these in section MTS-280 to see which should be wused, and
for details of I/O unit and parameter specification.

The following is a 1listing of compiler diagnostics followed by a
"Fortran Users Guide™.

SOURCE MODULE_ERROR/WARNING MESSAGES

The error/warning messages produced by the compiler occur in the source
listing immediately following the source statement to which they refer. A
maximum of four error messages are printed per line. The following example
illustrates the format of these messages as they appear in the source
listing.

XX = A+B+-C/ (X*¥%3-A%%-75)
$ 3
n) y message, n) Yy message

Where: n is an integer noting the positional occurrence of the error on
each line.

y is a 1-to-3 digit message number of the form IEYxxxI.

$ is the symbol used by the compiler for flagging the particular
error in the statement (this symbol is always noted on the line
following the source statement and underneath the error).

message is the actual message printed.

The error and warning messages are distinguished by the resulting conple-
tion codes. Serious error messages have a code of eight, while warning
messages may produce either a code of four or zero.

IEYO001I ILLEGAL TYPE

Explanation: The variable in an assigned go to statement is not an
integer variable; or the variable in an assignment statement on
the 1left of the egqual sign is of logical type and the expression
on the right side does not correspond. CC=8, i.e., The completion
code is 8.

language Processor Descriptions (FORTRAN G) 525

MTS-520-0

12-1-67

IEYO002T

IEYOO03T

IEYOO04T

IEYO0O05I

IEY006I

IEYOO07I

IEYNOET

=
=5}
5]
=]
Q
Yol
H

LABEL

Explanation: The statement in question is unlabeled and follows a
transfer of control; the statement therefore cannot be executed.
CC=0.

NAME LENGTH

Explanation: The name of a variable, common block, name list or
subprograr exceeds six characters in length; or two variable names
appear 1in an expression without a separating operation symbol.
CC=4.

COoMMA

Explanation: The comma required in the statement has been omitted.
CC=0.

ILLEGAL LABEL

Explanation: Illegal usage of a statement label; for example, an
attempt is made to branch to the label of a format statement.
CC=8.

DUPLICATE LABEL

EFxplanation: The 1label appearing in the 1label field of a
statement has previously been defined for statement. cc=s8,

ID CONFLICT

Explanation: The name of a variable or subprogram has been used in
conflict with the type that was defined for the variable or
subprogram in a previous statement. CC=8.

ALLOCATION .

Explanation: The storage allocation specified by a source module
statement cannot be performed because of an inconsistency between
the present usage of a variable name and sone prior usage of that
name. CC=8.

ORDER

Explanation: The statements contained in the source module are
used in an improper sequence. CC=8.

MTS-520-0

12-1-67

TFYQ10T

IEYO011X

IEYO12I

IEY013I

IEYO141

IEYO151

IEY016X

IEYO171I

IEYO018I

SIZE

Explanation: A number used in the source module does not conform
to the legal values for its use. CC=8.

UNDIMENSIONED

Explanation: A variable name is used as an array and the variable
has not been dimensioned. CC=8.

SUBSCRIPT

Explanation: The number of subscripts used in an array reference
is either too large or too small for the array.

SYNTAX

Explanation: The statement or part of a statement to which this
nessage refers does not conform to the FORTRAN IV syntax. cc=8.
CONVERT

Explanation: The mode of the constant used in a DATA or imn an
Explicit Specification statement is different from the mode of the
variable with which it is associated. The constant is then
converted in the correct mode. CC=0.

NO END CARD

Explanation: The source module does not contain an end statement.
CC=0.

JLLEGAL STA.

Explanation: The context in which the statement in gquestion has
been used is illegal. CC=8.

ILLEGRAL STA. WRN.

Explanation: A RETURN 1 statement appears in a function subpro-
gram. CC=0. '

NUMBER ARG

Language Processor Descriptions (FORTRAN G) 527

MTS-520-0

12-1-67

TEYO19I

IEY020T

IEYO021I

TEYO022I

IEYO023I

IEYO24T

Explanation: The reference to a library subprogram specifies an
incorrect number of arguments. CC=4.

FUNCTION ENTRIES UNDEFINED

Explanation: If the program being compiled is a function subpro-
gram and there is no scalar with the same name as the function nor
is there a definition for each entry, the message appears on
SPRINT. A 1list of the names in error is printed following the
message.

COMMON BLOCK name ERRORS

Explanation: This message pertains to errors that exist in the
definitions of equivalence sets which refer to the common area.
The message is produced when there is a contradiction in the
allocation specified, a designation to extend the beginning of the
common area, or if the assignment of common storage attempts to
allocate a variable to a location which does not fall on the
appropriate boundary; "name" is the name of the common block in
error.

UNCLOSED DO LOOPS

Explanation: The message is produced if DO loops are initiated in
the source module, but their terminal statements do not exist. A
list of the labels which appeared in the DO statements but were
not defined follows the printing of the message.

UNDEFINED LABELS

Explanation: If any labels are used in the source module but are
not defined, this message is produced. A list of the undefined
labels appears on the lines following the message. However, if
there are no undefined labels, the word NONE appears on the same
line as the message.

EQUIVALENCE ALLOCATION ERRORS

Explanation: The message is produced when there is a conflict
between two equivalence sets, or if there is an incompatible
boundary alignment in the equivalence set. The message is
followed by a list of the variables which could not be allocated
according to the source module specifications.

EQUIVALENCE DEFINITION ERRORS

MTS-520-0

12-1-67

IEYO025T

IEY026T

IEY032T

Explanation: This message denotes an error in an equivalence set
when an array 2lement is outside the array.

DUMMY DIMENSION ERROR

Explanation: If variables specified as dummy array dimensions are
not in common and are not global dummy variables, the above error
nessage is produced. A list of the dummy variables which are
found in error is printed on the lines following the message.
BLOCK DATA PROGRAM ERRORS

Explanation: This message is produced if variables_in the source
module have been assigned to a program block but have not been
defined previously as common. A list of these variables is
printed on the lines following the message.

NULL PROGRAM

Explanation: This message is produced when an end of file nmark
precedes any true FORTRAN statements in the source module.

Language Processor Descriptions (FORTRAN G) 529

30

MTS-520-0

12-1-67

FORTRAN USER'S GUIDE

Files and Data Set Reference Numbers

As used in this write-up, a direct access file is a data set defined by
a FORTRAN IV DEFINE FILE statement; all other data sets are termed
seguential files regardless of the storage media involved. Input/output
operations on direct access files are always performed with the indexed
modifier on, whereas it is always off for sequential files.

The legal data _set _reference numbers (DSRN's) in MTS FORTRAN are 0O
through 9 for sequential files or previously created direct access files
and 10 through 19 for temporary direct access files. Logical devices 0
through 9 should be assigned when the $RUN command is issued for the
FORTRAN object module. Reference numbers 10 through 19 will be assigned at
execution time when the associated DEFINE FILE statement(s) are encoun-
tered, i.e., temporary files named -DAF..0 through -DAF..9 will be created
as required.

Tape Support Statements

The REWIND, BACKSPACE and END FILE statements are ignored for all direct
access files; however, they may be applied to any sequential file with
varying degrees of success. It 1is strongly recommended that these
statements only refer to DSRN's actually assigned to tape units. If these
statements are applied to a read-only device, e.g., a card reader, a
diagnostic comment will be forthcoming. If they are applied to a non-tape
device capable of output (e.g., a tile) the comments REW, BSR and WEF will
be written.

Sequential Files

The first reference to a DSRN via a READ/WRITE statement causes the
specifiea data set to be opened for either reading or writing. The READ,
PRINT and PUNCH statements described in Appendix B of the IBM System/360
FORTRAN Language SRL (C28-6515-U4) are connected to logical devices SCARDS,
SPRINT and SPUNCH, respectively. 1In IBM systems the READ, PRINT and PUNCH
statements usually default to data set reference numbers 5,6 and 7,
resvectively. Reference to a direct access file with the sequential form
of the READ/WRITE statements, or reference to a sequential file with the
direct access form of these statements results in the salutation IHC231I.

MTS-520-0

12-1-67

Record Format for Segquential Files

The length of an I/0 record of a FORTRAN data set is defined either by a
FORMAT statement or the list in an I/0 statement. By definition, a record
written or read under FORMAT control is termed a FORTRAN record, while one
constructed solely on the basis of an I/0 list is termed a logical_record.
The type of record being used together with the default record _1length
determine the course of I/0O operations as described in the following
paragraphs.

When writing FORTRAN records, the 1length of the written record is
determined by the FORMAT statement; however, an error (IHC212I) 1is
recognized if an attempt is made to output a record longer than the data
set record length. If a FORTRAN record shorter than the data set record
length is read, it will be extended to the default record 1length by
appending trailing Dblanks. If a FORTRAN record longer than the data set
record length is read, the number of characters read will be retained.

Logical records being written may not exceed
254% (data set record length - 4) bytes.

The factor of -4 in the above formula is due to the fact that 1logical
records are written as a sequence of partial records, each containing a
FORTRAN control word popularly known as the green word. The partial record
length does not exceed the data set record length. The green word in the
last partial record contains a flag indicating that it is the last partial
record. Aside from this adjustment for logical record length, the green
word is +transparent to the FOKTRAN programmer. .When reading logical
records, an error (IHC213I) is recognized if an attempt is made to read
beyond the last partial record, i.e., the number of bytes in the logical
record are not sufficient to satisty the I/0 list.

Default Record Length for Sequential Files

DSRN RECORD_LENGTH MAX. LOGICAL RECORD
0 to 5 80 bytes 29,304 bytes
6 to 9 132 bytes 32,512 bytes

Record Format_ for_ Direct Access Files

The length of an I/0 record for a FORTRAN direct access file is
specified in the DEFINE FILE statement. For L and E type files the record
length (the second parameter) is specified in bytes, while for U type files
the record length is specified in words. The maximum record 1length is
32,768 bytes, while any record length less than 16 will be increased to

Language Processor Descriptions (FORTRAN G) 531

MTS-520-0

12-1-67

this minimum of 16. The length of all records is as specified in the
define file statement. FORTRAN records shorter than the defined record
length are padded with blanks. & logical record cam exceed the record
length specified in the DEFINE FILE statement, but if it is shorter than
the record length, it will be extended with trailing hexadecimal =zeroes.
Note that if the logical record length exceeds the specified record length
then multiple direct access records will be written or read.

A single buffer, allocated at execution time, is used for all direct
access files. The 1length of this buffer is the maximum of the record
lengths of the currently defined direct access files. If buffer space is
not available when requested an error (IHCS00I) is recognized. If a record
longer than the «current buffer is read an error (IHC901I) is recognized.
This may occur if a file is written with one record length and 1later read
with a shorter record length. ©Note that if the reverse situation occurs,
the records read will be automatically extended with trailing blanks or
hexadecimal zeroes.

A direct access file recognizes records 1,2... up to the maximum record
rumber given in the DEFINE FILE statement. Any attempt to read or write a
record other than these will be greeted by an IHC232I. With respect to the
FORTRAN program, once the define tile statement has been executed the
entire file automatically exists, i.e., unwritten records are all blank or
all hex zeroes. Note that the $LIST command is not equivalent to reading
the file and listing it via a FORTRAN program.

It is recommended that before attempting to wuse the direct access
facility, that the user scrutinize the appropriate sections of the FORTRAN
language SRL. Specific points to be considered:

(1) the DEFINE FILE statement does not initialize the associated
variable.

(2) within MIS, the FIND statement is useless except to set the
associated variable, since retrieval is automatically concurrent
with (somebody's) computation.

(3) the DEFINE FILE statement must logically be the first occurrence of
the DSRN. Because of +the buffer allocation technique it is
advisable +to issue a DEFINE FILE statement for the file with the
largest record length as soon as possible.

(4) the REWIND, BACKSPACE and END FILE statements are ignored. Rewind-
ing <can be accomplished by simply setting the associated variable
to 1, while backspacing by n records is accomplished by decrement-
ing the associated variable by n.

(5) the associated variable may be either a full or half word integer,

MTS-520-0

12-1-67

The STOP Statement

The execution time implementation of the STOP statement has been
altered. The message produced by a STOP statement is

IHCO002I STOP XXXXXX **%%* RESTART AT LOCATION YYYYYY

and will be written omnly on SERCOM. If the STOP number is zero, i.e.,
either STOP or STOP 0, a normal OS return to MTS will occur. If the STOP
number is non-zero a return to the MTS subroutine ERROR will occur. In
both cases XXXXX represents the five digit stop number and YYYYYY
represents the address of the first executable instruction after the STOP
statement. In batch mode this means a non-zero STOP number will cause
termination with a core dump. In conversational mode, it means that
control will pass to MTS in such a fashion that later issuance of a
$RESTART or $RESTART AT YYYYYY command will cause execution to be resumed
with the first statement following the STOP.

The PAUSE Statement

The PAUSE statement causes a message of the form
. {n
IHCOO1A PAUSE {'text!
{0

to be written both to the logical device SERCOM and the operator's comnsole.
The operator is then solicited for a reply. When a reply has been
received, it will be relayed to the logical device SERCOM and execution
will be resumed. If the PAUSE source statement contains text, only the
first 86 characters will be transmitted. CAUTION: Each PAUSE statement
requires an operator reply; hence, extended messages should be communicated
directly.

Execution Error Messages

Execution time errors cause a message of the form
IHCAdd4r ‘optional-message'

to be written on the logical device SERCOM. After the message has been
written, control passes to the MTS subroutine ERROR. The program module
name which originates the error is included in the following text
descriptions of the error codes. The following 1list cf module names
represents the subroutine support tor FORTRAN IV input/output operations.

IHCFCOMH - Input/output supervisory routine. This module also handles
program interrupts and other execution time errors.

Language Processor Descriptions (FORTRAN G) 533

»34

MTS-520-0

12-1-67
IHCFCVTH - Performs conversion of data for I/0 operations.
IHCFIOSH - Performs read/write operations on all sequential files.
IHCDIOSE - Performs read/write operations on all direct access files
and does execution time implementation of the DEFINE FILE
statement.
IHCUATBL - Unit assignment table governing all I/0O operations per-
formed by IHCFIOSH and IHCDIOSE.
IEC211I An invalid character has been detected in a format. IHCFCOMH
THC2121 A FORTRAN record exceeds the data set record length. IHCFCOMH
THC213I A list in a non-formatted read statement requires more bytes of
data than the logical record being read contains. IHCFCOMH
THC2141 An attempt has been made to write morfe than 254 partial records
in one 1logical record. The 1list 1in a non-formatted write
statement is too long. IHCFCOMH
IHC2151 An invalid character exists in a field being read according to a
D,E,F,G or I format specification. IHCFCVTH
IHC2161 Illegal sense light number detected in a call to IHCFSLIT (SLITE)
or IHCFSLIT (SLITET)
TIHC2171I End of data set sensed during read operation and no MEND="
parameter supplied. IHCFIOSH
IHC2181 A device error condition exists and the ERR= parameter was not
given in the READ/WRITE statement.
IHC2201 Tllegal data set reference number. IHCFIOSH and IHCDIOSE
IHC2211 An input variable name exceeds eight characters in a NAMELIST I/0
operation. IHCNAMEL
IHC2221 An input variable name is not in the NAMELIST dictionary, or an
array is specified with an insufficient amount of data. JHCNAMEL
IHC2231I An input variable name or a subscript has no delimiter. IHCNAMEL
THC2241 A subscript is encountered after an undimensioned input name.
IHC2251 An illegal character exists in a field being read according to a
Z format specification. IHCFCVTH
IHC2301 SOURCE ERROR AT ISN XXXX - EXECTUION FAILED AT SUBROUTINE-NAME.

During 1load module execution, a source statement error has been
encountered. Source statement errors which do not force termina-
tion of the compilation , occasion compilation of a call to the

MTS-520-0

12-1-67

IHC2311

IHC2321

THC233I

IHC235T

IHC2361

IHC241T

IHgc2421

IEC2431

THC244T

THC2451I

IHC2u461T

IHC247T

library module IHCIBERH. If at execution time this subroutine is
called, it produces the above comment.

pirect access form of READ/WRITE statement refers to sequential
file (IHCDIOSE), or vice versa (IHCFIOSH).

Record number in direct access I/0 statement 1is less than or
equal to =zero or exceeds tae maximum given in the DEFINE FILE
statement for this DSRN. IdCLDIOSE

Record length in a DEFINE FILE statement exceeds the maximum of
32,768 bytes. IHCDIOSE

A DSRN already opened as a seguential file has been encountered
in a DEFINE FILE statement. IHCDIOSE

A DSRN which has not been opened as a sequential or direct access
file has been encountered in a direct access I/0 statement.
THCDIOSE

For an exponentiation operation (I**J) in the subprogranm IHCFIXPI
(FIXPI#) where I and J represent integer variables or integer
constants, I is equal to zero and J is less than or equal to
zero.

For an exponentiation operation (R**J) in the subprogranm IHCFRXPI
(FRXPI#), where R represents a real¥4 variable or real*4 con-
stant, and J represents an integer variable or integer constant,
R is equal to zero and J is less than or equal to zero.

For an exponentiation operation (D**J) in the subprogram IHCFDXPI
(FDXPI#), where D represents a real*8 variable or real*8 constant
and J represents an integer variable or integer comstant, D is
equal to zero and J is less than or equal to zero.

For an exponentiation operation (R**S) in the subprogranm IHCFRXPR
(FRXPR#), where R and S represent real*4 variables or real¥*l
constants, R is equal to zero and S is less than or equal to
Zero. '

For an exponentiation operation (D¥*P) in tae subprogram
IHCFDXPD (FDXPD#) , where D and P represent real*8 variables or
real*s8 constants, D is equal to zero and P is less than or equal
to zero.

For an exponentiation operation (Z**J) in the subprogram
IHCFCXPI'(FXCPI#), where Z represents a complex*8 variable or
complex*8 constant and J represents an integer variable or
integer constant, Z is equal to zero and J is less than or egual
to zero.

For an exponentiation operation (Z**J) in the subprogram
IHCFCDXI (FCDXI#), where Z represents a complex*16 variable or

Language Processor Descriptions (FORTRAN G) 535

536

MTS-520-0

12-1-67

IHC2511

THC252T

IHC2531

IHC2541

IHC2591

IHC2611

IHC2621

THC2€3T

THC264T

IHC265T

THC266T

IHC2671I

ICH2681

JTHCZ691I

complex*16 constant and J represents an integer variable or
integer constant, Z is equal to zero and J is less than or equal
to zero.

In the subprogram IHCSSQRT (SORT), the argument is less than 0.

In the subprogram IHCSEXP(EXP), the argument is greater than
174.673.

In the subprogram IHCSLOG(ALOG and ALOG10), the argument is less
than or equal to zero. Because this subprogram is called by an
exponential subprogram, this message also indicates that an
attempt has been made to raise a negative base to a real pover.

In the subprogram IHCSSCN(SIN and COS), the absolute value of an
argument is greater than or equal to
218e7(218eT=.82354966406245996D+06) .

In the subprogram IHCSTNCT (TAN or COTAN) , the argument value is
too close to one of the singuiarities (Tig,igg,...for the tangent
or rmw,*2n... for the cotangent).

In 'tne subprogranm IHCLSQRT (DSQRT) , the argument is less than 0.

In the subprogram IHCLEXP (DEXP), the argument is greater than
174.673.

In the subprogram IHCLLOG(DLOG and DLOG10), the argument is 1less
than or equal +to zero. Because the subprogram is called by an
exponential subprogram, this message also indicates that an
attempt has been made to raise a negative base to a real power.

In the subprogram IHCLSCN(DSIN and DCOS), the absolute value of
the argument is greater than or equai to
250eT(250e7=.35371188737802239D+16) .

In subprogram IHCLATN2, when entry name DATAN2 is used, both
arguments are equal to zero.

In the subprogram IHCLSCNH (DSINH or DCOSH), the absolute value
of the argument is greater than or equal to 174.673.

In the subprogram IHCLASCN (DARSIN or DARCOS), the absolute value
of the argument is greater than 1.

In the subprogram IHCLTNCNT (DTAN or DCOTAN), the absolute value
of the argument is greater than or equal to
250071250-ﬁé.353711887376022390+16).

In the subprogram IHCLTNCT (DTAN or DCOTAN), the argument value

is too close to one of the singularities (1H,+§T,...for the
2—

tangent; +gy,%2f, ... for the cotangent).

MTS-520-0

12-1-67

IHC271I

IHC2721

IHC2731

IHC2741

IHC27§I
IHC2811

THC2821I

IHC283T

THC284T

THC2851
THC2901I
THC2911
IHC300I
THC301I

THC900I

TIHC901T

In the subprogram IHCCSEXP (CEXP), the value of the real part of
the argument is greater than 174.673.

In the subprogram IHCCEXP (CEXP), the absolute value of the
imaginary part of the argument is greater than or equal to 218ell
(218eT=.823549664062493996D+06) -

In the subprogram IHCCSLOG (CLOG), the real and imaginary parts
of the argument are equal to zero.

In the subprogram IHCCSSCN (CSIN or CCOS), the absolute value of
the real part of the argument is greater than or equal to 218871
(218e7=.82354966406249996D+06) ..

In the subprogram IHCCSSCN (CSIN or CCOS), the absolute value of
the imaginary part of the argument is greater than 174.673.

In the subprogram IHCCLEXP (CDEXP), the value of the real part of
the argument is greater tham 174.673.

In the subprogram IHCCLEXP (CDEXP), the absolute value of the
imaginary part of the argument is greater than or equal to 250eT
(250eT= .35371188737802239D+16).

In the subprogram IHCCLLOG (CDLOG) , the real and imaginary parts
of the arqument are equal to zero.

In the subprogram IHCCLSCN (CDSIN or CDCOS), the absolute value
of the real part of the argument is greater than or equal to
25067 (250e7=.35371188737802239D+16).

In the subprogram IHCCLSCN (CDSIN or CDCOS), the absolute value
of the imaginary part of the argument is greater than 174.673.

In the subprogram IHCSGAMA (GAMMA) , the value of the argument is
outside the valid range (2—252<x<57.5744).

In the subprogram IHCSGAMA (ALGAMA), the value of the argument is
outside the valid range (0<x<4.2937x1073).

In the subprogram IHCLGAMA (DGAMMA) , the value of the argument is
outside the valid range (2—252<x<57.5744).

In the subprogram IHCLGAMA (DLGAMA) , the value of the argument is
outside the valid range (0<x<4.2937x1073).

Attempts to obtain core space for a direct access I/0 buffer have
failed. A restart at location 7E (HEX) of module IHCDIOSE will
again attempt to allocate this buffer.

A direct access read statement has resulted in buffer overflow.

This is probably caused by an incorrect record 1length specifi-
cation in a DEFINE FILE statement. IHCDIOSE

Language Processor Descriptions (FORTRAN G) 537

538

MTsS-520-0

12-1-67

Program Interrupt Messages

All program interrupts will be signalled by the nessage
IHC210I PROGRAM INTERRUPT--OLD PSW* IS XXXXTITIIIXXAAAAAA

on the logical device SERCOM. After the printing of this message, progranm
execution is resumed if the interrupt was one of the eight arithmetic
interrupts. The non-arithmetic interrupts result in control being passed
to the MTS subroutine ERROR. Caution: Any attempt to usurp progranm
interrupt control from the FORTRAN-provided processor will be viewed as a
violation of the First Law of FORTRAN.

Non-arithmetic Program_Interrupts

Operation Exception - Interrupt Code 0001
An attempt has been made to use an unassigned operation code.
Probably due to incorrect boundary alignment or an attempt to execute
data. ILC=1,2,3%%

Privileged-Operation Exception - Interrupt Code 0002
Certain System/360 instructions are privileged and may be executed
only when the computer is in the supervisor state. FORTRAN object
modules are always run with the computer in problem state. An attempt
to execute one of these privileged instructions will thus be greeted
by an interrupt. The operation is suppressed. Probable cause is
incorrect boundary alignment or an attempt to execute data. ILC=1,2

Execute Exception - Interrupt Code 0003
When the subject instruction of ‘an EXECUTE is another EXECUTE, an
exception is recognized. The operation is suppressed. ILC=2

Protection Exception - Interrupt Code 0004
Contained in the program status word (PSW) is a four bit protection
key. Similarly, associated with every 2048 byte block of storage
there is a protection key. Wnen a mismatch between the PSW key and
the core storage key is detected, a protection exception is recog-
nized. The operation is suppressed on a store violation, except in

*The program status word (PSW) is fully explainea in The System/360
Principles of Operation A22-6821-5. 1In a nutsnell, two fields of +this double
word are significant: the interrupt code field denoted IIII and the address
field denoted AAAAAA. This address usually points to the instruction immediate-
ly following the one that caused the error.

**Instruction length code.

MTS-520-0

12-1-67

the case of variable length operations, which are terminated. Except
for EXECUTE, which is suppressed, the operation is terminated on a
fetch violation. Probably incorrect argument in a subroutine call, or
a wild subscript or transfer. ILC=0,2,3

Addressing Exception - Interrupt Code 0005
When an address specifies any part of data, an instruction, or a
control word outside the available storage for the particular instal-
lation, an addressing exception is recognized. Probable causes are
the same as for the protection exception. ILC may be anything.

Specification Exception - Interrupt Code 0006
A specification exception is recognized when:

1. A data, instruction, or control-word address does not specify an
integral boundary for the unit of information.

2. Improper register designation.

There are a number of other possible causes of this exception;
however, the first one listed above should be the most popular with
FORTRAN users. Probable cause is an incorrect argument to a subrou-
tine, i.e., a short operand where a long operand should be or a
half-word integer instead of a full-word integer. ILC=1,2,3

Data Exception - Interrupt Code 0007

A data exception is recognized when a decimal operand is incorrectly
specified. The operation is terminated. ILC=2,3

Arithmetic Program_Interrupts

Fixed-Point-Overflow Exception - Interrupt Code 0008
When a high-order carry occurs or high-order significant bits are lost
in fixed-point add, subtract, shift, or sign control operations, a
fixed-point-overflow exception is recognized. The operation is com-
pleted by ignoring the information placed outside the register. The
interrupt may be masked by PSW bit 36, but is not. ILC=1,2

Fixed-Point-Divide Exception - Interrupt Code 0009
A fixed-point-divide exception is recognized when a quotient exceeds
the register size in fixed-point division, including division by zero,
or the result of CONVERT TO BINARY exceeds 31 bits. Division is
suppressed. Conversion is completed by ignoring the information
placed outside the register. ILC=1,2

Decimal-Overflow Exception - Interrupt Code 000A
When the destination field is too small to contain the result field im
a decimal operation, a decimal-overflow exception is recognized. The
operation is completed by ignoring the overflow information. The

Language Processor Descriptions (FORTRAN G) 539

540

MTS-520-0

12-1-67

interruption may be masked by PSW bit 37, but is not. Since FORTRA

does mnot use the decimal operations, this exception should be rare
ILC=3

Decimal-Divide Exception - Interrupt Code 000B
When a quotient exceeds the specified data field size, a decimal
divide exception is recognized. The operation is suppressed. Sinc
FORTRAN does not use the decimal operation, this exception should b
rare. ILC=3

Exponent-Overflow Exception - Interrupt Code 000C
The result exponent of a floating-point addition, subtraction
multiplication or division overflows, i.e., exceeds 63, and the resul
fraction 1is not zero. The operation is completed by replacing th
result with a true zero. The condition code is set to 3 for additio
and subtraction and remains unchanged for multiplication and division
I1LC=1,2

Exponent-Underflow Exception - Interrupt Code 000D

The result exponent of a floating-point additien, subtraction, multi
plication or division underflows, i.e., is less than -64, and th
result fraction is not zero. The operation is completed by replacin
the result with a true zero. The interruption may be masked by PsSI
bit 38, but 4is not. The condition code is set to zero for additio
and subtraction and remains uncaanged for multiplication and division.
I1LCc=1,2

Significance Exception - Interrupt Code 000E

The result fraction of an addition or subtraction is zero. A prograil
interrupt occurs if the significance mask bit (PSW bit 39) is one,
which it is not. Because this interrupt is not enabled, no interrupi
occurs and the operation is completed by replacing the result with :
true zero. Any attempt to enable this interrupt by changing the
program mask in the PSW will be regarded as a blatant violation of the
Second law_of FORTRAN.

Floating-Point-Divide Exception - Interrupt Code 00OF
The divisor in a floating-point divide operation has a zero fraction.
The division is suppressed. Because the operation is suppressed anc
because TFORTRAN resumes execution, division by zero is equivalent tc
division by 1, i.e., the quotient equals the numerator. ILC=1,2

MTS-530

12-1-67

I0OH/ 360

IOH/ Definitionmns 541

MTS-530

12-1-67

I0H/360 - I/0 WITH CONVERSION

This section describes the usage and structure of the I/0 routines whic
provide conversion via a format for MAD/I and assembly language users (no
for FORTRAN users), This writeup assumes that the user is acquainted wit
the ASSEMBLER LANGUAGE for the IBM/360 or with MAD/I. 1In this writeup, th
phrase "I/O0 Conversion Subroutine" is synonymous WwWith "IOH/360",

I. PRELIMINARY DEFINITIONS

These definitions are complete in themselves, the meaning and usag
of H through P (below) will be explained in the course of th
writeup.

A. CHARACTER

A character is one of the 256 combinations of two hexadecimal digit:

(00 to FF [base 16]) in the IBM/360. When printed on an IBM 140;
printer, they print as 63 distinct characters (blank is comnsidered :

character; "!"™ and "¢" do pnot print on the normal print chaims).

o)
(=]

IGIT

]

digit is one of the following characters:

0123456789

A letter is one of the following characters:

(]

ABCDEFGHIJKLMNOPQRSTUVWNIXIY
abcdefghijklmnopgrstuvuwzx Y 2z

D. SPECIAL_ CHARACTER

A special character is one of the following:

ST (S REM) S e -4 <> ;1 %2 _D% ., 8

MTS-530

12-1-6

7

NUMBER

A number is a string of one or more digits in the range -32768 to
+32767.

LINE_IMAGE
The word line-image in this writeup refers to :
A) The image of the output line that will be printed (usually
132 columns wide).
OR

B) The image of the card that has been read (usually 80 columns
wide) .

OR

C) The image of the card that will be punched (usually 80
columns wide).

OR
D) Any other character string of length < 32,767 bytes in a
core-to-core movement.
LINE-POINTER
The line-pointer indicates the column in the line-image where the
next character will be put. It is analogous to the position of a

typewriter carriage. The yalue of the line pointer, at any point, is
the number of the column to which it is pointing.

I0H/ Definitions 543

544

MTS-530

12-1-6

7

I/0 _CALL

An I/0 (INPUT-OUTPUT) call is one to a subroutine the purpose o
which is to effect a movement of information --- input (from th
outside world to the computer or from one area in the computer t
another area 1in the computer) or output (from the computer to th
outside world or from one area in the computer to another area in th
computer). Information given to the subroutine for formatted I/
CALLS consists of (1) the location of a format, (2) a set of lists
and optionally (3) the location of a symbol table and logical uni
number. In this writeup onliy formatted I/0 calls will be discussed
and the term I/0_CALL will mean formatted I/O CALL.

LANGUAGE_CALLS

a) An ASSEMBLER LANGUAGE call is a call on one of the followin
subroutines using the ASSEMBLER LANGUAGE: '

IOHIN
ICHOUT
IOHETC
ONE®ATIM

IOHETC and ONE@ATIM must have been preceded by calls to IOHIN o:
IOHOUT. See the description in section 255 of macros fo!
generating these calls.

b). A MAD/I call uses one ot the following statement types:

'PRINT FORMAT!
'PUNCH FORMAT'
'READ FORMAT!
*LO0K AT!

LIST

A list is a sequence of adcoms. A list is headed by a full-wors
adcon pointing to a half-word integer which contains the number of
elements on the 1list (i.e. the number of adcons on the 1lisi
following the header adcon). The half-word also acts as a switch i1
telling whether the following list elements are A-type or S-type
adcons. The head is foliowed by an adcon pointing to the first
character of the format. Foilowing the format—-adcon are a variable

number of sublists.

MTS-530

12-1-6

7
SUBLIST
A sublist 1is a sequence of adcons. The adcon at the head of a

sublist points to a half-word integer which contains a number which
is treated as the number of eiements in the sublist following the
header; the half-word also acts as a switch in telling how the
following adcons in the sublist are to be interpreted.

FORMAT
A format is a string of characters which tells the form and

positioning of the input or output image.

FORMAT-BREAK_CHARACTER

A format-break character separates or delimits format ternms. There
are two types: explicit (written) and implicit (not written).
1) Explicit
a) the left-delimiting format-break characters are:
i) w," - comma; the general break character
ii) w(" - lett parenthesis
iii) beginning of format
b) the right-delimiting format-break character is ")" - right
parenthesis

2) Implicit - the "*" has an implicit format-break character to its
left. The "#w, nyun_ nju uw2n_ and literal fields have
implicit format-break characters both to their right and
left. That an implicit format-break character exists in a
given position in a format means that a format-break
character does not have to be explicitly written in that
place; e.g. it is not necessary to put a comma before or
after a literal term to separate it from the sSurrounding
ternms.

I0H/ Definitions 545

545

MTS-530

12-1-6

7

A format-term is the string of characters between two format-brea
characters. It does not include the format-break characters. It ma
be an empty string (i.e. consecutive format-break characters ar

allowed).

FORMAT TERMINATOR

The format terminator is a character which signifies the logical en
of a format. This is an asterisk, "x*m, (NOTE: the question mark
"?", is also a kind of format terminator - see USAGE) .

CONTEXTS

The meaning and effect a given character has in a format depends o
the context in which it appears. The five contexts (each to b
elaborated) are:

Normal

Literal

Format Variable
Format-0ff

. Default-Scan

JEWN =
.

CONTROL_CHARACTER

A control character (or specification character) is either a lettei
or a special character. It is the character which designates what
general type of conversion will take place. Each format term has

exactly one control character; e.g. the control character C desig-
nates character conversion.

MTS-530

12-1-6

7

MODIFYING CHARACTER

A modifying character is either a letter or a special character. It
cannot stand alone in a format term (with one exception -- an F nmay
modify an immediately preceding F, as 1in FF2.3). It must always
appear with a control character. 1Its presence changes or modifies
the action of the control character; e.g. on input the modifier R
with the control character C causes characters read to be right-
justified instead of left-justified. A modifying character which
does not require a count may appear anywhere in the format term;
modifiers which require counts (i.e. @, G, and A) must come after
the specification control character and the fields associated
expressly with the control character and must be separated from the
preceding fields by a colon, ":". In addition, if there are two

modifying fields requiring counts, they must be separated by a colon,
"Nett

DATA-TRANSMISSION

A data-transmission format term or control character is one which
requires reference to the parameter list.

NON-DATA-TRANSMISSION

A non-data-transmission format term or control character is one which
does not require reference to tane parameter list.

EXTERNAL FIELD WIDTH

An external field width is a set of contiguous columns on an input or
output image; the maximum width is 256. This is not the restriction
to the image length. If the external field width is explicitly zero
in a format term, then the following will occur. For input, a zero
will be read into the associated parameter list item if +the control
character specifies numeric conversion; if the control character
specifies character conversion, then the associated parameter list
item will be filled with the present input fill character (which 1s
initially a blank). For output the number will be put iato zero
columns; i.e. the list item will be skipped.

FIELD WIDTH

The field-width is the number of columas, bytes, or digits in the
specified field.

I0H/ Definitionms 547

548

MTS-530

12-1-6

IT.

7

I/0 _SUBROUTINE CALLING SEQUENCES

In this section, the means ot caliing the I/0 subroutines from MAD/I
and the ASSEMBLER LANGUAGE are given. 1In the case of MAD/I only the
statement type is given. Details may be found in the MAD/I__MANUAL.
In the case of the ASSEMBLER LANGUAGE, only one of the numerous ways
to write the call is given. In general assembly language users
should use the macros provided for generating these calls (see
section 255).

GENERAL STRUCTURE OF_THE_CALLING_SEQUENCES

There are usually three parts of a call to the I/0 conversion
subroutine. The first part is the executable code; the other parts
are the parameter lists. The executable code points (through general
register 1) to the beginning of the first parameter list when the
actual call to the I/0 conversion subroutine is made. The last
parameter in the first parameter 1list contains a pointer to the
beginning of the second parameter list. The first parameter list is
made up of four full-word adcons in the following form:

PLIST1 DC A (OPEN) pointer to "OPEN KOUTINE"
DC A (CLOSE) pointer to "CLCSE ROUTINE"
DC A(PLIST3) pointer to third parameter list
DC A(PLIST2)

The adcons pointing to the generic names OPEN and CLOSE will be
explained shortly. PLIST3 1s the address of the third (optional)
parameter list. The third adcon may be a full-word zero; this
implies that the third parameter list is not present. This parameter
list will ke described shortly. The rourth adcon points to the head
of the second parameter list. The second parameter list is made up
of a variable number of aacons. This 1list has at its head a
full-word adcon pointing to an integer half-word location which
contains the total number of adcons following the head. If this
integer half-word is positive, then the rest of the list is made up
of full-word (type-A) adcons; if it is negative, then the list is
made up of half-word (type-S) adcons. The first adcon following the
head of the second parameter list points to the beginning of the
format to be used by the I/O conversion subroutine. The format nust
be present in calls to IOQHIN or IOHOUTZ. It may be null in calls to
IOHETC in which case the adcon should be a zero. If the format adcon
is non-zero in a call to IQHETC, then tae contents of this adcon will
be taken as a pointer to a new format and all "remembrance"™ of the
previous format is erased. The adcons following the format adcon
constitute a variable number of sublists. Each sublist also has a
header wkich points to an integer half-word location which contains
the total number of adcons in the sublist following the sublist
header. These adcons (the ones following the sublist header) point

MTS-530

12-1-6

7

to the locations from which or to wahich I/O conversion is to take
place. The half-word integer to which the header of a sublist points
may be positive or negative. If positive, each adcon in the sublist
is used for only one conversion. If negative, then the (negative)
number must be even. The adcons in this kind of sublist will be
taken as pairs for block addresses. The first adcon of a pair
contains the beginning address of the block; the second adcon of a
pair contains the end address of the block. 170 processing 1is
terminated whenever one of the adcons in a sublist following a header
is zero. A count of zero in the half-word integer constant to which
the sublist header points causes the I/0 subroutine to interpret the
next adcon in the list as a pointer to a new sublist header.

The third parameter list is of variable length. The first word of
this list points to a halfword which contains the number of argumeats
in this list. The second adcon in this list points to a double-word
aligned location which is the beginning of the user's symbol table.
If this adcon is zero, then no symbol table is present. The third
adcon (if present) points to a full-word location containing either a
logical unit number or a FDUB pointer. 1f this adcon is zero then
input (or output) will be done on SCARDS (or SPRINT or SPUNCH). This
parameter list may be extended in the future. Note that if the UNIT
address is given but not the symbol table address, the count must be
2 and SYMTBL must be a full-word zero.

<PLIST1>::=<pointer to OPEN> <pointer to CLOSE> <optional poin-
ter to PLIST3> <pointer to PLIST2>

<PLIST2>::=<pointer to total number args in PLIST2> <pointer to
format> <list>

<PLIST3>::=<pointer to total number of args in PLIST3>
[<pointer to SYMBTBL>[<pointer to unit number>]]

<list>::=<sublist> | <list> <sublist>
<sublist>::=<pointer to number args in sublist> <slist>
<slist>::= | <slist> <argument>

<argument>::=legal 0S expression

example ot the second parameter list:

PLIST2 DC A(FULCNT) full list count
DC A(FORMAT) format location
DC A(H1) sublist count (a two in this case)
DC A (ARG) single argument
DC A (ARGS) single argument
DC A(S2) sublist count (a minus 4 in this case)

I0H/ Definitions 549

550

MTS-530

12-1-6

7
DC A (ARRAY) beginning address in block
DC A (ARRAY+100) end address of block
DC A (BARRAY+200) beginning address of block
DC A (BARRAY+1000) end address of block
DC A(S3) sublist count (a omne in this case)
DC A(0) and of I/0 comnversion
FULCNT DC H'9'
H1 DC H'2!
S2 DC H'-4
DESCRIPTION OF THE OPEN AND_CLOSE_ROUTINES

The names OPEN and CLOSE to be used henceforth are generic names:
they stand only for the concepts embodied in the following para-
graphs. The user may supply his own specific OPEN and CLOSE routines
for obtaining and releasing LOGICAL images. If the user is forming
his own lists rather than using the macros defined to do so (i.e.
RDFMT, PRFMT, etc.), then he must supply the adcons pointing to the
OPEN and CLOSE routines whether these routines are provided by the
system or by the user (see MACRO CALLS TO IOH/360 writeup in section
255 for Macro Type calls). The OPEN and CLOSE routines are called by
the I/0 conversion subroutine to close-out a line image or get a new
line image.

THE FUNCTION OF THE_OPEN AND CLOSE ROQUTINES

INPUT - On input, the OPEN routine returns to IOH/360 with general
register 1 pointing to a two-word adcon area. The first adcon
contains the address of the beginning of the input image. The second
adcon points to a half-word location containing the length of the
input image. When IOH/360 calls the OPEN routine, register 1 points
to a four word adcon area the fourth adcon of which points to a FDUB
pointer or logical unit number. If this adcon is zero, then standard
logical unit is assumed. (SCARDS for input, SERCOM,SPRINT or SPUNCH
for output). The OPEN routine should take this into account. A& call
to the CLCSE routine may cause (it need not do So) the present image
to be accepted so that a subsequent call to the OPEN routine will
transmit information about a new image with which I0H/360 is to work.
When IOH/360 calls the CLOSE routine, general register 1 points to a
four-word adcon area. The first adcon contains the address of the
beginning of the image. The second adcon points to a half-word
location containing the length of the image. The third adcon points
to a half-word location containing the greatest excursion of the line
pointer during conversion in the image. The fourth-adcon points to
the full-word logical unit number or FDUB pointer. If this adcon is
zero, then the standard logical unit is assumed (see above). The
CLOSE routine may or may not wish to use this information. Succes-
sive calls to OPEN without intervening CLOSEs should present IOH/360

MTS-530

12-1-6

7

with the same input image. The return code must be given by the OPEN
and CLOSE routines: 0O-successful, 4-EOF.

OUTPUT - On output, the OPEN routine returns to IOH/360 with general
register 1 pointing to a two-word adcon area. The first adcon points
to the beginning of the output image. The second adcon points to a
half-word location containing the length of the image. Note that
I0OH/360 only inserts conversion terms; it does not blank out the
image before processing --- it is the responsibility of the OPEN
routine to do this (if it wishes to do so, which is the usual
procedure). The OPEN routines provided by the system will blank out
the 1line image, however. On a call to the CLOSE routine general
register 1 points to a four-word adcon area. The adcons point
respectively to the image, the halif-word containing the length of the
image, the half-word containing the greatest excursion of the line
pointer, and a full-word containing a logical unit number of a FDUB
pointer. 1If the fourth adcon is zero, then the standard logical unit
is assumed (see above). Again, use of this information is at the
discretion of the user. The return code must be given by the OPEN
and CLOSE routines: O-successful, 4-EOF (whatever an EOF might mean
on output).

examples:
a) return from an OPEN routine to IOH/360

LA 1,PLIST pickup address of return list
SR 15,15 return code
BR 14 return

PLIST DC A(IMAGE)

DC A (AH)
AH DC H'256'length of image region
IMAGE DS 256C image region

b) call from IOH/360 to a CLOSE routine:

LA 1,LIST point to parameter list

L 15,=V (CLOSE) address of CLOSE routine
BASR 14,15

LIST DC A(IMAGE) point to IMAGE region
DC A(COUNT) length of IMAGE region
DC A(LASTCOL) amount used by IOH/360

I0H/ Definitions 551

552

MTS-530

12-1-67

IMAGE
CCUNT
LASTCOL
RUNIT

DC A(RUNIT) logical unit address

DS 256C image region

DS H half-word count;image length

DS H highest excursion of line pointer

DS F word containing logical unit number
or a FDUB pointer

MTS-530

12-1-67

SPECIFICATION CHARACTERS

Usage - Normal Context

Since the meaning of a character in a format depends on the context in
which it appears, a separate listing of character meanings is provided for
each context. For each of +the contexts other than Normal Context, a
statement of its purpose and the way entry to and exit from this context is
specified are given.

NORMAL CONTEXT

The characters are listed according to their hexadecimal eguivalents (given
within brackets). Thus, there are 256 possible characters. Note that in
all cases where the multiplicity applies, omitting the multiplicity is
equivalent to giving a multiplicity of 1.

Note: IOH/360 does not actually "see" the characters in the format. Each
character is used as an index to a translate table (through the use of the
TRT instruction). The indexed byte contains a code representing what the
format character means. The following list of characters is what each one
means to IOH/360 when it is loaded. The user may cause such meanings to be
changed (i.e. codes are changed in the table itself). For such manipula-
tions, one should see the section entitled DEFAULT-SCAN CONTEXT. Also, in
some of the following descriptions a DEFAULT CASE is given. The user may
also change the DEFAULT CASE for any such conversion which has a DEFAULT
CASE. See the section entitled DEFAULT-SCAN CONTEXT.

{00] to [3F]
These are illegal characters.

[40] BLANE
A blank is ignored.

[41] to [49]
These are illegal characters.

[A X N J

I0H/360 Normal Context Specifications 553

554

MTS-530

12-1-67

. (4B

< [uc

([uD

The CENT-SIGN is an illegal character.

] PUNCTUATION: PERIOD

The period is used in C, E, F, P, and X specifications. It tells
the format scanner that the number accumulated so far (in the
format) is to be considered as some kind of field width, and that a
new number is to begin accumulating.

(X 2 X J

] CHANGE-OF-CONTEXT: "LESS-THAN" SIGN

The "less—-than" sign is wused to signify a change from Normal
Context to Format-Variable Context. Format-Variable Context
remains in effect until the occurrence of a ">

("greater—-than" sign). (This is not yet implemented)

1 PUNCTUATION: LEFT_PARENTHESIS

A group of format terms may be repeated by enclosing the group in
parentheses and preceding the left parentkesis with a multiplicity
(the multiplicity may be omitted in wnich case it is taken to be
1). Thus:

3E1.5.15,2(X2,3F2.5.10) ,2C8%
is equivalent to the following:

E1.5.15,E1.5.15,E1.5.15,i2,F2.5.10,F2.5.10,F2.5.10,12,
F2.5.10,F2.5.10,F2.5.10,C8,C8%*

Nested ©parentheses are alliowed; there is no limit to the nesting
depth. If the multiplicity in front of a left parentheses is zero,
this means "Do what is inside zero times", which means "Do not do
it at all." This causes a change from Normal Context to Format-Off
context. Normal Context is resumed when the right parenthesis is
found which pairs with the leift parenthesis in front of which the
zero multiplicity was found.

L X AN J

MTS-530

12-1-67

+

[4E

[u4F

] PLUS-SIGN

A Plus-Sign is ignored (it is treated as if it were a blank).
[X X X

] SIROKE

The STROKE causes termination of an image without any reset. Thus,
the appearance of a stroke causes a call to be made to the CLOSE
routine WITHOUT a succeeding call to the OPEN routine; the image
area and the line-pointer will not be reset; i.e. the image status
remains as it was before the call to CLOSE.

& [50] AMPERSAND

The AMPERSAND (when used in DEFAULT-SCAN CONTEXT) indicates a
change from normal to keyword mode in this context. In Normal
Context, the AMPERSAND is an illegal character.

[51] to [59]

These are illegal characters.

! [5A] EXCLAMATION-MARK

o o i e i S e e s e s e

The EXCLAMATION-MARK is an illegal character.

-

$ {587 DOLLAR-SIGN : FLOATING DOLLAR-SIGN MODIFIER

* [5C]

When this modifier is used in E, F, I, O, or P QUTPUT format terms,
a dollar-sigmn, "$", is inserted in the output field immediately to
the left of the first digit (or to the 1left of the sign if it

appears) . NOTE: The Dolliar Sign is illegal as a character in the
input image for any numeric field.

IOH/360 Normal Context Specifications 555

MTS-530

12-1-67

The ASTERISK is the format terminator. It is the 1last logical
character in the format. It causes a call to the CLOSE routine. A
test is then made to determine whether or not the next conversion
address is a zero (a zero adcon). If the zero adcon is not found,
then resumption of the format scan continues at the last zero level
left parenthesis, or if this does not exist, at the beginning of
the present format. The OPEN routine will be called before the
format scan is resumed. If the zero adcon has been found, then
control is returned to the user at the statement after the last
call to the I/O-conversion subroutine.

LA XX J

) [5D] RIGHT-PARENTHESIS

See LEFT PARENTHESIS [4D] for use of parentheses.

L XA 2 J

- [5F] "NOT" SYMBOL

The NOT SYMBOL is used on input in P fields and specifies that the
low order byte of the packed-decimal number is to contain two
decimal digits rather than the normal sign and digit.

L X X N J
- [60] MINUS-SIGN

The MINUS-SIGN causes the sign of the number being accumulated by
the format scanner to be inverted (i.e. =--40 is equivalent to 40).

/. [61] SLASH

The SLASH causes a call to the CLOSE routine followed by a call to
the OPEN routine. Thus it causes the release of the current image
and a request for a new image. The line pointer is reset to column
1.

MTS-530

12-1-67

[62] to [6A]

These are illegal characters.

[6B] PUNCTUATION: COMMA

The COMMA separates format terms. Successive commas are redundant.

(L X X J
% [6C] BERCENT SIGN

The PERCENT SIGN tells the format scanner to use the current image
length in place of the PERCENT SIGN. Thus the user may specify in
his format:

T%'S-1

to place the line pointer at the second character from the end of
the current image.

S S e e

> [6E] "GREATER-THAN" SIGN

The M“GREATER-THAN SIGN" is used to terminate Format-Variable Con-
text. See description of "<" [4C].

? [6F] QUESTION MARK

The QUESTION-MARK is used to tell the I/O-conversion subroutine to
inmediately return to the wuser and to ignore the rest of the
present parameter list. The QUESTION _MARK is to be wused in
conjunction with the secondary entry point IOHETC. The user may

IO0H/360 Normal Context Specifications 557

MTS-530

12-1-67

[70

: [7a

[7B

a [7cC

return to the I/O-conversion subroutines via IOHETC and specify in
his parameter list a new format address. This will be taken as the
present format address and any references to a previous format
address will no longer exist. In particular, placement of paren-
theses previously found and their associated multiplicities will be
"forgotten". If the user specifies a null-format address on entry
to IOHETC (i.e. an actual 0 in the format adcon), then the format
scan is resumed at the character immediately following the QUESTION
MARK.

(X X X J
] to [79]
These are illegal characters.

L X X N]
1 coLoy

The COLON separates the specification part of a format term from
the optional modifiers which require counts (i.e. @, G, and A).
It also separates these modifiers from each other if there is more
than one.

examples:

I5:G8 or F4.6.20:A50:2+5

] POUND-SIGN

The POUND-SIGN is used to change from Normal Context to Default-

Scan Context and vice-versa.

The AT-SIGN is wused only in E or F output fields and is used to
specify a scaling factor to be applied to the number. The AT-SIGN
modifier is followed by a number specifying the scaling factor.
The appearance of the AT-SIGN must come after all field widths have
been specified for the accompanying the format term and pmust be
preceded ry a colon, ":M,

MTS-530

12-1-67

let P be the number found after the AT-SIGN. Then the scale
factor is applied to an F-type number according to the formula:

external number = internal number * (10%*P)
The scaling factor is essentially applied after the conversion is
done and causes the decimal point to be moved and/or zeros to be
supplied in frent of or after the converted number.

EXAMPLE: Let the format be 2F5.5.11:21,F5.5.11*%. Then, the three
numbers which would print

-56789 . 98765 . 12345
according to 3F5.5.11 would now print
5.67890 9.87650 . 12345
Note that in F-type terms, application of the scale factor actually
changes the number by some factor of ten by movement of the decimal
point.
In E-type formats, only the exponent is changed; the scale factor
is added to the exponent.
Thus, a number which would print as:
.9321E-03
according to a format E0.4.10 would print as:
«9321E-01
according to the format E(0.4.10:@2

[X 2 X]
[7D] PRIME
The PRIME indicates a change from Normal Context to Literal

Context. See the section LITERAL CONTEXT.

= [7E] EQUAL SIGN

The EQUAL_SIGN is used in conjunction with vector-type format
variables. The count preceding the equal sign (the "current
count") must be greater than zero or omitted (in which case the
count is taken as equal to 1). The count is then used as an index
to a user-defined ‘'format-variable vector' which consists of

IOH/360 Normal Context Specificatiomns 559

MTS-530

12-1-67

half-word integers. The indexed entry from the vector “"replaces"
the equal sign and its multiplicity (i.e. it becomes the new
"current count"). See ENTRY POINTS TO_ IOH: IOHSFVAR.

EXAMPLE:
Assume that the third and fourth entries in the vector contain
a 4 and a 2 respectively. Then the format term:
3=F4=.4=.20
is equivalent to the format term:

4F2.2.20

" [7F] QUOTATION MARK

The QUOTATION MARK is an illegal character.

L XX X J

[80]
This is an illegal character.

a [81] Lower Case "A"
See A [C1].

b [82] Lower Case "“B"
See B [C2].

LA 2 X J

c [83] Lower Case "C"
See C [C3].

4 [84] Lower Case “D"

MTS-530

12-1-67

See D [C4].

(2 X X J
e [84] Lower Case “E"
See E [C5].
[X 2 X]
£ {86] Lower Case "F"
See F [C6].
o000
g [87] Lower Case, "G"
See G [C7].
[X X X J
h [88] Lower Case "H"
See H [C8]
L X X R J
i [89] Lower Case "I®
See I [C9].
(X X R J

[8A] to [90]
These are illegal characters.

3j [91] Lower Case "J"
See J [D1].

I0OH/360 Normal Context Specifications

561

MTS-530

12-1-67

k {921 Lower Case

See K [D2].

1 {937 Lower Case

See 1L [D3].

m {947 Lower Case

See M [D4].

n [95] Lower Case

See N [D5].

o [96] Lower Case

See 0 [D6].

P [97] Lower Case

See P [D7].

q {981 Lowvwer Case

See Q [D8].

r [99] Lower Case

See R [D9].

HgKH

LR

nMn

nNn

non

IIPII

“Q'l

Rn

MTS-530

12-1-67

[9A] to [A1]

These are illegal characters.

(X X X]
s [A2] Lower Case "s"
See S [E2].
[X X R J
t [A3] Lower Case "T"
See T [E3].
(X X X J
u [AL4] Lower Case "U"
See U [E4].
[X L N]
v [A5] Lower Case "V"
See V [ES5].
(X X N]
W [A6] Lower Case "W"
See W [E6].
[X X N J
X [A7] Lower Case "“X"
See X [E7].
[X X N J

Yy [A8] Lower Case "Y"

IOH/360 Normal Context Specifications 563

564

MTS-530

12-1-67

See Y [E8].

y/ [A9] Lower Case u"g"

See Z [E9].

[AA] to [CO]

These are illegal characters.

A [C1] CENTERING_CONTROL

The CENTERING CONTROL character is used to tell the I/0-conversion
subroutine at what column in the output image the converted field
is to be centered. Thus with the format:

F1.4.10:A14
if the converted number was
bbb2.10000

(wvhere b stands for a blank), then the decimal digit "2" in the
converted number would appear in column 13 with three blanks before
it and .10000 after it.
Let K represent the number found after the A in the format and
let N represent the +tield width in the image (the total field
width). Then the beginning of a field with field width N and
centering at column K will start at column K-[N/2]+1 where the
brackets denote integer division.

B [C2] BYTE-SIZE FLAG

The appearance of the BYTE-SIZE _FLAG anywhere in a format term
indicates that conversion is to take place from or into an internal
field one-byte long. See also BLOCK _ADDRESSING SECTION for an
implicit wuse. When using the B modfier on integer conversions the
number is assumed positive on output and must be positive on input.

example: BI2, BC1, BI3

MTS-530

12-1-67

C [C3)] CHARACTER_FIELD

The normal form of a character field format term is:

C m.n

where m is a count referring to the width in the external image,
and n is a count referring to the width of the internal character
string.

OUTPUT:

N characters are left-justified (right-justified if R specified)
in a field m columns wide with trailing (preceding, if R
specified) padded output f£fill characters (which are initially
blanks) if necessary. It m is omitted, then its default case is
taken. If n is omitted, then n is set to the value of m. If
both m and n are omitted but a decimal point appears in the
format term, then the default case for m is taken and then n is
set to the value of m. If standard format is used, the default
for n is taken and the field is placed in the line image with
literal-break characters surrounding it.

examples:
Let the argument be a seven byte character string, "ABCDEF"
Then:
Cc7.1 gives Abbbbbb
C7.3 gives ABCbbbb
c7.7 gives ABCDEFG
Cc7 gives ABCDEFG
Cc3 gives ABC
C gives At

INPUT:

The first n of m characters are taken from the input image and
are placed in n bytes. If R is specified, then the last n of m
characters are used. If m is omitted, then its default case is
taken. If n is omitted, then n is set to the value of m. If
both m and n are omnitted and no decimal point appears in the
format term, then standard-format input is assumed (see STANDARD
FORMAT INPUT SECTION) .

examples:
Let columns 1 thru 7 contain the character string 'ABCDEFG';
then with the following format terms, the associated results
will occur:

c1.7 gives Abbbbbb
C6.7 gives ABCDEFD
Cc7.10 gives ABCDEFGDDbD

APPLICABLE MODIFIERS:

IOH/360 Normal Context Specificatiomns 565

566

MTS-530

12-1-67

D [Cu

E [cC5

R, L, b, DD, W, H, B - for input or output
see BLOCK-ADDRESSING SECTION for use of D, W, H, B

DEFAULT CASE for m and n is 1.

] DOUBLE-WORD_SIZE_FLAG

The appearance of this flag anywhere in a format term indicates
that conversion is to take place from or into an internal field
eight bytes long which begins on a double-word boundary . However,
if two D's appear in a format term, then conversion is to take
place from or into an internal field sixteen bytes 1long which
begins on a double-word boundary. In the case of E and F
conversions, when two D's appear, then double-precision floating
point numbers are assumed. Se2 also BLOCK-ADDRESSING SECTION for
an implicit use. '

examples: DE, DD1.30.40, DE0.15.22

] EXPONENTIAL FLCATING POINT

The normal form of an exponential floating point format term is :
E m.n.qg

where:
n is the number of digits to the left of the decimal point
n is the number of digits to tne right of the decimal point
g is the total external tield width

OUTPUT:

If m, n, and g are absent and no decimal points appear in the
format term, then the default cases for m and n for E-type
formats are used. Q is taken as m+n+6 in this case (the "eé"
includes the sign, the decimal point, and the four characters in
the exponent). If either m or n are absent (but either a decimal
point is present or g 1is present [implying that two decimal
points are present]) then the default cases are taken for the
missing fields m and 1n (one or the other or both may be
defaulted). Then if g is absent, it is set to m+n+6 .

examples:
The number 123.456 would print as the following with the
indicated formats:

123.456E+00 E3.3.11

MTS-530

12-1-67

12.346E+01 E2.3.10
1.235E+02 E1.3.9
-124E+03 E0.3.8
1.235E+02 E. 3.9
1.235E+02 E

INPUT:

If neither any widths nor any decimal points appear in the format
term, then standard format input is assumed (see STANDARD_ _FORMAT
INPUT__SECTION) . Otherwise, if m or n or both are omitted, then
the default cases are taken for them. If g is absent, then it is
set to m+n+6 . If there is no decimal point in the input field,
then the input number is scaled by 10*%*-n (i.e. a decimal point.
is assumed to be to the left of the nth digit counting from the
right). The appearance of a decimal point in the input image
overrides any specification for m or n.

examples:
The following numbers are all converted to an intermnal

floating-point number equal to 123.456 with respect to the
formats given:

123.456E+00 E
12.3456E+01 E1.4
123456E+01 E2.4
APPLICABLE MODIFIERS:
DD, D, W - for input or output
2, J, $, Y, R, L, U, - for output only

DEFAULT CASE for m is 1 and n is 3. The mode default is D.

An exponential type floating point number is represented by:

[sign] [digit string] ([decimal point] [digit string] [E|+|—|D]
[digit string]

Note that a string such as 145 is equivalent to the string
1E+05.

All floating point numbers in E-format are output in the following
form:

[sign] [m digits] . [n digits] E {t] [exponent]

F [C6] NON-EXPONENTIAL TYPE FLOATING_ POINT

I0H/360 Normal Context Specifications 567

568

MTS-530

12-1-67

G

The normal format term representing this type of conversion is:

F m.n.q

where:

m is the number of digits to the left of the decimal point
n is the number of digits to the right of the decimal point
g is the total external tield width

OUTPUT:

If m or n are absent, then they are filled in by their respective
default cases. If g is absent and n is non-zero, then g is taken
as m+n+2 (the "2" includes tne sign and decimal point); if qg is
absent and 1 is zero, tnen g is taken as m+n+1 . If n is zero,
then no decimal point will appear in the converted number. If
all three widths are omitted and there are no decimal points
present in the format term, then the number to be converted is
examined with respect to the default case for m: if the number

‘has an absolute value less than 10%*-1 or greater than or equal

to 10** (m~1) then the E-type standard format is used. Otherwvise,
m and n are set to their default cases and g is set to m+n+2 (if
h is non-zero) or to m+n+1 (if n is zero).

NOTE: if the F is immediately followed by another F (i.e. FF),
and if the number of digits in the converted number exceeds q,
then the g high-order characters (including the sign if present)
of the converted number are usea (the last digit is not rounded).
This corresponds to the G conversion on the 7090.
EXAMPLES:
The number 123.456 would print as the following with the
indicated formats:

123.456 F3.3
123.46 F3.2
123 F3.0
123.4560 F
123.456 FF3.4.7
123.4 FF3.3.5

INPUT:

F-type input is exactly like E type input. See above.

APPLICABLE MODIFIERS:

Db, D, W - for input or output
2, J, ¥, ¥, R, L, U, - for output only

DEFAULT CASE for m is 5 and for n is 4. The mode default is D.

{C7] BASE_MODIFIER

MTS-530

12-1-67

The BASE MODIFIER appears only in I-type format teras. It nmust
appear after the specification of the field width and must be
separated from main part ot the rformat term by a colon, ":@:u, The
number after the "G" is taken as the conversion base. Conversion
bases from 2 thru 36 inclusive may be used. The letters A thru 32

represent the "digits" ten through thirty-five.

Example: I10:G16 converts an integer field using base-16
arithmetic.

H [C8] HALF-WORD SIZE_FLAG

The half-word flag indicates that conversion'is to take place from
or into a half-word . See BLOCK_ ADDRESSING_SECTION for an implicit
use.

EXAMPLES: IHS5, HCU4

I [C9] INTEGER CONVERSION
The normal form of the format term for integer conversion is:
Im
where m is the total external field width.

OUTPUT:
If m is absent, then the default case for m for integer fields is
taken. A field of size m is used into which an integer
conversion takes place.

INPUT:
If m is absent, then standard format input is assumed (see
STANDARD FORMAT INPUT SECTION). If m is present, then p columns
on the input image are scanned for an integer number and are so
converted.

APPLICABLE MODIFIERS:
B, H, W, D, G - for input or output
Y, $, J, U, - for output only

DEFAULT CASE for m is 8. The default mode is W.
Note: see B [C3] for restriction.

[CA] to [DO]

These are illegal characters.

I0H/360 Normal Context Specifications 569

MTS-530

12-1-67

J [D1

If a § appears in an E, F, I, 0, or P format term, then the
external field width is taken to be the least number of characters
which can accomodate the converted field without any fill charac-
ters being used. Note that with the specification of J, the R, L,
and Z modifiers have no eftect.

(2 2 X]

K [D2]

This is an illegal character.

L {D3] LEFT-JUSTIFICATION MODIFIER

The appearance of the L modifier ina C, E, F, I, 0, P, or X output
format term causes the field to be 1left-justified with +trailing
output fill characters.

EXAMPLES:
In the following, let "b" stand for a blank. On output, if a
number was converted as
b+1.234
according to the format term FY1.3.7, then it will be
converted as
+1.234Db
with the format term LFY1.3.7.

M [D5]

This is an illegal character.

N [D5] NULLS MODIFIER

The NULLS MODIFIER is used only in C fields on input. It specifies
that the fill character (it needed) is to be a hexadecimal =zero,
[0o0].

oveoe

MTS-530

12-1-67

0 [D6

P [D7

] YOWN" CCNVERSION

The normal form of this format term is:
0O m.n.qg

The user may specify that he wants to do his own conversion. He
may access the m, n, and g fields and swvitches which tell whether
these fields are blank (if the widths happen to be zero). He may
use the modifiers R, L, DD, D, W, H, and B and may set them or
reset them at his discretion. See USEFUL_ENTRY POINTS TO_IOH/360:
OWN CONVERSION on how to set up a program to use this type of

The normal form of this format term is:
P m.n

where:
m is the external field width ;
n is the internal field width (the number of internal packed-
decimal bytes to be used)

OUTPUT:
If m and n are present, then n bytes are unpacked and placed in &
output columns --- the "-~" modifier [5F] may be used to include

the low-order digit of the last byte as a decimal digit and not
as a sign. If standard-tormat is specified, a scan takes place
of +the internal representation until either a legal sign appears
as a low order digit or am illegal digit occurs in a byte (only
numerics may appear in the high-order portion of a byte). If the
wan podifier [S5F)] was specified the scan stops at the last byte
containing legal digits (after which there is a byte containing
illegal digits). Absence of the =-" modifier implies that a sign
must appear. A field width equivalent to ome plus the number of
possible digits is used tor the output image field wvidth. If n
is absent, then the same internal scan as that used for
standard-format is used, and n is determined accordingly. If m
is absent, then it is given its default.

INPUT:
m digits are packed into n bytes with the sign in the low-order
byte (see "-" [5F] if the sign is not wanted) . If standard-
format is specified then n is set to the mininum number of bytes
into which the external tield can be packed -leading zeros count
as digits in this case. If standard-format is not specified and

IOH/360 Normal Context Specifications 571

(€]

XS]

MTS-530

12-1-67

Q [D8

if m is absent, m is set to the minimum number of bytes int
which the digits can be packed.

APPLICABLE MODIFIERS
b, W, H, B - for block-addressing
-~ - for input only
$, J, L, U, Y - for ‘output only

DEFAULT CASE for m is 8.

Note: ©Decimal points may appear in input P-field (but only on
per field). However, they are ignored. Thus, the user must kno
the scaling factor implied by the placement of the decimal point
if it appears.

] QUIT IF LIST EMPTY

The appearance of a "Q" anywhere (except within a literal field
causes a switch to be tested; this switch is set only if the nex
parameter address is zero (i.e. if the next list element signifie
the termination of format conversion). If the switch has been set
then the image is CLOSEd and control returns to the user. If th
switch is not set, then format scan continues after the nou,
EXAMPLE:
With the format (om output)

Q' NUMBER=' I5

the literal ' NUMBER=' will be output only if there is ;
conversion argument tor the IS5 format term following. If th
"Q" were not in the tormat, there would be a portion of the
output 1ine with the literal 'NUMBER=' with nothing on th«
line after the literal.

s000

R [D9] RIGHT JUSTIFICATION

The appearance of an "R" anywhere in an E, F, I, O, P, C, or 1]
output field means that the field is to be right justified witl
leading output fill characters if needed (the output fill charactei

is initially a blank). This is the normal case for numeric
conversions. On input, the R modifier pertains only to C fields

and causes the rightmost (instead of 1leftmost) characters to be
moved from the line image. ’

MTS-530

12-1-67

[(DA] to [E1]

These are illegal characters.

S [E2] SKIP: COLUMN MANIPULATOR

The normal form is:

where n is a number which tells how many colummns to skip. N may be
either positive or negative. If p is omitted, it is assumed to be
1. -
EXAMPLE:
If the line pointer is at column 18, then S5 moves the 1line
pointer to column 23, whereas S-5 moves the line pointer to
column 13.

T [E3] TRANSFER: COLUMN MANIPULATOR

The normal form is:
T n

where n is the column number to which the line pointer is to nmoved.
EXAMPLE: T50 moves the line pointer to column 50.

U [E4] FILL IF ZERO

This modifier is for output only. If the argument to a P, I, E, or
F field is zero, then the external field will be filled with output
fill characters (the output fill character is initially a blank) .

v [E5] LIST-TYPE FORMAT VARIABLE

Whenever a "V" is encountered in a format term, the I/O-comnversion
subroutine assumes that the next item on the list points to a
half-word integer; the contents of this half word is substituted
for the appearance of the V.

EXAMPLE: let the next two list elements point to half-words

containing respectively 5 and 8. then the format term:

IOH/360 Normal Context Specifications 573

574

MTS-530

12-1-67

VFV.2.16

is equivalent to

5F8.2.16

W [E6] FULL-WORD FLAG

The appearance of a W anywhere in an F, E, or I field means tha
the conversion is to take place into or from a full-word. Se
BLOCK-ADDRESSING SECTION for an implicit use.

EXANPLES: WI6, WE1.3.10

(X X 2 J

X [E7) HEXADECIMAL CONVERSION

The normal form for this format term is:

X m.n

where:
B is the external field width (the number of hexadecimal digit:
to be packed or unpacked)
L is the number of bytes into which or from which conversion it
to take place.

INPUT:

M digits in the input image are packed and right justified im ¢
field n bytes wide. It both m and n are missing and no decimal
point appears in the format, then standard format is assumed anc
L is set to the minimum number of bytes into which the field cai
be packed. Otherwise, if m is omitted, it is set to its default
case. If n is omitted, then it is set to [(m+1) /2], where the
brackets denote integer division. Note: leading zeros are not
ignored on input.

OUTPUT:
N internal bytes are unpacked and placed in Bk image columns. If
n is omitted, then it is set to its default case. If n is

omitted, then it is set to [(m+1) /2], where the brackets denote
integer division.

Note: Field width is pever exceeded in X-type output conversioans. Thus
if, internally (in two bytes) one had 0123 and if one specified X3

MTS-530

12-1-67

(which is equivalent to X3.2), then the digit string 012 would be
moved to the output field.

DEFAULT CASE for m is 8.

Y [E87] FORCED PLUS-SIGN_ MODIFIER

This modifier is for output only. If the argument to an E, F, I,
or P field is positive or zero, then a plus-sign is forced.
EXAMPLE:

With the conversion term I6 one might get 12345; with YI6,
one would then get +12345,

L L XN J

Z [E9] ZEROS MODIFIER

This modifier can be used on ipput for C fields only. It specifies
that the input fill character is to be a character zero, [F0], for
this conversion. On output, it can be used in an I, E, F, O, P, X,
or C field to specify that the output fill character is to be a
character zero, [F0], for this conversion. If the output is
numeric and right-justifiea (the default case), then the zeros will
be placed between the prefix characters ($,+,-) if they appear and
the actual number. On anon-numeric output and numeric output
without prefix characters, zeros will fill on the right if L was
specified or on the 1left if R was specified (or L was not
specified). Note O-type conversion 1is considered as numeric
output.

00O
[EA] to [EF]
These are illegal characters

0 [FO] NUMERIC
The digit "zero".

1 [F1] NUMERIC

I0H/360 Normal Context Specificatiomns 575

576

MTS-530

12-1-67

The digit

The digit

[F3] NUMERIC

The digit

[F4] NUMERIC

The digit

The digit

[F6] NUMERIC

The digit

The digit

[F8] NUMERIC

The digit

"one" -

"twon.

"three".

"four".

"fiven,

"six".

seven'.

"eightn.

[X XX J

[2 2 X)

Yoo o

MTS-530

12-1-67

9 [F9] NUMERIC
The digit "nine™.
[X X X J

[FA] to [FF]

These are illegal characters.

I0H/360 Normal Context Specifications 577

578

MTS-530

12-1-67

Literal Context

LITERAL CONTEXT

Literal Context 1is entered when any literal break character (normally
prime, i.e. "'"), is encountered in Normal Context. The purpose of ti
Literal Context is to provide characters in the format which can be p1
into the line-image on output or be replaced by characters from tli
line-image on dinput. This 1is to be used for titles, labels, and othe
constant information.

Literal Context remains in effect until the next occurrence of a liter:
break character after which there is no immediate occurrence of anothe
literal break character. The appearance of two successive literal bre:
characters after the initial literal break character allows one to inclu¢
the character which is the first of the two successive 1literal bre:
characters as part of the 1literal. Thus such pairs of literal bres
characters are taken as one appearance of such a literal within the litere
field. The format:

'THIS IS A LITERAL *'* *
would print as
THIS IS A LITERAL !
whereas
'THIS IS NOT A LITERAL *' ¥
is illegal.

On input the appearance of two successive literal break characters withi
the literal field is ignored; neitner terminates Literal Context.

NOTE: the 1limit to the number of characters between any occurrence of
literal break character (whether it initiates, terminates, or exists i
literal context) is 256. This does not restrict the total length of
literal field, however.

MTS-530

12-1-67

Format-0ff Context

A multiplicity of zero in front of a format term or 1left parenthesis
means " do it zero times", i.e. do _not do_it. Therefore 0F5.5.11 will do
nothing and

$10,0(s10,F5.5.11,'TRA '/) ,1I3%

will skip 10 columns and print out a 3 column integer. Nothing inside the
parentheses will be done. (This finds most use where there is some kind of
format-variable, rather than an explicit zero multiplicity in front of the
left parenthesis). A zero multiplicity in front of a left parenthesis
causes a change from Normal Context to Format-Off Context. When scanning
in this context, the only things recognized are left and right parentheses.
The format terminator is_not recognized in Format-Off Context. The context
changes back to Normal Context when the right parenthesis is found which
matches the left parenthesis which had the zero multiplicity.

I0H/360 Format-Off Context 579

580

MTS-530

12-1-67

Default-Scan Context

In Default-Scan Context the user may change the default cases which are
initially set by IOH/360 and may change the interpretation that I0H/360 is
to make on any of the characters in a format term —--- thus, among other
things, the user may change the literal break character to any character he
likes.

Default-Scan Context is initiated by a #-sign in Normal Context and is
terminated by the occurrence of a #-sign in Default-Scan Context. There
are two modes of operation within Default-Scan Context. One mode 1looks
very much like Normal Context. The other mode is keyword mode.

KEYWORD MODE

Keyword mode 1is entered when tne keyword initiator is found (which is
initially an ampersand, "&"). The keywords are not translated by 1I0H/360
(except to be translated so that all characters are in upper case); thus
the keywords must always appear as in this writeup. The keyword is almost

always terminated by an equal sign "=" (the exception is PUSH and POP) ---
the terminator may not be changed as it is considered actually a part of
the keyword. Following the equal sign may be a variable length operand

(depending on the keyword used).

DESCEIPTION OF KEYWORDS

Note: the following characters can onever have their interpretations
changed, but other characters may assume the interpretations of the three.
They are: # [7B], [00], and [FF]. It should also be noted that although
the upper and lower case letters have equivalent interpretations initialliy,
there is nothing preventing, for example, a to have a different
interpretation than A has.

OUTFILL - change the «current output fill character to the character
immediately following the egual sign. Thus after interpretation of the
following format, the output £ill character will be "a".

#60UTFILL=0%#

INFILL - <change the current input £fill <character to the character

immediately following the equal sign. Taus after interpretation of the

following format, the input £ill caaracter will be a character zero.
#EINFILL=0#

MTS-530

12-1-67

OVCHR - the overflow £ill character is set to the character immediately
following the equal sign. The overfliow fill character is dinitially an
asterisk. The overflow fill character fills a whole field on output when

field width has been exceeded and when the bit is set (done on a «call to
SETIOHER) which allows such filling to occur. Thus after interpretation of
the following format, the overflow fill character will be a dollar-sign

#&OVCHR=3#

BREAK - interpret the character immediately following the equal sign as a
literal break character from now on. The user may have any number of
literal break characters. Thus, atter interpretation of the following, the
double-quote will be a literal break character.

#EBREAK="#%

(X X B J
i
EQUIV - the first character immediately following the equal sign is given
the interpretation of the second character. Thus after interpretation of
the following format, the appearance of an A in a format has the same
interpretation as B has at the time that this format is interpreted.

#EEQUIV=AB#

EXCHANGE - the two characters immediately following the equal sign have
their interpretations exchanged. Thus after the interpretation of the
following format, D stands for character conversion and C stands for double
word flag (assuming that their interpretations have not been changed
previously).

#EEXCHANGE=DC#

REPLACE - the first character immediately following the equal sign is given
the interpretation of the second character and the interpretation of the
second character is then made null (i.e. illegal) - Thus after the
interpretation of the following format, C will stand for type-E format and
E will be an illegal character (assuming that their interpretations have
not been changed previously).

#SREPLACE=CE#
Note: to make a character illegal, one should "replace“ the character with

itself -—-- i.e. #&REPLACE=aa# makes "a" an illegal character.

IOH/360 Default-Scan Context 581

582

MTS-530

12-1-67

MODE - the <characters 1immediately after the equal sign specify another
keyword which may be either BCD or EBCDIC. Initially MODE is set to
EBCDIC. The MODE setting determines whether plus-signs when put into the
line image in a numeric conversion will be either in BCD mode (a 12 punch)
or EBCDIC mode (a 12-6-8 punch). IOH/360 accepts either the BCD or EBCDIC
representations of the plus-sign on input regardless of the mode setting.
Thus after the interpretation of the following format, all plus-signs
produced on a numeric conversion by I0H/360 will be in BCD mode.

#EMODE=BCD#

X XN J

PUSH and PQP - these keywords allow the user to go from one default level
to another. DPUSH is used to go to a new default level and after this PUSH,
the user has at this level all default cases as they are initially given.
POP is used to return to a previous default level. After a POP the
information in the level from which we POPped is lost. Thus the user may
have one meaning for A at one leveld and a totally different interpretation
at another level. Thus:

#&EBREAK="SREPLACE=""'6PUSHEBREAK=?#

makes the double quote the only break character at the first level while
quote-mark and question mark are 4iegal break characters at the second
level.

owv e

POPALL - returns the user to level 0 witn respect to PUSH and POP.

STATUS - the next item in the parameter list is assumed to point to a
half-word into which the present PUSH-POP level number is placed. The
initial level number is 0.

LE 2 2 J

RESET - the RESET keyword is used to reset certain defaults at the present
level. The amount that may be to be reset (to -dinitial conditions) is
specified in a second keyword immediately following the equal sign. The
second keywords are as follows.

ALL - all characters will have their initial interpretations and all
defaults for all data transmission conversions will have taeir
initial values.

TABILE - only the interpretations of tae format characters wili be
reset.

DEFAULT - only the default cases for data transmission terms will be
reset to their initial values.

BREAK - the literal break character is reset (to a quote-mark) and all

MTS-530

12-1-67
other 1literal break characters are reset to their initial
interpretations.
OUTFILL - the output fill character is reset to its initial value (a
blank).
INFILL - the input fill-character is reset to its initial value (a
blank).

OVCHR - the over flow fill character is reset to its initial value (an
asterisk).
MODE - the mode is reset to EBCDIC

If none of the above keywords follows the equal sign, then the character
immediately following the equal sign is given its initial interpretation.

NORMAL-TYPE CONTEXT

The user may specify that he wishes to change or reset the default cases
for certain data transmission format terms. This is done in the following
manner. If a length modifier appears in an £, F, or I format term, then
the normal mode of that conversion will be set to the mode specified by the
length modifier. If neither any widtas nor decimal points appear in the
format term, then the default cases for that type of conversion are set to
the initial conditions (this resets only the defaults for the widths). If
any fields are explicitly present, then only the default cases for such
fields are set to reflect what is in the format ternm.

EXAMPLES: E1 resets the pm default for E-type conversions to 1. DE
resets the mode default for E-type conversions to D and resets o
and n defaults to their initial values. WF.3 resets the mode
default for F-type conversion to W and resets the n default to 3.

IOH/360 Default-Scan Context 583

MTS-530

12-1-67

Format—-Variable Context

Use of FORMAT-VARIABLE CONTEXT allows substituting the value of a variable
or expression in the program making the I/O call into a format anywhere
where a number would otherwise be placed. This substitution takes place at
the time the Pormat-Variable Context is encountered during the scan of the
format. The appearance of a "<" (less-than sign) initiates Format-Variable
Context; the appearance of a ">" (greater-than sign) terminates Format-
Variable Context. Note there are two other types of format variables also.
See "y" (E5] and "=" [7E] for their use. The format-variables described
here are somewhat more powerful than the other two types as one can allow
any expression which does not inciude function calls to act as a
format-variable. The variables in a format-variable may be of any mode ---
the resulting value of the format-variable must be an integer in the range
-32768 to +32767. The use of this type of format-variable requires that
the symbol table address be given as the third adcon of the first parameter
list.

Warning: when wusing a format-variable as a multiplicity, remember that
varying the multiplicity does not vary the number of items on the list. If
it is necessary to skip items, use data-transmission format terms with zero
external field-widths to do it.

exanmples:
<A+5%C> I 2.<Q+Z/2>

Note: As yet the format of the Symbol Table has not been defined. Thus
"<" js an illegal character until further notice.

MTS-530

12-1-67

USEFUL ENTRY POINTS TO IOH/360

SETFRVAR - register 1 points to the beginning of a format-variable vector.
The beginning of the vector must be aligned on a half-word boundary. See =
[7E] on how to use this vector in formats.

SETIOHER - general register 1 points to a U4-byte area (need not be aligned)
which contains codes to tell IOH/360 what to do in special circumnstances.
The codes for the first byte are:
Bit 1 - ERROR RETURN allowed if set ON
Bit 2 - EOF RETURN allowed if set ON
Bit 3 - attempt at full recovery after an error. Thus after error
processing, I/0 processing will attempt to continue as if the
error had not occurred.
this bit 1is set if the user does not wish to have any error
comments outputted through SERCONM
Bit 5 - not used at present
Bit 6 if this bit is set and a field-width-exceeded error occurs on
output, then the output field will be filled with the overflow
fill character and I/0 processing will continue.
At the moment none of the other bits or bytes mean anything.

Bit 4

DROPIOER - general register 1 points to a U4-byte area (need not be aligned)

which contains codes which tell IOH/360 what bits are to be reset (of those
that might have been turned on by a call to SETIOHER). See above.

OWNCONVR - With the "O" format term, the user may use his own conversion
routine for either input or output. See "O" [D6]. Previous to using such
a conversion, the user must specify the entry-point address of the user's
routine that will attempt such a conversion. The call:

LA 1,MYCONV
L 15,=V(OWNCONVR)
BASR 14,15

will accomplish such if 'MYCONV' is the entry point address. The routine
used need save only register 14 (so it can return). If and when the return
is made, register 15 should be zero if the conversion was successful, four
if an EOF condition was found upon a call to the OPEN routine (see later),
or eight if the conversion was unsuccessful. All other codes are illegal
and will be treated as an error. When I0H/360 <calls such a routine,
general register 1 points to the beginning of an area which has the
following structure:

OWNW 1 DS F
OWNW 2 DS F
OWNW 3 DS F
OWNARG DS F
OWNNOPEN DS F
OWNCLOSE DS F

Entry Points to IOH/360 585

586

MTS-530

12-1-67

where:

OWNW1
OWNW2
OWNW3
OWNARG

OWNOPEN

OWNCLOSE

OWNCUR
OWNLAS
OWNPUT

OWNFLAGS

byte 1: bit

byte 2: bit

OWNCUR DS F
OWNLAS DS F
OWNPUT DS F
OWNFLAGS DS XL2

first field width (e.g. <che m in E m
second field width (e.g. the p in E pm.n.
third field width (e.g. the mn in E m.n.gq)
address of conversion argument (i.e. from Wwhere or
to where the conversion is to take place).

The address of the routine the user's conversion
routine should call if he wishes to get a new input
or output image.

the address of the routine the user's conversion
routine should call if he wishes to close out an
input or output image.

pointer to current byte in the input or output image
pointer to the 1last byte in the input or output
image.

the address of a routine the user may call to put
something into an output image.

two bytes of flags.

- on if 'R' was specified
- on if 'L' was specified
- on if 'N' was specified
- on if 'DD' was specified
on if 'D' was specified
- omn if *W' was specified
- on if 'H' was specified
- on if 'B' was specified

NOOUNTE WN -0
|

Oonly one of bits 3,4,5,6,7 may be on.

(=}
|

on if standard format specified (i.e.

no 0's or field widths)

- on if width 1 was blank

- on if width 2 was blank

on 1f width 3 was blank

- on if width 3 was found

- on if any . was found in the format
term

- on for output; off for imput

on if this is first time througa for

this format term

UEWN =
[

~N o
|

on input the user will get the same input image as previous if he
does not call OWNCLOSE betore calling OWNOPEN --- thus +the user
may rescan image (starting at column 1 by calling OWNOPEN and not
previously calling OWNCLOSE for the previous image.

MTS-530

12-1-67

2) user may change any of the fields specified.
On input:

User does all of his own conversion into the address specified in
OWNARG; on return OWNCUR should contain the address of the byte where the
line pointer is tc be placed in the input image.

On output:

User has two options a) he moves his conversion into the output image
starting at the address in OWNCUR and not going past the address in OWNLAS
for each image. He may use successive images --- each time a new image is
obtained OWNCUR and OWNLAS are subject to change. b) the user may call
OWNPUT to place his output into the output image and thus take advantage of
the R, L, 2, $, Y modifiers and the default fill character. When OWNPUT is
called register 1 points to a list of 3 adcons; the first adcom points to
the beginning of the user's conversion output area; the second word points
to the full-word number of bytes in that area; the third word points to the
full-word conversion width. Parameter three must be greater than or equal
to parameter two or an error will result.

Entry Points to IOH/360 587

5388

MTS-530

12-1-67

e e S e

When using block-addresses, the I/O-conversion subroutine must have some
means to know in what manner the block addresses are to be incremented,
Block-addresses may either run forwaras or backwards in core. Whenever a
length modifier is explicitly given, the length implied by that modifier
will be used in computing the next block address (i.e. a 1length modifier
of 'D' will <cause a change of 8 while an '"H' will cause a change of only
2). Thus a length modifier may be applied to even a C conversion even
though it actually does not affect the conversion at all. If there is no
length modifier in a C P, or X conversion, then the <change in the block
address will be the amount specitied by the internal width field of the C
P, or X conversion. Thus C5.3 will cause an increment of 3. With respect
to the above, one should realize not to ever give a zero intermnal field to
a format term whose corresponding conversion address may be part of a
block. Thus C0.0 would increment the block address by 2zero - an
intolerable situation which will be marked as an error if it occurs when a
block address is being computed.

Standard-Format Input Section

STANDARD FORMAT on numeric input means that the I/0-conversion
subroutine will scan the input 1image wuntil the next occurrence of a
character which is not an input fill-character which its initially blank
(the first such character may be called the initiator character). After
finding this character, it scans until the occurrence of the next comma or
input fill-character or the end of the input image (any of which may be
called the terminator character). All <characters between the 1initiator
character (including it) and the terminator character (excluding it) are
taken as the input field . If the scan reaches the end of the input image
before finding the first character which is not amn input fill-character,
then then a new image is requested (i.e. a call to CLOSE followed Dby a
call to OPEN).

On character input, the input image is scanned until the next occurrence
of any non-blank character excepting a comma (the warning is given here not
to use the blank or comma as a literal break character). If no such
character is found in the present input image, then IOH/360 calls the OPEN
routine for a mnew image. When such a non-blank character occurs, it is
checked to see if the character is a literal break character; if it is not,
then an error condition arises. It it is, then the scan continues 1looking
for th2 mnext occurrence of a literal break character. Two successive
literal break characters in the scan stand for one such character (the
first of the pair is used as input). Eventually a literal break character
must occur immediately after which there 1is no occurreace of another

MTS-530

12-1-67

literal break character. All characters between the initial literal break
character and the terminal break character are input starting at the
location specified by the argument address.

I0H/360Block~Addressing and Standard-Format Input 589

590

MTS-550-0

12-1-67

I

MTS-550-0

12-1-67

PIL - - PITT INTERPRETIVE LANGUAGE

The following is a description of a remote terminal language in use at
the University of Pittsburgh, the Pitt Interpretive Language (PIL). This
language processor was installed in MTS as received from the University of
Pittsburgh, with minor modifications due to different system interfaces.
The following writeup is an almost exact copy of the University of
Pittsburgh's writeup. The most noticable dJifference is that the
read-prefix-character is an equal sign, since the greater-than which Pitt
uses 1is already used in MTS. PIL is accessed in MTS by means of a $RUN
*PIL command - see the description of the 1library file *PIL imn section
MTS-280 for further details.

PIL is similar to earlier conversational languages, such as JOSS! and
TELCOMP2, with major differences in debugging facilities, error reporting
and problem solving capabilities. PIL, unlike the compiler languages MAD,
FORTRAN, and ALGOL, provides the user with much greater assistance through
the use of console diagnostics, user interaction with the machine, and
associated error recovery procedures. PIL differs from the compilers by
providing direct man-machine interaction facilities, and £from earlier
conversational languages in the relaxation of restrictions imposed upon the
user by the earlier languages.

A major goal of this language was that errors be recoverable. To a
user, this means that it 1is possible to sit down at a console with a
problem and work toward a solution. As he becomes aware of the need to
make corrections or improvements, PIL allows him to alter his program and
to continue without requiring a new start. PIL gives up machine efficiency
in hope of gaining increased human efficiency. PIL is thus designed for
personal use by researchers who feel their own time is valuable.

In this writeup you will find that certain words (keywords) always
appear in capital letters. These words specify what is to be domne and
consequently have certain rules associated with them. The combination of
the location of the word in a statement, its exact spelling, and its
separation from the next word by a space (blank), are necessary information
for +the 1language interpreter. Therefore, these words do not have to be
reserved by the interpreter. Thus,

=SET SET = 27.98.

1Developed by C. Shaw and at the RAND Corporation, Santa Monica, California.

2Developed by Bolt, Beranek, and Newmah, Cambridge, Massachusetts.

Pitt Interpretive Language 591

»92

MTS-550-0

12-1-67

is a legal statement in the language. (Note: The following convention is
used in this manual. All typing by a user is preceded by a "=". All
typing by PIL is not.)

In the example, the first SET is recognized as a key word because it is
the first word in the statement; the first word specifies the action to be
taken. The second SET is in a place where a variable name is expected to
be encountered (i.e., between the word SET and an equals sign). Since the
variable name SET follows the rules for variable naming, it is 1legal and
unambiguous.

Every statement in PIL begins with a key word and terminates with a
period. Some statements contain more than one key word. For example,

=IF a = 3, SET a = 4.
A summary of the various PIL statements appear in Appendix A.

PIL is oriented toward problem solving, with program dJevelopment and
debugging facilities having the highest priority. For the beginning user,
PIL was designed to be clear, unambiguous and hence, easily 1learned. For
the experienced programmer, the language offers increased flexibility with
statement structure and expanded capabilities for the solution of non-
numeric problems.

DESK CALCULATOR MODE

In the simpler mode of operation, the console may be used as a
sophisticated desk calculator. This mode of operation allows the user to
evaluate arithmetic expressions, determine the value of transcendental
functions, and store intermediate results for later inspection.

=TYPE 125/5.
125/5 = 25.0
=TYPE 1.32 + 12.8/32.
1.32 + 12.8/32 = 1.72
=TYPE (THE SINE of 12.8) *%2+ (THE COSINE OF 12.8) *%*2.
(THE SINE of 12.8) **2+ (THE COSINE of 12.8)**2=1.0
=SET a = the SQUARE ROOT of 9.
=TYPE a, a*%*2.
a = 3.0
a¥**¥2 = 9.0

Statements in the desk calculator mode result in an immediate —response
by PIL, and are referred to throughout this writeup as DIRECT MODE
statements. After execution of a direct mode statement, the statement is
not retained so the user must retype any expression that is needed again.

MTS-550-0

12-1-67

In the direct mode, errors are reported immediately. After the user has
corrected them, he must retype the statement because the statement was not
retained.

VARIABLES AND CONSTANTS

Information may be stored for later use by the SET statement (and
others) .

27.98.

=SET ¢ = 10.
= 2.0+10.0.

c = 10.0
=TYPE a+b/c
a+b/c = 29.18

In the preceding example, the variables are a, b, and c and the values
stored into them are known as constants.

Constants may be numeric, such as 3.1415 or 7.8, or they may be
alphabetic, such as "PIL/L" OR "123=". Alphabetic constants (strings) may
be up to 255 characters in length; they are explained in Section 12. There
are only two Boolean constants - THE TRUE and THE FALSE.

=SET data = 5.3.

In this statement, 5.3 is the constant. The variable name, data, has

associated with it the numeric value of 5.3.

Variables

Storage of variables provides a convenient method for retaining
intermediate calculations and allows examination of the contents by the
TYPE statement.

Variables are given names by the user according to the following rules:

1. The first character of the name must be a letter (either upper or

lower case).

Pitt Interpretive Language 593

94

MTS-550-0

12-1-67

2. The remaining characters may be letters or numerals. Upper case
letters are distinguished from lower case.

3. The total number of characters in a variable name may not exceed
eight. This restriction may later be relaxed so that any number of
characters may be used.

Examples:

A,A12, daTA, filename

But not:
DataName672 Too many characters
17AC Starts with a numeral
.GB Starts with a special character

In addition to variable names with a single value associated with each
name, it is possible to have many values associated to a single name.
Single or multiple dimensional arrays (tables) provide a convenient means
to accomplish this. A subscriptea variable is represented by a variable
name, followed by a list of subscripts, separated by commas and enclosed in
parentheses. For example, DATA(1,2) could represent the second entry in
the first row of a table called DATA.

The general rules for subscripts are summarized below:

1. Each subscript may be a constant, a variable, or any numerical
expression.

2. An array may have up to twelve subscripts.

3. A subscript may take any integral value between -9,999,999 and
+9,999,999, but only the integer part is used to reference an
element.

=SET i = 1.

=SET § = 2.

=SET a(i) = 7.

=SET DATA(a(i)+j,i,j,1) = 24.282.

DATA(a(i)+j,i,j,1) is the same as DATA(9,1,2,1) and may be referenced in
either form so long as the values of a(i), i, and j remain unchanged.

=SET X(3) = 142.87.
=SET X(3.141592) = 3. 141592.
=TYPE X (3.141592), X(3).

X(3) = 3.141592

X(3) = 3.141592
=SET X(-1.5) =-28.
=TYPE X(-1.5), X(-1).

MTS-550-0

12-1-67
X(-1) = 28.0
X(-1) = 28.0

In the above example, X(3)'s first value of 142.87 has been replaced by
3.141592, since only the integer portion of the subscript is used.

In certain cases, the entire array may be referenced by mentioning only
the name.

1.
2.
3.

=SET A(1,1)
=SET A(1,2)
=SET 1A(2,2)
=TYPE A.
A(1,1)
A(1,2)
2 (2,2)
=TYPE A(2,1)
Eh? A(2,1)

WN -
e & 0
e OOCO

?

In this example, we see that the element A(2,1) was not defined by the
program, thus the reference to it in the TYPE statement generated am error
report to the user.

The variable dictionary in PIL is dynamic, using space only for
currently defined variables. Therefore, sparse arrays are kept in a
greatly reduced space. This dictionary is kept in an alphabetical order
(lower case before upper case) with subentries for subscripted variables.

To use an undefined variable - a variable without an associated value -
is an error, and the computer will notify the user that an error has
occurred.

=SET b
Eh? 1

data+i.
?

nu

is an error if i were not defined. It is now up to the user to defimné i in
some manner (e.g., SET i = 1.) or continue to another task not dependent
on the value of i. After the detinition was given, it would be necessary
to retype the statement involving i since the statement was given in the
direct mode.

In addition to a value, any variable has a mode associated with it. It
may be referred to as follow:

=SET x = THE MODE OF b.

Preceded By: Would Result In:

=SET b = 34. x =1 b is defined with a numeric value.

=SET b = 1 < 2. x = 2 b is detined and Boolean (TRUE or FALSE).

=SET b = "PIL". x =3 b is detined and a character string.

=SET b (1) = 3. x = 4 The dictionary contains a variable by the same

name as that appearing in the mode statement,
but the two have a different number of sub-

Pitt Interpretive Language 595

594

MTS-550-0

12-1-67

scripts.
=DELETE b. X =5 b is not aefined.

Variables which are defined occupy space in the user's memory. For this
reason, it 1is useful to be able to eliminate variable names (dictionary
entries) when they are no longer needed. To accomplish this, there is the
DELETE statement. DELETE may refer to variables or arrays.

=DELETE a.
=DELETE B,C,D(1).

When an entry is deleted, the space it occupied is returned to the user as
free space which can be used again later.

When a user starts working, he is allocated a certain amount of space
(virtual memory) in which to work. This space is best measured by how many
dictionary entries it could contain.

THE TOTAL SIZE is a measure of how much space the user started with, or
could have if he deleted everything. THE SIZE is a dynamic measure of the
core space available at any given tinme.

=TYPE THE SIZE.
THE SIZE = 197.0
=SET a = 1.
=SET b = 2.
=TYPE THE SIZE, THE TOTAL SIZE.
THE SIZE = 195.0
THE TOTAL SIZE = 197.0

ALGEBRAIC EXPRESSIONS

The arithmetic operators of addition, subtraction, multiplication,
division, and exponentiation are represented in PIL by +, -, %, /, and %%,
respectively. The multiplication operator must always be written, as the
rules of variable naming prohibit adjacent positioning to imply multi-
plication. AB means the variable name AB and not "A times B". The term "A
times B" is written as A*B.

Operators are used in conjunction with variables, constants, and
functions to form expressions. More generally, variables, constants,
arithmetic functions and expressions coupled or preceded by operators form
expressions. Thus, a, a+b, (a+b)*c, 2%((atb)/(c-d)), and x+THE SINE OF y
are expressions.

In summary, expressions are:

1. variables or constants a, 12.0

MTS-550-0

12-1-67

2. functions operating on SINE OF b
an expression

3. parenthesized (a+b)
expressions

4. expressions coupled by (a+b) * (c-4d)

binary operators

5. expressions preceded - (a+b)
by unary operators

The operators which may occur in an arithmetic expression are +, -, ¥,
/, ** and | (vertical bar). Grouping marks, such as parentheses, are used
to delimit the scope of operators in an expression. Parentheses are
necessary to distinguish (at+b)* (c-d) from a a+b*c-d, However, expressions
such as the 1latter are not ambiguous since there is an implied parenthe-
sizing (which is understood to yield a+(b*c)+d for the second expression).

The precedence rules of the arithmetic operators are shown in the
following list with the top of the list having highest precedence and equal
precedence shown on the same line.

functions square root of a
absolute value iaj
exponentiation a¥¥h

negation (unary) -a
multiplication, division a*b, a/b
addition, subtraction a+b, a-b

Whenever operators of the same precedence are encountered in an unparenthe-
sized expression, they are executed in order from left to right.

Consider the following examples:

Expression Equivalent
a+b/c*d a+ (b/c) *d4
atb¥x*kc a+ (b**c)
at+b*c+d a+ (b*c) +d
a/b/c/d ((a/b) /c) /4

These expressions may be used in aritametic expressions interchangeably
with +the same numerical result. Redundant parentheses are ignored by PIL.

In addition to the arithmetic operators, many functions are available,

such as SINE OF, COSINE OF, etc. table 1 provides a complete listing of
arithmetic functions and operators available to the user.

Pitt Interpretive Language 597

598

MTS-550-0

12-1-67

Boolean Expressions

Boolean expressions are also available in PIL. A SET statement will
store the result of a Boolean expression in any desired variable and set
the mode of this variable to Boolean. A Boolean expression may be:

1. A Boolean constant.

2. Two arithmetic or Boolean expressions coupled by a Boolean binary
operator.

3. A Boolean expression preceded by a Boolean unary operator.

The difference from an arithmetic expression is that the expression
results in a Boolean value (i.e., TRUE or FALSE). TABLE 2 gives a complete
list of the Boolean operators available.

The following examples show the use of Boolean expressions:

Statement Result
=SET X = 1 < 2. X = TRUE
=SET X = (10+5) < (7+8). X = FALSE
=SET X = 1 = 1. X = TRUE
=SET X =$NOT 1 > 2. X = TRUE
=SET X = 1 = 2 $AND 1 $NE 2. X = FALSE

For the third example, the first equals sign encountered going from left
to right in the statement is the replacement operator; the other is a
relational operator.

Interchange

The SWAP statement interchanges the values and mode of two variables.
=SWAP a,b.
affects a and b in the same way (but more efficiently) as the sequence:
=SET temp = a.

=SET a = b.
=SET b = temp.

MTS-550-0

12-1-67
TABLE 1
ARITHMETIC OPERATORS AND FUNCTIONS
OPERATOR MEANING EXAMPLE

L T] L] A
| Short { Long | i I
H } + t {
P+ | | Addition {f a+b |
— 4 t t 1
1 - | | Subtraction | ¢c - d |
— { ¥ } {
| * | | Multiplication | a * c |
= t + i 4
| / | | Division { brd i
b } t } 4
		l	
%%		Exponentiation a	a¥%b
=		Replacement	x =Y
- t t + 4
11 { Abs of | Absolute Value { ta - bi |
= t } } 4
| | { | |
{ Sgrt of | Square Root of | /x | Sgrt of x |
t t + + 4
| Sin of | Sine of | Sin x | Sine of x |
t } + + —
| Cos of | Cosine of | Cos x { Cos of x |
L t t + {
{ Log of | | Log x (base 10) | Log of x i
t t { i 1
| | | X | i
| Antilog of | { 10 | Antilog of x |
- + + } 1
| Ln of { | Log x (base e) | Ln of x I
b + + = 1
| Atan of | Arc Tangent of | Tan—1 x | Atan of x 1
} } { 1
| i I x i |
| Exp of | | e | Exp of x |
F t + t 4
| Rn of | Random number of | Random number | Rn of x }
| | | generator | (changes x) |
L i - 1 H . |
r T T M .
| Ip of { Integer part of | Integral part of | Ip of 3.5 = 3.0 |
i | | a PIL number | i
I + } - t 4

pPitt Interpretive Language 599

600

MTS-550-0

12-1-67

; : : : 1
{ Fp of | Fraction part of | Fractional part of I Fp of 3.5 = 0.5 |
! | | a PIL number | |
F } + t 4
| ¥Xp of | Exponent part of | Power of 10 scaling | Xp of 3.5 = 1.0 |
L [] 1 I]
] T T + 4
{ Dp of | Digit part of | Xp of x I Dp of 35 = 3.5 |
! | | Dp of x*(10)=x | |
F t + t 1
| Min of | Minimum of | Least value | Min of (a,b,c) I
L 1 i 4 J]
L] ¥ T Ll]
| Max of | Maximum of | Greatest value | Max of (a,b,c) |
] [} 1 [l ']
L 3 T 1 ¥ 1
] The Size | | Current avail. space | i
L i [l 4 [
r T L] T t
| The Total | | Total work space | |
| Size | | } |
L l 1 L]
I ¥ L L) Ll
| The Time | | Time in 300's of a i i
| | } second relative to | |
]] | 00:00 (midnight) | |
t { + + 1
| The Date | | Day of year in fornm i |
1 | | YYDDD where YY is | i
i } { 19YY and DDD is day | i
| | { of year. | i
i i i i]
L T LI LIl %
The		User's actual computerj	
Plapsed i	usage time (cpu time)		
Time		in 300's of a	
		second. i i	
L i L 'y f

MTS-550-0

12-1-67
TABLE 2
BOOLEAN OPERATORS
OPERATOR MEANING EXAMPLE
T T 1 ¥ 1
| Short | Lcng | | I
i i 1 1 }
[1) T 1
| < | %1t | is less than | a<b {
H t + + {
| | 3le | is less than or equal | b $le c |
t + + + 4
i = | $egq | is equal] c=4d i
t { t { 4
| | $ne { is not equal i b $ne ¢ I
t + { . t 4
| | $ge | is greater than j ¢ $ge b |
| | | or equal l |
F 1 t t 1
| > I $gt | is dgreater than] d > e i
L H [| —
] L T 1 L]
| & | $and { logical product | a <b $and c = 4}
L 1 i 1 4
LI 1 1 L 1
| # { $or | logical sum { a>Db $or c =4 |
[L 1 L ']
1] 1 1 1]
| | $not | logical negation | $not a < b |
i 1 i L]
v) L] Ll 1
{ | $xor | exclusive or] a $xor b [
[1l 1 1 i
L 1 T 1 Ll
i | The True | constant true 1 i
t { + t 4
| | The False | constant false i]
L 1 i L o |

Pitt Interpretive Language

601

602

MTS-550-0

12-1-67

STORED PROGRAM MODE

All key words in PIL are acceptable with any combinations of upper and
lower case letters: e.g., Set, set, SET are all legal so 1long as their
spelling is correct. 1In variable naming, however, this is not true. DATA
is pot the same as the variable data. Thus, it is possible to have
variables with the same spelling but different case combinations.

There are two statement modes in PIL. The first is the direct statement
mode, which has already been discussed. The second is the_stored progranm
mode_or_ _indirect statement mode. Recall that direct statements are
executed immediately and that the text is not retained. Indirect state-
ments are executed under program control in a sequence defined by part and
step numbers. Indirect statements comprise a stored program, while the
desk calculator mode is unique to 1languages in which the user is in
conversation with the computer. The user may go back and forth between
these modes at will, using them as best facilitates solution of the problem
at hand.

=SET data = 27.98.

was an example of the direct mode statement.

Parts and Steps

The indirect statement is always associated with a sequence of instruc-
tions. To define the proper sequence, a part number, followed by a decimal
point, followed by a step number is used. Each may be a four digit number.
Indirect statements may be typed in any order and will be inserted in their
proper places by the computer. A part is a collection of one or more steps
with the same part number, and arranged in order of ascending step number.
These numbers, followed by a space, must precede the statement itself.

= 1.05 SET data = 27.98.
is our direct mode example as it might be given in the indirect mode.

To allow comments to be typed and stored as part of the progran listing,
PIL has the following convention. If, after a step number and blank, the
first character in a statement is an asterisk (*) the remainder of the
statement is taken as a conment.

=1.64 TYPE a,b,c.
=1.65 *QUTPUT OF INTERMEDIATE VALUES.
=1.66 SET A = a+the SQRT of (b/c).

MTS-550-0

12-1-67

Any statement ending with an "** followed immediately by a RETURN without a
period is completely ignored by the interpreter. In this way it is
possible to place comments as you type, but not save them in storage. This
is the same mechanism used to delete an incorrectly typed line.

Step 2.0000 does mnot follow 1.9999 in execution since they are in
different parts, although it does tollow 1t in program listings (TYPE all
parts) . since it is possible to change a program at any time, it is
desirable to leave room in the numbering in order to make insertions.
Additions will automatically be placed in the correct numerical sequence.

At any time the user may request the typing of any part, step, or all
parts.

=TYPE step 1.5.

=TYPE part 3.
=TYPE all parts.

In typing a part or all parts, PIL will type the current program including
all modifications. The typed resuit will be in order by parts and steps.

Indirect Error_ Reporting

Errors encountered in the indirect mode are reported with a reference to
a step number. Thus,

ERROR AT STEP 1.5: j=2

would be the message obtained if step 1.5 contained a reference to the
undefined variable j when the step was executed.

=1.5 IF a = 0, SET x = j¥*y.

As long as a # 0, the variables j and y may remain undefined, for the
execution of this statement does not require these values.

some final notes on the indirect mode are:
1. Errors are reported when encountered in execution.

2. A step may be replaced by typing the corrected statement with the
same step number, thereby replacing the old step.

3. A part or step may be removed by deleting it.

=DELETE STEP 1.5.
=DELETE part 4.

will eliminate step 1.5 and part 4 from the progranm.

Pitt Interpretive Language 603

604

MTS-550-0

12-1-67

RUNNING A STORED PROGRAM

Using the statements encountered up to this point, the user is capable
of writing small programs. Consider a program comnsisting of a series of
calculations involving the SET statement and the printing of a final value
via the TYPE statement.

A good example of this is the solution of one real root of a quadratic
equation ax2 + bx + ¢ = 0 by:

-b + /b2 - 4ac

x:
2a

The program to do such calculation may be:
=5.1 *Program to calculate one root of a quadratic equation.
=5.2 *Coefficients are in x(1), x(2), and x(3).
=5.3 SET a = x(1).
=5.4 SET b = x(2).
=5.5 SET ¢ = x(3).
=5.6 SET root = (-b+SQRT OF (b**2-U4*a*c))/ (2*a) .

If a part, such as PART 5 above, is entered, it may be executed, (either
partially or completely) starting with its lowest step number, by the
direct DC statement. The user simply types:

=DO part 5.

The program will then proceed as directed, or until an error occurs, and
upon completion, PIL will type "=" and then wait for further instructions.

Once the program is started, errors may be detected by the interpreter,
reported to the wuser, and corrected by the user. If the user desires to
restart he may restart at thae beginning by issuing another DO, or resume at
the point of the error by typing GO. For example assume the equation is,
X2 + 4 = 0, of which both roots are complex.

ERROR AT STEP 5.6: NEGATIVE IN SQUARE ROOT ARGUMENT
=TYPE a,b,c.

a = 1.0

b = 0.0

c = 4.0

=TYPZE -U*a*cC.
-4*a*c = 16.0
=SET ¢ = -4,
=GO0.

MTS-550-0

12-1-67

From the example, it can be seen that during the correction procedure
the data has been changed (effectively changing the problem to x2 -4). The
program may also have been changed, if desired, to determnine whether the
term (b**2-U4%*a*c) is negative. During this time, any direct statement may
be used, or indirect statements added or deleted.

When an error is detected in the execution of a statement it is reported
at that point. A GO issued after correction of the error will_ _begin _that
statement_ _over. This is particularly important in relation to the FOR
statement as discussed in a later section.

A DO statement may be given in the direct or indirect mode. Imndirect DO
statements are used to execute other parts or steps within a program and
regain control at the statement after the DO statement.

Program Stops

If the user of our example wished to stop the execution of his program
and check the values of a, b, and ¢ before calculating the square root of
the factors:

=5.55 STOP.
will result in the response from PIL:
STOP AT STEP 5.55.

The computer will then wait for further instructions. The user may do
anything at this roint that he wvas able to do after an error report. GO at
this point would resume execution at step 5.6.

The STOP statement is used as part of a program to allow the wuser to
check its progress, to make a change, or make further additions to his
program. ’

PIL is designed so that a user may interrupt his program at any time.
This is done by causing an attention interrupt. How to do this depends on
there terminal: ATTN button on 2741, BREAK on teletypes. See the user's
guides for the terminals in Section MTS -150 and 170 for details.

After an interrupt, and before a GO, the user is in full control, arnrd
can use any part of PIL including a DO statement. If, however, a normal DO
is executed directly, resumption conditiomns are destroyed and GO has no
meaning. A special DO statement allows these to be preserved. In this
special form, the particular part or step appears in parentheses.

=DO (part 5).
=D0 (step 1.9).

The major resumption condition is ‘the step to be executed when GO
occurs.

Pitt Interpretive Language 605

606

MTS-550-0

12-1-67

TRANSFER OF CONTROL

Once execution of a program has begun, the sequence in which steps ar
executed is determined by the sorted order of Step numbers within a part
unless a transfer of control statement is encountered. There are tw
statement types which accomplish this. One, which we already hav:
encountered, is the DO statement. It will be remembered +that thi:
statement is acceptable in either the direct or indirect mode.

DO_Statement

=DO0 part 5.

was used to initiate the computation of one root of a quadratic equation ir
an earlier example. In this example, it was assumed that the coefficients
of +the quadratic equation were in x(1), x(2), and x(3). Let us build ontc
this example by assuming that x(1), x(2), and x(3) were calculated in sone
manner in part 4.

=4.1 SET x(1) = SIN OF y(1).
-2 SET x(2) = SIN OF y(2).
-3 SET x(3) = (SIN OF y(3)/COS OF y(3)).
DO part 5.

SET result = root/2.
TYPE result.
PART 4.

OFEEEEsEE
.
AN EWN -

Qe

Wt

In this example, part 4 is now used to initiate part 5 (at step 4.4).
The sequence of execution would be; 4.1, 4.2, 4.3, 4.4, 5.1, 5.2, 5.3, 5.4,
5.5, 5.6, 4.5, 4.6. Here, step 4.4 is used to transfer control to part 5.
After completely doing all of part 5, control is returned to part 4 at step
4.5. A part is completed when there are no more steps in the part to be
executed or when a DONE statement 1s encountered:

=5.6 DONE.

will inform the interpreter that execution of this part is complete.

TO _Statement

The second type of statement is the TO statement.

=4.4 TO part 5.

MTS-550-0

12-1-67

If step 4.4 were replaced with the above statement, after execution of
steps 4.1, 4.2, and 4.3, step 4.4 would transfer control to part 5.
Execution in part 5 would begin with the lowest step number (step 5.1). Aan
important point to remember here is that control of execution 1is not
returned to step 4.5, but rather terminates after the execution of step
5.6. The TO statement may also reterence a step number:

=4.4 TO step 5.4.

will send control to step 5.4 and thereby bypass execution of the first
three steps.

The TO statement is only meaningful in the indirect mode and may only be
used as an indirect mode statement. It may not be the object of a FOR.

IF Statement

Conditional transfer of control is accomplished with the IF statement.
The word IF followed by a space starts the conditional statement. This is
followed by the conditional expression (any Boolean expression) and then a
comma (,). After the comma any other statement may occur. Returning to
our Toot of a quadratic equation example, it will be remembered that an
error condition existed whenever the square root argument (discriminant)
was negative. To determine if the discriminant is negative, it is
desirable to have the program check for this error.

=5.55 IF (b**2-4*a*c) < 0, TO step 5.9.
=5.9 TYPE "Complex Root.".

=5.8 DONE.

=TYPE part 5.

5.1 Program to calculate one root of a quadratic equation
5.2 *Coefficients are in x (1), x(2), and x(3).

5.3 SET a = x(1).

5.4 SET b = x(2).

5.5 SET ¢ = x(3).

5.55 1IF (b**2-4%a*c) < 0, TO step 5.9.

5.6 SET root = (-b+SQRT OF (b**2-U*a*c))/(2*a).

5.7 TYPE root.

5.8 DONE.

5.9 TYPE "Complex Root.".

With the newly edited part 5 betore us, it may be seen that the program
now checks for a negative discriminant; if it is negative, control passes
to step 5.9 and a message is printed.

Consider the following statement:

=1.5 IF j < 5, SET j=j+1.

j < 5 is the Boolean expression and its value is either true or false. If

Pitt Interpretive Language 607

608

MTS-550-0

12-1-67

true, the statement SET j=j+1 is executed and control is passed to the nex
statement. If false, the next statement is executed immediately.

=1.6 IF j < 5, IF X+Y+Z > 57, SET j=j+1.

j is compared to 5. If j's value is less than 5, then X+Y+Z is compared t
57, etc. If, and only if, both conditional expressions are true will SE
j=j+1 be executed. . »

The IF statement has a provision for executing a statement when |
condition is false.

3.7 IF a < b, THEN DO part 1; ELSE DO part 2.
1.1 TYPE "CONDITION WAS TRUE".
2.1 TYPE "CONDITION WAS FALSE™.

The words THEN and ELSE may be omitted; their only purpose is to ad«
clarity. The semi-colon(;) separating the two object statements i
necessary, as it serves to distinguish this from the more simple form o1
the IF statement. Thus, step 3.7 may be retyped as:

=3.7 IF a < b, DO part 1; DO part 2.

As has been mentioned earlier, the IF statement requires a Booleai
expression. A Boolean variable may be used as the Boolean expression foi
the If statement:

=SET flag = 1 < 2.
=IF flag, TYPE "TRUE"; TYPE "FALSE".
TRUE

SIMPLE CONSOLE I/O

Console Input/Output (I/0) is acanieved by the statements TYPE and DEMANL
followed by one or more items (a list). I/O statements described here are
designed for wuse at a remote terminal. Other statements are described
later

output

TYPE is an output statement which has been used in earlier examples. It
may request output of one or more items.

=SET a = 3.1.

= = 1< 2.

MTS-550-0

12-1-67
=SET ¢ = “pIL/L"“.
=TYPE a,b,c.
a = 3.1
b = true
c = "pIL/L"n

The seven most significant figures of a number are kept internal to PIL.
Because a scaling factor is used, it is possible to represent zero, and
both positive and negative numbers between 9.999999%1048 and 1.0%*10-S1 in
magnitude.

A special format is used for typing numbers above 9,999,999 or below
10—-7. The form of +this number is SD.DDDDDDESDD, where D indicates a
digits, S represents a sign (+ or -), and E represents 10%*,

=TYPE 10**10, 1E10.
10%%x10 = 1.000000E+10.
1E10 = 1.000000E+10.
The TYPE statement may involve algebraic expressions.

=SET a = 1.

=SET b = 10.

=SET ¢ = 2.
=SET 4 = 3.
=SET e = 4,

=TYPE (a+(c*d/e)) /b.
(a+ (c*d/e)) /b = 0.25

The TYPE statement may also inciude alphabetic messages, contained with
quotation marks (").

=SET a = SQRT OF 25.
=TYPE "SQUARE ROOT OF", a
SQUARE ROOT OF
a =5.0

In a TYPE statement, an entire array may be requested by a single reference
to its name.

=SET a(1,1) = 1.0
=SET a(15,7) = 2.0
=SET a (7,24) = 3000.
=TYPE a.

a(1,1) = 1.0

Pitt Interpretive Language 609

MTS-550-0

12-1-67
a(15,7) = 2.0
a(7,24) = 3000.0

Only elements of the array that are defined by the user will be typed

The TYPE statement is used ror several special purposes not directl
related to the execution of a program. Summarized below are some of th
forms available.

1. To get a copy of a part, sorted in order, and as presently entered,
=TYPE part 5.

2. To get a copy of the entire program, sorted in order and a
presently entered,
=TYPE all parts.

3. To list all defined variables and their current values.
= TYPE all values.

4. To list the entire program and variables in storage.
= TYPE all stuff.

Other specialized and/or modified TYPE statements are available and are
described in other sections related to I/0.

Since the typewriter is a relatively slow device, the user will find if
practical to use these features sparingly. Information may be obtaine:
selectively by:)

=TYPE a,b,c.
=TYPE step 1.3.
=TYPE a+b/c.
etc.

input

The DEMAND statement requests the user to provide values for a list of
variables. The list of variables requested is the same as that following
the word DEMAND.

=2.87 DEMAND a,b,c.
=DO step 2.87.
a=
= 27.98
b=
= 18.46
CcC=
= 57.28

The user's response to a DEMAND sequence may be in terms of anything the
interpreter knows about. The response may be in terms of:

MTS-550-0

12-1-67

1. constants (e.g., 2.79828)

2. arithmetic expressions (e.g., a+b/c) in terms of previously defined
variables.

3. functions (e.g., The SIZE, SQRT OF a.)
4. any combination of the above.

=1.1 DEMAND a,b,c.
=1.2 TYPE a,b,c.
=DO PART 1.

a:
= 4.0

b:
= a+SQRT of a

c:
= a¥b

on a demand for a subscripted variable, the value of the subscript will
be given by PIL.

=1.1 SET i = 1.

=1.2 SET j = 2.

=1.3 DEMAND b(i,i+3j,]) -
=DO0 part 1.

b(1,3,2) =

DEMAND, unlike TYPE, cannot use the variable name to imply an entire

array. If x had been an array, DEMAND x would cause and error report to be
printed. -

1.
0.

=1.1 SET x(1,1)
=1.2 SET x(2,4)
=1.3 DEMAND Xx.
=DO part 1.

X=
=5

ERROR AT STEP 1.3: x UNMATCHED SUBSCRIPTS.

Notice that the error was spotted when the first value was supplied by the
user.

More complex I/O (Input/Output) is described later.

Pitt Interpretive Language 611

MTS-550-0

12-1-67

PROGRAM CHANGES

Whenever PIL is waiting for a wuser to type a command, a direct or
indirect statement may be entered. If a new step is typed wusing an old
Step number the step will reflect only the new entry and the old step will
be lost. At the time PIL is waiting for a line, the user may alter a
variable value, add or replace any indirect statement and execute any
direct statement.

Deletion

Storage is used by defining variables, entering parts or steps, and by
creating FORMS (explained later). Quite often, it is useful to be able to
remove them from the user's core (delete then).

VARIABLE DELETION

=DELETE data.
=1.3 DELETE data.

will delete the variable "data"™ trom the user dictionary and thereby
increase the capacity of his storage. After execution, data is undefined,
since it no longer has an associated value, and any reference to it as long
as it is undefined will generate an error report.

=DELETE a,b,c,d (1,2), t(3).

causes the variables named in the 1list to be deleted from the user's
storage.

A variable may be deleted by the user at any time, with the exception of
currently running iteration indices. This exception is fully explained
later in the section in iterationm.

As with the TYPE statement, and entire array (table) may be deleted by
simply mentioning its name. All values may be deleted by:

=DELETE all values.

effectively leaving only defined parts, steps, and forms in core.

PART AND STEP DELETION

Parts and steps definad by the user may be deleted selectively by the
following statements:

=DELETE part 5.
=DELETE step 5.6.

MTS-550-0

12-1-67

The named part or step is deleted, returning the storage it used for later
reuse. 1All defined parts may be deleted by:

=DELETE all parts.
thus effectively destroying the program but leaving and defined variables

and forms in storage.

FORM DELETION

Form deletion will delete a particular FORM or all FORMS by:

=DELETE FORM 10.
=DELETE ALL FORMS.

Storage Clean-up

To eliminate everything belonging to the user (parts, values, and forms)
the statement:

=CANCEL.
is used. This statement is direct mode only, Whereas the DELETE statement
may be given in the direct or indirect mode. After a CANCEL, the
interpreter will respond with:

READY:

and the user may begin a new problem.

ITERATION STATEMENTS

The FOR statement in PIL provides the user with a convenient method for
controlling the repeated execution of a particular segment of a PIL
program. It is flexible enough to provide all types of loop control
pormally required by the user, plus facilities to handle easily more
intricate loops.

The simplest FOR statement repeats an object statement, such as SET a(i)
= j, for a given list of values.

=FOR i = 1,2,3,4,5,7,9,11: SET a(i) = i.

Pitt Interpretive Language 613

614

MTS-550-0

12-1-67

This statement will repeat the execution of the object statement eight
times, using each of the listed values for the variable i.

The object statement may be any legal PIL statement, including another

FOR, but excluding the TO statement. Any expression may be specified in
the list.

Implied loops

Another form is the simple TO 1loop. It enables the programmer to
provide a series of values without listing thenm explicitly. The general
form is:

=FOR i = m TO n: DEMAND b(i).
=FOR 1 = m TO n by p: DEMAND b(i).

By combining the two types given above, it is possible to type:
=FOR i = 1 TO 5,7 TO 11 by 2: DEMAND B(I).
with 1 taking on the values 1,2,3,4,5,7,9,11.

Notice from this example that any form of the FOR statement may be
repeated in the FOR list, with each separate entity, or list, separated by
commas. Thus, one could type:

=FOR i = a+b, x+y TO z BY w: TYPE a(i).

In the TO 1loop, if the initial value is not greater than the final
value, the object statement is executed. Upon return, the increment (or 1,
if none is specified) is added to the FOR variable, and then it is compared
to the final value. Whenever the value of the FOR variable becomes greater
than the final value, the loop is terminated, and the next item in the list
is used. The process is repeated until the last list element is satisfied
(the one preceding the colon).

Explicit loops

Two additional FOR list forms exist. The first is:
=FOR i = a BY b UNTIL r > n: DELETE x (i)

This form will repeat for successive values of i until the Boolean
expression, following the word UNTIL, is satisfied. The second form is:

=FOR i = a BY b WHILE j < n+1: SET c(i)=b(i).

This form will continue to repeat as long as the Boolean expression
following the word WHILE is true. 1In each of these forms, if no increment

MTS-550-0

12-1-67

is specified, the initial expression is repeated. (CAUTION: If the Boolean
expression has a constant value, an infinite loop may result).

As has been mentioned earlier, a user may delete a variable at any tinme,
with the exception of a FOR index (iteration variable).

=FOR i = 1 to 10: DELETE 1i.
Eh? ATTEMPT TO DELETE FOR INDEX

FOR indices may be deleted after the execution of the object statement is
complete (i.e., the Boolean condition, implied or explicit, becomes true).

summarized below are some of the various FOR statements, using TYPE as
the object statement.

=FOR i = 1 TO 3: TYPE i,i¥*¥*2.
i=1.0
i**2 = 1.0
i= 2.0
i**¥2 = 4.0
i= 3.0
i**2 = 9.0
=FOR i = 1 BY i TO 20: TYPE i.
i=1.0
i= 2.0
i=4.0
i=28.0
i= 16.0
=FOR i = 3 BY 17 WHILE i < 40: TYPE i.
i= 3.0
i= 20.0
i = 37.0
=FOR i = 3 BY 18 UNTIL i > 50: TYPE i.
i= 3.0
i= 21.0
i = 39.0

The statement:
=FOR i = 1 BY 1 WHILE 1 < 2: SET i = i+1.
will result in an infinite loop, since the Boolean expression (1 < 2) 1is

alwvays true.

Restart

The FOR statement is legal in both direct and indirect mode., Should an
error occur in the object statement of an indirect FOR statement,
correction of the error and the word GO will cause PIL to begin that
statement over. This may cause a rather serious error in further
computation.

Pitt Interpretive Language 615

61¢

MTS-550-0

12-1-67

Consider the following example:

=1.1 FOR i = 1 TO 10: SET a(i) = i.

=1.2 SET SUM = 0.

=1.3 FOR i = 1 TO 11: SET SUM = SUM+a (i)
=1.4 SET AVG = SUM/10.

=1.5 TYPE AVG.

ERROR AT STEP 1.3: a(11) = ?
=SET a(11) = 0.
=GO.

AVG = 11.0

For this example the variable AVG should equal 5.5. However, since the
accumulated sum was not rTeset to zero after correcting the undefined
variable error, the accumulated sum became twice the value it should have
acquired. Currently, it is the user's respomnsibility to be aware of such
circumstances and to correct for tanem when necessary.

For Control

Three other statements are related to the FOR statement and affect the
operation of the iteration. They are:

=NEXT 1i.
=LAST 1i.
=END i.

The purpose of NEXT i is to get the next value of i in the FOR loop
whenever the statement is encountered, regardless of FOR nestings. This
allows intermediate FOR's to be automatically terminated and control to be
returned to the FCR statement with i as its index.

=1.8 IF mode of a(i) = 5, NEXT i.
effectively gets the next index omn i if the current a(i) is undefined.

The statement LAST i is similar in that looping on i terminates
intermediate TFOR's and control is returned to the statement following the
FOR on i (or the preceding FOR if i1t is nested).

=1.9 FOR 1 = 1 PO n: IF a(i) = 10, LAST i.
will search the array a for the value 10, and will exit with either i being
equal to n+1, if one is not found, or with i being the subscript of the

entry with the value 10.

END i terminates the loop on i as does LAST i, but control is passed to
the statement following END i.

MTS-550-0

12-1-67

CHARACTER STRINGS

One of the more powerful features in PIL is the handling of character
strings. A character is any sequence of characters (including a null
sequence). A character string constant is any string enclosed 1in double
quotation marks.

=SET a = "A string of characters".
Any legitimate input characters may be included in a string, except for
("), which may act only as a delimiter im a character string constant and

is not a part of the string. An upper limit of 255 characters in a single
string is imposed.

String_ Comparison

Any string may be compared with any other string, using any of the
defined relational Boolean operators. Strings are compared left to right.
If strings are of unequal length, the shorter string is treated as though
jt were padded at the right end with blanks for comparison. The following
collating sequence is the bases for comparison of strings:

(blank) < punctuation < a...z < A...Z < 0...9

=IF "x" < "yﬂ' TYPE ﬂyes"-

yes

=IF "abcd" = “"abcd ", TYPE "blanks ignored".
blanks ignored

It is assumed that the blank is the lowest character that a string will con
It is assumed that the blank is the lowest character that a string will

contain. Table 3 presents a complete list of all string related operators
and functioms.

To determine the length of a string, THE LENGTH function is used. Its
value is a count of the characters contained in a given string. It will
always be an integer in the range 0 to 255.

=SET x = "1234567".
=TYPE THE LENGTH OF x.
THE LENGTH OF x = 7.0

Since many applications using strings are concerned with content, and
not specific forms, it is wuseful to be able to ignore the case of

pPitt Interpretive Language 617

618

MTS-550-0

12-1-67

alphabetic data. This can be done in PIL by using the following two PIL
functions:

=SET X = THE UPPER CASE OF "abcde".
=SET Y = THE LOWER CASE OF X.
=TYPE X,Y.

X="ABCDE".

y="abcde".
Special characters and numerals are unchanged in case shift operations.
All of these facilities allow the user to create, copy, and compare
strings of fixed length. In many applications, it is also useful to break

down and combine strings. PIL has three functions related to these
applications.

String_Operations

Two strings may be concatenated, i.e., the second joined to the end of
the first. The "+" (plus) operator performs this task, provided that both
operands are of string mode. The length of the concatenation result is the
sum of the lengths of the two operands. To illustrate:

=SET x = "12345",
=SET y = "67890".
=SET 2 = x + y + "abc".

=TYPE z, THE LENGTH OF z.
z = "1234567890abc".
THE LENGTH OF z = 13.0

String subtraction is not well defined, and is therefore not allowed.
It 1is useful, however, to either remove or examine some portion of a long
string. There are two functions that allow this kind of manipulation.
They are:

THE FIRST n CHARACTERS OF STRING 1.
THE LAST m CHARACTERS OF STRING 2.

Here n and m may be replaced by any arithmetic expression. Each function
is self-explanatory. The number specified must be non-negative, and not
greater than the length of the string to be operated on. Comnbinations of
THE FIRST and THE LAST allow examination at any point within a string.

=SET x = THE FIRST 1‘CHARACTER OF THE LAST 2
CHARACTERS OF "abpcd".

=TIPE x.

X = llcll.

{(i.e., x is equal to the third character of the string.)

MTS-550-0

12-1-67

Consider the next example as if it were typed on one line.

=FOR i = 1 to n: FOR a(i) = THE FIRST 1 CHARACTER OF
string: SET string = THE LAST (LENGTH OF string-1)
CHARACTERS OF string.

This would put n successive characters of string into a(l1),...,a(n), and
leave any remaining characters in the variable string.

There are some additional string functions unique to PIL. The most
unusual is THE VALUE function. It is defined as follows: if the mode of
the operand is string, this string is evaluated as a PIL expression. If
the mode is mnot string, the result is the same as the operand. One use for
this function is converting a string containing numeric digits to internal
notation.

Examples:
=SET a =3.
=SET b = 5.
=SET c = "a + b*2",

=TYPE THE VALUE OF c.
THE VALUE OF ¢ = 13.0
=TYPE THE VALUE OF "12345".
THE VALUE OF "12345" = 12345.0

The BCD VALUE function allows conversion in the other direction. If any
operand is numeric, the result will be a string of digits identical to the
way the number would look if typed out with a length of 14. If the operand
is string, the BCD VALUE is identical to the operand. If the operand is
Boolean, the BCD VALUE will be either “TRUE"™ or "FALSE".

=SET a = 3.
=TYPE THE BCD VALUE OF (a*a).
THE BCD VALUE OF (a*a) = "9.0 "

The format of the result of THE BCD VALUE OF is always the same as that
generated by TYPE.

Two additional functions, THE BCD TIME and the BCD DATE give strings
with the time or data in readable form.

=TYPE THE BCD TIME, THE BCD DATE.
THE BCD TIME "14:29.06 "
THE BCD DATE "02-17-66 "

Pitt Interpretive Language 619

MTS-550-0

Convert radix of all
operands to string

The BCD value of

12-1-67
TABLE 3
STRING OPERATORS AND FUNCTIONS
OPERATOR MEANING EXAMPLES

] L L) i L
{ Short | Long | | |
L 1 1 L 4
T ¥ T Ll i
| + I | Concatenation | "a" + wpwn |
L i Il L I
L 1] T . T L
jon | | String Delimiter | "abc® |
[1 1 1 [Jd
] ¥ ¥] L]
| L of | Length of | Length of a i L of "ab" = 2,0 |
| | | character string { |
-] 1 1 1
L] 1§ L)] L
! Upper of | Upper case of | Force all to | Upper case of I
| | | Upper case . | |
= : - : 1
| Lower of | Lower case of | Force all to | Lower case of |
| } | Lower case | "AB" |
F t } } 1
{ n $fc a | The first n { Deconcatenation | 2 $fc a I
| | characters of a | | i
| I | | I
| I l | The first 2 {
| | | | characters of a |
F + } i 4
] n $lc b } The last n | Deconcatenation | o $1c b R |
i | characters of a | | |
k } + } 4
| 1 $fc a | The first | | [
i |} character of b | i |
[— i 1 | ']
¥ T t $ 4
| 1 81c b | The last { | |
| | character of b | | i
L i i 1 1
¥] T L L
| | The BCD Time | Time of Day in | i
| | | readable form | |
F + i t 4
i | The BCD Date | Day of year in | |
i i | readable form | I
H t t : t)
| | The value of | Evaluate contents as | |
{ | | a PIL expression | |
k } + + 1
| | | | |
| | | I |
i L L i ']

MTS-550-0

12-1-67

EXTENDED CONSOLE I/O

There is a method by which the user may control the format of amn output
or input line, allowing specification of any number of items on a single
line, up to the physical limitation of the device (80 columns on a card,
120 characters on a printer). The FORM statement is used to declare the
output or input specifications. The declaration is as follows:

=FORM 1.
=X = ___--Y = _e_

The first input line (not ended with an *) following the FORHN statement
specifies the form which will control the typeout of data. There are
several types of allowable specifications within a FORHN. Note that a
terminal period is not required for a FORM.

A. Numeric Information

A standard numeric field is represented by a series of underline

characters and an optional decimal point. Each underline indicates a
possible digit position, 1limitea by the number of allowable significant
digits in a PIL number. At least one high order position should be

specified in order to accommodate a possible minus sign. Thus, the number
1.2376 typed in the following form:

would be typed as follow:

1.237
Notice that additional high order positions are left blank, while the
number is truncated (not rounded) after the number of allowable digits to

the right of the decimal point.

Scientific notation may be requested in a special FORM specification.
The form: :

will type the number-.123456 as follows:

-1.234E - 01
At least seven (7) consecutive periods are required for one significant
digit of output (using scientific notation), each additional period

allowing one more digit of significance, up to the limitations of PIL
nunbers. Any number can by typed out successfully in this form.

Pitt Interpretive Language 621

12

MTS-550-0

12-1-67

Numbers which are too large for standard numeric forms will generate a
diagnostic message. Such numbers may be either typed in scientific
notation, or typed in the following special form.

111

The form is a standard numeric form followed by four exclamation points.
The form will type out standard numeric when the number is within range of
the specification, but will switch to scaled notation when the number is
too large or too small. As with scientific notation, all numbers can be
typed in this form. Consider the tollowing form:
1oy 1111

It will type the numbers 3.14159 and 13276.5 as follows:

3.141 132.765E+02

B. Alphabetic Information

The character # indicates one position of alphabetic information.
Operands in double quotes, string variables, or Boolean variables will type
in this form.

=FORM 10.

=## __ ##4#

=TYPE IN FORM 10, "x", 10, “string".
x 10 stri

C. Other Characters

The character "|" (vertical bar) is used as a field separator, i.e., it
is wused as a delimiter, but does not take up any space in the output line.

All other characters not recognized as field specifications are copied
one-for-one to the output device, wanich allows labeling, etc.

Note: The difference between the forms in Part B and C is that in B the

characters are provided by the list, while in Part C the characters are
supplied in the FORM.

Form Statement

The FORM statement is used to enter a form. The operand is an integer
from one to four digits long. The line following the FORM statement is the
actual TFORM definition. FORM definitions are given only in the direct
mode.

MTS-550-0

12-1-67

Type In Form n, List

The TYPE IN FORM statement is used to indicate formed output. The 1list
specification is identical to the TYPE list. The form number may be either
a number or an arithmetic expression. If the form specified is undefined,
a diagnostic message is given.

Given:
x = 3.14
y = 70.3
i= 10
j = 510
Form 1.
=X . Y - I J

The statement:
=TYPE IN FORM 1, x, y, i, 7.
will type the following line:
X 3.140 Y70.300 I 10 J510

Should the list contain more items than the form allows, the form will be
rescanned from the beginning until all items in the list have been typed,
Thus, an n x n matrix, typed in a form with n positions, would be typed out
in row form (one row per line).

=FORM 1.

=FOR 1 = 1 TO 3: FOR j = 1 TO 3:SET a(i,j) = i*10+j.
=PYPE IN FORM 1,a.

11 12 13
21 22 23
31 32 33

TYPE_FORM 1

The TYPE FORM statement can be used either to examine a form for errors,
or to type out a header line entered as a form, No identification is typed
with the form.

Example:

=FORM 17.
=AGE HEIGHT WEIGHT

Pitt Interpretive Language 623

MTS-550-0

12-1-67

=TYPE FORM 17
AGE HEIGHT WEIGHT

TYPE _ALL FORMS

This statement will type out the form number, followed by the £form, in
the same two line format as the form was entered.

Form Deletion

To DELETE a specific form:
=DELETE FORM 10.
or to DELETE all defined FORMS:

=DELETE ALL FORMS.

User Directed Input

The normal DEMAND sequence is somewhat inconvenient for large amounts of
data. The DEMAND IN FREE FORM statement speed up console input and allows
card reader input. The form is:

=DEMAND IN FREE FORM, a,b,c.

The list is any standard DEMAND list. The statement has three differences
from the normal DEMAND statement.

1. The names of the input parameter are not typed out for each input
iten. :

2. More than one item may be requested in a single input line.

3. Only numeric information and character string constants are accepta-
ble.

This provides a convenient method for reading in cards with more than one
value on them. Each input item must be separated by a valid delimiter,
i.e., one or more blanks, a comma, or both of these. Input is demanded
until the 1list is completed unless otherwise terminated. Itens are
processed from a line until either the end or the <character W"/" |js
encountared, at which time another input line is demanded if necessary. An
"k" wyhich is not the last non-blaak character in the input line terminates
the demand, reqardless of position in the 1list. (Backspaces, etc, are
allowved from the typewriter.) Since identifiers are not typed out, it is
recommended that the user precede a DEMAND IN FREE FORM statement with a

MTS-550-0

12-1-67

TYPE statement, warning him that the equal sign coming up means "start
typing in data."

A DEMAND or a DEMAND IN FREE FORM always requires a new input 1line at
the beginning of the list. That is, it does not use anything that may be
unused from the last input request.

Another alternate input statement is DEMAND IN FORM n, list. This
statement is analogous to TYPE IN FORM, and most lines created by TYPE IN
FORM can be re-read by DEMAND IN FORM. However, it must be noted that:

1. Numeric FORM fields merely indicate that numeric input is expected
and no alignment of input to decimal points is necessary, and\no
scaling is performed.

2. The character " (double quote) is not an acceptable input character
in an alphabetic form field.

3. The FORM fields driving the input line must be completely satisfied.
It is an error if a DEMAND IN FORM statement with four input
parameters, coupled with a FORM with four fields, receives only
three input items on the line.

Extended I/0 List Features

There is a way by which a FOR can operate within both DEMAND and TYPE
statements in the standard I/0 lists. The form is:

=1.8 TYPE (for i = 1 to 5: a(i), b(i)).

=1.9 DEMAND (for i = i to 5: a(i)) .
This extension is most useful in conjunction with user directed Input and
Output, as it allows specification of several items in an array without
listing them individually. The standard rules for FOR apply, including
nesting (see Section 11).

Consider the next example:

=FOR i = 1 TO 5: FOR § = 1 TO 5: SET a(i,j) = i*j.
=PYPE (FOR i = 1 TO 5: (FOR j = 1 TO 5: a(i,J)))-

a(i,1) =1
a(1,2) = 2
a(S:u) = 20
a(5,5 = 25

results in all elements from a(1,1),...,2(5,5) being typed. The parenthe-
ses must be evenly matched, and those around the FOR are required.

Pitt Interpretive Language 625

26

MTS-550-0

12-1-67

Literal Forms

TYPE IN FORM or DEMAND IN FORM allow the use of a 1literal coanstant
(e.g., "__. 1111") or the use of an alphabetic variable as the form

specification.

Thus:

=1.1 DEMAND IN FORM" ", x(1), x(2), x(3).

————

=1.2 SET a = "__. . L

=1.3 TYPE IN FORM a, x(1), x(2), x(3).

are legal statements to the interpreter '‘and would be executed in the sane
manner as though a form number were referenced. Form numbers may be
determined by an arithmetic valued expression. These features provide a
means to construct forms via program control and calculate references to
directly defined forms.

PROGRAM MANAGEMENT

The user may desire to have more flexible control over certain systenm
functions, such as pagination of output, program saving and loading, and
storage acquisition. PIL has several statements related to these func-
tions, but not specifically related to program logic.

Pagination

If a user specifies nothing with regard to pagination, he will use every
line of a page. He may request, however, that PIL keep an accounting of
lines and format pages so that they could fit into a notebook. In this
case, PIL will supply certain reference information such as a page heading.
To obtain pagination, the user types:

MTS-550-0

12-1-67

=PAGES YES.

Set paper to 2nd line from top, type carriage return.

Page 1 USERID
03-07-67
12:41.34

The last line of the page heading is the time of day on a 24 hour basis
(00:00.00 is midnight).

After this, PIL will keep track of pages, supplying a new one when
necessary. It will also supply a new page when the word PAGE appears as
either a direct or indirect statement. The page control program assumes
that single spacing is used at the console.

Pagination may be turned off by the statement:

=PAGES NO.

If it is desired to use other than a standard page size, the PIL user
can specify the number of lines to be printed per page.

=PAGES YES 33.
would set the page size +to 33 lines. Thirty-three 1lines with double
spacing gives a page with same physical size a normal single spaced page.
To space a single line, the statement:
=LINE.
is used, either directly or imndirectly.
=1.7 FOR i = 1 to 5: LINE.
will space 5 lines.
If the user moves paper himself, the computer will not detect it, and

the pagination will not be correct.

Pitt Interpretive Language 627

628

MTS-550-0

12-1-67

Storage Acquisition

The message:
Eh? I NEED MORE SPACE.

is used to tell the user that his program needs more storage. The user may
increase his storage capacity by the ACQUIRE statement.

=ACQUIRE 1 block.

will add enough additonal storage to be to store 512 variables (This is 2
pages of storage). The message:

Eh? STORAGE NOT AVAILABLE.

indicates that the user has exhausted all the storage available to him.
His program must now be able to operate in this amount of storage.

PILMANSHIP

For simple computing tasks, PIL typically denerates answers as fast as
the wuser at the console can assimilate them. As more complex tasks are
programmed, a point may be reach where the user regards the performance of
PIL as less than ideal:

psychologically response time is too slow,

economically too much computer time is being used, or
sociologically response time of wusers at other consoles is being
degraded

It should be recognized that PIL is not the appropriate vehicle for
large "production" Jjobs. It may be of value, however, to code such a
problem initially in PIL. The debugging facilities of PIL can be used to
check out the logic of the procedures. Then the code should be transcribed
into a compiler 1language (e.g., MAD, ALGOL, FORTRAN) for more rapid
execution.

This section is concerned with problems of lesser magnitude, where it
may pay to "fight before switching"--try to utilize some insight into the
internal structure of PIL to write more efficient code.

In order to make PIL easy to use and debug from a console, it was
organized quite differently from the common compilers. Some of these
differences will now be discussed.

MTS-550-0

12-1-67

Running a program written in a compiler language takes place in two
phases. First, the program is compiled, translated into machine
language-- the numerical codes which control the computer's hard-
ware. Then the machine language is executed. With an interpretive
language, such as PIL, however, each statement is decoded as it is
executed.

=1.5 FOR i

1 to 100: do part 4.

=4.1 SET s

s+n (i) .

Statement 4.1 would be decoded 100 times (provided n(1)...n(100)
were defined). (This feature of PIL permits modifying programs in
the midst of execution.)

It is therefore desirable to write statements compactly, to reduce
the number of characters that must be scanned in the decoding
process. Use only the required blanks in statements. Use short
names for variables. Combine two or more statements into one where
possible, to save having to scan some statement numbers.

Example 1: =1.50 SET a = y(3j) *z(3j)-
=1.51 SET s = s+a.
becomes

=1.5 SET s = s+y(j)*z(j) -

Example 2: =2.5 IF i < j, to step 2.9.

=2.51 SET k = 3.
becomes

=2.5 IF i < j, to step 2.9; SET k = 3.

Example 3: =3.1 SET i
=3.11 SET j
=3.12 SET k =0.
=3.13 SET m = 0.

becones
=3.1 FOR i = 2: FOR j = 3:
FOR k = 0: SET m = 0.

The common compilers take advantage of the random_access feature of
current computer: any cell in the main memory can be accessed as
quickly as any other. This means that X can be accessed as quickly
as Y, and Z(9) can be obtained as quickly as 2Z(99). With two or
more subscripts there can be slight variations. Also, the more
subscripts, the longer it takes.

since in PIL, variables can be added or deleted at any time, a
different internal addressing system had to be used. The variables
are linked in alphabetic order. Thus, to access the ‘variable e, it
would be necessary to search through all the variable names
beginning with a,b,c and d. Accordingly, it is suggested that the
most frequently used variables be given names beginning with the
first letters of the alphabet and in lower case. Also, deleting a

Pitt Interpretive Language 629

MTS-550-0

12-1-67

variable which 1is no longer needed removes a "way station" on the
search. (Alternative searching schemes are being investigated.)

The defined members of singly-subscripted array are linked together
in order of increasing subscripts. For example, if X(1), X(2),
X(3), X(5), and X(8) are detined, and X(8) is to be accessed, first
the variable names are searched until X if found. Then the search
goes through X(1), X(2), X(3), and X(5) until X(8) is reached. The
value of deleting entries which are no longer needed is now as
apparent as the penalty incurred .for developing long subscripted
arrays. For example, if one is evaluating an iterative expression
of the form

X. = g(x)
i+ i

efficiently, as soon as x(i) is no 1longer needed, if should be
deleted.

When a multiply-subscripted element is to be accessed, first the
variable name is located. Then a list of pointers is scanned until
the first subscript is matched. Then the second subscript is
matched, and so on. It is suggested that for n sufficiently large,
an array X(1)...X(n*n) with all elements defined should be converted
to an array XX(1,1)...XX(n,n) for more rapid access.

Some of +the coding tricks recommended to a compiler language user
would backfire in PIL. For example, given a long series of positive
integers i which are know to lie between 1 and 30, it is desired to
have the cube of each i. In FORTRAN, it would pay to precompute an
array of cubes:
DO 10 I = 1,30
10 ICUBE(I) = I * I* I

Then the cube of I is accessed by ICUBE(I). 1In PIL, on the other
hand, it would be better to write:

=SET ICUBE = I**3,

Note also that using a numerical constant in the statement saves a
search through the variable list.

3. The terminal is the slowest piece of apparatus in the sSystem.
Giving it 1less work to do will speed matters up. For exanple,
DEMAND IN FREE FORM, or DEMAND IN FORM, is a faster and more
convenient method for input of several pieces of data than DEMAND.
Tterated verbosity in output messages is also to be avoided.
Putting several items on a line by using forms is recommended.

In conclusion, these observations and suggestions are based on the

hardware and software currently imn use. As improvements are made to
either, it will become necessary to reevaluate these ideas.

630

MTS-550-0

12-1-67

APPENDIX A: SUMMARY OF PIL STATEMENTS

Direct or_Indirect Direct Only Indirect Only
SET GO DONE
IF ' CANCEL TO
DO PAGES DEMAND
FOR FORM STOP
TYPE |
DELETE
PAGE
LINE
SWAP
NEXT
LAST

END

ACQUIRE

Pitt Interpretive Language 631

632

MTS-550-0

12-1-67

APPENDIX B: PRECISION OF ARITHMETIC

All numbers internal to PIL are carried in a "software" floating point
with no special form for integers. Numbers which can be represented are of
the form:

exp exp
+frac x 10 or -frac x 10

Where frac is seven-decimal-place number between .1000000 and .9999999, and
exXxp is an integer between -50 and +49. Thus, 10-S* is the smallest
positive number that can be represented; the largest is .9999999 x 1049,
If PIL generates a number not in the permissible range, an error report is
given.

Eh? NUMBER EXCEEDS PERMISSIBLE RANGE
After each PIL arithmetic operation, the result is rounded. If the eighth
decimal place of the result is 5 or greater, the magnitude of the seventh
decimal place is increased by 1 and any carry is propagated.
Since rounding takes place after each addition, subtraction, nulti-
plication, and divisiom, an arithmetic expression may contain the cumula-
tive effects of several rounding operations.

These next examples should illpstrate these effects.

=SET a = 1000000.
=SET b = 0.5.
=SET ¢ = 0.4.
=TYPE a+b+b, b+b+a, atc+c.
a+b+b = 1000002
b+b+a = 1000001
atc+c = 1000000
=TYPE a+2*c, c+c+a, a+b-a, a+c -a.
a+2%c = 1000001
c+tc+a = 1000001
a+b-a = 1.0
a+c-a = 0

Recall that +the statements are processed left to right, and note that
the result is‘dependent upon the order in which operations are performed,
hence addition and multiplication are strictly commutative.

Exponentiation is performed in one of two ways. If the exponent is a
positive integer from 1 to 16, exponentiation is achieved through repeated
multiplication. Otherwise, exponentiation is performed in accordance with
the following identity:

MTS-550-0

12-1-67

Y (y 1n x)
X =€

where e is the Napierian base (2.7182818...) and 1n denotes the Napierian
base logarithm. since the functions EXP OF a and the LN OF a are used;
some error may be introduced:

=TYPE 10%*20.
10%%20 = 9.999999E+19

The transcendental functions, such as sine and cosine, are evaluated
making use of the "hardware" floating point features and the approximations
are carried with the egquivalent of nine decimal places for intermediate
calculations and the result is rounded to the seveanth place.

Pitt Interpretive Language 633

MTS-560-0

12-1-67

S NOBOLUY4

634

MTS-560-0

12-1-67

SNOBOLY

The SNOBOL4 language is quite new and still under developnent. As a
result, in an effort to produce adequate documentation in a hurry, all
current documentation, including the following writeup, assumes a knowledge
of SNOBOL3. 1In addition to the reterence listed in the following writeup,
a writeup on SNOBOL3 exists in Volume II of the current UMES manual. Work
is underway to produce an introductory section to replace the first section
of this writeup.

The following writeup is reproduced essentially as received from the
authors. Information on usage of the SNOBOL4 language in MTS may be found
in the writeup on *SNOBOL4 in section MTS-280 of this manual. Note that
since input and output is done via the FORTRAN IV I/0 routines, details on

I/0 might be found in the Fortran Users Guide, section MTS-520.

Language Processor Descriptions (SNOBOL4) 635

636

MTS-560-0

12-1-67

Preliminary Report on the
SNOBOLY4 Programming Language

II

R. E. Griswold, J. F. Poage, and
I. P. Polonsky

Bell Telephone Laboratories, Inc.
Holmdel, New Jersey

November 22, 1967

S4Dp4

MTS-560-0

12-1-67

1. INTRODUCTION

This memorandum is a revision and elaboration of a previous report on
syopord [1]. A number of new language features are described, and some
material is covered in more detail. A knowledge of SNOBOL3 is assumed.

The SNOBOL4 language is still under development. While the Dbasic
structure of the language will remain as described in this paper, further
additions and changes may be expected from time to time.

While the specification of the language is as independent of a particular
implementation as possible, certain dependencies are inevitable, The
particular characters used in the syntax, and input-output specifications
are examples. In such areas, this paper describes the implementation of
SNOBOL4 for the IBM System/360 operating under OS.

SNOBOL4 Introduction 637

638

MTS-560-0

12-1-67

2. DIFFERENCES BETWEEN SNOBOL3 AND SNOBOLY4

The basic structure of SNOBOLY4 is much the Same as that of SNOBOL3 [2]
The pattern matching facility has been revised and extended, and several ne
features have been added. A number of minor changes have been made both i
the syntax and in names and functions. These minor changes are described i
the following two sections.

2.1__Changes_in Syntax

The principal changes are:

1. Identifiers (string names or function names) must begin with :
letter, and may not contain colons.

2. A colon rather than a slash separates the rule portion of a statement
from the goto. Gotos may be separated from the colon by blanks, or the
colon may stand alone. No colomn is required unless there is a goto.

3. Complicated expressions do not require parentheses. Arithmetic
operators have the usual precedences and associate in the usual way. Thus

X = N/ M * Q- P %% A %x B
is equivalent to

X = (N/ (M *Q)) - (P *x (A *x B))
Other binary operators are descgibed elsewhere in thié paper. A table of
operator precedence is given in Appendix A.

4. sSeveral nunary operators may be written consecutively without paren-
theses. Thus

X = 5N

is acceptable. The unary arithmetic operators + and - are included in
the 1language. Other unary operators are described elsewhere in this paper.

¥arning: Binary operators must be surrounded by blanks to distinguish
them from unary operators. For example

M = N-P

is a difference, while

MTS-560-0

12-1-67

M = N -P

is a concatenation.

5. Fither double or single gquotation marks may be used for literals.
Either

EXP = 'A- (B+C) !
or
EXP = "A-(B+C)"
may be written. Quotation marks must be wused in like pairs. Single

guotation marks may occur in literals surrounded by double quotation marks,
and conversely. Thus - ,

QUOTE = Mmn
assigns a single quotation mark as the value of QUOTE.

6. Integers are literals and need not be enclosed in quotation marks.
For example

NEXTN = N + 1
SQUARE = M *%x 2
RESULT = PROD * -3

are acceptable. The enclosing quotation marks may be used if desired.

7. Many expressions which are illegal in SNOBOL3 are syntactically
correct in SNOBOL4. For example

LSON(N1) = N2

is syntactically correct in SNOBOLA4. Depending on the definition of LSON,
this expression may or may not be semantically correct when executed.

8. Pattern matching is significantly changed in SNOBOLA4. The string
variables of SNOBOL3 are no longer used. In fact

TEXT *WORD*

is syntactically incorrect in SNOBOL4. See Section 3 which describes
pattern matching.

9. The semicolon may be used to terminate statements in SNOBOL4. For
example

LOOP TEXT ! = :S(LOOP) ; OUTPUT = TEXT

is a line consisting of two statements. As in SNOBOL3, the end of a card

Dif ferences between SNOBOL3 and SNOBOL4 639

640

MTS-560-0

12-1-67

terminates a statement unless the next card begins with the continuatic
mark period.

2.2 _Changes in Names and Functions

The principal changes are:

1. INPUT, OUTPUT and PUNCH replace SYSPIT, SYSPOT and SYSPPT as th
names associated with input, output, and punch respectively. The I/
association functions READ and PRINT have been somewhat modified. Se
Section 11.

2. QUOTE does not have a preassigned value. See Section 2.1.

3. LT, LE, EQ, NE, GE, GT and INTEGER replace the numerical predicate
.17, .LE, .BQ, .NE, .GE, .GT, and .NUM of SNOBOL3,

4. TIDENT and DIFFER replace the comparison predicates EQUALS and UNEQ
of SNOBOL3.

5. The format of the function DEFINE is slightly modified. Loca
arguments are listed after the function prototype, rather thanm in a thir
argument. The entry 1label may be omitted (i.e. null) ia which case thi
label is taken to be the same as the name of the function. For example

DEFINE ('F(X,Y) N,M', 'FENTR')

defines a function F with formal arguments X and Y and two local variables |
and M. The entry label is FENTR. On the other hand

DEFINE ('CPY (Z) ')
defines a function CPY with formal argument Z and entry label CPY.

There is no intrinsic limit on thne number of formal arguments or 1local
variables which may be specified for a defined function.

6. In addition to the functions described above, several new functions
are described elsewhere in this paper. The functions OPSYN, SIZE and TRI}
Of SNOBOL3 are also available. The functions MODE, ANCHOR and UNANCHOR are
not included in SNOBOLY4.

MTS-560-0

12-1-67

3. PATTERN MATCHING

SNOBOLY4 departs radically from SNOBOL3 in the area of pattern matching.
While the same rule formats are used to perform pattern matching, the
facilities for creating patterns are quite different. In SNOBOL3, the
structure of a pattern can only be specified by a particular syatactic
configuration and remains fixed throughout program execution. In SNOBOL4, a

pattern is a data object which may be constructed and changed during program
execution.

3.1 Pattern Construction

There are several facilities for constructing patterns. These may be
used in combination to construct very elaborate patterns. The following
sections describe the fundamentals of pattern comnstruction.

3.1.1 ALTERNATION

A pattern which will match any one of a number of alternatives may be
formed by use of the binary operator | . Thus

VOWEL = YAY | *E' { 'I' | ‘'O' | ‘U
assigns to VOWEL a pattern which will match any single vowel.
Operands may be other patterns as well as strings:
EVOWEL = VOWEL | 'Y?
creates a pattern which will match a Y as well as the other vowels.
The operator | has the lowest precedence of all operators so that
AB}J CD
is equivalent to
(A B) | (CD)
See Appendix A.

3.1.2 CONCATENATION

Concatenatiorn in SNOBOL4 is the same as in. SNOBOL3, but patterns may be
concatenated as well. Thus

SNOBOLY4 Pattern Matching 641

642

MTS-560-0

12-1-67

VPAIR = VOWEL VOWEL

creates a pattern which will match any two vowels in succession.

e e o e i e e it S S i i e e e e .

In SNOBOL4 there is a primitive pattern which will match any string o
characters. This pattern corresponds to the 'arbitrary string variable' o
SNOBOL3. The variable ARB has this primitive pattern as value at th
beginning of program execution. The SNOBOL4 pattern

ITEM = ARB ", "
has the SNOBOL3 equivalent
*k non
When ARB__is the last element in a_pattern, it does_not_automatically matc

the rest of the string. In this respect it differs from the arbitrar
string variable of SNOBOL3. REM, described in Section 3.1.8, is used fo

‘this purpose.

3.1.4 BALANCED STRINGS

The variable BAL has as its initial value a primitive pattern which wil
match any nonnull string of characters which is balanced with respect t
parentheses. BAL is equivalent to the balanced string variable of SNOBOL3
Thus

NEST = " (ll BAI_ ll) "
is equivalent to the SNOBOL3 pattern
(1] (u * () * ") 1]

3.1.5 FIXED-LENGIH STRINGS

There are several primitive functions in SNOBOLY4 which return patterns a:
value. One of these, LEN, corresponds to the fixed~length string variabl«
of SNOBOL3. The value of LEN(N) is a pattern which will match any strine
which is N characters long.

CARDLENGTH =. LEN (72)
is equivalent to the SNOBOL3 pattern
/n72"

3.1.6__FIXED POSITIONS IN STRINGS

Two functions, POS and RPOS, have patterns as value which specify fixe«

positions within strings.

MTS-560-0

12-1-67

The value of POS(N) is a pattern which will match a null string
immediately after the Nth character of a string. For example

OPFIELD = POS (7) LEN(8)
will match eight characters following the seventh character of a string.

The value of RPOS(N) is a pattern which will match a null string N
characters from the end of a string. For example

LASTCHAR = RPOS (1) LEN(1)
will match the last character of a string.

3.1.7__TABULATION

Two functions, TAB and RTAB, have patterns as value which specify
tabulation to fixed positions within a string.

The value of TAB(N) is a pattern which will match up to and including the
Nth character. For example

OPFIELD1 = POS(7) TAB(15)
is equivalent to the pattern OPFIELD given in Section 3.1.6.

The value of RTAB(N) is a pattern which will match up to the last N
characters of a string. For example

LASTS = RPOS (5) RTAB(0)
will match the last five characters of a string.

3.1.8 REMAINDER

The variable REM has as its initial value a primitive pattern which will
match the remainder of any string.

LASTS5R = RPOS (5) REM
is equivalent to the pattern LASTS in the previous section.

3.1.9 ALTERNATIVE CHARACTERS

Two primitive functions, ANY and NOTANY, have pattern values which permit
the specification of alternative characters.

The value of ANY(CS) is a pattern which will match any character in the
string CS.

AVOWEL = ANY (*AEIOQU"')

is equivalent to the pattern VOWEL in Section 3.1.1. However, ANY is more

SNOBOL4 Pattern Matching 643

644

MTS-560-0

12-1-67

efficient and compact than the explicit alternation of the individual
characters.

The value of NOTANY(CS) is a pattern which will match any single
character which does not occur in the string CS.

NOTVOWEL = NOTANY ('AEIOU!)
will match any character which is not a VOWEL.

3.1.10 _RUNS OF CHARACTERS

Two primitive functions, SPAN and BREAK, have patterns as value which
permit the specification of runs of characters.

The value of SPAN(CS) is a pattern which will match a string composed of
characters which appear im CS. SPAN{(CS) will not match the null string.

INTEGER = SPAN('0123456789")
will match any string consisting of digits.

Patterns resulting from SPAN(CS) match the longest possible run of
characters from CS, and do not back up to match shorter strings. Thus the
pattern

M10 = INTEGER '0°"

will always fail to match.

The value of BREAK(CS) is a pattern which will match any string up to,
but not including any character in CS. BREAK(CS) will match a null_ _string.

WORD = BREAK(' ,.::"')

will match any string of symbols followed by a blank, comma, period, colon,
or semicolon. The match fails if none of these symbols occurs.

3.1.11 _REPETITIONS

The primitive function ARBNO permits the specification of an arbitrary
number of repetitions of a pattern. The value of ARBNO (P) is a pattern
which will match any string that would be matched by an arbitrary number of
consecutive occurrences of the pattern P. For example

MUL5S = ARBNO (LEN(5))

will match any string whose length 15 a multiple of five (including the null
string).

Patterns resulting from ARBNO(P) first match the null string
(corresponding to =zero occurrences of P). If an alternative match is
requested as the result of backup, a match for P is attempted. Each

MTS-560-0

12-1-67

subsequent request as a result of packup results in an attempt to match one
more occurrence of P. Thus
M10A = ARBNO (ANY ('0123456789"')) '0°'

will match the shortest string which consists of digits followed by a zero,
including a string consisting of a single zero.

ARBNO (P) may be thought of as an alternation of the form

NULL | P| PP | PPP| PPPP | ...

3.1.12 _SIGNALLING FAILURE

Three primitive patterns permit the specification of various kinds of
failure during pattern matching.

The variable FAIL has as its initial value a primitive pattern which will
always signal failure to match. FAIL, when encountered, does not necessari-
ly cause the pattern match to fail, but requests the pattern matching
algorithm to seek an alternative. FAIL can be used to initialize a pattern
to be constructed from many alternatives, much as the null string can be
used to initialize the concatenation of many patterns. For example, if
INPUT is attached to an input stream

ALTS
LOOP ALTS

FAIL
ALTS | TRIM(INPUT) :S(LOOP)

builds a pattern consisting of alternatives taken from INPUT.

During pattern matching, the first altermative, FAIL, will request an
alternative immediately. ’

The variable FENCE has as its initial value a primitive pattern which
always matches a null string, but causes the entire pattern match to fail if
an alternative for it is requested in backup. Thus in

CARD = LABEL FENCE OP

if LABEL successfully matches, but OP fails to match, the pattern match will
fail without seeking alternatives for LABEL. The main use of FENCE is to
improve the efficiency of pattern matching by avoiding attempts to match
which would be futile.

The variable ABORT has as its initial value a primitive pattern which, if
encountered, causes the entire pattern match to fail. Thus

CARDFORM = %' ABORT | CARD
will fail if matched against a string which starts with an asterisk, and

otherwise will match for the pattern CARD.

SNOBOLY4 Pattern Matching 645

6456

MTS-560-0

12-1-67

3.2__The Order_ of Pattern Matching

The actual process of pattern matching is performed in much the same
fashion as in SNOBOL3. In SNOBOLY4 the order of pattern matching is much
more important because alternatives can be specified.

The two structural aspects ot patterns result from alternation and
Corcatenation. Matches for alternatives are attempted from left to right.
Thus in the pattern

DOTS = foeea? | 1. 0
an attempt is first made to match for four dots. If this fails, a match for
two dots is tried. Thus if DOTS is to be used to compress multiple
occurrences of dots, as in

RDOTS TEXT DOTS = .t :S(RDOTS)

the order in which the alternatives are specified is important for
efficiency. 1In fact, if the alternatives were specified in the other order

SDOTS = LI
the second alternative would never match.

Matches for successive components in a concatenation proceed from left to
right. If a component fails to match, the matching process backs up to the
preceding component and tries a new match for it. Thus

BALPER = BAL *'.?
will first match a balanced string. If the next character is a period, the

match will succeed. 1If not; another attempt for BAL will be made, extending
the string previously matched if possible.

3.3 Deferred Pattern Definition

The creation of a pattern is like the creation of a string in the semse
that the current values of its components are used when the pattern is
constructed. As a result of executing

X
X

TA+R!?
V(Y X 'kt X 1)

the final value of X is (A+B*A+B) . The same principle applies to pattern
construction. As a result of executing

tyY
'Yl l P 170

p
P

Ion

MTS-560-0

12-1-67

the final value of P is the same as it would be if
P = ry'v | otxe etz
were executed.
On the other hand, it is sometimes desireable to defer the evaluation of

a component of a pattern until pattern matching takes place. Consider the
following section of program.

¥ = 0
DELETE LIST *'(' N ')' = :F (0UT)
N = N+ 1 : (DELETE)

ouT

Since the value of N changes +through a series of pattern matches, the
pattern

l(' N l)l
must appear explicitly and be reconstructed for each new value of N.
Deferred pattern definition, implemented by the unary
operator * overcomes this difficulty. When applied to a variable which
appears in a pattern, * causes the evaluation of this component to be
deferred until pattern matching actually occurs. Thus

NEST = '(' %N ')

can be used as in the previous example:

N = 0
DELETE LIST NEST = :F(00T)
N = N + 1 : (DELETE)

ourT
In this case, a new value of N is used in each pattern match.

Deferred pattern definition may also be used +to achieve recursive
patterns. If the example at the beginning of this section is revised so
that

P = 1y | *p 17
then P will match strings of the form

Y

YZ
YZ7Z
YZZ72

SNOBOLY4 Pattern Matching 647

648

MTS-560-0

12-1-67

similarly, the following statements create patterns which will match a
simple class of arithmetic expressions.

VARIABLE = ANY('XYZ')

ADDOP = ANY('+-')

MULOP = ANY('*/')

FACTOR = VARIABLE | ' (' *EXP ')!'

TERM = *FACTOR | *TERM MULOP *FACTOR

EXP = ADDOP *TERM | *TERM | *EXP ADDOP *TERM

Warning: *N is a pattern whose value is determined when pattern matching

is performed. As a consequence,
P = POS (*N)

is illegal, since the argument of POS must be a number.

3.4 Value Assignment

In SNOBOL3, a string name can be associated with a string variable so
that if a pattern match is successful, the name is given a new value
corresponding to the string matched by the variable. SNOBOL4 has two
constructions which permit such a value assignment as a result of pattern
matching.

3.4,.1 POST-MATCHING -VALUE_ASSIGNMENT

In SNOBOL3, value assignment takes place only after the entire pattern
has successfully matched. In SNOBOL4, the binary operator . is used to
associate a variable with a pattern component for +this type of value
assignment. Such an association has the fornm

P .V
where P is a pattern and V is a variable to be associated. For example

P = "(* BAL . B ')!
is equivalent to the SNOBOL3 pattern

1] (l *(B)* l)l
A variable may be associated with any component of a pattern (including a
literal). Value assignment is made only to the components of a patterr
which match. Thus

LETTER = (VOWEL . V | LEN(1) . C) . L

creates a pattern which will match any single character. If the character
is a vowel it will become the new value of V. If the character 1is not @

MTS-560-0

12-1-67

vowel, it will become the new value of C instead. In either case the
character will be the new value of L.

The operator . has the highest precedence of all operators and asso-
ciates to the left. See Appendix A.

P = *(* BAL . B . OUTPUT ')
would assign the value matched by BAL to both B and OUTPUT. Assignment to

an output-associated variable results in output Jjust as if amn explicit
assignment had been made.

The same variable may appear in value associations more than once in a
pattern. Value assignment is done from left to right and from the imnside to
outside in nestings. A value may be assigned to a variable more than once
in this process, and the final value is determined by the order in which the
assignments are done. For example, the pattern

NEST = ' (* *NEST . OUTPUT *')* | '(' BAL . OUTPUT ')
when used in
"((((X)))) " NEST
would print
X
(X)
(X))
(((X))

3.4.2 DYNAMIC VALUE ASSIGNMENT

Whereas the value assignment described in the previous section occurs
only on successful completion of pattern matching, there is another type of
association which results in value assignment whenever a component of a
pattern successfully matches. The binary operator $ associates a variable
with a component of a pattern for this dynamic value assignment. The
pattern

FULLBAL = BAL $ OUTPUT RPOS (0)
when used in

YA+ (B+C) * (D/E) ' FULLBAL
would print

A

A+

A+ (B+C)

A+ (B+C) *
A+ (B+C) * (D/E)

SNOBOL4 Pattern Matching 649

650

MTS-560-0

12-1-67

Since dynamic value assignment occurs whenever an associated component
matches, values of associated variables may be changed even if the pattern
match eventually fails. Thus the pattern

BALPAIR = BAL $ B1 FENCE BAL $ B2
would fail when used in
' (A+B)) ' BALPAIR

but (A+B) would be assigned as a new value of B1l. The value of B2 would
remain unchanged since no successful match would be made for the component
with which it is associated.

Dynamic naming, together with deferred pattern definition, can also be
used - to achieve the effect of SNOBOL3 backreferencing. The pattern

L3PAIR = LEN(3) $ V ARB *V

will successfully match any string having at least two nonoverlapping
identical substrings of length 3. If this pattern matches successfully, the
desired substring will be the new value of V. If the pattern does not
match, the new value of V will be the last three characters of the subject
string.

The pattern FAIL can be used to force a pattern through all possible
matches. Used in conjunction with dynamic value assignment, a listing of
all the alternatives may be obtained. The patteran

ALLBAL = BAL § OUTPUT FAIL
when used in

" ((A+ (B*C))+D) ' ALLBAL
would ultimately fail, but print

((A+ (B*C)) +D)
(A+ (B*C))
(A+ (B*C)) +
(A+ (B*C)) +D
A

A+

A+ (B+C)

+

+ (B*C)

(B*C)

B

B

B*C

*

*C

Cc

MTS-560-0

12-1-67

+
+D
D

This device may be used to explicate the exact order in which pattern
matching is attempted for any pattern.

SNOBOL4 Pattern Matching 651

52

MTS~-560-0

12-1-67

4. ARRAYS

Arrays may be created by execution of the primitive function ARRAY.
ARRAY (P,V) <creates an array described by the prototype P and gives each
element of the array the value V.

The prototype P describes the indexing and dimensionality of the array.
For example

VECTOR = ARRAY (10)
assigns a one-dimensional array of length 10 to VECTOR. Since the second
argument is omitted, all elements of the array have null strings as value,
Indexing ordinarily starts at 1. Other lower bounds may be specified by
using a colon to separate the upper and lower limits:

LINE = ARRAY ('-5:5")
creates an array with a lower bound of -5 and an upper bound of S.

Additional dimensions in a prototype are separated by commas. Thus

BOARD = ARRAY ('8,8','X")

defines an eight by eight array where all elements have the value X.

There is no intrinsic limit on the size or dimensionality of an array.

Warning: The first argument of ARRAY is the prototype and the second is

a value which is given to each element of the resulting array. Thus,
A = ARRAY('8,8")

creates a two-dimensional array with each element having the null string as
value. On the other hand

A = ARRAY(S,8)
creates a one-dimensional array with each element having the value 8.

It is also important to realize that each element of an array is given
the same object as value. Consequently

Al = ARRAY (10)
A2 = ARRAY (10,41)
creates only two arrays. Each element of A2 has the same array, A1, as

value.

MTS-560-0

12-1-67

If the value of a variable is an array, an element in the array may be
referred to through the variable. Angular brackets following any array-
valued variable are used to specify the element.

VECTORL2> = EXP

assigns the value of EXP to the second element of VECTOR. There 1is no
requirement that all values of an array be the same kind of object.

If an index referring to an element of an array falls outside the range
of the array, the array reference fails. Thus

oUTPUT = VECTOR<12>

would fail. This failure may be used to iterate through the elements of an
array without knowing the size of the array. A function SUM, whose value is
the sum of all the elements of an array, could have the defining statement

DEFINE ('*SUM (ARRAY) N')
with the definition

SUM N = N + 1
SUM = SUM + ARRAYLND> :S(SuUM) F (RETURN)

The summation 1loop continues until N exceeds the extent of ARRAY. This
function does not need to know the size of ARRAY, but only that it is a
one-dimensional array with lower bound one.

The primitive function PROTOTYPE may be used to get an explicit
representation of structure of an array. The value of PROTOTYPE(A) is the
prototype of the array A. Thus

STRUCTURE = PROTOTYPE (BOARD)
assigns the value 8,8 to STRUCTURE.

In some cases an array may not be the value of an explicitly known name.
The primitive function ITEM permits reference to elements of such an array.
The value of ITEM(A,Il1,...,In) is the (I1,...,In)th element of the array A.
For example

X VECTORLS5>

and

X

ITEM('VECTOR',5)
are equivalent.

It is important to realize that an array is a data object. The same
array may be the value of more than one variable. In this case, a change in

SNOBOLY4 Arrays 653

54

MTS-560-0

12-1-67

the value of an element affects both variables which have this array as
value. For example, as a result of executing the statements

A = ARRAY(5)
A<2> = 'TWO!
B = R

B<2> 'W' =

the value of A<2> will be TO .

A copy of an array may be made using the function COPY: The copy is not
changed by changing elements in the original, and conversely. Coansequently,
as a result of

A = ARRAY(5)
A<2> = 'THO!
B = COPY(A)
B<2> 'W' =

the value of B<2> will be TO and the value of A<2> will be TWO .

MTS-560-0

12-1-67

5. REAL NUMBERS
SNOBOL4 provides a limited facility for real (floating point) arithmetic.
Real numbers may appear in the program as literals. For example
X = 72.1527
Such literals must begin with a digit and contain a decimal point. Thus
N = 0.01
is acceptable, while
N = .01
is erroneous (see Section 12.2).

Addition, subtraction, multiplication, and division (but not
exponentiation) may be performed on real numbers. Thus, as a result of

M = X * 3.24561
the value of M becomes 234.1794.

An attempt to perform mixed arithmetic between real numbers and integer
strings will result in error termination. Explicit conversion may be made
using the function CONVERT. The value of CONVERT(V,T) is the result of
converting V to type T. Thus

OUTPUT = CONVERT (M, 'STRING')
prints 234.1794 . Similarly, strings can be converted to real numbers.

SUM = N + CONVERT (5,'REAL')

assigns the value 5.01 to SUM. In converting strings to real numbers,
either real literals, such as 57.42, or integers such as 5 may be specified,

SNOBOL4 Real Numbers 655

MTS-560-0

12-1-67

6. DATA TYPES

In SNOBOL3 there is only one kind of data object, the string. SNOBOLY4
has many data types. Four types have already been described: STRING,
PATTERN, ARRAY, and REAL. Others are described in the following sections.

6.1 Data Types in Operations

The data type of an object is used by the SNOBOLY system to verify that
appropriate types are given to procedures, or to select an appropriate
procedure, depending on type. For example, the argument of the SIZE
function must be a string.

VALUE = SIZE (ANY ('0123456789"))

results 1in error termination since the argument of SIZE is a pattern.
Similarly

SUM = 3 + ARRAY(7)

is erroneous. In other cases, different procedures are required for
different data types. For example

SELECT = 'BIN' SIZE(TRIM(INPUT))

is the «concatentaion of two strings and the result is a string. On the
other hand

BINO = 'BIN' (3 | 4)

is the concatenation of a string with a pattern. A different procedure is
used and the result is a pattern.

6.2 Concatenation with the Null String

In concatenation, the null string is handled as a special case. If one
of the two operands in concatenation is the null string, no concatenation is

POINTER = 'X' ARRAY (10)

is erroneous since a string cannot be concatenated with an array,

MTS-560-0

12-1-67

POINTER = IDENT (MARK) ARRBAY (10)

is acceptable, since IDENT returms a pull string 4if it succeeds. Thus
predicates may be used to achieve conditional expressions without
interfering with the results of computation.

6.3 Data Type Determination

The programmer usually knows the data types of the objects which occur in
his progranm. Sometimes, however, it is necessary to make an explicit
determination. The function DATATYPE serves this purpose. The value of
DATATYPE(V) is the data type of V. Thus

OUTPUT = DATATYPE (SPAN('01'))

would print PATTERN.

SNOBOLY4 Data Types 657

MTS-560-0

12-1-67

7. PROGRAMMER-DEFINED DATA TYPES

The programmer may define new data types by means of the function DATA.
The result of executing DATA(P) is to create a data type and define field
functions as given in the prototype P. For example

DATA (*NODE (FATHER,LSON,RSIB,VALUE) ')

Creates a mnew data type NODE with four fields: FATHER, LSON, RSIB and
VALUE. A NODE may be visualized as shown in Figure 7.1.

) L
FATHER | i
F 1
LSON I l
L '
L} |
RSIB I |
L 1
1 i
VALUE I |
L '}

Figure 7.1 Structure of a NODE
Execution of this DATA function defines a function NODE which creates
objects of data type NODE. Hence
N1 = NODE ()
Ccreates a NODE which becomes the value of N1. The NODE function has four
arguments corresponding to the fields FATHER, LSON, RSIB and VALUE. These
fields may be assigned value when a node is created.

N2 = NODE(N1,,,'X')

Creates a node with the node N1 as the value of its FATHER field and X as
the value of its VALUE field. The LSON and RSIB fields are null.

Execution of the DATA function also creates field functions FATHER, LSON,
RSIB and VALUE which refer to the fields of a NODE. Thus

LSON(N1) = N2

assigns the node N2 to the LSON field of N1.

MTS-560-0

12-1-67

Using these functions, nodes can be created and trees

constructed from

themn. The fields FATHER, LSON and RSIB permit representation of the

structure of the trees. The VALUE field permits the assignment of

of the nodes. For example

N1 = NODE(,,,'*")

N2 = NODE(N1,,,'Y")
N3 = NODE(N1,,N2,'-")
N4 = NODE(N3,,,'X")
LSON(N1) = N3
LSON(N3) = N4

creates a tree as illustrated in Figure 7.2.

90

Figure 7.2 Representation of a Tree
Subsequently, executing

N5 = NODE(N3,,,VALUE(N2))
RSIB(N4) = N5
VALUE (RSIB(FATHER(N4))) = VALUE(NU)

produces the tree illustrated in Figure 7.3

SNOBOL#4 Programmer-defined Data Types

contents

659

MTS-560-0

12-1-67

Figure 7.3 The Modified Tree

This facility may be used to implement elaborate data structures. An
example given in Appendix C illustrates how a set of tree functions (4] may
be implemented.

There is no intrinsic 1limit on the number of data types which may be
defined. The same field function may be defined on several data types,
Hence

DATA ('ITEM(FLINK,BLINK,VALUE)"')

creates a data type ITEM which has the same field, VALUE, as the data type
NODE.

As with arrays, a programmer-defined data object may be the value of more
than one variable. A change in the value of a field through one variable
will change the field value for the other variable. The function COPY may
be used for programmer-defined data objects as well as arrays. See Section
4,

660

MTS-560-0

12-1-67

8. COMPILATION DURING EXECUTION

The first phase of a SNOBOLY4 run is tcompilation' in which the source
program is converted into intermediate object code which is then interpreted
in an execution phase.

8.1 Creating Object Codge

A program can compile more object code during execution and then execute
this new code. Compilation is accomplished by using the CONVERT function to
convert a string to data type CODE. The string to be converted should
consist of SNOBOL4 statements terminated by semicolons. For example

NEWS = 'NEW OUTPUT = SUM; SUM = SUM + 1 :(OLD) ;'
NEWCODE = CONVERT (NEWS, 'CODE') : (NEW)
OLD

creates two new statements. One of these statements contains a label NEW.
The goto then transfers to this new block of CODE. The two new statements
are then executed and transfer made to OLD.

Blanks are as important in strings to be converted to code as they are in
the program itself. A statement without a label must begin with a Dblank.
The string to be converted must end with a semicolon.

8.2 Direct Gotos

The goto field specifies a variapble which occurs as a program label. The
result of converting a string to object code is a data object. In the
previous example, .this data object became the value of the variable NEWCODE.
A special type of goto permits transfer directly to a block of object code,
rather than through a label. This type of goto uses enclosing angular
brackets rather than parentheses. The previous example could have been

NEWS = ' QUTPUT = SUM; SUM = SUM + 1 :(OLD);"

NEWCODE = CONVERT (NEWS, '*CODE") :<NEWCODE>
oLD ’
In this case transfer is made directly to the value of NEWCODE, and the
label NEW is not needed.

SNOBOLY4 Compilation during Execution 661

662

MTS-560-0

12-1-67

Execution-time compilation permits a programmer-defined function CALL

similar to the primitive function CALL of SNOBOL3. The defining statement
can be

DEFINE ('CALL (FORM)S!')
with the definition

CALL S

* CALL = ¢ FORM * :S(RETURN)F (FRETURN) ;'
S

CONVERT (S, *CODE?") <S>

The first statement creates the striny which will become the code to be
executed. The statement is then converted to code and executed. When

executed, it evaluates FORM and assigns the result to CALL, through which
the value is returned.

MTS-560-0

12-1-67

9. KEYWORDS

Keywords provide an interface between the SNOBOL4 program and certain
internal symbols in the SNOBOL4 system. Using keywords the program may
determine, for example, how many statements have been executed. Keywords
also permit the program to change the value of certain internal symbols,
such as the limit on the number of statements which may be executed.

Keywords begin with an ampersand (&) which distinguishes them from
program identifiers which may not contain ampersands.

An example is §STCOUNT whose value is the number of statements which have
been executed. Similarly, the value of &STLIMIT is the limit on the number
of statements which may be executed. Using these two keywords, the progran
may at some point limit further execution to 100 statements by executing

&ESTLIMIT = &STCOUNT + 100
&§STLIMIT, whose value may be changed, is called an unprotected keyword. The
value of §&STCOUNT may not be changed, however, and is called a protected

keyword. An attempt to change the value of a protected keyword results ia
error termination. The following sections describe the available keywords.

9.1 Protected Keywords

There are two types of protected Kkeywords. The first type includes
values internal to the SNOBOLY4 system. The second type includes strings and
primitive patterns which are predefined in the SNOBOL4 language.

9.1.1__INTERNAL VALUES

1. &STCOUNT. The value of SSTCOUNT is the number of statements which
have been entered during program execution.

2. &STFCOUNT. The value of §STFCOUNT is the number of statements which
have failed.

9.1.2 PREDEFINED VALUES

Certain keywords have values which are predefined in the SNOBOLY4
language. These include the alphabet for the machine, and the primitive
patterns. These protected keywords are provided so that their values will
always be available.

SNOBOL4 Keywords 663

664

MTS-560-0

12-1-67

1. &ALPHABET. The value of &ALPHABET is a string containing all the
characters of the machine on which SNOBOL4 is implemented. The characters
are ordered according to their intermnal coding.

2. &ARB. The value of &ARB is the primitive pattern which matches any
string of characters. &ARB and ARB have the same value at the beginning of
program execution. The value of ARB may be changed, however, while the
value of SARB is protected.

3. &ABORT. &EABORT has the same value as ABORT at the beginning of
program execution. See EARB.

4., &BAL. As above.
5. &FAIL. As above.
6. G&PFENCE. As above.

7. &REM. As above.

9.2 Unprotected Keywords

There are two types of unprotected keywords, The first type includes
internal switches. The second type includes internal parameters which may
be varied by the progran.

9.2.1__INTERNAL SWITCHES

Keyword switches controlling the anchored pattern matching mode and the
post-mortem dump replace the MODE function of SNOBOL3 [2]. Switches are off
if +their value is 0 or the null string, and on otherwise. All switches are
off at the beginning of program execution.

1. S&ANCHOR. TIf E&ANCHOR is on, the pattern matching is anchored. That
is, all patterns must match beginning with the first character of the
subject string. Thus, e.g.

&ANCHOR = *ON!

sets the anchored mode.

2. &DUMP. If &DUMP is on, a post-mortem dump of variable storage will
be given.

9.2.2 _INTERNAL PARAMETERS

1. G&MAXLNGTH. The value of &MAXLNGTH is the limit omn the length of
strings that may be formed. The initial value of &MAXLNGTH is 5000, but
this may be changed. Thus

MTS-560-0

12-1-67

EMAXLNGTH = 1000

limits the maximum 1length of subsequent strings to 1000 characters. An
attempt to form a string longer than the limit results in error termination
of the progranm. All types of string formation are included in this
limit: concatenation, value assignment as a result of pattern matching, and
string input.

2. &STLIMIT. The value of §STLIMIT is +the 1imit on the number of
statements which may be executed (see §&STCOUNT). The initial value of
§STLIMIT is 50000. Exceeding the limit on statement execution results in
error termination.

SNOBOL4 Keywords 665

666

MTS-560-0

12-1-67

10. TRUTH PREDICATES

Two predicates, implemented by unary operators, are available for testing
the success or failure which may result from evaluating expressions.

10.1 Negation

The unary operator - fails if its operand succeeds and succeeds if its
operand fails. A null string value is returned on success facilitating its
use among other constructions. Thus

M<0> = ~M<N> —M<~-N> O
assigns 0 to M<0> only if both N and -N are gut of range of the array M.
Similarly
N = <P(N) N + 1

increments N only if F(N) fails.

10.2 Affirmation

The unary operator ? is the converse of -~ . It succeeds if its
operand succeeds and fails if its operand fails. A null string is returned
on success permitting its insertion in other constructions without affecting
their values. Thus

M<0> = ?M<ND> -M<-N> 1

assigns 1 to M<0> only if N is in range and -N is out of range of the array
M.

MTS-560-0

12-1-67

11. INPUT AND OUTPUT
As in SNOBOL3, input and output are accomplished by associating variables
with data sets. Three variables have standard associations:
1. INPUT is associated with the normal input data set.
2. OUTPUT is associated with the normal print data set.
3. PUNCH is associated with the normal punch data set.
Input occurs whenever the value of the associated variable is used. Thus

CARD = INPUT

results in reading from the normal input data set. The resulting string
becomes the value of CARD. '

Similarly, output occurs whenever the value of the associated variable is
changed. Thus

OUTPUT = CARD

causes the value of CARD to be printed.

11.1 _I/0 Association Functions

Other variables may be associated with other data sets using the
primitive functions PRINT and READ. These functions have the form

READ (V,N,L)
PRINT (V,N,F)

where

1. V is the variable to be associated.

2. N 1is the data set reference number (symbolic unit number) with
which the association is to be made.

3. L is the length of a string to be read om input.

4. F is a format to be used for output.

The three standard I/0 variables have associations corresponding to
READ (*INPUT',5,80)

PRINT ('OUTPUT',6," (1X,13121) 7)
PRINT (*PUNCH',7," (80A1) ')

SNOBOL4 Input and Output 667

668

MTS-560-0

12-1-67

FORTRAN IV conventions for data set reference numbers apply. Data s¢
reference numbers from 1 through 99 are usually available. The data se
reference number may not be omitted.

11.2 oOutput

Valid FORTRAN IV formats must be used for output, A format may specif
literals aund the output of a string by A-conversion (using n A1 to output
string of n characters). Numbers are strings in SNOBOL4 and must be put ot
by A-conversion. For exanmple

PRINT (* CONTROL',6,' (13241) ')

associates control with the normal print data set. With the specific
format, the first character of CONTROL is used for carriage control. Thus

CONTROL = 1
results in a page eject.

A literal may be included. to provide other desired irformation: t
identify the particular variable being printed, for example. The associze
tion

PRINT ('SUM',6," (5H SUM=,120A1)")

would result in the variable SUM being printed with its name prefixed ¢
given in the literal part of the format. Similarly

PRINT ('TITLE',6,' (1H1,13121/(1X, 13141)) ')

associates TITLE so that when a value is assigned to TITLE, a page i
ejected and the value titles the next page of output.

If +the format is omitted, and the data set reference number is 6,
default format of (1X,131A1) is used. For all other data set referenc
nunbers, the default format is (80A1).

If output is requested for a data object which is not a string, the nan
of the data type is printed. Thus

OUTPUT = 3.5

would print REAL .

MTS-560-0

12-1-67
11.3 _Input

Any positive number up to the maximum allowed string length may be used
to specify input length. Thus

READ ('CARD',5,72)
associates CARD with the normal input data set. Subsequently
IMAGE = CARD
reads in a string of 72 characters which becomes the value of IMAGE.
If the 1length specified is shorter than the record length on the input
data set, the remainder of the record is lost. If the length is longer than

the record length, enough records are read to satisfy the input request.

If an end of file (end of data set) is encountered omn input, the
statement which requested the input fails.

If the length is omitted, the derault length is 80.

11.4 Rewind

The primitive function REWIND rewinds a file. REWIND(N) rewinds the data
sets associated with the data set reference number N. The next input
request will result in reading from the first data set (file) associated
with N.

11.5 Back Space

" The primitive function BACKSPACE backspaces a file, BACKSPACE (N) back-
spaces one record on the data set currently associated with the data set
reference number N. If the data set is positioned at its first record,
BACKSPACE (N) has no effect.

11.6 _End of File

The primitive function ENDFILE ends a file. ENDFILE(N) writes an end of
file on (closes) the data set associated with the data set reference number
N. The next output request is written on a new data set (file).

SNOBOL4 Input and Output 669

670

MTS-560-0

12-1-67

12. NAMES
There are several circumstances in which explicit handling of names i

useful. A name is any object which can have a value. In

WORD = YMAY!
WORD is a name which is given the value MAY . The basic relation betwec
names and values is exhibited by the indirectness operator 5. Fc
example, in

$WORD = 2

the name MAY is given the value 2. Through indirectness, any string can t
used as a name.

Objects other than strings may be used as names. Individual array iten
and fields of programmer-defined data objects are examples.

BOARD<-1,1> = Y
and
LSON (ROOT) = HTREE

are examples of computed names to which values are assigned.

12.1 _Passing Nanmes

A number of functions interpret the values of their arguments as names
For example

PRINT ('SUM',N,F)

associates the name SUM in the output sense (see Section 11). Subsequently
whenever the value of SUM is changed, output is performed.

String names are typically passed in this manner as literals. Compute
names, such as BOARD<-1,1> cannot be passed as literals. Thus

PRINT (BOARD<-1,1>,N,F)

associates the value of BOARDL-1,1>, but does not associate the array_ite
BOARD<-1,1> . On the other hand

MTS-560-0

12-1-67

PRINT (*BOARD<-1,1>',N,F)

just associates the string of symbols BOARD<-1,1> and not the array iten,
just as the statements

X = 'BOARD<-1,1>!
$X = 5

have no connection with the array BOARD.

12.2 _The Name Operator

To overcome this difficulty and put computed names on a par with string
names, the unary name operator . may be used. The value of

.BOARDK-1,1>
is the name of BOARD<-1,1>. Thus
PRINT (. BOARD<K-1,1>,N,F)

associates the array item in the output sense, and output is performed
whenever this array item gets a new value. Similarly

READ (. LSON (ROOT) ,M,F)

forms an input association with LSON (ROOT) , so that whenever a value for
LSON(ROOT) is requested, a new value is obtained by input.

The name operator serves much the same purpose for computed names as
quotation marks do for string names. The name operator applied to a string
name behaves the same as quotation marks. Thus

WORD = - MAY
$WORD = 2

produces the same result as the example above. Indirectness nay be applied
to any value obtained by the name operator. Hence

MARKER. = .LSON(ROOT)
$MARKER = HTREE

is equivalent to

LSON (ROOT) = HTREE
If +the argument of the name operator is a string, the value returned by the
name operator has data type STRING. If the argument of the name operator is

a computed name, the value returned has data type NAME. If the argument of
the name operator is not a name, €rror termination occurs. For example

SNOBOLY4 Names 671

672

MTS-560-0

12-1-67

.SIZE (WORD)

is erroneous.

12.3 Returning by Name

A programmer-defined function may return a computed name (rather th:
value) by transferring to the label NRETURN which signals return by name.

An example of this feature exists in the programming of tree function:
where a NODE may be defined by

DATA ('NODE (FATHER,LSON,RSIB, VALUE) ')
The field functions FATHER, LSON, RSIB, and VALUE are automatically defined
Additional functions may be desired, however. For example, a functic
ROOTFATHER, which is the father field of a tree's root node might 1
defined. The defining statement could be

DEFINE ('ROOTFATHER (NODE) ', ' RTF!)

with the definition

RTF IDENT (FATHER (NODE)) :S (RTF1)
NODE = FATHER(NODE) : (RTF)
RTF1 ROOTFATHER = NODE : (RETURN)

This function merely returns the node which is the root. The father fiel
could be returned with the following definition:

RTF IDENT (FATHER (NODE)) :S(RTF1)
NODE = FATHER (NODE) : (RTF)
RTF1 ROOTFATHER = .FATHER(NODE) : (NRETURN)

The naming operator assigns the computed field name to ROOTFATHER. Th
transfer to NRETURN indicates the value of ROOTFATHER is to be returned as
name. Thus

ROOTFATHER (TREE) = NEWNODE
assigns the value of NEWNODE to the father field of the root of TREE.

NRETURN can always be avoided by resorting to other constructions. I1
the definition were

RTF IDENT (FATHER (NODE)) :S(RTF1)
NODE = FATHER(NODE) : (RTF)
RTF1 ROOTFATHER = .FATHER(NODE) : (RETURN)

the corresponding assignment statement would be

MTS-560-0

12-1-67

$ROOTFATHER (TREE) = NEWNODE

NRETURN permits ROOTFATHER to be used on a par with FATHER, LSON, RSIB, and
VALUE without the need for indirectness.

SNOBOL4 Names 673

674

MTS-560-0

12-1-67

13. ADDITIONAL FUNCTIONS

In addition to the functions described earlier in this paper, there ai
two functions derived from supplementary functions developed for SNOBOL:
These are REPLACE, corresponding to the SNOBOL3 function RPLACE [3], a1
LGT, corresponding to LEXGT [5].

13.1 Character Replacement

One-to-one character replacement in a string may be accomplished usin
the function REPLACE. The value of REPLACE(S,CS1,CS2) is the result c
replacing in S characters in CS1 by corresponding characters in CS2. Fo
example, as a result of

TEXT = REPLACE (TEXT,',.",'.,")

all commas in TEXT are replaced by periods, and conversely.

13.2_ _Lexicographical Comparison

Two strings may be compared according to their lexicographic (alphabetic
position by wusing the function LGT ('lexicographically greater than')
LGT (3,B) succeeds and returns a null value if A follows B in alphabeti
order, and fails otherwise. Thus

LGT ("ARMY','AIR FORCE!')
succeeds, while

LGT (*ARMY"', 'NAVY?)
fails.

In the case that a string is an initial substring of another, the longe;
string is lexicographically greater. consequently

LGT('AIR FORCES','AIR FORCE')
succeeds.

The order of the characters in lexicographical ordering is given in the
keyword SALPHABET. See Section 9. 1.2.

MTS-560-0

12-1-67

ACKNOWLEDGEMENTS

The SNOBOL4 language was developed over a period of time, and the authors
are indebted to many people for their suggestions. The contributions of
Messrs. B. N. Dickman, D. J. Farber, P. D. Jensen, M. D. McIlroy
and R. F. Rosin have been particularly significant.

Contributions to the implementation have been made by Messrs. 1.
Benyacar, A. R. Breithaupt, B. N. Dickman, R. S. Gaines, Mrs. M. R.
Hawkins, Messrs. P. D. Jensen, A. M. Jones, Mrs. D. F. Teitelbaun,
and Mr. L. C. Varian. The authors wish to thank Mr. Varian in
particular for his valuable assistance in preparing the IBM System/360
implementation.

The authors gratefully acknowledge the assistance of Mr. J. F. Gimpel
in the preparation of this paper. 1In addition, Mr. Gimpel contributed four
of +the programs in Appendix C: character conversion, random number dJenera-
tion, 'Typeset', and 'The Towers of Hanoi‘.

SNOBOL4 675

676

MTS-560-0

12-1-67

REFERENCES

Griswold, R. E., Poage, J. F., and Polonsky, I. P., Preliminary
Description of the SNOBOL4 Programming Lanquage, Unpublished, July 6,
1967.

Farber, D. J. Griswold, R. E. and Polonsky, I. P., IThe__SNOBOL3
Programming _Language. Bell System Technical Journal 45,6 (July-August
1966) , pp. 895-943.

Manacher, 6. K., A_Package of Subroutines for the SNOBOL Lanquage.
Unpublished, July 1, 1964.

Griswold, R. E., and Polonsky, I. P., Tree Functions for_ SNOBOL3,
Unpublished, February 1, 1965.

Griswold, R. E., Special Purpose SNOBOL3 Functions - 1II. Unpublished,
April 18, 1966.

MTS-560-0

12-1-67

APPENDIX A: OPERATOR PRECEDENCE

The relative precedence of the bimary operators is listed below in order
of decreasing precedence. Operators with the same precedence are listed on
the same line. Exponentiation associates to the right. All other operators
associate to the left.

$. Value Assignment

** Exponentiation

* Multiplication

/ Division

+ - Addition and Subtraction
Concatenation

| Alternation

SNOBOL4 Appendix A 677

MTS-560-0

12-1-67

APPENDIX B: LIST OF FUNCTIONS WITH SECTION REFERENCES

678

Function

ANY (CS)
ARBNO (P)

ARRAY (P, V)
BACKSPACE (N)
BREAK (CS)
CONVERT (V, T)
COPY (S)

DATA (P)
DATATYPE (X)
DEFINE (P, L)
DIFFER (X,Y)
ENDFILE (N)

EQ (N, M)

GE (N, M)

GT (N, M)

IDENT (X,Y)
INTEGER (X)
ITEM(A,I1,...,In)

LEN (N)

LE (N, M)
LGT (4, B)

LT (N, M)

NE (N, M)

NOTANY (CS)

OPSYN (F,G)

POS (N)

PRINT (V,N,F)
PROTOTYPE (A)

READ (V,N,L)
REWIND (N)
REPLACE(S,CS1,CS2)
RPOS (N)

RTAB (N)

SIZE (S)

SPAN (CS)

TAB (N)

TRIM (S)

NNONEFUW-&
NN W
[=))

¢ a8 e

L) « ¢ e
NNNDNDN

.

w

NNNMNMNWENNDNNON -

.
e}

Wi w
. .
¢ S NS NNNN -

-
.- O

-

11.2

11.3

-

W ot e

L[]
Nt cd Nt a0
e NE -

.
L 3
N - ~N oy
<

NWWNWWS =
L]

MTS-560-0

12-1-67

APPENDIX C: SAMPLE PROGRAMS

This appendix contains twelve sample SNOBOL4 programs and their printed
output. These programs illustrate various features and uses of the language
from the simplest character manipulation through the most complicated
recursive pattern matching.

The sample programs are:

1. Character Conversion

2. Word Counting

3. Bubble Sort

4. Random Number Generation

5. 'Typeset!

6. Column Justification

7. 'The Towers of Hanoi'

8. Theorem Proving

9. Magic Square Generation

10. Regular Expression Recognition
11. Phrase Structure Grammar Recognition
12. Tree Functions

SNOBOL4 Appendix C 679

580

MTS-560-0

12-1-67

SAMPLE _PROGRAM 1: CHARACTER CONVERSION

SNOBOL4 (PRELIMINAEKY VERSION, 9.18.67)

e e ek ek ek e o sk ok sk ek 3k ok dk ke 3 ok e sk ek sk ok sk ek e ok sk ok s sk ok e ke s ok sk ok ik ok 3k ok 3k 3k 3k 3K ol 3k 3 e s ok ok ok o o ok sk Kok ok

BCD TO EBCDIC

*
*
*
THE FOLLOWING ONE-LINE PROGRAM CAN BE USED BY *
INSTALLATIONS UNDERGOING A CHANGE FROM IBM'S SECOND GENERATION *
TO THIRD GENERATION HARDWARE. THE PROGRAM CONVERTS FROM THE OLD *
BCD CODE FOR SCIENTIFIC CHARACTERS TO THE NEW EBCDIC CODE. IN *
PARTICULAR, IF INPUT IS THE CARD READER AND IF PUNCH IS THE CARD *
PUNCH, AS IS USUALLY THE CASE, THEN THE PROGRAM CONVERTS A DECK *
OF CARDS FROM 026 KEY PUNCH CODE TO 029 KEY PUNCH CODE. *
%k

*

g e e geok ek o o s ok 4 e e e ok ok ok s sl o e ke e ok ol sk skok ok e ok o kol ok stk ol ok e o ok ok sk ok ok ok Aok ok o ko ok ok

PUNCH = REPLACE(INPUT, "#2%<&" , "=1'()+") :S(L)

BB 3 3 3 3 H dE 36 3 % % 3¢

=
o

SUCCESSFUL COMPILATION

MTS-560-0

12-1-67

SAMPLE PROGRAM 2: WORD_COUNTING

SNOBOL4 (PRELIMINARY VERSION, 9.18.67)

3¥* 3% 3% *

READ

NEXT

%*

PRINT

MORE

END

THIS PROGRAM COMPUTES THE NUMBER OF
EACH WORD IN A BODY OF TEXT. LIMITED PUNCTUA
INDENTING OF PARAGRAPHS IS RECOGNIZED.

SEPARATOR = L i v, | ',] i (I
OUTPUT TRIM(INPUT) L

TEXT TEXT OUTPUT

TEXT ARB . WORD SEPARATOR =
IDENT (WORD, NULL)

$(WORD ':') = $(WORD ':') + 1

NE ($ (WORD ':'),1)

LIST = LIST WORD ','
OUTPUT =

OUTPUT = 1COUNT WORD'

OUTPUT =

LIST BREAK(',') . WORD ',' =
OUTPUT = '+ 'V $(WORD ":') ! ' WORD

SUCCESSFUL COMPILATION

USES OF
TION AND

:F (NEXT)
: (READ)

:F (PRINT)
:S (NEXT)

:S (NEXT)
: (NEXT)

:F(END)
: (MORE)

SNOBOL4 Appendix C

WN =

[« JEN N W

11
12
13
14

681

682

MTS-560-0

12-1-67

THE IDEAL COMPUTING MACHINE MUST THEN HAVE ALL ITS

DATA INSERTED AT THE BEGINNING, AND MUST BE AS FREE AS
POSSIBLE FROM HUMAN INTERFERENCE TO THE VERY END. THIS
MEANS THAT NOT ONLY MUST THE NUMERICAL DATA BE INSERTED
AT THE BEGINNING, BUT ALSO THE RULES FOR COMBINING THEM,
IN THE FORM OF INSTRUCTIONS COVERING EVERY SITUATION
WHICH MAY ARISE IN THE COURSE OF THE COMPUTATION.

COUNT WORD

THE

IDEAL
COMPUTING
MACHINE
MUST

THEN

HAVE

ALL

ITS

DATA
INSERTED
AT
BEGINNING
AND

BE

AS

FREE
POSSIBLE
FROM
HUMAN
INTERFERENCE
TO

VERY

END

THIS
MEANS
THAT

NOT

ONLY
NUMERICAL
BUT

ALSO
RULES

FOR
COMBINING
THEM

IN

FORM

OF
INSTRUCTIONS
COVERING
EVERY
SITUATION

__._A..at\).nt\)a.a..a..;__\...s__b_x.a.a.a_t_\.a_A.a_a_at\,)l\)..\l\)r\)t\)w.a_s.a_\w.a.a.ako

MTS-560-0

12-1-67

[N W G N

WHICH

MAY

ARISE
COURSE
COMPUTATION

SNOBOL4 Appendix C

683

84

MTS-560-0

12-1-67

SAMPLE_PROGRAM 3: BUBBLE_SORT

SNOBOL4 (PRELIMINARY VERSION, 9.18.67)

3#*

#* 3% 3% 3

* % 3

PRINT

#* 3 ¥ 3 3

SORT

*
SKITCH

*
*

BUBBLE

BUBBLE SORT PROGRAM
DEFINE('SORT(N)I')

DEFINE('SWITCH (I) TEMP')
DEFINE (*"BUBBLE (I) ')

GET THE NUMBER OF ITEMS TO BE

N = TRIM(INPUT)
A = ARRAY (N)
READ IN ITEMS.
I = I+ 1
AI> = TRIM(INPUT)
OUTPUT = AKI>
SORT (N)
OUTPUT =
OUTPUT =
OUTPUT = 1SORTED LIST'
OUTPUT =
I = 1
OUTPUT = A<D
I = I+ 1
FUNCTIONS
T = LT(I,N - 1) I + 1
LGT (A<I>,A<KI + 1))
SWITCH (I)
BUBRBLE (I)
TEMP = A<I>
AI> = AKI + 1>
A<I + 1> = TEMNP
I = GT(I,1) I - 1
LGT (A<I>,A<I + 1>)
SWITCH(I)

SORTED.

:F (GO)
: (READ)

: F (END)
: (PRINT)

:F (RETURN)
:F (SORT)

: (SORT)

: (RETURN)

:F (RETURN)
:F (RETURN)
: (BUBBLE)

® NN

10
11
12
13
14
15
16

MTS-560-0

12-1-67

END 27

SUCCESSFUL COMPILATION

SNOBOL4 Appendix C 685

MTS-560-0

12-1-67

GETLTH
EQUAL
GENVAR
ADJUST
DVREAL
END
ETIME
EXPINT
ENDJOB
FSHRTN
ADJTTL
BKSPCE
GETBAL
BUKINT
CHKVAL
CLERTB
COMPAR
BRANCH
COMPLG
COPPLX
FATHER
GETDT
GETLG
ADREAL
GETBLK
EQDT
GETCL
GETCLI
BUFFER
ARRAY
BKSIZE
DESCR
EQU
FETCH
APDSP
EQUIV
COPY
CPEQV
DIVIDE
FNDRES
DECRC
DECR
BUCKET
FORMAT
ALTERN
DIVINT
ADDLG
ADDSIB
ADDSON

SORTED LIST

685

MTS-560-0

12-1-671

ADDLG
ADDSIE
ADDSON
ADJTTL
ADJUST
ADREAL
ALTERN
APDSP
ARRAY
BKSIZE
BKSPCE
BRANCH
BUCKET
BUFFER
BUKINT
CHKVAL
CLERTB
COMPAR
COMPLG
COPPLX
COPY
CPEQV
DECR
DECRC
DESCR
DIVIDE
DIVINT
DVREAL
END
ENDJOB
EQDT
EQU
EQUAL
EQUIV
ETIME
EXPINT
FATHER
FETCH
FNDRES
FORMAT
FSHRTN
GENVAR
GETBAL
GETBLK
GETCL
GETCLI
GETDT
GETLG
GETLTH

SNOBOLY4 Appendix C 687

38

MTS-560-0

12-1-67

SAMPLE PROGRAM 4: RANDOM NUMBER GENERATION

SNOBOL4 (PRELIMINARY VERSION, 9.18.067)

**

* *
* *
* A RANDOM NUMBER GENERATOR *
* *
* *
* RANDOM (N) RETURNS A VALUE UNIFORMLY DISTRIBUTED OVER THE *
* INTEGERS 0,1,2,...,N-1 *
¥* *
* THE PSEUDO-RANDOM NUMBER GENERATION IS ACCOMPLISHED BY THE *
* SO-CALLED POWER RESIDUE METHOD. THE VARIABLE RAN.VAR *
* CYCLES THROUGH ALL NONNEGATIVE INTEGERS BELOW 100,000. *
* THE INITIAL VALUE OF RAN.VAR WILL DETERMINE THE SEQUENCE *
* OBTAINED AND IS CALLED THE WARM-UP CONSTANT. *
* *
* REFERENCE: *
* J. M. HAMMERSLEY AND D. C. HANDSCOMB, 'MONTE CARLO METHODS', *
* METHUEN & CO. LTD., LONDON, 1965; PP. 27-29. *
* *
#*************
DEFINE (*RANDOM (N) ') : (RANDOM. END)
RANDOM
RAN.VAR = RAN.VAR * 1061 + 3251
RAN. VAR ARB RPOS(5) =
RANDOM = (RAN.VAR * N) / 100000 : (RETURN)
RANDOM. END
**
* . *
* TO ILLUSTRATE ITS USE WE WILL GENERATE AND PRINT A FEW *
* '"RANDOM' NUMBERS. *
* %
6 sk gk 3 ek o ok st ok s e o e S sk ek ok ok e ok ke e ok sk ke ok SR e ok i ok ok ko ok 3 ke sk ok ok o ok ke il ok ok 3 ok ok sk el ok o ok 3 sk ok ke ok
N = 50
RAN.VAR = 0
RANGE = 100
QUTPUT = THE FIRST ' N ' RANDOM NOS.!
OUTPUT = ¢ WITH WARM-UP CONSTANT ' RAN.VAR
OUTPUT = ' UNIFORMLY DISTRIBUTED BETWEEN O AND !
(RANGE - 1) ' ARE:!
OUTPUT =
DEMO
CUTPUT = ! ' RANDOM(RANGE)
N = GT(N,1) N -1 :S (DEMNO)
END

SUCCESSFUL COMPILATION

N EWN -

MTS-560-0

12-1-67

THE FIRST 50 RANDOM NOS.
WITH WARM-UP CONSTANT O
UNIFORMLY DISTRIBUTED BETWEEN O AND 99 ARE:

3

52
71
99
52
82
36
17
45
17
63
10
44
63
43
95
27
3

2

80
28
35
43
12
79
14
84
15
45
89
0

25
68
48
61
38

SNOBOL4 Appendix C 689

690

MTS-560-0

12-1-67

88
46

MTS-560-0

12-1-67

SAMPLE _PROGRAM 5: 'TYPESET!

SNOBOL4 (PRELIMINARY VERSION, 9.18.67)

**

PARAGRAPH() IS A FUNCTION WHICH SCANS THE INPUT TEXT UP
TO THE FIRST LINE OF A NEW PARAGRAPH (INDICATED BY INDENTATION

I.E. A BLANK IN COLUMN 1)

IT STRINGS ALL OF THE WORDS OF THE

LINES (ONE BLANK NORMALLY AND 2 BLANKS IF THE FIRST LINE ENDS
IN A PERIOD). WHEN NO MORE PARAGRAPHS REMAIN, PARAGRAPH FAILS.

* *
% %
% *
* *
* PARAGRAPH INTO ONE LONG STRING. BLANKS ARE INSERTED BETWEEN *
* *
% %*
% *
%* *

**

DEFINE ('PARAGRAPH (X) ')
PARAGRAPH

: (PARA.END)

* THIS IS THE ENTRY POINT FOR THE FIRST TIME PARAGRAPH IS CALLED.

* SUBSEQUENT CALLS ENTER AT PARA.1

DEFINE ('PARAGRAPH(X) ', 'PARA.1')

PARA.LINE = TRIM(INPUT)
PARA.1
ouUTPUT =
OUTPUT = PARA.LINE
PARAGRAPH = PARA.LINE
PARA.2
PARA.LINE = TRIM(INPUT)

* CHECK FOR LEADING BLANK
PARA.LINE POS(0) '
PARAGRAPH '.' RPOS(0)

OUTPUT = PARA.LINE

:F (PARA. 3)

:S (RETURN)

PARAGRAPH = PARAGRAPH ' PARA.LINE : (PARA.2)
PARA.3

DEFINE (* PARAGRAPH (X) ', "PARA.4"Y) : (RETURN)
PARA. Y4 : (FRETURN)
PARA.END

**

THIS IS THE MAIN PROGRAM. ITS NAME IS TYPSET AND ITS
MAIN PURPOSE IS TO PRINT OUT A PARAGRAPH WHICH IT HAS READ IN
SUCH THAT BOTH LEFT AND RIGHT COLUMNS ARE ADJUSTED (SEE EXAMPLE

IF NO SUCH HOLES ALREADY EXIST WITHIN THE LINE, THEN

THE PROGRAM BEGINS TO SEPARATE THE LETTERS OF INDIVIDUAL WORDS

*
E 3 *
* *
* *
* BELOW). IT DOES THIS BY PADDING OUT BLANK AREAS WITHIN A LINE *
%k %*
* *
* *
* *

**

&
INDENTATION = '
LINE.WIDTH = 60
NB = NOTANY (' ')
HOLE = NB . A *BLANK
UNPADDED.LINE = ARB .

NB . C

LINE ' ' ARBNO(' ') ARBNO(NB) . ¥

SNOBOL4 Appendix C

N -

691

MTS-560-0

12-1-67

TYPSET

TS.0

TS.1

NEXT

END

POS (LINE.WIDTH + 1)
LONG.WORD = (NB ARB) . LINE SPAN(' ') NULL . Y

P = PARAGRAPH() : F (END)
OUTPUT =

LE (SIZE (P) ,LINE.WIDTH) :F(TS.1)

OUTPUT = INDENTATION P : (TYPSET)

P UNPADDED.LINE | LONG.WORD = :F (ERROR)

P = Y P

BLANK =

LINE NB SPAN(' ') NB ‘ :F(TS.3)

BLANK = LT(SIZE(BLANK),LINE.WIDTH) BLANK ' ' :F(NEXT)

GE(SIZE(LINE) , LINE.WIDTH) :S (NEXT)

LINE HOLE = A B ' ' C :F(TS.2)S (TS.3)

OUTPUT = INDENTATION LINE : (TS.0)

SUCCESSFUL COMPILATION

MTS-560-0

12-1-67

WSCIENTIFIC MEN MUST

OFTEN EXPERIENCE A FEELING NOT FAR REMOVED FROM ALARM, WHEN WE CONTEMPLATE
THE FLOOD OF NEW KNOWLEDGE WHICH EACH YEAR BRINGS WITH IT. NEW
SOCIETIES SPRING INTO EXISTENCE, WITH THEIR PROCEEDINGS

AND TRANSACTIONS, LADEN

WITH THE LATEST DISCOVERIES, AND NEW JOUkNALS CONTINUALLY APPEAR

IN RESPONSE TO THE GROWING DEMAND FOR POPULAR SCIENCE.
THE ADDITIONS TO THE COMMON STOCK OF KNOWLEDGE BECOME MORE BULKY, IF

NOT MORE VALUABLE; AND ONE IS IMPELLED TO ASK, WHERE
IS THIS TO END?2"

. LORD JOHN WILLIAM STRUTT RAYLEIGH, 1874

WSCIENTIFIC MEN MUST OFTEN EXPERIENCE A FEELING NOT FAR
REMOVED FROM ALARM, WHEN WE CONTEMPLATE THE FLOOD OF NEW
KNOWLEDGE WHICH EACH YEAR BRINGS WITH IT, NEW SOCIETIES
SPRING INTO EXISTENCE, WITH THEIR PROCEEDINGS AND
TRANSACTIONS, LADEN WITH THE LATEST DISCOVERIES, AND NEW
JOURNALS CONTINUALLY APPEAR IN RESPONSE TO THE GROWING
DEMAND FOR POPULAR SCIENCE. EVERY YEAR THE ADDITIONS TO THE
COMMON STOCK OF KNOWLEDGE BECOME MORE BULKY, IF NOT MORE
VALUABLE; AND ONE IS IMPELLED TO ASK, WHERE IS THIS TO END?2®
. . . LORD JOHN WILLIAM STRUTT RAYLEIGH, 1874

SNOBOL4 Appendix C

EVERY YEAR

693

MTS-560-0

12-1-67

SAMPLE_PROGRAM 6: _COLUMN JUSTIFICATION

SNOBOL4 (PRELIMINARY VERSION, 9.18.67)

KEYPUNCH OPERATORS FREQUENTLY HAVE DIFFICULTY RIGHT
ADJUSTING VARIABLE LENGTH DATA WITHIN FIELDS ON DATA CARDS.
KEYPUNCH ERRORS MAY BE REDUCED IF THE DATA ARE KEYED ONTO
THE CARDS WITH AN ARBITRARY NUMBER OF BLANKS BETWEEN DATA
ITEMS. THE FOLLOWING PROGRAM WILL THEN RIGHT JUSTIFY THE
DATA IN SPECIFIED FIELDS AND FLAG CARDS THAT HAVE TOO MANY
FIELDS, TOO FEW FIELDS, OR FIELDS THAT ARE TOO LONG FOR THE
SPACE PROVILED.

THE FIRST CARD OF THE INPUT DECK LISTS THE RIGHT-
MOST COLUMNS OF ALL FIELDS ON THE OUTPUT CARDS. THE NUMBER OF
FIELDS WHICH MAY BE SPECIFIED IS LIMITED BY A TOTAL OF
80 CHARACTERS. THUS,

8,16,24,48,72

LEFT JUSTIFIED ON THE FIRST CARD SPECIFIES 5 OUTPUT FIELDS
OF SIZE 8, 8, 8, 24, AND 24 COLUMNS RESPECTIVELY.

LI R R R N E EEEREE R e

M

ARRAY (30)
BLANKS '

o

POS (0) BREAK(' ') . FIELD SPAN(' ')

PAT

#*

INITIALIZE MATRIX WITH SIZE OF FIELDS

WA N -

ONO U=

COLS = TRIM(INPUT) ¢,°
INIT COLS ARB . COL ',' = :F (READ)
L = L+ 1
M<L> = COL - LINE
LINE = COL : (INIT)
*
* READ AND REFORMAT LINE
*
READ N = 1
LINE =
CARD = TRIM (INPUT) * ¢ :F (END)
BADCARD = CARD
CARD PCS(0) SPAN(' ')
1LOOP CARD PAT = :F (BAD)
BLANKS GE(M<N>,SIZE(FIELD)) LEN(M<N> - SIZE(FIELD)) .
:F (BAD)
LINE = LINE BL FIELD
N = LT(N,L) N + 1 :S (LOOP)
IDENT (CARD) :F (BAD)
OUTPUT = LINE : (READ)

MTS-560-0

12-1-67

*

* FLAG AND PRINT ORIGINAL OF BAD LINES
*

BAD OUTPUT = Rkokkkk ' BADCARD
END

SUCCESSFUL COMPILATION

Ak KKk
: (READ)

SNOBOL4 Appendix C

20
21

695

MTS-560-0

12-1-67
DECIMAL EXP HEX
1 2%%0 1
2 2%%1 2
4 2%%2 4
8 2%%3 8
16 2%%4 10
32 2%%5 20
64 2%%6 40
128 2%%7 80
256 2%%8 100
512 2%%9 200
1024 2%%10 400
2048 2%%11 800
4096 2%%12 1000
8192 2%%*13 2000
16384 2%% 14 4000
32768 2%%15 8000
65536 2%%16 10000
131072 2%%17 20000
% %k ek 2621442%%18 40000 L2 R 2 2 23
X Ak ok ok 524288 2*%%19 80000 / ¥ o e ok ek

€95

MTS-560-0

12-1-67

SNOBOL4

SAMPLE_PROGRAM 7:

'THE TOWEXRS OF HANOI'

(PRELIMINAEY VERSION, 9.18.67)

THE TOWERS OF HANOI

—— —— — — — —— — — — —
—— e G G tman S S - e —
—— G mme BEse Smes Gmee e R S S
e ama S S Gea S - eme

POLE A POLE B POLE C

THIS EXAMPLE ILLUSTRATES THE USE
PROGRAMMING.

(AND POWER) OF RECURSIVE

'"THE TOWERS OF HANOI!

IS AN ANCIENT GAME CONSISTING OF 3 POLES AND

A NUMBER OF DIFFERENT SIZED RINGS,

AS INDICATED ABOVE.

THE OBJECT

OF THE GAME IS TO MOVE THE RINGS FRCM POLE A TO POLE C SUCH THAT

(1) ONLY ONE RING IS MOVED AT A TIME AND
(2) A LARGER RING IS NEVER ALLOWED TO LAY UPON A SMALLER RING.
IN THE PROGRAM BELOW, A FUNCTION IS DEFINED WHICH MOVES N

RINGS FROM POLE P1 TO POLE P2 USING POLE P3 AS TEMPORARY STORAGE.
THE FUNCTION CAN BE DEFINED IN TERMS OF MOVING N-1 RINGS BETWEEN
APPROPRIATE POLES AND A SINGLE MOVE OF THE NTH RING.
MAIN ROUTINE CONSISTS MERELY OF A SINGLE CALL TO THE FUNCTION

FINALLY,

THE

ALREADY DEFINED.

63 3 3 3 3 3 3 6 G I 3 H I 3 % K H O ® # K # #

DEFINE (*HANOI (N,P1,P2,P3)")

: (HANOI.END)

HANOI

EQ (N, 0) : S (RETURN)

HANOI (N - 1,P1,P3,P2)

OUTPUT = 'MOVE RING ' N ' FROM ' P1 ' TO ' P2

HANOI(N - 1,P3,P2,P1)

: (RETURN)

HANOI.END

HANOI (5,'POLE A','POLE C', 'POLE B')
END

SUCCESSFUL COMPILATION

SNOBOL4 Appendix C

QUWONONEWN=

-

697

698

MTS-560-0

12-1-67

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

MOVE

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING
RING

SN DB WDBSN=EF AN WaANQUaNQUWaNaFaNaWaN =

FROM
FROM
FROM
FROM
FRCM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM
FRCHM
FRCM
FROM
FROM
FROM
FRCHM
FROM
FROM
FRCM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

POLE
POLE
POLE
POLE
POLE
POLE
PCLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
PCLE
POLE
POLE
POLE
POLE
POLE
POLE

Lo N R NNl - N. NoWol. F_JN..N.-N_Neol _N JNeol . NoNoR_J N--N.. B ol N4

TO
TO
TO
TG

TO

TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO
TO

POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE
POLE

[pEeR_Nol-N-NeRoR N _N-E _NoNeoR _Neol-N--Nol-N_ N NN, NoNol JNeN. N Ne]

MTS-560

12-1-67

SNOBOLY4

O % 3 3 e 3 I I b I K K ¥ A I *

-0

SAMPLE_PROGRAM 8: _THEOREM PROVING

(PRELIMINAERY VERSION, 9.18.67)

THIS PROGRAM IS THE ALGORITHM BY HAO WANG (CF. *'TOWARD
MECHANICAL MATHEMATICS', IBM JOURNAL OF RESEARCH AND
DEVELOPMENT 4 (1) JAN 1960 PP.2-22.) FOR A PROOF-DECISION
PROCEDURE FOR THE PROPOSITIONAL CALCULUS. IT PRINTS OUT A
PROOF OR DISPROOF ACCORDING AS A GIVEN FORMULA IS A THEOREM
OR NOT. THE ALGORITHM USES SEQUENTS WHICH CONSIST OF TWO
LISTS OF FORMULAS SEPARATED BY AN ARROW (--*). INITIALLY, FOR
A GIVEN FORMULA F THE SEQUENT

——% F

IS FORMED. WANG HAS DEFINED RULES FOR SIMPLIFYING A FORMULA
IN A SEQUENT BY REMOVING THE MAIN CONNECTIVE AND THEN
GENERATING A NEW SEQUENT OR SEQUENTS. THERE IS A TERMINAL
TEST FOR A SEQUENT CONSISTING OF ONLY ATOMIC FORMULAS:

A SEQUENT CONSISTING OF ONLY ATOMIC FORMULAS IS VALID IF
THE TWO LISTS OF FORMULAS HAVE A FORMULA IN COMMON.

BY REPEATED APPLICATION OF THE RULES, ONE IS LED TO A SET OF
SEQUENTS CONSISTING OF ATOMIC FORMULAS. IF EACH ONE OF THESE
SEQUENTS IS VALID THEN SO IS THE ORIGINAL FORMULA.

UNOP = 'NOT!
BINOP = YAND' | 'IMP' | 'OR' | 'EQU'
FORMULA = ' ' UNOP . OP '(' BAL . PHI ")' |
* v BINOP . OP * (' BAL . PHI ',' BAL . PSI ')*
ATOM = (' " BAL ' ') . A

DEFINE ('WANG (ANTE,CONSEQ) PHI,PSI')

INVALID
*

WANG

EXP = TRIM(INPUT) :F (END)

OUTPUT =

OUTPUT = FORMULA: ' EXP

OUTPUT =

WANG (,' ' EXP) _ :F (INVALID)
OUTPUT = YYALID® : (READ)

OUTPUT = 'NOT VALID' : (READ)

OUTPUT = ANTE ' --% ' CONSEQ

ANTE FORMULA = :S($('A* 0OP))
CONSEQ FORMULA = :S($('C* 0oP))
ANTE = ANTE ¢ °

SNOBOL4 Appendix C

WO (5] EWWN =

699

700

MTS-560-0

12-1-67
CONSEQ = 1 v CONSEQ ' !
TEST ANTE ATOM = ' ¢
CONSEQ A
*
*
ANOT WANG (ANTE,CONSEQ ' ' PHI)
*
AAND WANG (ANTE ' ' PHI ' ' PSI,CONSEQ)
&
AOR WANG (ANTE ' ' PHI,CONSEQ)
WANG (ANTE ' ' PSI,CONSEQ)
*
*
Xk
*
*
AINP WANG (ANTE ' ' PSI,CONSEQ)
WANG (ANTE,CONSEQ ' ' PHI)
*
AEQU WANG(ANTE ' ' PHI ' ' PSI,CONSEQ)
WANG (ANTE,CONSEQ ' ' PHI ' ' PSI)
*
CNOT WANG (ANTE ' ' PHI,CONSEQ)
*
CAND WANG (ANTE,CONSEQ * ' PHI)
WANG (ANTE,CONSEQ ' ' PSI)
* -
COR WANG (ANTE,CONSEQ ' ' PHI ' ' PSI)
E 3
CIMP WANG (ANTE ' ' PHI,CONSEQ ' ' PSI)
*
CEQU WANG (ANTE ' ' PHI,CONSEQ ' ' PSI)
WANG (ANTE ' ' PSI,CONSEQ ' ' PHI)
END

SUCCESSFUL COMPILATION

:F (FRETURN)

:S(RETURN) F (TEST)

:S(RETURN) F (FRETURN)
:S(RETURN) F (FRETURN)

:F (FRETURN)
:S(RETURN) F (FRETURN)

:F(FRETURN)
¢S (RETURN) F (FRETURN)

:F(FRETURN)
:S(RETURN) F (FRETURN)

¢S (RETURN) F (FRETURN)

: F (FRETURN)
:S(RETURN) F (FRETURN)

:S (RETURN) F (FRETURN)
:S (RETURN) F (FRETURN)

:F (FRETURN)
:S(RETURN) F (FRETURN)

INTN)

2i

21

2!
3

3.

3¢
3!

MTS-560-0

12-1-67

FORMULA: IMP (NOT (OR(P,Q)),NOT(P))

-—% IMP(NOT (OR(P,Q)) ,NOT (P))
NOT (OR (P,Q)) --* NOT(P)

--% NOT(P) OR(P,Q)

P --*% OR(P,Q)

P --%x P Q
VALID

FORMULA: NOT (IMP (NOT (OR(P,Q)) ,NOT(P)))

-—% NOT (IMP (NOT (OR(P,Q)) ,NOT(P)))
IMP (NOT (OR(P,Q)) ,NOT (P)) --—*

NOT (P) --%

—_k P
NOT VALID

FORMULA: IMP (AND (NOT(P) ,NOT (Q)) ,EQU(P,Q))

--% TIMP (AND (NOT(P) ,NOT(Q)) ,EQU(P,Q))
AND (NOT (P) ,NOT(Q)) --* EQU(P,Q)

NOT (P) NOT(Q) --* EQU(P,Q)

NOT(Q) --* EQU(P,Q) P

--* EQU(P,Q) P Q

P --%x P QQ

Q--* POQEP
VALID

FORMULA: IHP(IHP(OR(P,Q),OR(P,R)),OR(P,IHP(Q,R)))

--x IMP(IMP(OR(P,Q) ,OR(P,R)),OR(P,IMP(Q,R)))
IMP(OR(P,Q) ,OR(P,R)) --* OR(P,INP(Q,R))
OR (P,R) —-% OR(P,IMP(Q,R))

p --% OR(P,IMP(Q,R))

P -——% P IMP(Q,R)

PQ-—-% PR

R --% OR(P,IMP(Q,R))

R --% P IMP(Q,R)

RQ--%* PR

-—% OR(P,IHP(Q,R)) OR (P, Q)

--% OR(P,Q) P IME(Q,R)

——% P IMP(Q,R) P Q

Q ——-%* PPQR
VALID

SNOBOL4 Appendix C

701

702

MTS-560-0

12-1-67

SAMPLE PROGRAM 9: MAGIC SQUARE_GENERATION

SNOBOL4 (PRELIMINARY VERSION, 9.18.67)

3 3% 3 I 3 ¥ *

% * ¥ *

KLOOP

ASSIGN

ouT
ouT1
ouT?2

THIS PROGRAM GENERATES A MAGIC SQUARE OF ODD ORDER. THE SIZE
OF THE SQUARE IS READ IN AS N. FOR DETAILS OF THE ALGORITHM SEE
JACHM, AUGUST 1962, ALGOTITHM 118.

READ IN SIZE OF SQUARE AND DEFINE ARRAY.

N = TRIM(INPUT)
MAGIC = ARRAY(N ',' N)

I AND J ARE ROW AND- COLUMN COORDINATES. K IS THE NUMBER CUR-
RENTLY BEING PLACED INTO THE SQUARE. LIM IS THE UPPER BOUND
ON K.

(N + 1) /2

N ¥ N

RHWH

]
=
- =

MATIN PROGRAM LOOP WHICH MAKES A SINGLE ENTRY INTO THE ARRAY.

IDENT (MAGIC<I,J>,NULL) :S (ASSIGN)
I=1I-1

J=J -2

I=LE(I,0) I + N

J LE(J,0) J + XN
MAGICKI,Jd> = K

= I + 1
GT(I,N) I - N
J + 1
GT(J,N) J -
LT(K,LIM) K

NGOG HM
LI R T I T
+ =2

1 :S (KLOOP)

OUTPUT ROUTINE.

OUTPUT = 'MAGIC SQUARE OF SIZE ' N
OUTPUT =

I =1

ROW =

J =1

' * LEN(SIZE (MAGIC<I,J>)) RTAB(0) . REST

ROW = ROW REST MAGICKI,J>

J = LT(J,N) J + 1 1S (OUT2)
OUTPUT =

OUTPUT = ROW

I =LT(I,N) I + 1 :S (0OUT)

"
1!
2

2i
2!
2t

2¢

MTS-560-0

12-1-67

END ‘ 29

SUCCESSFUL COMPILATION

SNOBOL4 Appendix C 703

704

MTS-560-0

12-1-67

MAGIC SQUARE OF

1

18

25

10

12

19

21

SIZE

13

20

22

5

23

14

16

17

24

15

MTS-560-0

12-1-67

SAMPLE_PROGRAM 10: REGULAR EXPRESSION RECOGNITION

SNOBOLS4 (PRELIMINARY VERSION, 9.18.67)

* THE FOLLOWING PROGRAM DETERMINES WHETHER A GIVEN STRING IS a

* MEMBER OF A SPECIFIED REGULAR SET OF STRINGS. SINCE LAMBDA IS

* UNAVAILABLE TO DENOTE THE NULL STRING, () CAN BE USED.

*

* THE PROGRAM BEGINS BY DEFINING FOUR PATTERNS: SUHM,

* ARBNO1, ARBNO2, AND TERM. AT NEXTSET, A REGULAR EXPRESSION IS

* READ IN AND PRINTED. NEXT, KLEENE IS CALLED TO CONVERT THE

* REGULAR EXPRESSION INTO A SNOBOLY4 PATTERN USING THE FOUR PRE-

* VIOUSLY CONSTRUCTED PATTERNS. FINALLY, THE PATTERN RETURNED AS

* THE VALUE OF KLEENE IS USED TO TEST IF SENTENCES ARE VALID.

* .

*
EANCHOR = 'ON' 1
DEFINE ('KLEENE (SPEC) EXP1,EXP2,RUN,REP') 2

*

* DEFINE BASIC PATTERNS USED IN THE KLEENE FUNCTION

* .
SUM = BAL . EXP1 ' V ' RTAB(0) . EXP2 3
ARBNO1 = ARB . RUN (LEN(1) . REP '*' | ' (' ABORT) 4
ARBNO2 = ARB . RUN ' (' FENCE BAL . REP ') *! 5
TERM = ARB . RUN ' (' FENCE BAL . REP ')°' 6

*

* READ IN THE SPECIFICATION OF THE REGULAR SET.

*

NEXTSET SETSPEC = TRIM(INPUT) :F (END) 7
OUTPUT = 8
QUTPUT = ! SET: ' SETSPEC 9

*

* CONSTRUCT A PATTERN CORRESPONDING TO THE SET.

3
SET = KLEENE (SETSPEC) RPOS (0) 10

*

* READ IN STRINGS AND TEST THEM.

*

TEST TEST = TRIM(INPUT) :F (END) 11
IDENT (TEST) :S(NEXTSET) 12
TEST SET :F(FAIL) 13
OUTPUT = TEST ' IS A MEMBER.' : (TEST) 14

FAIL OUTPUT = TEST ' IS NOT A MEMBER,' : (TEST) 15

*

KLEENE SPEC SUM :F (K1) 16
KLEENE = KLEENE(EXP1) | KLEENE(EXP2) : (RETURN) 17

K1 SPEC ARBNO1 = :F(K2) 18
KLEENE = KLEENE RUN ARBNO (REP) : (K1) 19

K2 SPEC ARBNO2Z = :F(K3) 20
KLEENE = KLEENE RUN ARBNO (KLEENE (KEP)) : (K1) 21

SNOBOL4 Appendix C 705

706

MTS-560-0

12-1-67
K3 SPEC TERM =
KLEENE = KLEENE RUN KLEENE (REP)
K4 SPEC = IDENT(SPEC,'()")

KLEENE = KLEENE SPEC
END

SUCCESSFUL COMPILATION

:F (K4)
: (K1)

: (RETURN)

[\ T O S 3 O3 N}

MTS-560-0

12-1-67

SET: (01 V 10) (00 V 11)*01

0101 IS A MEMBER.

1001 IS A MEMBER.
01000001 IS A MEMBER.
01110007 IS A MEMBER.
10001101 IS A MEMBER.
101001 IS NOT A MEMBER.
0001 IS NOT A MEMBER.
011100 IS NOT A MEMBER.

SET: 1% (0 V 000) (10 V 11)%00 V 0101(111)*0

1000 Is A MEMBER.
00000 IS A MEMBER.
1010111000 IS A MEMBER.
01010 IS A MEMBER.

01011111110 IS A MEMBER.
0101111110 IS NOT A MEMBER.

01101 IS NOT A MEMBER.

SET: (() V 11) (() V 00)1

1 IS A MEMBER.

111 IS A MEMBER.

001 IS A MEMBER.
11001 IS A MEMBER.
1017 IS NOT A MEMBER.

SET: (() V 11)*1
1 IS A MEMBER.

111 IS A MEMBER.

11111 IS A MEMBER.

10 IS NOT A MEMBER.
111111 IS NOT A MEMBER.

SNOBOLY4 Appendix C

707

MTS-560-0

12-1-67

SAMPLE PROGRAM 11: _PHRASE STRUCTURE GRAMMAR RECOGNITION

SNOBOL4 (PRELIMINARY VERSION, 9.18.67)

708

*
* THIS PROGRAM RECOGNIZES CONTEXT FREE PHRASE STRUCTURE GRAMMARS
*
* GRAMMARS ARE SPECIFIED AS SHOWN IN THE OUTPUT. A CARD
* WITH 'EOF' TERMINATES THE GRAMMAR. THE NEXT INPUT SPECIFIES THE
* SYNTACTIC TYPE WHICH IS TO BE RECOGNIZED. NEXT ARE THE SENTEN-
* CES TO BE TESTED, ONE TO A CARD. IF MORE GRAMMARS ARE TO BE
* TRIED, AN 'EOF' SEPARATES THE SENTENCES FROM THE NEXT GRAMMAR.
%
DEFINE (*XLATE (S) TYPE','XLATE")
*
* DEFINITION OF CONSTANTS AND BASIC PATTERNS
*
RP = 1) ¢
1P = (¢
SL = '/
ALTPAT = ARB . LIT ' (' BAL . TYPE ')!
CLAUSEPAT = ARB . CLAUSE '/!'
TYPEPAT = ' (' BAL . TYPE ')=!
*
CONSTRUCTION OF PATTERNS FOR SYNTACTIC TYPES
*
READ OUTPUT = 'GRAMMAR:'
READ1 CARD = TRIM(INPUT) : F (END)
IDENT (CARD, 'EOF') S (RECOG)
OUTPUT = CARD
CARD TYPEPAT = :F (ERR)
$TYPE = FAIL
NEXTC CARD CLAUSEPAT = : F (ENDC)
$TYPE = $TYPE | XLATE(CLAUSE) : (NEXTC)
ENDC $TYPE = $TYPE | XLATE (CARD) : (READ1)
*
* XLATE FUNCTION TO CONSTRUCT PATTERN FOR A CLAUSE
*
XLATE
XL1 S ALTPAT = :F (XL3)
DIFFER (LIT) :S(XL2)
XLATE = XLATE *$TYPE : (XL1)
XL2 XLATE = XLATE LIT *$TYPE : (XL1)
XL3 IDENT (S) :S(RETURN).
XLATE = XLATE S : (RETURN)
*
* RECOGNIZER TO READ AND TEST SENTENCES
*
RECOG TYPE = TRIM(INPUT) :F (ERR)
OUTPUT =

NounmEwN

@

25
26

MTS-560-0

12-1-67

OUTPUT
OUTPUT
PAT = POS(0) $TYPE RPOS (0)
RCG1 CARD = TRIM(INPUT)
IDENT (CARD, "EOF')
CARD PAT
RCG2 OJTPUT
RCG3 OUTPUT
RCG4 OUTPUT
OUTPUT

'TEST FOR SENTENCES OF TYPE

Won

CARD ' IS OF TYPE ' TYPE
CARD ' IS NOT OF TYPE ' TYPE

wononon

END

SUCCESSFUL COMPILATION

TYPE

:F (END)

:S (RCGY)

:S (RCG2) F (RCG3)
: (RCG1)

: (RCG1)

: (READ)

SNOBOL4 Appendix C

709

710

MTS-560-0

12-1-67

GRAMMAR:
(a)=(B) /(C)
(C)=a/A (C)
(B) =A/AB (C)

TEST FOR SENTENCES OF TYPE A

A IS OF TYPE A

ABR IS OF TYPE A

ABAA IS OF TYPE A
ABAAA IS OF TYPE A
ABBA IS NOT OF TYPE A
AB IS NOT OF TYPE A

GRAMMAR:
(S)=(s) a/C
(T)Y=(5) T

TEST FOR SENTENCES OF TYPE T

CT IS OF TYPE T

CAT IS OF TYPE T

CAAT IS OF TYPE T
CAAAT IS OF TYPE T
CCT IS NOT OF TYPE T
CATT IS NOT OF TYPE T

GRAMMAR:

(IDENT) =X/Y/%

(AREX) = (ADOP) (TERM) / (TERM) / (AREX) (ADOP) (TERM)
(TERM) = (FACTOR) / (TERM) (MULOP) (FACTOR)
(FACTOR) = (IDENT) / (LP) (AREX) (RP)

(ADOP) =+/-

(MULOP) =%/ (SL)

TEST FOR SENTENCES OF TYPE AREX
X+Y* (Z+X) IS OF TYPE AREX

X+Y+7Z IS OF TYPE AREX
XY (Z+X) IS NOT OF TYPE AREX

MTS-560-0

12-1-67

SAMPLE PROGRAM 12: _TREE_FUNCTIONS

SNOBOL4 (PRELIMINARY VERSION, 9.18.67)

T3 3 3 I 6 3 3 d6 % H 3 6 3

PART1

¥ 3 # 3 O H

3*

*
ADDSIB

THIS PROGRAM IS DESIGNED TO ILLUSTRATE THE USE OF PROGRAMMER-
DEFINED DATA TYPES TO ADD TREE FUNCTIONS TO THE SNOBOL4 LANGUAGE.
THE FUNCTIONS GIVEN HERE ARE A SUBSET OF THOSE DESCRIBED IN

'TREE FUNCTIONS FOR SNOBOL3'. THE FUNCTIONS INCLUDED WERE

CHOSEN TO INDICATE HOW TYPICAL FUNCTIONS MIGHT BE PROGRAMMED,

AND NOT ALL ARE USED IN THE EXAMPLE GIVEN.

THIS PROGRAM CONSISTS OF THREE PARTS:
1. THE DEFINITION AND CODING OF THE TREE FUNCTIONS.

2. THE CODING OF A FUNCTION TO CONVERT ALGEBRAIC
EXPRESSION INTO TREES.:

3. A TEST PROGRAM WHICH CONVERTS SAMPLE ALGEBRAIC
EXPRESSIONS INTO CANONICAL FORM.

&ANCHOR = 'ON*

PART 1: DEFINITION OF A NODE AND THE CODING OF TREE FUNCTIONS
WHICH MANIPULATE NODES TO FORM TREES AND OPERATE ON THESE TREES.

(THE VALUE OF A NODE MAY BE SET BY USE OF THE 'VALUE' FIELD
DEFINED ON A NODE, RATHER THAN BY USING INDIRECTNESS AS REQUIRED
BY THE SNOBOL3 TREE FUNCTIONS.)

DATA (' NODE (VALUE,L,R,F) ')

DEFINE ('ADDSIB(NODE1,NODE2) ')
DEFINE (*ADDSON (NODE1,NODE2) ')
DEFINE ('FATHER (NODE) ')
DEFINE ('LCTR (NODE) *)
DEFINE ("LSIB (NODE) ')
DEFINE ('LSON (NODE) ')
DEFINE ('LTREE (CTR,FATHER) Y, 2')
DEFINE ('NXNODE (NODE) ')
DEFINE ('OHUNT (NODE, STRING) *)
DEFINE ('PRUNE (NODE) X ')
DEFINE ('RSIB (NODE) ')
DEFINE ('TCOPY (NODE, FATHER) *)

: (PART2)

PRUNE (NODE1)

R(NODE1) = R (NODE2)
R (NODE2) = NODE1

SNOBOL4 Appendix C

711

712

*
A

N
N

*

0
o

%*
P

P
P
*
R

*
T

MTS-560-0

12-1-67
F(NODE1) = F(NODE2)
DDSON PRUNE (NODE1)
R(NODE1) = L (NODE2)
F(NODE1) = NODE2
L (NODE2) = NODE1

ATHER FATHER = F (NODE)
DIFFER (FATHER)
CTR LCTR = VALUE(NODE)
LCTR = LCTR ' (' LCTR(LSON (NODE))
LCTR = LCTR ',' LCTR (RSIB (NODE))
SIB LSIB = L(FATHER (NODE))
IDENT (LSIB, NODE)
SIB1 IDENT (R (LSIB) ,NODE)

LSIB = R(LSIB)

SON LSON = L (NODE)
DIFFER (LSON)

!)l

TREE CTR BAL . CTR ',' RTAB(0) . Y
CTR ARB . CTR "('" BAL . Z ')!
LTREE = NODE(CTR,,,FATHER)
L (LTREE) = LTREE(DIFFER(Z) Z,LTREE)
R(LTREE) = LTREE(DIFFER(Y) Y,FATHER)
XNODE NXNODE = LSON (NODE)
X1 NXNODE = RSIB (NODE)
NODE = FATHER (NODE)
HUNT OHUNT = LSON(NODE)

HUNT1 IDENT (VALUE (OHUNT),STRING)
OHUNT = RSIB(OHUNT)

RUNE X = LSIB(NODE)
L (FATHER(NODE)) =

RUNE2 F(NODE) =
R(NODE) =

RUNE1 R(X) =

R (NODE)

R (NODE)

SIB RSIB = R(NODE)
DIFFER (RSIB)

COPY TCOPY = NODE(VALUE(NODE),,, FATHER)
L(TCOPY) = TCOPY (LSON(NODE) ,TCOPY)
R(TCOPY) = TCOPY (RSIB(NODE) ,FATHER)

: (RETURN)

: (RETURN)

:S(RETURN) F (FRETURN)

: (RETURN)
:F (FRETURN)
:S (FRETURN)

:S (RETURN)
:S(LSIB1)

:S(RETURN) F (FRETURN)

: (RETURN)
:S (RETURN)

: S (RETURN)

:S (NX 1) F (FRETURN)

:F (FRETURN)

:S (RETURN)

:S (OHUNT 1) F (FRETURN)
:S (PRUNE1)

: (RETURN)
: (PRUNE2)

:S (RETURN) F (FRETURN)

: (RETURN)

19

20
21
22
23

24

26
28

29
30
31
32

MTS-560-0

12-1-67

PART2
*
* PART 2: FUNCTION WHICH CONVERTS FULLY-PARENTHESIZED ALGEBRAIC
* EXPRESSIONS INTO TREES. SUCH A TREE REPRESENTATION
* IS USEFUL IN CODE OPTIMIZATION. THE RESTRICTION THAT
* THE EXPRESSIONS BE FULLY PARENTHESIZED WAS INCLUDED
* TO SIMPLIFY THE PROGRAM SINCE THE PURPOSE WAS TO ILLUS-
* THE TREE FUNCTIONS.
*

opr = LS I L | tkkt | 1kt | 0

DEFINE ('TREE (EXP)T1,T2,E1,E2,0")

: (PART3)

*
TREE EXP ' (' BAL . EXP ')' RPOS(0) :S (TREE)

EXP ('(' BAL . E1 ')' | BAL . E1) OP . O RTAB(0) . E2

:F (TREE1)

TREE = LTREE(0)

T = TREE(E1)

T2 = TREE(E2)

ADDSON (T1,TREE)

ADDSIB (T2,T1) : (RETURN)
TREE1 TREE = LTREE (EXP) : (RETURN)
*
*
*
%k
*
PART3
*
* PART 3: TEST PROGRAM WHICH READS IN ALGEBRAIC EXPRESSIONS,
* CONVERTS THEM INTO TREES, AND PRINTS THE RESULT IN
* CANONICAL FORM.
*
TEST EXP = TRIM(INPUT) : F (END)

OUTPUT = 'EXPRESSION: ' EXP

T = TREE(EXP)

QUTPUT = 'CANONICAL FORM: ' LCTR(T)

OUTPUT = : (TEST)

END

SUCCESSFUL COMPILATION

SNOBOL4 Appendix C

56

57
59

60
61
61
62
63
64
65
66
67

68

69
70
71
72
73

74

713

MTS-560-0

12-1-67

EXPRESSION: ((A+B)*C) /((D-E)*F)
CANONICAL FORM: /(*(+(A,B),C),*(-(D,E),F))

EXPRESSION: (A%%2)+ (C* (D%*%*3))
CANONICAL FORM: + (¥*(A,2) ,*(C,**(D,3)))

EXPRESSION: (COUNT+ (TOTAL-DELTA))*SCALE
CANONICAL FORM: *(+(COUNT,- (TOTAL,DELTA)),SCALE)

714

MTS-560-0

12-1-67

APPENDIX D: TRACE FACILITY

There is in SNOBOL4 a very powerful and flexible tracing facility for
debugging. A separate writeup on this is in progress at Bell Labs,
Holmdel. Until +this is available, the following brief description is
offeread:

SFTRACE

To trace calls and returns of all functions, the value of &FTRACE should
be made non-null. E.g.,
SEFTRACE = MONY
To turn this off, the value of &FTRACE should be made null. E.g.,
&FTRACE =

&TRACE

This is an enabling switch, which if non-null, allows the tracing
specified by the TRACE function to occur. This is provided so that all
necessary calls to TRACE can occur once at the beginning of the program and
then §TRACE can be used to switch things on and off.

TRACE (name,respect,tag,function)
TRACE (name,respect)

This function sets up an action to occur when something happens for a
specified entity. name is the name of the entity being traced. respect
designates in what respect it is being traced. The following are legal for

respect:

WCALL" means trace function calls

"RETURN" means trace returns firom functions
WFUNCTIONY® is the same as "CALL" plus "RETURN"
"VALUE" means trace change of value

WLABEL" means trace transfe;g to this label
"EKEYWORD" means trace this keyuord

The name and respect designate when tracing is to occur. At this time, if
all four arguments to TRACE were specified, a call to function is made,
giving name and tag as arguments. If the last two arguments were omitted,
a call is made to a built-in function which prints out a trace event.

Example

SNOBOL4 715

716

MTS-560-0

12-1-67

Program doing the tracing:

ADD
START

END

Qutput

TRACE ("ADD","FUNCTION")
TRACE ("START","LABEL")

§TRACE = "ON™

TRACE ("STCNT", "KEYWORD")

DEFINE ("ADD (A1,A2) ") : (START)
ADD = A1 + A2 : (RETURN)

DO NOTHING

OUTPUT = ADD(2,2)

STATEMENT 5: &STCNT = 5

STATEMENT 5: TRANSFER TO START
STATEMENT 8: &STCNT = 6

STATEMENT 9: &STCNT = 7

STATEMENT 9: LEVEL 0 CALL OF ADD(2,2)
STATEMENT 6: &STCNT = 8

STATEMENT 6: LEVEL 0 RETURN OF ADD = '4!

D OONOTUNEWN =

MTS-570-0

12-1-67

The University of Michigan Interpretive

String TIranslator

Computing Center
Ann Arbor, Michigan
April, 1967

UMIST 717

18

MTS-570-0

12-1-67

PREFRACE

The UMIST processor described in this publication was designed and
written by Tom O'Brien and Tad Pinkerton. Its development at Michigan was
motivated by its utility for text formatting, language preprocessing, and
manipulation of data for graphical display purposes.

UMIST was made possible in part by support extended to the University by
the Advanced BResearch Projects Agency of the Department of Defense
(Contract #DA-49-083 O0SA-3050, ARPA Order #716 administered through the
Office of Research Administration, Ann Arbor).

Correspondence concerning UMIST and this section of the manual should be
address to the author: Tad B. Pinkerton, Computing Center, University of
Michigan, Ann Arbor, Michigan.

MTS-570-0

12-1-67

CHAPTER I: INTRODUCTION

IRAC

The TRAC language was developed by Calvin N. Mooers of the Rockford
Research Institute, Cambridge, Massachusetts. It is a refinement and
extension of an assembler macro language, and is designed specifically for
use as an on-line text processor. A level of the TRAC language called
WTRAC 64" is described in [1]. It is the basic standard and point of
reference for this language. A good discussion of its design goals and
principles is given in reference [2]- Much of the motivation for the
development of TRAC came from the work of Eastwood and McIlroy ([3,4] at
Bell Laboratories. A system similar to TRAC which was developed indepen-
dently in Great Britain is described by Strachey [5].

UMIST

UMIST is a similar language available at the University of Michigan, It
is written in System/360 Assembler Language and currently runs under the
Michigan Terminal System (MTS) in UMMPS (University of Michigan Multi-
Programming System). Its dependence on MTS is restricted to the use of
input-output routines and the MTS file system for external storage. It is
designed to be used with a wide range of I/0 equipment, including wunit
record devices and those with upper/lower case capabilities.

UMIST can currently be described as follows in relation to the standard
TRAC benchmarks: it includes the "Level Zero TRAC Language" as a subset,
for any TRAC procedure using only the nine primitive functions PS, RS, DS,
ss, CcL, cC, CR, EQ, and DD will run in UMIST as specified in reference [1].
But UMIST does not contain "TRAC 64" as a subset, in the sense that some of
the corresponding primitives (e.g. the arithmetic and Boolean functions)
differ in detail in their actions, and some of the capabilities (e.g.
external storage management) are provided in different ways by experimental
primitives. UMIST also contains a number of extensions of the "TRAC 64"
language beyond the addition of more primitive functions. For the most
part, ignorance of these extended capabilities will do the UMIST user no
harm. since these facilities are new and 1largely unproven, they are
subject to change as experience dictates.

Introduction 719

20

MTS-570-0

12-1-67

This publication is intended to be a self-sufficient programming text
for UMIST. Chapters II and III summarize the syntax and processing action
of "TRAC 64" and the "Level Zero TRAC" primitive functions. This material
is given in greater detail in reference [1]. Chapter IV explains the
variations with which UMIST provides the full "TRAC 64" capabilities.
Chapter V discusses the features new in UMIST. .

Finally, a chapter is included which briefly explains the internal
organization of the processor. An appendix is provided to guide the TRAC
user in understanding the interactions of UMIST with MTS, and the necessary
details of the commands in +the latter. A complete list of primitive
functions and their descriptions is given in Appendix B. Many of the
primitives are not otherwise mentioned in the manual.

MTS-570-0

12-1-67

CHAPTER II: THE UMIST PROCESSOR

Mode of Operation

UMIST input and output each consist of single character strings. All
processing of the input string is controlled by explicit calls, embedded in
the input string, to functions whose arguments are substrings and whose
values, possibly null strings, replace the function calls in the string
being processed. For example, the input character string

The string ABC is #(LEN,ABC) characters long# (NL,X).

o oo e —
e o man — o

is changed, after processing by UMIST, to

The string ABC is 3 characters long.

o o o o

There were two function calls in the input string, the first of which had
the value 3, the second a null value (no characters).

There are two kinds of functions: primitives, or machine-language
subroutines, that support the system in its eavironment and are the Dbasis
for constructing forms, or named procedures in UMIST storage, which are
character strings written 1like macro definitions and are expanded,
interpretively, when called. When writing a function call, one specifies
whether its value (replacing the call) is to be processed again as part of
the input string (active call), or that processing is to continue starting
with the portion of the string to the right of the value returned (neutral
call). A single processing cycle is completed when the scanning and
evaluating process reaches the right-hand end of the string.

Sequencing and evaluation in UMIST are inherently recursive: function
calls are evaluated from left to right but may be nested to any depth in
the arguments of other calls. Each function call is evaluated when, and
only when, all of its arguments have been completely processed. Thus the
string being processed is divided logically into two parts: the active
string, consisting of input text (possibly preceded by inserted functional
values) which is yet to be scanned and evaluated, and the neutral_ siring,
containing the scanned and evaluated arguments of functiomn calls which are
not completely ready for evaluation. This node of operation, based on the

The UMIST Processor 721

22

MTS-570-0

12-1-67

completely interpretive execution of function calls, eliminates the dis-
tinction between program and data.

Syntax

Each function call in UMIST has the form of a specially delimited
argument list, in which the name of the function is always the first
arqument. Calls may be open (a variable number of arguments) or closed. A
function call may be protected from evaluation by the use of literal
delimiters. Another delimiter signals the right-hand end of the input
string. These considerations 1lead to a syntax in which there are seven
special_ symbols, whose occurrences are deleted from the string during
syntax scanning and whose presence indicates the beginning or end of a
substring. The character strings enclosed in brackets below are the UMIST
special symbols:

1. Beginning of neutral function call [## (]
2. Beginning of active function call [#(]
3. End of argument [,]

4. End of call [)]

5. Beginning of literal [(]

6. End of literal [)]

7. End of input string [']

Note that the three beginning of substring symbols ##(and #(and (are
terminated by the occurrence of the same end of substring character,).
UMIST has a "parenthesis balanced" syntax, in the sense that an occurrence
of the right parenthesis matches only the last previous occurrence of any
one ‘of the beginning of substring special symbols. Whenever a literal
substring is encountered, the UMIST processor removes the enclosing
parentheses, but only the outer set is removed if more than one matching
pair occur. Thus a string initially protected from evaluation may be
evaluated if scanned a second time, and in general evaluation can be
controlled to occur the nth time the substring is scanned.

MTS-570-0

12-1-67

CHAPTER III: UMIST PRIMITIVES

211 of the primitives of "TRAC 64% have two-character names. These will
be given in the sequel in capital letters. The complete descriptive name
of the function will be enclosed in single quote, or apostrophe, marks.
since any function can be called both neutrally and actively, prototype
calls in this manual will use the more common active notation, with the
implicit understanding that neutral calls are also possible.

Read String and Print String

The value of a 'read string' function call
(RS)

is an input string accepted from the current input device. The ‘'print
string' function

#(PS,X)

causes the display of the second argument, here symbolized by X, on the
current output device, and has a null value.

When the UMIST processor is first given control, and at the end of every
processing cycle, the idling procedure

(PS,#(RS))
is automatically loaded as an input string. This procedure first causes a
read from the input device, with the input string becoming the second
arqument of the 'print string' call. Thus the string, if any, remaining
when the input string has been completely processed, is finally printed
before the idling procedure is again loaded. for example, if the input
string is
(PS,ABC) !

then after the 'read string' has been evaluated the processor is scanning
the string

(PS,#% (PS,ABC))

and the inner call produces the output ABC; the outer call nothing, since
the inner 'print string' has a null value.

UMIST Primitives 723

124

MTS-570-0

12-1-67

Define, Call and Segment String

Any character string in UMIST can be given a name and placed in storage,
from whence it can be called by using its name. The null-valued ‘define
string' function

(DS, A,B)

places the string B in storage with the name A. A is called a form with
value B. At most ome string can be defined with a given name at any one
time: use of the same name replaces a former definition. The value is
retrieved with the 'call string' function

#(CL,1).

A form mname, like a value, is any character string. The only
restriction on length is that of the total string capacity of the
processor.

The occurrence of strings in storage is deleted with the 'delete
definition' function

#(DD,N1,N2,...).

This null-valued function removes the names N1,N2,... as forms and
discards their values.

Once defined, a form can be "parameterized," or segmented, using the
'segment string' function:

#(SS,A,X1,%X2,...).

This null-valued function scans the form A, searching for an occurrence of
the string X1 as a substring. If X1 matches a part of A, that part is
excluded from further matching, creating a "formal variable", or segment
gap. The rest of the form is also compared with X1 to create, if possible,
more segment gaps, all of which are assigned +the ordinal value one,
identifying the argument matched. The (separate) substrings of the fornm
not already taken for segment gaps are next scanned with respect to the
string X2, and any occurrences of the latter substring in A create segment
gaps of ordinal value two, etc. The 'segment string' function may be
called repeatedly for the same form, wusing differing arguments and
resulting in the creation of additional gaps of ordinal values one, two,
etc., among those already there. for example the sequence

#(DS,A,1234567890)
#(Ss,A,23,6,1)
#(SS,1,0)

creates four segment gaps, two of which have ordinal value one, so that

MTS-570-0

12-1-67

#(CL,h)
produces the value
45789.
Thus the 'define string' and 'segment string' functions together create
a "macro" in which the segment gaps locate the "formal parameters". The
"macro" is expanded by supplying the "actual parameters" in a call on the
tcall string' function mentioned above:
#(CL,A,Y¥1,Y2,...) .
The value of the 'call' is generated by returning the form A with all the
segment gaps of ordinal value 1,2,... replaced by ¥1,Y2,... respectively.
If extra arquments are given in a CL, they are ignored. If some are
missing, null strings are used as their values. Thus using the above
segmentation of the form A,
#(CL,2,X,Y,2)
produces the value

ZX45Y789X.

The Form Pointer

The 'call string' function, and other UMIST primitives whose values are
generated by reading the text of a form, begin their value generation at a
point in the form indicated by a form pointer. This mechanisn attached to
each form is dinitially set to the first character, and is moved forward
(and back) by some of the more specialized "call functions" which read out
part of a form. (The 'call string' function does not alter the position of
the form pointer.)

The ‘'call character!' fuaction, for example, has as its value the
character at the form pointer of the form named N

(CC,N,32) -

Then the form pointer is moved ahead one character. Segment gaps are
skipped: the value of CC is always a character not in one of the segment
gaps. If the form pointer has reached the end of the form or the form is
null, the value of the function is the third argument, Z. Since one may
wish to call a procedure in this "tailure" case, the alternative values for
this type of function are always moved to the active string, i.e., treated
as if the mode of the call had been active. The 'call restore' function,

#(CR,N),

UMIST Primitives 725

126

MTS-570-0

12-1-67

restores the form pointer in the form named N to the first character.

The Equal Function

A decision function is provided for character strings:
#(EQ,A,B,T,F).
If the string A is identical to the string B, then the value of this
function is the third argument, T, otherwise the value is the fourth

argument, F. Since the strings T and F may be any UMIST procedures, this
primitive is the one normally used for branching.

Other lLanquage Features

Additional UMIST primitive functions and facilities are provided,
primarily in the following areas:
1. Arithmetic functioms.
There are primitives for the four basic arithmetic operations on decimal
integers, and a decision function for comparing signed decimal values.
2. Boolean functions.
Boolean functions apply the logical operations and shifting to strings
of binary digits, written in octal. :
3. External storage functions.
UMIST primitives exist to "fetch", "store" and "erase" groups of forms
residing in secondary storage. These Dblocks have names which are
treated like form nanmes.
4. Diagnostic functions
Using primitive functions, one may list the names of all his forms and
print out the text of a form, complete with segment gap indications. A

trace mode of operation may be invoked, in which the arguments of each
function are displayed before its evaluation.

MTS-570-0

12-1-67

CHAPTER IV: UMIST VARIATIONS

This chapter explains some of the ways in which UMIST functions differ
from those "TRAC 64" functions with the same general purpose. "TRAC 64"
primitives which are not implemented in UMIST cause an appropriate error
comment if called.

Input Functions

'Read character' and 'read ¥ characters' functions are available in
UMIST as well as 'read string.' Since an input device may, in an operating
system outside of UMIST, respond to a read function with an independently
determined string length, all input is buffered., A physical read occurs at
the device when and only when the buffer does not contain enough characters
to satisfy the UMIST read function. for example, if the procedure

(RC) # (RS) # (RN, 5) # (RC)
is initially supplied with the input string
XZBC' 12345222

then only the single physical read is necessary, and after evaluating the
procedure the string

2z

remains in the input buffer. The input buffer is cleared whenever UMIST is
reinitialized.

Arithmetic_ Functions

UMIST provides functions for both decimal and hexadecimal integer
computations and comparisons. The decimal operands are assumed to contain
only legal base ten digits, and the result may not exceed 16 digits,
including the sign. Reésults have no leading zeros and are unsigned if
positive. Hexadecimal arithmetic is umsigned base-complement (actually it
is hex-coded binary two's-complement arithmetic), and the operands amd
result are no longer than 8 digits. (e.g-. subtracting one from zero
produces FFFFFFFF).

UMIST Variations 727

MTS-570-0

12-1-67

The decimal and hexadecimal decision functions include all of the
standard relations, with a relation denoted by symbols constructed from the
characters >, <, =, and /. E.g. the relation "greater than or equal to"
is expressed either by >= or =>.

Boolean Functions

Logical operations are carried out in UMIST on character strings
consisting of T's (for true) and F's (for false). An unrecognizable value
is assumed to be false. Operands may be of any length and need not, in the
case of binary operations, be of the same length. ’

External Storage Functions

There are no "fetch", "store" and "erase" block functions in UMIST, and
in fact there is no UMIST management of external storage: the file systen
for data management 1is ©presupposed as a part of the operating system in
which the UMIST processor resides, and appropriate functioas have been
added to UMIST to make use of external files. The 'parameter set'
function, described in the next chapter, can be used to shift the input or
output device for UMIST to another logical unit, which may be another
typewriter, a unit-record device, or a data set imn a secondary storage
file. The 'print form' function produces an executable description of a
form which may be used to reconstruct it later. Thus a rough equivalent of
'store block' is the following:

1. A call on PAR to shift the output designation to a specified file.
2. A call on PF to place descriptions of the desired forms in the file.

3. A (possible) call on PS to insert a PAR call at the end of the file
to switch the input designation elsewhere after this file has been
used as input. .

4. A <call on PAR to return the output device to its previous
designation.

The analogue of 'fetch block' is simply
1. A call on PAR to shift the input designation to the desired file.

Once the 1input device is shifted, the output of PF stored in the file is
executed, redefining the specified forms. When an end-of-file comndition
occurs at an dinput device, the designation is shifted to the original,
standard device. If step 3 in the ‘'store block' sequence is used to
specify a device change in the file input, more UMIST functions may be
executed from another file before returning to the standard device, etc.

MTS-570-0

12-1-67

There is no equivalent of the "TRAC 64" 'erase block' function, since
changes to files are a function of the operating system. However, since
the files created by UMIST contain only character strings, they can be
manipulated at any time outside of tne UMIST system.

Two significant differences 1ia the implementation of UMIST affect the
overall operation of the processor. First, the names of forms and
primitive functions are stored in the same symbol table. This implies that
it is not possible in UMIST to have both a form and a primitive function
with the same name. (Other advantages of this approach outweigh this
disadvantage--see the next chapter.)

Secondly, the action taken in the event of an error is usually to print
an error comment and reinitialize, rather than +to ignore the error
condition. The user may choose, however, to override these actions and
have only very serious errors reported. This is accomplished by setting a
system parameter.

UMIST Variatioms 729

730

MTS-570-0

12-1-67

CHAPTER V: UMIST EXTENSIONS

Special Symbols

In UMIST there is an additional terminating special symbol:

8. End all parentheses [)...].

The effect of this symbol is to "balance the parenthesis count®" at the
place the symbol occurs, supplying enough right parentheses to match all
unclosed 1left parentheses (except the one belonging to the PS call in the
idling procedure, which is not typed by the user).

Each of the eight special symbols can be redefined to be any string of
not more than four characters. (Appendix B. explains the scanning
algorithm which "recognizes" the current special symbols). Redefinition is
accomplished with the 'define special symbol!' function,

#(DSs,s1,T71,82,T72,...)

where each Si is a special symbol name from the following list,

MNF Begin neutral function
MAF Begin active function
MARG End argument

MEF End function

MLL Begin literal

MRL End literal

MEP End all parentheses
MES End input string

and the corresponding Ti is the
soon as the DSS call has been completely evaluated. Each of the Si above
is also the name of a primitive tunction whose value is the corresponding
current special symbol, e.gq.
(MAF)
produces the value
#(

if the active function symbol has not been redefined.

MTS-570-0

12-1-67

Set Definition Function

Names of forms and primitives may be redefined in UMIST. The function
(SET,A1,B1,A2,B2,..,)

assigns the meaning of the name Bi to the name Ai, for each i. Ai may or
may not have been previously defined: the definition is created if not, and
altered by discarding the old definition and substituting the new omne if
so. Either or both names may have referred to primitives or forams. For
example, one can redefine the primitive 'read string' to save the input
string in a string called READ in addition to its normal function with the
following procedure:

(SET,*RS,RS)
#(DS,RS, (# (DS,READ, (# (*RS) ...

Because of the possibility of "losing" a valuable primitive or form by
unintentionally redefining it, the redefinition may 4in some cases be
prevented (see the next section).

Class Membership

Each name in UMIST is assigned to one or more of a fixed set of classes,
- used primarily for protection. Class assignments have been made in advance
for primitive functions, and are made by default for forms when they are
defined unless specific classes are assigned by the user. At any given
time a subset of the set of classes has protection in force, in the sense
that if a name A is a member of a protected class, a call on SET to
redefine A will fail.

Membership in classes 1is also used to specify sets of names to be
listed--see the LST function description. '

Parameter Setting

During its execution UMIST operates under the control of a number of
global parameters, whose values can be changed by executing the !'parameter
set' function. Each parameter has a one to four letter name and a variety
of possible values. These parameters will be discussed in groups in the
sequel according to the types of values they acquire, The call on the
parameter setting function is of the form

(PAR,N1,V1,N2,V2,...)

wvhere each Ni 1is a parameter name and each Vi the corresponding new
parameter value.

UMIST Extensions 731

732

MTS-570-0

12-1-67

PROTECTION PARAMETERS

Parameters named PROT and STD are provided for setting class protection
in force, and for default assignments of classes to new names, respective-
ly. The values of PROT and STD are sequences of class names, separated by
a single character, e.g. *. If a class name is given in a value sequence
for PROT, then names belonging to that <class are henceforth protected.
Likewise, a <class name appearing in the value sequence for STD causes
subsequent default assignments of class membership to include membership in
the specified class. For example, the execution of

(PAR,PROT,US4*US2,STD,US3)

causes members of classes US4 and US2 to be the (only) names protected
against redefinition, and all new names to be assigned membership in US3
(only) unless other class membership is specified. Names of the seven
existing membership classes are givem below. These names suggest predef-
ined assumptions about the way in which the classes might be used, but the
assignment of members to classes is completely unrestricted.

BAS Basic functioms (RS,PS)
BLT Built-in primitives
EXT External functions

Us1 User class 1 forms

Us2 User class 2 forms

Us3 User class 3 forms

gsu User class 4 forms

Uss User class 5 forms

The predefined setting of PROT is BAS*BLT, and the predefined value of
STD is US1.

PARAMETER SWITCHES

Several modes of operation are controlled by global switches which may
be turned on and off. These are the trace (TR), implicit call (CL), fold
(FOLD) , and translate (TRAN) switcahes. In each case, the given abbrevia-
tion 1is the switch name, and the value is either ON or OFF. If any other
value is given the current setting of the switch is inverted, except that a

null value is ignored. ‘

(a) TR: Whenever the trace switch is on, the arguments of each function
are displayed before its evaluation, and the input string reaching the
UMIST processor is printed whenever amn input function is called.

(b) CL: The meaning of the implicit call switch will be described in a
later section of this manual.

(c) FOLD: Whenever the PFOLD switch is on, all lower case alphabetic
characters in the input string are converted to upper case before UMIST
processing. When this switch is off, upper and lower case letters are
treated as distinct characters.

MTS-570-0

12-1-67

(d) TRAN: If the TRAN switch is on, a uniform one-for-one replacement of
characters in the input string is made according to previously specified
substitutions: See the description of the 'translate' function, TRN.

SPECTIAL CHARACTER_ PARAMETERS

Two (usually non-printing) character codes are preempted for internal
use by the UMIST processor. They are denoted by STOP and IGNR. All other
254 printing and non-printing codes are legal symbols in UMIST strings.
The STOP and IGNR characters may be set to any codes by giving one of the
above names and the corresponding new value character in a PAR call. E.g.

(PAR,STOP, *)
sets the * as the new stop character.
INTEGER PARAMETERS
Two UMIST parameters are given integer values.

Each error condition in UMIST has a predefined severity level, ranging
from 0 to 99. When one of these error conditions is discovered, the
processor either prints an error message and reinitializes or tries to
recover and continue, depending on the severity code (SVCD). The error
message and reinitialization occurs only if the severity level of the error
is at least as great as the current value of SVCD. The predefined value of
SVCD is zero.

The second integer parameter (LINE) determines the maximum length of a
line printed by UMIST. Any printed string exceeding this length is put on
more than one line. The predefined value of LINE is 72.

NAME_PARAMETERS

The value of the file-or-device-in (FDI) and file-or-device-out (FDO)
parameters is the name of a device or line file which is to ‘be made the
current input or output device, respectively. Whenever a new input or
output device is specified, UMIST releases the previous device and attaches
the new device.

Implicit Calling and_Call_ Procedure

e e e e

It is permissible in some implementations of UMIST to have a form,
rather than a primitive function, name as a first argument in a function
call. For example, if A is a forn, .

(3)

could be taken to be equivalent to the call

UMIST Extensions 733

734

MTS-570-0

12-1-67

#(CL,1).

This feature is termed a "suppressed" or implicit_call on the form, and i
makes a call on a form look the same as a call on a primitive function
Suppose, however, that one wished to simulate a UMIST primitive by writin
a procedure in UMIST and defining a form whose value is that procedure
E.g., suppose users of a small machine wished to write 'read string' as
UMIST procedure which repeatedly used 'read character'. Then UMIST progra
interchange is possible: with the implicit call feature any active call o
a primitive function at one installation can be treated as an implicit cal
on a form at another installation, assuming a form has been written to d
the same thing. But the above statement is only true for active functio
calls: A neutral function call on the primitive merely specifies that th
value not be rescanned, whereas a neutral implicit call on the correspond
ing form does not return the same value at all, but instead returns th
definition of the procedure to obtain the value.

A new function in UMIST, referred to as 'call procedure', is useful i
solving the above problem:

#(CP,A,Y1,Y2,...).

The form named A is expanded by the CP function Jjust as im CL, bu
regardless of the mode of the CP call, the expanded form A is placed on th
active string. When that value has been completely rescanned and evaluat-
ed, its value is moved to the neutral or active string according to thi
mode of the CP function <call. In eifect, the neutral/active cal.
distinction is applied one level down from the point at which it wa:
specified.

Both the CL and CP functions exist in UMIST and may be calle
explicitly. But the meaning of an implicit call depends on the setting o:
the CL parameter at the time the given form was defined: if CL is ON when :
form N is defined, then

(N)
is equivalent to
#(CL,N).
Otherwise it is equivalent to
#(Cp,N).

Note that in the latter case there is no observable difference between :
primitive function call and an implicit call on a form defined to do the
same thing. The predefined value of tae CL parameter is ON, and it is of
course changed by

(PAR,CL,OFF) .

MTS-570-0

12-1-67

External Functions

Public and private libraries of machine-coded functions may also be
added to the repertoire of UMIST during execution. Such primitives -are
termed external functions, and they are added to the processor functions
with the 'load external functions' function:

(LEF, FDNAME)

This null-valued function loads external primitive functions from the file
or device named as the second argument, and 1links them into the UMIST
system. After the LEF function has been evaluated, the primitives defined
in the load module at the given source are indistinguishable in their
behavior from the built-in primitives.)

Status Recording

A programmer using UMIST can, through the use of facilities already
discussed in this chapter, operate in a environment gquite different from
that of “TRAC 64", He may be using different special symbols, parameter
settings other than the default specifications, input character transla-
tions, and external functions. Thus, in order to perform effectively with
this "personal systen", he ought to be able to

(a) discover the state of any such variable in the system at any tinme,
and

(b) easily switch the processor to that state from the normal state when
he returns to use the system the next time.

For this purpose a number of "status recording" functions are included
in UMIST. They all produce values which

(1) describe the current state of system variables and

(2) are themselves executable to restore tahe system variables to the
current state from some other state.

For example, the value produced by the ‘print form' functiomn is a
complete description of one or more forms expressed as a call on the
tdefine form' function, which, if executed, would redefine the form to its
current value. Another example is given by the special symbol £functions
MAF, MNF, etc.: writing # (MAF) causes the current beginning of active
function special symbol to appear. After redefining special symbols the
programmer can leave a procedure in a file to be executed when he signs om
the next day, defining the special symbols he wishes to use. There are
several other such status recording functioms:

(a) The value of the 'translate print!' function, TRP, is a call on the

UMIST Extensions 735

MTS-570-0

12-1-67

'translate!' function, TRN, to specify the current input charactel
translations.

(b) The value of the ‘'print parameter' function is a call on the
'parameter setting' function to specify the current values of all th«
parameters.

In addition, the 'list names' function, LST, has as its value the list oi
names which belong to certain of the "protection" classes:

(LST,S,X)

The second argument, S, is a sequence of <class names separated by the
character *, denoting intersection, and/or the character +, denoting union.
The subset of names whose class membership satisfies the given set-
theoretic expression is listed as the value of this function, with eact
name - preceded by the third argument character string. Por example, the
value produced by

(LST,BAS*US1+USl,...)

is the set of all names belonging either to both of the classes BAS and
USs1, or to the class US4, with each each name preceded by three periods.

MTS-570-0

12-1-67

CHAPTER VI: INTERNAL STRUCTURE

Highlights of the UMIST implementation are mentioned here for those
interested. The given design sacrifices storage whenever it is possible to
reduce execution time.

Pushdown Stack

A fixed, contiguous area of storage is reserved for use as a stack. The
stack is used for

(a) argument identification
(b) general register storage
(c) temporary text storage -

Each normal stack entry is a three-word block containing pointers. to the
beginning and end of an argument, and to the stack entry for the first
argument of this call if the given argument is not the first. The stack
entry for a first argument specifies the mode of the call (neutral or
active). A stack entry is created for am argument as soon as its beginning
is identified. Each function call is evaluated as soon as the stack entry
for its last argument has been completed. After a function has been
evaluated its entries are removed trom the stack.

Whenever a machine language function or utility routine in the processor
calls another, the general purpose registers used by the former are saved
on the stack. If the called routine in turn calls another, the stack is
pushed to cover the saved registers. It should be noted, however, that it
is not necessary for the processor to work with recursive subroutine calls:
use of the stack permits a calling depth of just one level. Arbitrarily
nested subroutine calls vwere simply a convenience provided for the
construction of the processor.

Finally, a single subroutine may use a piece of the stack to accunulate
a value string, or save other temporary pointers, in lieu of having a
separate temporary storage area. Such temporary storage is covered by
pushing and popping the stack during subroutine calls along Wwith the
general register storage.

The stack structure just described allows each primitive function and
subsidiary routine to be coded as an independent unit, which may be called
by any . other such unit. This organization also applies to the main syntax
scanning and stack-building routine.

UMIST Internal Structure 737

738

MTS-570-0

12-1-67

Scanning Algorithm

The following procedure is used to locate special symbols in the actiws
string.

1. A search for a special symbol is undertaken whenever a character i
found which is the first character of a current special synbol.

2. The longest possible special symbol is matched with the string af
that point, and successively shorter ones until and unless a specia:
symbol is found.

3. If more than one special symbol is of a given length, recognition is
attempted in the following fixed order (i.e. if A is above B in the
list and A and B are the same length then A will be matched first):

MARG
MAF
MNF
MEF
MLL
MRL
MEP

4. A recognized special symboi is deleted from the string and scanning
resumes with the first character following it.

5. The symbols MEF and MRL could be different. 1In this case the MEE

special symbol still balances both the MAF and MNF symbols, but does not
balance the MLL symbol.

Storage Management

This section describes the way in which storage is allocated and managed
for form and function names, segment gap information, and form values in
UMIST.

Each name, form value, and segment (string between segment gaps) is
Gescribed by a block of not less than 8 words of storage. The first 6
words of each block are used to describe the entry, and tae value, if any,
appears beginning in the 7th word. Blocks are allocated on demand from an
area called free storage in predefined fixed sizes. If no blocks of a
given size are available to satisfy a demand, a new one is generated. When
a block 1is released it is placed on a queue with all other free biocks of
the same size to be available for use again.

The various storage blocks are linked together as described below. The
symbol +table consists of a set of 64 unordered chains of .symbol (name)
blocks, with each name placed on a single chain by following hash scheme:

MTS-570-0

12-1-67

The first and last characters of the name are multiplied using their
character codes as binary integers. The result is divided by 127, and
the remainder is divided in two. The resulting quotient, whose value is

in the range 0-63, is the index of the chain on which the symbol
belongs.

As pictured in the following diagram, each symbol block points to a
primitive function to be evaluated, and possibly a form block. The form
block contains the text of the form (whose name appears in the symbol
block) , and points to a two-way ordered chain of segment blocks.

UMIST Internal Structure 739

740

MTS-570-C

12-1-67
HASH SYMBOL FOkM SEGMENT
TABLE STORAGE STORAGE STORAGE
™ | AR | | J——— "
| | ——>4symlen | —>4frmlen | —>4seglen <4
| . I 1 i | — | A |
{ . | | e4isynchn | } {sgschn }— ¢—{chnfsg | |
| o I T T | A | |—————— |
{ 1 | | Isynfrm }—* [sgechn 4 | l|chnbsg | |
| (I B ey | A A |
1 1| | | [I i1
{shchn |— | [symbol | l L |
| i1 | | I I I |1
|ehchn H ' | ERSS— | | I— | l ‘ | ROV l
1| | |
| O I B e | I | — |
{ . | | >4symnlen | —> eee e L>yseglen | |
i o [- 1 . —_— |
| o I | r—isymchn | | e —{chnfsg | |
1 I T B e | | |——A I
| t + | Isyonfrn —3 | lchnbsg 4
{ I I S | | A
| il] (I |
| e | |Isymbol | (| |
11 | (I {
I | I———— | l ———d
o | °
|] []
° | ———— [)]
L>y{symlen | L
| e | CALL
| r—isynchn | TABLE
| B S |
I | lentptr p—1
I I | —
I | | { d |
| | Isymbol | | { i —
[i i { . | —>4fcn a |
| & — 40— |
| t—>{fcanptr p—4 | |
| b —| | l
| . i | | |
{ - | | |
l i . | o
I I —— | . | .
L>1>4symlen | | L | .
A | |
{symchn | | |
A i r—

jentptr p——>4fcnptr p——>{fcn b |

"
| |

MTS-570-0

12-1-67

{symbol | | .
| |

—_ 1 ' L

—
[}

—— —
s——
—

[]

UMIST Internal Structure 741

742

MTS-570-0

12-1-67

BIBLTOGRAPHY

{1] Mooers, Calvin N., "“TRAC, A Procedure-

[2]

[3]

(4]

[51

Describing Language for the Reactive
Typewriter", Comm. ACM 9 (March, 1966)
p- 215

Mooers, Calvin N., and L. P. Deutsch,
"TRAC, A Text Handling Language," Proc.
ACM Nat. Conf., Cleveland (August,
1965) p. 229

Eastwood, D. E., and M. D. McIlroy,
"Macro Compiler Modification of Sap, "
Computer Lab. Memo., Bell Telephone
labs., Murray Hill, N. J. (Sept, 1959)

McIlroy, M. D., "Using SAP Macro
Instructions to Manipulate Symbolic
Expressions," Computer Lab. Memo., Bell
Télephone Labs., Murray Hill, N. Jd.
(1960)

Strachey, C., "A General Purpose Macro-
generator," Computer Journal 8,3 (1966)

MTS-570-0

12-1-67

APPENDIX A. A GUIDE TO USING UMIST IN MTS

The UMIST processor is stored in a file named *UMIST in the Michigan
Terminal System. Its initial settings for input and output devices are the
SCARDS and SPRINT 1logical units. Thus a user signing on at a terminal
might issue the following MTS command to obtain the UMIST processor:

$RUN *UMIST

If one wishes to use files or other devices for input-output as well as
the terminal, he specifies these devices in a parameter set functiomn call.
For example, the function call

(PAR,FDO,SAVNEW)
switches output to the file SAVNEW, and the call
(PAR,FDI,DFF)

switches input to the file DFF. An end-of-file at any input device other
than SCARDS switches input +to the SCARDS device. An end-of-file at the
SCARDS device terminates the execution of UMIST and returns the user to
MTS.

The initial settings of all parameters are listed below.

Name Value

PROT BAS*¥BLT

STD US1

TR 2cecee. OFF

CL cecceeee ON

FOLD OFF

TRAN OFF

SVCD vsee. O

LINE 72

FDI SCARDS

FDO 2ceae. SPRINT

STOP The character whose hex code is CO
IGNR The character whose hex code is 80

Note: to change one of the character parameters STOP or IGNR to another
non-printing code, the function XTC must be used to convert its hex code to
a single character, e.g.

(PAR,STOP, ## (XTC,Bd))

changes the STOP character to the character whose hex code is BA.

Using UMIST in MTS 743

44

MTS-570-0

12-1-67

The XTC function may also be used to insert special edit and control
characters into UMIST strings without causing the edit or control effect at
the time of insertion. E.g. # (XTC,15) has as its value one carriage
return character.

Since the FOLD parameter is initially OFF, and UMIST primitive function
names are all upper case, a person using a device supporting lower case
must be sure to type his function, parameter, class, etc. names in upper
case, at least until he has turned ON the FOLD switch.

MTS-570-0

12-1-67

APPENDIX B. PRIMITIVE FUNCTIONS

print string function

#(ps,a)

this null valued function prints out the string a given
as the second argument. more than one line may be
printed if the length of a exceeds the current line
parameter value.

(rs)
returns as value the beginning of the input string up

to but not including the first end of string special
symbol, which is eliminated.

signoff function

(bye,note)

the bye function causes normal termination of UMIST
execution after printing the optional second argument.

define string function

#(ds,n,v)

this null valued function defines the string v as a
form with the name n. the form pointer is set to the
first character, and nmembership in the current standard
protection classes is-assigned. the meaning of an
implicit call is set according to the current parameter
value.

Primitive Functions

745

746

MTS-570-0

12-1-67

define form function

(df,name,prot,call,value, fptr,gla,glb,glc,g2a,...)

this null valued function defines a form completely,
specifying membership classes, the meaning of implicit
call, form pointer and segment gaps as well as the
name and value strings. the prot argument is a class
expression. the call argument is either ¢l or cp, and
the fptr argument the ordinal position (from 0) of the
character under the form pointer. the segment gap
arguments come in triples, indicating ordinal value,
position and length of gap, respectively.

seqment string function

#(ss,n,a,b,c,...)

segment gaps in the form n are created by this null-
valued function wherever a character scan with the
arguments a, b, ¢,... £inds string matches in the
segments remaining in the form. the arguments a,b,...
are taken in order and define gaps of ordinal value
1,2,... respectively. the form pointer is reset to the
first character by this function.

call function

#(cl,n,a,b,c,...)

the value of cl is the expanded form whose name is the
second argument: specifically, starting at the fornm
pointer, each segment gap is filled with the i+2nd
argument in the call, if present, where i is tne
ordinal value of the segment gap.

call procedure function

(cp,n,a,b,c,...)

this function calls the form named as the second
argument in exactly tne manner specified for the cl
function, and places 1its value on the active string.

MTS-570-0

12-1-67

after the form itself has been completely evaluated,
its value is moved to the neutral or active string
according to the mode of the call procedure function
call. in effect, the neutral/active call distinction
is applied by this function one level down from the
point at which it was given.

print form function

(pf,a,b,Cp.-)

the value of this function is a representation of each

of the forms named as second and succeeding arguments.
the location and ordinal value of each segment gap is
shown, as well as the protection class membership, mode
of implicit call, and form pointer. each form is shown
by a neutral call on the define form function, which,
if executed, would define the same form. name and
value in the call constructed are protected by a set of
literal symbols.

initial function

#(in,n,a,fail)

starting at the form pointer, the form named by the

second argument is searched for the first occurrence of
the third argument as a substring. segment gaps are
skipped. the value of this function is the substring
from the form pointer to the character just before the
matching string. if a match is not found, the value is
the fourth argument, which is always placed on the
active string. the form pointer is moved to the first
character following the matching string, or is not
moved at all if there is no successful match.

call segment_function

(Cs,n,e)

the value of this function is the substring of the form

named by the second argument beginning at the form
pointer and continuing to the segment gap which follows
it. the form pointer is moved to the first character

Primitive Functions

747

742

MTS-570-0

12-1-67

after the gap. if the form is empty the third argument
is returned to the active string.

call character

#(cc,n,e)

the value of this function is the character under the
form pointer in the form named n. if n is empty, the
value is e (always moved to the active string).
the form pointer, which always skips segment gaps, is
moved ahead one character.

call n characters

#(cn,n,cnt,e)

this function reads characters from the form
pointer to a total length specified by the third
argument, which is a decimal integer. if the number
is positive, the string is read from the pointer to the
right, if negative, to the left (keeping the original
character sequence). if there are not enough
characters, the value is e (moved to active string).
the form pointer is moved (right or left) to the first
unread character. segment gaps are skipped.

call restore function

(cr,n)

this null valued function restores the form pointer of
the form whose name is the second argument to the first
character.

set functiorn

(set,a1,b1,a2,b2,...)

this null valued function forms an equivalence be-
tween the symbols ai and bi in pairs. ai is assigned

MTS-570-0

12-1-67

the meaning of bi, for each i, unless the former is in
a protected class. any symbol may rename any other.

delete definition function

e e e e S S e s e 2t e s -t Y e e

#(dd,a,b,c,-..)

this null valued function deletes the definitions of
all of the forms given as the second and succeeding

arguments.

delete all function

(da)

this null valued function deletes the definitions of
all the forms and extermal functiomns.

equal function

(eq,a,b,yes,n0)
this function returns the fourth argument if the

second and third arguments are identical character
strings, and the fifth argument otherwise.

decimal arithmetic functions

these functions operate on decimal character strings,
assumed to be numeric only and no more than 16 digits
long, including the optional sign. a decimal value is
returned unsigned if positive, and leading zeros are
deleted. the value zero is one digit long.

Primitive Functions

749

MTS-570-0

12-1-67

add decimal

(ad,a,b)

the value is a+b

subtract decimal

(su,a,b)

the value is a-b

multiply decimal

#(nl,a,b)

the value is a*b

divide decimal

#(dv,a,b)

the value is a/b

test decimal

#(td,a,r,b,t,f)

compares a with b. if the relation r between them is
satisfied, the value i1s t, otherwise the value is f.

special symbol functions

#(margqg)
(maf)
(mnf)

750

MTS-570-0

12-1-67

(mef)

(mll)

(mrl)

(mep)

(mes)
each of these functions has a value which is the
corresponding current special symbol.

parameter set function

(par,nt,vi,n2,v2,...)

this null valued function alters the settings of global
parameters in the umist system, such as the trace switch
and input/output devices, the error severity tolerance,
and the protection classes.

print parameter function

(ppr)

this function returns as its value the current values
of all of the global umist parameters. they are given
in the form of a call on the parameter setting function

(par) .

A4S JER=S E_ i B DA A2 4L S

(lef,dev)
this null valued function calls the loader to load and
1ink external functions from the named device

to the umist system, and then makes the table entries
necessary to complete the acquisition.

(rc)

returns the next input character as its value. may be
the end of input string special symbol.

Primitive Functions

751

MTS-570-0

12-1-67

read n_characters function

#(rn,l)

returns as a value the beginning of the input string
of the length given in decimal as the second argument.
end of string special symbols may be included in this
form of input.

dump function

(dmp)

this null valued function dumps all non-reentrant parts
of UMIST on the current output device.

null function

#(nl,a,b,c,...)

the null function does absolutely nothing but 'discard!
its variable number of arguments: its value is null.

restart function

(res)

this null valued function completely restores the
status of umist at startup time, including the pre-
defined values of all parameters, function names
and special symbols.

reinitialize function

(rin)

this null valued function reinitializes umist with the
current print string/read string sequence and empties
the input buffer.

MTS-570-0

12-1-67

set form pointer function

(sfp,a,n)

this null valued function sets the form pointer of the
form named by the second argument to the character
displaced from the first by the number of characters
given by the third argument, a decimal integer.

call form pointer_ function

(cfp,n)

the value of this function is a decimal integer giving
the number of characters which the form pointer is now
displaced from the first character.

call gap function

#(cgsn,e)

the value of this function is the first segment gap
to the right of the form pointer of the form n. the
form pointer is set to the first character following
the gap. if there are no more segment gaps, the value
is e and the form pointer is not moved.

#(cv,n,e)

the value of this function is the decimal integer
ordinal value of the next segment gap to the right of
the form pointer of the form n. .the form pointer is
not altered by this function. if there are no (more)
segment gaps the value is the third argument.

Primitive Functions

753

754

MTS-570-0

12-1-67

erase segment gaps function

(es,n)

removes all segmentation for the form given as the
second argument. the form pointer is not moved.

set protection classes_function

#(spc,n,s)
the name in the second argument is assigned to

the protection classes in the expression which is the
third argument.

list selected_names_function

#(1lst,s,x)

the value of this function is a list of names of forms
and functions, each name preceded by the string x. s
is a parameter name expression specifying the names to
be listed: legal operations are *, for intersection,
and +,denoting union.

test character function

#(tc,a,r,b,yes,no)

a and b are character strings to be compared. the
third argqument, r, is one of the relations <, <=, >,
>=, =, or/=, which stand for "properly contained in",
"contained in%, "properly contains", "“contains",
"identical to", and "not identical to", respectively.
the argument yes is the value of the function when the
relation is true, otherwise no is the value.

MTS-570-0

12-1-67

length function

(len,s)

the value of this function is the length of the second
argument, as an unsigned decimal integer.

hexadecimal to character function

(xtc,a)
the value of this function is the character string

resulting from converting the second argument from
its hex character codes.

character to hexadecimal function

¥ (ctx,a)
the value of the ctx function is the string of hex

character codes for the second argument. codes for
leading null characters are deleted.

hexadecimal arithmetic_functions

these functions operate on unsigned hexadecimal
character strings, assumed to be not more than 8 legal
hexadecimal digits long. a hex value is returned with
no sign and no leading zeros.

add hex

(ax,a,b)

the value is a+b

Primitive Functions

755

1

(o2}

MTS-570-0

12-1-67

subtract hex

#(sx,a,b)

the value is a-b

#(tx,a,r,b,t,f)

compares a with b. if the relation r between them is
satisfied the value is t, otherwise it is f.

if function

#(if,a,t,f)
the value of this function is t if the second argument,

as a boolean string, contains at least one true, and f
if not (or if a is null).

not function

(not ,a)

the value of this function is the characterwise
complement of the second argument, a boolean character

string.

and, or, and xor functions

#(or,a,b)
(and,a,b)
(xor,a,b)

the values of these functions are the characterwise
logical "and", "or" and "exclusive or" of a and b.
a and b are boolean character strings. if they are not
of the same length the value has the length of the
shorter for 'and' and the length of the longer for ‘or!

MTS-570-0

12-1-67

and 'xor'. in the former case the leftmost part of the
longer is used, and in the latter case the shorter is
extended on the right with false values.

define special symbol function

(dss,a,aval,b,bval,...)

this function redefines the special symbols. the
arguments occur in pairs, denoting special symbol name
and new special symbol value, respectively. the change
is effective as soon as the function has been all
evaluated. new special symbols may not exceed four
characters in length.

date function

(at)

the value of this function is the current date, given
in the form mm-dd-yy.

time of day function

#(tm)

the value of this function is the current time of day,
given in the form hh:mm.ss.

translate function

#(trn,£1,t1,£2,t2,...)
after this null valued tunction has been executed, each

of the characters fi is replaced in the input string
by the corresponding ti before reaching the umist system

Primitive Functions

757

758

MTS-570-0

12-1-67

translate print function

(trp)
this function returns as its value a call on the trn

function, describing exactly those input character
transformations currently specified in the table.

(hsh)

this null valued function dumps the hash history
table and then clears it out. +the latter contains a
count, by hash chain, of the number of times symbols
are referenced on that chain.

MTS-570-0

12-1-67

APPENDIX C. UMIST LINE EDITOR

The purpose of the UMIST procedure given below is to insert, delete, and
replace text fragments in the lines of a line-numbered auxiliary storage
file. A single execution of the procedure alters the first occurrence in
the given 1line of the specified context. The destination of a text
fragment to be inserted (or used as a replacement) is specified by giving
enough text on either side of the location to uniquely identify it.

A restriction imposed by the syntax of UMIST, but avoidable with some
additional effort is that the text fragments given to the editing procedure
contain no unbalanced parentheses.

The action to be taken in editing a line is given implicitly by the
presence or absence of one or more of the text and context fragments in the
procedure call:

(edit,<file>,<line>,<left>,<text>,<rightd)

where:
<file> denotes the name of tae file to be edited
<line> denotes the (integer) line number
<left> denotes the context to the left of the location desired
<text> is the fragment to be inserted or deleted
<right> denotes the context to the right of the desired location

The following combinations of specified fragments give the indicated
actions: (X denotes present)

<left> <text> <right> Action
() X X X Replace whatever lies between <left> and
<right> with <text>
(b) X X Insert <text> to the right of <leftd>
(c) X X Insert <text> to the left of <right>
(@) X Delete <text>
Examples

UMIST Line Editor 759

MTS-570-0

12-1-67

Assume the file named ENGLISH contains the following lines of text:

271 With a filter such as P2 it is possible
272 to severely attenuate the high frequency
273 noise without distorting the low

274 frequency information excessively. If the

After +the sequence of procedure calls shown below, the text will have
been modified as indicated. _ denotes a space character.

(24it,ENGLISH,271,a_,smoothing_)
(edit ,ENGLISH,274,,_excessively)
(edit,ENGLISH,273,,_excessively,_dis)
(edit,ENGLISH,272,to_, strongly,_att)

271 With a smoothing filter such as P2 it

272 is possible to strongly attenuate the high

273 frequency noise without excessively

274 distorting the low frequency information. If the

A "higher-level" procedure for simplifying commands would be:

#(ds,EDIT, (# (edit,<file>,#(rs)) #(EDIT,<file>)))
#(ss,EDIT,<filed)

The line editor can now be invoked by:
(EDIT,<filed)?

with the editing commands typed one after the other in the form
<line>,<left>,<text>,<right>!

e.g. ({from example above)
(EDIT,ENGLISH) !

and then

271,a ,smoothing!?
274,, excessively'

To stop the above procedure, insert a UMIST procedure call in the command
line, such as one of the following:

#(rin)* to reinitialize the UMIST system

(bye) ! to return to the operating systenm
y

750

MTS-570-0

12-1-67

Elements of the Definition of Edit:
(1) to read the line from the desired file:

(par,fdi,<file>((<line>,<1line>))) ##(rs)
Action:

Set the "file-or-device in" parameter to the unit named <file> and read
from <line> to <line> before returning, then read string

(2) to write the output of the procedure back into the line of the file:
(par,fdo,<file>((<1line>))) # (ps,output)
(par,fdo,*sink¥*)
Action:
Set the "file-or-device output" designation to the given <file> and
<line>. print the string of output into the file return +the fdo

designation to the standard output device.

(3) Comstructed procedures for the actions of inserting, deleting and
replacing use the functions below:

#(in,form,string)
Action:

The form named is searched for the first occurrence of string and
returns the form from the form pointer up to (but not including) string as
a value. The form pointer is reset to the character following string.

#(nl,A,B,C,...)
Action:

This function always has a null value.

(4) To <choose the appropriate procedure to construct and apply, the
following functions are used:

(len,string)
Action:
The value of len is the decimal integer number of characters in string.

(mef)

UMIST Line Editor 761

MTS-570-0

12-1-67

Action:
The value is an end-of-function symbol (right parentheses)
(eq,A,B,C,D)
Action:
The value of eq is C if A and B are identical, otherwise the value is D.
Remarks

A form called by giving its name as the first argument returns the value of
the form.

The output line is produced by concatenating values of procedure calls and
the text fragments given in the command line.

762

MTS-570-0

12-1-67

Definition of the Procedure:

(ds,edit, (
(par,fdo, ((<file>,<lined)})
(ds,o0ld, # (par,£fdi,<file> ((<line>,<line>)))
*(ps,
#(rs))
(ds,temp) # (in,01d,# (eqg,# (len,<left>),0,
(# (eq,#(len,<right>) ,0,
(<text># (mef)),
(<right># (mef) <text><right>))),
(Kleft># (mef) <leftd><text><right>
#(nl,#(in,01d,<right>))))
% (ol4d)))
(ps, # (temp)
(par,fdo,*sink*))) !

And finally to create the "formal parameters":

#(ss,edit,<file>,<line>,<left>,<text>,<rightd>)?*

UMIST Line Editor

763

754

MTS-570-0

12-1-67

The procedure edit produces one of the following
evaluates it:

#(in,old,<text>) # (o0ld)

(b) for insert before:

#(in,o0ld,<right>)<text><right># (0ld)

#(in,0ld,<left>)<left><text><right>
#(nl,#(in,o0ld,<right>) # (0ld)

procedures

and the

MTS-580-0

12-1-67

W ATV FOR

WATFOR 765

766

MTS-580-0

12-1-67

WATFOR

WATFOR, the University of Waterloo Fortran translator, is available i
MTS in the file *WATFOR. Consult the library file description of *WATFO
in section MTS-280/66635 for details on I/0 unit and parameter specifi-
cation.

I WATFOR CONTROL CARDS

Since execution of the object program commences immediately upo
completion of compilation, and since WATFOR can process more tham on
FORTRAN-IV job on a single run, the mechanics of running in WATFOR diffe;
from standard MTS FORTRAN-G. Only one MTS $RUN command is needed to invok:
both the translator and the final object program for several separat:
fortran programs. WATFOR reads its source cards from SCARDS and places th
program listing on SPRINT. The object program cannot be saved. WATFOI
recognizes certain control cards which are not MTS commands.

$COMPILE

The $COMPILE card must appear immediately before each job! to b
processed by WATFOR. The control character ($) must appear in colum!
one and must be followed immeaiately by the word "COMPILE". A list o
programmer-specified parameters may be included and must ‘be separate:
from the "$COMPILE" Dby at least one blank and from each other by
comma. They may not contain imbedded blanks. These optional parameter:
are as follows:

LINES The number of lines per page. Default is 59.
PAGES The number of pages of output allowed. Default is 100.
RUN "CHECK", "“NOCHECK", or "“FREE". Default is “CHECK",

(See section entitled, "Error Diagnostics and Runninc
Modes" for explication.)

KP "26" or "29". Derault is "29n, Specifies +type o1
keypunch used tor the source program.

Following the $COMPILE card comes the main program and its subrou-
tines. ©No $COMPILE cards may be inserted between the main program an¢
its subroutines, or between the subroutines themselves.

1A "job" is defined to be a main program, 1its subroutines and data.

MTS-580-0

12-1-67
Examples: $COMPILE PAGES=25,LINES=30,RUN=NOCHECK
$COMPILE PAGES=200,RUN=FREE
$DATA

The $DATA card signals end of source decks for a job. Upon detecting
$DATA, WATFOR enters the main program which it has translated. Cards
following the 3DATA control card are treated as data for the current
job. End of data is signalled by the next card with a "$" in column
one, or an end of file.

$STOP

A $STOP card will return control to MTS. An end of file on SCARDS
causes a "$STOP" card to generated.

This example indicates the type of deck set-up for running under WATFOR.

$SIGNON XXXX
$RUN *WATFOR
$COMPILE PAGES=150
{main program source deck}
{source deck for subrcutines}
$DATA
{data cards}
$COMPILE RUN=FREE
{source cards}
B$STOP
$SIGNOFF

ITI ERROR DIAGNOSTICS AND RUNNING MODES

WATFOR classifies compile-time errors under three types:

-EXTENSION A non-standard FORTRAN lanquage feature has been used.
(See section entitled, "Language Extensions.")

WARNING A non-fatal error has been detected and a forgiving
assumption has been made by the compiler; e.g. trunca-
tion of a name of more than six characters.

ERROR A serious error for which no reasonable corrective
action may be taken. Most serious errors generate
object code which will terminate execution of the
object program when the statement in error is reacheds

All execution errors are fatal and the job is terminated with a
subprogram traceback.

WATFOR will allow a program to go into execution even with some serious
source errors. To give the programmer control over this feature, WATFOR

WATFOR 767

768

MTS-580-0

12-1-67

provides three modes of running which may be specified on the $COMPILI]
card. These are CHECK, NOCHECK ana FREE.

CHECK means execute the translated program if no serious errors hav¢
been detected and check for all execution-time errors. This is the norma.
mode.

NOCHECK is the same as CHECK, but undefined variables?2 are ignored.
(That is, the object code necessary to perform checking for undefine«
variables is not generated.) This results in somewhat faster executiosm.

FREE is the same as CHECK, but execution is initiated in spite of an
serious source e€rrors.

MTS WATFOR has CHECK as default and an alternate mode may be specifie
on the $COMPILE card.

#ATFOR will generate a "core constant" for each variable and variabl«
array, depending on the mode of the variable. Each fixed point variable i:
preset to -21390621u44, and each real variable is preset to -0.4335017E-77.

IITI SUBROUTINE REFERENCES.

Any subroutines referenced in WATFOR mnust come from one of thres
possible sources: user supplied (1.e., with his source deck), the interna:
WATFOR function library, or a source library on disk. *WATLIB is the naum«
of the WATFOR library maintained by the Computing Center. The user ma
supply his own library, provided it is correctly formatted (see Sectiol
Iv). WATFOR searches for subroutines in the following order: user-
supplied, built-in function 1library, and pre-stored source library.
Logical unit 0 is used to referemce the pre-stored library.

In the following example, a user wishes to use *WATLIB.
$RUN *WATFOR; 5=*SQURCE* 6=*SINK* O=*WATLIB
IV WATFOR SUBROUTINE LIBRARY STRUCTURE.
A WATFOR subroutine library consists of a directory and the WATFOI
source <code for the subroutines. The structure of this 1library i:

identical to the structure of a macro library (See Section MIS-255).

A. The directory:

1. TRach entry in the directory contains the name of a subroutine i
columns 1-8 and the line-number of the first WATFOR statement of th

z2an "undefined variable"™ is a variable whose value has not been set at eithe
compile or execution time.

MTS-580-0

12-1-67

subroutine in columns 10-16. (Both the name and the line-number
must be left justified with trailing blanks.)

2. The line-number of the first entry in the directory must be 1.

3. The terminating entry in the directory is a string of eight zeros in
columns 1-8.

B. The subroutines:

1. The line-number of the first statement in the subroutine must be a
positive integer.

2. The first subroutine follows the last entry in the directory.

3. Each subroutine must be followed by a line with $TERM in positions 1
through 5.

v LANGUAGE EXTENSIONS

WATFOR provides a number of extensions to the standard FORTRAN-IV
language. Warning messages are generated in the source listing for all
such extensions so the programmer may eliminate them should he desire to
run his program through other compilers. Following is a list of extensions
currently available in WATFOR.

1. Free I/0. This allows the programmer to do input/output without
reference to a format statement. For example, the statement
PRINT,ALPHA,X will cause the values of ALPHA and X to be output on
sprint. Free 1I/0 has been implemented to function only on state-
ments of the forn

READ, list

PRINT, 1list

PUNCH, list
Input is done through SCARDS, punch through SPUNCH, and output
through SPRINT. The comma after the READ, PRINT, or PUNCH is
mandatory.

For input, data items must be separated by a comma and/or one or
more blanks or a card boundary.

A duplication factor may be given to avoid punching the same
constant may times. For example, if A were dimensioned 25, the
statement

READ,A

with data 25%2. would free-read 2 into all the elements of A.

WATFOR 769

MTS-580-0

12-1-67

Enough <cards are read to satisfy the requirements of the I/0 lis
and each free input statement starts a new card. The forms whic
may be used for input are:

Integer - signed or unsigned integer constant

Real - signed or unsigned real constant in F, E or
formats

Complex - 2 real numbers enclosed in parentheses and sepa
rated by a conna.

Logical - T or F

Data items must match in +type the variables they are being rea
into.

Free output uses fixed formats for the various types of variable:
and 1line overflow is automatically accounted for (since severa.
lines may result from one PRINT statement.) The formats used are:

Integer I12
Realxy E16.7
Real*s D28.16
Complex*8 2E16.7
Complex*16 2D28.16
Logical 18

No extension message is given for the use of Free I/0.
2. Multiple assignment statements of the form
V1 =V2 = V3 = ... = Vn = expression

are allowed, where the Vi «represent variable names or arral
elements. This is treated exactly like the sequence of statements

Vn = expression
Vn-1 = Vn

.

.

.
vVt = v2

770

MTS-580

12-1-67

10.

-0

Expressions may be placed in output statements. For example

WRITE (6,10) SIN(X)**2, A*X+ (B-C)/2.
The expression may not, however, start with a left parenthesis,
since the compiler uses this as a signal that an implied DO in the

I/0 1list 1is to be used. For example PRINT, (A+B)/2. would give an
error message.

Common blocks (including blank common) may be initialized imn other
than BLOCK DATA subprograms.

Implied DO's are allowed in DATA statements. For example:
DATA (A(I), I=1,5,2)/3%.25/

is valid. In general, DATA (A(I),I=L,M,N)/ constant list / is
valid, provided L, M and N have been initialized and at least

(L-N)
+ 1

N
constants are present in the constant 1list.

Common blocks may be given different lengths in different subpro-
grams, but the length of the longest block of any label is used.

Subscripts may be used on the right hand side of a function
definition. For example:

F(X) = A(I) * X + B(I)

Hollerith constants may be used in function references. In general,
Hollerith constants are treated by WATFOR as singly subscripted,
real arrays and are right-padded with blanks to a multiple of four,
if necessary. Thus, *'ABC' is stored as 'ABC '. No all-bits fence
is provided. Since WATFOR forces the user to have suabroutine
arguments agree in number, type, and mode, a Hollerith constant
passed to a subroutine must be passed to a dummy real vector.

Boundary violations due to EQUIVALENCE or COMMON are diagnosed at
compile time and corrected at execution time by moving the data to a
valid boundary, performing the arithmetic operation, and moving any
result back to the original boundary.

The character sequence FORMAT(is a reserved word when it appears as
the first seven characters of a statement. Thus

FORMAT (I1) = 10.

is illegal, whereas

WATFOR 771

772

MTS-580-0

12-1-67

11.

X = FORMAT(I1)
is valid.

The programmer may bypass floating point overflow and underflow
interrupts by calling a WATFOR built-in routine named TRAPS, which
functions as follows:

The statement

CALL TRAPS(I,Jd,K)
placed in the source program will allow "IM" fixed point overflows,
"J" exponent overflows, or "K" exponent underflows. If any of these

is exceeded execution is terminated. I, J, and K must all be given
and must be INTEGER*4 expressions.

VI LANGUAGE RESTRICTIONS.

A

number of restrictions are present in the language; anyone attempting

to use WATFOR should peruse the next section carefully.

WATFOR is strictly a FORTRAN compiler; no assembly language subpro-
grams may occur in a WATFOR job.

The compiler does not produce object decks.
NAMELIST and direct access I/0 features have not been implemented.

The debug 1langquage instructions as described in form TNL N28-2147
have not been implemented.

MTS-580-0

12-1-67

WATFOR COMPILER ERROR MESSAGES

ASSIGN STATEMENTS AND VARIABLES

AS-2 ATTEMPT TO REDEFINE AN ASSIGN&D VARIABLE IN AN ARITHMETIC STATEMENT
AsS-3 ASSIGNED VARIABLE USED IN AN ARITHMETIC EXPRESSION
AS-4 ASSIGNED VARIABLE CANNOT BE HALF WORD INTEGER
AS-5 ATTEMPT TO REDEFINE AN ASSIGN VARIABLE IN AN INPUT LIST
BLOCK DATA STATEMENTS
BD-0 EXECUTABLE STATEMENT IN BLOCK DATA SUBPROGRAM
BD-1 IMPROPER BLOCK DATA STATEMENT

CARD FORMAT AND CONTENTS
cCc-0 COLUMNS 1-5 OF CONTINUATION CARD NOT BLANK
PROBABLE CAUSE - STATEMENT PUNCHED TO LEFT OF COLUMN 7

cc-1 TOO MANY CONTINUATION CARDS (MAXIMUM OF 5)
CcCc-2 INVALID CHARACTER IN FORTRAN STATEMENT ®"2v INSERTED IN SOURCE
LISTING
cCc-3 FIRST CARD OF A PROGRAMME IS A CONTINUATION CARD
PROBABLE CAUSE -~ STATEMENT PUNCHED TO LEFT OF COLUMN 7

cCc-4 STATEMENT TOO LONG TO COMPILE (SCAN-STACK OVERFLOW)

cc-5 BLANK CARD ENCOUNTERED

CC-6 KEYPUNCH USED DIFFERS FROM KEYPUNCH SPECIFIED ON JOB CARD
cc-7 FIRST CHARACTER OF STATEMENT NOT ALPHABETIC

cc-8 INVALID CHARACTERS (S) CONCATENTATED WITH FORTRAN KEYWORD

cCc-9 INVALID CHARACTERS IN COL 1-5. STATEMENT NUMBER IGNQRED

PROBABLE CAUSE - STATEMENT PUNCHED TO LEFT OF COLUMN 7

COMMON
CHK-0 VARIABLE PREVIOUSLY PLACED IN COMMON

CcM-1 NAME IN CCMMON LIST PREVIOUSLY USED AS OTHER THAN VARIABLE

CM-2 SUBPROGRAMME PARAMETER APPEARS IN COMMON STATEMENT

CcH-3 INITIALIZING OF COMMON SHOULD BE DONE IN A BLOCK DATA SUBPROGRAMME
CHM-U4 ILLEGAL USE OF COMMON BLOCK OR NAMELIST NAME %

FORTRAN TYPE CONSTANTS
CN-0 MIXED REAL*4,REAL*8 IN COMPLEX CONSTANT
CN-1 INTEGER CONSTANT GREATER THAN 2,147,483,647 (23:1-7)
CN-3 EXPONENT ON REAL CONSTANT GREATER THAN 99
CN-4 REAL CONSTANT HAS MORE THAN 16 DIGITS, TRUNCATED T0 16 /
CN-5 INVALID HEXADECIMAL CONSTANT ’
CN-6 JLLEGAL USE OF DECIMAL POINT

CN-8 CONSTANT WITH E-TYPE EXPONENT HAS MORE THAN 7 DIGITS, ASSUME D-TYPE
CN-9 CONSTANT OR STATEMENT NUMBER GREATER THAN 99999

COMPILER ERRORS
CP-0 DETECTED IN PHASE RELOC

cP-1 DETECTED IN PHASE LINKR

WATFOR 773

774

MTS-580-0

12-1-67
CP-2 DUPLICATE PSEUDO STATEMENT NUMBERS
cp-4 DETECTED IN PHASE ARITH
DATA STATEMENT
DA-0 REPLICATION FACTOR GREATER THAN 32767, ASSUME 32767
DA-1 NON-CONSTANT IN DATA STATEMENT
DA-2 MORE VARIABLES THAN CONSTANTS IN DATA STATEMENT
DA-3 ATTEMPT TO INITIALIZE A SUBPROGRAMME PARAMETER IN A DATA STATEMENT
DA-4 NON-CONSTANT SUBSCRIPTS IN A DATA STATEMENT INVALID IN /360 FORTRAN
DA-5 EXTENDED DATA STATEMENT NOT IN /360 FORTRAN
DA-6 NON-AGREEMENT BETWEEN TYPE OF VARIABLE AND CONSTANT IN DATA
STATEMENT
DA-7 MORE CONSTANTS THAN VARIABLES IN DATA STATEMENT
DA-8 VARIABLE PREVIOUSLY INITIALIZED. LATEST VALUE USED
CHECK COMMON/EQUIVALENCED VARIABLES
DA-9 INITIALIZING BLANK COMMON NOT ALLOWED IN /360 FORTRAN
DA-A INVALID DELIMITER IN CONSTANT LIST PORTION OF DATA STATEMENT
DA-B TRUNCATION OF LITERAL CONSTANT HAS OCCURRED
DIMENSION STATEMENTS
DM-0 NO DIMENSIONS SPECIFIED FOR A VARIABLE IN A DIMENSION STATEMENT
DM-1 OPTIONAL LENGTH SPECIFICATION IN DIMENSION STATEMENT IS ILLEGAL
DM-2 INITIALIZATION IN DIMENSION STATEMENT IS ILLEGAL
DM-3 ATTEMPT TO RE-DIMENSION A VARIABLE
DM-4 ATTEMPT TO DIMENSION AN INITIALIZED VARIABLE
DO LOOPS
DO-0 ILLEGAL STATEMENT USED AS OBJECT OF DO
DO-1 ILLEGAL TRANSFER INTO THE RANGE OF A DO-LOOP
DO-2 OBJECT OF A DO STATEMENT HAS ALKEADY APPEARED
DO-3 IMPROPERLY NESTED DO-LOOPS
DC-4 ATTEMPT TO REDEFINE A DO-LOOP PARAMETER WITHIN RANGE OF LOOP
DO-5 INVALID DC-LOOP PARAMETER
D0-6 TOO MANY NESTED DO'S (MAXIAUM OF 20)
D0-7 DO-PARAMETER IS UNDEFINED OR OUTSIDE RANGE
DO-8 THIS DO LOOP WILL TERMINATE AFTER FIRST TIME THROUGH
DO-9 ATTEMPT TO REDEFINE A DO-LOOP PARAMETER IN AN INPUT LIST
EQUIVALENCE AND/OR COMMON
EC-0 TWO EQUIVALENCED VARIABLES APPEAR IN COMMON
EC-1 COMMON BLOCK HAS A DIFFERENT LENGTH THAN A PREVIOUS SUBPROGRAMME
EC-2 COMMON AND/OR EQUIVALENCE CAUSES INVALID ALIGNMENT. EXECUTION
SLOWED
REMEDY - PUT DOUBLE WORD QUANTITIES FIRST .
EC-3 EQUIVALENCE EXTENDS COMMON DOWNWARDS
EC-7 COMMON/EQUIVALENCE STATEMZNT DOES NOT PKRECEDE PREVIOUS USE OF
VARIABLE '
EC-8 VARIABLE USED WITH NON-CONSTANT SUBSCRIPT 1IN COMMON/EQUIVALENCE
LIST
EC-9 A NAME SUBSCRIPTED IN AN EQUIVALEZNCE STATEMENT WAS NOT DIMENSIONED

END STATEMENTS
EN-0 - NO END STATEMENT IN PROGRAMME -- END STATEMENT GENERATED

MTS-580-
12-1-67
EN-1
EN-2
EN-3

0.

END STATEMENT USED AS STOP STATEMENT AT EXECUTION
IMPROPER END STATEMENT
FIRST STATEMENT OF SUBPROGRAMME IS END STATEMENT

EQUAL SIGNS

EQ-6
EQ-8
EQ-A

ILLEGAL QUANTITY ON LEFT OF EQUALS SIGN
ILLEGAL USE OF EQUAL SIGN
MULTIPLE ASSIGNMENT STATEMENTS NOT IN /360 FORTRAN

EQUIVALENCE STATEMENTS

EV-0
EV-1
EV-2
EV-3
EV-4

ATTEMPT TO EQUIVALENCE A VARIABLE TO ITSELF

ATTEMPT TO EQUIVALENCE A SUBPROGRAMME PARAMETER

LESS THAN 2 MEMBERS IN AN EQUIVALENCE LIST

TOO MANY EQUIVALENCE LISTS (MAX = 255)

PREVIOUSLY EQUIVALENCED VARIABLE RE-EQUIVALENCED INCORRECTLY

POWERS AND EXPONENTIATION

EX-0
EX-2
EX-3
EX-6
EX-7
EX-8
EX-9

ILLEGAL COMPLEX EXPONENTIATION
I**J WHERE I=J=0

I**J WHERE I=0,J3 < 0

0.0**xY WHERE Y //G 0.0

0.0%%J WHERE J=0

0.0%%J WHERE J < 0

X**Y WHERE X < 0.0, Y # 0.0

ENTRY STATEMENT

EY-0
EY-1
EY-2

EY-3
EY-4
EY-5
EY-6

FORMAT

SUBPROGRAMME NAME IN ENTRY STATEMENT PREVIOUSLY DEFINED

PREVIOUS DEFINITION OF FUNCTION NAME IN AN ENTRY IS INCORRECT

USE OF SUBPROGRAMME PARAMETER INCONSISTENT WITH PREVIOUS ENTRY
POINT

ARGUMENT NAME HAS APPEARED IN AN EXECUTABLE STATEMENT BUT WAS NOT A
SUBPROGRAMME PARAMETER

ENTRY STATEMENT NOT PERMITTED IN MAIN PROGRAMME

ENTRY POINT INVALID INSIDE A DO-LOOP

VARIABLE WAS NOT PREVIOUSLY USED AS A PARAMETER - PARAMETER ASSUMED

SOME FORMAT ERROR MESSAGES GIVE CHARACTERS IN WHICH ERROR WAS DETECTED

FM-0
FH-2
FM-5
FM-6
FM-7

FT-0
FT-1
FT-2
FT-3
FT-4
FT-5
FT-6
FT-7
FT-8

INVALID CHARACTER IN INPUT DATA

NO STATEMENT NUMBER ON A FORMAT STATEMENT
FORMAT SPECIFICATION AND DATA TYPE DO NOT MATCH
INCORRECT SEQUENCE OF CHARACTERS IN INPUT DATA
NON TERMINATING FORMAT

FIRST CHARACTER OF VARIABLE FORMAT NOT A LEFT PARENTHESIS

INVALID CHARACTER ENCOUNTERED IN FORMAT

INVALID FORM FOLLOWING A SPECIFICATION

INVALID FIELD OR GROUP COUNT

A FIELD OR GROUP COUNT GREATER THAN 255

NO CLOSING PARENTHESIS ON VARIABLE FORMAT

NO CLOSING QUOTE IN A HOLLERITH FIELD

INVALID USE OF COMMA

INSUFFICIENT SPACE TO COMPILE A FORMAT STATEMENT (SCAN-STACK

WATFOR 775

776

MTS-580-
12-1-67
FT-9

FT-3
FT-B
FT-C
FT-D
FT-E
FT-F

0

OVERFLOW)

INVALID USE OF P SPECIFICATION

CHARACTER FOLLOWS CLOSING RIGHT PARENTHESIS
INVALID USE OF PERIOD(.)

MORE THAN THREE LEVELS OF PARENTHESES
INVALID CHARACTER BEFORE A RIGHT PARENTHESIS
MISSING OR ZERO LENGTH HOLLERITH ENCOUNTERED
NO CLOSING RIGHT PARENTHESIS

FUNCTIONS AND SUBROUTINES

FN-0
FN-3
FN-4

N-
N-
N..
N-

t b g o
[e RN o 6}

NO ARGUMENTS IN A FUNCTION STATEMENT
REPEATED ARGUMENT IN SUBPROGRAM OR STATEMENT FUNCTION DEFINITION
SUBSCRIPTS ON RIGHT HAND SIDE OF STATEMENT FUNCTION

PROBABLE CAUSE - VARIABLE TO LEFT OF = NOT DIMENSIONED
MULTIPLE RETURNS ARE INVALID IN FUNCTION SUBPROGRAMMES
JLLEGAL LENGTH MODIFIER IN TYPE FUNCTION STATEMENT
INVALID ARGUMENT IN ARITHMETIC OR LOGICAL STATEMENT FUNCTION
ARGUMENT OF SUBPROGRAMME IS SAME AS SUBPROGRAMME NAME

GO TO STATEMENTS

GO-0
GO-1
G0-2
GO-3
GO-4

STATEMENT TRANSFERS TO ITSELF OR A NON-EXECUTABLE STATEMENT
INVALID TRANSFER TO THIS STATEMENT

INDEX OF COMPUTED 'GO TO' IS NEGATIVE OR UNDEFINED

ERROR IN VARIABLE OF 'GO TO' STATEMENT

INDEX OF ASSIGNED 'GO TO' IS UNDEFINED OR NOT IN RANGE

HOLLERITH CONSTANTS

HO0-0
HO-1
HO-2
H0-3
HO-4

ZERO LENGTH SPECIFIED FOR H-TYPE HOLLERITH

ZERO LENGTH QUOTE-TYPE HOLLERITH

NO CLOSING QUOTE OR NEXT CARD NOT CONTINUATION CARD
HOLLERITH CONSTANT SHOULD APPEAR ONLY IN CALL STATEMENT
UNEXPECTED HOLLERITH OR STATEMENT NUMBER CONSTANT

IF STATEMENTS (ARITHMETIC AND LOGICAL)

IF-0
IF-3
IF-4

STATEMENT INVALID AFTER A LOGICAL IF
ARITHMETIC OR INVALID EXPRESSION IN LOGICAL IF
LOGICAL, CCMPLEX, OR INVALID EXPRESSION IN ARITHMETIC IF

IMPLICIT STATEMENT

IM-0 INVALID MODE SPECIFIED IN AN IMPLICIT STATEMENT
In-1 INVALID LENGTH SPECIFIED IN AN IMPLICIT OR TYPE STATEMENT
IM-2 ILLEGAL APPEARANCE OF § IN A CHARACTER RANGE
IM-3 ITMPROPER ALPHABETIC SEQUENCE iIN CHARACTER RANGE
IM-4 SPECIFICATION MUST BE SINGLE ALPHABETIC CHARACTER, 1ST CHARACTER
USED
IM-5 IMPLICIT STATEMENT DOES NOT PRECEDE OTHER SPECIFICATION STATEMENTS
IM-€ ATTEMPT TO ESTABLISH THE TYPE OF A CHARACTER MORE THAN ONCE
ImM-7 /360 FORTRAN ALLOWS ONE IMPLICIT STATEMENT PER PROGRAMME
M-8 INVALID ELEMENT IN IMPLICIT STATEMENT
IM-9 INVALID DELIMITER IN IMPLICIT STATEMENT
INPUT/OUTPUT
10-0 MISSING COMMA IN I/O LIST OF I/0O OR DATA STATEMENT

MTS-580-

12-1-67

I0-2
I0-3
I0-6
I0-8
I0-9
I0-A
I0-B
I0-C
I0o-D
J0—-E
TO-F
I0-G
Io-H
I0-J
I0-K

0

STATEMENT NUMBER IN I/O STATEMENT NOT A FORMAT STATEMENT NUMBER
BUFFER OVERFLOW - LINE TOO LONG FOR DEVICE

VARIABLE FORMAT NOT AN ARRAY NAME

INVALID ELEMENT IN INPUT LIST OR DATA LIST

TYPE OF VARIABLE UNIT NOT INTEGER IN I/0 STATEMENTS

HALF-WORD INTEGER VARIABLE USED AS UNIT IN I/O STATEMENTS
ASSIGNED INTEGER VARIABLE USED AS UNIT IN I/O STATEMENTS
INVALID ELEMENT IN AN OUTPUT LIST

MISSING OR INVALID UNIT IN I/0 STATEMENT

MISSING OR INVALID FORMAT IN READ/WRITE STATEMENT

INVALID DELIMITER IN SPECIFICATION PART OF I/0 STATEMENT
MISSING STATEMENT NUMBER AFTER END= OR ERR=

/360 FORTRAN DOESN'T ALLOW END/ERR RETURNS IN WRITE STATEMENTS
INVALID DELIMITER IN I/O LIST

INVALID DELIMITER IN STOP, PAUSE, DATA, OR TAPE CONTROL STATEMENT

JOB CONTROL CARDS

JB-1
JB-2
JB-3

COMPILE CARD ENCOUNTERED DURING COMPILATION
INVALID CPTION(S) SPECIFIED ON COMPILE CARD
UNEXPECTED CONTROL CARD ENCOUNTERED DURING COMPILATION

JOB TERMINATION

K0-0
K0-1
KO-2
K0o-3
Ko-14
KO0-5
K0-6
Ko-7

LOGICAL
LG-2

LIBRARY
LI-0
LI-1
LI-2
LI-3
LI-4
LI-5
LI-6
LI-7
LI-8
LI-9
LI-A
LI-B
LI-C
LI-D
LI-E
LI-F
LI-G
LI-H

JCB TERMINATED IN EXECUTION BECAUSE OF COMPILE TIME ERROR
FIXED-POINT DIVISION BY ZERO

FLOATING-POINT DIVISION BY ZERO

TOO MANY EXPONENT OVERFLOWS

TOO MANY EXPONENT UNDERFLOWS

TOO MANY FIXED-POINT OVERFLOWS

JOB TIME EXCEEDED

COMPILER ERROR - INTERRUPTION AT EXECUTION TIME, RETURN TO SYSTEM

OPERATION
.NOT. USED AS A BINARY OPERATOR

ROUTINES
ARGUMENT OUT OF RANGE DGAMMA OR GAMMA. (1.382E-76 < X < 57.57)
ABSOLUTE VALUE OF ARGUMENT > 174.673, SINH,COSH,DSINH,DCOSH
SENSE LIGHT OTHER THAN 0,1,2,3,4 FOR SLITE OR 1,2,3,4 FOR SLITET
REAL PORTION OF ARGUMENT > 174.673, CEXP OR CDEXP

ABS (AIMAG(Z)) > 174.673 FOR CSIN, CCOS, CDSIN OR CDCOS OF Z

ABS (REAL(Z)) 2 3.537E15 FOR CSIN, CCOS, CDSIN OR CDCOS OF Z%

ABS (AIMAG(Z)) 2 3.537E15 FOR CEXP OR CDEXP OF %

ARGUMENT > 174.673, EXP OR DEXP

ARGUMENT IS ZERO, CLOG, CLOG10, CDLOG OR CDLG10

ARGUMENT IS NEGATIVE OR ZERO, ALOG, ALOG10, DLOG OR DLOG10
ABS(X) 2> 3.537E15 FOR SIN, COS, DSIN OR DCOS OF X

ABSOLUTE VALUE OF ARGUMENT > 1, FOR ARSIN, ARCOS, DARSIN OR DARCOS
ARGUMENT IS NEGATIVE, SQRT OR DSQRT

BOTH ARGUMENT OF DATAN2 OR ATAN2 ARE ZERO

ARGUMENT TOO CLOSE TO A SINGULARITY, TAN, COTAN, DTAN OR DCOTAN
ARGUMENT OUT OF RANGE DLGAMMA OR ALGAMA. (0.0 < X < 4.29E73)
ABSOLUTE VALUE OF ARGUMENT > 3.537E15, TAN, COTAN, DTAN, DCOTAN
FEWER THAN TWO ARGUMENTS FOR ONE OF MINO, MIN1, AMINO, ETC.

WATFOR 7177

778

NTS-580-0

12-1-67
MIXED MODE
MD-2 RELATIONAL OPERATOR HAS A LOGICAL OPERAND
MD-3 RELATIONAL OPERATOR HAS A COMPLEX OPERAND
MD-4 MIXED MODE - LOGICAL WITH ARITHMETIC
MD-6 WARNING - SUBSCRIPT IS COMPLEX
MEMORY OVERFLOW »
MO-0 SYMBOL TABLE OVERFLOWS OBJECT CODE. SOURCE ERROR CHECKING CONTIN-
UES
Mo-1 INSUFFICIENT MEMORY TO ASSIGN ARRAY STORAGE. JOB ABANDONED
Mo-2 SYMBOL TABLE OVERFLOWS COMPILER, JOB ABANDONED
M0-3 DATA AREA OF SUBPROGRAMME TOO LARGE —- SEGMENT SUBPROGRAMME
PARENTHESES
PC-0 UNMATCHED PARENTHESIS
PC-1 INVALID PARENTHESIS NESTING IN I/0 LIST
PAUSE, STOP STATEMENTS
psS-0 STOP WITH OPERATOR MESSAGE NOT ALLOWED. SIMPLE STOP ASSUMED
Ps-1 PAUSE WITH OPERATOR MESSAGE NOT ALLOWED. TREATED AS CONTINUE
RETURN STATEMENT
RE-0 FIRST CARD OF SUBPROGRAM IS A RETURN STATEMENT
RE-1 RETURN I, WHERE I IS ZERO, NEGATIVE, OR TOO LARGE
RE-2 MULTIPLE RETURN NOT VALID IN FUNCTION SUBPROGRAMME
RE-3 VARIABLE IN MULTIPLE RETURN IS NOT A SIMPLE INTEGER VARIABLE
RE-4 MULTIPLE RETURN NOT VALID IN MAIN PROGRAMME

ARITHMETIC AND LOGICAL STATEMENT FUNCTIONS
PROBABLE CAUSE OF SF ERRORS - VARIABLE ON LEFT OF = WAS NOT DIMENSIONED

SF-1 PREVIOUSLY REFERENCED STATEMENT NUMBER ON STATEMENT FUNCTION
SF-2 STATEMENT FUNCTION IS THE OBJECT OF A LOGICAL IF STATEMENT
SF-3 RECURSIVE STATEMENT FUNCTION, NAME APPEARS ON BOTH SIDES OF =
SUBPROGRAMMES
SR-0 MISSING SUBPROGRAMME
SR-2 SUBPROGRAMME ASSIGNED DIFFERENT MODES IN DIFFERENT PROGRAMME SEG-
MENTS
SR-4 INVALID TYPE OF ARGUMENT IN SUBPROGRAMME REFERENCE
SR-5 SUBPROGRAM ATTEMPTS TO REDEFINE A CONSTANT, TEMPORARY OR DO
PARAMETER
SR-6 ATTEMPT TO USE SUBPROGRAMME RECUKSIVELY
SR-7 WRONG NUMBER OF ARGUMENTS IN SUBPROGRAMME REFERENCE
SR-8 SUBPROGRAM NAME PREVIOUSLY DEFINED -- FIRST REFERENCE USED
SR-9 NO MAIN PROGRAM
SR-A ILLEGAL OR BLANK SUBPROGRAMME NAME
SUBSCRIPTS
S5-0 ZERO SUBSCRIPT OR DIMENSION NOT ALLOWED
Ss-1 SUBSCRIPT OUT OF RANGE
Ss-2 INVALID VARIABLE OR NAME USED FOR DIMENSION

STATEMENTS AND STATEMENT NUMBERS

MTS-580-

12-1-67

ST-0
sST-1
ST-3
ST-4
ST-5
sT-7

ST-8
ST-9
ST-2

0

MISSING STATEMENT NUMBER

STATEMENT NUMBER GREATER THAN 99999

MULTIPLY-DEFINED STATEMENT NUMBER

NO STATEMENT NUMBER ON STATEMENT FOLLOWING TRANSFER STATEMENT
UNDECODEABLE STATEMENT

STATEMENT

STATEMENT

NUMBER

SPECIFIED

IN A TRANSFER IS A NON-EXECUTABLE

STATEMENT NUMBER CONSTANT MUST BE IN A CALL STATEMENT
STATEMENT SPECIFIED IN A TRANSFER STATEMENT IS A FORMAT STATEMENT
MISSING FORMAT STATEMENT

SUBSCRIPTED VARIABLES
WRONG NUMBER OF SUBSCRIPTS

ARRAY NAME OR SUBPROGRAMME NAME USED INCORRECTLY WITHOUT LIST
MORE THAN 7 DIMENSIONS NOT ALLOWED

Sv-0
Sv-1
SvV-2
SvV-3
Sv-4
SvV-5

DIMENSION TOO LARGE

VARIABLE WITH VARIABLE DIMENSIONS IS NOT A SUBPROGRAMME PARAMETER
VARIABLE DIMENSION NEITHER SIMPLE INTEGER VARIABLE NOR S/P PARAME-

TER

SYNTAX ERRORS

FOR SYMBOL,NONE FOUND

FOR CONSTANT, NONE FOUND

FOR SYMBOL OR CONSTANT, NONE FOUND

FOR STATEMENT NUMBER, NONE FOUND

FOR SIMPLE INTEGER VARIABLE, NONE FOUND

ILLEGAL SEQUENCE OF OPERATORS IN EXPRESSION

CONTROL CARD ENCOUNTERED ON SCARDS DURING EXECUTION
PROBABLE CAUSE - MISSING DATA OR IMPROPER FORMAT STATEMENTS

ILLEGAL DATA SET REFERENCE NUMBER.

NOT SPECIFIED ON "$RUN"

REWIND, ENDFILE, BACKSPACE REFERENCES UNIT SCARDS, SPRINT, SPUNCH
ATTEMPT TO READ ON UNIT SCARDS AFTER IT HAS HAD END~OF~-FILE

ZERO, OR GREATER THAN 9

ATTEMPT TO DO SEQUENTIAL I/O ON A DIRECT ACCESS FILE
WRITE REFERENCES SCARDS OR READ REFERENCES SPRINT OR SPUNCH

SIMPLE VARIABLE
EQUIVALENCED, COMMONED,
ARRAY MEMBER

ARRAY NAME WHICH WAS USED AS A DUMMY PARAMETER
SUBPROGRAMME NAME USED AS DUMMY PARAMETER
ARGUMENT OF THE LIBRARY SUBPROGRAMME NAMED

OR DUMMY PARAMETER

SX-0 MISSING OPERATOR
SX-1 SYNTAX ERROR-SEARCHING
SX-2 SYNTAX ERROR-SEARCHING
SX-3 SYNTAX ERROR-SEARCHING
SX-4 SYNTAX ERROR-SEARCHING
SX-5 SYNTAX ERROR-SEARCHING
SX-C
SX-D MISSING OPERAND OR OPERATOR
I/0 OPERATIONS
UN-0
UN-1 END OF FILE ENCOUNTERED
UN-2 I/0 ERROR
UN-3
UN-4
UN-5
UN-6 UNIT NUMBER IS NEGATIVE,
UN-7 TOO MANY PAGES
UN-8
UN-9
UNDEFINED VARIABLES
uv-0 UNDEFINED VARIABLE
Ugv-1 UNDEFINED VARIABLE
UN-2 UNDEF INED VARIABLE
gv-3 UNDEF INED VARIABLE
gv-4 UNDEFINED VARIABLE
gv-5 UNDEFINED VARIABLE
uv-6

VARIABLE FORMAT CONTAINS UNDEFINED CHARACTER(S)

VARIABLE NAMES

WATFOR 779

780

MTS-580-
12-1-67
VA-0
va-1

VA-2
VA-3
VA-4
VA-6
VaA-8
VaA-9
VA-A
VA-B
VA-C

EXTERNAL

XT-0
XT-1
XT-2

0

ATTEMPT

TO REDEFINE TYPE OF A VARIABLE NAME

SUBROUTINE NAME OR COMMON BLOCK NAME USED INCORRECTLY
VARIABLE NAME LCNGER THAN SIX CHARACTERS. TRUNCATED TO SIX

ATTEMPT
ATTEMPT
ILLEGAL
ATTEMPT
ATTEMPT
ATTEMPT

TOQ REDEFINE THE MODE OF A VARIABLE NAME

T0 REDEFINE THE TYPE OF A VARIABLE NAME

USE OF A SUBROUTINE NAME

TO USE A PREVIOUSLY DEFINED NAME AS FUNCTION OR ARRAY

TQ0 USE A PREVIOUSLY DEFINED NAME AS A STATEMENT FUNCTION
TQ USE A PREVIOUSLY DEFINED NAME AS A SUBPROGRAMME NAME

NAME USED AS A COMMON BLOCK PREVIOUSLY USED AS A SUBPROGRAM NAME
NAME USED AS SUBPROGRAMME PREVIOUSLY USED AS A COMMON BLOCK NAME

STATEMENT

INVALID
INVALID

ELEMENT IN EXTERNAL LIST
DELIMITER IN EXTERNAL STATEMENT

SUBPROGRAMME PREVIOUSLY EXTERNALLED

MTS-590-0

12-1-67

8 AS S

PDP-8 Assembler 781

782

MTS-590-0

12-1-67

8ASS_--_PDP-8 ASSEMBLER

INTRODUCTION

The following sections describe the PDP-8 Assembler (8ASS), which is a
collection of programs written mostly in FORTRAN IV (G) and operating under
the Michigan Terminal System (MTS) on the IBM 360/67. 8ASS assembles
programs for the Digital Equipment Company (DEC) PDP-5 and PDP-8 computers.
Once a program has been assembled, it may be punched on cards, saved in a
file, or transmitted through the Data Concentrator over data lines. It is
also possible to obtain binary paper tapes by use of the Data Concentrator.

The reader is assumed to be familiar with the reference manual for the
PDP-8 available from DEC. ("Programmed Data Processor-8 Users Handbook,"
(DIGITAL F-85), Ligital Equipment Corporation, Maynard, Mass., 1964.) For
the description and use of assemblers in general the reader is referred to
the description of the PAL-III assembler for the PDP-8 available from DEC
("PAL-IIT Symbolic Assembler Programming Manual," (DIGITAL 8/3/S), Digital
Equipment Corporation, Maynard, Mass., 1965). 8ASS follows the PAL-III
operation code and addressing conventions. The input format and program
listing conventions of 8ASS are slightly different from those PAL-III,
however, since 8ASS is organized around a line format while PAL-III is
organized around a paper tape format.

ASSEMBLY PROCESSING

An assembler 1is a vehicle tfor the transformation of symbolic source
programs into the internal representation of machine instructions and data.
Fach PDP-8 machine instruction occupies exactly one location in its memory.
The assembly language program is a sequence of input lines to the assembler
which specifies these instructions in symbolic form. The assembler reads
these lines and constructs, or assembles, corresponding PDP-8 binary words.

Symbolic names for the PDP-8 memory locations are defined by the
appearance of a name at the beginning of an input line. Symbolic names for
operation codes appear next, sometimes folilowed by operands. The assembler
lists a value corresponding to the value of the operator, augmented by the
value of the operand. Each such value is associated with a PDP-8 address
by means of the instruction location counter (ILC). The TILC coantains a
value which is incremented modulo 4096 arter each PDP-8 word is generated.
Normally, therefore, assembled words are placed in sequentially ascending
locations in PDP-8 memory.

MTS-590-0 .

12-1-67

Some input lines do not generate PDP-8 words, but activate internal
procedures in 8ASS. Several names which may appear in the operand are not
operation 'codes but procedure calls. For example the procedure call ORG
resets the value of the ILC, alliowing the programmer to control the
starting location of a block of words.

The symbolic information on each assembly language line is grouped into
four fields: the 1label, operation code (opcode), operand and comment
fields. These fields are delimited by blanks.

The label field starts at character 1 and is terminated by the first
blank. 1If it is non-empty it may contain a name of up to eight characters,
beginning with a letter. Any variable used in the program must be defined
by its appearance in the 1label field, and the variables used with some
procedure calls must be predefined, that is, defined at some point before
the procedure call is processed.

The opcode field is the expression starting with the first non-blank
character after the label field, and ending with the next blank. Any
variable appearing in the opcode field must be an operation code.

If the operation code is a microinstruction or a self-defining expres-
sion, the operand field is empty. Otherwise, the operand field starts with
the first non-blank character after the opcode field, and ends with the
next blank. Any variable appearing in the operand field must be a label.

The three fields discussed above may extend to the 72nd character. The
comment field starts at the end of the operand field and may extend through
the 80th character. It has no effect on the binary output of the
assembler--it is merely copied onto the assembly listing—--but is useful to
the programmer as a method of documentation. If the first character of the
source line is an asterisk (*), the label, opcode and operand field are all
empty and the card is just copied onto the output listing.

There are two kinds of output from the assembler, a binary "deck" and an
assembly listing. The former is a list of the machine program in a forn
appropriate for loading into the PDP-8 computer. The latter, the listing,
not only provides the programmer and operator of the PDP-8 with what can be
an invaluable guide to the operation of the program, but also indicates
some types of possible programming errors.

8ASS IN MTS

The PDP-8 Assembler is available as a library file in the Michigan
Terminal System (MTS). Its use is invoked by the $RUN command, with the
following logical devices specified:

PDP-8 Assembler 783

784

MTS-590-0

12-1-67

1 The assembly language input lines.
2 1A table of opcodes (the library file *80PS).
6 A tape or file (rewindable) tor intermediate storage.
8 The assembly listing (output).
SPUNCH The binary output (card format).
Example:
$RUN *8ASS;1=%SOURCE* 2=80PS 6=-F 8=%SINK* SPUNCH=*PUNCH*

Due to internal size 1limitations, the size of program which can be
assenbled is limited. 1If a program defines S symbols and refers to symbols
R times (including uses of operation codes and procedure calls), S and R
must satisfy:

10(s + 65) + 2R < M

For *8ASS , M=30,000.

NAMES AND EXPRESSIONS

A program name is a symbol which stands for a numeric value. It may
stand for a self-defining value, in which case it is called a constant, or
it may stand for a value which is defined elsewhere, in which case it is
called a variable. A variable may be an opcode, in which case it is
defined from the input table *80PS (see previous section) or by use of the
procedure calls OPD or OPDM, or it may be label, in which case it is
defined by its appearance in the label field of some input line. If this
line corresponds to a PDP-8 memory location, the defined value of the label
is the address of the location; if the operation field of the lime is the
procedure call EQU, the defined value of the label is the value of the
expression in the operand field.

The special program name, *, is self-defining. Its value is the current
contents of the ILC (the value "here").

The following EBCDIC characters may be used in the formation of names
and expressions:

Alphabetic upper case letters A-Z

Numeric digits 0-9

MTS-590-0

12-1-67
Operators + - (plus, minus)
Delimiters expression field delimiter (blank); comment field deli-

miter ; (seimicolon)
Literal prefix =

Program names must be less than nine characters long. Variables may
contain alphabetic and numeric characters, but must begin with a letter.
Constants must start with a digit and may contain only digits.

An expression is a sequence of program names, separated by the operators
+ and -, and is delimited by blanks. In the opcode field, any variables
must be opcodes or procedure calls; in the operand field, any variables
must be labels. The assembler evaluates the expression from left to right
by combining the values of the names according to the operators. In the
opcode field, and in the operand field of an OPD or OPDM line, the operator
+ combines values by the logical OR operation. In the operand field of
other procedure calls and memory-reference ianstructions, the values are
combined arithmetically (+ for addition, — for 2's complement subtraction)
modulo 4096.

An operand-field expression may be prefixed with an equal sign (=) which
designates an occurrence of a literal. The value of the expression itself
is termed the value of the literal, and the location to which it is
assigned is termed its address. Ail such literal occurrences are saved in
a special pool during assembler processing. When a LIT procedure call is
encountered, this pool is assigned machine locations while multiple
occurrences of the same value are suppressed. All literal occurrences up
to this point are replaced with addresses which point to the assigned
value. All symbols used in a literal expression must be predefined.

When an expression is evaluated in the operand field of a memory-
reference instruction, a check is made to determine whether +the value of
the expression is within the current memory page. If it is then the
same-page bit of the assembled instruction is set to one. If a memory-
reference instruction opcode expression is immediately followed by an
asterisk *, then the indirect bit of the assembled instruction is set to
one. The I and Z conventions of PAL-III are invalid in 8ASS.

INSTRUCTIONS AND PROCEDURE CALLS

A standard set of PDP-8 instruction codes is defined into the *8ASS
internal symbol table from an external table such as *80PS. The opcodes in
the list *80PS include the memory-reference instructions; microinstructions
(6roup 1, and Group 2 operate instructions, the extended arithmetic (EAE)
instructions, the Teletype IOT instructions); and a number or procedure

PDP-8 Assembler 785

786

MTS-590-0

12-1-67

cails. The machine instruction codes and their values are 1listed in
Appendix I.

Combined microinstructions can be written as amn opcode expression of
microinstructions separated by + operators. This has the effect of forming
the inclusive OR of the respective values. New instructions can be defined
with the OPD and OPDM procedure calls.

Procedure calls are opcodes which do not represent PDP-8 machine
instruction, but are signals to the assembler to invoke special procedures.
The procedure calls (also know as pseudo-operations, or pseudo-ops) of
*8ASS and the effects of their procedures are summarized below.

DC - defined constant

Define the (optional) symbol in the label field to have a value equal to
the current contents of . the instruction location counter (ILC). Then
substitute the value of the expression in the operand field itself for the
memory location signified by the current ILC. (The DC pseudo-op provides
the facility for defining decimal, octal, or address constants in a fashion
paralleling the PAL-III custom of placing the name of the constant itself
in the operation field.)

DECMOD - define constant conversion mode decimal

Set constant conversion to the decimal radix (normal mode is octal).
May be used alternately with the OCTMOD procedure call any number of times
in a program. Note - If any constant is followed by one of the letters K
or D, then that constant is assumed of radix eight or temn, respectively,
regardless of the current mode.

DS - define storage

Define the (optional) symbol in the label field to have a value equal to
the current instruction location counter (ILC). Then add the value of the
expression (predefined) in the operand field to the ILC.

END - end assembly

{Identical to the $ function of PAL-IiI) Define the (optional) symbol in
the label field to have a value equal to the current instruction location
counter (ILC). If the operand expression is non-null, then its value will
be punched on a binary transfer card as the starting address of the
progranm.

EQU -~ symbolic equivalence

MTS-590-0

12-1-67

Define the name in the label field to have a value equal to that of the
expression (predefined) in the operand field. (Similar to the = function
of PAL-III)

LIT - begin literal pool

Begin assignment of literals collected so far in the program.

OCTMOD - define constant conversion mode

Set constant conversion to the octal radix (normal mode). May be used
alternately with the DECMOD procedure call any number of times in a
progranm.

OPD - operation code definition

Define the name in the label field to designate an imnstruction which has
an operation code equal to the value of the expression (predefined) in the

operand field. (Note - The operation and symbol tables of the 8ASS
assembler are disjoint so that name conflict can be avoided. In the
PAL-III £ assembler this is not the case - operation names used in the

operand fields must be disjoint.)

OPDM - memory-reference instruction code definition

Operates identically to the OPD pseudo-op except that the operation code
is presumed to designate a memory-referenced instruction.
ORG - reset instruction location counter

Reset instruction location counter (ILC) to the value of the expression

(predefined) in the operand field. (Identical to the * function in
PAL-IIT)

DEBUGGING AIDS

When the assembler can detect an irresolvable ambiguity or
inconsistency, it prints error comments on the assembly listing. Typical
conments and their meanings are listed below.

WMULTIPLY DEFINED SYMBOL nnnnnnnn xxxx VARIABLEY or "...OPCODE". The
name nnnnnnnn was defined more than once as a variable by its appearance in

PDP-8 Assembler 787

788

MTS-590-0

12-1-67

the label field and/or by the EQU procedure call, or more tham once as an
opcode by its appearance in the standard instruction table (*80PS) and/or
by the procedure call OPD or OPDM. In any case, the line is printed, with
xxxx equal to the defined value, once for each definition. These comments
are printed before the assembly listing; the four listed below are printed
just before the line to which they apply. The value punched and listed for
the appropriate ILC value is probably wrong.

"UNDEFINED PROGRAM NAME." During the evaluation of an expression, a
name was encountered which was not defined in the program. Note that names
in some procedure calls, and in literal expressions, must be predefined.

"OFF-PAGE REFERENCE." The value of the operand expression of a
memory-reference instruction is neither an address on page 0 nor an address
on the current page.

"INVALID OPERATOR EXPRESSION." The expression in the operator field is
invalid. For example, there may be a label in the expression.

"OPERATOR-OPERAND CONFLICT." The opcodes given are incompatible, or the
operator and operand are. For example, the invalid - operator expression
"OSR+RAR" has a group 2 and a group 1 opcode.

A cross-reference table is printed at the end of the assembly. It lists
each variable (label or opcode) used by the program, along with its value
and the contents of the ILC at each time it was used.

A summary of the number of error comments printed, the number of source
lines processed, the number of symbols defined (including the standard
table) , the number of references to defined symbols, and the number of card
images produced follows the cross-reference table.

OBJECT DECKS

€ASS produces column binary cara images suitable for punching and/or
loading into a PDP-8. Text cards contain numbers to be loaded into PDP-8
memory. A transfer card is produced by the END procedure call, if its
operand field is nonempty. The transfer card is usually used to specify a
starting address for the PDP-8 program. The format of a text card is, by
colunn:

col. 1 a 6-7-9 punch, indicating a text card

col. 2 N , the number of contiguous PDP-8 words specified by this
card (N<68)

col. 3. the address of the first word in the block

MTS-590-0

12-1-617
col. 4 consecutive PDP-8 word values
col. 3+XN same as above
col. U+N a checksum, the arithmetic sum of columns 2 through 3+N,

modulo 4096.

The format of a transfer card is:

col. 1 a 5-7-9 punch, indicating a transfer card
col. 2 0

col. 3 the starting address of the program

col. 4 a checksun

PDP-8 Assembler 789

MTS-590-0

12-1-67

APPENDIX 1: 8ASS STANDARD OPCODES

The following opcodes are defined as standard from the table *80PS. The
codes are octal.
I. Memory Reference Instructiomns

These opcodes may carry the indirect reference modifier, *, and take an
operand in which any name must be a label.

NAME CODE
AND 0000
DCA 3000
IsZ 2000
JMP 5000
JMS 4000
TAD 1000

IT. Microinstructions.

A. Input-Output Instructions (IOT'S)

NAME CODE
IOF 6002
ION 6001
I0T 6000
KCC 6032
KRB 6036
KRS 6034
KSF 6031
TCF 6042
TLS 6046
TSF 6041

B. Group I Operate Instructions

NAME CODE
CIA 7041
CLA 7200
CLL 7100
CMA 7020
GLK 7204
IAC 7001
NOP 7000
OPR 7000
RAL 7004
RAR 7010
RTL 7006

790

RTR
STA
STL

7012
7240
7120

Group II Operate Instruction

NAME
CLA
HLT
LAS
OSR
SKP
SNL
SMA
SNA
SPA
SZA
SZL

CODE
7600
7402
7604
7404
7410
7420
7500
7450
7510
T440

7430

Extended Arithmetic Element

NAME
ASR
CAM
CLA
DVI
LSR
MQA
MQL
MUY
NMI
sca
SHL

CODE
7415
7621
7601
7407
7417
7501
7421
7405
7411
7441
7413

(wvhen combined with other EAE'S)

791

Indexed Words and Phrases

¥AFD*
ASA ¢ o ¢ .« o .

assembler . . .

ASCII

attention . . .

BAS ¢« ¢« « .« .« .

batch

BCD « -« « . .+ &

binary

*¥*CATALOG . . .

CC .« &« o « « &

command line .

COMPL

concatenation .

conversational

conversion . .

028,088
003,232

003,005,023,083,136,197,208,233
234,235,247,263,276,285,313,314
315,322,338,344,501,503,504,505
506,507,508,509,516,521,522,542
544,548,719,782,783,785,786,787

053,054,075,076,077

047,049,050,052,058,059,062,075
078,082,093,095,131,146,190,260
261,262,354,361,363,605

004,199,226,732,736,743

003,004,005,021,023,026,040,041
042,043,079,082,088,091,096,114
124,126,129,130,131,156,159,193
222,232,235,237,270,278,533

063,064,065,107,109,110,111,117
140,164,179,180,221,224,238,251
252,271,272,359,582,619,620,680

053,063,065,080,085,089,138, 140
210,272,277,289,313,314,329,539
597,598,638,641,648,649,677,726
727,728,1739,777,782,783,784,786
788

003,239

089,090, 140, 199,228,229,230,525
526,527,528,565,719,725,748,773

025,046,050,058,059,077,093,099
108,111,760,762

143, 147
004,085,091,092,125,126,164,165
184,234,355,618,620,639,641,645
646,656,€65,677

061,070,088,156,240,241,533,591

058,064,083,107,110,111,138,160
187,188,213,221,238,290,293,294

Indexed Words and Phrases

create . . < < .
data line . « . .
Data Concentrator
debugging . . « .

DEF ¢« « o« « « o &
destroy « « « « .

devices « .« « o .

DFAD ¢ o « & « =«
DFIX . « « « o @

diagnostic . . .
dismount . . ¢ .

double-precision

DSR o« o « « o o =«
DUMMY
dump . . . < . .

D7090 « « o« « « &

354,355,534,539,542,546,547,548
549,550,551,553,556,557,558,559
564,566,568,569,571,572,573,574
575,581,582,583,585,586,587,588
619,655,668,675,679,786,787

021,027,028,029,040,041,042,088
105,249,258,260,389,393,618,648
658,724,725,763
025,028,029,058,093

003,005,045,057,070,071,075,076
077,078,079,080,094,095,782

023,025,027,029,094,221,285,322
330,591,592,628,715,787

296,322, 332,336,339,343,345
029,033,041,106,112,391
004,026,027,040,044,066,070,071
075,077,079,081,083,085,086,087
090,091,094,124,125,128,130,131
141,154,181,301,319,352,353,354
361,363,364,401,530,719,743,751
783

004,200

004,201

259,260,503,506,507,509,511,530
622,623,726

004,066,069,143,157,202,245,246
269

200,247,566

151,353,354,355,357,358,359,361
363

024,087,241,259,295,377
029,110,111,114,127,143,159,186
187,188,223,241,243,244,253,533
664,752

004,143,160

Indexed Words and Phrases

EBCD . . .

EBCDIC . .

editing . .
EFIX . . .

empty . . .

$ENDFILE .

end-of-file

ENT

ENTER . . .

ESD « « . ..

EXIT . . .

FDname - .

FpuB . . .

file mark .

file . . .

-

089,107,109, 110,111,140,221,238

053,075,076,077,100,107,110, 125
187,188,221,251,252,264,270,271
272,293,313,348,350,369,379,401
582,583,680,784

094,235,283,300,759,760
004,201

004,024,029,041,042,078,082,085
087,090,112,119,143,158,208,313
395,398,546,748,783

026,027,028,041,042,043,113,271

041,048,052,058,059,062,066,078
079,087,091,113,152,209,243,251
255,267,271,303,305,316,321, 344
371,373,381,396,400,402,728,743
779

317,323,332

004,023,039,050,052,058,059,078
091,115,129,203,204,241,249,250
254,255,258,274,279,282,285,290
309,311,353,622,691

169,274,275,296,317,321,322,325
329,336,338,339,345,368,375,503
504,505,507,508,513

004,039,066,143,146,156,158,160
162,163,164,165,166,167,175,176
182,184,185,189,190,191,192,193
195,204,217,218,242,267,386,553
616

065,066,086,087,088,089,091,125
130,131,138,149,165,234,251,302
303,355,363,735

139,155,158,162,164,165,168, 184
198,211,218,353,354,355,356,357
358,361,362,363,549,550,551,552
066,302,305,529

003,005,021,023,024,025,026,027

Indexed Words and Phrases

FLOAT .
Fname .

FORTRAN

FREEFD
FREESPAC
GDINFO

GETFD .

GETSPACE

028,029,040,041,042,048,049,051
052,058, (59,062,064,065,066,067
072,075,076,078,079,082,083,085
086,087,088,090,091,092,093,098
103, 105,106,107,108,110,112,113
115,117,119,120,123,124,125,127
130,131, 134,135,142,149,150,151
152,153, 154,155,157, 158,162, 164
165,169,175, 183,184,209,231,232
233,234,235,236,237,238,239,240
241,242,243,245,247,249,251,253
254,255, 256,257,258,259,260,261
263,264,265,266,267,268,270,271
273,274,276,277,278,279,280,283
285,286,295,296,297,298,299,300
301,302,303,305,307,308,309,310
311,313,314,316,319,320,321,337
338,344,345,346,347,348,352,353
355,356,357,358,359,361,371,372
373,376,378,379,380,381,382,383
384,385,386,387,388,389,390,391
392,393,394,395,396,397,398,399
400,401,402,501,503,525,529,530
531,532,534,535,537,591,669,719
728,733,735,743,759,760,761,763
766,767,779,782,783,784

004,205
092,105,106,112,115

003,005,023,026,027,028,030,031
032,034,035,041,042,051,052,083
113,125,138,142,143,147,161,169
173,182, 183,185,189,191,192,193
194,195,198,234,256,257,260,265
270,271,273,280,295,297,308,315
380,501,525,527,529,530,531,532
533,538,539,540,542,591,628,630
635,668,766,767,769,772,773,774

175,776,777,782 :

143,162
036,143,163, 164
143,150,162,164,165,342

031,139, 143,150,158,162,164, 165
184,246,255,269,342

004,031,036,143,163,164,166,170

Indexed Words and Phrases

GPAK . . . « .« .

GUSERID

hex « « « « . « .

hexadecimal . . .

indexed

interrupt

IOH . - « .« « « .
LAND . . . « o
LC . ¢« o & &« . .

LCS @ ¢« ¢ ¢ « o«

LCOMP « . « « .« .

IDT « &« « ¢ « « &

LIB =« & &« o o o &«

library « « . « =«

203,204,206,306,317
258,259,260,261,263
143,167

085,107,108,109,110,111,116,199
287,289,290,292,293,294,326,381
389,401,532,537,696,727,743,755
756

054,099, 100,107,108,109,110,116
121,126,152,187,188,191,221,243
247,253,264,267,286,287,289,290
291,293, 322,323,331,332,342,505
508,522,532,542,553,570,574,727
728,755,773

025,085, 089,090,091,103,138,140
182,185, 189,192,193,195,251,311
353,357,358,359,530,553,560

023,029,040,049,050,052,059,062
078,082,107,121,125, 146,176,190
222,223,225,261,292,346,363,538
539,540,605

003,004,005,039,083,198,207,208
209,213,214,501,542,550,551,553
580,582,585,588

144,147
089,126,140, 620

275,296,317,323,334,337,338,343
347,348,349,350,369

147

041,275,280,296,317,322,331,337
338,343,368,371,504

260,261,296,323,334,336,347,348

003,004,021,023,024,034,039,061
071,083,086,106,112,115,120,124
125,127,136,142,143,157,175, 182
185,189,192,193,195,196, 197,226
231,232,233,234,235,236,237,238
239,240,241,243,245,247,249,251

Indexed Words and Phrases

limit keyword . .

limits . « « .« «

line-delete . . .

line number . . .

LINK . . - « . .

linkage . « . . .
LINPG &« « o « «
literal-next . .

lcader . « « « .«

logical I/0 unit

LOR & o ¢ « o « =«
LXOK .« « « « .« &

MCC &« &« ¢ o & .« «

253,254,256,257,258,259,260,261
263,264,265,266,267,268,270,271
274,276,277,278,279,283,285,295
296,297,298,299,300,301,302,307
308,309,310,313,314,315,316,317
321,323,334,336,347,348,376,377
501,503,506,522,525,528,535,591
766,768,717,779,783,784

096,121,123, 129

004,041,096,121,123,129,259,652
665

079,094

024,028, 029,085,090,091,093,094
097,103,117,119,127,134,135,139
140,141, 165,168,182,183, 184,185
189,192,193,195,217,254,255,264
274,299,310,311,323,334,354,355
356,358,363,379,381,395,396,399
759

031,142,143,166,169,170,197,221
315,316,317,319,320,348,349,350
357,358,366,371,383,385,389,393
751

033,345

003,004,171,266

076,094
005,025,041,083,123,124,169,277
280,285,292,315,316,317,318,319
320,321,322,323,325,336,337,338
339,341,342,343,344,345,346,347
348,349,350,366,367,368,369,370
371,372,373,374,375,376,377,504
507,751 =

026,027,123,124,164,168,183,184
197,198,276

144,147
144,147

089,090,141,232,283

Indexed Words and Phrases
MDD ¢ ¢ o o o o o o o o o o« « « « « 200

messages - + . « « - 051,071,130,131,149,150,151,152
153,154,155,273,285,286,302,307
308,317,338,342,344,374,375,376
503,506,509,511,525,533,609,630
769,773,775

modifjer 058,077,088,089,090,103,138,140
141,168,217,232,251,277,283,354
358,363,512,530,547,555,558,570
571,572,573,575,583,588,776,790

modifjers 025,077,088,091,117,136,138,139
165,168,182, 185,189,192,193,195
255,354,356,358,362,363,547,558
565,567,568,569,570,571,572,587

mount . - 004,065,066,069,087,144,175,216
245,246,268,269

¥MSINK* ¢« « ¢ « « « « - - 088,241,274
¥MSOURCE* +« « =« « . . . 088,241

MTS monitor « 058,093,094,095,126,134

NCA &+ & v & o & @ o o o« o o « « < . 323,333
*NEWFORT ¢« « « « - - . . . 026,041,256,270,271,525
0 1uu,177,17§,180,181,281
password 004,086,115,120,126,129

PEEL <« ¢ ¢ o e ¢« o« o« . . 089,139,141,189,192,193,218,354
363

PGNTTRP . < « ¢« ¢ = o o « « o « « « 143,176

#PTL & « « & « « =« « o« = « « « . . 003,278,591

Plot 144,177,178,180,181,250,259,261
' 279,280,282

prefix 026,046,047,075,077,089,093,094

095,129,139, 140,149,191,234,267
286,353,354,362,363,575,591,785

pseudo-device 065,066,086,087,202,245,246,268
269,303

Indexed Words and Phrases

PUNCH . .

QCLOSE . .
QGET . . .
QOPEN . . .
QPUT . . .

REP
rewind . .

RIP .« . . .

RLD

SCARDS . .

SDD
SDUNMP . . .

sequential
SERCOM . .

SETIOERR .
SETLOG . .
SHFTL . . .

sink . . .

026,041,088, 124,193,233,235,277
295,313,784

144,149,153, 154
144,149,151, 152
144,149,151,152,153, 154
144,149,151,153

296,322,331,336,339,345,346,705
706

004,144 ,183,184,303,530,532,669

678,779
260,261,296,323,335,336,347,348

274,275,296,321,322,328,336,339

340,345,375

004,027,028,031,043,051,052,123
124,125,143,168,185,197,198,212
217,218,232,233,235,236,237,238
243,245,246,247,249,251,253,254
255,257,263,264,266,267,269,270
274,277,278,279,283,285,296,299
300,301,308,310,314,338,342,353
367,379,530,549,550,743,766,767
769,779

200

109,111, 143,186,187,188,291,342
066,085,€89,090,091,140,141,149
182,184,185,310,311,338,354,356
358,396,530,534,535,779
004,027,123,124,143,168,189,212
217,247,254,274,296,302,342,353
533,538,550,585
004,066,143,190,355
144,177,179,180

144,147

026,027,028,029,041,042,052,071

Indexed Words and Phrases

072,073,076,088,103,108,110,117
124,125,130,142,189,192,232,233
235,236,238,251,253,258,259,264
269,270,271,274,277,278,295,297
299,304,308,313,314,348,362,761
763,768,784

SIZE « + « 4 4 « e 4 e = « « « . . 064,065,066,079,085,105,152,173
180,250,268,313,367,379,381,383
399,527,539,540,569,596,600,611
627,640,652,653,656,672,678,692
694,702,704,738,784

SIT v o o o e o o o o« = =« =« « « = » 004,219

SNOBOL4 « . ¢ ¢ ¢ ¢ = o e « « » « . 003,023,083,241,295,501,635,636
637,638,639,640,641,642,646,648
655,656,661,663,664,668,675,679
680,681,684,688,691,694,697,699
702,705,708,711,715

SOULCE « o o o o« o « o o« o« « « = - 024,025,026,027,028,029,041,042
052,071,072,073,076, 087,088,091
093,095,113,119,124,130,131, 142
185,232,233,235,237,238,241,243
264,267,270,271,272,273,274,277
278,279,285,295,296,297,300,302
308,309,313,314,316,317,322,338
348,353,362,363,364,376,377,503
505,506,507,509,516,522,525,526
527,528,529,533,534,661,735,766
767,768,769,772,773,778,782,783
784,788

SPECIAL + = « = = « « « « o« « « - . 024,025,026,028,047,048,054,058
059,060,070,071,076,080,081,083
086,087,088,089,093,134,139,141
168,247,263,268,283,284,338,343
344,380,512,515,546,547,585,594
605,609,610,618,621,622,632,656
661,722,730,733,735,738,744,745
750, 751,752,757,784,785,786

SPRINT . . . =« ¢ o ¢ o =« « « « « » 004,021,027,043,066,123,124,125
143,168,178,181,187,192,212,217
218,232,233,234,235,236,238,239
243,247,251,253,254,255,264,266
267,270,272,273,274,278,279,283
285,298,299,300,301,302,308,310
317,342,353,367,528,530,549,550
743,766,769,779

Indexed Words and Phrases

SPUNCH

SSP ¢ ¢ o 4 o o .

status

string

SWPR . . . « . .
SYM

tape

tape mark

teletype

terminal

translation . . .

004,027,123,124,125,143,168,193
212,2%7,218,233,234,235,238,247
249,251,257,270,272,273,277,296
302,304,308,313,314,338,342,353
530,549,550,769,779,784

003,091,142,143,144,297,316,348

036,081,298,318,343,366,368,370
371,372,374,376,383,384,400,401
538,555,582,735,752

058,065,075,083,086,100,126,157
175,211,216,221,226,241,254,287
291,295,301,313,501,517,518,522
543,545,546,565,567,575,595,617
618,619,620,622,624,638,639,642
643,644,645,646,648,650,652,655
656,657,661,662,664,665,666,667
668,669,670,671,674,691,705,711
712,717,721,722,723,724,725,726
727,730,731,732,733,734,736,737
738,745, 746,747,748,751,752,754
755,756,757,761,769

004,220
322,330

005,045,054,063,064,065,066,067

068,069,072,073,075,079,091,140
149,151, 154,155,183,184,202,216
245,246,260,268,269,277,283,302
303,304,305,314,530,777,782,784

067,154,283

005,023,045,046,047,048,049,050
051,053,070,076,077,078,089, 146
178,227,228,785

001,020,021,023,025,026,040,041
O44,045,046,047,051,057,058,059
060,061,070,071,072,075,076,077
078,079,081,082,088,095,096,114
117,123,124,125,127,128,129,130
131,156,189,193,237,250,265,267
285,286,307,528,589,591,605,603
621,630,699,719,743,782,783

053,075,077,199,251,252

Indexed Words and Phrases

TRIM .

tty . .

TXT . .

uc . .
*UMIST
UMMPS .
update

WATFOR

XCTL .

XOR . .
1050 .

2250 .

2741 .

8ASs .

089,139,141,354,363,640,645,656
678,681,684,691,694,699,702,705
708,709,713

072,073,076,095

264,274,275,296,321,327,336,339
345,346,368

058,089,091,126,127,140,283,284
301,743

003,081,082,086,283,719
003,302,303,304,305

003,023,083,307,308,309,501,766
76¢7,768,769,771,772,773

142,143,166,169,170,197,315,316
317,319,320,348,349,350,366

144,147,148,601,756,757
003,060,095,126,227,228,229,230

003,061,249,258,259,260,261,262
263,310

005,057,058,059,060,070,073,076
078,095,126,146,227,228,229,605

003,277,313,314,501,782,783,784
785,786,787,788,790

