
Software Coherence in
Multiprocessor Memory Systems

William Joseph Bolosky

Technical Report 456
May 1993

[N A S A - C R - 1 9 4 6 9 6 1 SQFTWARE N94-21232
C O H E R E N C E I N MULTIPROCESSOR HEMDRY
SYSTEMS P h - O , Thesis <Rockester
btniv,) 3.57 p tint 1 as

UNIVERSITY O F

COMPUTER SCIENCE

Software Coherence in Multiprocessor
Memory Systems

by

William Joseph Bolosky

Submitted in Partial Fulfillment

of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

Supervised by Professor Michael L. Scott

Department of Computer Science

College of Arts and Science

University of Rochester

Rochester, New York

1993

11

To R. R. Camp

III

Curriculum Vitae

William J. Bolosky was born in on He
attended California State College in California, Pennsylvania from 1977 through
1983. He completed a Bachelor's degree with Univerity Honors in Mathematics at
Carnegie-Mellon University in 1986. After working as a research staff member with
Carnegie-Mellon's Mach project, he began graduate studies at the University of
Rochester in the fall of 1987, studying Computer Science under Professor Michael
1. Scott. In 1989, he received a Masters of Science in Computer Science from the
University of Rochester. In 1992, he accepted a position as a Researcher with the
Microsoft corporation in Redmond, WA.

He received a Sproull Fellowship for graduate studies at the University of
Rochester in 1987, and a DARPA/NASA Fellowship in Parallel Processing in
1991.

lV

Acknow ledgments

While my name is the only one listed as the author of this document, it is
hardly the case that all the work described herein is mine alone. Rather, the
bulk of this dissertation is derived from work published jointly with others. Chief
among them is my advisor, Michael Scott; without his help none of this could
have happened. During the ACE project, Bob Fitzgerald was a constant source
of inspiration and thought-provoking criticism. Rob Fowler and Alan Cox were
very helpful in refining the work. Tom LeBlanc has been helpful throughout my
tenure at Rochester as a sounding board for my ideas, and Charles Merriam was
there when he was needed. Alexander Brinkman provided an extremely helpful,
very thorough reading of the dissertation prior to my defense. Cesary Dubnicki
and Jack Veenstra provided insight into my traces and the applications from which
they were generated, as well as the general topic of shared memory multiproces­
sor memory systems. Prior to my arrival at Rochester (and subsequent to my
departure), Rick Rashid served both as a mentor and inspiration to me.

The work was supported by a University of Rochester Sproull Fellowship, two
IBM Summer Internships and a DARPA/NASA Fellowship for Parallel Process­
ing. Furthermore, the ACE hardware used for much of this work was generously
lent to the University of Rochester by IBM, through the good graces of Armando
Garcia, Bob Fitzgerald and Colin Harrison.

-

-
-

-

v

Abstract

Processors are becoming faster and multiprocessor memory interconnection
systems are not keeping up. Therefore, it is necessary to have threads and the
memory they access as near one another as possible. Typically, this involves
putting memory or caches with the processors, which gives rise to the problem of
coherence: if one processor writes an address, any other processor reading that ad­
dress must see the new value. This coherence can be maintained by the hardware
or with software intervention. Systems of both types have been built in the past;
the hardware-based systems tended to outperform the software ones. However,
the ratio of processor to interconnect speed is now so high that the extra overhead
of the software systems may no longer be significant. This dissertation explores
this issue both by implementing a software maintained system and by introducing
and using the technique of offline optimal analysis of memory reference traces. It
finds that in properly built systems, software maintained coherence can perform
comparably to or even better than hardware maintained coherence. The archi­
tectural features necessary for efficient software coherence to be profitable include
a small page size, a fast trap mechanism, and the ability to execute instructions
while remote memory references are outstanding.

Table of Contents

Curriculum Vitae

Acknowledgments

Abstract

List of Tables

List of Figures

1 Introduction

1.1 Data Locality and the Coherence Problem

1.1.1 Methods of Implementing Coherence

1.2 Outline of the Argument Supporting the Thesis

1.3 Related Work

1.3.1 Coherent Caching .

1.3.2 NUMA Systems ..

1.3.3 Distributed Shared Memory

1.3.4

1.3.5

Multiprocessor Tracing Techniques

Weak Coherence

2 Application Styles, Tracing and the Application Set

2.1 Application Programming Styles.

2.1.1 C-Threads

2.1.2 EPEX

2.1.3 Presto

2.2 Applications.

V]

III

IV

V

x

Xl

1

2

3

4

6

6

7

9

10

12

13

14

14

15

15

15

2.3

2.2.1 EPEX applications

2.2.2 gauss. · . · .
2.2.3 chip . . · . · .
2.2.4 bsort and kmerge

2.2.5 ply trace · . · .
2.2.6 sorbyr and sorbyc .

2.2.7 matmult

2.2.8 mp3d ..

2.2.9 cholesky

2.2.10 water ..

2.2.11 p-gauss .

2.2.12 p-qsort .

2.2.13 p-matmult .

2.2.14 p-life

The ACE Tracer

2.3.1 Kernel Modifications to Support Tracing

2.3.2 The trace-Baver Program.

Vll

17

17

18

18

19

19

20

20

21

21

22

22

22

22

23

23

24

3 Implementation of a Simple Kernel-Based NUMA System 26

3.1 Implementing Software Coherence on the ACE. . . 27

3.1.1 The IBM ACE Multiprocessor Workstation. 28

3.1.2 The Mach Virtual Memory System 30

3.1.3 The ACE pmap layer. 31

The NUMA Manager 31

A Simple NUMA Policy That Limits Page Movement 34

Changes to the Mach pmap Interface to Support NUMA 35

3.2 Performance Results

3.2.1 Evaluating Page Placement

3.2.2

3.2.3

The Application Programs

Results

3.2.4 Page Placement Overhead

3.3 Discussion

3.3.1

3.3.2

3.3.3

The Two-Level NUMA Model

Making Placement Decisions .

Mach as a Base for NUMA Systems .

3.4 Whence from Here?

36

36

39

40

41

42

42

42

43

44

Vlll

4 A Model of Program Execution in Shared Memory Systems 46 .. _

48 4.1 A Model Of Memory System Behavior

4.1.1 Machines

4.1.2 Traces ..

4.1.3 Placements and Policies

4.1.4 Cost

4.1.5 Optimality.

4.2 Computing Optimal NUMA Placements

4.2.1 Computing Optimality Without Replication

4.2.2 Incorporating Replication

4.3 Validation of the Trace Analysis Technique .

4.4 Discussion...................

49

50

50

51

52

54

55

56

57

62

5 NUMA Policies and Their Relation to Memory Architecture 64

5.1 Implementable (Non-Optimal) Policies .. 65

5.2 Experiments................. 67

5.2.1 Performance of the Various Policies

The Importance of the NUMA Problem.

The Success of Simple Policies

The Importance of Programming Style

The Impact of Memory Architecture .

5.3 Variation of Architectural Parameters.

5.3.1 Case Study: Successive Over-Relaxation

67

67

70

71

71

72

76

78 5.4 Summary

6 Comparative Performance of Coherently Cached,
DSM Architectures on Shared Memory Programs

NUMA, and
80

6.1 Machine Models 81

6.1.1 The Machine Models 81

6.1.2 Computing Cost Numbers for the Machines 84

6.2 Experimental Results 86

6.2.1 Base Machine Model Results. 87

6.2.2 Comparing the Machine Models Using the Same Block Size
in All 89

6.2.3 Varying the Block Size 91

6.2.4 The Effect of 0 6 ••••••••••••••••••••

6.3 The Effect of Reducing the Page Size on TLB Miss Rates.

6.3.1 Virtually Tagged Caches

6.3.2 TLB design

6.3.3 Results.

6.4 Conclusions . .

IX

93

97

97

98

99

102

7 False Sharing and its Effect on Shared Memory Performance 104

7.1 Definitions of False Sharing 105

7.1.1 The One-Word Block Definition 106

7.1.2 The Interval Definition. . . 107

7.1.3 Heuristic Interval Selection. 108

7.1.4 Full Duration False Sharing 109

7.1.5 The Hand Tuning Method .

7.1.6 The Cost Component Method

Example Traces Showing Fragmentation, Grouping and False
Sharing .

7.2 "Estimating False Sharing.

8 Conclusions

8.1 Future Work.

8.1.1 Reducing False Sharing.

8.1.2 Variable Sized Blocks ..

8.1.3 Increasing the Detail of the Model.

8.1.4 More Complicated Machines . .

8.1.5 Other Uses of Optimal Analysis ..

Bibliography

Appendix A Results for All Applications

110

110

114

115

120

122

122

123

123

123

124

125

135

x

List of Tables

2.1 Trace Sizes , 16

3.1 Measured user times in seconds and computed model parameters. 40

3.2 Total system time for runs on 7 processors. 41

4.1 Percentage optimal performance change due to local and gap per-
turbations .. 61

6.1 Machine types considered 82

6.2 Formulas for computing model parameters 86

6.3 Parameter values for the base machine models 86

6.4 Performance of other architectures relative to CC+ 94

6.5 MCPR uncorrected and corrected for additional TLB misses 101

~-~-~ - ~----

List of Figures

3.1 ACE memory architecture

3.2 ACE pmap layer

3.3 NUMA manager actions to maintain coherence.

Xl

29

32

34

4.1 Algorithm for computing optimal cost without replication. 55

4.2 Function to compute the cost of a read-run, no global memory 57

4.3 Optimal policy computation, no global memory 58

4.4 Unmodified vs. local perturbations for CC model 60

5.1 MCPR for ACE hardware parameters. 68

5.2 MCPR for Butterfly hardware parameters 69

5.3 MCPR for Butterfly hardware parameters, high cost applications 69

5.4 MCPR vs. G for optimal, g=2, r=5 72

5.5 MCPR vs. R for optimal, no global, r=15 73

5.6 Mean moves per page . 75

5.7 sorbyr breakdown .. 77

6.1 Performance domination partial order for a fixed block size

6.2 Results for base machine models

6.3 Results using 512 byte blocks for all machines ..

6.4 cholesky MCPR versus block size

6.5 p-qsort MCPR versus block size

6.6 sorbyr MCPR versus block size

6.7 sorbyr MCPR versus OIJ for 512 byte blocks

6.8 e-hyd MCPR versus Os for 512 byte blocks.

6.9 p-qsort MCPR versus Os for 512 byte blocks

83

88

90

91

92

92

95

95

96

-

Xli

6.10 ply trace TLB miss rate vs. page size. 99

7.1 False sharing intervals 108

7.2 ply trace MCPR broken down into data transfer and overhead
components .. 116

7.3 p-qsort MCPR broken down into data transfer and overhead com-
ponents 116

7.4 cholesky MCPR broken down into data transfer and overhead
components .. 117

7.5 sorbyr MCPR broken down into data transfer and overhead com-
ponents

A.1 e-hyd MCPR vs. block size

A.2 gauss MCPR vs. block size

A.3 p-life MCPR vs. block size.

A.4 sorbyc MCPR vs. block size.

A.5 matmul t MCPR vs. block size

A.6 bsort MCPR vs. block size .

A.7 e-simp MCPR vs. block size.

A.8 e-nasa MCPR vs. block size.

A.9 p-matmul t MCPR vs. block size.

A.10 ply trace MCPR vs. block size

A.ll mp3d MCPR vs. block size ..

A.12 water MCPR vs. block size .

A.13 kmerge MCPR vs. block size.

A.14 fft MCPR vs. block size ...

A.15 p-gauss MCPR vs. block size

A.16 chip MCPR vs. block size ..

A.17 p-qsort TLB miss rate vs. page size

A.18 matmul t TLB miss rate vs. page size

A.19 e-simp TLB miss rate vs. page size

A.20 mp3d TLB miss rate vs. page size .

A.21 bsort TLB miss rate vs. page size.

A.22 e-hyd TLB miss rate vs. page size.

A.23 p-gauss TLB miss rate vs. page size

A.24 p-life TLB miss rate vs. page size .

117

135

136

136

136

136

137

137

137

137

138

138

138

138

139

139

139

140

140

140

141

141

141

141

142

A.25 kmerge TLB miss rate vs. page size

A.26 sorbyr TLB miss rate vs. page size

A.27 chip TLB miss rate vs. page size .

A.28 water TLB miss rate vs. page size.

A.29 gauss TLB miss rate vs. page size.

Xlll

142

142

142

143

143

-

1

1 Introduction

Shared memory multiprocessors have become increasingly popular in recent years.
The straightforward parallel programming style they present is attractive to users.
To supply the necessary low-latency, high-bandwidth memory to the processors,
architects have devised several schemes in which data is replicated to various types
of memories which are local to the processors. An effect of this approach is that
the system must make sure that changes in data made by one processor are visible
to other processors. This is called the "coherence problem."

There have been several different approaches to the coherence problem in the
past. They fall into two major categories, depending on whether they are im­
plemented in hardware or software. Traditional hardware solutions use caches
in which coherence is maintained either by requiring that data not be replicated
at the time it is written (called "Write Invalidate [4, 31, 69, 60]"), or by broad­
casting all writes to replicated lines to all holders of those lines (called "Write
Update [76, 95]"). Software solutions to the coherence problem use a special
operating system kernel that migrates and replicates data [14, 39, 58, 64], much
as a cache controller would in a hardware implementation. A third method of
solving the coherence problem is remote reference, in which single words are read
or written by one processor directly in another processor's memory, usually at a
significant time penalty over local memory [14, 15, 28, 50, 82]. Remote reference
is more commonly used in software-coherent systems than in coherently cached
ones.

Most new designs use hardware coherent caches. Hardware is able to process
coherence operations with less overhead than software, and simulation studies
show that the hardware based systems perform better overall. However, this
dissertation argues that software coherent machines, if properly designed, can
in fact perform competitively with hardware coherent ones, and that the added
flexibility and reduced cost of construction of software based systems make them
a viable alternative to hardware coherent machines. The two main reasons are:
1) processors have become so fast relative to interprocessor interconnections that
the difference in time to initiate a coherence operation between software and

2

hardware coherent machines is swamped by the time for the coherence operation
to complete; and 2) the primary reason that hardware coherent machines do better
than their software-controlled cousins is that a ·hardwarecache line is typically
much smaller than a software page, and this results in a great reduction in false
sharing, 1 and consequently better performance. There is no a priori reason that
pages need to be so big,2 and so no reason that the hardware/software performance
difference needs to be as large as it is.

Therefore, my thesis statement is: "Properly designed software-coherent shared­
memory multiprocessors can perform competitively with coherently cached ma­
chines."

1.1 Data Locality and the Coherence Problem

Communication between processors is the fundamental problem in multiprocessor
design: it is communication that limits the ability to build arbitrarily large parallel
machines. As the need for communication lessens, the number of processors that
can profitably be employed grows. If no communication at all were necessary, then
the only limits on parallelism would be algorithmic and monetary. Unfortunately,
in practice this is not the case, and attention must be paid to inter-processor
communi cation.

Think about the task of designing a traditional, tightly coupled multiprocessor
in terms of the communication requirements. To be able to add more utile pro­
cessors, it is necessary either to increase the "amount" of communication possible
between the processors, or to reduce the amount that is needed. Increasing the
capacity of the hardware is, and will continue to be, a profitable .activity, but how
to do it is beyond the scope of this work. Reducing the amount of communication
needed can be done in two basic ways: finding algorithms that solve the desired
problems with less communication, or by building machines that exploit local­
ity in programs' data usage. Changing parallel algorithms to reduce the amount
of communication needed is also a profitable avenue of exploration, and is also
beyond the scope of this work.

After excluding modifying interconnections and algorithms, exploitation of
data locality in programs remains as a method to reduce communication, and so
increase the utility and size of multiprocessors. The idea is that some memory

1 False sharing is sharing that happens solely because of colo cation of data within a coherence
unit; it is the topic of Chapter 7.

2The reason that pages are large in uniprocessor implementations is to reduce number of per­
page operations such as faults, page table maintenance, allocation of per-page virtual memory
system data structures and so forth. While I propose smaller hardware pages in order to reduce
false sharing, I believe that a virtual memory system on such a machine should group hardware
pages together into larger software pages for all purposes other than coherence.

-

3

will probably be used exclusively by some processors, some will be used by many
processors, but not change often, some will be used for a time by one processor
and then later by another. Using variations on the theme of caching, it is possible
to reduce the amount of communication that is needed for data that fall into
these categories. Data that are used by just one processor may be stored at that
processor; references to the data needn't affect any other processor in the system.
Data that are being read by many processors, but modified by none, may be
replicated to each of the processors using the data, and as long as they are not
modified there need be no non-local operations. Migratory data can be moved
from processor to processor when their user changes. Data that are shared at a
fine grain are problematic, and will be discussed later.

Unfortunately for system builders, application writers do not specify the ref­
erence behavior of each region of memory of their programs. In fact, it is a
goal of shared memory multiprocessor design to present the illusion of a single
shared memory to the application programmer, even though the machine is more
complex. Therefore, operating systems (including compilers) must determine the
reference pattern for a particular region of memory by inspecting the references
made to it as the program executes. A requirement of this inspection is that it
enforce coherence: when a processor reads a datum, the value that it gets is the
latest written into the particular address by any processor.3 Since it is possible
that this other processor has its own copy of the data, it is necessary for the
system to communicate that an update has happened before the subsequent read
occurs.

1.1.1 Methods of Implementing Coherence

There are three primary techniques for maintaining coherence in a multiproces­
sor memory system, any of which can be implemented in either software or in
hardware. They are write-update, write-invalidate and remote reference.

In write-update the writer of a word sends the value that is written to other
holders of the data, who then update their copies. The sending of data may be
accomplished by broadcast, multicast or sequentially sent messages. Write-update
performs well in systems that have very little writable memory, or in systems
such as cached bus-based multiprocessors, in which the cost of sending frequent
updates is very low. Software implementations of write-update typically either
exploit weak coherence [19], or are intended to be used only for a small set of data
structures that the programmer has determined will profit from write-update [38].

3There are systems that do not satisfy this constraint, but rather require the programmer to
either annotate programs in some way, or to understand the weaker coherence constraint [2, 19,
70,99].

4

Remote reference is like write-update in that it handles individual memory
references through the interconnection network. However, unlike write-update a
given line or page cannot be replicated. Rather, all references ·to the memory
are directed to a single location where the data are kept. References (both reads
and writes) made by the processor holding the data are local; those by any other
processor go through the interconnection. Remote reference is most useful when
data are used heavily by only one processor, and only rarely by all others.

Write-invalidate is the most popular technique for maintaining coherence. It
operates by ensuring that a writer of data has the only copy of that data at the
time of the write. That is, any other copies at other processors are invalidated
before the write proceeds. Write-invalidate is a very popular technique, and is
used in both hardware and software based systems. It handles migratory and
read-only data properly.

These methods may be combined to produce hybrids. Veenstra and Fowler [98]
compare strict write-invalidate, strict write-update and a few different hybrids
of the two and conclude that the hybrid strategies perform better than either
pure version. NUMA (Non-Uniform Memory Access) machines, which are the
subject of much of the work described herein, are a hybrid of write-invalidate and
remote-reference. These types of hybrids are faced with the additional problem
of determining when to use each of the methods: should a block be replicated,
moved or remotely referenced? When should a write be broadcast (i.e., use write­
update) and when should remote copies be invalidated? Policies that answer these
questions in NUMA systems are discussed in Chapter 5 and in various others'
work [39, 58, 57, 63, 64, 65].

An advantage that software implementations of coherence has over hardware
implementations is that they imay implement more complicated protocols, and
may vary their protocol more ~asily. For example, PLATINUM uses a timer-based
exponential backoff algorithm for page thawing [38]. This would be harder to do
in hardware.

1.2 Outline of the Argument Supporting the
Thesis

The simulation studies in Chapter 6 demonstrate directly that software coherent
machines perform comparably to hardware coherent machines. The bulk of the
dissertation describes the simulation methods, justifies them and presents and
analyzes their results.

Any trace-driven simulation study is only as valid as the applications used
. ··to drive the simulation, and the accuracy of the traces of these applications.

Chapter 2 describes the applications and the tracer used to collect the memory

-

-

-

5

references from them. Chapter 3 describes an implementation of a kernel on a
NUMA system. It shows the extent to which such a system may be evaluated,
and points out the need for a different approach in order to gain a more detailed
understanding. Section 4.3 describes a series of experiments designed to deter­
mine the effect of errors that might have been made during the tracing process,
and concludes that they are likely of sufficiently small magnitude that they are
inconsequential relative to the size of the effects seen in the main experiments.

When evaluating a simulation study, the important questions are: Does the
simulation model important characteristics of the system? Is the model accurate?
What are the sources of error in the simulation, and to what magnitude are they
present? Are the applications used to drive the simulation representative?

Chapter 4 describes a formal model of machines, policies, programs, and their
performance. An important characteristic of machines that have remote reference
and block migration is that it is necessary to decide when to use one and when
to use the other. This is the function of the policy component of the model. The
behavior of the policy can greatly influence the overall performance of the system.
Therefore, the concept of an optimal policy is introduced and is used to eliminate
the bias inherent in any non-optimal policy. Briefly, the optimal policy uses future
knowledge in order to always make the appropriate remote reference/page move
choices, thereby minimizing cost for the particular application and machine model
being simulated. This optimal policy is also presented in chapter 4.

For the results of this optimal analysis to be interesting, it is necessary that
on-line, implementable policies have performance that is reasonably close to that
of the optimal policy. Demonstrating that on-line policies can indeed approach
optimality, together with results about just what policies are appropriate for what
architectures, is the topic of Chapter 5.

Chapter 6 applies the simulation method to a set of machine models based on
components of speed comparable to that available in modern product hardware.
The machines studied differ in their use of software vs. hardware coherence, in their
support of remote reference and in the page or cache line sizes used. The result
of comparing their relative performance is that software coherent machines (with
sufficiently small pages) perform comparably to hardware coherent machines, thus
confirming the thesis statement.

While the study in Chapter 6 shows that NUMA machines with sufficiently
small pages perform comparably to coherently cached machines, it offers little
insight as to why this is the case. Chapter 7 offers and explores the hypothesis
that false sharing is the reason that reduced page size is so beneficial. While I
was unable to come up with a satisfactory formal definition of false sharing that
is known to be computationally tractable, Chapter 7 offers evidence that false
sharing is present in some applications; that evidence is also strongly suggestive
that false sharing is the major contributor to the performance difference between

6

NUMA and hardware coherent machines. Chapter 8 presents a summary and
conclusions, and mentions directions for extending the work.

1.3 Related Work

The question of software-implemented coherence touches upon several different
related areas, including multiprocessor architecture (specifically multiprocessor
cache and interconnection design), multiprocessor operating system design and
implementation, tracing and simulation methodology, and processor architecture.

1.3.1 Coherent Caching

There are several different ways in which one may implement coherent caches.
The simplest is a write-through snoopy cache. That is, a cache in which every
write is transmitted through the local cache to a broadcast bus connecting main
memory and all other processors. All processors listen ("snoop") for writes by
other processors that would affect a word in the local cache. When such a write
is detected, the word is either updated to have the new data (in write-update
schemes) or the line containing the word is evicted (in write-invalidate schemes).
The Sequent Balance [96] uses write-through snoopy caching.

The problem with straightforward write-through snoopy schemes is that all
writes, regardless of whether they are to shared data, generate broadcast traffic
on the interconnection. Censier [31] observed that many of these writes could be
local, and suggested associating a state bit with each cache line that indicated
whether this processor had the only copy of the line; if it did, then the write went
into only the local cache. If another processor wanted a line that was dirty and
held by another, it forced a coherence operation. Censier's scheme still requires
a broadcast medium, but eliminates much of the unnecessary traffic. It is a
write-back snoopy technique. Goodman [54] proposed the write-once scheme, a
cross between write-through and write-back. It worked by writing-through on the
first write by a processor to a cache line, but if a second write occurred before a
coherence operation for that line, it was changed to the dirty state,' and eventually ~

written-back. The idea of write-once was that fine-grain shared data would not
"ping-pong," while most of the reduction of traffic of write-back would be retained.

Switching from write-through to write-back (or write-once) greatly reduces
the amount of bandwidth necessary for a system of a given size. However, in
systems with a large number of processors, implementing broadcast is difficult
or impossible [14, 82, 102]. Typically, these systems use an interconnection with
some sort of hierarchical structure, wherein messages are routed point-to-point.
To implement coherence on such systems, it is necessary to drop not only the idea

-

-

7

of write-through, but also that of snooping. Instead, a "cache directory" is used.
The directory contains information about which processors are using which data,
and what state they are in. This allows notice of coherence operations to be sent
only to those processors needing to see them. There are various schemes for how
to build and distribute cache directories and for the particular protocols used with
them [10, 60, 69, 76, 86, 95, 99], but they are beyond the scope of this section.
Surveys and overviews of multiprocessor caching [11, 91] are available for those
desiring more information.

1.3.2 NUMA Systems

Th~ acronym "NUMA" stands for Non-Uniform Memory Access. It typically
refers to machines that have per-processor memories that can be referenced by
all processors. In addition, NUMAs may have memory that is not associated
with any particular processor, as discussed in [79]. In NUMA machines, it is the
responsibility of software (either at the operating system, runtime or application
level) to determine the (potentially dynamically changing) location(s) of data
within the system's memory. That is, NUMA machines are software coherent
systems that have remote reference. This section describes others' work on NUMA
software and analytic modeling.

One of the earliest attempts at NUMA memory management was that of Holl­
iday [58]. His implementation was also on a Butterfly multiprocessor, but differed
from later efforts in that it did not use fault behavior to directly drive page lo­
cation decisions. Rather, he implemented a daemon that ran periodically and
determined recent reference behavior for pages by examining the memory man­
ager's referenced and used bits, and then moved and replicated pages based on
this daemon's findings. In a later paper [57] he concluded that it was very difficult
to exploit migratory behavior in NUMA systems, and that simply establishing a
good static placement would result in performance as good as that which could be
achieved by handling migratory pages. Furthermore, he asserted that it is better
to have the programmer explicitly specify the appropriate location for memory,
rather than having the system find it, and consequently that NUMA systems
were a bad idea. However, it is unclear that his conclusions apply to fault-driven
NUMA systems, and in fact they conflict directly with the conclusions of Cox and
Fowler [38, 39, 48], and LaRowe et al. [63, 64, 65].

In [23], Sleator and Black describe an algorithm for competitive NUMA man­
agement. That is, they describe a placement policy whose worst case behavior is
as close to optimal as possible for anyon-line policy. They describe algorithms
that come within a factor of 2 in the case of read-only pages and within a factor
of 3 for writable pages. However, in the writable case they require hardware that

, . may make a remote transaction on every reference to otherwise local memory,

8

which could cost a large amount of execution time. Furthermore, the DUnX re­
sults (and those in [27], which are also presented in Chapter 5) show that when
dealing with real applications it is almost always possible to do much better than
the competitive best-worst-case limits.

Black, Gupta and Weber use competitive NUMA policies in a simulation study _"
described in [22]. It is difficult to judge the success of their methods because
they only present their results as compared against a random placement of both
code and data (in which read-only code pages are not replicated, and so instruc-
tion fetches have to proceed through the memory interconnection), and report
tremendous speedups.

Modern NUMA operating systems make periodic page placement decisions
based both on faults made by processors accessing a page that is not mapped and
also on asynchronous events, typically timer interrupts (and pageout requests).
The main question dealt with in the NUMA literature is that of the NUMA policy:
when one of these events occurs, what action (if any) should be taken? Duke
University's DUnX system was created as an experimental testbed for comparing
these policies. It is an operating system that runs on the BBN Butterfly family
of NUMA multiprocessors and in which the NUMA policy is very easily replaced.
The authors wrote a large number of different NUMA policies and compared their
performance over a suite of applications. Their results are described in [63, 64,
65]. Their principal conclusion is that most reasonable policies have comparable
performance for most applications, and that therefore further study of NUMA
policies is essentially pointless. Their explanation of this result is that most of the
data used by a NUMA program is either private or only-read,4 and any reasonable
policy will place such data correctly. However, on machines with greater remote
access penalties, such as those considered in Chapter 6, even a small amount of .. , ... ,>

misplaced data can have very large performance effects, and so policy design is
still important on such machines.

Cox and Fowler's PLATINUM system [38, 39, 48] is also an implementation of
a NUMA kernel on the Butterfly. It differs from DUnX in that it was not created
as a testbed for the comparison of a large number of NUMA policies, but rather
as system with a small number of well tuned-policies for running all applications.
The main PLATINUM NUMA policy operates by replicating pages when they are
read, and migrating them when written by other than their sole owner. If a page
is invalidated twice within a certain period of time, it is frozen in place and all
references made from processors other than the one that happens to wind up with
the only copy of the page are made remotely. This freeze decision is periodically
reconsidered: in older versions of PLATINUM, all frozen pages were thawed by

4 "Read-only" and "only-read" have different meanings. For a page to be read-only it must be
so specified to the system at the time the page is allocated. On the other hand, to be only-read,

. a page simply must not be written; there is no requirement that the system be informed that this
will be the case. Therefore, all read-only pages are only-read, but not necessarily the reverse.

-

-
-

-

-

9

a defrost daemon that ran at fixed intervals; the newer versions reduce "ping­
ponging" of fine-grained shared pages by using an exponential backoff scheme for
defrosting. A software implemented write-update scheme was also'tried, and was
found to work well for data structures that were mostly read but occasionally
centrally updated.

1.3.3 Distributed Shared Memory

The idea of presenting a shared memory model on a machine or group of machines
whose hardware does not support coherent caches or remote reference (and that,
in many cases, was not designed as a multiprocessor system at all, but rather as a
collection of ostensibly independent networked workstations) is called distributed
shared memory. The seminal work in this area was done by Kai Li [72]. Since
then, there have been several implementations.

IVY [71] was Li's first implementation, and used a network of Apollo [9] work­
stations running Apollo's Domain system. It was a prototype implementation, and
supported process migration as well as shared memory. He later implemented
DSM on an Intel iPSC/2 hypercube [73]. Forin, et ai. [46] implemented a dis­
tributed Shared Memory Server on top of Mach's external paging system [103]
with a straightforward write-invalidate protocol. This work was interesting be­
cause it was implemented without modifying the kernel, simply by writing an
appropriate user-level external pager. Fleisch and Popek's Mirage system [45]
is implemented using a modified Unix System V kernel [12]. Mirage's write­
invalidate scheme is interesting in that it guarantees that when a writable copy of
a page is created, that copy will not be invalidated for a certain amount of time.
Any other processors that request that page during that time interval are' sus­
pended until the interval is completed. Thus, pages that are being simultaneously
written by several processors do not cause thrashing. Amber [32] is a distributed
shared memory system designed for a network of tightly-coupled shared memory
multiprocessors. Clouds [83] provides an object-based write-invalidate distributed
shared memory that is similar to Mirage in that it guarantees a writer a certain
amount of time to use a page before it can be invalidated.

Spector [89, 90] implemented microcode on a Xerox Alto workstation that
allowed very fast operations to be performed across an ethernet. He was able
to make remote memory references in about 50 macroinstruction times. His im­
plementation worked by using the lowest level ethernet protocols from the Alto
microcode: He did not implement a transparent shared memory; special macroin­
structions were needed to invoke remote references.

Munin [17, 19, 30J is a set of runtime libraries and extensions to C++ that
support a distributed memory model. Munin allows the programmer to specify
the expected reference pattern of an object, and then uses a coherence protocol

10

appropriate for that pattern. In particular, only-read, initialized and then only­
read, migratory, private, write-update, and synchronization objects are among
those supported. Write-update is implemented by keeping an-unmodified copy of
the object that is marked write-update, and later comparing it against the copy
that is written, sending out a list of differences to other processors having replicas
of the object.

Munin uses an understanding of the locking structure of the program to im­
plement release consistency in software. Release consistency is a weaker form of
coherence (see Section 1.3.5) that operates by not requiring that remote access to
a data structure get correct data until the lock protecting that data is released by
its writer. This allows Munin to batch together many remote writes (including
those made to a write-update object) into a single message, and thus eliminate
much of the large per-message overhead that is present in networked systems.

Stumm [93] describes in detail various algorithms used to implement dis­
tributed shared memory systems.

1.3.4 Multiprocessor Tracing Techniques

The primary technique used to establish my thesis is the analysis of multiprocessor
memory traces. As such, work related to collection and validation of such traces
is important to understand.

There are several methods of collecting traces. One is to monitor bus transac­
tions with auxiliary hardware, such as in [36]. Another is to single-step programs
and record what happens at each step, which is the approach used in this work,
and has also been used in such studies as [43] and [100]. Simulating the entire
hardware architecture in software, such as in Tango [53], can be used to gather
traces, although it is typically employed for developing software for a machine that
is unimplemented. Another technique is to modify the microcode (presuming that
one is using a writable control store machine) to record memory references, as is
done in ATUM [5].

Abstract Execution (AE) [66] is a technique whereby a program is compiled
into a "schema," which describes only computations necessary to determine the
actual addresses referenced. This schema, together with output produced by run­
ning the program with special tracing code added by a modified version of the C
compiler (which also produces the schema), is sufficient to dynamically recreate
the memory references at minimal cost. The output files are typically 2-3 orders
of magnitude smaller than the uncompressed trace files, and the regeneration of
the traces from the output and the schema is relatively inexpensive. Unfortu­
nately, this technique is not designed for multiprocessor usage, and would require
significant adaptation for such use.

-

-

-
-
-

11

TRAPEDS [94] is a system for collecting multicomputer traces by modifying
the code to emit a trace entry at the time when the reference is made; the trace
analysis is carried out concurrently with the execution of the program being traced, ..
and the actual trace entries are never saved, thus eliminating a large amount of
I/O and the necessity for a large volume of storage. This scheme is useful if the
amount of time spent analyzing a trace is much larger than the amount of time
used to collect it, so that multiple analysis runs won't be significantly slowed by
the time to regenerate the trace. Alternately, it is useful if one wants to rerun
traces with different application parameters (such as number of processors, input
data, or hypercube topology), and analyze each trace exactly once. TRAPEDS
relies on being run on a machine that does not have remote memory references, but
rather must use explicit message-passing operations to communicate; otherwise its
trace interleaving would be incorrect.

MPTrace [44] is a system that uses modification of assembly code to have the
executing program generate trace data as it runs, much in the fashion of Abstract
Execution. Its primary concern is limiting the amount of time spent collecting
the trace data, thus limiting the distortion caused by varying the relative rates
of execution of instructions. MPTrace achieves a factor of only 3 slowdown, as
compared to two to three orders of magnitude for single-step based methods, 20
for ATUM, 10-30 for TRAPEDS and 1.5-1.8 for (uniprocessor) AE. Koldinger
et ai. [62] examine the effects of tracing-induced slowdown on the results of a
coherent caching simulation, and find that even dilation by a factor of 250 rarely
produces statistically significant changes in results, thus indicating that reducing
dilation is probably not critical to the validity of the simulations run on the traces.

Wisconsin's Wind Tunnel [55] is a Thinking Machines CM-5 with software that
allows simulation of different memory architectures by using the error. checking
and correction (ECC) feature of the hardware to simulate cache misses. When
a cache line would be unavailable, its data are written with their incorrect ECC
bits; any reference to such a line causes a fault and trap into the operating system,
which can then simulate a coherence operation. Memory references to lines that
would be locally available (and of course, non-memory referencing instructions)
execute at full speed.

. There are also some very clever software techniques for managing and collecting
traces. [87] describes Mache,5 a scheme for compressing raw trace data by using
differences in addresses and maintaining several streams. Mache is typically able
to achieve a factor of 20 compression over raw, uncompressed traces.

5Pronouriced "Mash," like "cache."

12

1.3.5 Weak Coherence

Sequential consistency is a basic premise of the work. presented in this disserta­
tion. That is, memory is kept up to date in such a way that all processors reading
memory locations will see data that is consistent with some possible sequential
ordering of updates to the shared memory. There has been a considerable amount
of work done on relaxing this coherence model in order to improve system perfor­
mance. The cost of this weakening is that memory semantics as presented to the
runtime system (and most likely the applications programmer) are less intuitive;
on the other hand the performance benefits can be considerable.

The DASH multiprocessor system [69], as well as Munin use release consis­
tency [52]. In release consistency, updates are guaranteed to happen only at the
time that the lock protecting a given object is released, rather than when the write
is performed. Thus, any reads made to data that have been updated but whose
protecting lock has not been released mayor may not return the new value. In
particular it is possible that a writer updates variable A and then B, and a reader
reads B and then A and sees the new value for B but not for A. In a sequentially
consistent machine, this would not be permitted. In DASH, there are special
hardware operations called fences that force all writes to complete. They must be
inserted by the programmer when locks are released. Since Munin is integrated
with the C++ language system, it is able to tell synchronization points by ex­
amining the program, and so it doesn't need any special hardware operations to
support release consistency.

-

-

-

-

2 Application Styles, Tracing
and the Application Set

13

When comparing components of a multiprocessor memory system such as the
cache line size, NUMA policy, or memory bandwidth it is helpful to vary as
little else as possible. However, performance of these systems depends heavily on
an external factor: the application being run on the system. Using synthetic or
unrealistic applications can invalidate the results of an otherwise correct study. In
practice there are very large differences in reference behavior between applications.

The application mix is fundamentally unlike factors such as the coherence
policy: while the policy is a part of the system being constructed, and may be
adapted with the system if it changes, the applications exist independent of the
system. The system-independence of applications is mitigated somewhat by the
fact that the reference behavior of an application depends on the compiler and
system-supplied runtime libraries, and because programmers sometimes tune ap­
plications to machines, but by and large what the applications do and how they
work is determined a priori. Therefore the application mix used in a trace study
is of great importance, and must be selected with some degree of care.

An alternate to real applications is to use synthetically generated traces to
drive the simulation. I chose not to use this method because I believe that it
can very easily lead to results that are primarily dependent on the way in which
the traces were generated rather than on the underlying system being studied.
In particular, subtle things like false sharing can have a tremendous effect on
program performance, yet are hard to describe as parameters to a trace generator
(see Chapter 7 for a description of false sharing.)

This chapter contains a description of the various programming styles used to
write the applications in my trace suite, the tracing method employed, and the
applicatioI).s themselves.

14

2.1 Application Programming Styles

The applications used here are written in three basic styles: C-threads, EPEX
and Presto. Each style has a characteristic method of expressing parallelism and
distributing data. This section describes the styles and comments on the effect
they have on the applications written in them.

2.1.1 C-Threads

C-Threads [37] is the method of writing parallel C [61] programs provided with
the Mach system. It is implemented as a library of C functions that build multi­
threaded semantics on top of the Mach task and thread abstractions. In addition,
it provides a set of primitives for synchronization of threads, some of which are
implemented using the Mach interprocess communication system, and some of
which use shared memory operations, primarily test-and-test-and-set based spin
locks.

In a sense, C-Threads doesn't place much in the way of limitations on the
style in which programs are written. More or less any type of parallelism can be
expressed in C-Threads, from very fine-grained sharing with little data locality,
to what amounts to a message passing system with no memory sharing at all.
However, the particular C-Threads programs in the application set are in two
basic categories: those written for the ACE or Butterfly, and those from the
SPLASH [88] benchmark suite. The SPLASH programs are mp3d, cholesky and
water. Ply trace was written specially for the ACE by Armando Garcia, matmul t
was written for the ACE by Bob Fitzgerald, and chip was modified to run on the
ACE by Fitzgerald. The remainder of the C-Threads applications were written
for the Butterfly.

The Bufferfly programs were written in the style that seemed to most naturally
express the parallelism inherent in the problem [47]. Most of them implement core
algorithms, rather than solving complete problems. Some of them have one large
data structure to which most memory references are made, and the problem sizes
are chosen so that the pieces used by any particular processor are in chunks of 4
kilobytes, the Butterfly pagesize. The natural layout for smaller data structures
is such that they can generate a lot of data communications activity if they are
not handled properly.

The SPLASH programs are more of a mixed bag. Two of them (cholesky and
mp3d) were not written with data locality in mind, and so in general have worse
performance.! They are not instances of programs whose parallel implementations
require a lot of communication between processors, and so they could have been

IMp3d has since been rewritten to improve locality.

-

...

-

-
-

15

written in such a way as to have better locality, and thus better performance.
Water differs in that some effort was made to increase per-processor locality, and
the main computation itself is more local. As a result, water performs better.

2.1.2 EPEX

EPEX [92] is a preprocessor that allows programmers to explicitly parallelize their
FORTRAN programs. The main EPEX facility allows the programmer to specify
that a DO loop executes in parallel, rather than serially as in normal FORTRAN.
It is the programmer's responsibility to ensure that there are no cross-iteration
dependencies (this stands in contrast to automatic or semi-automatic FORTRAN
parallelizers such as PTOOL [6] that attempt to make this guarantee themselves).

In the event that there are known cross-iteration dependencies, the EPEX
programmer is provided with synchronization calls that allow the elimination of
races between iterations.

The ACE version of the EPEX preprocessor generates one thread per proces­
sor, and schedules adjacent loop iterations for the same processor, thus giving
some hope of locality of reference, at least through the execution of a single par­
allelized loop. It does not attempt to do more complicated loop scheduling, and
in particular does not attempt to do memory-conscious loop scheduling, such as
that done by Markatos and LeBlanc [75J .

2.1.3 Presto

Presto [21] is a system for writing parallel programs in C++ developed at the
University of Washington. The Presto applications used here were written by
students at Rice University in a way that expressed the application's parallelism
naturally, but which paid no attention to issues of locality of reference. These
applications run many more threads than there are processors on the ACE, and
make no effort to partition the data in such a way that adjacent pieces are used on
a single processor. This lack of locality results in a large amount of false sharing,
and generally poor performance on machine models which do not have very small
memory gram SIzes.

The Presto programs in the application set and the Presto runtime system
were ported to the ACE and traced by Alan Cox.

2.2 Applications

This section contains a brief description of each of the applications, as well as a
size summary of each of the traces.

16

II Trace I References I Private Refs I File Size I Bytes/Ref I Reads II
e-fft 10.1 81.1 22 2.18 51%
e-simp 26.7 109 31 1.16 87%
e-hyd 41.3 445 67 1.62 77%
e-nasa 21.9 326 33 1.51 68%

gauss 270 0 477 1.77 83%
chip 413 0 772 1.87 68%
bsort 23.6 0 39 1.65 63%
kmerge 10.9 0 18.2 1.67 64%

ply trace 15.3 0 13 0.85 66%
sorbyc 104 0 114 1.10 79%
sorbyr 104 0 108 1.04 79%

matmult 4.64 0 9.8 2.11 97%
mp3d 19.6 0 24 1.22 57%

cholesky 38.4 0 40 1.04 77%
water 82.1 0 90.2 1.10 59%

p-gauss 21.7 4.91 30 1.38 65%
p-qsort 17.5 3.19 23 1.31 68%

p-matmult 6.81 .238 10.8 1.59 96%
p-life 55.9 8.0 91 1.63 76%

Table 2.1: Trace Sizes (In millions of data references and megabytes of filespace)

Table 2.1 enumerates the traces and specifies the size of each, as well as pro­
viding data regarding trace compression, which is discussed in section 2.3.2. Each
entry gives the length of the trace in millions of references. Applications written
under Presto or EPEX have regions of memory that are private to each proces­
sor. The number of memory references to these private regions is listed under the
heading "Private Refs" and not included in "References." Cost computations (as
described in Chapter 4) for applications that have private references in their traces
are modified to count each private reference as if it were made to local memory .. 1:

This is particularly important for the EPEX applications, in which a majority of
references are made to private regions. The last column of the table indicates the
fraction of the non-private references that were reads, as a percentage of the total
number of non-private references.

-

-
-
-

-
-

17

2.2.1 EPEX applications

There are four applications written in EPEX FORTRAN. They are e-fft. e-simp.
e-hyd, and e-nasa.

E-fft computes a fast Fourier transform of a a 256 by 256 array of floating
point numbers. In an independent study, Baylor and Rathi analyzed reference
traces from an EPEX fft program and found that about 95% of its data references
were to private memorY[13].

E-simp is a version of the simple benchmark [40], e-hyd is a hydrodynamics
program, and e-nasa is a program that computes airflow over a 3 dimensional
object.

The EPEX applications were collected by Bob Fitzgerald and Francesca Darema­
Rogers at IBM. The authors of these programs are unknown to me. Furthermore,
I don't have the sources for any but e-nasa, and even that is so poorly com­
mented as to make it nearly impossible to understand. It is clearly a program
that was once written on punched cards: it still has card identifiers in the right­
hand columns of the source.

2.2.2 gauss

Gauss is a simple Gaussian elimination program. It uses a 512 by 512 array of
unsigned, 4-byte integers and does not use partial pivoting. It is parallelized by
dividing the array into bands of rows and assigning one band per processor. Since
the bands are multiples of 4K bytes in size and are aligned, memory behavior is
fairly regular.

The main loop of gauss, which accounts for nearly all of the references in the
trace, is the following code fragment:

for(col = iter + 1; col < size; col++)
a[row][col]-=a[pivot][col] * factor;

The loop makes 5 reads and one write. The reads are of a, a [row] ,a[row] [col], -
a [pi vot] , and a [pi vot] [col], and the write is to a [row] [col]. It interesting
that the ACE compiler chooses to load a on each iteration through the loop: it is
being excessively conservative in that it is unlikely that the integer write in the
loop would be overwriting a, a pointer. The gee compiler for the 68020 does not
generate this load, and so has one less memory access in the main loop. Keeping
a [row] in a register would remove another memory reference from the inner loop.

Gauss is by Rob Fowler.

18

2.2.3 chip

Chi P is a program that attempts to minimize the amount of wire needed to connect
81 integrated circuit chips on a 9 by 9 board by moving the chips from place to
place. It does this minimization by using simulated annealing.

Simulated annealing works by considering moving a chip a distance determined
by a random function of the "temperature" and making that move if it results
in a situation in which the state after the move is better than it was before the
move. As time goes on, the system temperature is reduced, and only smaller
moves are considered, which is similar to the process by which metal is annealed
(hence the name). The technique is generally used as an approximation method
for NP-complete optimization problems. In the run used in the trace, a total of
643552 moves were considered, and 146670 of them were accepted.

Bob Fitzgerald did much of the work to get chip to run on the ACE, but I do
not know who is the original author.

2.2.4 bsort and kmerge

Bsort and kmerge are two parallel sorting programs. Both operate by dividing the
array to be sorted into one piece per processor; each of these pieces is heapsorted
by its respective processor.

After the initial sorts, the pieces are merged into a single resultant array. Bsort
does the merge in phases: in each phase, the regions are grouped into pairs; one of
the processors for the pair drops out of the merge, and the other merges the two
pieces, which are then considered a single piece for the next merge phase. When
all of the pieces are merged together, the array is sorted and the program exits.

Kmerge is similar to bsort, except that it uses a merge in which processors
don't have to drop out in each phase, so as to increase parallelism in the merging
process.

The number of 4 byte integers to be sorted in each program is such that they
divide evenly by the number of processors (8), and furthermore when so divided,
they fit evenly onto (4K) pages. There are 163840 numbers to be sorted in bsort
and 81920 inkmerge. Neither of the programs uses in-place merging, so there-is
twice as much memory used as is needed to hold the data; in each merge phase,
one copy is read and the other written. Much of the data is migratory between
phases, in large chunks.

These programs are described in detail in [7]. They were coded by Rob Fowler.
kmerge was based on an implementation by John Mellor-Crummey.

-

-
-
-
-
-
-

19

2.2.5 ply trace

Ply trace [49] is a floating-point intensive C-threads program for rendering artificial
images in which surfaces are approximated by polygons. One of its phases is
parallelized by using as a work pile its queue of lists of polygons to be rendered.
Unfortunately, a straightforward implementation led to poor speedup, because the ..
amount of work needed to render a given polygon varies greatly from polygon to
polygon. Thus, before the parallel phase begins the list of polygons to be rendered
is sorted in decreasing order of expected time-to-render, thus improving speedup.

Plytraee is by Armando Garcia; he wrote it to run on the ACE.

2.2.6 sorbyr and sorbyc

These programs employ successive over-relaxation [81], evaluating LaPlace's equa­
tion to compute the steady state temperature of the interior points on a piece of
metal, given the temperature of the edges. The piece of metal is represented by
an array of horizontal strips. Each horizontal strip is an array of doubles. This
method of data allocation is used instead of a single two dimensional array so that
each row could be allocated to its own page.

SOR is a red/black algorithm. Imagine the piece of metal as a checkerboard.
Each point is a square, and the squares are colored red and black as on the
checkerboard. Each red square's orthogonal neighbors are black, and vice versa.
A particular phase of the computation updates only the red or black squares; the
subsequent phase updates the other color. The phases are separated by barriers.
The computation is such that the new value of a square depends only on its
orthogonal neighbors. Therefore, there are no data dependencies within a red or
black phase. The process of updating one color and then the other occurs a fixed
number of times, and the program exits.

SOR is parallelized by splitting the piece of metal into horizontal bands (com­
posed of several "strips" which are single array rows), with one band allocated to
each processor. In the traces used here the array is 406 elements square. Since
there are seven processors, each processor has a band 58 rows wide. The inter­
esting memory behavior of the program lies in what it does near the -edges of the
bands. The value of the squares in an edge row depend on those just past the
edge. Thus, edge pages are used by more than one processor.

The difference between sorbyr and Borbye is the order in which they update
their squares. sorbyr processes a row at a time, while sorbye operates by columns
within a band. The effect of the difference in order of computation is that the
grain of sharing for the boundary rows is much more coarse in Borbyr, because all
processors are at the top of their band (and so using the bottom of their upward
neighbor's band) at the same time, while references roughly alternate in sorbye.

20

These programs were coded by Alan Cox and Rob Fowler; I adapted them to
run on the ACE.

2.2.7 matmult

Matmul t is a simple matrix multiplication. Two source arrays are multiplied to
produce a product array. The arrays are of size 200x200. As opposed to the more
traditional floating point operations, matmul t only uses integer arithmetic. This
was done primarily to avoid having the execution time be dominated by the (fairly
slow) floating point unit on the ACE when the program was being used for timing
studies. In the trace studies the only effect of using integer rather than floating
point is that integers are 32 bits, while double precision floating point numbers
are 64.

matmult is written using the ACE parallel timing facility, which means that in
the trace the multiplication is run twice on a single processor, and then once for
each number of processors from seven to one. That is, there are really 9 matrix
multiplications being run with differing numbers of processors (three of the runs
are on just one processor).

This program was written by Bob Fitzgerald for the ACE.

2.2.8 mp3d

mp3d is a SPLASH program that computes rarefied fluid flow using a Monte-Carlo
method. It considers the movement of an object (say, a wing) through a region of
space, which is represented by a collection of cubic "cells." Movement is simulated
by introducing fluid molecules at the front of the simulated region with a backward
velocity. When molecules travel out the back end of the simulated space, they
are recycled at the front. Molecules that occupy the same cell at the same time
may collide, with results depending on the translational and rotational velocities
of the molecules.

The program is parallelized by statically assigning molecules to processors. At
-each time step, each processor updates its molecules' location and velocity, and .. -.
modifies the space array to indicate the molecules' new-positions. Thus, there is ,--­
some processor locality in the molecule array, but it is not allocated in such a way
that each processor's piece is aligned, so there may be some false sharing around
the edges of a processor's region. There is essentially no locality beyond the size of
a single molecule in the space array, since any molecule (and hence the references
made by its processor) may exist in any location in the simulated space.

-

-

-
-

-
-

-

21

2.2.9 cholesky

This program is from the SPLASH application set. It performs a Cholesky fac­
torization of a sparse matrix, using the supernodal fan-out method described in
[85]. The program is parallelized by use of a parallel work queue: as a supernode
is processed, it may result in other supernodes becoming ready to process, and if
so they are placed on the global task queue. When the queue empties, the job is
complete. The only synchronization is on the task queue.

This program makes no effort to enforce data locality, so while the grain of
real data communication is fairly large (it is at least the grain of a single task
from the work queue) much apparent (false) sharing can occur because memory
references to colocated portions of the sparse matrix are essentially random.

2.2.10 water

Water solves an N-body molecular dynamics problem. Specifically, it determines
a variety of static and dynamic properties of liquid water. It is a C language
translation of a FORTRAN program from the Perfect Club benchmark set [20].
To reduce the complexity of the N-body problem, only the forces from molecules
within a certain radius of the molecule currently being updated are considered.

The main data structure is an array of per-molecule structures, containing
various information describing the state of the molecule and its constituent atoms.
The process is parallelized by assigning a set of molecules to a given processorj
that processor computes the resultant forces on those molecules in each time step.
Locality is maintained by ordering the molecules in the input stream in such a way
that molecules that are spatially close to one another (and so strongly interacting)
are near to one another in the input array, and so likely to be handled by the same
processor.

At first blush, this program seems as if it would have locality characteristics
very similar to those of mp3d. However, observed performance (see figures A.ll
and A.12) is radically different, indicating that water has much greater locality
of reference than does mp3d. Consider what happens in mp3d: molecules are mov­
ing rapidly through the simulated space, and there is no problem-spatial locality ..
to each of the processors. Therefore, mp3d's space array is effectively randomly
accessed. Water, on the other hand, has molecules which move more slowly, and
which are grouped problem-spatially onto processors. Furthermore, water does
much mor~ computation per time step, much of which is local to a particular
molecule. All of these things add up to less sharing (both true and false) and
better overall performance than in mp3d.

Water was modified from the SPLASH suite to run on the ACE by Cezary
Dubnicki.

22

2.2.11 p-gauss

P-gauss is a Gaussian elimination program, much like gauss, except that its
array is 100 by 100 elements, and it is parallelized by forking one thread per
column instead of one thread per processor, with each thread processing a block
of columns.

2.2.12 p-qsort

The quicksort algorithm [56] operates by a divide and conquer strategy: to quick­
sort an array segment, select a pivot element, partition the array so that all
elements less than the pivot are to its right and all greater than the pivot are to
its left, and then quicksort the two resulting partitions. This final recursive step
provides for a natural parallelization: simply quicksort the two resultant partitions
in parallel.

P-qsort does just this, with the exception that when the size of a partition is
10 or less, it serially bubble sorts the partition instead of recursing. In the trace
used here, p-qsort operated on an array of size 20,000 integers, resulting in 2000
threads. These threads are essentially randomly assigned to processors, resulting
in very little locality of reference, and hence bad performance for machines in
which the page (or coherent cache line) size is not as small as 10 words. Perfor­
mance would be greatly improved simply by placing threads on processors in such
a way that adjacent sections of the array were handled by a single processor.

2.2.13 p-matmult

P-matmul t is a parallel matrix multiply program, similar to matmul t. The primary
differences are that (1) the program is parallelized by assigning one thread for
each row of the resultant array rather than one per block of resultant rows; (2)
the arrays being multiplied are 100 elements square; and (3) the multiplication is
run only once.

2.2.14 p-life

P-life is an implementation of Conway's game of life [51]. It computes 500
generations of a 42 by 42 cell world. Unlike the other Presto applications, it
uses only one thread per processor, and divides the work up into bands of the
array. However, since the array is so small relative to the number of processors
the locality of reference is still poor.

-

-

-
-

23

2.3 The ACE Tracer

Trace analysis is only as valid as the traces on which it is performed. Therefore,
it is important to have a good understanding of the method used to gather the
traces and what effect the tracing process had on the applications being traced.

All of the traces used here were gathered on the IBM ACE Multiprocessor
Workstation. The ACE is described in detail in section 3.1.1. Briefly, it is an eight
processor shared bus NUMA machine in which one processor is usually dedicated
to handling Unix system calls. It runs a special version of the Mach operating
system; the interesting changes made to Mach for the ACE are the subject of
Chapter 3.

The software used to collect the traces is known as the "tracer." It consists
of two major components: a set of patches to the kernel's trap handler, and a
program, trace-Baver, that packages and saves the references obtained by the
kernel from the traced application.

2.3.1 Kernel Modifications to Support Thacing

The tracer operates by single stepping all threads within the traced application,
decoding each instruction executed and recording it and any memory references
made by that instruction. These memory references are recorded in a buffer, and
when the buffer fills trace-Baver is awakened to empty it.

All executed instructions, regardless of whether they reference memory, are
written into the kernel buffer. This prevents threads that vary in the fraction of
instructions that reference memory from running at different speeds, but slows
the overall execution somewhat by increasing contention for the buffer lock, and
filling the trace table faster even if the recorded instruction references are later
ignored by trace-Baver.

The trace buffer consists of 2000 entries. Each entry describes a single executed
instruction: the address of the instruction, the address of the memory reference
made by the instruction (if any), whether that reference was a read or write,
the length of the reference and whether the reference was due to DMA by the
68881 floating point processor [80]. The ACE's ROMP processor does not support­
any memory-to-memory operations, and restricts the number of bytes of memory
affected by anyone instruction to one of 1, 2, 4 or a multiple of 4 up to 64.
Therefore only a single address is allocated per instruction in the buffer, and only
a few bits "are needed to record the length of the reference.

It is desirable to detect which references in a trace are due to spinning syn­
chronization, because it is reasonable to believe that if the same program were
run on a machine in which a remote memory access took much longer, then fewer

24

references would occur per spinning event (though the spinning may take the same
amount of time) or, more likely, synchronization would be implemented without
remote spinning [77].

The ROMP processor has support for synchronization in the form of a test-
'r"> ". and-set instruction. To detect the addresses that were targets of a test-and-set, I

modified the kernel to recognize a certain otherwise invalid opcode, and modified
the application program binaries to replace the normal test-and-set operation with
this (otherwise) illegal opcode. When that opcode was executed, the program
took a trap which was caught by the kernel. The instruction was decoded and the
address referenc:ed by the test-and-set was determined. If that address had not
previously been used as the target of a test-and-set, it was printed and added to
a list of already seen test and set targets. The actual test-and-set operation was
executed on behalf of the user, its result stuffed into the appropriate user register
and the program resumed.

It would have been easier, and preferable, to have the tracer itself print the test­
and-set references when they occurred during tracing. This would have relieved me
from the sometimes burdensome task of disassembling and modifying the binary
of each target program. I didn't do this because most of the traces were already
collected before the need for finding synchronization references became clear. Even
if the tracer had produced this list, I would still have had to post-process the trace
to remove references made to synchronization locations by normal instructions.

2.3.2 The trace_saver Program

The trace-Baver program is the user side ofthe ACE tracer. Its primary function
is to empty the data from the kernel's buffer, compress it, and write it into a file
to be used later during trace analysis. Two types of compression are done to the
trace file. First, the memory references are per-stream offset encoded. What this
means is that a set of 32 addresses is kept inside trace-Baver. These addresses
are the last read, the last instruction fetch, and two different writes from each of
the eight processors. Whenever a new memory reference is to be saved, if it is an
instruction fetch or a read, it is saved as an offset from the appropriate stream.
If it is a write, it is stored as an' offset from the write stream whose address is
closest to that of the write. The offsets are saved in one of four formats: 1 bit
(the reference was either 2 or 4 bytes higher than the last one in the stream), 1
byte (signed), 2 bytes or a complete 4 byte address rather than an offset. This
streams-b~ed compression method was inspired by Mache [87].

To make the created trace files more manageable, they are broken into pieces
automatically by trace-Baver. These pieces are then compressed using the Unix
compress facility. The final trace files for the application set vary in size from 0.8
to 2.2 bytes/reference, with the mean being about 1.4. If the instruction fetch

-

-
-
-
-

-
-
-
-

-
-

25

references had been saved, the average would have been lower, because instructions
tend to be very regular in their patterns, and are normally encodable in the I-bit
offset format. The compression achieved by the ACE tracer is shown in Table 2.l.

Ply trace has a very good compression rate. There are two reasons for this: it
has very tight spatial locality in that 72% of its references were stored in the 1-bit
or I-byte format, and 55% of its references were made by one processor (many
of these came during serial phases of the rendering operation). The good spatial
locality results in a smaller number of bytes for compress to compress, and the
large serial section improves the compression that compress achieves because the
"processor number" section of the references is the same in many cases.

Conversely, e-fft and matmul t used more than 2 bytes/reference. Matmul t
achieved such poor compression because its main loop performed two memory
references: read a value from each of the two source arrays. These arrays were
more than 32 kilobytes apart (since they are much larger than that themselves),
and since the compression scheme allowed for only one read stream per processor,
each of the references in the main loop generated a trace entry of the full-address
format. In fact, 97% of the references in matmult are in the long format. E-fft
is a different matter. Volhile its trace is biased toward the longer offset types, it
is not nearly so severe as that for matmult. However, compress did an unusually
poor job on e-fft, resulting in the overall bad compression. Compress's poor
performance is probably due to the very even distribution of reads and writes,
and the even distribution of references from each processor, which resulted in a
more heterogeneous input to compress, and so a worse compression ratio. How­
ever, I have not performed a more in-depth analysis of the situation to test this
hypothesis.

26

3 Implementation of a Simple
Kernel-Based NUMA System

This chapter describes an operating system kernel that implements software co­
herence through virtual memory mapping hardware. It was built as an initial
attempt at a solution to the NUMA problem, and the lessons learned in the im­
plementation (and, more importantly, the things that could not be determined
from the implementation) served to motivate the trace studies that comprise the
bulk of this dissertation.

The machine used for this work is an IBM ACE multiprocessor worksta­
tion [50]. It is an eight processor, shared bus machine with memory associated
with each processor and also "global" memory that is slower to access than a pro­
cessor's own memory, but faster than that of another processor. The coherence
software was embedded in the machine dependent layer of the Mach [1, 84] virtual
memory system, which eased the implementation greatly.

The ACE kernel has a simple mechanism to automatically assign pages of
virtual memory to appropriately located physical memory. By managing locality
in the operating system, it hides the details of the specific memory architecture,
so that programs are more portable. It also addresses the locality needs of the
entire application mix, a task that cannot be accomplished through independent
modification of individual applications. Finally, it provides a migration path for
application development. Correct parallel programs will run on the ACE without
modification. If better performance is desired, they can then be modified to
better exploit automatic page placement, by placing into separate pages data
that are private to a process, data that are shared for reading only, and data
that are writably shared. This segregation can be performed by the applications
programmer on an ad hoc basis (using a system such as Munin [19]) or, potentially,
by special language-processor based tools.

The strategy for page placement is simple, and was embedded in the machine­
dependent portions of the Mach memory management system with only two man­
months of effort and 1500 lines of code. It uses local memory as a cache for global
memory, managing consistency with a directory-based ownership protocol similar
to that used by Li [72] for distributed shared virtual memory. Briefly put, it

.-

-

-

-
....,

-
-

-

27

replicates read-only pages on the processors that read them and moves written
pages to the processors that write them, permanently placing a page in global
memory if it becomes clear that it is being written routinely by more than one
processor.. Specifically, it assumes when a program begins executing that every._
page is cacheable, and may be placed in local memory. It declares that a page is
noncacheable when the consistency protocol has moved it between processors (in
response to writes) more than some small fixed number of times. All processors
then access the page directly in global memory.

It is likely that simple techniques can yield most of the locality improvements
that can be obtained by an operating system. The ACE results, though limited to
a single machine, a single operating system, and a modest number of applications,
support this intuition, as do the results presented in Chapter 5. The ACE kernel
achieved good performance on several sample applications. For some of the others,
it is unlikely that any change in the kernel policy would result in significantly
better performance. Rather, the data sharing patterns of the applications need to
be modified to improve performance, for example by changing the way in which
data are grouped into pages in order to reduce false sharing.

The ACE NUMA management system was built in the summer of 1988, which
was roughly contemporary with the the early work on PLATINUM [39] and the
work that led to the DUnX system at Duke University [63]. The ACE work is
distinguished by its emphasis on simplicity, and by its use of a machine that has
global memory, no block transfer hardware and a relatively small penalty to access
non-local memory. The impact of architectural parameters on coherence policy
design is discussed in Chapter 5 .

The kernel implementation is described in Section 3.1. This discussion in­
cludes a brief overview of the Mach memory management system and the ACE
architecture. Performance measurements are presented in section 3.2. Section 3.3
discusses implementation experience.

3.1 Implementing Software Coherence on the
ACE

The project to implement software coherent memory on the ACE was intended
to be a short term endeavor. As a result, it was necessary to keep the design
of the coherence system as simple as possible. At the time that the coherence
work was begun, Mach version 2.0 was already running on the ACE. It dealt with
the ACE's distributed memory by using the per-processor local memories only for
(kernel and user) code, but no writable data. It seemed easiest to make the fewest
modifications to the kernel that would still enable writable data to reside in the
local memories.

28

There were two primary results of the limited schedule for the ACE project.
First, all of the code to handle memory coherence was written as part of the
machine dependent virtual memory code. This is not, in general, an inappropriate
place for it, except that this design decision resulted in all coherence-generated
faults going through the entire Mach machine independent fault process: checking
to see if they should generate a user exception, if they necessitate a copy-on-write,
and finally what the "physical" address for the faulting virtual address should be.
For coherence-related faults, none of this is necessary: there should be no user
exception, and no copy-on-write, and the coherence mechanism itself could much
more easily keep track of the reallocation of pages. These things do not change the
functionality of the software coherence, nor do they affect the coherence policy
which is implemented. However, there is a performance penalty for doing this
extra work.

The second design decision that resulted from expediency was that the local
memories would be treated as a cache of the ACE's global memory. The effect of
this decision is that, though a fully configured ACE contains a total of 80 Mbytes
of memory (8 Mbytes at each of 8 processors and 16 Mbytes of global), to the
user it appeared as if the machine had only 16 Mbytes, and if more was used it
would begin paging (a truly slow operation on the ACE). The main reason for
limiting the machine-independent memory to the size of the global page pool was
that there was no way (at the time) to modify the Mach virtual memory system
to understand a "physical" memory that changes in size over time. However, if
local memories were not simply treated as caches then as the degree of replication
changed, the number of machine-independent "pages" available would similarly
change. Rather than modify Mach's virtual memory system, we accepted the
limitation on the amount of available memory.

The rest of this section describes the ACE system architecture, the importa.nt
aspects of Mach's virtual memory system, and the changes made to the Ma.ch
machine dependent virtual memory code to implement coherence.

3.1.1 The IBM ACE Multiprocessor Workstation

The ACE Multiprocessor Workstation [50] is a NUMA machine built at the
IBM T. J. Watson Research Center from 1986 to 1988. Each ACE consists of a set
of processor modules and global memories connected by a custom global memory
bus (see Figure 3.1). Each ACE processor module has a ROMP-C processor [59],
Rosetta-C. memory management unit and 8Mb of local memory. Every proces­
sor can address any memory, with non-local requests sent over a 32-bit wide,
80 Mbyte/sec Inter-Processor Communication (IPC) bus designed to support 16
processors and 256 Mbytes of global memory.

Packaging restrictions prevent ACEs from supporting the full complement of

\.,."

-

-

-

-..

-

-

-

..

-

29

processor processor

local • • • local mmu memory mmu memory

/ I '-

" I I /

global ••• global
memory memory

Figure 3.1: ACE memory architecture

memory and processors permitted by the IPC bus. The ACE backplane has nine
slots, one of which must be used for (up to) 16 Mbytes of global memory. The
other eight may contain either a processor or 16 Mbytes of global memory. Thus,
configurations can range from 1 processor and 128 Mbytes to 8 processors and 16
Mbytes, with a "typical" configuration being the latter.

The measured time for a 32-bit fetch or store of local memory is 0.6511s and
0.84I1S, respectively. The corresponding times for global memory are 1.511S and
l.4I1S. Thus, global memory on the ACE is 2.3 times slower than local on fetches,
1. 7 times slower on stores, and about 2 times slower for reference mixes that are
45% stores. These times were measured by writing a program that did a large
number of the operation in question, measuring the wall clock execution time of
the program and then dividing by the number of operations. The measured times
are not necessarily an even multiple of the processor cycle time because not every
execution of a particular operation takes the same number cycles, because of bus
and memory contention. ACE processors can also reference each other's local
memories directly, but the ACE kernel does not use this facility.

The ACE does not have caches for its memories (excepting a very small on-chip
instruction cache). Neither does it have special hardware to support synchro­
nization operations: the only support provided is that the ROMP test-and-set
operation operates properly on non-local memory, and 32 bit reads and writes
are guaranteed to be atomic, by virtue of the bus being 32 bits wide. There is '. ~
also no hardware support for a fast "block transfer" operation on the ACE bus:·
the fastest way to move data from one memory to another is simply to map the
appropriate memories and use the C library bcopy(3) routine.

Since the bus has such high bandwidth and low latency relative to the processors , 1

there is little bus contention on the ACE. Furthermore, there is little time spent
contending for the global memory. This is borne out by changing from a single­
bank global memory to a two bank memory, and observing that the execution time

1 ACE processors benchmark at 4320 dhrystones/second using dhrystone 1.1.

30

of programs on the ACE was essentially unchanged. If there had been much con­
tention for the memory, then adding a second memory bank should have roughly
halved the time spent waiting due to contention. Since this did not happen, it

, appears that contention is not a major contributor to execution time on the ACE.

3.1.2 The Mach Virtual Memory System

Perhaps the most important novel idea in Mach is that of machine-independent
virtual memory [84]. The bulk of the Mach VM code is machine-independent and
is supported by a small machine-dependent component, called the pmap layer,
which is intended to manage address translation hardware including such things
as translation lookaside buffers (TLBs), TLB reload mechanisms, and page tables.
The pmap interface separates the machine-dependent and machine-independent
parts of the VM system.

A Mach pmap (physical map) is an abstract object that holds virtual to phys­
ical address translations, called mappings, for the resident pages of a single virtual
address space, which Mach calls a task. The pmap interface consists of such pmap
operations as pmap_enter, which takes a pmap, virtual address, physical address
and protection, and maps the virtual address to the physical address in the given
pmap with the given protectionj pmap_protect, which sets the protection on all res­
ident pages in a given virtual address range within a pmapj pmap_remove, which
removes all mappings in a virtual address range in a pmapj and pmap_remove_all,
which removes a single physical page from all pmaps in which it is resident. Other
operations create and destroy pmaps, fill pages with zeros, copy pages, etc. The
protection provided to the pmap~nter operation is not necessarily the same as
that seen by the user; Mach may reduce privileges to implement copy-on-write or
the external paging system [103].

A pmap is a cache of the mappings for an address space. The pmap manager
may drop a mapping or reduce its permissions, e.g. from writable to read-only, at
almost any time. This protection reduction may subsequently cause a page fault,
which will be resolved by the machine-independent VM code resulting in another
pmap_enter of the mapping. This feature had already been used on the IBM
RT fPC, whose memory management hardware only allows a single virtual address
for a physical page, and must drop the old mapping for a physical page when itis ,
mapped into a second address space. On the ACE, reduction of permissions and
dropping of mappings is used to drive the coherence protocol. While it would be
possible to determine if a given fault was due to a coherence protection reduction
before handing it off to Mach's fault handler and so avoid calling Mach at all,
this would have added unnecessary complexity to the (prototype) system. In
a production quality system, we would have done this short-circuiting to save

,., time. Nevertheless, Mach's ability to handle such "unexpected" faults without
complaint considerably eased the coding effort.

-

-

-

-
-

-
-
-

-

31

Mappings can be dropped, or permissions reduced, subject to two constraints.
First, to ensure forward progress, a mapping and its permissions must persist
long enough for the instruction that faulted to complete. Second, to ensure that
the kernel works correctly, some mappings must be permanent. For example,
the kernel must never suffer a page fault on the code that handles page faults.
Because of this second constraint, the ACE coherence system does not handle
kernel memory: all kernel data pages are wired in global memory. Again, in a
production quality system this decision would have to be revisited.

Mach views physical memory as a fixed-size pool of pages. It treats this pool
as if it were real memory with uniform memory access times. It is understood that
in more sophisticated systems these "machine independent physical pages" may
represent more complex structures, such as pages in a NUMA memory or pages
that have been replicated. Unfortunately, at the time that the ACE kernel was
implemented there was no provision for changing the size of the page pool dynam­
ically, so the maximum amount of memory that can be used for page replication
must be fixed at boot time.

3.1.3 The ACE pmap layer

The pmap layer for the ACE is composed of 4 modules (see Figure 3.2): a pmap
manager, an MMU interface, a NUMA manager and a NUMA policy. Code for the
first two modules was obtained by dividing the pmap module for the IBM RT fPC
into two modules, one of which was extended slightly to form the pmap manager,
and the other of which was used verbatim as the MMU interface. The pmap
manager exports the pmap interface to the machine-independent components of
the Mach VM system, translating pmap operations into MMU operations and
coordinating operation of the other modules. The MMU interface module controls
the Rosetta hardware. The NUMA manager maintains consistency of pages cached
in local memories, while the NUMA policy decides whether a page should be
placed in local or global memory. There is only one policy, which seems to work
well for many applications, but should the need arise it would be easy to substitute
another policy without modifying the NUMA manager.

The NUMA Manager

ACE local memories are managed as a cache of global memory. The Mach
machine-independent page pool, which is called logical memory, is the same size
as the ACE global memory. Each page of logical memory corresponds to exactly
one page of global memory, and may also be cached in the local memory of one
or more processors. A logical page is in one of three states:

32

Mach machine-independent VM

1
pmap interface- - - - - - - - - - - - -

pmap manager

mmu interface NUMA manage

-
NUMA policy

Figure 3.2: ACE pmap layer -

-

-

-
-
-
-
-

-

33

• read-only - may be replicated in zero or more local memories, must be
-protected read-only. Global copy is up to date.

• local-writable - in exactly 1 local memory; may be writable. Global copy
is stale.

• global-writable - only in global memory; may be writable by zero or more
processors.

It is important to keep in mind the different levels in which protection operates
in this system, and the interplay between them. A page is user read-only if the
user has specified to the kernel that any write operations to that page should cause
an exception, which will normally result in the program failing. Pages containing
code (instructions) are the most common member of this class. A page is VAf
read-only if the Mach machine independent virtual memory system has decided
that the page should be read-only, or if the page is user read-only. This occurs
either when the page is user read-only or when Mach has the page copy-on-write.
A page is coherence read-only when the ACE coherence system determines that
the page should not be writable in order to maintain memory coherence, or the
page is VM read-only. These three levels of protection form a hierarchy: all user
read-only pages are VM read-only, and all VM read-only pages are coherence
read-only.

A page that is VM writable (ie., not VM read-only) may go through various
logical page states. It may be read by several processors for a time, and be
coherence read-only. Then, it may be written by a sequence of processors and
be local-writable in the memory of each writer in turn. Finally, it may become
global-writable and be shared read/write by any processors that use it. These
transitions are driven by the behavior of the processors using the page and the
choices of the coherence policy.

The policy is implemented by the NUMA policy module through its interface to
the NUMA manager. This interface consists of a single function, cache_policy, that
takes a logical page and protection and returns a location: LOCAL or GLOBAL.
Given this location, the current known state of the page, and whether the faulting
reference was a read or a write, the NUMA manager then takes the action indicated
in figure 3.3. The three states in -the finite state machine correspond to the the
possible logical page states. The transitions are labeled with 1) whether the
transition should be followed on a read, write or both, and 2) the policy choice
needed to invoke the transition. In the case of transitions out of the Local Writable
state, the' arcs are additionally labeled with whether the reference was local or
remote.

These NUMA manager actions are driven by requests from the pmap manager,
which are in turn driven by page faults handled by the machine-independent VM

34

system. These faults occur on the first reference to a page, when access is needed
to a page unmapped (or marked read-only) by the NUMA manager, or when a
mapping is removed due to the memory management chip's restriction of only one
virtual address per physical page per processor.

When -uninitialized pages are first touched, Mach fills them with zeros in the
course of handling the initial zero-fill page fault. It does this by calling the
pmap-zero_page operation of the pmap module. The page is then mapped us­
ing pmap.-enter and processing continues. Since the processor using the page is
not known until pmap.-enter time, the ACE kernel lazy-evaluates the zero-filling
of the page to avoid writing zeros into global memory and immediately copying
them.

Any, Global

Local Read/Any Write, Local

Write, Local

Read/Write, Global

Read, Local

Figure 3.3: NUMA manager actions to maintain coherence

A Simple NUMA Policy That Limits Page Movement

In the ACE pmap layer, the NUMA policy module decides whether a page should
be placed in local or global memory. There is only one implemented policy (other

-

-

-,

-
-

-'
....

35

than those used to collect baseline timings; see section 3.2). It operates by limiting
the number of times a page may be invalidated. When a page is referenced, it
is replicated or migrated to the processor making the reference, until it has been
invalidated a certain number of times, at which point it is frozen in global memory.
Read-only pages are thus replicated and private writable pages are moved to the
processor that writes them. Pages that are shared and written are eventually
detected as such and frozen in global memory. The default number of invalidations
allowed before freezing a page is four.

In terms of Figure 3.3, the policy answers LOCAL for any page that has not
used up its threshold number of page moves and GLOBAL for any page that has.
Once the policy decides that a page should remain in global memory, the page is
said to be pinned.

Changes to the Mach pmap Interface to Support NUMA

Experience with Mach on the ACE confirms the robust design of the Mach pmap
interface. Although the machine-independent paging interface was not designed
to support NUMA architectures, the automatic NUMA page placement policy was
implemented within the pmap layer with only three small extensions to support
pmap-Ievel page caching:

• pmapJree-page operations,

• min-max protection arguments to pmap...enter, and

• a target processor argument to pmap_enter.

The original machine-independent component of the Mach VM system did
not inform the pmap layer when physical page frames were freed and reallocated.
This notification is necessary so that cache resources can be released and cache
state reset before the page frames are reallocated. The notification is split into
two parts to allow lazy evaluation. When a page is freed, pmapJree_page starts
lazy cleanup of a physical page and returns a tag. When a page is reallocated,
pmapJ'ree_page..sync takes a tag and waits for cleanup of the page to complete.
Since Mach usually keeps a reasonable sized pool of free pages, and manages this
pool as a FIFO queue, the pmapJree-page..sync operation normally does not need
to block, because ample time has elapsed since the pmapJree_page was issued.

The second change to the pmap interface was to add a second protection
parameter. to pmap...enter. Pmap...enter creates a mapping from a virtual to a
physical address. As originally specified, it took a single protection parameter
indicating whether the mapping should be writable or read-only. Since machine­
independent code uses this parameter to indicate what the user is legally permitted
to do to the page, it can be interpreted as the maximum (loosest) permissions

36

that the pmap layer is allowed to establish. The new parameter indicates the
minimum (strictest) permissions required to resolve the fault. The ACE pmap
module is therefore able to map pages with the strictest possible permissions­
replicating otherwise writable pages that are not being written by making them
read-only· for the purpose of maintaining coherence. Subsequent write faults will
make such pages writable after first eliminating replicated copies. If the change to
pmap_enter were added to the Mach specification, the pmap layers of non-NUMA
systems could avoid these subsequent faults by initially mapping with maximum
permISSIOns.

The third change to the pmap interface reduced the scope of the pmap..enter
operation, which originally added a mapping that was available to all proces­
sors. Mach depended on this in that it did not always do the pmap...enter on
the processor where the fault occurred and might resume the faulting process on
yet another processor. Since NUMA management relies on understanding which
processors are accessing which pages, it was necessary to eliminate the creation
of mappings on processors that did not need them. Therefore, a parameter was
added to pmap_enter that specified which processor needed the mapping.

3.2 Performance Results

Given the implementation of the ACE NUMA kernel as previously described, it
is desirable to be able to measure how well it is doing. Several sorts of questions
are apparent: is the NUMA policy well chosen? Is it worth switching policies for
different applications? Was it wise to avoid the use of the ACE's remote reference
capability?

3.2.1 Evaluating Page Placement

The primary goal here is to determine the effectiveness of the NUMA policy at
placing pages in the more appropriate of local and global memory. Since most
reasonable NUMA systems will replicate read-only data and code, only writable
data is considered. Consider the following definitions of execution time:

• Tnuma is total user time (process virtual time as measured by the Unix
time(l) facility) across all processors when running the ACE NUMA strat­
egy ..

• Toptimai is total user time when running under a page placement strategy
that minimizes the sum of user and NUMA-related system time using future
knowledge.

-

-

-

-

...

-

-

-
... -

-

37

• T/oea/ is the total user time of the application, were it possible to place all
data in local memory .

• Tg/obal is total user time when running with all writable data located in global
memory.

Tnuma is easily measured by running the application under the normal NUMA
policy. Tg/oba/ is measured by using a specially modified NUMA policy that places
all data pages in global memory.

It would have been best to compare Tnuma to Toptimal, but it was not possible
to measure the latter in a real implementation (though the trace simulations in
the latter chapters attempt to do just this), so it was compared to T/oca/ instead .
T/oca/ is less than Toptima/ because references to shared data in global memory
cannot be made at local memory speeds. T/oeal thus cannot actually be achieved
on more than one processor in most cases. T/oea/ was measured by running the
parallel applications with a single thread on a single processor system, causing all
data to be placed in local memory. Single threaded cases were run because many
of applications synchronize their threads using non-blocking spin locks. \\Tith
multiple threads time-sliced on a single processor, the amount of time spent in a
lock would be determined by this time-slicing, and so would invalidate the user
time measurements. The applications that spend much time contending for locks
(such as sorbyr and sorbyc) are not included in this analysis.

Several members of the application set are not amenable to this type of anal­
ysis, and so are not included here. For example, bsort operates in two phases:
a sort phase and a merge phase. The amount of work done in the merge phase
depends on the number of processors doing the sorting. Therefore, the T/oca/

run would do a different amount of work from the Tg/oba/ and Tnuma runs, and
so be incomparable to them. Chip is a simulated annealing program, and so is
non-deterministic; it would also produce incomparable single- and multi-processor
runs. Applications with these sorts of problems are not included in Table 3.1.

A simple measure of page placement effectiveness, called the "user-time ex­
pansion factor ," I,

Tnuma = IT/oeal' (3.1)

can be misleading. A small value of I may mean that the page placement did
well, that the application spends little of its time referencing memory, or that local
memory is not much faster than global memory. To better isolate these effects,
consider the following model of program execution time:

Tnuma = T/oca/ {(I - (3) + f3 [a + (1 - a) ~]} (3.2)

Land G are the times for a 32-bit memory reference to local and global memory,
respectively. As noted in section 3.1.1, GIL is about 2 on the ACE (2.3 if all
references are fetches, 1. 7 if they are stores).

38

This model incorporates two sensitivity factors:

• 0 is the fraction of references to writable data that were actually made to
local pages while running under the ACE NUMA page placement strategy.

• f3 is the fraction of total user run time that would be devoted to referencing
writable data if all of the memory were local.

o resembles a cache hit ratio: "hits" are references to local memory and "misses"
are references to global memory. 0 measures both the use of private (non-shared)
memory by the application and the success of the NUMA strategy in making such
memory local. A "good" value for 0 is close to 1.0, indicating that most references
are to local memory. A smaller value indicates a problem with the placement
strategy or, as typically found in practice, heavy use of shared memory in the
application. If it were possible to use Toptima/ instead of T/ocal in Equation 3.2,
then an 0 of less than 1.0 would only measure errors in the placement rather than
the effects of sharing by the application.

f3 measures how much an application uses (non-instruction) memory, as op­
posed to operating in registers, branching and so forth. It depends both on the
fraction of instructions that reference writable memory and on the speed of the
instructions that do not (which itself is a function of local memory performance
and of processor speed). Small values of f3 indicate that the program spends lit­
tle of its time referencing writable memory, so the overall run time is relatively
unaffected by o.

In the Tg/obal runs, all writable data memory references were to global memory
and none to local, thus 0 for these runs was O. Substituting Tg/oba/ for Tnuma and
o for 0 in equation 3.2 yields a model of the all-global runs:

Tgloba/ = T/oca/ {(1 - f3) + f3 ~}

Solving equation 3.3 simultaneously with equation 3.2 for 0 and f3 yields:

Tgloba/ - Tnuma
0=

Tgloba/ - Trocal

f3 = (TgIOba/ - Troca/)(L)
T/ocal G - L

(3.3)

(3.4)

(3.5)

The use of total user time eliminates the concurrency and serialization artifacts
that show up in elapsed (wall clock) times and speedup curves. The goal of this
analysis is to evaluate the page placement strategy; that strategy is not responsible
for speedup effects, which by and large are determined by how the programmer
codes the program. The greatest weakness of the model is that, because it uses

-

-
....

-

-

--

-
,...

";--

-
-

39

Tiocal rather than Toptimal, it fails to distinguish between global references due to
placement "errors", those due to legitimate use of shared memory, and those due
to false sharing. The trace studies described in Chapter 5 distinguish placement
errors from (true and false) sharing, and evaluate the success of the ACE policy
on the entire application set.

On the whole, the evaluation method was both simple and informative. It was
within the capacity of the ACE timing facilities2 • It was not unduly sensitive to
loss of precision despite the arithmetic in Equations 3.4 and 3.5. It did require that
measurements be repeatable, so applications such as the simulated annealing in
chip were beyond it. It also required that measurements not vary too much with
the number of processors. Thus applications had to do about the same amount
of work, independent of the number of processors, and had to be relatively free of
lock, bus or memory contention.

3.2.2 The Application Programs

This section presents the measurements and computed values for the applications
that were amenable to alpha/beta analysis. In addition to applications included
in the trace suite of Chapter 2, several others are used in the analysis of the ACE.
Those applications are described here; the rest are explained in section 2.2. The
extra applications are three prime finders (Primesl-3), a program designed to
spend all of its time referencing global memory (Gfetch) and one designed not to
reference memory at all (ParMult). They are not used in the rest of this disser­
tation because Gfetch and ParMult are just intended as calibration tools, while
Primesl-3 were insufficiently interesting to warrant tracing and further analysis.

ParMult and Gfetch are at the extremes of the spectrum of memory reference
behavior. ParMult does nothing but integer multiplication. Its only data ref­
erences are for workload allocation and are too infrequent to be visible through
measurement error. Its f3 is thus 0 and its Q' irrelevant. The Gfetch program
does nothing but fetch from shared virtual memory. Loop control and workload
allocation costs are too small to be seen. Its f3 is thus 1 and its Q' is O. These two
programs are included primarily as a sanity check on the program performance
model, Equation 3.2.

The three primes programs use different parallel approaches to finding the
prime numbers between 1 and 10,000,000. PrimesI [16] determines if an odd
number is prime by dividing it by all odd numbers less than its square root and
checking for remainders. It computes heavily (division is expensive on the ACE)
and most of its memory references are to the stack during subroutine linkage.
Primes2 [29] divides each prime candidate by all previously found primes less
than its square root. Each thread keeps a private list of primes to be used as

2The only clock on the ACE is a 50Hz timer interrupt.

40

II Application I Tg/oba/ Tnuma 01(31'Y 1/

ParMult 67.4 67.4 67.3 na .00 1.00
Gfetch3 60.2 60.2 26.5 0 1.0 2.27
matmuW:S 82.1 69.0 68.2 .94 .26 1.01
PrimesI 18502.2 17413.9 17413.3 1.0 .06 1.00
Primes2 5754.3 4972.9 4968.9 .99 .16 1.00
Primes3 39.1 37.4 28.8 .17 .36 1.30
e-fft 687.4 449.0 438.4 .96 .56 1.02
gauss 636.9 415.6 411.6 .98 .55 1.01
e-nasa 1388 925 870 .89 .60 1.06
e-hyd 4582.9 3333.3 2945.3 .76 .56 1.13
ply trace 56.9 38.8 38.0 .96 .50 1.02

Table 3.1: Measured user times in seconds and computed model parameters.

divisors, so virtually all data references are local. It also computes heavily, but
makes local data references to fetch potential divisors.

The primes3 algorithm is a variant of the Sieve of Eratosthenes, with the sieve
represented as a bit vector of odd numbers in shared memory. It produces an
integer vector of results by masking off composites in the bit vector and scanning
for the remaining primes. It references the shared bit vector heavily, fetching and
storing as it masks off bits representing composite numbers. It also computes
heavily while scanning the bit vector for primes.

Baylor and Rathi's study of an EPEX fft program showed that about 95% of
its data references were to private memory [13]. Although there are differences
in compilers and runtime support, I think that this supports the contention that
the ACE NUMA strategy placed pages effectively and that the remaining global
memory references are due to the algorithm in the application program.

3.2.3 Results

The measured times and computed parameters are presented in Table 3.1.·
Overall, the a and 'Y values are remarkably good, the exceptions being the Gfetch
program, which was designed to be terrible, and the Primes3 program, which
makes heavy legitimate use of writably shared memory. There is little hope that
programs .with such heavy sharing can be made to perform better on NUMA
machines without restructuring to reduce their use of writ ably shared data.

3Since Gfetch and matmult do almost all fetches and no stores, their computations were done
using 2.3 for G / L . . The other applications used G /L as 2 to reflect a reasonable balance of loads
and stores.

-

-

-

......

-
--

-

-

41

" Application I Snuma I Sglobal I ~S I Tnuma I ~S/Tnuma 1/

IMatMult 4.5 1.2 3.3 82.1 4.0%
PrimesI 1.4 2.3 na 17413.9 0%
Primes2 29.9 8.5 21.4 4972.9 0.4%
Primes3 11.2 1.9 9.3 37.4 24.9%
FFT 21.1 10.0 11.1 449.0 2.5%
gauss 31.5 16.6 14.9 415.6 3.6%

Table 3.2: Total system time for runs on 7 processors.

Of the "real" applications here (e-nasa, e-hyd and ply trace), only e-hyd
made more than 10% of its data references to global memory, and it made only
24% of references non-locally. The trace based analysis presented in Chapter 5 and
displayed in Figure 5.1 confirm that the slowdown seen here was due to application
behavior rather than to errors made by the ACE NUMA policy .

Of course, these timings do not indicate that the ACE policy is useful on
machines unlike the ACE, and in Chapter 5 I conclude that on other machines
different policies perform better. Nevertheless, the results here indicate that the
ACE policy did a very good job of choosing placements.

3.2.4 Page Placement Overhead

The results in Section 3.2.3 reflect only the time spent by the applications in
user state, and not the time the NUMA manager uses for page movement and
bookkeeping overhead. Table 3.2 shows the difference in system time between
the all-global and NUMA managed cases. This difference is interesting because
system time includes not only page movement, but also system call time and
other unrelated overhead; since the all global case moves no pages, essentially no
time is spent on NUMA management, while the system call and other overheads
stay the same. Comparing this difference with the NUMA managed user times
in Table 3.1 shows that for all but Primes3 the overhead was small. Primes3
suffers from having a large amount of memory almost all of which winds up being ___ _
placed in global memory, but which is first copied from local memory to local
memory several times. Since the sieve runs quickly, this memory is allocated
rapidly relative to the amount of user time, resulting in a high system/user time
ratio. Primes3 would have profited from a reduction in the number of invalidations
allowed before freezing.

For some reason, e-nasa and PrimesI used less system time in the NUMA­
managed case than in the all-global case. This may have been because user mem­
ory that the kernel needed to access was in local memory in the NUMA case, and

42

so these accesses were faster, thus using less system time.

The ACE NUMA management code was not written with an eye towards
efficiency.

3.3 Discussion

3.3.1 The Two-Level NUMA Model

Supporting only a single class of shared physical memory (global memory) was the
most important simplification of the NUMA management problem. The choice to
use a two-level NUMA memory model (with only local and global memory, for­
going remote reference) was motivated because there was an obvious correspon­
dence between it and a simple application memory model that had only private
and shared virtual memory. Essentially, it was possible to determine that memory
was either only-read, or was private to one processor and place it appropriately.
While permanent pinning of all other memory in not always the best thing to do,
it is likely to be correct often, and not terribly bad in other cases, because the
ACE has such a low local! global access time ratio.

The experience with Mach on the ACE has been heartening with respect to
this decision. Most of the energy spent writing applications was directed toward
debugging application errors, rather than worrying about memory system quirks.
Automatic page placement worked well enough and predictably enough that often
it could be ignored, and when it mattered it could be controlled by careful coding.

3.3.2 Making Placement Decisions

There is a fundamental problem with locality decisions based on reference be­
havior: it is hard to make a good decision quickly. A placement strategy should
avoid pinning a page in global memory on the basis of transient behavior. On
the other hand, it should avoid moving a page repeatedly from one local memory
to another before realizing that it should be pinned, lest the time spent moving
pages become significant. In a system such as the ACE, with its very low-ratio -­
of global reference cost to page move cost, reconsidering a pinning decision by
freeing a page and letting it move again is unlikely to be beneficial. On the other
hand, on machines with lower block move/remote reference time ratios, making
extra moves in order to reduce remote references can be necessary; see Chapter 5
for a detailed discussion and illustration of these issues.

Any locality management system implemented solely in the operating system
must suffer some thrashing of writably shared pages between local memories. This
cost is probably acceptable for a limited number of small data objects, but may

.-

-

.....

-:

--.-

--

-

43

be objectionable when a significant number of pages is involved. For data that are
known to be writ ably shared (or that used to be writably shared but can now be
replicated), thrashing overhead may be reduced by providing placement pragmas
to application programs. Such pragmas would cause a region of virtual address
space to marked cacheable and placed in local memory, or marked non-cacheable
and placed in global memory. These pragmas have not been implemented in the
ACE kernel, but easily could be.

3.3.3 Mach as a Base for NUMA Systems

Aside from the problem of the fixed-sized logical page pool, which forces a fixed
degree of replication, Mach supported the ACE effort very well. It allowed the
construction of a working operating system for a novel new machine in a very short
period of time. The number of changes necessary in the system was surprisingly
small, considering that the pmap interface was not designed with the NUMA
problem in mind. Of particular use was the ability to drop mappings or tighten
protections essentially at whim; this made it unnecessary to determine which
faults were caused by the NUMA-related tightening of protections and which
were caused by other things.

One problem with version 2.0 Mach is that most of the Unix compatibility
code is still in the kernel. The Mach project at eMU has since removed this code
from the kernel, and implemented it as a set of parallel user tasks. When the ACE
port was done, however, Mach implemented the portions of Unix that remained in
the kernel by forcing them to run on a single processor, called the "Unix Master."
This caused two problems, one for all multiprocessors and one only for NUMA
systems. The first is that execution of system calls produced a bottleneck on the
master processor. The second is that some of these system calls reference user
memory while running on the master processor. It would be difficult and probably
unwise to treat these references differently from all the others. Thus pages that
are used only by one thread (stacks for example), but that are referenced by
Unix system calls, can be shared writably with the master processor and can end
up pinned in global memory. Several of the system calls that most caused this
problem (sigvec, fstat and ioctl) were modified in an ad hoc manner to cause
their user memory references to happen on the calling processor rather than -the
master.

44

3.4 Whence from Here?

The major findings of the ACE project were that:

• the simple page placement strategy worked about as well as any operating
system level strategy could have on the ACE,

• this strategy could be implemented easily within the Mach machine-dependent
pmap layer, and

• the dominant remaining source of avoidable performance degradation was
false sharing, which could be reduced by improving language processors or
by tuning applications.

The ACE automatic page placement was an adequate tool for coping with a
NUMA memory system. It presented applications with a simple view of virtual
memory that was not much harder to program than the flat shared memory of a
traditional UMA multiprocessor. Correct application programs ran correctly and
could then be tuned to improve performance. The placement strategy was easy
to predict, it put pages in appropriate places, and it ran at acceptable cost.

False sharing is an accident of colocating data objects with different reference
characteristics in the same virtual page, and is thus beyond the scope of operating
system techniques based on placement of virtual pages. Because shared pages are
placed in global memory, false sharing causes memory references to be made to
slower global memory instead of faster local memory. Experience shows false
sharing could be reduced, often dramatically, by tuning application code. Addi­
tional work is needed at the language processor level to make it easier to reduce
this source of performance degradation. It would also be beneficial to be able to
quantify this effect without resorting to ad hoc examination of the application.

This chapter mentioned several areas that need further attention. Chief among
these is false sharing and what language processors can do to automate its reduc­
tion. Trace-driven analyses provide much more detailed understanding than what
has been garnered through the processor-time based approach described in Sec­
tion 3.2. Processor scheduling on .NUMA machines is beyond the scope of this .. ,
work, but is clearly important. It has been explored by Markatos [74, 75]. Simi­
larly, having applications provide pragmas to improve the quality of the placement
and to allow the use of other features such as remote reference and software im­
plemented ~rite-update, as well as lowering the overhead of automatic placements
can be profitable, as is demonstrated by the Munin distributed shared memory
system [18, 19, 30].

The comparison of alternative policies for NUMA page placement is a topic
of current research [39, 58, 63, 64]. It is tempting to consider ever more complex

-

-

-
-

-

-

45

policies, but the ACE work and that of others [65] suggests otherwise. It is unlikely
that substantial additional gains can be obtained in the operating system. In some
applications, or on other architectures, it is worthwhile periodically to reconsider
the decision to pin a page. It may also be worth designing a virtual memory
system that integrates page placement more closely with pagein and pageout,
or that attempts to achieve the simplicity of the ACE cache approach without
requiring that all pages be backed by global memory, or that local memory be
used only as a cache [67].

The operating system itself is a parallel application worthy of investigation.
The ACE project did not attempt to place any kernel data structures in local
memory, other than those required to be there by the hardware. Increasing the
autonomy of the kernel from processor to processor and making private any kernel
data that need not be shared should both improve performance on small multi­
processors and improve scalability to large ones. Chaves et al explored this issue
in [33].

A method of achieving answers to many of these questions is to move from real
implementations to a trace-based methodology. While it is more cumbersome and
less immediately rewarding than systems building, it has two major advantages.
First, it allows simulation of architectures which are not easily obtained, or which
do not exist at all, without major capital expenditure. Second, they can provide
a deeper insight into what happens during the execution of a program than is
possible in implementations. That is, it is much easier to instrument a trace
simulation than a piece of hardware.

The following chapters describe a trace-based model of program execution in a
NUMA system, and use that model to explore the questions of policy design, false
sharing and future architectural directions in shared memory multiprocessors.

46

4 A Model of Program
Execution in Shared Memory
Systems

While the study in Chapter 3 is satisfying in as much as it describes an imple­
mentation of a real NUMA system, and offers observations about how to go about
such an implementation, it was unable to answer many important questions about
the ACE kernel. Discovering the fraction of references made to local memory by
using Equation 3.4 is helpful only if most of the references were local; if they were
not it may have been because of errors by the policy or sharing by the application.
Was the 76% local hit rate good for e-hyd, or was it due to placement errors by
the ACE policy? Could ply trace have done even better than its 96% hit rate?
How would these applications run on architectures other than the ACE? If they
were run on other architectures, would it be better to have a different NUMA
policy?

It is impractical to answer these sorts of questions using implementations.
Implementing kernels takes a large amount of time. Machines on which to do
these implementations may not exist, or may be unavailable. Even if the machines
and time for kernel implementations were available, it still would be impossible
to give a good answer to questions of the type "How much better could this be?"
Furthermore, as was seen in Chapter 3, many applications have behavior that
prevents easily measuring their hit ratio by analyzing timings.

This leaves detailed simulation, trace-driven simulation, and analysis as the
primary methods of answering the questions. A detailed simulation at the level
of instructions can be difficult to construct, though results from it can be of
comparable validity to those from an implementation while being able to measure
things like local hit ratio directly for all applications. Detailed simulations also
suffer some of the problems of implementations: they don't help with the "How
good could it be?" problem, and are even slower than trace-driven simulations. On
the other hand, analysis either requires a very good understanding and description
of application behavior, or could reach conclusions that are not true of typical
applications.

--

-

.....

.... :~

.....

-...

-......

47

For these reasons the rest of the work in this dissertation is based on trace­
driven models. Since traces can be collected from any available application, there
is no need to worry that the results of the simulations are biased by a bad choice
for "typical" behavior (though there could be questions about the choice of appli­
cations). It is easy to extract detailed information from trace-driven simulations,
similar to what may be obtained from more detailed instruction-level simulation.

In addition, the technique of offline optimal analysis allows the trace-driven
model to answer "How good could it be?" questions. The idea of offline optimal
analysis is to determine what the decisions and performance of the best conceiv­
able policy would be on a particular architecture and application trace. That is,
it minimizes the overall placement cost for a particular architecture and applica­
tion trace. To do so, it requires use of future knowledge, and is therefore not a
way to build systems. However, it has great value as a technique for comparing
performance. Specifically:

1. Off-line optimal analysis allows the evaluation of hardware design decisions
without biasing the results based on the choice of policy (none of which can
be optimal over the entire design space).

2. Performance results obtained with off-line analysis provide a tight lower
bound, for a given hardware base, on the cost savings that can be achieved
by any "real-life" policy. Rather than saying how much time is being used
by a given policy, they say how much time must be used by any policy. The
difference between optimal performance and actual achieved performance is
the maximum time that could possibly be saved through policy improve­
ments.

It is generally accepted that memory reference traces need to run into tens or
even hundreds of millions of references to capture meaningful behavior. Anyalgo­
rithm to compute an optimal set of memory management decisions must therefore
make a very small number of passes over the trace-preferably only one. The op­
timal policy described here runs in time proportional to the number reads in the
trace, and the number of writes times the number of processors.1 Later chapters
use optimal analysis extensively to evaluate policies for particular architectures
and to compare different architectures without introducing policy bias.

This chapter presents the model of machines, traces, policies and cost of ex­
ecution. It then describes the optimal policy, and provides pseudocode for it. It
also describes a study designed to establish confidence that the trace collection
process did not significantly distort application behavior.

Much of the work presented in this chapter appeared in [26].

1 Paul Dietz has found an algorithm that is linear in the length of the trace, without regard
to the number of processors.

48

4.1 A Model Of Memory System Behavior

This section describes a model designed to capture the latency-induced cost of
memory access and data placement in a multiprocessor memory system that em­
bodies a tradeoff between replication, migration and (possibly) single-word refer­
ence. This model describes most NUMA machines and many coherently cached
machines as well. It does not attempt to capture any notion of elapsed wall-clock
time, nor does it consider contention, either in the memory or in the interprocessor
interconnection. Think of it as total work to reference memory. Memories and
caches are assumed to be as large as needed. Instructions are assumed to be local
at all times; instruction fetches are ignored.

It is important to keep in mind the intent of this idea of cost. Roughly, cost
is analogous to what Mach reports as "user time" when a parallel program is
run (the sum of time spent in user state for all processors), except that it only
considers the portion of the time that is due to memory references, and not that
due to register to register operations, branches, I/O, and so forth. The intent of
the cost model is to give some insight into how much time was spent referencing
memory by a program on a particular machine running a particular policy. As
such, it is essentially useless for comparisons of different programs, or of versions
of the same program using a different algorithm. Furthermore, cost is unrelated
to parallel speedup, processor utilization or similar ideas; it is entirely possible
that a program with a higher "cost" will run faster by having a higher degree of
parallelism.

The caveats about what cost does not mean are even more important when cost
is divided by the number of references to yield Mean Cost Per Reference (MCPR),
as I have done throughout much of this dissertation. While any change in NUMA
policy that reduces the MCPR of a given program running on a given machine
represents a true improvement, if the program itself were simply modified to make
a large number of unneeded references to private memory, its MCPR would de­
crease, but clearly the program would not have been improved. Conversely, if a
program were changed so that some unneeded private references were removed,
its MCPR would increase, but the program might nevertheless run better.

Those provisos in hand, consider what cost is able to do. When the application·
is unchanged, cost can accurately detect the effects of changes in policy. If the
machine model on which the application is run changes, cost can offer an insight
as to how well the program and policy runs on the given machines.

The basic concepts of the model are a machine, a trace, a placement, a policy,
and the cost function. They are described in detail in the following sections.

';

,1

-
-..

..

49

4.1.1 Machines

A machine J.L is defined by a set of processors, a set of memories, and some pa­
rameters that represent the speed of the various memory operations. The set of
processors is denoted TI, the set of memories M = TI or M = TI U {global}, and
the parameters r > 1, 9 > 1, R > 2r, and G > 2g. Each parameter is measured in
units of time equal to that of a single-word local cache hit (or memory reference in
un cached machines). Lower-case r is the amount of time that it takes a processor
to access a word from another processor's memory.2 Capital R is the amount of
time that it takes for a processor to copy an entire block3 from another processor's
memory. If a machine has global memory (memory that is not associated with
any particular processor, but rather is equidistant from all processors-this could
be main memory in a cached machine or "dance hall" memory in a NUMA) then
the amount of time to access a word in global memory is g, while G is the cost
of moving an entire block from global memory to a local memory. The model
requires that if 9 and G are not infinite, then r 2: 9 and R ~ 2G. Otherwise,
if r < 9 it would never make sense to use the global memory; if R > 2G then
one could make a copy from a remote memory by copying first to global and then
from there to the destination. The symbol ff denotes the number of elements in a
finite set. To eliminate trivial cases, there must be more than one processor, i.e.
p = ffII > 1.

The model uses the same coherence constraint as the ACE kernel: at the time
a block is written, there may only be one copy of that block. The model does not
consider other coherence constraints such as write-update or write-update/write­
invalidate hybrids. It also assumes sequential consistency and so excludes weak
consistency models .

Some systems may not have all of the features described above. The BBN
Butterfly [14], for example, has memory at each processor but no caches and no
global memory; it can be modeled by making G and 9 infinite. In a coherently
cached system where it is not possible to read a single word from a line stored in
a different cache, r is infinite. If blocks can only be loaded from main memory
and not directly from another cache, then R is also infinite, and G is the time to
access the main memory.

2 "Another processor's memory" could be main memory associated with a particular processor
in a NUMA system, or a cache line in a coherently cached machine or non-coherently cached
NUMA; r may be infinite if no direct remote access is permitted.

3Throughout this work the word "block" is used for the unit of memory that can be moved
from one lQcation to another; this formalism applies equally well to pages and cache lines;
"block" is meant to represent either, depending on context.

50

4.1.2 Traces

A trace T is a list (Tt) of references indexed by Time. The word "Time" (with a
capital "T") represents the index of a particular memory reference within a trace;
it is not directly related to the execution time of a program. This list is meant
to capture all the memory activity of all processors, in order, over the lifetime
of the program. An important simplifying assumption is that a total ordering
of memory references exists, and that it is invariant, regardless of the hardware
model and policy decisions.

Cost is roughly analogous to execution time. Thus, regardless of the policy or
hardware considered in a particular execution, the Time of the trace is the same;
it is the number of references made when the trace was generated. The Time set,
T, is a set of integers from 0 to n - 1 where n = ~T, the number of references
in the trace. A reference is a triple (a,j, w) where a is the memory address of
the word being referenced, j E II is the processor making the reference, and w
is either read or write. If p is the set of all possible references, a trace T E pT.
Trc(JL) denotes the set of all traces for machine JL.

In practice, a change in policy will alter program timings, leading to a differ­
ent trace, which in turn may change the behavior of the policy, and so on. At
the very least a change in policy will change the interleaving of references from
different processors; the approach described here ignores this. One could adjust
the interleaving during trace analysis, based on per-processor accumulated costs,
but this approach would run the risk of introducing interleavings forbidden by
synchronization constraints in the program. It would also at best be a partial so­
lution, since the resolution of race conditions (including "legitimate" races, such
as removing jobs from a shared work queue) could lead to a different execution
altogether. Forbidden interleavings could be avoided by identifying synchroniza­
tion operations in a trace, and never moving references across them, but even
this approach fails to address race conditions. On-the-fly trace analysis, such as
performed in TRAPEDS [94], could result in better quality results, but only at
a significant cost for maintaining a global notion of time (e.g. synchronizing on
every simulated machine cycle). Section 4.3 describes a series of experiments de­
signed to measure the sensitivity of the simulation results of the types used in
later chapters to the sorts of changes in instruction interleaving that are likely to '
be present in the traces. It finds that the possible errors in interleaving have little
effect on the results of the simulations.

4.1.3 Placements and Policies

A trace describes an application without specifying the location(s) within the ma­
chine at which pages reside over Time. These locations are known as a placement;
they are chosen by a policy. The model considers all caches and memories to be

.-.

,,-

-

51

of infinite size, so blocks are never evicted from the cache or from memory due
to lack of space. The model does not consider contention; if its effects are signif­
icant, then the results will be skewed. Furthermore, since the policy choices are
assumed to have no effect on the trace references, placement decisions made for
different pages have no impact on one another, and so policies may treat pages
independently. Therefore, the following presentation is limitied to describing a
single block, without loss of generality. The overall cost for an application is the
sum of costs for all of its blocks.

A placement P is a Time-indexed list (Pt) of location sets, where Pt ~ AI,
UPt > 0, and (Tt.type = write) :::} (~Pt = 1). That is, each placement set is non­
empty, and is a singleton whenever the corresponding reference is a write: this is
the embodiment of the chosen coherence constraint. A policy, P, is a mapping
from traces to placements. Given a machine J1 the set of all policies for that
machine is denoted Pol(J1).

4.1.4 Cost

The function c maps a trace and a placement for that trace into an integer, called
the cost of the placement for the trace. The cost of a placement on a trace is
the sum of two components: the cost due to references and the cost due to page
movement. The reference component, cref, is defined as:

n-I {I if Tt.proc E Pt
cref(P, T) = E 9 if global E Pt and Tt.proc rt Pt

t=O r otherwise
(4.1)

That is, each reference to a local block costs 1; 9 is the cost for each reference to
a page that is global memory, but not in local memory; and r is the cost for each
reference that must be made to a page in some other processor's memory. The
block movement component, Cmv, is the cost required to make the block moves
described by the placement.

(P T) = E { G· ~(Pt \ Pt - I) if global E Pt - I U Pt (4.2)
Cmv, - t=1 R· U(Pt \ Pt-I) otherwise

The sum here runs from 1 to n - 1 instead of from 0 to n -1, because no movement--­
cost is charged for the initial placement of the page at t = O. The movement
component of the cost is simply what is required to move the page into any new
locations that it assumes.

Finally, then, c(P, T) = cref(P, T)+cmv(P, T). The related function, cpo(P, T) =
c(P(T), T), maps policies and traces to cost. Since C and cpo are similar in mean­
ing and should be easy to tell apart froIlL-context, henceforth, C will be used to
denote both.

52

While it is not explicitly mentioned in the definition of c, different machines
have ·different cost functions. So, if we are considering two machines Jl and Jl',
their cost functions will be denoted c and c', respectively.

4.1.5 Optimality

Given a machine Jl and a trace T E Trc(Jl), a placement P E Plc(T) is said to
be optimal if VQ E Plc(T) : c(P, T) $ c(Q, T). Similarly, a policy P E Pol(Jl) is
optimal if VQ E Pol(Jl), VT E Trc(Jl) : c(P, T) $ c(Q, T). That is, a placement
for a trace is optimal if it has cost no greater than that of any other placement for
that trace; a policy for a machine is optimal if it generates an optimal placement
for any trace on that machine.

A policy P E Pol(Jl) is on-line if VT, T' E Trc(Jl), Vi E O .. n - 1 : (TO .. i =
T~ .. i) :::} (P(T)O .. i = P(T')O .. i). In other words, P is on-line if the portion of any
placement generated by P for Time a to i depends only on the references made up
to and including Time i; i.e. iff P uses no future knowledge. A policy is off-line if
it is not on-line. These definitions correspond to the standard notions of on- and
off-line algorithms.

Proposition 1 Given machine Jl, any optimal policy 0 E Pol(Jl) is off-line.

PROOF: Let machine Jl with processor set II, memory set M, and parameters
r, g, Rand G and optimal policy 0 E Pol(Jl) be given. Because ~II = P > 1, we
may choose distinct processors PI! P2 E II.

Consider trace TI defined to be lOR writes by PI followed by 1 write by P2
followed by lOR writes from Pl. The only optimal placement PI for TI starts the
page at PI at the beginning of the execution and leaves it there for the entire
run. Consider now trace T2 defined to be lOR writes by PI followed by lOR writes
by P2. The only optimal placement P2 for T2 starts the page at PI and moves it
to P2 at Time lOR. Since 0 is optimal and Pt and P2 are the unique optimal
placements for TI and T2 respectively, O(TI) = PI and O(T2) = P2. Since TI and
T2 are identical up to reference lOR + 1, but yet O(TI) and O(T2) differ at .Time
lOR, we conclude that 0 is off-line. 0

The following theorem states that, as a consequence of the model and the
definition of optimality, an optimal placement for a given trace on a given machine
is also optimal for the same trace on a machine in which the ratios of r - 1, R,
9 - 1 and' G remain constant. That is: if the local memory (cache hit) speed is
changed, but the ratio of the additional cost of remote and global reference over
local reference to remote and global block moves is unchanged, the placement is

_ still optimal for the new machine. In essence, this means that local memory speed
does not have an effect on the optimal placement.

, ~ .

-

53

This theorem is called the s-theorem, because of the scale factor s used in its
statement.

Theorem 1 Given machine p = (IT, M, g, r, G, R), s > 0, trace T and optimal
policy 0 E Pol(p) , O(T) is an optimal placement Jor machine pi = (IT, M, s(g -
1) + 1,s(r -1) + 1,sG,sR).

PROOF: Let machine p, trace T, sand 0 be given and p' defined as in the
hypothesis. Define c to be the cost function for p and c' to be the cost function for
p'. Define P to be O(T). Let placement Q for T be given. Because P is optimal
on p, c(P, T) ::; c(Q, T). Define >.p to be the number of local references made by
P, pp the number of remote references, ,p the number of global references, <I>p
the number of remote moves and f p the number of global moves. Define >'Q, PQ,
,Q, <I> Q and f Q similarly for placement Q. By definition of cost and because P is
optimal, c(P, T) = rpp+g,p+).p+R<I>p+Gfp ::; rpQ +g,Q +).Q +R<I>Q +GfQ =

c(Q, T). Since).p + pp + ,p = ~T = >'Q + pQ + ,Q we may subtract them from
both sides of the inequality, and since s > 0, we may multiply without changing
the sense of the inequality, giving s(r - l)pp + s(g - 1hp + sR<I>p + sGfp ::;
s(r - l)pQ + s(g - IhQ + sR<I>Q + sGfQ. Adding in the terms equal to ~T
subtracted above and observing the definition of c' yields c'(P, T) ::; c'(Q, T).
Since placement Q was arbitrary, by definition of optimality P is optimal on p'.
D

Using the s-theorem, for a given trace it is possible to directly compute the cost
of an optimal placement on one machine given the cost of an optimal placement
on another, providing that the machines are related as described in the premise
of the theorem. The following corollary describes the computation.

Corollary 1 Given p, s, pi, T and 0 as in the previous theorem, and given opti­
mal policy 0 ' Jor pi, iJ n is the len~th 0 trace T, c is the cost Junction Jor p and
c' the cost Junction oj pi, then c' 0 nT ,T = 1 + s(c(O(~),T) - 1).

PROOF: Define P to be the placement O(T) (for machine p). Define)', p,
" <I> and f as in the previous proof. If c is the cost function for machine p,
then c(P, T) =). + r p + g, + R<I> + Gf. Since every reference made in the
trace is either local, global or remote,). + , + p = n. Therefore, c(P, T) =
n + (r - l)p + (g - 1h + R<I> + Gf and c(~T) = 1 + (r-l)p+(g-~h+R~+Gr. By
the previous theorem, P is optimal for T on machine p'. Since by hypothesis
0 ' is optimal, C'(O'(T),T) = c'(P,T). By definitions of cost and pi, c'(P,T) =
).+(s(r-1)+ 1)p+(s(g-l)+1 h+sR<I>+sGf = n+s(r-1)p+s(g-l h+sR<I>+sGf.
Dividing by n, we have c,(~,T) = 1 + s (r-l)p+8(g-~h+8R~+8Gr. Subtracting one from

the final formula for c(P, T)/n above and substituting yields c'(O':),T) = c,(~,T) =

1 + s(c(~T) - 1) = 1 + s(c(O(~),T) - 1). D

54

Consider now the function that carries r into c(0, T) (recall that r, the remote
reference time is part of the machine definition, and so is an implicit parameter
in both c and 0). If r is thought of as being a real valued variable, this function

. is continuous, monotonically non-decreasing in r, and is piecewise linear. It is
--" differentiable -everywhere except at those points where it· changes slope, and its

derivative is a step function that grows as r gets smaller.

To see why this is true, consider a range of values of r over which the optimal
placement does not change. The cost of this optimal placement over this range
is some constant representing the cost of local and global references and page
moves plus r times the number of remote references. This is obviously continuous
and linear in r, and non-decreasing. Now consider a point at which the optimal
placement changes.4 Since 0 is optimal, any change due only to a reduction in r
will result in more remote references. Therefore, on the side of the change where r
is smaller, the optimal cost will have more remote references and a smaller amount
of cost due to other factors; that is, the derivative of cost with respect to r has a
jump discontinuity at the point where the placement changes.

Similar things are true when considering the function that carries R, G or 9
into the optimal cost.

4.2 Computing Optimal NUMA Placements

A placement can be thought of as a Time-ordered walk through the space of
possible page replication sets. At each point in Time the fundamental question to
be answered is whether to leave a page in remote or global memory, or to migrate
or replicate it into global or remote memory. For some machines, one or the other
of these options may not exist: there may be no global memory, remote reference
may not be supported, and so on. In any case, brute-force exploration of the
search space is obviously impractical: the number of possible placements is on the
order of n 2P

•

The algorithm for computing an optimal placement is presented in two versions
for the sake of clarity. The first computes a placement that is optimal under the
assumption that replication is disallowed; equivalently, it treats all references as "_
if they were writes. Then, the algorithm is extended to permit replications. Both
algorithms compute the cost of an optimal placement rather than the placement
itself. Since the computations are constructive, it is simple to extend them to
produce t~e placement.

4In fact, at any such point there will be at least two different optimal placements with equal
cost; assume 0 picks one arbitrarily.

.-

for mEAt cost..soJar[m] ;- 0

for t ;- 0 to n - 1
cheap_cost ;- cost..soJar[global]
C ;- G; cheapest ;- global
for m E (M \ {global})

if cost..soJar[m] + R < cheap_cost + C
cheap_cost ;- cost..soJar[m]
C ;- R; cheapest ;- m

ne\Lcost..soJar[Tt .proc] ;- MIN (
cost..soJar[Tt.proc] + 1,
cost..soJar[cheapest] + C + 1)

new_cost..soJar[global] ;- MIN (
cost..soJar[global] + g,
cost..soJar[cheapest] + G + g)

for mE (M \ {Tt.proc u global})
new_cost..soJar[m] ;- MIN (

cost..soJar[m] + r,
cost..soJar[cheapest] + C + r)

cost..soJar ;- new _cost..soJar

return :tVUNmEM (cost..soJar[m])

1* for all references in trace * /

1* C is cost for cheapest * /

1* use copy already here * /
1* get it now * /

1* use global copy * /
/* migrate from cheapest * /

1* use copy already there * /
1* migrate from cheapest * /
1* update whole array * /

Figure 4.1: Algorithm for computing optimal cost without replication

4.2.1 Computing Optimality Without Replication

55

The first version of the optimal algorithm (Figure 4.1) assumes that replications
are prohibited. This algorithm resembles the solution to the full version of the
problem, but is simpler and easier to understand. To fit it into the framework
of the cost metric presented in section 4.1.4, it pretends that all references are
writes.

The algorithm uses dynamic programming to determine, after each reference,
the cheapest way that the page could wind up in each possible memory location.
At Time t, for each memory, the cheapest way that the page could wind up there is
necessarily an extension of the cheapest way to get it to some (possibly different)
location at Time t - 1. The principal data structure, then, is an array of costs,
"cost..so.far," indexed on memories m E M. At Time t, cost..so.far[m] contains
the cost of the cheapest placement for the trace To .. t that would end with the page
at m. At the end of the algorithm, the cost of the cheapest overall placement is
the minimum over m E M of cost..soJar[m]. The key to dynamic programming,
of course, is that while the algorithm never looks back in the trace stream, it does
not know where the page might be located at the Time that a reference is made.

56

Only at the end of the trace is the actual placement known.

The algorithm in Figure 4.1 runs in time O(np). There exists another version
that runs in time O(n), found by Paul Dietz. It uses the observation that there is
always an optimal placement that never moves a page to a processor other than
the one making the current reference. Only the processor making the current ~

reference has its cost updated; a single variable is used to keep track of the others.
In that way, each reference is processed in constant time, regardless of the number
of processors.

4.2.2 Incorporating Replication

The obvious extension for the general case (with replication) is simply to enlarge
the set AI to include all possible replication states, and to enforce coherence by
assuming that the transitions into non~singleton states are of infinite cost when the
reference is a write. Unfortunately, this extension increases the time complexity
of the inner loops of the algorithm from O(p) to O(2P) for the cases where the
reference is a read. This is a severe penalty even when using the eight processor
traces generated on the ACE as described in Chapter 2; for large machines it is
out of the question.

Fortunately, it is not necessary to search this large state space. Name the
Time interval between two writes with at least one read and no other writes
between them a read-run. Because of the coherence constraint, at the beginning
and end of a read-run the page state must be a singleton. There is no cost benefit
in removing a copy of the page inside of a read-run, so we can ignore all such
placements. Similarly, if the page will be replicated to a memory inside of the
read-run, there is no cost penalty involved in making the replication on the first
reference of the read-run. So, for any given read-run, all that needs to be decided
is the set of processors to which to replicate; there exists an optimal placement
that replicates to these processors at the beginning of the read-run and destroys
the replicates on the terminal write, without changing the replication state in
between. Furthermore, the set of processors to which to replicate during a given
read-run depends only on the processor(s) making the beginning and terminal
writes, the location of the page at the beginning and end of the read run, and the _
number of reads made by each processor during the run.

Armed with these observations, the algorithm in Figure 4.1 can be extended
to the general case. The new version appears in Figure 4.3. The function in
Figure 4.2 computes the cost of a read-run, given the starting location, the repli­
cation set and the number of reads made by each processor during the run. For
the sake of simplicity, this function assumes that there is no global memory. The
modifications required to handle global memory are straightforward but tedious.

FUNCTION readJun_cost (start: location; rep-set : set of location;
readsJrom : associati ve array [processor] of cost) : cost

running_total +- 0

for each j E domain (readsJrom)
if j E rep-set

running_total + +- readunadeU]
else

running_total + +- r * reads.made[j]
if start E rep-set

running_total + +- R * (~rep-set - 1)
else

running_total + +- R * ~rep-set
return (cost-soJar[start] + running_total) 1* cost-soJar is global * /

Figure 4.2: Function to compute the cost of a read-run, no global memory

57

The new algorithm still uses dynamic programming, but while the state space
was updated on every reference in the old version, it is only updated on writes in
the new one. The space that is tracked remains !If. In addition, while formerly at
each step we had to consider the possibilities of starting the page at the current
location, or in the cheapest location among the rest of the processors, we must now
also consider the possibility that a processor may effectively become the cheapest
by virtue of a savings in references during the preceding read-run, even if these
references would not otherwise justify replication.

4.3 Validation of the Trace Analysis Technique

The ACE tracer slows down the execution of a program by between two and
three orders of magnitude. This has some effect on the order in which references
are made. While all processors are slowed more-or-Iess uniformly, the dilation
effect [62] will overwhelm any difference in execution times of the various machine
instructions. On the ACE's processor,- most instructions take only 1 cycle to - ..
execute. The notable exceptions are memory reference instructions and floating
point operations, which take somewhat more time depending on the instruction,
on whether the memory is busy, etc. Koldinger et ai. [62] investigated these
sorts of effects in the related area of coherent cache simulation, and found the
performance differences due to dilation to be negligible. Since the optimal policy
guarantees small changes in cost in response to small changes in the trace input (it
is, in some sense, continuous in the trace, as it is in the machine speed parameters),

. refs_to_payJ'or..repl - R/(r - 1)
for j E II costJio..farUl - 0
readsJ'rom - empty

for t - 0 to n - 1
if Tt.type = read

if Tt . proc E domain (reads.lrom)
reads..from[Tt.procl + - 1

else
reads.lrom[Tt.proc] - 1

else /* write * /

58

/* associative array * /
1* for all references in trace * /

repLprocs - {j E domain (reads..from) such that reads.lromLiJ > refs_to_pay ..fou·epl}
cheapest - j E M such that costJio..farUl is least
minJlonrep_proc - j E (II \ repLprocs)

such that costJio..farLiJ - (r - 1) * reads.lromUl is least
1* if repLprocs = II, pick an arbitrary processor * /

for j E II
1* We follow one of three possible replication patterns: start where we finish,

start at the place that was cheapest to begin with, or start at the place that
was cheapest but not in the set of memories for which the number of reads
was enough to offset the cost of replication by itself. * /

new _costJioJ'aru] - MIN (
read..run_cost (j, {j} U repLprocs, reads..from),
read..run_cost (cheapest, {cheapest, j} U repLprocs, reads.lrom),
read..run_cost (minJlonrep_proc, {minJlonrep_proc, j} U repLprocs, readsJrom»

if Tt.proc = j 1* write by ending processor * /
new -cos Lso..farLiJ + - 1

else /* write by another processor * /
new _costJioJ'arUJ + - r

costJio.iar - new _cost JioJ'ar
readsJ'rom - empty

1* update whole array * /

/* The entire trace has been processed. Clean up if we're in a read-run. * /
if Tn-I.type = write

return MIN jen (costJio..farU))
repLprocs - {j E domain (reads..from) such that reads..fromU] > refs_to-pay..for..repl}
cheapest - j E M such that costJio..farU] is least
minJlonrep_proc - j E (II \ repl-procs)

such that costJioJ'arU] -(r - 1) * readsJ'romU] is least
/* if repLprocs = II, pick an arbitrary processor * /

for jEll
new -cost JioJ'ar U] - MIN (

read..run-cost (j, {j} U repl-procs, reads..from),
read..run_cost (cheapest, {cheapest, j} U repl-procs, readsJrom),
read..run_cost (minJlonrep_proc, {minJlonrep_proc, j} U repLprocs, reads..from»

return MINjen (new-costJio..farU))

Figure 4.3: Optimal policy computation, no global memory

59

it is natural to expect its performance to be even less affected by dilation.

As noted in section 4.1.2, a more fundamental problem with the evaluation of
multiprocessor memory systems based on static trace interleavings is a failure to
capture the influence of the simulated system on the references that "should" have
occurred. In the system described here, this feedback should appear in two forms:
fine-grain changes in instruction interleaving, and coarse-grain "reference gaps" in
the activity of individual processors. Instruction timings depend on whether the
operands of loads and stores are local or remote. If two policies place a page in a
different location at different points in time, then instructions will execute faster
on some processor(s) and slower on others, and the interleaving of instructions
from different processors will change. Similarly, when a policy decides to move a
page, the processor performing the move will stop executing its user program until
the move is complete. Since this could potentially take a long time (particularly in
a system with large pages and/or large interprocessor latencies), other processes
might make a large number of references in the interim. Since the times at which
the page moves would occur are not known when the applications are traced, and
in general depend on the parameters of the simulation later performed on the
trace, no such gaps appear in the traces.

The performance effect of errors in the trace depends not only on the errors
themselves, but also on the machine on which the trace is being simulated. \Vhile
many different machine models are considered here, four representatives are used
in the validation study. The ACE model has fast global memory and no special
block transfer hardware. The Butterfly has no global memory, a fast block transfer
and a 15-1 remote to local access time ratio. The NUMA machine has a 100-1
remote to local ratio, and CC (coherently cached) has 64 byte pages and no remote
reference at all. The ACE and Butterfly are described in detail in Chapter 5, while
NUMA and CC are described in Chapter 6.

To evaluate the impact of changes in fine-grain instruction interleavings (which
might be caused by contention for the shared buffer in the tracer), I wrote a
filter program that reorders individual references in a trace, with a probability
that is high for nearby references, and drops off sharply for larger Time spans.
Specifically, the filter keeps a buffer of 100 references from the incoming trace
stream. Initially, this buffer is filled with the first 100 references. The filter then
randomly chooses an entry from the buffer, emits the oldest buffered reference
made by the processor whose entry was selected, and reads a new reference to
replace it. After running the traces through this filter, the largest measured degree
of change in optimal performance among all applications for the ACE machine
model was .007%. For the Butterfly model it was .01 % and for NUMA it was .8%.

Unlike the other machine models, some of the applications showed a large
performance difference in CC, with cholesky the largest at 11%. This size de­
viation is disturbing, and also striking in that it is out of line with the results

p-gauss

p-qsort

e-slmp

p-life

cholesky

I
-0

I
1

I
2

I
3

MCPR

I
I

I
I

I
I

I
4

Figure 4.4: Unmodified vs. local perturbations for CC model

60

I
I

I
f

I
5

for the rest of the applications and machine models. The applications with the
largest differences between optimal and locally-perturbed optimal are cholesky,
p-gauss, p-qsort and p-life. All of these applications share memory at a fairly
fine grain. The local perturbation does not take into account the synchronization
behavior of the programs, and so could move references over a synchronization
point; in the real tracer, only one reference by a given processor could be moved
over a synchronization point. If there are many sync points, and the perturber
does indeed move references over them frequently, then the level of sharing in the
program would increase and the cost would go up, particularly in the CC model
where remote reference is unavailable. Furthermore, most perturbations of this
type would move roughly the same number of references across sync points, so if
a number of different perturbed runs (using different random number seeds) were

. compared, they would all have similar cost; that 'cost would be significantly higher ._
than that of the unperturbed run.

Figure 4.4 shows the results of running multiple local perturbation runs for
each of the applications that had a large difference in optimal performance for
the CC model. Each horizontal line in the graph represents one application, and
is labeled appropriately at its left hand side. On this line, a single vertical tick
mark shows the MCPR cost ofthe unperturbed trace. An "x" is used to represent

. a run in which the local perturbation was introduced. While on these graphs it

61

Local Gap
App. ACE Bfly NUMA CC ACE Bfly NUMA CC
e-fft .002% .012% .02% .4% 0 .18% 1% .3%
e-simp .001% .001% .03% 5% .001% .039% .7% .02%
e-hyd 0 0 .lo/c 1% 0 .001% 1% 3 .. S9(
e-nasap .007% .03% .09% .8% .004% .15% 1.5% .23o/t

gauss 0 0 .003% .002% .02% .07% .4% .09%
chip 0 0 .05% .4% 0 0 .5% .3%
bsort 0 0 0 0 0 0 .003% .001%
kmerge 0 0 .007% .01% 0 0 .01% .004%
ply trace 0 0 .02% .4% .01% .06% 3% .6%
sorbyc 0 .01% .001% .04% 0 .01% .02% .3%
sorbyr 0 .007% .01% .01% 0 .07% 1.2% .09%
matmult 0 .03% .3% .9% 0 .3% .2% 1%
mp3d 0 0 .8% 2.1% 0 .002% 1.1% 1.5%
cholesky 0 .004% .08% 11% 0 .03% 2% 2%
water 0 0 .007% .001% .01% .006% .04% .02CJc

p-gauss 0 0 .05% 9.9% 0 .24% 1.6% .75%
p-qsort 0 .01% .2% 10% 0 .24% 1.3% .4%
p-matmult 0 .01% .08% 1.5% 0 .04% 1.3% .4%
p-life 0 .005% .4% 9.6% .002% .34% 2% .4%

Table 4.1: Percentage optimal performance change due to local and gap pertur­
bations

appears that all of the x's are at the same MCPR, in fact there are differences
that are too slight to show. These results support the hypothesis that the large
(5-10%) changes between unmodified and locally perturbed optimal placement
costs present in some of the applications in the CC machine are an artifact of the
perturbation process, and not an indication of the size of the real perturbation
effect caused by the tracer.

In any case, even 20% errors in optimal performance are very much smaller"
than the size of effects seen in Chapter 6, and so would not significantly affect the
conclusions drawn there.

To evaluate the impact of reference gaps, I wrote a second filter that randomly
introduces such gaps, and again re-ran the optimal policy. The filter operates
by reading the unmodified trace, and with probability one in 30,000 introduces a
"gap" on one processor for 4000 references. A gap is introduced by taking any
references made by the chosen processor and placing them in a queue. Once the

----~----

62

gap has ended, as long as there are saved references, one of them will be emitted
instead of a fresh reference with probability 2/3. The values 30,000 and 4000 were
selected arbitrarily, but were chosen conservatively in the sense that page moves
typically do not occur as often as every 30,000 references, and 4000 references is
somewhat large for the amount of time for a page move. The 2/3 frequency is
completely arbitrary. This filter induced performance changes up to .06% in the
ACE, 0.34% in the Butterfly, 2% in the NUMA and 3.5% in the CC model.

Table 4.1 displays the differences between filtered and unfiltered results for
both filters and ACE and Butterfly models as a percentage of the total cost. Dif­
ferences are absolute values; sometimes the filtered values were smaller, sometimes
they were larger. Values less than 0.001 % are reported as O.

These perturbations produced somewhat larger changes in performance in on­
line policies, but they will still small relative to the size of the changes due to
reducing the block size shown in Chapter 6.

4.4 Discussion

Implementable kernel-level policies that replicate and migrate pages suffer from
the weakness that when their policies don't result in all local references with very
few moves, they are unable to determine if it is because of sharing intrinsic to the
application, or mistakes on the part of the policy under consideration. None of
the work is easily extensible to other architectures, nor is it possible to isolate the
causes of various effects in a running system.

Optimal analysis addresses these limitations. Chapter 5 shows the dependence
of program performance on two basic NUMA hardware parameters: the relative
cost of a block transfer (as compared to a series of individual remote accesses),
and the size of a block. It also compares the performance achieved by several
implement able policies with that of the optimal policy, and demonstrates how the
placement decisions made by the optimal policy can be used to guide the design
of an appropriate on-line policy for a given hardware architecture.

In addition to aiding the evaluation of the quality of NUMA policies, off-line
optimal analysis allows evaluation of a relatively large range "of shared memory
multiprocessor architectures without biasing the results by selecting a particular
data-movement policy. Reasoning in a formal model forces exposure of assump­
tions, and allows proof of theorems within that framework. All of these things
provide a degree of rigor difficult to achieve in implementations.

The techniques presented in this chapter are used in subsequent chapters to
examine the fundamental architectural questions: can software controlled coher­
ence (i.e., NUMA) be competitive in performance with hardware controlled co­
herence? If so, how should NUMA machines be built? Optimal analysis is also

-"

63

used to answer other questions, such as whether expensive, software implemented
remote reference should be added to distributed shared memory systems, and how
valuable hardware remote reference would be if it were added to cache coherent
machines.

It is also possible that off-line optimal analysis could fruitfully be employed
in problem domains other than multiprocessor memory management. One might,
for example, create a tractable algorithm for optimizing allocation of variables to
registers in a compiler, given the references to the variables that are eventually
made by a particular program (that is, a trace). It would then be possible not only
to measure the performance of a compiler's register allocator, but also to determine
the performance inherent in different register set designs (different numbers of
registers, different registers for floating point, addresses and integers vs. general
purpose registers, different sizes of register windows, etc.) without having to worry
that effects are due to a particular compiler, and without having to worry about
implementing register allocation schemes for all of the hardware variants.

5 NUMA Policies and Their
Relation to Memory
Architecture

64

Chapter 4 describes a trace-based model of program behavior, and a tractable
way to find an optimal placement for a given application on a given architecture.
However, on any real machine an on-line (and consequently non-optimal) policy
will be needed, and Chapter 4 offers little insight as to how such a policy should
be designed.

This chapter describes simulations of on-line policies using the cost model
from Chapter 4 on architectures like the ACE and Butterfly. Unlike the previous
work, however, it compares the results of on-line policies with optimal performance
for the same trace and machine model. In comparison to implementation-based
experiments, this approach has two principal advantages:

1. The optimal algorithm gives a tight lower bound on the cost savings that
could be achieved by any placement policy. Its results can be used to quan­
tify the differences between policies, and assess the extent to which NUMA
management contributes to overall program performance.

2. Watching optimal behavior as architectural parameters are changed shows
the extent to which policies should be tuned to the architecture on which
they are running. It also can show the usefulness of novel architectural
features. As might be expected, the result of this analysis is that different
architectures require different policies.

Off-line analysis also allows examination of program executions at a very fine
level of detail. This examination reveals that program design, and memory usage
patterns in particular, can have a profound effect on performance and on the
choice of a good NUMA policy. Obtaining the best performance from a NUMA
machine will require that compilation tools be aware of memory sharing patterns
in the programs they are producing, that programmers work to produce "good"
sharing, or, more likely, some combination of the two.

65

The design space of policies is large [64], but experience suggests that simple
policies can work well, and that minor modifications are likely to yield only mi­
nor variations in performance. Major changes in policy are likely to be justified
only by changes in architecture. Rather than search for the perfect policy on
any particular machine, this chapter investigates the way in which architectural
parameters determine the strategy that must be adopted by any reasonable policy.

The methodology used is that presented in Chapters 2 and 4. Section 5.2
presents the basic results. The execution cost is shown for each of the applica­
tions and policies, and then compared with the optimal policy. The ACE and
PLATIN U M policies are examined in detail, and the results show that they are
each appropriate for the machine for which they were designed. An extension to
the ACE policy that requires a small amount of additional hardware support is
shown to reduce inappropriate page moves, and to improve performance over the
unmodified ACE policy. Section 5.3 focuses on the tradeoff between block transfer
time and the latency of remote memory references. An application is studied in
detail to identify the points at which it is able to exploit faster page moves.

5.1 Implementable (Non-Optimal) Policies

In addition to the optimal policy, this chapter describes three implement able
alternatives. Two of them have been used in real systems and are described in prior
papers: the ACE policy [24] (see Chapter 3) and the PLATINUM policy [39]. The
third policy, "Delay", is based on the ACE policy, and exploits simple hypothetical
hardware to reduce the number of pages moved or frozen incorrectly.

The ACE policy can be characterized as a dynamic technique to discover a
good static placement. The expectation is that the chosen placement will usually
be nearly as good as a user-specified placement, and often better, and will be
found with minimal overhead. The ACE policy was designed for a machine that
has fast global memory (g = 2) and no mechanism to move a page faster than a
simple copy loop (G = 2 * pagesize + 200 (200 is fault overhead)). When possible,
pages are replicated to each processor reading them. If a page is written by a
processor that has no local copy, or if multiple copies exist, then a local copy is
made and all others are invalidated. After a fixed, small number of invalidations,
the page is permanently frozen in global memory. The value used here (and in
the ACE implementation) is four.

The PLATINUM policy was designed for a machine with no global memory,
slow remote memory (r = 15), and a comparatively fast block transfer (R = 3 *
pagesize+200). Its principal difference from the ACE policy is that it continues to
attempt to adapt to changing reference patterns by periodically reconsidering its

-placement decisions. PLATINUM replicates and moves pages as the ACE algorithm
does, using an extension of a directory-based coherent cache protocol with selective

66

invalidation [31]. The extension freezes a page at its current location when it
has been invalidated by one processor and then referenced by another within a
certain amount of time, t l . Once every t2 units of time, a daemon defrosts all
previously frozen pages. l On the Butterfly, tl and t2 were chosen to be 10ms
and Is respectively. Since time is not explicitly represented in the model, tl

and t2 are represented in terms of numbers of references processed. The specific
values are obtained from the mean memory reference rate on an application-by­
application basis. by dividing the number of references into the (wall clock) run
time of the program and multiplying by 10ms and Is respectively. The PLATINUM
algorithm was designed to use remote rather than global memory, but could use
global memory to hold its frozen pages.

Because they are driven by page faults, the ACE and PLATINUM policies must
decide whether to move or freeze a page at the time of its first (recent) reference
from a new location. Traces allow us to study the pattern of subsequent refer­
ences, and confirm that the number of references following a page fault sometimes
fails to justify the page move or freeze decision. Bad decisions are common in
some traces, and can be quite expensive. An incorrect page move is costly on a
machine (like the ACE) that lacks a fast block transfer. An incorrect page freeze
is likewise costly under the ACE policy, because pages are never defrosted. A
simple hardware mechanism that would allow the accumulation of some reason­
able number of (recent) references from a new location before making a placement
decision would be sufficient to correct for this problem.

This mechanism could be implemented by modifying the TLB by adding a
counter that is decremented on each access, and that produces a fault when it
reaches zero. When first accessed from a new location, a page would be mapped
remotely, and its counter initialized to n. A page placement decision would be
made only in the case of a subsequent zero-counter fault. This counter is similar
to the one proposed by Black and Sleator [23] for handling read-only pages, but
it never needs to be inspected or modified remotely, and requires only a few bits
per page table entry. The value used for n here is 100. Results show that a delay
of 100 is more than is normally needed, but the marginal cost of a few remote
references as compared to the benefit of preventing unnecessary moves seems to
justify it on machines with relatively fast remote reference, like the ACE and

- Butterfly. If the machine being studied had more expensive -remote references,
like the machines considered in Chapter 6, n would need to be reduced.

lThe defrost behavior used here is not that of the final version of PLATINUM as described
in [38]. The final version of PLATINUM uses per-page exponential backoff of defrosting for pages
that are rapidly refrozen, so as to reduce the bouncing of fine grain shared pages.

67

5.2 Experiments

This analysis of traces attempts to answer the following questions within the
formal framework of the cost model:

• To what extent can one hope to improve the performance of multiprocessor
applications with kernel-based NUMA management-is the NUMA problem
important?

• How closely do simple, easily implemented policies approach the perfor­
mance limit of the optimal off-line policy?

• How does the choice of application programming system and style affect the
effectiveness of each of the policies?

• To what extent does the effectiveness of policies vary with changes in mem­
oryarchitecture? Can the "strategy" used by the optimal policy be charac­
terized as a function of these parameters?

Section 5.2.1 considers the first three questions. The final question is deferred
until section 5.3.

5.2.1 Performance of the Various Policies

The performance of each of the policies on each of the applications, expressed as
Mean Cost Per Reference (MCPR), appears in Figures 5.1 and 5.2-5.3, for archi­
tectures resembling the ACE and the Butterfly, respectively. Each application has
a group of four bars, which represent the performance of Optimal, ACE, Delay
and PLATINUM, from top to bottom. To place the sizes of the bars in context,
recall that an MCPR of 1 would result if every memory reference were local and
no page moves were required. For ACE hardware parameters, an MCPR of 2 is
trivially achievable by placing all shared data in global memory: any policy that
does worse than this is wasting time on page moves or remote references

The Importance of the NUMA Problem

For the NUMA problem to be of importance, several things must be true: memory
access time must be a significant fraction of the execution time of a program; the
performance difference between executions with correctly and incorrectly placed
pages must be large; there must be some reasonably good solution to the problem.
The results in Section 3.2.1 estimate the memory times for programs running on an
ACE to be in the 25%-60% range. Newer, more aggressive processor architectures

e-fft

e-slmp

e-hyd

e-nasa

gauss

chip

bsort

kmerge

ply trace

sorbyc

sorbyr

matmult

cholesky

mp3d

water

p-gauss

p-qsort

p-matmult

p-life

I
-0

I
0.5

I
1

I

I

L
I

I
I

I

\

I

I

I

I
I

I
I

I

I

I

I
I

I

I I

I

I
I

I

I
1.5

I
I

I

I
I
I

Figure 5.1: MCPR for ACE hardware parameters

I

I
2

68

e-fft I
e-simp I
e-hyd I
gauss I

chip I
bsort I

kmerge I
ply trace I

sorbyc I
sorbyr I

matmult I
water

I
-0

p-gauss

p-qsort

p-matmult

I
•

~
I

I

I
I
I

I I I I
1 2 3 4

Figure 5.2: MCPR for Butterfly hardware parameters

I I

"

p-life ~I ~~~~~~~~~~~~~~~~~~~3=1 ?,

mp3d ~I ~~~~~~~~~

cholesky ~I ~~~~~~5==========i==I
I

-0
I
5

I
10

I
5

Figure 5.3: MCPR for Butterfly hardware parameters, high cost applications

69

70

will only increase this percentage, as demonstrated by the increasing emphasis on
cached memory systems. [69, 78]

One possibility for NUMA management is to statically place all private data
and to leave shared data in global memory or in an arbitrary local memory. This-­
strategy will work well for applications such as e-fft, that have only private and
fine-grained shared data, but it will not work well for others.2 Many programs
require data to migrate, particularly when remote references are costly. Examples
include matrix rows lying at the boundaries between processor bands in sorbyr,
and dynamically-allocated scene information in ply trace. This is demonstrated
by the number of page moves performed by the optimal policy, presented in Fig­
ure 5.6. It explains why the PLATINUM policy (which is more aggressive about
moving pages) generally does better than the ACE or Delay policies on a machine
such as the Butterfly, in which a page move can be justified to avoid a relatively
small number of remote references. The ACE policy would be wholly inappropri­
ate on machines like those used in Chapter 6, in which the ratio of R to r is very
small.

Even on a machine like the ACE, in which frozen pages are only twice as
expensive to access as local pages, there is a large benefit in correctly placing
pages. For all but the Presto applications and mp3d, an optimal placement results
in an MCPR below 1.26 on the ACE (as compared to 2 for static global placement)
and 2.5 on the Butterfly (as compared to 14-15 for random placement). For a
program that spends half of its time accessing data memory, compared to naive
placement and assuming no contention, these MCPR values translate to about a
one quarter improvement in running time on the ACE, and a one half improvement
on the Butterfly, As shown in the following section, the implement able policies
achieve a substantial portion of this savings.

The Success of Simple Policies

Both the ACE and Delay policies do well on the ACE. The MCPR for Delay is
within 15% of optimal on all applications other than ply trace and cholesky.
The ACE policy similarly performs well for applications other than ply trace,
bsort, kmerge, and cholesky. These programs all display modest performance
improvements when some of their pages migrate periodically, and the ACE and
Delay policies severely limit the extent to which this migration takes place.

All of the policies keep the MCPR below 4 for the non-Presto, non-SPLASH
applications on the Butterfly, with the exception of ACE on bsort, and that
case could be corrected by increasing the number of invalidations allowed before

2 As will be demonstrated in Chapters 6 and 7, e-fft only looks as if it has fine-grained
-shared data because of the large page size imposed by the ACE and Butterfly models; in fact,
it is false sharing that causes this illusion.

71

freezing. For all applications other than the Presto and SPLASH ones, PLATINUM
stays near or below 2.5. This is quite good, considering that a random static
placement would yield a number close to 14. The ACE and Delay policies perform
slightly better than P LATI N U M on applications that have only fine-grained shared
and private data (e-hyd and e-fft), but the cost of moving pages that should be
frozen is low enough on the Butterfly that the difference between the policies in
these cases is small.

The difference between the ACE and Delay policies displays a bimodal distri­
bution. In most cases the difference is small, but in a few cases (bsort, krnerge
and water) the difference is large. In essence, the additional hardware required
hy Delay serves to prevent mistakes.

The Importance of Programming Style

The Presto applications have much higher MCPRs for both architectures, in both
the on-line and optimal policies. This disappointing performance reflects the fact
that these programs were not designed to work well on a NUMA machine. They
have private memory but do not make much use of it, and their shared memory
shows little processor locality. The shared pages in the EPEX e-fft and e-hyd
programs similarly show little processor locality, but because these programs make
more use of private memory, they still perform quite well.

The programs that were written with NUMA architectures in mind do much
better. Compared to the Presto programs they increase the processor locality
of memory usage, are careful about which objects are co-located on pages with
which other objects, and limit the number of threads to the number of proces­
sors available. It is not yet clear what fraction of problems can be coded in a
"NUMAticized" style.

Chapter 6 demonstrates that by reducing the page size, performance is greatly
improved for most applications. This indicates that the main contributor to poor
performance is false sharing, rather than real data communication. This seems
to indicate that much is to be gained by altering the data-layout patterns of
programs, particularly on architectures with greater remote/local ratios than those
of the Butterfly.

The Impact of Memory Architecture

From the discussions above it is clear that the difference in architecture between
the ACE and Butterfly machines mandates a difference in NUMA policy. It pays
to be aggressive about page moves on the Butterfly. Aggressiveness buys a lot
for applications such as ply trace and e-simp, that need to move some pages
dynamically, and doesn't cost much for applications such as e-fft, which do

72

not. At the same time, aggressiveness is a bad idea on the ACE, as witnessed by
the poor performance of the PLATINUM policy on many applications (sorbyc,
e-simp. matmul t. e-fft. p-gauss). In as much as the ACE and Butterfly
represent only two points in a large space of possible NUMA machines, it seems
wise to explore the tradeoffs between architecture and policy in more detail. This
exploration forms the subject of the following section.

M
C

1.8

1.6

P 1.4
R

1.2

1

0··· ····0 e-fft of'" - --+ sorbyc
is - --6 e-slmp 0 u sorbyr
r----1 e-hyd .- - - -. matmult
~ 'J: e-nasap ~ p-gauss
0----0 gauss , , p-qsort
~ chip ~ p-matmult
a----T;. bsort 1(" - --x p-life
6·······6 kmerge + + cholesky ply trace r - --, mp3d _____ --x

........ ;. . .;. . .;."*"- -.... :"". -.:-.-:-.~.~~.~.~ ,
------ --

r- - - -:-. ..:..~;; -:: :: - - - - - - - - - - - - - - ""t" - - - - - - - - - - - - -- - - - -I
.' '." " .. ,.

r
..,

x

.......................... +
........... +

+
---------• --

. a.: : :..: :.: :..: :..' :.: ~. :...- - - - -- - - - -. ---- ; : .. ,',' ,', ~ -.
......

•••••••••• 1:>, •••

.• 1:" ___ :;..:::..:.:...:~::...:'" ••••••••••

200 500 1000 1500 2000 ace 2500
Global Move Cost

Figure 5.4: MCPR vs. G for optimal, g=2, r=5

5.3 Variation of Architectural Parameters

·Figures 5.4 and 5.5 show how the performance of the optimal policy varies with
the cost of a page move (G or R), for remote and global access times comparable

10

8

1\1 6

C - P
R

4

2

0· .. ···0 e-fft
IS - -"Z> e-Slmp
r-----1 e-hyd
x······x e-nasa
c:r - -"Cl gauss
~ chip
~ bsort
6······6 kmerge
........ ply trace
of" - -"'I- sorbyc

o 0 sorbyr
r - - -. matmult
~ p-gauss
, , p-qsort
~ p-matmult
~ - - -x p-life
+ + cholesky
,- - -, mp3d

.' .,....
,...,- ---

.. ' ,"

--
.......... ~ ~.~.:.!,
--- --

--- --
_ -- - - -- - - - -;-'- -. -- ~-r~--=--~--:...--_-_--_-_--_---_--_-_-------""-

" ~
.....

/ .. , ,
' .

I·
I'-

~

x

............

.' '~''-'':-

:.-' ~ ~ .~ ~ , :; :0 :' ::; : : : : : : ~: ~: ~: ~: ~: ~: ~: ~: ~:~: '-' '- '-' '-' '-' '- '-' "-.;

200 bfiy 7000 10000 15000 20000
Remote Move Cost

Figure 5.5: MCPR vs. R for optimal, no global, r=15

73

74

to those of the ACE and the Butterfly, respectively.

The minimum page move time represented on each graph is 200, which is
assumed to be a lower bound on the time required to process a fault and initiate
a page move in the kernel. 200 therefore corresponds to an infinite bandwidth,
zero latency hardware block transfer. The maximum page move times on the
graphs are the page size times 9 or r, plus a more generous amount of overhead,
corresponding to a less tightly coded kernel.

As described in section 4.1.5, if R is considered to be a real-valued variable,
then the cost of the optimal policy on a trace is a continuous, piecewise linear
function of R. Furthermore, its slope is the number of page moves the optimal
policy makes, which in turn is a monotonically non-increasing step function in R.
Similar functions exist for G, g, and r, except that their slopes represent global
page moves, global references, and remote references respectively. An important
implication of continuity is that, given optimal placement, there is no point at
which a small improvement in the speed of the memory architecture produces a
disproportionately large jump in performance.

At a G or R of 0, page moves would be free. The optimal strategy would move
any page on a non-local reference. This means that for a G or R of 0 the optimal
MCPR of any application must be 1, regardless of the values of 9 and r. Since the
optimal cost is continuous, the curve for every application must fall off as G or R
approaches O. This means that all the curves in Figures 5.4 and 5.5 go smoothly
to 1 below their left ends. For applications such as e-fft that don't show much
benefit from G and R down to 200, this drop is very steep.

Though different machines require different policies, any given policy3 will be
oblivious to the speed of memory operations. The curve for a given policy will
therefore be a straight line on a graph like Figure 5.4, and will lie on or above the
optimal curve at all points (see Figure 5.7 for an example). Because the optimal
curve is concave down, no straight line can follow it closely across its entire range.
This means that no single real policy will perform well over the whole range of
architectures. Thus, to obtain best performance over a range of page move speeds
in Figures 5.4 and 5.5 in which the optimal line curves, one must change the real
policies used accordingly. However, for the applications whose curves are largely
flat lines, the same policy works over the entire range.

One can plot MCPR, 9 (or r), and G (or R) on orthogonal axes to obtain multi­
dimensional surfaces. Figures 5.4 and 5.5 show two-dimensional cuts through
these surfaces. They are interesting cuts in the sense that one can imagine spend­
ing extra money on a machine to increase the speed of block transfer relative
to fixed memory reference costs. It makes less sense to talk about varying the
memory reference costs while keeping the block transfer speed fixed. Moreover,

3Here, "policy" is used in the strictest sense of the word. Changing t1 or t2 in PLATINUM
would thus yield a new policy.

-

75

figures 5.4 and 5.5 capture all of the structure of the surfaces, at least in terms
·of the relationship between page move cost and memory reference cost, as shown
by Theorem 1 in section 4.1.5. As a consequence of this theorem and its corol­
lary, each multi-dimensional surface consists of rays pointing up and out from
(g,r,G,R,m) = (1,1,0,0,1). Sliding figure 5.5 in toward the r origin causes the
curves to retain their shape, but shrinks them in the Rand MCPR dimensions.

10000

1000
""'"

~ "", 9:" -9:" _~_

100 0-,
0-'0-

Moves 'a

per
Page

(log 10
scale)

1

0.1

200 500

C······C e-fft
IS - - -6 e-slmp

e-hyd
e-nasa
~a)lss

chIP
bsort
kmerge
ply trace

c··· ····c
"' '"
0"---0

r--.
~

6·······6

~ - --+ sorbyc
C C sorbyr
.- - - -. matmult
+ + cholesky
r--. mp3d
~ p-gauss
0"---0 p-qsort
~ p-matmult
"K" - --x p-life

1':" -"I':" -"I':" - - - - - - - - -,r:- ____ _ --- ""It"" __

- -~ - - --x

....•......... ~.~. -.~.-:r . .:.. '~.-'

. ·······c···· ... ·c·· .. , ···c

C'"

·C· ..

0······· ·c·· "'0

1000 1500 2000 ace 2500
Global Move Cost

Figure 5.6: Mean page moves per 4 kilobyte page for optimal, g=2, r=5

Figure 5.6 presents, on a logarithmic scale, the mean number of page moves
per page as a function of G for an ACE-like machine. Many of the applications
have large jumps in the number of moves made around 1024 and 512. These are
points at which referencing each word on a page, or half of the words, is sufficient
to justify a page move. Some applications. show large jumps at other multiples or
fractions of the page size, but large changes at other values of the page move cost

76

are rare.

When designing a NUMA policy fora given machine, one should take into
account where on the move cost spectrum the architecture lies. Machines to the
left of jumps benefit from more aggressive policies, machines to the right from
more conservative policies. A machine that lies near a jump point will run well
with policies of varying aggressiveness.

5.3.1 Case Study: Successive Over-Relaxation

To illustrate what is happening to the optimal placement as the page move speed
varies, this section examines one of the successive over-relaxation (SOR) applica­
tions, sorbyr, in some depth. Recall from section 2.2 that sorbyr is a program
for computing the steady-state temperatures of the interior points of a rectangular
object given the temperatures of the edge points. It represents the object with
a two-dimensional array, and lets each processor compute values in a contiguous
band of rows. Most pages are therefore used by only one processor. The shared
pages are used alternately by two processors; one processor only reads the page,
while the other makes both reads and writes, for a total of four times as many
references.

Almost all of sorbyr's references are to memory that is used by only one
processor. Thus, the MCPR values are all close to 1. However, this case study
concentrates on the portion of references that are to memory that is shared. The
effects of management of this memory are still clearly visible in the results pre­
sented and are typical of shared memory in other NUMA applications.

The optimal placement behavior for a shared page depends on the relative costs
of page moves to local, global and remote references. This behavior is illustrated
in Figure 5.7 as a function of page move cost. In this graph the cost of the optimal
policy is broken down into components for page moves, remote references, global
references and local references. Since most pages are used by only one processor,
the major cost component is local references; in this figure, however, the local
section is clipped for readability.

As page move cost decreases, remote references are traded for copies and global
references, and then for more copies and local references. This can be seen in .
Figure 5.7 at points near G = 1200 and G = 400 respectively. It is important to
note that while the cost breakdown of the optimal policy undergoes large sudden
changes, the cost itself as a function of G is continuous.

The performance of the other policies is also included. The PLATINUM policy
works best for small G. This is expected, since it is designed for a machine with
a relatively fast page move. However, since it must be above optimal at all points
and is a straight line (i.e., is architecture insensitive), it must be bad for large G

-

1.05

1\1
C
P
R

1

PLATINUM

.-.-.-.-.-.-, -.,. ...
.- --.-- --, --.-- .-

.-.-.-

.-.-.-

.­.-
.- .-

--- ---

.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-

ACE --

.-.-
.­.-

i7

DELAY

_ _ _ _ ___ ".:': - - - - - - - - - __ .--,-----::-:----.....----- Optimal --- , .-

.-'- Move

.-.-.-

200

.-
.­.-

500

Remote

Global

Local (extends down to 0)

1000 1500 2000 ace 2500
Global Move Cost

Figure 5.7: sorbyr MCPR vs. page move cost with optimal breakdown, g=2, r=5-

78

in order to be good for small G. Conversely, for the ACE or Delay policies to do
well for large G they must not do as well for small G.

5.4 Summary

This chapter addressed issues in the design of kernel-based NUMA management
policies. The approach was to use multiprocessor memory reference traces, from
a variety of applications, to drive simulations of alternative policies under a range
of architectural parameters. In the area of NUMA policy design:

• The problem is important. In comparison to naive placement of shared data,
optimal placement can improve overall program performance by as much as
25 to 50%. This is much higher in machines with higher remote latency,
such as those studied in Chapter 6.

• Good performance on NUMA machines depends critically on appropriate
program design. Trace analysis supports the intuition that NUMA policies
will achieve the best performance for applications that minimize fine-grain
sharing and the false sharing that occurs when data items accessed by dis­
joint sets of processors are inadvertently placed on a common page.

• Given good program design, simple kernel-based NUMA policies can pro­
vide close to optimal performance. A veraged over all applications on the
ACE, the ACE policy achieved 82% of the savings achieved by the optimal
algorithm over static global placement of shared data. Averaged over all
applications on the Butterfly, the PLATINUM policy achieved 94% of the
savings achieved by the optimal algorithm over random placement of shared
data.

• Different memory architectures require different policies for high-quality
NUMA management. Dynamic discovery of a good static placement works
well on a machine in which page movement is expensive in comparison to the
cost of remote (or global) access. As the cost of page movement decreases,
it becomes increasingly profitable to move pages between program phases.
The PLATINUM policy achieved only 40% of the optimal improvement on
average on the ACE. The ACE policy achieved only 87% of the optimal
improvement on average on the Butterfly.

In terms of architectural design:

• A policy that is (wisely) unaggressive about dynamic page placement due
to high page move cost .could use a mechanism such as the proposed per­
page reference counter to significantly reduce the number of page-placement

-

-

79

errors, thereby improving performance. On average on the ACE, the Delay
algorithm achieved an additional 4.6% of the improvement of the optimal
algorithm. On the Butterfly, it prevented two disastrous mistakes .

• Improving block transfer speed by some multiplicative factor f can lead to an
improvement of more than f in memory cost, because a good policy is likely
to move more pages when doing so is cheap. At the same time, there are no
points at which a small improvement in block transfer speed produces a large
improvement in memory cost. Fast block transfer will be most effective on
machines in which remote memory references are comparatively expensive,
and then only for certain applications; it is unlikely to be cost-effective on
a machine with cheap remote memory.

80

6 Comparative Performance of
Coherently Cached, NUMA,
and DSM Architectures on
Shared Memory Programs

Previous chapters set the stage for the work that directly addresses the thesis
statement: "Properly designed software-coherent shared-memory multiprocessors
can perform competitively with coherently cached machines." This chapter uses
the tools and lessons of what precedes it to demonstrate the thesis.

Specifically, the aim in this chapter is to evaluate the relative merits of the
three principal architectural alternatives for shared-memory parallel processing:
hardware cache-coherent multiprocessors, software coherent NUMA multiproces­
sors, and multicomputers running distributed shared-memory systems. For the
architectures that have remote access, and so require policy decisions to be made,
optimal analysis is used to avoid the potential bias of using policies that are better
tuned to one architecture than another.

All of the machine models have similar processors and caches, an inter-processor
memory connection medium of equal bandwidth and latency, and for those ma­
chines that have it, remote memory reference hardware of the same speed. The
differences lie in the way in which the components are used: do they provide
hardware support for remote memory access; do they implement coherence in
hardware; what size are the cache lines 'or pages?

The results here apply to the extent that the base technology is as described
in section 6.1.2, that machines are programmed in a shared-memory style, that
the machines enforce sequential consistency and are not latency-tolerant, and that
latency dominates contention as a contributor to memory system cost. Machines
with weak consistency reduce the number of remote operations necessary, in part
by reducing false sharing, and so would benefit less from smaller block sizes; they
still need to wait for events that constitute real communication events. Machines
that are latency-tolerant by virtue of fast thread context switching [3] suffer less

-

-

81

from expensive remote operations, but would still benefit from having fewer such
operations by reducing false sharing. Because most remote operations are prob­
ably due to false sharing, reducing it by having smaller blocks, better compilers
or better programs would benefit all of the machine models to some extent or
another.

That said, most of the programs that perform well on cache-coherent machines
perform only marginally worse on NUMA machines with small block sizes. DSl\l
machines with small block sizes perform somewhat worse than NUMA machines.
The block size (i.e. the size of the cache line or page) is the dominant factor
in all three classes of machines; smaller blocks perform better than larger ones
(within reason) in most applications, despite the fact that communication start­
up latencies make moving large amounts of data far more expensive using smaller
blocks. Remote references do little to improve the performance of machines with
small, hardware-coherent cache lines, but they can improve the performance of
distributed-memory machines dramatically, even when implemented in software.

The next section describes the machine models. Section 6.2 describes the ex­
periments and their results. Section 6.3 examines the effect that reducing the page
size in NUMA machines would have on TLB miss rates. Section 6.4 summarizes
the results and presents conclusions.

A preliminary version of this work appears as [25].

6.1 Machine Models

Since the goal is to compare the performance of a suite of programs on several
classes of multiprocessor architectures, it is necessary to choose machines that
are representative of these classes, but which are in other ways balanced so as to
avoid tainting the results with effects unrelated to the cache and memory systems
used. Because such a large group of well-balanced machines does not exist (even
as concrete designs), the performance of the components is extrapolated from
current machines.

6.1.1 The Machine Models

There are five basic machine types. Four are obtained by considering the four
pairs of answers to two questions. The first question is: "Does the machine sup­
port single-word references to remote memory?" and the second: "Does hardware
implement all of the block movement decisions and operations, or does the oper­
ating system kernel need to be invoked in some cases?" Table 6.1 shows the name
given to each pair of answers to these questions.

82

Hardware Software
Coherence Coherence

Remote Access Hardware CC+ NUMA
No Remote Access Hardware CC DSM

Table 6.1: Machine types considered

"CC" stands for (hardware) coherently cached, "NUMA" for non-uniform
memory access (i.e., software coherent), and "DSM" for distributed shared mem­
ory. The "+" in CC+ indicates that this model contains a feature (remote refer­
ences) not normally present in cached machines.1 The NUMA machine includes
hardware to remotely reference memory in another processor's cache, but to ini­
tiate a page move operation requires a page fault; the kernel intervenes to initiate
the operation to fetch the page from remote memory. CC+ is similar to NUrvlA,
except that it has hardware support for making the remote move or replication
request, and consequently does so much faster. CC is similar to CC+, except that
remote references are prohibited. DSM is similar to NUMA, except that remote
references are prohibited. All of the models have infinite size caches, and ignore
initial cache loading effects.

While DSM does not support remote memory access in hardware, it could
be implemented in software. The resulting system is called DSM+. In DSM+,
a page that is to be accessed remotely is left invalid in the page table, so that
every reference generates a fault. The kernel sends a message to read or write the
remote location, and restarts the faulting instruction when the remote operation
completes. The cost of a remote reference will be larger than in the NUMA
machine, due to this kernel overhead.

Systems without remote reference capability (CC, DSM) make no placement
decisions; they always migrate data on a write and replicate them on a read. The
optimal placement is used for the other three models.

Regardless of the trace used (and regardless of the particular machine compo­
nent speed parameters used, presuming that they are all greater than zero) some
of the machine models will always perform better-than others at the same block
size. This performance domination relationship forms a partial order, which is
shown in Figure 6.1. Machines with better performance are above machines with
worse: CC+ always does at least as well as all other machines, and DSM does
no better than any other. NUMA is at least as good as DSM+. To see why
these relationships hold, consider that CC+ is like NUMA, but with faster remote

1 Many cache-coherent machines allow caching to be disabled for particular address ranges,
forcing processors to access data in main memory. Machines with this capability will display
performance in between that of CC and CC+.

-

83

Figure 6.1: Performance domination partial order for a fixed block size

-
C-2

84

reference and block move; NUMA and DSM + have equal block move speeds, but
NUMA has faster remote reference. CC and DSM both lack remote reference,
but CC has faster block move. A machine with remote reference will be at least
as fast as one with equal block move, but no remote reference, because in the
worst case the remote reference capability can just be ignored. Therefore, CC+
dominates CC and DSM+ dominates DSM. The final relationship, that between
CC and DSM, holds because DSM has a slower block move than ce, and neither
have remote reference.

The effect of block size is more complicated. While reducing the block size
means that large transfers will take more operations, and so use more overhead,
a small block size reduces fragmentation and false sharing [35, 41, 42]. Software
managed pages are much larger than cache lines, because the time to handle a page
fault is generally much larger than that to handle a cache miss. In uniprocessor
systems, the tradeoff in pagesize is between internal fragmentation and increased
overhead, and the trend has been to larger pages. This trend has been driven
largely by the increase in system physical memory sizes, which has reduced the
magnitude of the performance effect of fragmentation, while leaving the overhead
unchanged. However, the added effect offalse sharing reduces the desired blocksize
on shared memory multiprocessors.

6.1.2 Computing Cost Numbers for the Machines

To use the cost model (see Chapter 4) the important characteristics of a machine
are: how fast can it move a cache line or page from one processor to another; can
it reference a single word remotely, and if so how fast; how big are its cache lines
or pages? That is, what are R, r and the block size?

While only these three parameters are important to the model, deciding their
values requires a more detailed understanding of what happens inside a machine.

The "local" time used as the unit in the cost model is the local cache hit time.
The baseline processor is a MIPS R3000 running at 40 MHz, with one wait state
for a local cache hit. Thus, a cost of 1 time unit can roughly be considered to be
50ns: one 25ns processor cycle for the load or store instruction and one waiting for
the cache. The inter-processor interconnection network in all-of the machines is
identical in performance: it has a bandwidth of 40Mbytes/sec,-and thus requires
2 time units to transmit each four bytes of data, once start-up overhead has been
paid.2

2For simplicity's sake, the interconnection network is considered to be no more than four
bytes wide. While larger sizes are common, it is unlikely that they would significantly affect r,
or have any effect on R at all. If the interconnection were more than four bytes wide, r would
be larger, because some bandwidth would be unused when transmitting a single word reference.

-

-

-

85

To model large machines, the latency of the network is 50 cost units (2.5I1S)
to get a message from one node to another-IOO for a round trip message. The
one-way latency is called ..\.

The R3000 takes about 130 processor cycles to take a trap and return to the
user context [8J. Because a cache cycle is two processor cycles, it costs 65 cost units
to take and return from a trap. A well-coded kernel should be able to determine
what action to take within another ten units, so the time charged for a trap to
software to initiate a remote operation is 75 units. Any additional processing (e.g.
to 'modify page tables) can proceed in parallel with the network transfer. On the
other hand, a cache controller is likely to be able to decide what action to take on
a cache miss in much less time; the model charges only 2 units for the hardware
to decide what action to take on a cache miss. These two costs are named the
"software overhead," Os, and "hardware overhead," Oh, respectively.

The operation of moving a remote cache line or memory page to the local pro­
cessor consists of several distinct phases: taking the initial miss or fault that begins
the operation, determining the location of the memory to be fetched, requesting
that the memory be sent, waiting for the memory to arrive (while concurrently
updating any TLB, page table or cache directory information that may need it),
and returning to the process context. The trap, decision and return cost are dis­
cussed in the previous paragraph: they are 75 for software implementation and 2
for hardware. Only one trap overhead is charged, because the hardware on the
side that holds the data is assumed to be able to send it without requiring soft­
ware intervention, even for the software coherent machines. All of the machine
models assume that blocks have both home and owner locations, and that a dis­
tributed directory contains, on each home node, the location of the owner. For
the software coherent machines to fetch a remotely located block, they have to
first determine the location of the block by querying the block's home node at a
cost of 2"\, and then requesting the data from the owner, at a cost of 2,,\ plus the
time to transmit the block of block...size/2. (The transmission time is ! times the
block size because the interconnection is able to transmit two bytes per time unit,
as described above.) Together these terms determine R for the software coherent
machines: R = block...size/2 + 4..\ + 0 8 •

In the hardware coherent machines, the cache directory at a line's home node
is able to forward the request for the line's data directly to the owner node, thus
eliminating one of the trips through the interconnection (and hence subtracting
one ..\ from the cost). This results in the hardware coherent machines having
R = block...size/2 + 3..\ + 0h.

The second model parameter is r, the time to fetch a single word from a
(known) remote memory. Here, hardware support is provided for this operation
in CC+ and NUMA. After an initial Oh hardware set-up cost, retrieving the data
requires a request/reply latency time of 2,,\. In DSM+, every remote reference

86

Machine r R
NUMA 2>' + 0h 4>. + block....size/2 + 0"

CC -- 3>' + block....size/2 + Oh

CC+ 2>' + Oh 3>' + block....size/2 + Oh

DSM - 4>. + block....size/2 + 0"

DSl\I+ 2>' + 20$ 4>. + block....size/2 + 0"

Table 6.2: Formulas for computing model parameters

Machine Block Size r R
NUMA 4K 102 2323

CC 64 - 184
CC+ 64 102 184
DSM 4K - 2323

DSM+ 4K 250 2323

Table 6.3: Parameter values for the base machine models

must go through the kernel trap mechanism. After taking the trap, the kernel
sends a message to the (known) holder of the memory, who traps, finds the data
and responds. Thus, there are two software trap costs (one on each side) plus a
request/reply latency. The total cost of a remote reference is 2>' + Oh = 102 in
CC+ and NUMA, and 2>' + 20" = 250 in DSM+. In the machines without remote
reference (CC and DSM), r is infinite.

The following experiments vary several of the parameters, and in particular
explore the effect of changing the block size. The "base machine models" assume
that the block size is 4 kilobytes for NUMA, DSM and DSM+, and 64 bytes
for CC and CC+; these values are similar to those of machines currently being
built. In particular, the page size of the ACE on which the traces were collected
was 4K, and so the applications in the test suite tended to allocate their data
on 4K boundaries. This explains the significant degradation in performance seen---­
between 4K and 8K block sizes in many of the applications. Table 6.3 presents
the values of the model parameters for the base systems.

6.2 Experimental Results

This section describes a series of experiments. The first is to simply look at the
performance of the base machine models on the application suite. This investi-

87

gation reveals that CC and CC+ almost always outperform NUMA, DSM and
DSM+. To attempt to determine if this is related to having faster primitive
operations or to having a smaller block size, a second experiment considers the
relative performance of the machines when all five have the same (intermediate)
block size. This experiment yields qualitatively different results from the base
machine models: the remote reference capability of NUMA generally more than
overcomes the faster hardware of CC; this means that the advantage seen in the
base machines models is due to a smaller block size (and so less false sharing and
internal fragmentation), rather than the faster hardware operations.

The next set of experiments explores the effect of changing the block size over
a wide range of values for all the architectures, and confirms that the size of the
block size effect is usually much larger than that due to the various architectural
differences. The final experiments explore the effect of the (fairly optimistic)
choice of Os, the time for software to handle a page fault, and conclude that
increasing Os by an order of magnitude would leave unchanged the basic result
that block size affects performance much more than architectural differences.

6.2.1 Base Machine Model Results

Figure 6.2 shows the performance results for the base machine models. The per­
formance of each application is shown as a group of five bars, one for each archi­
tecture. The bars represent the architectures in order, showing CC+, CC, NUMA,
DSM+ and DSM from top to bottom. The length of each bar shows the MCPR of
the application on that architecture. For application/architecture pars that had
an MCPR of greater than 35, the bar is left open at the right hand side and the
numeric value is printed there. For example, DSM on e-hyd had an MCPR of 75.

The most important observations to be drawn from this experiment are that
in most cases CC outperformed NUMA, often by a considerable amount, and that
the gaps between NUMA and DSM + and DSM + and DSM were often also large.

Consider the second observation first: NUMA significantly outperformed DSM+,
which in turn significantly outperformed DSM. That they came in this order is
unsurprising, given their positions in the partial order shown in Figure 6.1. \\That
is interesting is the magnitude of the difference. The gap between NUMA and
DSM + shows the advantage of having remote reference implemented in hard­
ware rather than using much slower page fault mechanisms. NUMA and DSM +
performed a considerable number of remote references in the course of executing
these applications; while DSM+ was able to reduce the effect of having a larger
r by transforming some of the marginally valuable remote references into page
moves (which cost the same in DSM+ and NUMA), DSM+ still showed large
degradations in many cases. This says that at the 4K page size, remote reference
is being used often and to great advantage. DSM+ is about 2.5 times slower

e-nasa~E==~~====:::!::J
gauss~

chipFF

bsortg

kmergeg

plytraceEF?~~=i::!:==::h==:h==::l
sorbycL:

I

sorbyr~

matmultp--,E::~~~' :===~==::::l::==:::d=:=:I
mp3d§1 ~~~~~~~~~~====

r~~~I~I~~~~======~====~~======~======~====== choleskYI: I

water~

p-gauss~1 ~~~~~~~~~~=k==k==k===
p-qsortEr===?~~~~~~~~~,=t,====~~====, ~I=====~=====

p-matmult F-:t::::~=1 ~==~
p-lifer===?

I
-0

I
10

I I:

I
20

I
30

Figure 6.2: Results for base machine models

75

59 193

80

58

129

I
40

88

89

than NUMA at remote reference (102 vs 250; see Table 6.3). In several of the
applications, for example mp3d and p-matmult, DSM+ MCPR was nearly twice
NUMA's, which indicates that remote reference was being used for most of the
interprocessor communication in NUMA.

The gap between DSM + and DSM is also indicative of the value of remote
reference. To explain this. consider a graph of MCPR versus r for a particular ap­
plication. As r increases, MCPR increases less than linearly: as remote references
become more expensive, they are replaced by page moves. The curve is piecewise
linear, and bounded by the MCPR of DSM. It reeaches the value of DSM at the
point where the optimal placement uses no remote references, and is constant for
all r above that point. The fact that DSM + does much better than DSM indicates
that the particular value used for r is still sufficiently small that this curve is well
away from its limiting value. For pages as large as 4K, supporting even expensive
remote references pays off.

The more interesting question is that of the relative performance of the CC
models with NUMA. Here, both CC+ and CC do much better than NUMA, pretty
much across the board. Because of the difference in page size, the dominance
relationship shown in Figure 6.1 does not hold, and in fact NUMA outperformed
CC+ in gauss, bsort, kmerge and sorbyr, though only by a small amount. The
question is, why do CC+ and CC do so much better overall than NUMA? They
have faster operations, and a smaller page size. It is not immediately clear which
difference is mostly responsible for the effect seen. While R (and r in the case
of CC+) has less of an overhead component than NUMA, it seems like too small
of a difference. On the other hand, one might expect that moving data in large
blocks could produce significant advantages, because the overhead is amortized
over a larger amount of data. Moving 4K using NUMA, or either of the DS!\1
models with a 4K block size costs 2323 cost units. Moving it with CC or CC+
using 64 byte blocks costs 11,776. Reduction of fragmentation and false sharing
would tend to benefit machines with smaller block sizes.

6.2.2 Comparing the Machine Models Using the Same
Block Size in All

To shed some light on the question of why CC and CC+ performed better than
NUMA, I ran a second experiment. This time, the simulations were run using
a 512 byte block for all five architectures.3 Figure 6.3 shows the result of this
experiment.

In sharp contrast to the first experiment, NUMA performs nearly as well as
CC+, and in most cases better than CC. This indicates that the value of faster

3The reason for using 512 byte blocks was that it is (logarithmically) half way between the
64 byte and 4 kilobyte sizes used in the first experiment.

e-fft I
e-simpl

e-hydl

e-nasa§

gauss§

chiPI

bsort§

kmerge§

plytraceF7,

sorbyc§

sorbyr~

matmult§

mp3dl
choleskyl

water§

p-gaussl

p-qsortl

p-matmult~

p-lifel

I
-0

:
I

I!
I

I

!,
I

':

I

':
II
I
I
I
I
I
I i:

I
10

I ~
I I

I

I
I

I I

I
20

Figure 6.3: Results using 512 byte blocks for all machines

I
30

90 .-

-
-
-

--

-

-

-

M
C

200

100

50

P 20
R

10

5

~----l<

,.------

:J(' .•• ·····x

32 64

DS~f
DS~I+
NU!vlA
CC
CC+

.. , ..

128 256 512 lK
Page or Line Size

2K

,.:'tE ,..
". ". ". ,.

,.1··

4K 8K

Figure 6.4: cholesky MCPR versus block size (log scales)

91

operation initiation (at least at this pagesize) is not that large, and in fact mostly
smaller than the value of having remote reference. This answers the question
posed by the previous experiment: the main reason that the software coherent
machines performed much worse than the hardware coherent machines was not
that the hardware coherent machines could initiate operations more quickly, but
rather that they benefited greatly from having a smaller block size.

Chapter 7 discusses false sharing, and explains that false sharing is probably
the cause of the substantial benefit of having smaller blocks. In short, having
smaller blocks means that there will often be fewer coherence operations, because
the system is better able to differentiate between operations that might involve the
real communication of data and those that cannot possibly, because they reference
different words in memory. Since fewer unnecessary (for program correctness)
coherence operations take place, program execution is faster. This is true even·
though the cost of moving large contiguous blocks of memory. is much greater.

6.2.3 Varying the Block Size

Figures 6.4, 6.5 and 6.6 show the performance of three of the applications as the
block size is varied. These are log-log graphs. Cholesky and p-qsort are typical
of the rest of the application set in that performance improves significantly with
reduction in block size, across the board (excepting the smallest cache line size
considered). The value of remote reference (as shown by the distance between

100

50

M
C 20
P
R

10

5

1.3

M
C 1.2
P
R

1.1

~----"

r----_ '" ",.'

DS11
DSM+
NUMA
CC
CC+

",.'

• ",.' ,.' " '" '" 1" ~~ .. ,

",.' , .'
",.'

"'.'
"'''' '" .' "'.' ,. , .'

/ ,.' '" ,. ,
..... "'7C:,' ,,

..... " ":I:,,
..,,:' .;.~-'I ,.,,: .. :--:

,:'''''):

~~~::r . " .• 
,--- $' .' ... -... ~ "." ,,' ......• 

":::,:::: :*: :::: ::: :1:···· 

,.... 

32 64 128 256 512 1K 2K 
Page or Line Size 

4K 

Figure 6.5: p-qsort MCPR versus block size (log scales) 

~----" DSM 
,..----- DSM+ 

• NUMA 
" ......... " CC ........... CC+ 

32 64 128 256 512 1K 2K 4K 
Page or Line Size 

Figure 6.6: sorbyr MCPR versus block size (log scales) 

92 

~ .. 

-
8K 

-

-

8K 

... 



-.. 93 

DSM and DSM+ and between CC and CC+) increases with the block size. This 
is because r does not depend on the block size, while R does, so R/r decreases 
with the block size. 

Sorbyr is interesting in that it is extremely well-behaved. Most of its memory 
is not shared, and the portion that is shared is migratory over relatively long time 
periods. The size of the portions that migrate is 41< bytes, and thus the curves 
show minima between II< and 4K. For all machines and all block sizes, sorbyr 
does much better than most of the other applications. Moreover, the shapes 
of its curves are unique. At small block sizes performance degrades markedly, 
because the natural size to migrate is 4K, and the overhead of using many high 
latency operations rather than a single one to make the migrations dominates the 
application's overall performance. The relative expense of moving large amounts 
of data in the small-block systems led me to believe that this effect would appear in 
more applications, but it did not: in most applications, the advantage of reducing 
false sharing was more important that the added overhead introduced by moving 
data in small chunks. 

For completeness, graphs of MCPR versus block size for the rest of the appli­
cations appear in Appendix A. 

Table 6.4 shows the performance of CC, NUMA, DSM and DSM+ relative 
to CC+, using the lowest cost blocksize for each application/machine pair. For 
example, NUMA's best MCPR for sorbyr came at block size 2K and was only 
slightly over CC+. DSJ\l's best was at a II< block size and was 1% worse than 
CC+. This table shows that for the most part, CC and NUMA performed within 
20-30% of CC+, and DSM+ and DSM were generally within 50%. Contrast 
this with the data presented in Figure 6.2, which shows NUMA and the DSM's 
commonly performing an order of magnitude or more worse than CC+ and CC. 

6.2.4 The Effect of as 

One of the parameter selections that is subject to debate is that of Os, the 
software overhead. The value chosen represents an extremely small number of 
instructions executed by the kernel to decide whether to replicate a page (about 20, 
excluding those necessary in an "empty" trap). It may be that this is insufficient 
time; even if it is possible, it is doubtless more convenient for the kernel writer 
if more time is allowed. To see how sensitive the results are to 0" the following 
experiments observe the result of varying it. 

Across the application suite, variations in 0, resulted in two qualitatively dif­
ferent patterns of variation in performance. One pattern is typified by sorbyr, 
shown in Figure 6.7. The value of 0, in the base machine model is 75. As it in­

. creases NUMA, DSM, and DSM+ all show marked, and almost uniform, increases 
in MCPR. It is important to note the scale of the y axis, however. The only 



94 

II Application I cc I NUMA I DSM+ I DSM II 
e-fft 10% 8% 73% 77% 
e-simp 5% 24% 50% 51% 
e-hyd 27% 19% 75% 100% 
e-nasa 7% 5% 19% 23% 

gauss 4% 1% 9% 11% 
chip 7% 29% 50% 51% 
bsort 1% 0% 1% 2% 
kmerge 3% 1% 2% 5% 
ply trace 8% 18% 32% 39% 
sorbyc 1% 2% 16% 17% 
sorbyr 0% 0% 1% 1% 
matmult 12% 10% 24% 39% 
mp3d 17% 37% 68% 68% 
cholesky 10% 25% 55% 62% 
vater 2% 2% 4% 6% 

p-gauss 3% 33% 55% 55% 
p-qsort 3% 50% 64% 68% 
p-matmult 1% 12% 13% 14% 
p-life 3% 35% 49% 51% 

Table 6.4: Performance of other architectures relative to CC+ at their best block 
size, expressed as difference in MCPR 

-



1.15 

M 1.1 
C 
P 
R 

1.05 

.r----" 
,.-----, 

............ 

_s: 
=====1'-

x 

DSM 
DSM+ 
NUMA 
CC 
CC+ 

. -
.... .... ~ -_ .. 

" ,4 
" " 
" 

" " " 

I 

"I 

I 
I , 

, , , , 

, , , 
, 
, , 

.. , 

................................ 'x ..... ......... ,... .... .......... .......... ................. ................ " 

50 75 150 300 500 1000 
Software Overhead 

Figure 6.7: sorbyr performance versus 0 6 for 512 byte blocks (log scales) 

M 
C 
P 
R 

20 

10 

.r----" 
,.-----. 

): ••..•••• "Jt 

•..........• 

DSM 
DSM+ 
NUMA 

88+ 

,.-x···················· ";" -,;_ ........... ........................................... 'J!: 

-I' 

,. 

5 I·· ........•................... ' ....................................................• 

50 75 150 300 500 1000 
Software Overhead 

Figure 6.8: e-hyd MCPR versus Os for 512 byte blocks (log scales) 

9.5 



20 

M 15 
C 
P 
R 

10 

~----" 

r-----. 

1< •••••••••• )"( 

•..........• 

---
1('----~ 

DSM 
DSM+ 
NUMA 
CC 
CC+ 

_-r --f~"""""""""""""'"'' ................ . 

..... ......... 
150 300 
Software Overhead 

. ........................• 

500 1000 

Figure 6.9: p-qsort MCPR versus o~ for 512 byte blocks (log scales) 

96 

applications to demonstrate this pattern of performance variation were sorbyr, 
p-matmul t, and bsort, all of which have extremely good MCPR values-below 
2.2-at all tested values of o~. In other words, the shape of the graphs can be de­
ceiving: the absolute performance degradation is small. CC and CC+ are constant 
with respect to Os, because none of their operations require software intervention, 
and hence none of their model parameters depend on Os. They are shown for 
reference only. 

The more common pattern of variation of MCPR with o. is demonstrated by 
e-hyd and p-qsort, shown in Figures 6.8 and 6.9, respectively. E-hyd is typical of 
the applications in this group; p-qsort displays the largest amount of dependence 
on os. As Os increases the performance of NUMA slowly degrades, but not enough 
to be of much concern. DSM and DSM+ are more severely affected. Since software 
remote references in DSM+ require two traps, the value of remote reference in 
DSM+ (as evidenced by its benefit over DSM) is quickly reduced, and the two' -, 
upper curves converge. With no option but to migrate blocks, and with many 
more migrations occurring at a cost that increases with 0., performance rapidly 
degrades. Consequently, fast trap handling is crucial in DSM systems, at least 
when using a page size as small as 512 bytes. It is less crucial in NUMA systems, 
though certainly desirable, due to NUMAs remote reference capability, which is 
not dependent on Os, and is able to "take up the slack" as the (os dependent) page 
move operations become more expensive. 

-

-

-



97 

6.3 The Effect of Reducing the Page Size on 
TLB Miss Rates 

Using a page table to translate a virtual address into a physical address typically 
requires some number of references to that page table, which is in main memory.---­
Typically, such an address translation will require two or more references. Since 
every memory reference by an application program requires an address translation, 
memory management units employ a device known as a "Translation Lookaside 
Buffer," or TLB, that acts as a cache of the page table. Unlike the full page table, 
a TLB is stored on-chip in the MMU, and is usually built from content addressable 
memory. When a virtual address is presented to a TLB, if the translation for that 
address is present in the TLB, it will be returned without paying the overhead of 
making references to in-memory page tables. If the given virtual address is not 
present in the TLB, the page tables are consulted to determine the appropriate 
translation, and the translation is entered into the TLB. This is known as a "TLB 
miss." 

If the page size is reduced in a machine without virtually tagged caches, barring 
a change in TLB design the TLB miss rate will increase. TLBs are not part of the 
machine model presented in Chapter 4, and so any change in the TLB miss rate 
due to decreasing the page size needs to be evaluated separately before considering 
building a machine with smaller pages. This section presents a study in which the 
effect of reducing the pagesize on the TLB miss rate is calculated, and this new 
miss rate is used to compare the increased cost due to more TLB misses with the 
reduced cost due to fewer non-local operations. In most applications, the overhead 
of additional TLB misses is small relative to the benefit of reducing the page size. 

6.3.1 Virtually Tagged Caches 

Some machines with virtually tagged caches do not need to have TLBs, because 
the cache directory provides a substitute. That is, if the virtual address is used as 
the index into the cache, a virtual address translation only needs to happen when 
the cache misses; since cache misses are rare, and are usually more expensive than 
TLB misses, such a design will greatly reduce the cost of an increased TLB miss --­
rate. However, there are several problems with virtually tagged caches. The main 
one is that operating systems that allow different virtual addresses to map to the 
same physical address need to deal with aliasing in the cache. This problem is 
discussed by Wheeler and Bershad [101], who find that with careful management 
of the cache by the operating system, the extra overhead due to the additional 
operations needed to eliminate aliasing problems can be small. 

Other machines, such as the HP 9000 series [68], have virtually indexed, phys­
ically tagged caches, in which an address translation occurs by presenting the 



98 

address to both the cache and TLB at the same time. The cache hashes the vir­
tual address to find a line or lines that may contain the data. To determine if the 
line contains the correct data, its physical tag is compared with the result of the 
TLB lookup. This scheme allows cache indexing and TLB lookup to happen in 

. parallel rather than in serial as in a physically indexed cache, but does not remove 
the need for a TLB (and so eliminate the cost of a TLB miss). 

6.3.2 TLB design 

TLBs are indexed in much the same way as memory caches. They are divided 
into k sets of size a. An address to be looked up is categorized into one of the 
k categories in some manner, typically by using the low order bits of the page 
number (and so k is normally a power of two). Once the category is determined, 
the a entries in the appropriate set are queried to see if they contain the translation 
for the virtual address. The sets are usually implemented in associative memory, 
so the lookup time is small. The size of the sets, a, is called the associativity 
of the cache. TLBs in which k = 1 are called "fully associative," because all 
entries coexist in a single associative store. If a TLB were built with a = 1, it 
would be called "direct mapped." TLBs that are neither direct mapped nor fully 
associative are called "set associative." This same terminology is used to describe 
associativity in caches. 

This study simulates a multiprocessor in which each processor has its own 
TLB; references made by one processor have no effect on the TLB of another. For 
TLBs that are not direct mapped, when a TLB miss requires that an entry be 
deleted to make space for the new translation, the least recently used entry in the 
appropriate set is chosen for removal. For TLBs that are not fully associative, the 
least significant log2 k bits of the page number are used to determine into which 
set a page falls. All of the TLBs studied here have values of k that are powers 
of two. Figure 6.10 and the similar figures in Appendix A display the TLB miss 
rate as a function of the page size. The miss rate itself is simply the number of 
TLB misses divided by the total number of references in the trace. 

As noted in Table 2.1, many of the applications make references to "private" 
memory: memory that is a priori local to a single processor. For the most part,­
previous work has ignored these references. However, they affect the TLB miss 
rate in exactly the same was as do references to potentially shared memory. There­
fore, the private references have been included in the input to the TLB miss rate 
simulator. Instruction fetches were not included. 



M 
C 
P 

0.1 

0.01 

R 0.001 

0.0001 

""" 

32 

"". 
"'" 

'i<. '" 

64 128 256 

"' ......... '" 
• 
j( x 
1:"----" 
,..----, 

''''''' •........ '. 
)ie •••••••• 

. '*'. 

512 1K 2K 4K 
Page Size 

Figure 6.10: ply trace TLB miss rate vs. page size (log scales) 

6.3.3 Results 

ACE 
68040 
R4000 
68851 
88200 
68030 

8K 

99 

The results presented here consider the TLB miss rate for 6 different machines. 
These machines are the ACE, which has 16 sets with two entries per set, the 
Motorola 68040 which has 16 sets of 4, the Motorola 68851 MMU, which is fully 
associative and has 64 entries, the Motorola 88200, which is fully associative with 
56 entries, the Motorola 68030, which is fully associative and has 22 entries, and 
the MIPS R4000. The R4000 has 48 entries and is fully associative, but is unusual 
in that each TLB entry describes two adjacent virtual address translations. These 
translations may be to two non-adjacent physical pages, have different protections, 
and have separate valid bits. In this way, the associativity of the TLB (and so the 
expense of building the associative memory for the lookup hardware) is kept down, 
but it is able to cache more translations. In my model, this machine is treated as if 
it has twice the pagesize otherwise shown. This completely captures its miss rate, 
although the cost of a miss can be greater, because it· requires two translations 
from the page table, rather than the one required by the other machines. 

Figure 6.10 shows the TLB miss rate (in misses per memory reference) for 
ply trace as a function of the page size. Ply trace was selected because it is 
typical of the TLB miss behavior of the application suite. It shows significant 
increases in the TLB miss rate as the page size is decreased; at a page size of 
128 bytes, all but the R4000 have miss rates of over 1%. For the ACE model, 
this is an increase of roughly an order of magnitude over the miss rate for a 4K 



100 

page size, and slightly less than two orders of magnitude for the R4000. The time 
cost due to this increase depends on the cost to fill a TLB miss; on the ACE it is 
somewhere between two and three local memory reference times. Conversely, on 
the R4000, which has software TLB miss handling, it can be considerably more, 
depending on the implementation of the software filling the miss. 

To fully understand the effect of the change in TLB miss rate, one needs 
to consider its effect on execution time, rather than simply looking at the miss 
rate. To compute the MCPR effect of an increased TLB miss rate requires an 
understanding of the cost of a TLB miss, which in turn requires an understanding 
of the address translation hardware of the machines involved. 

The ACE has an inverted page table. The time to translate a virtual address 
depends on the number of memory references that have to be made into the table, 
which in turn depends on the length of the particular hash chain on which the 
virtual address being translated lies. At minimum, two references need to be made 
to get to the first entry on the chain. Typically, these hash chains are very short, 
and TLB misses only need to access one or two entries on the hash chain. Assume 
that the average chain is of length 2, so the average number of memory references 
needed for a TLB miss is 2.5. Furthermore, assume that the TLB miss rate for 
the 4K page case is O. Then, the MCPR cost due to added TLB misses will be 3% 
(the TLB miss rate for the ACE with 128 byte pages) times 2.5 (local) references 
per miss times one cost unit per local reference, for a total contribution of .075. 
The MCPR for ply trace on the NUMA model at 4K pages is 3.8, while at 128 
bytes it is 2.1, and so the additional cost of the TLB misses is overwhelmed by 
the improvement in performance due to the reduction in remote operations. 

Because the R4000 uses software to fill a TLB miss, the cost of such a miss 
is much greater. Uhlig et al. [97] report that the cost to fill a user TLB miss 
in the Mach operating system on an R4000 is 20 machine cycles; assuming local 
cache hits take two machine cycles, and that the TLB miss rate for 4K pages is 
0, the change in MCPR is the 128-byte page TLB miss rate of .8% times 10 (the 
cost of a TLB miss expressed in cache hit times), or .08 which is still insignificant 
compared to the improvement due to reduction in non-local references because of 
the 128 byte page size. 

Table 6.5 shows the MCPR cost of each of the applications for the NUMA 
model, using 4K pages, and using 128-byte pages 1) without a correction for TLB 
misses 2) with a correction for the cost of additional TLB misses using a TLB 
model like that of the ACE and 3) using one like that of the R4000. While all of 
the applications suffer because of the increased TLB miss rate, only matmul t on 
the R4000 and gauss on the ACE are severely degraded. Overall, the slowdown 
due to TLB effects is much smaller than the speedup because of smaller pages. 

However, for applications that run on a single processor, the increased TLB 
miss rate can be significant. In effect, all single-processor applications have an 

.("11 



101 

Application 4K NUMA 128-byte NUMA MCPR 
MCPR Uncorrected ACE R4000 

e-simp 5.98 5.02 5.17 5.25 
e-hyd 6.64 4.84 4.89 4.87 

gauss 1.14 1.13 1.41 1.16 
chip 6.11 3.13 3.29 3.16 

bsort 1.08 1.33 1.42 1.50 
kmerge 1.12 1.46 1.53 1.56 

ply trace 3.76 2.13 2.20 2.21 
sorbyr 1.04 1.18 1.62 1.22 

matmult 2.90 1.52 2.79 6.09 
mp3d 30.9 11.7 11.8 11.8 

water 1.40 1.08 1.10 1.09 

p-gauss 17.6 6.18 6.26 6.21 
p-qsort 14.4 4.72 4.78 4.75 
p-life 14.3 4.98 5.02 5.04 

Table 6.5: MCPR uncorrected and corrected for additional TLB misses 

MCPR of 1, but would still suffer from the same degradation in MCPR due to an 
increased TLB miss rate. That is to say, a "single processor" version of ply trace 
on the R4000 would see an 8% performance degradation because of small page 
sizes. Furthermore, for some applications, notably bsort, not only does reducing 
the page size increase the TLB miss rate, but it also hurts the MCPR independent 
of TLB effects; the increased TLB miss rate simply worsens the degradation in 
performance already present as the pagesize is reduced in bsort. 

These results indicate that while simply reducing the pagesize will increase 
the TLB miss rate, the cost of these misses for parallel programs will probably be 
insignificant due to the gain in performance reported earlier in this chapter. On 
the other hand, single processor applications will suffer from more TLB misses 
without the compensating benefit of better multiprocessor performance. To make-­
single-processor programs and systems perform better one could simply enlarge 
the TLB, use a virtually tagged cache, have a (per-process) variable page size, 
or extend the R4000's idea of having multiple pages represented by a single TLB 
entry to a much larger number of pages per entry (say, 16). Adopting any of 
the solutions to the uniprocessor problem would also result in the TLB miss rate 
having little impact on the performance of NUMA and DSM systems as opposed 
to cache-coherent systems. 

The TLB miss rate graphs for the other applications are in Appendix A. 



102 

6.4 Conclusions 

The results of this chapter must be considered in the context of assumptions 
about the hardware technology, application suite, and tracing methodology. Ma­
jor technology shifts could lead to different results-a large decrease in network 
latency, for example, would benefit the cache-coherent machines more than the 
NUMA or DSM systems, because their smaller block sizes cause them to incur 
this latency more frequently. Different applications will produce different results 
as well. The applications were all designed for NUMA machines or bus-based 
cache-coherent multiprocessors. They have been modified to represent the use 
of smart synchronization algorithms, but even so they do not in general display 
the very coarse-grain sharing most suitable to distributed-memory multicomput­
ers. They are typical of the programs designers would like to be able to run on 
DSM systems. The cost model represents memory access latency and placement 
overhead only; it does not capture contention. This assumption appears to be 
fair in well-designed machines and applications. It may penalize the NUMA and 
DSM models to some degree, since contention would be more likely to occur in 
the cache-coherent machines. As in most trace-based studies, caches are assumed 
to be of infinite size, and cold-start effects are ignored. Since the machines that 
need to make policy decisions (the ones with remote reference) are assumed to 
always make the best possible choices, their actual performance will be somewhat 
less than that reported here; on the other hand, the machines without remote 
reference make no policy choices, and so their numbers show no similar bias. Fi­
nally, the fact that changes in architectural parameters should result in different 
traces is ignored; experiments presented in Section 4.3 indicate that these results 
are relatively insensitive to the kinds of trace changes that would to be induced. 

With these caveats in mind, the principal conclusions are: 

• Block size is the dominant factor in shared-memory program performance. 
Slopes at the low ends of the graphs suggest that even machines that incur 
large per-block data movement overheads (i.e. the NUMA and DSM sys­
tems) will still benefit from reduction of the block size. Block sizes in the 
64 to 128 byte range seem to be sufficiently small that further reductions 
have little positive effect on performance. For particularly well-behaved ap~'-'­
plications (e.g. sorbyr), reductions below the 128-byte level can markedly-­
reduce performance . 

• Machines with coherent caching hardware tend to do somewhat better than 
those without. However, NUMA-style machines, particularly when run with 
small block sizes, perform comparably, and in some cases outperform the 
traditional cached machines without remote reference. NUMA machines 
remain a viable architectural alternative, particularly if they can be built 
significantly more cheaply than cache-coherent machines. 

-
-

-



103 

• The value of remote reference depends on the size of the block being used. 
For the block sizes typically employed in paged machines, it can yield signif­
icant performance improvements. Well coded remote reference software is 
a promising option for DSM machines, and merits experimental implemen­
tation. Conversely, remote reference is unlikely to benefit cache-coherent 
machines enough to warrant the expense of building it, at least when the 
line size is small. 

• Distributed shared memory systems such as DSM and DSM + do not appear 
competitive as a base for generic shared-memory programs. Their perfor­
mance was acceptable only for the most well-behaved applications, with very 
coarse-grain sharing. At the same time, there is little hope that program­
mers will be able to ignore locality issues on any type of large shared-memory 
multiprocessor. Shared memory is primarily attractive as a form of global 
name space. It relieves programmers of the need to employ special syntax 
for operations on shared objects; it does not relieve them of the need to keep 
track of those objects' locations. 

These conclusions suggest several avenues for future work in the field. Dub­
nicki and LeBlanc [41] have proposed that cache-coherent machines vary their 
block size adaptively, in response to access patterns; the results presented here 
suggest this is a promising idea. Hybrid architectures such as Paradigm [34], 
which employ bus-based hardware coherence in local clusters and software co­
herence among clusters, also appear to be promising; hardware coherence is easy 
(and cheap) for bus-based machines, and the performance of the NUMA model is 
acceptable for many applications. Section 6.1.1 notes that reductions in block size 
can worsen performance by increasing the cost of moving large amounts of data, 
and can improve performance both by decreasing false sharing and by increasing 
the probability that a block will be used enough to merit replication before it is 
invalidated via true sharing. 

The burden of locality management currently rests with programmer. Its 
importance is obvious in the wide performance differences among the applications, 
but the task can be onerous, particularly to novice programmers. There is a strong 
need to reduce this burden. Fairly simple diagnostic tools could identify data-­
structures for which coherency imposes a substantial cost at run -time, thereby-·­
facilitating manual program tuning. More ambitiously, compilers or run-time 
packages might use application-specific knowledge to partition and place data 
appropriately, thereby increasing locality. 



7 False Sharing and its Effect 
on Shared Memory 
Performance 

104 

Consider a typical sequentially consistent shared-memory multiprocessor. It con­
sists of a number of processors with some form of memory or cache at each pro­
cessor. This memory is grouped into blocks, and these groupings are used for 
purposes of maintaining coherence; a reference to any word of a particular block 
is treated identically to a reference to any other word in that block. Therefore, it 
is possible that two (or more) different processors would each use distinct memory 
that is located within a single block, and that this use could result in coherence 
operations. Since by premise each processor is using distinct memory, it is not 
necessary for the correctness of the program that each processor have available 
the other processors' up-to-date data; that is, some of the coherence operations 
are unnecessary. However, because of the grouping into blocks by the hardware, 
traditional systems will assure that this data is present at any processor that is 
referencing a block. Behavior wherein processors use distinct data within a block 
is called "false sharing." The term is also used to denote the unnecessary coher­
ence operations performed because of false sharing; which meaning is intended 
should be obvious from context. 

Given the concept of false sharing, several questions immediately come to 
mind: Can it be more precisely defined? If so, can it be accurately measured? 
What overall effect does it have on performance? Can it be eliminated or reduced 
in impact, and if so, how? 

This chapter explores these questions, though it does not come to definite -
answers. Section 7.1 lists criteria for an acceptable definition for false sharing, 
and then considers several candidate definitions in term of those criteria. Each 
definition is found to fail on one or more of the points. Section 7.2 estimates the 
extent of false sharing for several application by looking at their breakdown into 
overhead and data transfer cost components. 

Practical methods of reducing false sharing are beyond the scope of this work. 
The insights offered into the magnitude of the problem, however, indicate that if 

-

-

-



--

105 

the problem could be solved, it would result in large improvements in program 
. performance on shared-memory multiprocessors that have large block sizes. 

One promising approach to (effectively) reduce false sharing is to change the 
memory model exported to the user. Instead of presenting a sequentially con­
sistent memory model (one in which- every write is immediately visible at all 
processors), alternate approaches could be used. For example, Stanford's DASH 
Multiprocessor system [52, 69J and Rice's Munin distributed shared-memory sys­
tem [19, 30] use release consistency. In its essence, release consistency requires 
that newly written data be remotely visible only when the writer releases its lock 
on the data. In that way, false sharing generates fewer coherence operations. If 
two processors are operating on different objects on the same page at the same 
time, the number of synchronization operations necessary is no larger than the 
number of lock releases; these releases may not cause the processor to stall even 
if they cause a coherence operation, because the coherence operations take place 
in the secondary cache. If the processor does not use the cache line again until 
the coherence operation completes, the time cost of the coherence operation will 
be zero. Correctly constructed programs (those with no unlocked concurrent ac­
cesses to data objects) will be unaffected by the change in semantics due to weak 
consistency, but could perform much better. 

7.1 Definitions of False Sharing 

Ideally, a definition of false sharing would have the following properties: 

• It would adequately capture the intuitive notion of false sharing. 

• It would be mathematically precise. 

• It would be practically applicable. 

To adequately capture the intuitive notion of false sharing, the definition 
should result in a value that gets bigger as more unrelated things are co-located 
within blocks; that never grows as blocks are subdivided; and that is zero when 
the block size is one word. The latter two requirements taken together imply that 
the amount of false sharing can never be negative. 

The cost and execution models as presented in Chapter 4 are all mathemati­
cally precise: given a trace and machine model, there is no ambiguity as to the cost 
of executing the trace on the machine. Furthermore, the framework is sufficiently 
rigorous to allow the proof of mathematical theorems in its context. An adequate 
definition of false sharing should be equally precise; if it relies on hueristic or 
inexact techniques, it can at best provide bounds to the amount of false sharing, 



106 

and at worst inexact approximations that may lie an undetermined distance in 
either direction from the "true" value. 

A definition that both captures the intuitive notion and is mathematically 
precise is in some sense sufficient: it would adequately capture the cost of false 
sharing in a mathematical way. However, if it is not practically applicable, be­
cause for instance applying the definition requires the solution to an NP-hard 
optimization problem, it is of little use. 

The following sections explore some potential formal definitions for false shar­
ing. All of them fail at least one of the above criteria. However, they are still 
interesting as mental exercises, and some of them are at least able to provide 
passable approximations to the amount of false sharing present. Section 7.1.1 
describes the one-word block definition, which occurs to many people when they 
are first presented with the idea of false sharing, but which on closer examination 
badly fails to capture the intuitive notion of false sharing. Section 7.1.2 describes 
the interval definition, which uses future knowledge and an optimizing algorithm 
to measure false sharing; it fails the practical applicability test, since there is 
no known computationally tractable solution to the optimization problem. The 
next section addresses the primary weakness of the interval definition by allowing 
hueristic selection of intervals; it fails the preciseness criterion. Section 7.1.4 con­
siders full-duration false sharing, and finds that it is too restrictive a definition. 
Section 7.1.5 reviews a method used by Eggers and Jeremiassen wherein a pro­
gram is tuned by hand and timed to determine the extent of false sharing; it is 
not mathematically precise. Section 7.1.6 describes the cost-component method, 
which uses a breakdown of the execution cost into its constituent parts; it fails to 
capture the intuitive notion of false sharing. 

7.1.1 The One-Word Block Definition 

When the concept of false sharing is explained to many people and they are 
asked to quantitatively define it, after a little thought they come up with the 
idea that the false sharing in a trace at blocksize b is the difference in optimal 
cost between the trace when run with blocksize b and that when run with a 
blocksize of one word. Indeed, when a trace is run with a single-word blocksize_ 
there is manifestly no false sharing. Furthermore, the optimal placement for a ,_. 
program with a single-word blocksize will have the property that as few words 
are transferred between processors as is possible while maintaining coherence. 
However, it does not result in the minimum number of transfersj most programs 
have at least some locality of reference, and so would benefit from some grouping 
of transfers. The execution cost of a program as defined in Chapter 4 is the sum 
of the per-byte cost of transferring data through the interconnection and the per­
message cost of initiating these transfers (since the one unit per local reference 
cost is insensitive to placement, it can be ignored). These are represented in 

-I 

-
1 



107 

Chapter 6 as the "pagesize/2" and "n..\+oh" components of R and r. Reducing the 
blocksize to one word minimizes the data transferred, but increases the number of 
operations and thus the overhead incurred. So, the naive definition of false sharing 
could easily result in a negative amount of false sharing if the additional overhead 
generated outweighs the eliminated false-sharing induced coherence operations. 

This effect can be seen very graphically in the results presented in Chapter 6. -­
For example, Figure 6.6 shows that sorbyr increases in cost as the block size is 
lowered toward 1 word. If all that happened as the blocksize was reduced was 
that false sharing was also reduced, then the cost curves would all get smaller 
with the block size. However, exactly the opposite happens: the cost gets larger 
with a smaller blocksize. In this particular application, the sharing is essentially 
migratory in nature: four kilobyte chunks are passed between processors, and if 
this sharing happens by moving small pieces one at a time, performance suffers. 

Increased cost through breaking up blocks that aren't falsely shared is present 
in most applications as block size is reduced, though it is usually not as pronounced 
as in sorbyr; most applications have a sufficient amount of false sharing that they 
benefit from smaller block sizes, even though big-chunk migratory data is handled 
poorly. This explains the general trend toward better performance at smaller 
block sizes seen in Chapter 6. 

Because the one-word block definition of false sharing is unable to separate 
improvements in performance due to reductions in false sharing from degradations 
in performance due to increases in the number of operations needed, it fails the 
test for a proper definition, because it does not adequately capture the intuitive 
notion of false sharing. 

7.1.2 The Interval Definition 

Imagine that the system is granted perfect knowledge of the sharing behavior of 
the program (say, because the application writer inserted perfect directives into 
the code). Using this information, it would be possible to change the coherence 
constraint: instead of requiring that only one copy exist at the time of a write, only 
require that any time a read takes place, the reading processor sees the "freshest" 
data. If two processors are allowed to have disparate copies of a (logically) single 
block, it must be possible to re-merge these copies at some future time. Call the 
cost of this new merge operation M. 

Define the effect of false sharing to be the difference in performance between 
the trace running on the original machine, and the minimal cost achievable us­
ing the extended execution model with the new merge facility. This definition 
is compelling in the sense that it describes a system that one could imagine im­
plementing (given that the application writer or language tools provided good 
enough directives), and does not suffer the same sort of problem as the "one word 



Constraint 2 

Constraint 1 . r----------------------------------------------------------------, I· I 
I I 
I I 
I I 

I I 
1 

W many refs 
2 

W ma.ny refs 
2 

r 
o 1 o 

Figure 7.1: False sharing intervals 

ma.ny refs 

108 

(--_._---
1 

r 
2 

block" proposed definition. It does not require any sort of hueristic guessing, pro­
grammer induced inaccuracy or fuzziness in the size of the measured effect as do 
the other definitions presented later in this chapter. 

However, this definition fails the third criterion for a definition of false sharing: 
. it is not (known to be) computationally tractable. Consider a string of references 
to a single page made by two different processors, as illustrated in Figure 7.1. Here, 
a notation like r~ means processor p read address a. A false sharing interval, then, 
is any interval that contains no pair of references w~ and r~ such that p i= q, the 
write precedes the read, and the block is written and referenced by more than one 
processor during the interval. That is, a false sharing interval is one in which there 
the block is used by more than one processor, but in which no data communication 
takes place. A "maximal" false sharing interval is one that ceases to be a false 
sharing interval if it is extended by one reference on either end, either because 
true data communication would be required, or because the end in question is at 
the beginning or end of the whole trace. 

The situation shown in Figure 7.1 is that there are two potential "maximal" 
intervals: from just after the first write to just before the final read, or from some 
time in the past (determined by other constraints not shown) up to just before 
the first read. Neither of these intervals can be extended without violating some 
constraint, but yet they have a non-empty intersection and are not equal. The 
total number of possible "maximal" interval sets can be exponentially large in the 
number of references, and there is no known computationally efficient method of 
determining which interval set results in the lowest possible overall execution cost. 

7.1.3 Heuristic Interval Selection 

Given that there is no known way of optimally choosing false sharing intervals, it 
could still be possible to at least make a good guess as to which intervals to use. 
At the very least, even an arbitrarily selected interval set has the property that it 
provides a lower bound on the amount of false sharing present in an application. 
If the heuristic used is good, then the computed bound could be close to the real 

-

-



109 

limit, and so would be good enough for the purposes of showing that false sharing 
can be a large problem. 

It is possible to have a (maximal) interval that has negative value: the cost 
of the coherence operations eliminated by the interval are smaller than the cost 
of merging the block at the end of the interval. Furthermore, the cost benefit 
of an interval depends not only on the references made during the interval, but, - .--. 
also on the desired starting and ending locations of the single copy of the page 
at the beginning and end of the interval. These locations in turn depend on 
what other intervals are selected. So, even the simple hueristic of choosing some 
set of maximal intervals, simulating the trace and rejecting those intervals that 
have negative value can still result in the selection of intervals that increase cost 
rather than reducing it, because they add cost only after other intervals have been 
chosen. 

The hueristic interval method selection definition of false sharing fails the 
mathematical precision criterion; nevertheless, it is an approximation of the in­
terval method that always errs in the direction of underestimating false sharing, 
and so is somewhat interesting in that provides a lower bound for false sharing. 

M unin 's [30] software implementation of release consistency takes a practical 
approach to hueristic interval selection. Its designers observe that if locking pro­
tocols are observed, any references made by a processor to an object for which 
it holds a lock are inside a false sharing interval (assuming that the processor 
does not make any references to other objects on the same page while holding 
the lock). This interval is not necessarily a maximal interval, but practically it 
will often be sufficiently large to result in a significant reduction of false sharing. 
After a lock release, if another processor acquires a lock for an object on the page, 
a merge operation happens, similar to that postulated in the interval definition 
(section 7.1.2). The value for AI would be the time to perform such a merge. 

7.1.4 Full Duration False Sharing 

If an additional restriction is placed on the intervals used for defining false sharing, 
namely that they extend from the beginning of the trace to the end of the trace, 
then two helpful things happen. First, the interval selection problem goes away, 
because there can be only one maximal "full duration" interval. Second, the --­
implementation question of how to deal with a program that has full-duration 
false sharing is much easier. All an implementor has to do, given that the full 
duration false sharing is identified ahead of time, is to turn coherence off for the 
falsely shared regions of memory. Since, by the definition of a false sharing interval 
and the fact that the whole of time is such an interval, no processor may read 
data written by another within a full-duration falsely shared block; sequential 



110 

consistency will be maintained. There is no need to extend the cost model by the 
. addition of a merge cost, AI. 

Unfortunately, such full duration falsely shared pages are extremely rare, and 
the result of exploiting this effect is sufficiently small as to be uninteresting in 
the applications studied here, and probably in most applications in practice. This 
definition fails the criterion of adequately capturing false sharing. because it is---­
too restrictive. 

Along the same lines as full duration false sharing is the identification of words 
that are either only-read or are used by only one processor, but are located on 
a page that is written by other processors. If these words could be separated at 
compile time, then every access to them could be local. 

7.1.5 The Hand Tuning Method 

In [42], Eggers and Jereniassen pursued a different method of measuring false 
sharing. They took various shared memory programs and modified them by hand 
to reduce false sharing. They ran the modified and unmodified versions of the 
programs, and defined the amount of false sharing to be the difference in execution 
time between the original and modified program. This method is valuable in 
that it does not rely on tracing techniques, but rather on directly measurable 
execution times of real programs. However, since hand-modification can vary in 
quality depending on the person making the modification and the complexity of 
the program, this definition fails the mathematic preciseness criterion. 

7.1.6 The Cost Component Method 

The cost model as presented in section 4.1 applies to a system with only a single 
block (one cache line or page), and is extended to the (normal) case wherein 
there is more than one block simply by treating each block as independent, and 
summing the costs for each block at the end of the simulation. However, for 
the purpose of quantifying false sharing, it is necessary to extend the model. 
For simplicity's sake, only machines without global memory or remote reference 
capability will be considered here. Thus, the only parameters that describe the 
machine are the block size and the remote block move oost,R. While in the model -­
as presented in section 4.1 R is simply a model parameter without interpretation, 
in practice (as in Chapter 6) it will be a function of machine parameters such as 
block size, interprocessor latency and trap-handling speed. For the purpose of the 
false sharing analysis, assume 

R = 0 + bs (7.1 ) 

where R is the remote block move model parameter, 0 is a constant representing 
overhead to set up a block move, b is a constant representing the bandwidth of the ..... 



111 

interconnection in terms of cost units per byte transferred, and s is the blocksize in 
words. That is, R is linear in the block size with a constant added. (The formulas 
provided for R in Chapter 6 have 2 for b, as seen in the pagesize/2 terml, and nA 
plus Oh or Os for 0.) 

When the blocksize is reduced, the coherence operations generated by the 
optimal policy will change. These changes will be due to one of three effects: 

1. If data that are used together are separated, more coherence operations will 
be necessary to move them. 

2. If falsely shared data are separated into pieces that are no longer falsely 
shared, coherence operations will be eliminated. 

3. If a block is split into two pieces and only one of those pieces is used, the 
cost of moving the other piece will be saved. 

Or, more concisely, overhead will increase for moving large blocks of data, false 
sharing will be reduced, and fragmentation will be reduced. The combination of 
these three effects results in the net change in cost between the initial and smaller 
blocksize models. The effect of false sharing at block size s is defined to be the 
difference in the value of the false sharing component between a run at block size 
s and a run with a single word block size. (One word block size machines thus 
have no false sharing). 

Breaking up data that are used together ("useful groupings") results in in­
creased cost because more operations are required to accomplish the same task. 
All of this additional cost will show up as additional overhead; the number of 
bytes transferred through the interconnection will not change. Reduction of false 
sharing reduces the total number of operations necessary, thus reducing both the 
number of bytes transferred and the amount of overhead incurred. Reducing frag­
mentation does not affect the number of operations, and so produces no change 
in the overhead, but reduces the volume of data transferred. 

Given trace T and machine M with block size s with no global memory or re­
mote reference, define the differences in grouping, fragmentation and false sharing 
between M and a version of M with block size one called MI, to be r (gamma 
for grouping), F (F for fragmentation) and S (S for false Sharing), respectively. 
Define Cs and Cl to be the optimal cost of T on Ma and M1 ; ie., Ca = c( 0, T, AflJ ) 

and Cl = c(O, T, Md. Then: 

Cs - Cl = r + F + S (7.2) 

1 Recall that "pagesize" is in bytes, while 8 is in four byte words, thus leading to the difference 
in coefficients 



112 

Because breaking up groupings is detrimental, while decreasing false sharing 
and fragmentation are beneficial, r will be (zero or) negative, while F and Swill 
be (zero or) positive. 

Define ({I a and ({It to be the number of block moves in the optimal placements 
for T on Ms and Ml respectively. Because M does not have remote reference or 
global memory, by the definition of cost from section 4.1.4 and by 7.1 aboye: 

(7.3) 

(7.4) 

Combining 7.2, 7.3 and 7.4 yields: 

r + F + S = Cs - Ct = o( ({I s - ({It) + b( s({l s - ({It) (7.5) 

The two terms on the right hand side of equation 7.5 are the cost components. 
o( ({I s - ({It) is the overhead component and b( s({l s - ({Il) is the data transfer com­
ponent. (They may also be called the "latency" and "bandwidth" components, 
respectively.) Because of the reasoning above, r affects only the overhead com­
ponent and F affects only the data transfer component. S affects both; define So 
and Sd to be the contribution of S to the change in overhead and in data transfer 
costs respectively. That is, 

(7.6) 

(7.7) 

and so by 7.5, 7.6 and 7.7: 

(7.8) 

If there-were no fragmentation and no false sharing, and the block size were 
reduced from s to 1, then each transfer in M. would become s transfers in M1; _, 

that is, if F = S = 0, then s({l. = ({It. When there is false sharing, performance 
improvements show up as a number of transfers fewer than s({l.i define T to be 
the number of transfers saved by reduction of false sharing in Mt as compared to 
M a , so ° $ T $ s({l •. If F =1= 0, then T < s({l. - ~1. T is not directly measurable 
from the experiments, but rather is that fraction of transfers that were due to 
false sharing; knowing T is equivalent to knowing F. Since the total effect of 

-eliminating false sharing is the elimination of the transfers represented by T, by 
the definition of So and Sd: 



113 

S -~ o-
S 

(7.9) 

and 

(7.10) 

Combining 7.9 and 7.10 yields: 

(7.11) 

Together with 7.8, this produces: 

(7.12) 

7.12 and 7.7 combine to form: 

o 0 
S = (0 + bs) 4> s - ( - + b) 4> 1 - (1 + -b ) F 

s s 
(7.13) 

Equation 7.13 provides a value for false sharing in terms of the measured 
numbers of transfers at block size sand 1 word, the model parameters and the cost 
savings due to reduction of fragmentation. This formula shouldn't be particularly 
surprising: the amount of false sharing is the total cost on Ms (excluding the 
cost of local references) of (0 + bs)4> s, minus the cost of transferring data in Afl 
but in blocksize s chunks (thus (; + b)4>1 rather than (0 + b)4>d; the additional 
overhead seen in Afl is counted in r. The remaining term of 7.13 is a correction 
for reduction of fragmentation. 

However, since there is no obvious way to measure the amount offragmentation 
independent of false sharing, this expression can only be used to bound the amount 
of false sharing. Since F must never be less than zero, if F is set to zero then 
Equation 7.13 yields an upper bound on the amount of false sharing present in T 
on Ms: 

o 
S ~ (0+ bs)4>s - (- + b)4>l 

S 
(7.14) 

The cost component definition of false sharing is fundamentally different than 
some of the other definitions, such as the full duration, interval or hueristic in­
terval definitions. The cost component definition measures the total amount of 
performance improvement that could conceivably be had from elimination of false 
sharing, assuming that it were possible to do so without increasing overhead by us­
ing smaller block sizes, or merge operations. That is, F is what would be achieved 



114 

if the system were able to move arbitrarily sized (and located) portions of blocks 
in single operations, moving only the data that is required for correctness. The 
only plausible way of doing such a thing is by directive from the application being 
run. Getting the kinds of savings shown by this method would require either very 
careful application tuning, or a very good compiler, library and/or runtime tools 
to assist the operating system in making these decisions. 

Example Traces Showing Fragmentation, Grouping and False Sharing 

The meaning of the terms defined in section 7.1.6 might easily be lost in all of the 
math. To illustrate their meanings, this section provides examples of synthetic 
traces that show lost grouping, decreased fragmentation and decreased false shar­
ing, and then computes values for r, F and 5 for them. The synthetic traces used 
here demonstrate each of the effects in isolation, for increased clarity. 

The first synthetic trace suffers from fragmentation, but not false sharing or 
loss of groupings. Consider trace TF defined by: 

T ( imodp I· 0 ) F = Wo z E .. n 

where n is the length of the trace, ~T = n. This trace consists of a series of 
writes, cycling through by processor, to the first word of the page. That is, the 
list of references looks like: 

TF has no false sharing: each word that is used at all is used by every processor. 
It loses no valuable groupings when the block size is reduced to one word, since 
only the first word of each block is ever used. However, it is severely fragmented, 
because each block move carries with it s - 1 words that are unused. Ignoring 
initial placement effects, every reference generates a block move in both .Ms and 
MI. Therefore, <1>s = <1>1 = n. So, the cost of TF on Ms is ~T + nRs = n + no+ nbs 
and on Ml it is ~T + nRI = n + no+ nb; the difference in cost is Cs - Cl = nb( s - 1). 
All of this cost difference is due to reduction of fragmentation, so F = nb( s - 1). 
Substituting these values into equation 7.13 yields, as one would expect,S = 0; 
further substituting into 7.2 shows that r = o. 

The next synthetic trace, Ts, exhibits false sharing, but no change in grouping 
or fragmentation: 

T - ( imod" I· 0 ) s - wimods Z E .. n 

Where s is block size, here assumed to be evenly divisible by p, the number 
of processors. This trace cycles through processors, each writing the next word 

--

-

-

-. 

-



115 

sequentially. Thus, again ignoring initial placement effects, each reference results 
in a block move, but no information is communicated between processors. There 
is no fragmentation, because all of the block moves result from false sharing, and 
there are no useful groupings lost, since there are no useful groupings. Since 
each reference results in a page move, cI>" = n. In M}, however, since no data is 
communicated, no blocks are moved, and so cI>1 = O. Thus,c" = n + n (0 + bs), 
CI = nand Cs - CI = n( 0 + bs). Because there is no fragmentation, F = O. 
Substituting these values into equation 7.13 results in S = (0 + bs )cI>s and so 
by 7.2, r = o. 

The third and final example trace, Tr exhibits a reduction in useful grouping, 
while not changing false sharing or fragmentation. 

l.!. J . 
Tr = (Wi~odsll E Ooon) 

Here l x J represents the floor function of x: the greatest integer less than or 
equal to x. This trace has processor 0 write each word of the block, followed 
by processor 1 writing each word of the block, and so on until each processor 
has written each word of the block. Then, the process repeats. Ignoring initial 
placement costs, and assuming that the length of the trace is such that it ends 
with the last processor making its last write to the block, we can compute the cost 
of execution on Ms and AIl. On M", the block is moved once per iteration for each 
processor, so 4> s = -;. This is also true on MI, but each block is only one word 
long, so cI>1 = n. In this instance, it is not necessary to make assumptions about 
F, because the value of the two terms in equation 7.13 that do not depend on F 
is 0, and the coefficient on the F term is negative. Therefore, either F < 0, S < 0 
or F = S = O. Since there cannot be negative false sharing or fragmentation, we 
conclude that Sand F are zero. Therefore, by 7.2 r = Cs - CI = (l-:)no. Recall 
that r is typically negative. 

7.2 Estimating False Sharing 

None of the definitions discussed in section 7.1 provide a way of measuring false 
sharing. Equation 7.13 from the cost component method could be used to show 
false sharing as a function of F, the level of fragmentation. However, the possible 
range of false sharing thus demonstrated is very large: for most applications, the 
contribution of false sharing to cost could range from nothing to over 90%. 

Figures 7.2, 7.3, 7.4 and 7.5 show the cost of execution of the CC and NUMA 
models broken down into overhead and data transfer components for ply trace, 
p-qsort, cholesky and sorbyr respectively. While it is not possible to determine 
the amount of false sharing directly from these graphs, looking at the degree to 
which the breakdowns vary over the range of block sizes gives a hint. 



M 
C 
P 
R 

10 

1 

0.1 

Total Cost 
Overhead Cost 
Data Transfer Co ' 

l-

I 
I 

I 

I .. ;1('" ."' •.•• " .... '" 

'. ,.l·X· " .... " .... ~ 

I. 
" 

, 
I 

I 

32 64 1282565121K 2K 4K 8K 
Block Size 

CC Machine Model 

M 
C 
P 
R 

10 

1 

0.1 

"' .... " 

)1: •• 

116 

Total Cost 
Overhead Cost 
Data Transfer Cost 

" .... "' .... '" 

32 64 1282565121K 2K 4K 8K 
Block Size 

NUMA Machine l\lodel 

Figure 7.2: ply trace MCPR broken down into data transfer and overhead com­
ponents (log scales) 

100 

M 10 
C 
P 
R 

1 

)1: •••• '" 

Total Cost 
Overhead Cost 
Data Transfer Co 

j 

, 
" 

I .. )1:" .. "' .... " 

x". '" .... ".,. 'i'" .", ... ',,' 
, , 

32 64 128256512 1K 2K 4K 8K 
Block Size 

CC Machine Model 

100 

M 10 
C 
P 
R 

1 

)1: •••• " 

Total Cost 
Overhead Cost 
Data Transfer Cost 

, 
" 

"I. 

32 64 1282565121K 2K 4K 8K 
Block Size 

NUMA Machine Model 

Figure 7.3: p-qsort MCPR broken down into data transfer and overhead com­
ponents (log scales) 

--

-
-

-
-

-



100 

M 10 
C 
P 
R 

1 

"'····x 
Total Transfer Cost 
Overhead Cost 
Data Transfer Co 

",'" ••• "j( •••• } 
'", , , , 

"-, , 
I 

, , 
, l 

, 
I .... ·x··· ~ .... * .... * 

""'li( 

32 64 1282565121K 2K 4K 8K 
Block Size 

CC Machine Model 

100 

M 10 
C 
P 
R 

1 

117 

Total Cost 
Overhead Cost 
Data Transfer Cost 

. 'x'" ·x···· X 

••• )1( •••• )i:: •• 

32 64 1282565121K 2K 4K 8K 
Block Size 

NUMA Machine Model 

Figure 7.4: cholesky !\lCPR broken down into data transfer and overhead com­
ponents (log scales) 

10 

1 

M 
C 
P 
R 0.1 

0.01 

gotal Co~t 
verhead Cost 
ata Transfer Cost 

r=" x x " x )! x Ok 

>t. 

". 

. ~~ 
~--f: 

>r -..,. -..,. - -,r .... 

x· 

~~ 
~..,r: 

'",. 

,," , 

·x····x 

32 64 1282565121K 2K 4K 8K 
Block Size 

CC Machine Model 

M 
C 
P 

10 

1 

R 0.1 

0.01 

"'. 

". 

Total Cost 
Overhead Cost 
Data Transfer Cost 

" S( k 

"'. 

x 

x····x 

32 64 1282565121K 2K 4K 8K 
Block Size 

NUMA Machine Model 

Figure 7.5: sorbyr MCPR broken down into data transfer and overhead compo­
nents (log scales) 



118 

r, the "useful grouping" cost component, can only result in increased cost 
. with reduced block sizes. Fragmentation does not affect the overhead component 

at all. Therefore, any reduction in overhead must be due to a reduction in false 
sharing. Furthermore, that reduction in overhead must be accompanied by some 
reduction in data transfer as well, because the reduction in false sharing results in 
fewer total transfers needed, and a transfer incurs both overhead and data transfer-­
costs, as indicated by equation 7.11. 

A bound can be placed on the possible change in fragmentation when the 
block size is halved. When the block size is halved, fragmentation can at most be 
reduced by a factor of two. Let an arbitrary multi word block of size s, machine 
M6 and trace T that references only the one block be given. Assume that there 
is no false sharing in T. Define S ~ T to be the set of references that result in 
block moves in T. Consider running T on machine Mt, which differs from .Ms in 
that is has half the block size. Since there is no false sharing in T, any reference 
in S represents a real data communication. Since the blocks in AI:. are sub-blocks 

2 

of those in A16 , any transfer in M1.. can not move any data that wouldn't have 
2 

also been moved in Ms. Therefore, every reference in S results in a transfer in 
T on AI1.. Since the data transfer portion of R in M1.. is half that of AIs, the 

2 2 

data transfer cost of T on Mt is at least half of that of T in Ms. (It could be 
more, because some references in T \ S could also initiate block moves in M t.) 
Since any change in fragmentation shows up only in the data transfer component, 
we conclude that when the block size is halved, reduction in fragmentation can 
account for at most a halving of the data transfer cost component. 

Iterating this result shows that when block size changes from s to 2'!.' frag­
mentation can reduce the data transfer cost component by at most a factor of 2Tl . 
(The result could be generalized to denominators that are not powers of two, but 
that is unnecessary for this analysis.) Many of the applications approach or even 
exceed this limit over a wide range of block sizes. For example, the data transfer 
cost component for p-qsort with 8K blocks on the CC model is 1.2 billion cost 
units. At a 1K block size the data transfer cost is 138 million, for a ratio of 8.7, 
which is greater than the factor of 8 that can be explained by fragmentation alone. 
At a 128 byte block size the data transfer cost is 28 million cost units, or 43 times 
less than that at 8Kj while this could be explainable entirely by fragmentation, 
doing so would mean that nearly all of the memory in the 8K blocks was unused. 
This is unlikely. False sharing is probably responsible for most of the difference 
in performance 

On the other hand, sorbyr, as shown in figure 7.5, is an application that has 
very little false sharing. The data transfer cost component for sorbyr is never 
greater than 10% of the total cost of running the application (recall that the 
total cost as shown in these graphs is the sum of not only the data transfer and 
overhead components, but also the cost of making local memory references, which 
contributes 1 to the MCPR). The ratio of the data transfer cost at an 8K block size 

-

-



119 

to that at a 32 byte block size is 5 to 1, which is much less than the factor of 256 
that could be accounted for by fragmentation. The overhead component steadily 
increases in its contribution to cost as the block size is reduced, in stark contrast 
to the other applications discussed. Graphs like that of sorbyr are typical of 
applications having little false sharing. 

Most of the applications in the application suite display performance like that 
of p-qsort, ply trace , or cholesky rather than like sorbyr. This indicates that 
false sharing is probably the major reason for the poor performance of these ap­
plications on large block size machines. Thus, if false sharing is somehow reduced 
large block size machines could be expected to perform comparable to small block 
size machines. 



120 

8 Conclusions 

The primary conclusion of this work is: 

• Properly designed software-coherent shared-memory multiprocessors can per­
form competitively with coherently-cached machines. 

This conclusion is based on the direct evidence offered by the simulations in 
Chapter 6. These simulations show that NUMA machines with small pages have 
performance that is nearly as good as that of a coherently cached-machine built 
of similar speed components. In particular, the NUMA machine model performs 
within 20% of CC on all but one of the non-Presto applications in the application 
set; the performance of the Presto applications is sufficiently bad that they would 
probably not be run unmodified on any machines with remote latencies of this 
magnitude. 

The conclusion is supported by several main points, to wit: 

• The tracing process created memory reference traces that do not differ from 
what would happen in reality enough to significantly distort final results. 

• The cost model captures the essential features of NUMA and coherently­
cached systems well enough to describe first order performance effects. 

• The optimal analysis technique eliminates bias that might be present if on­
line policies were used, and so allows the exploration of the limits of the 
hardware without consideration of the policies being used. 

• At least for some machines, on-line policies can be created that approach 
. optimal performance for real applications, and so optimal behavior is not 
completely unrealistic as a guide for overall machine performance. 

• The machine models used for the final comparison are based on components 
of speed comparable to that of modern hardware. 

.--



121 

• The construction of kernel software to support NUMA systems is not terribly 
. difficult, and should not be seen as a major impediment to their construction. 

In addition to the work that directly supports the thesis, this dissertation also· 
makes the following contributions: 

• An implementation of a NUMA kernel within the pmap layer of Mach that 
showed that Mach's virtual memory system was well designed to support 
novel architectures such as NUMAs with only minor modifications to the 
machine independent layer. 

• A formal model of shared memory multiprocessors and program execution 
on them that is amenable to optimal analysis and also allows mathematical 
proof of properties of machines and traces. 

• A demonstration that NUMA policies need to be tuned to the hardware on 
which they are run. 

• Showing that the value of remote reference depends on the size of the block 
being used. For the block sizes typically employed in paged machines, it can 
yield significant performance improvements. Well coded remote reference 
software is a promising option for DSM machines, and merits experimental 
implementation, similar to Spector's work on the Alto [89, 90], but specif­
ically tuned for remote memory reference. Conversely, remote reference is 
unlikely to benefit cache-coherent machines enough to warrant the expense 
of building it, at least when the line size is small. 

• Finding that distributed shared memory systems with large page sizes are 
not competitive as a base for generic shared-memory programs. To properly 
exploit them, techniques such as those used in the Munin system should 
be employed, or programmers should keep data migrations in mind when 
writing programs for them. 

Furthermore, the work in Chapters 6 and 7 indicates that the primary reason 
that NUMA machines perform better with smaller page sizes is that reducing the 
page size also reduces false sharing, and in systems with very large interprocessor·-­
communication latencies such false sharing is extremely expensive. 



122 

8.1 Future Work 

There are many directions in which this work could be extended: 

• Exploring ways of reducing false sharing in applications, by using complier, 
run-time, or programming language tools, or by assisting the programmer 
in eliminating it by hand. 

• Considering the effects of staticly or dynamically variable sized blocks, such 
as suggested by Dubnicki for cache lines [41]. 

• Reducing the error in the studies by doing more detailed simulation, includ­
ing effects such as contention and feedback affecting instruction ordering. 

• Building an implementation of a software coherent system as described here. 

• Finding better ways to define and quantify the effects of false sharing. 

• Considering machines with properties disallowed by the current model, such 
as weak coherence, latency tolerance or microtasking. 

• Extending the technique of optimal analysis to areas other than NUMA 
policy design. 

8.1.1 Reducing False Sharing 

The work in chapter 7 suggests that the main reason that shared memory machines 
perform better with smaller block sizes is the reduction of false sharing with block 
size. If it is possible to reduce false sharing by program restructuring, then the 
main advantage of smaller block sizes would be lessened. The decision about what 
block size to choose would involve weighing fragmentation against overhead costs; 
this would probably result in machines with large block sizes. 

Given that false sharing is so elusive to measure, removing it will likely be dif­
ficult, too. The most appealing method is to have language, runtime and compiler 
tools that do the work for the programmer, allowing UMA-style programs to run 
well on NUMA, where performance degradation comes only from real communi- .­
cation. 

If tools to automatically reduce false sharing could not be created, then it might 
be possible to provide hints to the programmer about changes that might be made 
to increase program speed. A tool of this sort could operate by instrumenting the 
program and examining its real communications behavior at runtime. \Vhen it 
detected communications events that did not correspond to real communication, 
it could determine which portions of program memory caused this behavior and 
suggest corrective action. 

-
-



123 

8.1.2 Variable Sized Blocks 

Dubnicki [41] suggests hardware that supports dynamically variable block sizes. 
This approach is promising in that it could allow systems to adapt to programs 
that have both small and large size migratory data. This would reduce false 

. sharing, without incurring the greatly increased overhead due to exclusively using 
small blocks. 

8.1.3 Increasing the Detail of the Model 

The model used in this work assumes infinite memories and caches, ignores con­
tention in the interconnection and memory systems, assumes that program be­
havior is independent of page movement decisions, treats TLB effects as an af­
terthought, and ignores the effects on higher level virtual memory systems of hav­
ing very small pages. All of these points introduce errors of one sort or another 
into the performance estimates provided by the model. 

To correct for most of these types of problems would require switching from 
a mathematical model to a detailed architectural simulation. This would also 
require at best a rethinking of the optimal NUMA policy technique, and at worst 
complete abandonment of it, depending on the complexity of the new simula­
tion. Nevertheless, such a simulation would be necessary before undertaking an 
implementation of such a machine. 

8.1.4 More Complicated Machines 

Another weakness of the model is that it is unable to deal with more complicated 
machine models, such as those with different coherence models, latency toler­
ance, and more complicated interprocessor interconnections. To simulate weaker 
coherence would require new traces that included information about not only 
synchronization points, but also which objects are protected by which synchro­
nization operations, an extension of the cost model similar to that proposed in 
section 7.1.2 that includes a cost for merging pages, and a revision of the optimal 
placement algorithm. 

To simulate a multi-threaded latency-tolerant machine would require traces 
describing an application designed for such a machine, and a model of the context 
switching behavior of the machine. Of course, optimal placement is less of an 
issue, but one must decide how many threads per processor to create, and how to 
schedule those threads. 

Simulating a more complicated interconnection network is more straightfor­
ward given the mechanics developed in this dissertation. All that would be re­
quired would be a good formal model of the cost of the various inter-memory 



124 

operations and a generalization of the optimal placement algorithm. The first 
step in this generalization has already been taken by the global memory version 
of optimal placement. 

8.1.5 Other Uses of Optimal Analysis 

Optimal analysis can potentially be a fruitful technique for exploration of areas 
other than NUMA memory management. Any area of computer science in which 
an algorithm uses a hueristic to attempt to minimize some value without future 
knowledge is a potential target for optimal analysis. For example, virtual mem­
ory page replacement algorithms, cache replacement algorithms, or the code in a 
compiler that selects which registers to spill could all potentially benefit from op­
timal analysis. To apply it requires solving an optimization problem that mayor 
may not be NP-hardj whether it is depends on the particular problem at hand. I 
believe that optimal analysis can be a fruitful technique for exploring performance 
of a wide class of computer systems problems. 



125 

Bibliography 

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and 
M. Young. Mach: A New Kernel Foundation for UNIX Development. In 
Proceedings of the Summer 1986 USElaX, July 1986. 

[2] S. V. Adve and l'.1. D. Hill. Weak Ordering - A New Definition. In Proceedings 
of the 17th Annual Symposium on Computer Architecture, pages 2-14,1990. 

[3] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A Pro­
cessor Architecture for l'.lultiprocessing. In Proceedings of the 17th Annual 
Symposium on Computer Architecture, pages 104-114, 1990. 

[4] A. Agarwal, R. Simoni, J. Hennessey, and M. Horowitz. An Evaluation of 
Directory Schemes for Cache Coherence. In Proceedings of the 15th Annual 
Symposium on Computer Archetecture, pages 280-289, May 1988. 

[5] A. Agarwal, R. L. Sites, and M. Horowitz. ATUM: A New Technique for 
Capturing Address Traces Using Microcode. In Proceedings of the 13th 
Annual Symposium on Computer Architecture, pages 119-125, 1986. 

[6] R. Allen, D. Baumgartner, K. Kennedy, and A. Porterfield. PTOOL: A 
Semi-Automatic Parallel Programming Assistant. In Proceedings of the In­
ternational Conference on Parallel Processing, pages 164-170, 1986. 

[7] R. J. Anderson. An Experimental Study of Parallel Merge Sort. Techni­
cal Report 88-05-01, University of Washington Department of Computer -­
Science, May 1988. 

[8] T. E. Anderson, H. M. Levy, B. N. Bershad, and E. D. Lazowska. The 
Interaction of Architecture and Operating System Design. In Proceedings of 
the 4th International Conference on Architectural Support for Programming 
Languages and Operating Systems, pages 108-120, April 1991. 

[9] Apollo, Inc. The Apollo DOMAIN Architecture. Apollo Computer, Inc., 
Chelmsford, MA, 1981. 



126 

[10] J. Archibald and J.-L. Baer. An Economical Solution to the Cache Coher­
ence Problem. In Proceedings of the-11th Annual International Symposium 
on Computer Architecture, pages 355-362, June 1984. 

[11] J. Archibald and J.-L. Baer. Cache Coherence Protocols: Evaluation Us­
ing a Multiprocessor Simulation Model. ACM Transactions on Computer 
Systems, 4(4):273-298, November 1986. 

[12] AT&T. System V Interface Definition. Computer Information Center, PO 
Box 19901, Indianapolis, IN, 1986. 

[13] S. J. Baylor and B. D. Rathi. An Evaluation of Memory Reference Behavior 
of Engineering/Scientific Applications in Parallel Systems. Technical Report 
14287, IBM, June 1989. 

[14] BBN. Butterfly Parallel Processor Overview. BBN Laboratories, BBN Re­
port 6148, Cambridge, Massachusetts, March 1986. 

[15] BBN. Inside the Butterfly Plus. BBN Advanced Computers, Cambridge, 
MA, October 1987. 

[16] B. Beck and D. Olien. A Parallel Programming Process Model. In Proceed­
ings of the Winter USENIX Conference, 1987. 

[17] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive Software Cache 
Management for Distributed Shared Memory Arichtectures. In Proceedings 
of the 17th International Symposium on Computer A rchitecture, pages 125-
134, 1990. 

[18] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive Software Cache 
Management for Distributed Shared Memory Architectures. In Proceedings 
of the 17th Annual Symposium on Computer Architecture, pages 125-134, 
1990. 

[19] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed Shared 
Memory Based on Type-Specific Memory Coherence. In Symposium on 
Principles and Practice of Parallel Programming, SIGPLAN Notices 25(3), 
pages 168-176, March 1990. 

[20] M. Berry, et al. The Perfect Club Benchmarks: Effective Performance Eval­
uation of Supercomputers. CSRD Report 827, Center for Supercomputing 
Research and Development, University of Illinois, May 1989. 

[21] B. N. Bershad, E. D. Lazowska, and H. M. Levy. PRESTO: A System for 
Object-Oriented Parallel Programming. Software: Practice and Experience, 
18(8):713-732, August 1988. 



127 

[22] D. Black, A. Gupta, and W.-D. Weber. Competitive Management of Dis­
. tributed Shared Memory. In Proceedings, Spring COMPCON, pages 184-
190, February 1989. 

[23] D. 1. Black and D. D. Sleator. Competitive Algorithms for Replication and 
Migration Problems. Technical report, Carnegie-Mellon University, Com­
puter Science Department, November 1989. CMU-CS-89-201. 

[24] W. J. Bolosky, R. P. Fitzgerald, and M. 1. Scott. Simple But Effective 
Techniques for NUMA Memory Management. In Proceedings of the 12th 
ACM Symposium on Operating Systems Principles, pages 19-31, December 
1989. 

[2r1] W. J. Bolosky and 1\1. 1. Scott. A Trace-Based Comparison of Shared Mem­
ory Multiprocessors using Optimal Off-Line Analysis. Technical Report 432, 
University of Rochester Computer Science Department, December 1991. 

[26] \\'. J. Bolosky and M. L. Scott. Evaluation of Multiprocessor Memory 
Systems Using Off-Line Optimal Behavior. The Journal of Paralltl and 
Distributed Computing, August 1992. 

[27] Vol. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J. Fowler, and A. 1. Cox. 
NUMA Policies and Their Relation to Memory Architecture. In Proceedings 
of the 4th International Conference on Architectural Support for Program­
ming Languages and Operating Systems, pages 212-221, 1991. 

[28] E. Brooks. BBN TC2000 Architecture and Programming Model. In Pro­
ceedings of the IEEE COMPCON, February 1991. 

[29] N. Carriero and D. Gelernter. Applications Experience with Linda. In Pro­
ceedings, Parallel Programming: Experience with Applications, Languages 
and Systems, pages 173-187, July 1988. 

[30] J. B. Carter, J. K. Bennett, and \"Y. Zwaenepoel. Implementation and Per­
formance of Munin. In Proceedings of the 13th Symposium on Operating 
Systems Principles, pages 152-164, 1991. 

[31] L. M. Censier and P. Feautrier. A New Solution to Coherence Problems in 
Multicache Systems. IEEE Transactions on Computers, 27(12):1112-1118, 
December 1978. 

[32] J. S. Chase, F. G. Amador, E. D. Lazowska, H. M. Levy, and R. J. Littlefield. 
The Amber System: Parallel Programming on a Network of Multiproces­
sors. In Proceedings of the 12th ACM Symposium on Operating Systems 
Principles, pages 147-158, December 1989. 



128 

[33] E. Chaves, P. Das, T. LeBlanc, B. Marsh, and M. Scott. Kernel-Kernel 
Communication in a Shared-Memory Multiprocessor. Concurrency: Prac­
tice and Experience, 5(3):171-191, May 1993. 

[34] D. R. Cheriton, H. A. Goosen, and P. D. Boyle. Paradigm: A Highly 
Scalable Shared-Memory Multicomputer Architecture. Computer, 24(2):33-
46, February 1991. 

[35] D. R. Cheriton, H. A. Goosen, and P. Machanick. Restructuring a Parallel 
Simulation to Improve Cache Behavior in a Shared-Memory Multiproces­
sor: A First Experience. In Proceedings of the International Symposium on 
Shared Memory Multiprocessing, pages 109-118, Tokyo, April 1991. 

[36] D. \V. Clark. Cache Performance in the VAX-11j780. ACM Transactions 
on Computer Systems, 1(1):24-37, February 1983. 

[37] E. Cooper and R. Draves. C Threads. Technical Report CMU-CS-88-154, 
Carnegie-Mellon University, Computer Science Department, March 1987. 

[38] A. 1. Cox. The Implementation and Evaluation of a Coherent Memory Ab­
straction for NUMA Multiprocessors. Ph.D. thesis, University of Rochester, 
1992. 

[39] A. 1. Cox and R. J. Fowler. The Implementation of a Coherent Memory 
Abstraction on a NUMA Multiprocessor: Experiences with PLATINUM. In 
Proceedings of the 12th A CM Symposium on Operating Systems Principles, 
pages 32-44, December 1989. 

[40] W. P. Crowley, C. P. Hendrickson, and T. E. Rudy. The SIMPLE code. 
Technical Report UCID-17715, Lawrence Livermore Laboratory, 1978. 

[41] C. Dubnicki and T. J. Leblanc. Adjustable Block Size Coherent Caches. In 
Proceedings of the 19th International Symposium on Computer Architecture, 
pages 170-180, May 1992. 

[42] S. J. Eggers and T. E. Jeremiassen. Eliminating False Sharing. In Pro­
ceedings of the 1991 International Conference on Paralle/Processing, pages 
1-377-1-381, 1991. 

[43] S. J. Eggers and R. H. Katz. The Effect of Sharing on the Cache and Bus 
Performance of Parallel Programs. In Proceedings of the 3rd International 
Conference on Architectual Support for Programming Languages and Oper­
ating Systems, pages 257-270, April 1989. 

[44] S. J. Eggers, D. R. Keppel, E. J. Koldinger, and H. M. Levy. Techniques for 
Efficient Inline Tracing on a Shared-Memory Multiprocessor. In Proceedings 



129 

of the 1990 SIGMETRICS Conference on Measurement and Modelling of 
Computer Systems, pages 37-47, May 1990. 

[45] B. D. Fleisch and G. J.Popek. Mirage: A Coherent Distributed Shared 
Memory Design. In Proceedings of the 12th ACM Symposium on Operating 
Systems Principles, pages 211-223, December 1989. 

[46] A. Forin, J. Barrera, and R. Sanzi. The Shared Memory Server. In Proceed­
ings of the Winter USEfolIX, pages 229-244, Jan 1989. 

[47] R. J. Fowler. Personal communication. Email commenting on PLATINU~1 
applications, April 1993. 

[4R] R. J. Fowler and A. 1. Cox. An Overview of PLATINUM: A Platform for 
Investigating Non-Uniform Memory. Technical Report TR-262, Computer 
Science Department, University of Rochester, Nov. 1988. 

[49] A. Garcia. Efficient Rendering of Synthetic Images. Ph.D. thesis, Mas­
sachusetts Institute of Technology, February 1988. 

[50] A. Garcia, D. Foster, and R. Freitas. The Advanced Computing Environ­
ment Multiprocessor \\Torkstation. Research Report RC-14419, IB11 T.J. 
\\Tatson Research Center, March 1989. 

[51] M. Gardner. Mathematical Games. Scientific American, 223(4):120-123, 
October 1970. 

[52] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen­
nessy. Memory Consistency and Event Ordering in Scalable Shared-Memory 
Multiprocessors. In Proceedings of the 17th Annual Symposium on Computer 
Architecture, pages 15-26, 1990. 

[53] S. Goldschmidt and H. Davis. Tango Introduction and Tutorial. Technical 
Report CSL-TR-90-410, Computer Systems Laboratory, Stanford Univer­
sity, Jan 1990. 

[54] J. Goodman. Using Cache Memory to Reduce Processor-Memory Traffic. 
In Proceedings of the 10th Annual International Symposium on Computer 
Architecture, pages 124-131, June 1983. 

[55] M. D. Hill, J. R. Larus, S. K. Reinhardt, and D. A. Wood. Cooperative 
Shared Memory: Software and Hardware for Scalable Multiprocessors. In 
Proceedings of the 5th International Conference on Architectural Support for 
Programming Languages and Operating Systems, pages 262-273, 1992. 

[56] C. A. R. Hoare. Quicksort. Computer Journal, 5(1):10-15, 1962. 



130 

[57] M. A. Holliday. On the Effectiveness of Dynamic Page Placement. Techni­
cal Report CS-1989-19, Department of Computer Science, Duke University, 
September 1989. 

[58] M. A. Holliday. Reference History, Page Size, and Migration Daemons in 
Local/Remote Architectures. In Proceedings of the 3rd International Con­
ference on Architectural Support Support for Programming Languages and 
Operating Systems, April 1989. 

[59] IBM. IBM RT /PC Hardware Technical Reference. IBM, 1988. Part Num­
bers SA23-2610-0, SA23-2611-0 and SA23-2612-0, Third Edition. 

[60] R. H. Katz, S. J. Eggers, D. A. Wood, C. 1. Perkins, and R. G. Sheldon. 
Implementing a Cache Consistency Protocol. In Proceedings of the 12th 
Annual International Symposium on Computer Architecture, pages 276-283, 
June 1985. 

[61] B. W. Kernighan and D. M. Ritchie. The C Programming Language. 
Prentice-Hall Software Series, Englewood Cliffs, New Jersey, 1978. 

[62] E. J. Koldinger, S. J. Eggers, and H. M. Levy. On the Validity of Trace­
Driven Simulations for Multiprocessors. In Proceedings of the 18th Interna­
tional Symposium on Computer Architecture, pages 244-253, 1991. 

[63] R. P. LaRowe and C. S. Ellis. Virtual Page Placement Policies for NUMA 
Multiprocessors. Technical report, Department of Computer Science, Duke 
University, December 1988. 

[64] R. P. LaRowe and C. S. Ellis. Experimental Comparison of Memory Manage­
ment Policies for NUMA Multiprocessors. ACM Transactions on Computer 
Systems, 9(4):319-363, November 1991. 

[65] R. P. LaRowe, C. S. Ellis, and 1. S. Kaplan. The Robustness of NUMA Mem­
ory Management. In Proceedings of the 13th A CM Symposium on Operating 
Systems Principles, pages 137-151, 1991. 

[66] J. R. Larus. Abstract Execution: A Technique for Efficiently Tracing Pr~-­
grams. Software: Practice and Experience, 20(12):1241-1258, December 
1990. 

[67] T. J. LeBlanc, B. D. Marsh, and M. 1. Scott. Memory Management for 
Large-Scale NUMA Multiprocessors. Technical Report 311, University of 
Rochester Computer Science Department, 1989. 

[68] R. B. Lee. Precision Architecture. Computer, 22(1 ):78-91, January 1989. 



131 

[69] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The 
, Directory-Based Cache Coherence Protocol for the DASH Multiprocessor. 

In Proceedings of the 17th Annual Symposium on Computer Architecture, 
pages 148-159, 1990. 

[70] D. Lenoski, J. Laudon, L. Stevens, T. Joe, D. Nakahira, A. Gupta, and 
J. Hennessy. The DASH Prototype: Implementation and Performance. In 
Proceedings of the 19th Annual Symposium on Computer Architecture, 1992. 

[71] K. Li. IVY: A Shared Memory Virtual Memory System for Parallel Com­
puting. In Proceedings of the 1988 International Conference on Parallel 
Processing, pages 11-94-11-101, 1988. 

[72J K. Li and P. Hudak. Iv1emory Coherence in Shared Virtual Memory Sys­
tems. In Proceedings of the 5th ACM Symposium on Principles of Distributed 
Computing, pages 229-239, 1986. 

[73J K. Li and R. Schaefer. A Hypercube Shared Virtual Memory System. In 
Proceedings of the 1989 International Conference on Parallel Processing, 
pages 1-125-1-132,1989. 

[74] E. Markatos. Scheduling for Locality in Shared-Memory Multiprocessors. 
Ph.D. thesis, University of Rochester, Department of Computer Science, 
1988. 

[75] E. P. Markatos and T. J. LeBlanc. Using Memory (or Cache) Affinity in 
Loop Scheduling on Shared-Memory Multiprocessors. Technical Report 410, 
Computer Science Department, University of Rochester, March 1992. To ap­
pear, Supercomputing '93 or IEEE Transactions on Parallel and Distributed 
Systems. 

[76] E. M. McCreight. The Dragon Computer System, an Early Overview. In 
NATO Advanced Study Insitiute on Microarchitecture of VLSI Computers, 
July 1984. 

[77] J. M. Mellor-Crummey and M. 1. Scott. Synchronization without Con­
tention. In Proceedings of the 4th International Conference on Architectural 
Support for Programming Languages and Operating Systems, pages 269-278, 
1991. 

[78] M. Misra, editor. RISC System/6000 Technology. IBM, Austin, TX, 1990. 
Book SA23-2619. 

[79] H. E. Mizrahi, J.-L. Baer, E. D. Lazowska, and J. Zahorjan. Introduc­
ing Memory into the Switch Elements of Multiprocessor Interconnection 



132 

Networks. In Proceedings of the 16th Annual International Symposium on 
Computer Architecture, pages 158-166, May 1989. 

[80] Motorola. MC68881/.\{C68882 Floating-Point Coprocessor User's Manual. 
Prentice-Hall, Englewood Cliffs, New Jersey, 1987. 

[81] J. M. Ortega and R. G. Voigt. Solution of Partial Differential Equations on 
Vector and Parallel Computers. SIAM Review, 27(2):149-240, June 1985. 

[82] G. F. Pfister, \\T. C. Brantley, D. A. George, S. 1. Harvey, \\T. J. Kleinfelder, 
K. P. i\IcAuliffe, E. A. Melton, V. A. Norton, and J. Weiss. The IBi\1 Re­
search Parallel Processor Prototype (RP3): Introduction and Architecture. 
In Proceedings of the 1985 International Conference on Parallel Processing, 
pages 764-771, 1985. 

[83] U. Ramachandran, M. Ahamad, and M. Y. A. Khalidi. Coherence of Dis­
tributed Shared Memory: unifying Synchronization and Data Transfer. In 
Proceedings of the International Conference on Parallel Programming, pages 
II-160-II-169, June 1989. 

[84] R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D. Black, 
W. Bolosky, and J. Chew. Machine-Independent Virtual Memory Man­
agement for Paged Uniprocessor and Multiprocessor Architectures. IEEE 
Transactions on Computers, 37(8):896-908, August 1988. 

[85] E. Rothberg and A. Gupta. Techniques for Improving the Performance 
of Sparse Factorization on Multiprocessor Workstations. In Proceedings, 
Supercomputing '90, November 1990. 

[86] 1. Rudolph and Z. Segall. Dynamic Decentralized Cache Schemes for MIMD 
Parallel Processors. In Proceedings of the 11th A nnual International Sym­
posium on Computer A rchitecture, pages 340-347, June 1984. 

[87] A. D. Samples. Mache: No-Loss Trace Compaction. Performance Evalua­
tion Review, 17(1):89-97, May 1989. 

[88] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Ap-.··, 
plications for Shared-Memory. Computer Architecture News, 20(1):5-44, 
March 1992. 

[89] A. Z. Spector. Multiprocessor Architectures for Local Computer Networks. 
Ph.D. thesis, Department of Computer Science, Stanford University, August 
1981. 

[90] A. Z. Spector. Performing Remote Operations Efficiently on a Local Com­
puter Network. Communications of the AG.M, 25(4):246-260, April 1982. 



133 

[91] P. Stenstrom. A Survey of Cache Coherence Schemes for Multiprocessors. 
Computer, 23(6):12-24, June 1990. 

[921 J. Stone and A. Norton. The VM/EPEX FORTRAN Preprocessor Refer­
ence. IBM, 1985. Research Report RC11408. 

[93] M. Stumm and S. Zhou. Algorithms Implementing Distributed Shared Mem­
ory. Computer, 23(5):54-64, May 1990. 

[94] C. B. Stunkel and \V. K. Fuchs. TRAPEDS: Producing Traces for 11ulticom­
puters Via Execution Driven Simulation. Performance Evaluation Review, 
17(1 ):70-78, May 1989. 

[95] C. P. Thacker and 1. C. Stewart. Firefly: a Multiprocessor \Vorkstation. 
In Proceedings of the 2nd International Conference on Architectural Support 
Support for Programming Languages and Operating Systems, pages 164-172. 
October 1987. 

[96] S. Thakkar, P. Gifford, and G. Fielland. Balance: A Shared Memory Mul­
tiprocessor. In Proceedings of the 2nd International Conferena on Super­
computing, May 1987. 

[97] R. Uhlig, D. Nagle, T. Mudge, and S. Sechrest. Software TLB Manage­
ment in OSF /1 and lvlach 3.0. In Proceedings of the 3rd USENIX Mach 
Symposium, April 1993. 

[98] J. E. Veenstra and R. J. Fowler. A Performance Evaluation of Optimal 
Hybrid Cache Coherency Protocols. In Proceedings of the 5th International 
Conference on Architectural Support for Programming Languages and Oper­
ating Systems, pages 149-161, 1992. 

[99] Z. G. Vranesic, M. Stumm, D. M. Lewis, and R. White. Hector: A Hierar­
chically Structured Shared-Memory Multiprocessor. Computer, 24(1 ):72-79, 
January 1991. 

[100] W. \Veber and A. Gupta. Analysis of Cache Invalidation Patterns in Multi­
processors. In Proceedings of the 3rd International Conference on Architec--,-.:-­
tural Support Support for Programming Languages and Operating Systems, 
April 1989. 

[101] B. Wheeler and B. Bershad. Consistency Management for Virtually Indexed 
Caches. In Proceedings of the 5th International Conference on Architectural 
Support for Programming Languages and Operating Systems, pages 124-136, 
1992. 



13·1 

[102] P. C. Yew. Architecture of the Cedar Parallel Supercomputer. Technical Re­
'port 609, Center for Supercomputing Research and Development, University 
of Illinois at Urbana-Champaign, August 1986. 

[103] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Eppinger, J. Chew, 
W. Bolosky, D. Black, and R. Baron. The Duality of Memory and Commu­
nication in the Implementation of a Multiprocessor Operating System. In 
Proceedings of the 11th ACM Symposium on Operating Systems Principles, 
pages 63-76, 1987. 

-



13.5 

Appendix A Results for All 
Applications 

This appendix contains graphs that 
show the effects of page size and soft­
ware overhead for those applications that 
are not used as examples in Chapter 6. 
They are included for completeness' sake. 

100 

50 

20 

10 

5 

if:' " 
DSM 

r -. DSM+ 
~ NUMA 

I CC )i:"' ')i( f CC+ , . .. .. 

, 

,.-,.-,.-
"' .. ,:1< 

' .. , .­, . 
1/<. . 

, :it.. , .' 

.!I; .. , . , . 
, .:0: 

.... "'" " 

,,--1t .;. ........ --' 

~,., "'" ... -- .... -.-:. ~ 

__ 1 

--, 

"'" _.... ..~ .. 

• ~ 
I ,. 

_ .. 

32 64 128 256 512 1K 2K 4K 8K 

Figure A.l: e-hyd MCPR vs. block size 
(log scales) 



50 

20 

10 

5 

2 

1 

100 

10 

136 

>r -x DSM .. -,:: --x DSM l r -. DSM+ ! r --. DSM+ 
NUMA I NUMA 

,. ..---
! r----t ~ "' .. '" 

88+ 
! "' ..... '" CC ~ .... , . .....• cc+ f 

I 5 I· 

! ~. 

! J: 
I ~'" 
! ': 
I ,. 
I 

,. 
! 

,. t , I. I 

! • 1<: 1 

1 1:1< 
! ''-
I 1 '.-
I 1 '.-
I 1 « .. 
I 1 2 " " .J< I 

",," " " .' "" ~-'';''--'--"". 1 ~~ " .... ~. 1 • .... -,._ - ... _ - -t ...... ~ ..... 
1 -- ~= ;:: ~~ -,- - .. ' .* 

111., .. ,:::: ,*:::: . . ... 

32 64 128 256 512 lK 2K 4K 8K 32 64 128 256 512 lK 2K 4K 8K 

Figure A.2: gauss MCPR vs. block size Figure A.4: sorbyc MCPR vs. block 
(log scales) size (log scales) 

"C····'" .. . . . .. 
DSM 
DSM+ 
NUMA 
CC 
CC+ 

50 

20 

"K" -x DSM 
r -. DSM+ 
..--- NUMA 
"' .. "" CC .... CC+ 

t ,. 
I.~ 

I.' 
I.' 

I.' 
I' ... : 

,:J< ,.-

-t t 
t 

'.' 

5 

.... 2 

,. 
6('­

I . 
I .:J< 

I .' 
I .' 

6(. , : 
I :J< 

I • 

,,-l.: .... 
, " .' _ ,. -'L .. ~ ," --~... ...,;..., 

", ... ~"'-: :-.~ 
•.....•.....•.. 

" .... ... " 

..... 
~ .. 

32 64 128 256 512 lK 2K 4K 8K 32 64 128 256 512 lK 2K 4K 8K 

Figure A.3: p-life MCPR vs. block Figure A.5: matmult MCPR vs. block 
size (log scales) size (log scales) 



4 

3 

2 

1 

50 

20 

10 

5 

.,;- -x DSM 
r -. DSM+ 
~ NUMA 
)ie' ')i( CC .... CC+ 

1 20 
t 
t 
t 
t 
I 
I 
I 
t 
I 
t 
I 
I 

10 

5 

2 

32 64 128 256 512 1K 2K 4K 8K 

~ -x DSM 
r -. DSM+ 
~ NUMA 
:Ie 'j( CC . ... CC+ 

137 

• , 
{ 

I 
~. 

~ 
~ 

i-,. 
I." 

I: 
,: ,.. ,.. 

,:1< 
,: ,. 

I: 

32 64 128 256 512 1K 2K 4K 8K 

Figure A.6: bsort MCPR vs. block size Figure A.8: e-nasa MCPR vs. block 
(log scales) size (log scales) 

.,;- --)( DSM " "f:" -x DSM Ie 

DSM+ 1 DSM+ 
, 

r --. / r -. , 
NUMA / 20 ~ NUMA ( .------- ( / 

CC " .•••. >t CC / " .. " c 

CC+ 
/ CC+ ~ ....... / 

.... J 

J " ,. 
10 

,.. , I: 
I 

" , '.:1< .. ,. 
-J. I· 4' ,- ,: ,-

5 
,-

,- , .. ,: ,-
"- ,1 ": ,-, .. 

, ~:...:;...: ... "': •. '1('." '11: /1< ,-, ... /. ,-

" ,-.f' 
,: , 
.~ 

,~~." I: , 

.- -"11- - "11- - -f' I:, 

." 1.1 
II 

a·. I{ .' 

32 64 128 256 512 1K 2K 4K 8K 32 64 128 256 512 1K 2K 4K 8K 

Figure A.7: e-simp MCPR vs. block Figure A.9: p-matmult MCPR vs. block 
size (log scales) size (log scales) 



20 

10 

5 

2 

500 

200 

100 

50 

20 

10 

DSM 
5 

y:- " " ... -. DSM+ ~ 
~ 

eo NUMA ~. 

CC 
~. 

"' .. '" t' .... CC+ 4' 
/. 

32 64 128 256 512 lK 2K 4K 8K 

'K" --x DSM 
r --. DSM+ 
,----, NUMA 
)i( ••••• )i( CC ..... ". CC+ 

138 

,J. 
,. ,. ,. 

i 
i 

" i 
i ,. 

j 
j 

i • i I 

,~ " 
I.' I 

I.' I 
I.' I 

/.' I 
I' .. 'It, ' 

~.'1< ; ".' , 
."..<II)(~··,1 , 

'::..:' ." . 

32 64 128 256 512 lK 2K 4K 8K 

Figure A.I0: ply trace MCPR vs. block Figure A.12: water MCPR vs. block 
size (log scales) size (log scales) 

r --. 

"' ..... '" ....... 

DSM 
DSM+ 
NUMA 
CC 
CC+ /. 

I,' 

,'­
I: ,. 

" ~. 

" " " 

Ie , 

i,' 
1:1< ....... 

;,' ..... ,.. ~ , . , 
#(.' , 

,," ,,' .. ' ",' ..... 

II< •. ' .' , ., 
,," .i' 

..... « tA" 
,,~. . 

1- - "'- - -,( .. .... ..' 
-- .... -_,' ••• :1:: •••• 

"' ••••• )1: •• ,'" " ........ . . ". 

'K' --x DSM 
r --. DSM+ 
.....---. NUMA 
"' ..... '" CC 

5 .' ... '. CC+ 

2 .. i 
I 
I 

j 
j 
j 

I 
I 

i 
j 
j 
j 
/ 

{ ,. 
I I 
I , 
I I 

--. ,.... ..... ~' 
I •••• ". 

32 64 128 256 512 1K 2K 4K 8K 32 64 128 256 512 1K 2K 4K 8K 

Figure A.ll: mp3d MCPR vs. block size Figure A.13: kmerge MCPR vs. block 
(log scales) size (log scales) 

-

-



200 

100 

50 

20 

10 

5 

100 

10 

~ --~ 

r --I 
..----. 
)i(" •.• 'x ....... 

DSM 
DSl\1+ 
NUMA 
CC 
CC+ 

, , 
I< , 

I< , , , , , 
I< , , 

.... 1--' 

32 64 128 256 512 lK 2K 4K 8K 

Figure A.14: fft MCPR vs. block size 

50 

20 

139 

~>: DSM , 
DSM+ 

, r __ 
~ 

NUMA 
, 

~ ~ 

CC ~. 

""'" ~ 
CC+ I. .... ,.-

''-,.-
i' 

.e , 
(log scales) 10 

, 
~ 

, ... 

.,;--x 

r --. 

....... 

DSM 
DSM+ 
KUMA 
CC 
CC+ 

" , .. , .. 
~.'" 

~.-
~,' 

I< 

'", , ' 

~,' 

1<' 
~}< 

~. ,.­,.-
J., . .. 

~~ , ,. , 
, .' '" , ,';, 

#. ,'" ,.," 
~, )( 

I, .. 
I, .­

:f'- ,I 
,~ ,,' 

, ... 
,1 

32 64 128 256 512 1K 2K 4K 8K 

Figure A.15: p-gauss MCPR vs. block 
size (log scales) 

5 

32 64 128256512 1K 2K 4K 8K 

Figure A.16: chip MCPR vs. block size 
(log scales) 



140 

0.1 

1 
"' .... '" ACE 

. '~: ::. "::'" ~ 68040 
". )i( 0.1 ~ R4000 ... "--,, 68851 

0.01 

,--. 88200 
".~""')1:' ••• '" ...... 68030 .. 0.01 .' ]i(" "')i( ., 0.001 -......---- ... 

~ • 
1("---;' 

0.001 ,- --. 0.0001 ...... 
lIe· .. 

" '. 
'" 

1e-05 

32 64 128256512 1K 2K 4K 8K 1e-05 

Figure A.17: p-qsort TLB miss rate vs. 32 64 128256512 1K 2K 4K 81( 
page size (log scales) Figure A.18: matmul t TLB miss rate vs. 

page size (log scales) 
Figures A.17 through A.29 show tlb 

performance as a function of pagesize. 

0.1 

0.01 

0.001 

", . ..... : 
. :1::: .. ~ ... '1(' •• 

1( •.••• "' ••••• "' ••••• "' ••• 

~~--T-__ '" 
•..... 

"' .... :0: ACE ;, 
......---- 68040 " " ~ R4000 ... 
1("---;' 68851 \'. 

\'. 

r --. 88200 ' '. ,. ...... 68030 \: 

32 64 128256512 1K 2K 4K 8K 

Figure A.19: e-simp TLB miss rate vs. 
page size (log scales) 



141 

0.1 
,;c" "x ACE 
.------. 68040 
~ R4000 

)i( ,r-,. 68851 
0.01 r- __ 88200 

t. . ...... 68030 
'f. .x 

.. 
. . 

0.001 " )i: "' .... '" ACE 
r---t 68040 
~ R4000 
,r-" 68851 

0.0001 r --. 88200 ...... 68030 

1e-05 

32 64 128256512 1K 2K 4K 8K 32 64 1282565121K 2K 4K 8K 

Figure A.20: mp3d TLB miss rate VS. Figure A.22: e-hyd TLB miss rate vs. 
page size (log scales) page size (log scales) 

0.1 
",. 

0.1 "' . .. . 
0.01 .... " 

0.01 
:I< 

,j(. -". ·:l: ... 
l\ '. 

0.001 )ie'" 'x ACE "',: .... *: 
r---t 68040 0.001 

0.0001 

r--->< R4000 ACE 68851 "' .... '" ,r-" 68040 88200 r---t • r --. R4000 ...... 68030 ~ 

-'.0.0001 )f"-" 68851 
r --. 88200 ...... 68030 

1e-05 

32 64 128256512 1K 2K 4K 8K 32 64 128256512 1K 2K 4K 8K 

Figure A.21: bsort TLB miss rate VS. Figure A.23: p-gauss TLB miss rate vs. 
page size (log scales) page size (log scales) 



0.1 

0.01 

0.001 

0.0001 

1e-05 

:f(. 

r --. .. .. .. 

Ie 

0.1 

. .. "' ..... '" 
.:f( 

0.01 

.. 0.001 

( 

0.0001 

1e-05 

1 e-06 -L.-r----r----r--r----r----r--r----r----r-

32 64 128256512 1K 2K 4K 8K 

x-, "')i( " 'J:'" ')i( 

:f('" ':Ie 

~ 

~ 

:or --x 
r --. . ....• 

ACE 
68040 
R4000 
68851 

~~5g8 

142 

.. 

32 64 128256512 1K 2K 4K 8K 

Figure A.24: p-life TLB miss rate vs. Figure A.26: sorbyr TLB miss rate vs. 
page size (log scales) page size (log scales) 

0.1 
*', .. 0.1 "' •• ":Ie ACE 

. '.:::" ~ 68040 
. '1: :::. ~ R4000 

'.:'" .... "'- "!(' --x 68851 

0.01 
0.01 . '. r --• 88200 

It. ' ....... 68030 
. , "'. '.'1<. 

0.001 . ". 
:t' . ":t 

0.001 ACE '" " .... " 0.0001 
~ 68040 
~ R4000 
:or --x 68851 
r --. 88200 1e-05 

0.0001 
...... 68030 

1e-06 

1 e-05 ....J....-r----r----r--r----r----r--r----r----r-

32 64 128256 512 lK 2K 4K 8K 32 64 128256512 lK 2K 4K 8K 

Figure A.25: kmerge TLB miss rate vs. Figure A.27: chip TLB miss rate vs. 
page size (log scales) page size (log scales) 



k .. "' .... '" ACE 
'. . r------a 68040 

0.01 .: . ~ R4000 
:i<. ";--1< 68851 .. '. .- - -. 88200 ...... 

.. ", . 68030 

0.001 
. '. '. 

• ')i( 

1< '. 

0.0001 ' .. ". 

1e-05 

1e-06 

32 64 128256512 1K 2K 4K 8K 

Figure A.28: water TLB miss rate vs. 
page size (log scales) 

* .... * ACE 
r------a 68040 

0.1 * . . >')ic ., '): •••• ~ 

x. ~ R4000 
"K - I< 68851 

"- r --. 88200 ...... 68030 

0.01 1<. 

"' ..... lI: 

0.001 

0.0001 

32 64 128256512 lK 2K 4K 8K 

Figure A.29: gauss TLB miss rate vs. 
page size (log scales) 

143 




